
Enhancing Babies’ Sleep Schedule
Prediction through Machine Learning

University of Turku
Department of Computing

Master of Science (Tech) Thesis
Health Technology

June 2024
Anna Fernandez-Rajal i Sabala

Supervisors:
Academic Ph.D. Tapio Pahikkala

M.S. Yuning Wang
Company Alexander Brokking

The originality of this thesis has been checked in accordance with the University of Turku quality assurance
system using the Turnitin OriginalityCheck service.

This Master Thesis has been done within a double degree at EIT Digital School,

KTH Royal Institute of Technology and University of Turku. It has been

conducted at the company Napper [1].

a

UNIVERSITY OF TURKU
Department of Computing

Anna Fernandez-Rajal i Sabala: Enhancing Babies’ Sleep Schedule Predic-
tion through Machine Learning

Master of Science (Tech) Thesis, 136p.
Health Technology
June 2024

In recent years, there has been a growing interest in improving sleep quality and
understanding sleep patterns. This thesis will focus on enhancing sleeping schedules
for babies through machine learning. Establishing a consistent bedtime routine at
a young age is crucial, as it offers numerous health benefits and can prevent sleep-
related issues later in life. Despite this, many parents still find it challenging to
manage their babies’ sleep schedules effectively.
This master’s thesis explores the integration of machine learning algorithms into
babies’ sleep schedule predictions to provide more accurate and personalized recom-
mendations. It focuses on the integration of advanced data analytics and processing
techniques to improve sleep forecasts. Recognizing the importance of data cleanli-
ness and processing efficiency, the research delves into different steps for preparing
and analyzing the dataset on sleep and baby tracking information. With a strong
focus also on feature analysis, it later dives into various machine learning models
and assesses their effectiveness and performance. The regression task with machine
learning models includes K-Nearest Neighbors (KNN), XGBoost, Random Forests
(RF), Long Short-Term Memory networks (LSTM), and Recurrent Neural Networks
(RNN).
The project offers a methodical approach that includes background information,
relevant literature, dataset specifics, suggested techniques, findings, and conclusions.
The results demonstrate a clear potential to improve the current sleep schedules with
machine learning to achieve the desired goals, with performance metrics showing
proximity to baseline expectations. This thesis contributes to the field by advancing
the methodology of baby sleep tracking, ultimately aiming to enhance the well-being
of infants and ease the challenges faced by parents in managing their babies’ sleep
routines.

Keywords: machine learning, data analytics, baby sleep schedules, feature analysis

Contents

1 Introduction 1

1.1 Problem statement . 2

1.2 Research questions . 2

1.3 Contributions . 3

1.4 Delimitations . 3

1.5 Structure . 4

2 Background 5

2.1 Babies’ sleeping habits . 5

2.2 Preprocessing techniques . 7

2.3 Machine Learning Models . 8

2.3.1 Regression . 9

2.4 Evaluation metrics . 14

3 Related Work 17

3.1 Sleep pattern understanding and prediction 17

3.1.1 Machine learning-based sleep analysis 18

3.1.2 Wearable technology . 19

3.1.3 Individualized sleep scheduling 20

3.2 Data adherence and generative models 21

CONTENTS 2

4 Dataset 24

4.1 Data collection . 24

4.2 Data cleaning . 26

5 Proposed Method 29

5.1 Proposed model architecture . 29

5.2 Feature engineering . 31

5.2.1 Quality checked dataset . 31

5.2.2 Feature extraction . 32

5.2.3 Feature selection . 34

5.2.4 Feature scaling . 36

5.3 Model training . 36

5.3.1 Train - test split . 37

5.3.2 Used models . 38

6 Results and Discussion 41

6.1 Performance evaluation . 41

6.1.1 Model 1. Number of naps per day 42

6.1.2 Model 2. Duration and Start time of naps 46

6.2 Discussion . 52

7 Conclusions 55

7.1 Future work . 56

References 58

Appendices

A Loss Curves A-1

A.1 Learning curve on Neural Networks A-1

CONTENTS 3

B Code B-1

B.1 MAIN . B-1

B.2 PREPROCESS . B-7

B.3 FEATURES . B-17

B.4 ML . B-21

B.5 MODELS . B-31

B.6 PLOTS . B-52

List of Figures

4.1 Distribution of babies’ age on sign up 25

4.2 Distribution of duration of naps and sleep at night 27

4.3 Distribution of number of naps per day by age 28

5.1 High-level architecture of the methodology 30

6.1 KNN - number of naps . 44

6.2 XGBoost - number of naps . 44

6.3 Random Forest Regressor - number of naps 45

6.4 LSTM - number of naps . 45

6.5 RNN - number of naps . 46

6.6 KNN - duration & starting time . 48

6.7 XGBoost - duration & starting time 49

6.8 Random Forest Regressor - duration & starting time 50

6.9 LSTM - duration & starting time . 51

6.10 RNN - duration & starting time . 52

A.1 LSTM Learning curve - number of naps A-1

A.2 LSTM Learning curve - duration & starting time A-2

A.3 RNN Learning curve - number of naps A-2

A.4 RNN Learning curve - duration & starting time A-2

List of Tables

2.1 Sleep Charting by Age [15] . 6

5.1 Final data format . 32

6.1 Results on Number of naps per day 43

6.2 Results on Duration (in minutes) . 47

6.3 Results on Starting time (in minutes) 47

6.4 Model comparisons . 53

6.5 Model comparisons with baseline from app 54

List of acronyms

CNN Convolutional Neural Network

DL Deep Learning

KNN K-Nearest Neighbor

LR Logistic Regression

LSTM Long Short-term Memory

MAE Mean Absolute Error

MedAE Median Absolute Error

MLP Multilayer Perceptron

ML Machine Learning

MSE Mean Squared Error

NLP Natural Language Processing

RF Random Forest

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic curve

SVM Support Vector Machines

1 Introduction

Optimizing and understanding sleep patterns, especially in infants, has been increas-

ingly researched recently. Studies have revealed that a regular and strong nighttime

routine is essential to a child’s growth and general well-being [2] [3]. A regular sleep

schedule in early childhood is associated with many health advantages and can avoid

later sleep-related problems [4] [5]. However, it can be difficult to establish a con-

sistent sleep schedule for infants, particularly those under the age of two years [6].

Hence, there is a pressing need for effective methods that can help both newborns

and their caregivers get better sleep.

Napper, a popular app designed for parents [1], focuses on improving babies’

sleep. It has gained the trust of many parents worldwide and stands out as a

leading parenting app. This project, in collaboration with Napper, aims to enhance

the prediction of baby sleep patterns by integrating machine learning algorithms

into Napper’s existing framework. By leveraging a comprehensive dataset on baby

tracking and sleep patterns, the project aims to optimize sleep schedule predictions

through data-driven methods. The thesis details the process of data processing

and feature engineering, followed by an evaluation of various machine learning and

neural network models to provide a robust comparison.

By systematically analyzing and integrating these advanced predictive models,

the project aspires to significantly improve the accuracy and effectiveness of baby

sleep schedule predictions. Ultimately, this would contribute to better sleep quality

1.2 RESEARCH QUESTIONS 2

for infants and a more manageable routine for their parents or caregivers.

1.1 Problem statement

The primary objective of this thesis is to integrate machine learning algorithms into

the prediction of baby sleep schedules. This integration aims to significantly enhance

the accuracy and personalization of sleep pattern predictions, offering users precise

insights specifically tailored to their children.

The intended outcomes include increased precision and accuracy in sleep schedule

recommendations, leading to more effective and customized solutions. Ultimately,

the thesis aims to transform the current sleep scheduling approach into a more ad-

vanced, data-driven model, thereby improving sleep outcomes for babies and easing

the management of sleep routines for parents. The processing and feature engineer-

ing of the data will play a key role in achieving these results.

1.2 Research questions

• What data processing steps are required to ensure a realistic representation

of babies’ sleep patterns collected from an app, considering varying levels of

adherence by users?

• Which features significantly enhance the predictive capabilities of sleep timings

within the available data?

• How can machine learning algorithms be effectively integrated to improve the

accuracy and efficacy of sleep suggestions for users?

• Given user-specific data, which machine learning models are better suited to

provide precise sleep schedule recommendations that generalize across individ-

ual variances?

1.4 DELIMITATIONS 3

1.3 Contributions

This master’s thesis has been conducted in collaboration with Napper, a leading

company in the parenting and baby sleep sector. The project has significantly bene-

fited from Napper’s extensive resources, including its comprehensive data repository

and internal software development experience. The integration of advanced machine

learning algorithms into Napper’s existing infrastructure has been made possible

through the company’s expertise in the digital healthcare industry.

Napper’s current algorithmic framework served as a foundational platform for

this project, enabling the seamless incorporation and enhancement of predictive

models. Napper’s established resources and collaborative efforts ensured that the

advancements made were not only theoretically sound but also practically applicable

within Napper’s operational environment.

By combining academic research with practical industry applications, this thesis

aims to contribute to both the scientific community and Napper’s mission to improve

baby sleep schedules through advanced technology.

1.4 Delimitations

One of the major limitations of this thesis lies in the inherent challenges associated

with the processing and utilization of the collected data. The reliance on user ad-

herence for data entry introduces potential inaccuracies and inconsistencies, thereby

compromising the overall quality of the dataset.

Furthermore, the dropout rate among app users poses a significant constraint on

the dataset’s comprehensiveness and representation. Particularly as babies transi-

tion beyond the specified age range of interest for the app, the dropout rates become

higher. As a result, the analyses and conclusions drawn from the available data may

not fully capture the diversity and complexity of sleeping behaviors exhibited by

1.5 STRUCTURE 4

babies during their first two years of life.

Another notable constraint arises from the inherent biases present within the

user-recorded data, influenced by the previously recommended schedule provided by

the app before users logged the data. These biases may lead to skewed or idealized

representations of sleeping patterns, rather than an objective portrayal of reality.

Consequently, the dataset may not accurately reflect the true distribution of sleeping

behaviors among babies, thereby limiting the generalization and applicability of the

research findings.

Addressing these limitations through rigorous quality control measures and pro-

cessing the data beforehand could enhance the reliability and validity of future

research in this domain. This would ultimately contribute to a more comprehen-

sive understanding of babies’ sleep habits and could provide important information

about the impact on child development and well-being.

1.5 Structure

The remainder of this thesis report is organized as follows. Chapter 2 provides the

theoretical background on babies’ sleeping schedules and patterns. It also includes

technical background and description of the machine learning models used and the

evaluation metrics. Chapter 3 presents related scientific work which supports the

chosen methodology. Chapter 4 provides details on the dataset used for the project,

including the data collection and initial data cleaning. Chapter 5 delves into the

experimental setup and the evaluative approach, detailing the feature extraction

and selection process and comparing different proposed machine learning models for

predicting babies’ sleeping schedules.

Chapter 6 evaluates the performance of all implementations and compares the re-

sults. Finally, Chapter 7 presents a comparison of the different algorithms, addresses

the limitations, and provides recommendations for future work.

2 Background

This chapter describes the background knowledge necessary to understand the method-

ology of this thesis. Section 2.1 and Section 2.2 provide brief overviews of babies’

sleeping habits and the processing techniques employed, respectively. Section 2.3

describes the machine learning algorithms used in the methodology of this thesis.

Moreover, Section 2.4 includes an overview of the evaluation metrics used to evaluate

the results and to compare the performances of the models.

2.1 Babies’ sleeping habits

Promoting a baby’s health and well-being throughout infancy and beyond requires

an understanding of their sleeping patterns. Sleep is essential for an infant’s cognitive

development, emotional control, and physical growth [7], [8]. Babies’ sleep habits,

however, vary greatly based on a number of factors, including age, personality traits,

and their surroundings [9]–[11].

The domain of pediatric sleep medicine has led to significant findings regard-

ing the factors that affect infants’ sleep patterns and the potential impact of sleep

problems on their growth and well-being [9]. Previous studies, described next, have

examined infants’ sleep duration and patterns at different developmental stages.

Research published [12], [13] has found that infants undergo significant changes

in sleep times during the first year of life, with gradual consolidation of nighttime

sleep and decreasing frequency of nighttime awakenings. Understanding these de-

2.1 BABIES’ SLEEPING HABITS 6

Stage Age Naps Sleep - day Sleep - night Total sleep
(months) (number) (hours) (hours) (hours)

Newborn 0–4 3–5 7–9 8–9 16–18
Infant 4–12 2–3 4–5 9–10 12–16

Toddler 12–24 2 2–3 11 11–14

Table 2.1: Sleep Charting by Age [15]

velopmental changes is key for parents and caregivers in establishing healthy sleep

habits in infants. Several resources recommend certain sleep times during the day

[10], [14], [15]. Infants from 4 to 12 months should sleep 12 to 16 hours each day

(including naps) to promote optimal health [15]. For babies up to 2 months old, the

lack of a developed circadian rhythm makes it harder to follow these indicators [16].

Children from 1 to 2 years of age should sleep 11 to 14 hours on a regular basis.

The number of recommended naps per day and the duration of sleep are shown in

Table 2.1 [15].

As mentioned previously, several factors can affect how well a baby sleeps, in-

cluding the outside world, the behavior of the parents, and the traits of the infant.

Infants’ sleep onset and quality are influenced by parental activities such as bedtime

routines and sleep cues [11]. Additionally, an infant’s ability to fall and stay asleep

can be impacted by factors such as lighting, noise levels, and room temperature.

Children can develop sleep disorders or unhealthy sleep behavior later in life,

which may be consequences of experiences as infants. Research has been done into

the prevalence of sleep issues in newborns and its correlation with parental mental

health [17]. Identifying and addressing sleep disorders in infancy is essential for

promoting healthy sleep and preventing long-term consequences.

Research in this area, targeted at resolving infant sleep issues and promoting

healthy sleeping habits is increasingly important. Behavioral interventions, such

as parental education courses and sleep training methods, have been shown to be

successful in helping babies develop healthy sleeping patterns [18]. When adopt-

2.2 PREPROCESSING TECHNIQUES 7

ing such methods into practice, it is essential to take personal traits and cultural

considerations into account.

In conclusion, supporting a baby’s general health and well-being requires an

understanding of their sleeping patterns. This field of study has yielded impor-

tant insights into the factors affecting newborns’ sleep patterns and duration, the

frequency of sleep issues, and the most effective methods to treat sleep disorders.

Healthcare providers can help infants get the sleep they require for optimal develop-

ment by promoting evidence-based strategies and offering implementation assistance

to parents and carers.

2.2 Preprocessing techniques

Data preprocessing is a critical step in machine learning (ML) pipelines, and the

choice of scaling technique drastically influences model performance. Z-score stan-

dardization and min-max standardization, two prevalent scaling methods, offer dis-

tinct advantages tailored to the requirements of different learning algorithms.

Z-score standardization operates by transforming existing features to have a

mean of zero and a standard deviation of one. This normalization ensures that

each feature contributes proportionately to the learning process. It is particularly

relevant in neural networks such as Long Short-Term Memory (LSTM) networks, as

will be seen later. These networks rely on activation functions such as sigmoid or

tanh, which are sensitive to the scale of input data. The transformation for z-score

standardization can be expressed mathematically as:

z =
x− µ

σ

The standardized value is denoted by z, the original feature value is denoted by

x, the feature mean is denoted by µ, and the standard deviation is denoted by σ.

2.3 MACHINE LEARNING MODELS 8

Min-max normalization rescales features to a given range, usually between zero

and one. By employing a simple transformation formula, min-max normalization en-

sures that each feature is bounded within the designated range. The transformation

for min-max normalization can be expressed mathematically as:

xscaled =
x− min(x)

max(x)− min(x)

In this case, xscaled represents the features’ scaled value, x represents its original

value, min(x) represents its minimum value, and max(x) represents its highest value.

In conclusion, selecting suitable preprocessing methods is essential for optimiz-

ing model performance. Leveraging z-score standardization for neural networks

and min-max normalization for algorithms such as XGBoost enables different pre-

processing methods, enhancing model effectiveness across varied datasets. These

scaling techniques not only ensure model stability and convergence, but also ensure

better generalization in ML applications.

2.3 Machine Learning Models

ML revolves around algorithms which enhance their performance through data anal-

ysis. ML has applications across several domains such as computer vision, speech

recognition, and medicine [19], [20]. A ML model must learn from a selection of

data. This learning phase, where the model studies examples, is known as train-

ing. Once the model has been trained, we use new and unseen data points for the

evaluation. A successful ML model depends on its ability to generalize, in order to

accurately predict the outcomes for unseen data.

ML primarily employs three methodologies: supervised learning, unsupervised

learning, and reinforcement learning [21], [22]. This thesis concentrates on super-

vised learning techniques. In supervised learning, data comes already labeled with

2.3 MACHINE LEARNING MODELS 9

target values or outcomes. This means that each training example in the dataset

has an associated label or response that the model aims to predict.

Within supervised learning, there are two main types of tasks: classification and

regression. Classification involves predicting a categorical label or class. Regression,

however, is aimed at predicting continuous numerical values [19], [23]. For instance,

predicting the price of a house based on existing features such as size, location, age,

and previous house prices. These labels allow the supervised learning algorithm to

learn the relationship between the input features and the output labels, which can

then be used to make predictions on new, unseen data. This predictive modeling

technique is used in many fields, from finance to healthcare [24], [25]. This thesis

focuses on supervised regression learning to predict sleep schedules.

2.3.1 Regression

Training a regression model involves using historical data where the target variable

(e.g., house price) is known. This dataset, named the training set, serves as the

foundation for the model to learn patterns and relationships between input features

and the target variable. After the model has been trained, its performance is assessed

using a different dataset, called the test set, which includes examples that have not

yet been seen (e.g., future home prices) [26] [27].

The ability of the model to generalize, or generate correct predictions on new,

unseen data, is a key component of regression. A well-generalized regression model

can effectively estimate outcomes for scenarios that were not seen in the training

phase. Here, the historical data includes input-output pairs, with the goal being to

learn a mapping from inputs to continuous outputs.

This thesis employs and compares several ML models. Among the classical ML

methods, we will use K-Nearest Neighbours (KNN), XGBoost, and Random Forest

Regressor (RF). Neural network structures will also be tested, such as Recurrent

2.3 MACHINE LEARNING MODELS 10

Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks, which

are known to be effective in processing sequential data [28].

Basic Machine Learning Models

• KNN

KNN regression predicts the continuous value of the target variable by aver-

aging or weighting the values of its k nearest neighbors [29]. With a distance

metric (such as the Euclidean distance) to locate the k nearest neighbors of

a given query point, KNN predicts the value of the query point by averaging

(or weighted averaging) the values of their target variables.

The selection of k is crucial in KNN regression as it determines the balance

between variance and bias. A smoother model with lower variance and po-

tentially higher bias is generated with a larger k, while a smaller k results

in a more flexible model with higher variation and lower bias. Based on the

dataset’s characteristics, the chosen distance metrics and weighting options

can be applied to adapt the model better to the dataset.

• XGBoost

XGBoost is an ensemble learning technique designed to predict continuous

target variables by iteratively generating a sequence of decision trees [30]. Each

decision tree in XGBoost regression is trained to minimize a loss function, for

example, the mean squared error (MSE), which calculates the variance between

the values predicted and those observed. The XGBoost regression’s objective

function is provided by:

obj =
n∑︂

i=1

L(yi, ŷi) +
K∑︂
k=1

Ω(fk)

where the loss function is L(yi, ŷi), the predicted value is ŷi, the regularisation

2.3 MACHINE LEARNING MODELS 11

term is Ω(fk), which controls the complexity of each of the trees, and finally

the number of trees is regulated by K.

In order to minimize the objective function and promote greedy tree growth,

XGBoost uses gradient descent optimization. Pruning and shrinkage (learning

rate) are two regularisation strategies that are used to improve generalization

performance and avoid overfitting.

• Random Forest

RF regression is an ensemble learning that creates several decision trees during

training and produces the average prediction of each tree. By combining the

strength of ensemble learning with the simplicity of decision trees, it can reduce

overfitting and increase prediction accuracy [31].

There are multiple steps in the RF algorithm. Initially, it uses bootstrap

sampling to randomly select a number of samples from the dataset. It uses a

random subset of features at each split to construct a decision tree for each

sample. Next, a different bootstrap sample is used for training each decision

tree. Finally, the algorithm averages the predictions made by each tree to

obtain the final result for regression.

Key parameters used to define the model are: the maximum depth of each tree,

the minimum number of samples needed to split an internal node, the minimum

number of samples needed to be at a leaf node, and the number of trees in

the forest defined by n_estimators. Additionally, the bootstrap parameter

determines whether bootstrap samples are used when building trees. If set to

True, each tree is trained on a random subset of the data with replacement.

RF has several benefits. By averaging multiple decision trees, it reduces over-

fitting and becomes more resistant to outliers. It works well with big datasets

and is an effective solution for regression tasks.

2.3 MACHINE LEARNING MODELS 12

Advanced Neural Networks

Deep learning uses powerful neural networks to understand and interpret complex

data, with a focus on making accurate predictions on new, unseen examples. Train-

ing a deep learning model involves using many examples to teach it to recognize

patterns and features. After training, you can observe how well the model performs

by testing it on unseen data. Not only does the model need to learn from the sam-

ples it was trained on, but it also needs to comprehend the underlying concepts

sufficiently to be able to forecast new data accurately [32]. This ability to generalize

is key in deep learning.

In this thesis, we used two advanced neural networks, RNN and LSTM, which

were found to be the most common in the relevant research, as will be detailed in

Chapter 3.

• RNN

RNNs are artificial neural networks designed to model sequential data by main-

taining a hidden state that captures information from past inputs [33]. RNNs

are helpful for applications such as time series prediction, audio recognition,

and natural language processing (NLP) as they can handle sequences of any

length [34]. When using RNN, the hidden state ht at time step t is calculated

based on the current input xt and the prior hidden state ht−1 using a set of

parameters that can be trained which are Whh and Wxh, as well as biases bh.

The forward pass equation for an RNN is typically defined as follows:

ht = tanh(Whhht−1 +Wxhxt + bh)

The output yt at each time step t is then computed based on the hidden state

ht using another set of parameters Why and by, and is typically passed through

2.3 MACHINE LEARNING MODELS 13

a softmax function for classification tasks.

yt = softmax(Whyht + by)

Although RNNs are widely used models for sequential data, they are limited in

their ability to capture long-term dependencies in sequences, an issue referred

to as the vanishing gradient problem. To solve this problem, LSTM networks

can be used in their place [33].

• LSTM

LSTM networks are a type of RNN specifically designed to capture complex

temporal connections in sequential data [35]. LSTMs are considered more ro-

bust than RNNs as they can remember and use information selectively over

longer sequences than regular RNNs, since they have memory cells and gating

mechanisms. They can effectively capture long-term dependencies in sequen-

tial data while reducing the problem of the vanishing gradient problem that is

frequently found in conventional RNNs, as mentioned earlier. Because of this,

LSTMs have become an essential component of sequential data modeling and

are widely used in a range of fields where temporal correlations are important.

The forget gate, input gate, and output gate are the three fundamental gates

which makeup LSTMs. By choosing what to keep, what to reject, and what

to output to next time steps, these gates control the flow of information.

LSTMs constantly modify their internal state in accordance with the input

observations.

The forward pass equations for an LSTM are as follows:

1. Forget Gate. Determines what information to discard from the cell state.

ft = σ(Wf · [ht−1, xt] + bf)

2.4 EVALUATION METRICS 14

2. Input Gate. Determines which values to update.

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

3. Cell State Update. Updates the cell state Ct.

Ct = ft ∗ Ct−1 + it ∗ C̃t

4. Output Gate. Determines the output based on the cell state.

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

2.4 Evaluation metrics

In evaluating the performance of ML models, choosing appropriate evaluation met-

rics is the key to understanding how well the models are performing and enabling

effective comparison between different models. In our analysis, we employed several

key evaluation metrics which enabled a better understanding of the performance of

the models: mean absolute error (MAE), median absolute error (MedAE), R2 (also

known as the coefficient of determination), and accuracy.

MAE =
1

n

n∑︂
i=1

|yi − ŷi|

MAE is a fundamental statistic used to determine the average magnitude of errors

between predicted ŷi and actual values yi. It first calculates the absolute difference

2.4 EVALUATION METRICS 15

between each predicted value and its matching true value and then computes the

average of these absolute differences.

MedAE complements MAE by providing a robust measure of central tendency

that is less sensitive to outliers. Instead of averaging all absolute errors as MAE does,

MedAE computes the median of the absolute differences. Because it offers a more

reliable estimate of error magnitude, this metric is especially helpful in situations

when the dataset contains outliers or when the distribution of errors is skewed.

In a regression model, the coefficient of determination, or R2, measures the

percentage of the dependent variable’s variation that can be predicted from, and

therefore attributed to, the independent variables [36]. It provides insight into how

well the model captures the variability in the data. The values of R2 range from 0 to

1, where 0 indicates no linear relationship between the variables and 1 represents a

perfect fit. We have seen in the literature that R2 is a useful indicator for regression

assignments and it is commonly applied to similar applications. As the formula

below indicates, where ȳ is the mean of the observed values yi.

R2 = 1−
∑︁n

i=1(yi − ŷi)
2∑︁n

i=1(yi − ȳ)2

Accuracy is a common evaluation metric for classification tasks, measuring the

proportion of correctly classified instances out of the total number of instances.

It provides a clear indication of the model’s overall correctness in predicting class

labels.

Selecting the right metrics is essential for assessing ML models’ performance,

for comparing models and for understanding how good the predictions are. The

evaluation metrics we chose to use in our analysis, as described above, enabled us

to acquire a deeper understanding of the model’s performance. By employing a

combination of these evaluation metrics, we gained a comprehensive understanding

of the strengths and weaknesses of our ML models. Together, these metrics enable

2.4 EVALUATION METRICS 16

us to make informed decisions about model selection and optimization to achieve

the desired performance outcomes.

3 Related Work

This chapter delves into the current research related to the methodology of this

thesis. In Section 3.1, we explore various methodologies and technologies aimed

at understanding and predicting sleep patterns. Previous research adopted diverse

approaches, including ML-based sleep analysis, individualized sleep scheduling, and

wearable sensor data analysis, to improve understanding of the complex dynamics

of sleep behaviors.

In Section 3.2, we examine similar approaches applied in other domains, specifi-

cally focusing on adherence prediction in user-based datasets. By drawing parallels

with fitness and menstrual cycle tracking applications, we explore the utilization of

ML methodologies to forecast adherence to health and fitness routines. These studies

highlight innovative approaches to address data limitations and improve prediction

accuracy, offering valuable information that has been leveraged in the context of

sleep pattern prediction.

Collectively, these sections present a thorough summary of the literature, laying

the groundwork for the technique used in this thesis and providing suggestions for

other study directions.

3.1 Sleep pattern understanding and prediction

Previous research has taken different approaches aimed at better understanding

and predicting of sleep patterns, employing a diverse array of methodologies and

3.1 SLEEP PATTERN UNDERSTANDING AND PREDICTION 18

technologies.

3.1.1 Machine learning-based sleep analysis

ML-based sleep analysis has, in recent years, become a highly studied field, with re-

search showing the potential of extracting valuable insights from daily logs [37]. One

study presented a computational framework for forecasting sleep efficiency in indi-

viduals with insomnia, utilizing data from smart bands capturing sleep records and

daily activities [37]. To handle missing data, the framework used in that study em-

ploys Improved Generative Adversarial Imputation Networks (Imp-GAIN), includ-

ing an interpretable LSTM-Attention (LA Block) neural network model for sleep

efficiency prediction. The dataset is a time series on daily sleep and behavioral

records. Complementing this, [38] introduced Bedtime Prediction (BTP), a ground-

breaking bedtime predicting algorithm. BTP utilizes smartphone screen status data,

providing a novel and data-driven approach to anticipate sleep onset.

Advanced ML techniques have further propelled sleep prediction capabilities. [39]

developed a sophisticated sleep prediction algorithm capable of forecasting sleep-

/wake states and estimating sleep parameters accurately. By integrating ML tech-

nology, their approach offers a comprehensive tool for understanding sleep behaviors

and identifying potential disturbances. Furthermore, [40] leveraged convolutional

neural networks to predict sleep quality from sensor data with remarkable precision.

This advanced methodology not only enhances our understanding of sleep patterns

but also opens new avenues for personalized sleep interventions. Additionally, [41]

utilized ML techniques to predict sleep behavior in smart homes, shedding light on

environmental factors that impact sleep quality. Through the integration of ambi-

ent sensors and IoT devices, their study offers insights into creating conducive sleep

environments tailored to individual needs. The study’s objective was to discern

residents’ potential sleep behavior in relation to other activities and their health

3.1 SLEEP PATTERN UNDERSTANDING AND PREDICTION 19

implications [41]. The findings revealed that SVM outperformed other classifiers.

Consequently, the authors proposed that their research facilitates early detection of

diseases associated with sleep disorders and recommended further enhancements for

future studies [41].

Moreover, personal projects such as [42] show the tangible impact of data-driven

approaches in addressing real-world sleep challenges. Through the application of ML

and data science, parents gain actionable strategies to manage sleep-related issues,

underscoring the transformative potential of personalized interventions.

3.1.2 Wearable technology

Advances in wearable technology and sensor data analysis have significantly con-

tributed to the understanding of sleep patterns. One study [43] used wearable

sensor data to predict changes in sleep quality. Similarly, [44] explored the pre-

diction of sleep efficiency from wearable device data. Their findings informed the

development of sleep monitoring features but also deepened our understanding of

the relationship between wearable device metrics and sleep quality [43], [44]. They

employed a diverse array of ML models, including Multilayer Perceptron (MLP),

Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), Recur-

rent Neural Network (RNN), Random Forest (RF), Support Vector Machine (SVM),

and Logistic Regression (LR), to assess their effectiveness in analyzing sleep data.

Evaluation metrics such as accuracy, receiver operating characteristic (ROC) curve,

precision, recall, and F1-score were utilized to evaluate the performance of these

models [43], [44]. Upon evaluation, the LSTM model emerged as the top performer,

demonstrating superior predictive capabilities. Following closely behind was the

CNN. Additionally, Random Forest and SVM performed the best among non-neural

network models, showcasing notable performance in sleep data analysis [43], [44].

Additionally, [45] demonstrated the efficacy of deep learning techniques in ana-

3.1 SLEEP PATTERN UNDERSTANDING AND PREDICTION 20

lyzing sensor data to predict sleep quality accurately. The researchers utilized data

collected from wearables equipped with accelerometers, enabling continuous moni-

toring of physical activity and sleep patterns. The study’s objective was to predict

sleep efficiency using deep learning approaches based on physical activity data.

3.1.3 Individualized sleep scheduling

The work of [46] underscores the importance of individualized approaches to sleep

scheduling, particularly in the context of college students. Their study considered

various factors such as class schedules and personal preferences. They employed

Electroencephalography (EEG) data to gain insights into sleeping patterns and sub-

sequently utilized SVM to forecast the optimal sleeping times for young users [46].

While considering CNN for analysis, the study found that SVM resulted in a slightly

superior performance, with K-Nearest Neighbors (KNN) also being explored as an

alternative method which, in this particular case, had worse efficacy than SVM

[46]. Other research [47] found that increased physical activity and appropriate ex-

posure to natural light during the day were significantly associated with improved

sleep quality, also showing that XGBoost models had better performance than deep

learning models such as LSTM.

Real-world data analysis and personal experiences offer invaluable insights into

sleep behaviors. [48] leveraged user data from a mobile application to gain insights

into infant and toddler sleep patterns. By analyzing large-scale datasets, their study

provided practical guidance for parents navigating the complexities of early child-

hood sleep. The study offered detailed visualizations illustrating the development of

sleep patterns in infants over the first three years of life. Key observations included

variations in daytime sleep session length (naps) with age, a consistent morning wake

time among children aged 5–36 months, and evolving sleep patterns characterized

by individual variability. Sleep patterns started to consolidate around 5–6 months,

3.2 DATA ADHERENCE AND GENERATIVE MODELS 21

with longer nighttime sleep duration and increasing consistency in daytime sleep

[48]. Notably, bedtime variability had a greater impact on nighttime sleep dura-

tion compared to wake times, highlighting the importance of establishing consistent

bedtime routines for promoting healthy sleep habits in infants and young children.

3.2 Data adherence and generative models

Given the nature of our dataset, being collected from logs registered into the app

by users, it is relevant to take into account the importance of user adherence when

using applications. Other application fields were found which had researched this

issue and addressed, for example, adherence to mobile applications for fitness or

menstrual cycle tracking.

ML methodologies have revolutionized the prediction of menstrual cycle char-

acteristics and physical exercise adherence, offering innovative solutions to address

data limitations and enhance prediction accuracy across various studies.

Recent studies have highlighted various approaches to modeling physiological

patterns. For instance, [49] explored the modeling of menstrual cycle length across

the reproductive lifespan, emphasizing the significance of within-woman variance.

Their analysis of menstrual diary data provided valuable insights into the cyclical

variations experienced by women and underscored the importance of accounting

for individual differences. The authors proposed a generative modeling framework

based on Gaussian processes and Bayesian neural networks, showing how incorporat-

ing uncertainty estimation into predictive models can result in more accurate and

reliable predictions. On a related note, [50] delved into understanding menstrual

cycle dynamics among athletes, leveraging state-space models to capture menstrual

cycle length variations in physically active individuals. By examining menstrual

health data in the context of athletic performance, they shed light on the interplay

between exercise intensity and cycle regularity, offering tailored insights for this

3.2 DATA ADHERENCE AND GENERATIVE MODELS 22

specific population.

Collaborating, [51] and [52], addressed the challenge of self-tracking artifacts in

menstrual health data through generative modeling approaches. They proposed a

novel method for calculating calibrated predictions, effectively mitigating biases and

inconsistencies inherent in self-reported data to improve prediction accuracy. Their

approach provided a robust framework for handling uncertainties in menstrual cy-

cle prediction [51], [52]. The papers presented a hierarchical model for predicting

menstrual cycle lengths while addressing potential tracking artifacts. By leverag-

ing individual-specific patterns and population-wide characteristics, the model offers

interpretable insights into menstrual behavior. Its hierarchical framework accom-

modates individual-level variability and population behaviors, ensuring scalability

and adaptability to new users without the extensive need to retrain the model [51],

[52]. Similarly, the authors from [53] proposed a model addressing user adherence

variations in menstrual tracking apps, ensuring accurate cycle length predictions.

Their approach, complemented by RNN, demonstrates robustness and reproducibil-

ity. Handling missing data and integrating user-specific and population-wide trends

are key aspects. Their generative model framework enhances interpretability and

prediction accuracy.

Finally, [54] proposed a sequential prediction method for menstrual cycle lengths,

leveraging historical data to forecast future cycle characteristics. The authors em-

ployed a Bayesian hierarchical dynamic model to understand individual variability

among women. This framework enables the transfer of information across subjects,

compensating for limited individual data. By employing both individual and pop-

ulation models within this hierarchical structure, the approach facilitates robust

predictions and information sharing across users.

Similar techniques have been used in physical exercise adherence prediction, in-

cluding [55] who leveraged deep learning methodologies to forecast exercise adher-

3.2 DATA ADHERENCE AND GENERATIVE MODELS 23

ence in fitness apps. Their approach harnessed the power of deep neural networks to

extract intricate patterns from limited datasets, enabling more accurate predictions

of individuals’ adherence to exercise routines.

In summary, these studies together highlight diverse applications of ML tech-

niques in addressing data limitations and improving prediction accuracy in user-

provided data. Through innovative methodologies and different algorithms, re-

searchers have advanced predictive modeling techniques, contributing to the refine-

ment of health-related applications and leading to more personalized interventions.

4 Dataset

In this chapter, we introduce the dataset used in this thesis to train and test the

different models. We also present the exploration of our data collection and cleaning

processes, both fundamental to laying the groundwork for this thesis. In Section 4.1

we detail the procedures employed to collect the dataset, and the structure and

format of the data.

Following this, in Section 4.2 we describe the refinement of the existing dataset

to ensure suitability for model training. Here, we outline the steps undertaken

to normalize timestamps between time zones and remove anomalies, all aimed at

strengthening the dataset’s robustness and relevance to our research objectives. This

lays a foundation for the subsequent chapters, where we dive deeper into its analysis

and interpretation.

4.1 Data collection

The data used was collected from the Napper app, where users can track babies’

activities such as sleeping, feeding, and nursing. This app, as mentioned previously

in Section 1.3, started in 2020 and therefore data exists from January 2020 onwards.

In this case, the last test was done on data up to and including May 2024.

Throughout the last years, the data were collected in different forms and different

parameters were tracked by the user. It was therefore decided to focus on the data

obtained from 1st April 2022 onwards. Moreover, given that this project focuses on

4.1 DATA COLLECTION 25

Figure 4.1: Distribution of babies’ age on sign up

the sleep schedule, only those logs related to the wake-up time, the naps during the

day, and the bedtime were used.

Data from around 10,000 babies were used for this project. This was the total

number of babies who had sufficient data entered into the app for the prediction to

be possible. This allowed us to have enough data to train our models and to get a

realistic view of babies’ sleeping patterns.

The Napper app focuses on babies from 2 to 24 months old, hence the data

collected were mainly within this age range. Figure 4.1 includes some statistics on

babies’ ages when registered to the app. It was also found that the adherence to the

app and tracking of the sleeping times lessened after 24 months.

It is considered that after two months of age the sleeping patterns of a baby

should be more stabilized, being difficult in the first two months due to the lack

of a developed circadian rhythm, as detailed in Section 2.1. As a result of this,

there were not current predictions for younger babies. Hence, from our dataset, the

data from babies younger than 2 months, and babies older than 24 months, were

removed.

In order to reduce outliers and select the logs that would provide the most

4.2 DATA CLEANING 26

accurate representation of the sleep pattern, only babies within the top 6th percentile

of logs were taken. Following these reductions, a total of 13.5 million logs made up

the dataset that was used to obtain the results seen further on in this thesis.

In addition to sleeping and napping times, users of the app are also able to track

when the baby is fed (and some additional details e.g., breastfed, pumped milk,

formula milk, solids), if they have had a fever or taken any medicine, and if they

woke up during the night. Even though not all of these features were used for the

study, they were analyzed and research was done to understand the relationship

they could have with the sleeping patterns of babies.

Prior to the final dataset, the quality of the data and consistency were thoroughly

evaluated, particularly due to the nature of the user-provided data and the accom-

panying adherence issues. Aside from the sleep logs, a dataset with baby metadata

was used, containing their time zones and dates of birth. As a first step, the personal

information from each baby was merged into each of the logs corresponding to it.

4.2 Data cleaning

Given that the dataset was based on self-reported information from app users, careful

attention was placed on removing outliers and values believed to have been wrongly

registered in the app. This could have been values that were not representative of a

baby’s sleep, such as a reported duration of 24 hours of continuous sleep, or those

that were not possible to achieve, such as naps registered before the morning waking

up time.

As a first step, the timestamps were normalized, so that all the times in the

dataset were adjusted to the users’ local time. All users were synced to the same

timezone, to reduce the difference as much as possible in order to train the model

regardless of the timezone. The time location offset was stored to later fix back

these times to the users’ timezone.

4.2 DATA CLEANING 27

Figure 4.2: Distribution of duration of naps and sleep at night

It was also considered to remove the whole day for babies who had any of the

following conditions present on that date: when the first registered waking up time

was later than 14.00 or earlier than 04.00, or when the final night bedtime was

logged before 17:00. To have a good baseline for a daily schedule, days when the

times of waking up or the time of bedtime were not logged were also removed. As

for the number of naps, any day that had naps longer than 3.5 hours / 210 minutes

was deleted, which can be seen on Figure 4.2, where no naps with more than 210

minutes are present. This was decided after observing that the percentage of these

cases was low and thus they were considered outliers.

As will be seen later in Chapter 5, one of the variables predicted was the number

of naps for a baby on the next day. There is a tendency to reduce the number of naps

as the baby gets older and therefore some limits were added to choose those babies

that will be used to train the models. If the number of naps per day diverged by

more than 2.5 with respect to the mean at that age, those days were also removed,

as can be seen after processing on Figure 4.3.

The Napper app has a learning phase of 7 days for adapting predictions to each

baby’s sleeping pattern. It is after this time that users can expect fully individualized

4.2 DATA CLEANING 28

Figure 4.3: Distribution of number of naps per day by age

sleep schedules. In line with this, we limited the scope of the thesis to only making

predictions for babies who had at least 7 consecutive days tracked. Data points from

babies with fewer consecutive days tracked were thus filtered out.

5 Proposed Method

In this chapter, we introduce our model architecture. We start by detailing and

justifying the decision to adopt two distinct models in Section 5.1, each tailored

to predict different parameters essential for the babies’ sleep patterns. Section 5.2

subsequently delves into the process of feature extraction and selection, where we

explain the methodologies employed to refine our dataset and enhance its suitability

for model training. Feature scaling steps are also included, giving light to the signif-

icance of prepossessing techniques in optimizing model performance and stability.

Following this, Section 5.3 goes into detail on the model training, delineating the

steps involved in the train-test split and reasoning behind the selection of models

utilized in our study. Through these sequential discussions, we aim to provide a

comprehensive understanding of our proposed model architecture, setting the stage

for the subsequent results and findings presented in this thesis.

5.1 Proposed model architecture

Figure 5.1 shows the steps and overall architecture of the project. After preprocess-

ing the initial data, we dived into the feature engineering and splitting the dataset

into training and testing. Finally, we trained our ML models and evaluated the

results.

When it comes to the baby’s sleep schedule, several variables define it that we

wanted to predict. As detailed in Section 2.1, the babies in the dataset slept several

5.1 PROPOSED MODEL ARCHITECTURE 30

Preprocessing Feature engineering Train-test split

ML. Number of naps per dayML. Duration & Start Time of naps

Evaluation

Figure 5.1: High-level architecture of the methodology

times a day, ranging from 0-5 times a day, which decreased as they got older. The

schedule prediction was modeled as a two-step process. A key aspect of the task

was to determine the structure of the input data and output predictions.

Our approach involved two distinct models tailored to different aspects of the

sleep prediction task. The first model focused exclusively on predicting the number

of naps that a baby will have in a day. This task was key as it formed the foundation

for subsequent predictions and provided a baseline for daily sleep patterns. The

second model was designed to predict the duration and starting times of these naps.

By separating these tasks, we were able to specialize each model to handle the unique

characteristics and challenges of predicting counts versus continuous time variables.

As detailed previously in Section 4.1, we were working with three categories of

logs related to the sleep, those corresponding to the wake-up times, those referring

to the naps and finally the ones determining the bedtime at the end of the day. The

categories were encoded so that we could work with them. An example of how the

final data were then organized can be seen in Table 5.1 where, for each log, there is

information on the number of naps that day, the number of the specific nap, and the

starting time and duration of each log. The first predicted variable was the number

of naps per day, and that was fed into the next model to come up with the next

5.2 FEATURE ENGINEERING 31

two variables, the starting time and duration. The duration only had a meaningful

value for the nap logs, since for the wake-up and bedtime it was set to 0, given that

the nap start time was the one we wanted to predict.

5.2 Feature engineering

The feature extraction and selection were main parts of the project. By adding

rolling statistics as features we were able to add previous data that reflected the

time component.

In this section, the different features incorporated and statistics extracted are

detailed in Section 5.2.1 and Section 5.2.2. Later on, in Section 5.2.3, the features

finally used to train our model are further detailed. Finally, we describe the scaling

applied to the features in Section 5.2.4.

5.2.1 Quality checked dataset

Once the data cleaning and first steps of processing were done, we had a quality-

checked dataset to start working with. These processes and the reasoning behind

the decisions taken are described in Section 4.2.

To add more information, some additional fields that were not in the original

dataset were added. For each log, the age at the time of logging was added as a way

to compute a timeline for the baby’s age and how its sleeping schedule should be.

This was computed in months with one decimal point. Therefore, all babies in the

dataset have an age on log ranging from 2.0 to 24.0, as shown in Table 5.1.

For each nap entry, the duration was calculated between the starting time and

ending time of the recorded log. For the wake-up and bedtime logs the duration was

set to 0 given that, with the starting time, it was enough to come up with the full

sleeping schedule.

5.2 FEATURE ENGINEERING 32

babyid age date naps_day categ. num_nap start duration
0 12.2 2023-07-11 2 2 0 07:42:33 0.0
0 12.2 2023-07-11 2 1 1 11:17:41 47.64
0 12.2 2023-07-11 2 1 2 15:50:59 46.03
0 12.2 2023-07-11 2 0 3 20:37:09 0.0
1 13.1 2023-07-11 1 2 0 08:35:40 0.0
1 13.1 2023-07-11 1 1 1 12:56:19 42.35
1 13.1 2023-07-11 1 0 2 20:04:00 0.0

Table 5.1: Final data format

For each day and baby, the number of naps on that day was counted and added

as another field to the log, so that each row had this information. Also, the number

of that nap was recorded, so that for each log, there was the number of naps on that

day and the number of the nap for that log. This was useful later to compute the

features and to group the naps within each other depending on what number they

were on the day, in order to add some statistical features.

The time at which each log started or ended was modified to be in seconds

epoch and on a 24-hour cycle, to have an easier interpretation when looking at the

results. Both appeared to perform equally well when working with them so, for

better understanding, the 24-hour cycle was used for the model.

Two additional fields were added to remove outliers. One of them was the previ-

ous wake-up time, referring to the time awake passed since the last sleep. The other

was the accumulated wake time during the day, adding up all the time that day that

the baby had been awake. Both of these were set to 0 when their value was more

than 20 hours, considered then to have skipped days of tracking and assuming the

baby had slept overnight.

5.2.2 Feature extraction

As will be explained in Section 5.3, the features were computed separately for each

of the three parameters we wanted to predict: the number of naps the next day, and

the duration and start time for each nap. Since two separate models were trained,

5.2 FEATURE ENGINEERING 33

one for the number of naps, and another for the duration and start time of each of

the naps, two different sets of features were obtained.

Given that for each log registered we only used the data recorded that we wanted

to predict, new statistical features were generated and added to the data. Therefore

adding to each log some previous representation of the data. Rolling statistics were

used in order to add statistical dependencies based on the previous data.

For these statistics, three were considered, the mean, the standard deviation

(std), and the root mean square. For each of them, a window size of previous

samples was generated to compute their statistics to add to each of the new data

points, shifting one so that it would not include the current one, to avoid leaking

testing data into the model.

In order to get the rolling statistics, we had to first group the data into different

sets to only extract the data relevant to each case. For example, if we were trying

to get the starting time of a third nap on a day when 4 were recorded, ideally we

would only want the mean to be based on previous third naps on days with 4 naps

recorded, rather than all the previous naps. This was very important given that the

starting times varied quite drastically.

For the number of naps per day, the statistics were first calculated on all the

available data of babies of the same age in months. Each new log therefore had

the mean and std of the previous number of naps of babies that were the same age,

and represented all babies of that age. Secondly, another set of features was added

by grouping the logs based on the baby identifier so that, for each log, a new field

with the rolling statistics of the same baby was added. For this second grouping, a

smaller window size was added to represent shorter patterns.

For the duration and start time of each of the naps, two groupings were also

done, using two separate window sizes to better represent them. Both groupings

were done with the number of naps that day and the number of the current nap, so

5.2 FEATURE ENGINEERING 34

that the statistics were counted on the most similar naps, as detailed before. The

first grouping was done with all the previous data available, resulting in quite broad

statistics. The second grouping also added the baby id to those two parameters, so

that there was a personalized statistic on the latest trends for the specific baby and,

for this, a smaller window size was used.

5.2.3 Feature selection

The selection of features has been shown to be a key step to the later performance

of ML models. Some features, from the ones previously detailed, were kept for

the training processes of both models. This process was done in order to remove

the features that could cause loss of information, and that have very little to no

correlation with the values that were to be predicted.

One of the main advantages of reducing the number of features in the model is

that this reduces the dimensionality of the data, which therefore eases the training

speed and makes it easier to interpret. Of the previously detailed features, the ones

used to train each of the two models were the following:

1. Number of naps that day

• Identifier for each baby

• Mean number of naps for babies at that age

• Standard deviation of the number of naps for babies at that age

• Rolling mean number of naps grouped on the identifier of each baby, with

a window size corresponding to a week

• Rolling standard deviation grouped of the number of naps on the identifier

of each baby, with a window size corresponding to a week

2. Duration and start time

5.2 FEATURE ENGINEERING 35

• Identifier for each baby

• Category of the log, can correspond to the wake-up times, the naps, or

the bedtimes.

• Number of each nap

Duration, for each nap

• Mean duration on all available data within babies of the same age for

that nap

• Standard deviation duration on all available data within babies of the

same age for that nap

• Rolling mean duration grouped on the number of naps and the num-

ber of naps on that day and the baby identifier. Using a window size

representing a week

• Rolling standard deviation duration grouped on the number of naps and

the number of naps on that day and the baby identifier. Using a window

size representing a week

Start time, for each nap

• Mean start time on all available data within babies of the same age for

that nap

• Standard deviation start time on all available data within babies of the

same age for that nap

• Rolling mean start time grouped on the number of naps and the num-

ber of naps on that day and the baby identifier. Using a window size

representing a week

5.3 MODEL TRAINING 36

• Rolling standard deviation start time grouped on the number of naps and

the number of naps on that day and the baby identifier. Using a window

size representing a week

5.2.4 Feature scaling

Once the features were selected for each of the models, they were scaled before being

fed into any of the ML models. Both z-score standardization and min-max normal-

ization, detailed in Section 2.2, were used. For this we used the StandardScaler and

MinMaxScaler from the scikit learn package [56].

XGBoost is generally quite robust to feature scaling due to its nature of handling

tree-based algorithms, so it does not rely on the distance metric. Using Standard-

Scaler, which scales the features to have zero mean and unit variance, can sometimes

improve performance, especially when the features have very different scales [57]. We

saw this improvement in our case.

For both RNN and LSTM, the features were scaled using MinMaxScaler, given

that they often perform better when the input features are scaled to a specific range

[58]. MinMaxScaler helps in preventing the gradients from vanishing during training

by keeping the input features within a consistent range, aiding in the stability of

the training process.

5.3 Model training

In this section, we detail the process of training our ML models. This involved

splitting it into training and test sets and then applying various models to predict

sleep patterns. The goal was to develop models that can accurately predict future

sleep behavior based on historical data.

The sleep schedule, as mentioned earlier, was described with three variables

5.3 MODEL TRAINING 37

which, when combined, returned a full-day schedule: the number of naps each day,

the duration of the naps, and the start times of the naps. Given that the last two

variables depended on the first variable, two models were used.

5.3.1 Train - test split

Given the sequential nature of the dataset, the train and test split was done so

that the last full day of recorded data for each baby was saved for testing, while all

previous data were used for training.

This method ensured that the models were evaluated on data they had not seen

during training. This approach is particularly effective on time series data, where

the temporal sequence of observations is necessary for prediction accuracy. By using

the most recent data for testing, we mimicked a real-world scenario where the model

was applied to predict future sleep patterns based on past observations.

The first step was to predict the number of naps and, for that, only the data logs

corresponding to wake-up times were used, as a reference to each day. The reason

behind not using the whole dataset for the first model was to avoid data leaking;

it was harder to predict the number of naps per day seeing as the days with more

naps had a bigger representation of data than those with less. It also resulted in a

bigger representation of the statistical features. Before training the first model, the

split among dates was done, finding the latest day stored for each baby and saving

those as a series for the split. After training the first model, the outcome of it was

fed to the second model to generate the exact schedule for the day and baby.

The whole dataset was then split according to the saved matches between each

baby and their latest recorded date, and the two datasets became one for training

and the other for testing.

5.3 MODEL TRAINING 38

5.3.2 Used models

The regression algorithms presented in Section 2.3.1 were trained using the set of

parameters and set-up described below. The algorithms were implemented using

both scikit-learn [56] and Tensorflow [59].

The following parameters are the ones that were tested and which showed the

best results. For each of the models, some of the parameters were modified until

they reached the best value.

KNN

The number of neighbors in our k-nearest neighbor regressor was set up to 3. The

weight parameter value was set to uniform, meaning that each neighbor point af-

fected the decision with equal weight. The distance metric was equal to the standard

Euclidean metric.

XGBoost

The XGBoost model was configured with the following parameters. The number of

boosting rounds, specified by num_estimators, was set to 100. The learning rate was

0.1, which controls the step size at each iteration while moving toward a minimum

of the loss function. The objective parameter was the squared error, specifying the

learning task and the corresponding objective function to be minimized. It was seen

to perform better than when the objective was set to the absolute error. To ensure

the reproducibility of results, the random_state was set to 42.

Random Forest

The maximum depth of each decision tree (max_depth) parameter was set to 10,

which controls the maximum depth of each decision tree in the forest. This helps

balance the trade-off between achieving a low error on the training data and min-

5.3 MODEL TRAINING 39

imizing the risk of overfitting. The number of trees (n_estimators) parameter was

set to 100, indicating that the forest is composed of 100 decision trees, which en-

hances the model’s stability and accuracy. The bootstrap parameter was set to True,

meaning that bootstrap samples are used when building the trees. This introduces

randomness into the model, helping to improve robustness and prevent overfitting.

Again, to ensure reproducibility of results, the random seed was set to 42.

LSTM

The Long Short-Term Memory model was configured with the following parameters.

The number of epochs was set to 3, representing the number of times the learning

algorithm will work through the entire training dataset. The batch size was 32,

indicating the number of samples that will be propagated through the network at

once. The loss function was the MSE between the predicted value and the ground

truth.

The model architecture was quite basic and included an LSTM layer with 100

units and an input shape which matched the reshaped training data. A Dense layer

was used, with 1 unit in the first model to predict the number of naps and 2 units

for the duration and start time. Also, a ReLU activation function was added. The

model was compiled using the Adam optimizer and trained on the reshaped training

data with a validation split of 20%, without shuffling, to maintain the sequential

traits of the data. Training was conducted with a verbosity level of 1 to monitor

the training process.

RNN

The RNN model was similar to the LSTM. The number of epochs was also set to

3. The batch size was 32. The loss function was the MSE, which measures the

average squared difference between the estimated values and the actual value. The

5.3 MODEL TRAINING 40

architecture included a SimpleRNN layer with 100 units and an input shape which

matched the reshaped training data. A Dense layer was used, with 1 unit in the first

model to predict the number of naps and 2 units for the duration and start time,

and a ReLU activation function was added. Again, it was compiled using the Adam

optimizer and using a validation split of 20%, without shuffling.

6 Results and Discussion

In this chapter, we present the results obtained by the trained ML models. All of

these were obtained using the dataset detailed in Section 5.2.1, after all processing

and feature engineering. We used the models which were trained and tested as

described previously in Section 5.3.1.

For the first model, to predict the number of naps, the evaluation process involved

comparing the predicted number of naps against the actual recorded number for each

day in the test set. The performance was assessed using metrics including Mean

Absolute Error (MAE), Median Absolute Error (MedAE), accuracy, and R-squared

(R²), as detailed in Section 2.4. The second model, for the duration and starting

time, underwent a similar evaluation process but focused on continuous variables,

hence accuracy was not used in its evaluation, but MAE, MedAE, and R2 were still

used.

In Section 6.1, a series of visual analyses are presented to better understand

the strengths and weaknesses of both models for each of the cases. Later on, in

Section 6.2, a comparison between the different algorithms on each of the models is

presented.

6.1 Performance evaluation

To thoroughly evaluate the performance of our predictions, a series of visual and

quantitative analyses were performed. The primary metrics used for this evaluation

6.1 PERFORMANCE EVALUATION 42

included the plots comparing the actual vs. the predicted results. Secondary evalu-

ation metrics included the residual plots. Both of these visual tools provided a clear

representation of the model’s accuracy and highlight areas where predictions may

deviate from actual values.

The actual vs. predicted plots served a fundamental purpose in performance

evaluation. By plotting the actual data points against the predictions made by our

models, we could visually assess how closely the model’s predictions matched the

true values. Ideally, all data points should be exactly on a 45° line (on the red line

in the actual vs. predicted graphs below). Deviations from this line indicate errors

in the predictions, which can be systematically analyzed to understand the model’s

strengths and weaknesses.

Residuals can help identify patterns that may suggest model bias or variance

issues. Defined as the difference between the actual and predicted values, they pro-

vide insights into the distribution and magnitude of prediction errors. The residual

results should be scattered around the horizontal axis (the red line in the residual

graphs below) for optimal predictions.

Other plots were developed to further understand the neural networks, such as

the learning curves, which can be found in Appendix A.

6.1.1 Model 1. Number of naps per day

The first model predicted the number of naps per day. In Table 6.1 we analyze the

performance of each of the algorithms upon the chosen evaluation metrics. LSTM

and RNN both achieved the best performance, with an accuracy of 81.50% and a

MAE of only 0.19 naps. The R2 was 0.55 and was followed very closely by XGBoost

and Random Forest. KNN performed the poorest, with the lowest accuracy of

77.79%, and the lowest R2 of 0.43 compared to the other models. The R2 metric, of

around 50%, shows that the models only achieved a moderate fit, suggesting that

6.1 PERFORMANCE EVALUATION 43

they explained around half of the variability in the data.

KNNReg XGBoost RF LSTM RNN
MAE 0.23 0.20 0.20 0.19 0.19

MedAE 0.00 0.00 0.00 0.00 0.00
Accuracy 77.79% 81.11% 81.09% 81.50% 81.50%

R2 0.43 0.54 0.54 0.55 0.55

Table 6.1: Results on Number of naps per day

Some of the results for the algorithms used to predict the number of naps are

far from the optimal red line in the figures below. KNN was the poorest model,

shown by it being the algorithm which adapts least to the diagonal trend, as seen in

Figure 6.1. This can indicate poorer predictions and also potential outliers or areas

where the model does not perform as well.

The actual vs. predicted plots below show how, in most of the algorithms,

especially for KNN, XGBoost, and Random Forest, the models predicted a lower

number of naps when the actual number was quite high. Similarly, it predicted

higher numbers of naps when the actual values were quite low. For KNN, shown

in Figure 6.1, the residual plot shows that the model failed at a higher scale at

predicting the number of naps. When working with XGBoost, shown in Figure 6.2,

and Random Forests, shown in Figure 6.3, the residuals were less and the models

were more capable of identifying the patterns. Both neural networks, LSTM shown

in Figure 6.4 and RNN shown in Figure 6.5, performed quite similarly.

All the models have in common that, when evaluating their performance, the

number of the residual number of naps was quite high, suggesting that the variance

of errors varied across predictions. Large residuals could be a sign of outliers, given

the nature of the data. However, the 45° tendency in the actual vs. predicted plots

shows that the model was able to capture the general trend.

6.1 PERFORMANCE EVALUATION 44

KNN

(a)Actual vs. Predicted (b)Residual

Figure 6.1: KNN - number of naps

XGBoost

(a)Actual vs. Predicted (b)Residual

Figure 6.2: XGBoost - number of naps

6.1 PERFORMANCE EVALUATION 45

Random Forest Regressor

(a)Actual vs. Predicted (b)Residual

Figure 6.3: Random Forest Regressor - number of naps

LSTM

(a)Actual vs. Predicted (b)Residual

Figure 6.4: LSTM - number of naps

6.1 PERFORMANCE EVALUATION 46

RNN

(a)Actual vs. Predicted (b)Residual

Figure 6.5: RNN - number of naps

6.1.2 Model 2. Duration and Start time of naps

The second model predicted the duration and starting time for the different naps,

waking-up times, and bedtimes. Table 6.2 shows the performance of each of the

algorithms on the duration, and Table 6.3 on the starting time. Both of them

were analyzed with the chosen evaluation metrics, as described at the beginning of

Section 6.1.

Based on the results shown in Table 6.2, the best performing model was Random

Forests with a 19.69 minutes MAE, a 15.29 minutes MedAE and a R2 of 0.51. This

was followed closely by XGBoost with a 19.71 MAE, a 15.31 MedAE, and an identical

R2 of 0.51. Similarly, as shown in Table 6.3, both of these models also performed the

best when predicting the starting time. For this, XGBoost performed best with a

30.53 minutes MAE, 21.75 minutes MedAE, and a R2 of 0.98. Random Forests was

closely behind with a slightly higher MAE and MedAE of 33.85 minutes and 24.42

minutes, respectively, and the same R2 score of 0.98. The models performed better

at predicting the starting time than the duration across all algorithms. The results

6.1 PERFORMANCE EVALUATION 47

from the R2 metric demonstrated this, with sleep starting time scores of around

90%, while only of 50% for the duration.

KNNReg XGBoost RF LSTM RNN
MAE 23.01 19.71 19.69 19.95 20.35

MedAE 17.34 15.31 15.29 15.64 16.08
R2 0.31 0.51 0.51 0.50 0.49

Table 6.2: Results on Duration (in minutes)

KNNReg XGBoost RF LSTM RNN
MAE 39.96 30.53 33.85 44.02 61.63

MedAE 27.98 21.75 24.43 38.23 51.77
R2 0.97 0.98 0.98 0.97 0.94

Table 6.3: Results on Starting time (in minutes)

The actual vs. predicted plots show that, for all models, the tendency to the 45°

optimal line was achieved, especially when evaluating the starting times.

When looking into the residuals of the starting times, in most of the algorithms

we saw a clear distinction between the wake-up and nap times with respect to the

bedtimes. This can be seen clearly for RNN in Figure 6.10, and slightly less for

LSTM in Figure 6.9, where the residuals were split in two when the time was later

than 17.30hrs. A step further occurred with Random Forest, as shown in Figure 6.8,

where the wake-up times and different naps could be vaguely distinguished.

As for the duration, for all algorithms the trend on the residuals was higher as

the actual duration became larger. With KNN, as shown in Figure 6.6, this issue

can be seen quite prominently, and the results on the actual vs. predicted values

were also more sparse than with the other models.

6.1 PERFORMANCE EVALUATION 48

KNN

(a)Duration - Actual vs. Predicted (b)Duration - Residual

(c)Start time - Actual vs. Predicted (d)Start time - Residual

Figure 6.6: KNN - duration & starting time

6.1 PERFORMANCE EVALUATION 49

XGBoost

(a)Duration - Actual vs. Predicted (b)Duration - Residual

(c)Starting time - Actual vs. Predicted (d)Starting time - Residual

Figure 6.7: XGBoost - duration & starting time

6.1 PERFORMANCE EVALUATION 50

Random Forest Regressor

(a)Duration - Actual vs. Predicted (b)Duration - Residual

(c)Starting time - Actual vs. Predicted (d)Starting time - Residual

Figure 6.8: Random Forest Regressor - duration & starting time

6.1 PERFORMANCE EVALUATION 51

LSTM

(a)Duration - Actual vs. Predicted (b)Duration - Residual

(c)Starting time - Actual vs. Predicted (d)Starting time - Residual

Figure 6.9: LSTM - duration & starting time

6.2 DISCUSSION 52

RNN

(a)Duration - Actual vs. Predicted (b)Duration - Residual

(c)Starting time - Actual vs. Predicted (d)Starting time - Residual

Figure 6.10: RNN - duration & starting time

6.2 Discussion

The results of our model evaluations, detailed in Table 6.4, revealed insightful per-

formance metrics for each of the applied ML techniques. The evaluation focused

on several aspects however, for comparison and discussion only, the following have

been chosen: the Mean Absolute Error (MAE) of the second model for predicting

nap start times and duration, and the accuracy of the first model for predicting the

number of naps. These two metrics were considered representative of the error and

6.2 DISCUSSION 53

accuracy of the models’ desired predictions, prioritizing the minimization of their

error. Both models were evaluated using the same metrics however, for predicting

the number of naps we aimed to ensure that the accuracy was as high as possible,

while for predicting the duration and starting time, the MAE was prioritized.

KNNReg XGBoost RF LSTM RNN
Start-time MAE 39.96 30.53 33.85 44.02 61.63
Duration MAE 23.01 19.71 19.69 19.95 20.35

N. of naps Accuracy 77.79% 81.11% 81.09% 81.50% 81.50%

Table 6.4: Model comparisons

For predicting nap start times, XGBoost demonstrated the best performance

with an MAE of 30.53 minutes, indicating a high level of precision in predicting

when naps would begin, followed by KNN. For predicting the duration of naps,

Random Forest and XGBoost again led the performance, with MAEs of 19.69 and

19.71, respectively. These results highlight that XGBoost is particularly adept at

handling structured data related to sleep timings.

For predicting the number of naps, the accuracy metric showed that the LSTM

and RNN models slightly outperformed the others, with an accuracy of 81.11% for

both. KNN also performed well with an accuracy of 81.11%. These accuracy rates

reflect the models’ effectiveness in correctly predicting the number of naps a baby

will take in a day.

Overall, the results indicate that while XGBoost excels in predicting the start

times and duration of naps, LSTM and RNN models are better suited for accurately

predicting the number of naps. This understanding of each model’s strengths pro-

vides valuable guidance for selecting the appropriate techniques for different aspects

of sleep prediction.

When comparing our results to the baseline from the app, which was obtained

from the initial suggestions on the app compared to what users tracked, we saw that

the difference was quite small, as shown in Table 6.5. In the case of the duration,

6.2 DISCUSSION 54

Best performing Napper
Start-time MAE 30.53 31.62
Duration MAE 19.71 25.81

Number of naps Accuracy 81.50% 93.25%

Table 6.5: Model comparisons with baseline from app
For the number of naps, LSTM was used, and for the duration and starting time

XGBoost.

our best model exceeded the performance of the baseline and for the starting time,

it was very close. We had to take into account that many of the results from users

would have already been based on those suggestions, therefore the high accuracy

on the number of naps predictions was likely subject to bias. The parents would

have received a suggestion and they may have tried to follow it, for instance if the

app suggested their child has 2 naps, they may have tried to adapt their schedule

to that.

7 Conclusions

This thesis focused on predicting sleep schedules using a variety of machine learning

models, with a particular focus on handling and processing the data. Through

extensive analysis and experimentation, a range of models were tested, including K-

Nearest Neighbors, XGBoost, Random Forests, Long Short-Term Memory Networks,

and Recurrent Neural Networks, to predict babies’ sleep patterns based on historical

data.

The effectiveness of each model was assessed using a structured approach to

data preparation and evaluation. The train-test split strategy, where the last day

of data for each baby was reserved for testing, ensured a realistic evaluation of the

models’ predictive capabilities. This methodology provided a robust framework for

understanding how well the models could generalize to unseen data.

In predicting the number of naps, LSTM and RNN emerged as the top perform-

ers, excelling in capturing the temporal dependencies inherent in sleep patterns.

However, when it came to forecasting the duration and timing of the sleeping times,

XGBoost and Random Forest notably outperformed the other models. This dis-

parity in performance showcased the unique strengths of each model in addressing

specific aspects of the sleep prediction task. While LSTM and RNN excelled in

capturing sequential patterns and temporal dynamics, XGBoost’s strength lied in

handling structured data and delivering robust predictions. This highlights the im-

portance of leveraging a diverse set of models to effectively address different aspects

7.1 FUTURE WORK 56

of complex prediction tasks, ultimately leading to more accurate and comprehensive

results.

Despite the promising results, this study also highlighted several challenges, such

as handling missing data, reducing the impact of outliers, and mitigating bias in-

herent in the data. The bias from the suggestions provided to the users before they

registered data on the app posed a significant challenge to understanding the full

precision of the results.

In summary, this thesis produced encouraging results in the domain of sleep

prediction using machine learning models. By investigating a variety of models and

addressing significant data challenges, the study achieved notable success.

7.1 Future work

Throughout this project, several ideas for future work were developed however, due

to time constraints, they were not able to be explored.

One potential direction for future work would be to apply time series analysis

techniques to tackle similar prediction problems. Considering the sequential nature

of the data, this approach may offer improved predictive performance and better

capture the dynamic behavior of sleep patterns over time. Another possibility for

exploration is to reframe the task as a classification problem, where the goal is

to classify whether a given period of time corresponds to a nap (sleep) or not. By

treating sleep detection as a binary classification task, more classification algorithms

and techniques could be applied to accurately differentiate between sleep and wake

periods.

Improving the reduction of outliers and handling missing data is another avenue

for further research. Leveraging machine learning techniques, such as the Improved

Generative Adversarial Imputation Network proposed by [37], could help address

challenges related to missing data and data consistency.

7.1 FUTURE WORK 57

A further opportunity for future work lies in using the data fields described in

Section 5.2.1: previous wake time, and accumulated wake time. These could offer

valuable insights into sleep patterns and could be leveraged to adjust predictions

in real time. While the current model predicted the next full day’s sleep pattern,

future research could explore strategies for continuously updating predictions based

on real-time inference from these additional features.

References

[1] Napper website, https://napper.app/en/.

[2] P. S. McDowall, B. C. Galland, A. J. Campbell, and D. E. Elder, ”Parent

knowledge of children’s sleep: A systematic review”, Sleep medicine reviews,

vol. 31, pp. 39–47, 2017. doi: 10.1016/j.smrv.2016.01.002.

[3] R. E. Hatton and M. Gardani, ”Maternal perceptions of advice on sleep in

young children: How, what, and when?”, British Journal of Health Psychology,

vol. 23, no. 2, pp. 476–495, 2018. doi: 10.1111/bjhp.12300.

[4] J. A. Mindell and A. A. Williamson, ”Benefits of a bedtime routine in young

children: Sleep, development, and beyond”, Sleep medicine reviews, vol. 40,

pp. 93–108, 2018. doi: 10.1016/j.smrv.2017.10.007.

[5] L. Matricciani, C. Paquet, B. Galland, M. Short, and T. Olds, ”Children’s

sleep and health: A meta-review”, Sleep medicine reviews, vol. 46, pp. 136–

150, 2019. doi: 10.1016/j.smrv.2019.04.011.

[6] B. H. Fiese, T. Cai, C. Sutter, and K. K. Bost, ”Bedtimes, bedtime routines,

and children’s sleep across the first 2 years of life”, Sleep, vol. 44, no. 8, 2021.

doi: 10.1093/sleep/zsab045.

[7] E. Tham, N. Schneider, and B. Broekman, ”Infant sleep and its relation

with cognition and growth: A narrative review”, Nature and Science of Sleep,

vol. Volume 9, pp. 135–149, May 2017. doi: 10.2147/NSS.S125992.

https://napper.app/en/
https://doi.org/10.1016/j.smrv.2016.01.002
https://doi.org/10.1111/bjhp.12300
https://doi.org/10.1016/j.smrv.2017.10.007
https://doi.org/10.1016/j.smrv.2019.04.011
https://doi.org/10.1093/sleep/zsab045
https://doi.org/10.2147/NSS.S125992

REFERENCES 59

[8] J. Mindell and A. Williamson, ”Benefits of a bedtime routine in young children:

Sleep, development, and beyond”, Sleep Medicine Reviews, vol. 40, Nov. 2017.

doi: 10.1016/j.smrv.2017.10.007.

[9] S. L. Allen, M. D. Howlett, J. A. Coulombe, and P. V. Corkum, ”Abcs of

sleeping: A review of the evidence behind pediatric sleep practice recommen-

dations”, Sleep medicine reviews, vol. 29, pp. 1–14, 2016. doi: 10.1016/j.

smrv.2015.08.006.

[10] O. Bruni, E. Baumgartner, S. Sette, et al., ”Longitudinal study of sleep be-

havior in normal infants during the first year of life”, Journal of Clinical Sleep

Medicine, vol. 10, no. 10, pp. 1119–1127, 2014. doi: 10.5664/jcsm.4114.

[11] B. C. Galland, B. J. Taylor, D. E. Elder, and P. Herbison, ”Normal sleep

patterns in infants and children: A systematic review of observational studies”,

Sleep Medicine Reviews, vol. 16, no. 3, pp. 213–222, 2012, issn: 1087-0792. doi:

10.1016/j.smrv.2011.06.001.

[12] F. G. Vital-Lopez, T. J. Balkin, and J. Reifman, ”Models for predicting sleep

latency and sleep duration”, Sleep, vol. 44, no. 5, zsaa263, Nov. 2020, issn:

0161-8105. doi: 10.1093/sleep/zsaa263.

[13] O. Bruni, E. Baumgartner, S. Sette, et al., ”Longitudinal study of sleep be-

havior in normal infants during the first year of life”, Journal of clinical sleep

medicine : JCSM : official publication of the American Academy of Sleep

Medicine, vol. 10, Sep. 2014. doi: 10.5664/jcsm.4114.

[14] S. Paruthi, L. J. Brooks, C. D’Ambrosio, et al., ”Recommended amount of sleep

for pediatric populations: A consensus statement of the american academy of

sleep medicine”, Journal of Clinical Sleep Medicine, vol. 12, no. 06, pp. 785–

786, 2016. doi: 10.5664/jcsm.5866.

https://doi.org/10.1016/j.smrv.2017.10.007
https://doi.org/10.1016/j.smrv.2015.08.006
https://doi.org/10.1016/j.smrv.2015.08.006
https://doi.org/10.5664/jcsm.4114
https://doi.org/10.1016/j.smrv.2011.06.001
https://doi.org/10.1093/sleep/zsaa263
https://doi.org/10.5664/jcsm.4114
https://doi.org/10.5664/jcsm.5866

REFERENCES 60

[15] L. Gelman, Baby and children sleep chart, https://www.parents.com/baby/

sleep/basics/baby-and-children-sleep-chart/.

[16] K. McGraw, R. Hoffmann, C. Harker, and J. H. Herman, ”The development

of circadian rhythms in a human infant”, Sleep, vol. 22, no. 3, pp. 303–310,

1999. doi: 10.1093/sleep/22.3.303.

[17] A. T. Newton and G. J. Reid, ”Regular, intermittent, and spontaneous: Pat-

terns of preschool children’s nap behavior and their correlates”, Sleep Medicine,

vol. 102, pp. 105–116, 2023, issn: 1389-9457. doi: 10.1016/j.sleep.2022.

12.019.

[18] UNICEF et al., ”World bank group, unicef urge greater investment in early

childhood development”, 2016. [Online]. Available: https://www.worldbank.

org/en/news/press-release/2016/04/14/world-bank-group-unicef-

urge-greater-investment-in-early-childhood-development#.

[19] I. H. Sarker, ”Machine learning: Algorithms, real-world applications and re-

search directions”, SN computer science, vol. 2, no. 3, p. 160, 2021. doi: 10.

1007/s42979-021-00592-x.

[20] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, ”Speech recog-

nition using deep neural networks: A systematic review”, IEEE access, vol. 7,

pp. 19 143–19 165, 2019. doi: 10.1109/ACCESS.2019.2896880.

[21] J. Alzubi, A. Nayyar, and A. Kumar, ”Machine learning from theory to algo-

rithms: An overview”, Journal of Physics: Conference Series, vol. 1142, no. 1,

p. 012 012, Nov. 2018. doi: 10.1088/1742-6596/1142/1/012012.

[22] B. Mahesh, ”Machine learning algorithms -a review”, Jan. 2019. doi: 10 .

21275/ART20203995.

https://www.parents.com/baby/sleep/basics/baby-and-children-sleep-chart/
https://www.parents.com/baby/sleep/basics/baby-and-children-sleep-chart/
https://doi.org/10.1093/sleep/22.3.303
https://doi.org/10.1016/j.sleep.2022.12.019
https://doi.org/10.1016/j.sleep.2022.12.019
https://www.worldbank.org/en/news/press-release/2016/04/14/world-bank-group-unicef-urge-greater-investment-in-early-childhood-development#
https://www.worldbank.org/en/news/press-release/2016/04/14/world-bank-group-unicef-urge-greater-investment-in-early-childhood-development#
https://www.worldbank.org/en/news/press-release/2016/04/14/world-bank-group-unicef-urge-greater-investment-in-early-childhood-development#
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1109/ACCESS.2019.2896880
https://doi.org/10.1088/1742-6596/1142/1/012012
https://doi.org/10.21275/ART20203995
https://doi.org/10.21275/ART20203995

REFERENCES 61

[23] S. Badillo, B. Banfai, F. Birzele, et al., ”An introduction to machine learning”,

Clinical pharmacology & therapeutics, vol. 107, no. 4, pp. 871–885, 2020. doi:

10.1002/cpt.1796.

[24] J. Tanuwijaya and S. Hansun, ”Lq45 stock index prediction using k-nearest

neighbors regression”, vol. 8, Sep. 2019. doi: 10.35940/ijrte.C4663.098319.

[25] Z. Yao and W. Ruzzo, ”A regression-based k nearest neighbor algorithm for

gene function prediction from heterogeneous data”, BMC bioinformatics, vol. 7

Suppl 1, S11, Feb. 2006. doi: 10.1186/1471-2105-7-S1-S11.

[26] S. Imandoust and M. Bolandraftar, ”Application of k-nearest neighbor (knn)

approach for predicting economic events: Theoretical background”, Jan. 2013,

pp. 605–610. [Online]. Available: https : / / api . semanticscholar . org /

CorpusID:15532755.

[27] F. Tan, ”Regression analysis and prediction using lstm model and machine

learning methods”, Journal of Physics: Conference Series, vol. 1982, no. 1,

p. 012 013, Jul. 2021. doi: 10.1088/1742-6596/1982/1/012013.

[28] A. H. Mirza and S. Cosan, ”Computer network intrusion detection using se-

quential lstm neural networks autoencoders”, in 2018 26th Signal Process-

ing and Communications Applications Conference (SIU), 2018, pp. 1–4. doi:

10.1109/SIU.2018.8404689.

[29] K. Taunk, S. De, S. Verma, and A. Swetapadma, ”A brief review of nearest

neighbor algorithm for learning and classification”, in 2019 International Con-

ference on Intelligent Computing and Control Systems (ICCS), 2019, pp. 1255–

1260. doi: 10.1109/ICCS45141.2019.9065747.

[30] T. Chen and C. Guestrin, ”Xgboost: A scalable tree boosting system”, CoRR,

2016. arXiv: 1603.02754.

https://doi.org/10.1002/cpt.1796
https://doi.org/10.35940/ijrte.C4663.098319
https://doi.org/10.1186/1471-2105-7-S1-S11
https://api.semanticscholar.org/CorpusID:15532755
https://api.semanticscholar.org/CorpusID:15532755
https://doi.org/10.1088/1742-6596/1982/1/012013
https://doi.org/10.1109/SIU.2018.8404689
https://doi.org/10.1109/ICCS45141.2019.9065747
https://arxiv.org/abs/1603.02754

REFERENCES 62

[31] D. Borup, B. J. Christensen, N. S. Mühlbach, and M. S. Nielsen, ”Target-

ing predictors in random forest regression”, International Journal of Forecast-

ing, vol. 39, no. 2, pp. 841–868, 2023, issn: 0169-2070. doi: 10.1016/j.

ijforecast.2022.02.010.

[32] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Müller,

”Explaining deep neural networks and beyond: A review of methods and ap-

plications”, Proceedings of the IEEE, vol. 109, no. 3, pp. 247–278, 2021. doi:

10.1109/JPROC.2021.3060483.

[33] A. Sherstinsky, ”Fundamentals of recurrent neural network (rnn) and long

short-term memory (lstm) network”, Physica D: Nonlinear Phenomena, vol. 404,

p. 132 306, 2020, issn: 0167-2789. doi: 10.1016/j.physd.2019.132306.

[34] C. Thomas, ”Recurrent neural networks and natural language processing”,

2019. [Online]. Available: https://towardsdatascience.com/recurrent-

neural-networks-and-natural-languageprocessing-73af640c2aa1.

[35] Y. Yu, X. Si, C. Hu, and J. Zhang, ”A review of recurrent neural networks:

Lstm cells and network architectures”, Neural computation, vol. 31, no. 7,

pp. 1235–1270, 2019. doi: 10.1162/neco_a_01199.

[36] D. Chicco, M. J. Warrens, and G. Jurman, ”The coefficient of determination

r-squared is more informative than smape, mae, mape, mse and rmse in re-

gression analysis evaluation”, Peerj computer science, vol. 7, e623, 2021. doi:

10.7717/peerj-cs.623.

[37] S. Park, C.-T. Li, S. Han, C. Hsu, S. W. Lee, and M. Cha, ”Learning sleep qual-

ity from daily logs”, in Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, ser. KDD ’19, Anchor-

age, AK, USA: Association for Computing Machinery, 2019, pp. 2421–2429,

isbn: 9781450362016. doi: 10.1145/3292500.3330792.

https://doi.org/10.1016/j.ijforecast.2022.02.010
https://doi.org/10.1016/j.ijforecast.2022.02.010
https://doi.org/10.1109/JPROC.2021.3060483
https://doi.org/10.1016/j.physd.2019.132306
https://towardsdatascience.com/recurrent-neural-networks-and-natural-languageprocessing-73af640c2aa1
https://towardsdatascience.com/recurrent-neural-networks-and-natural-languageprocessing-73af640c2aa1
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.7717/peerj-cs.623
https://doi.org/10.1145/3292500.3330792

REFERENCES 63

[38] K. Niu, S. Zhang, H. Jiao, C. Cheng, and C. Wang, ”Btp: A bedtime predicting

algorithm via smartphone screen status”, Wireless Communications and Mo-

bile Computing, vol. 2018, pp. 1–11, Oct. 2018. doi: 10.1155/2018/7619102.

[39] k. Park, S. Lee, S. Wang, et al., ”Sleep Prediction Algorithm Based On Deep

Learning Technology”, Sleep, vol. 42, no. Supplement1, A172–A172, Apr. 2019,

issn: 0161-8105. doi: 10.1093/sleep/zsz067.425.

[40] V. R. K. Sathish, W. L. Woo, and E. S. L. Ho, ”Predicting sleeping quality

using convolutional neural networks”, ArXiv, 2022. doi: 10.48550/arXiv.

2204.13584.

[41] M. D H and J. Kasubi, ”Predicting of sleep behaviour in smart homes based

on multi-residents using machine learning techniques”, SN Computer Science,

vol. 2, Jul. 2021. doi: 10.1007/s42979-021-00643-3.

[42] T. Lund, ”Hacking my infant twins’ sleep with machine learning and data

science”, 2016. [Online]. Available: https : / / medium . com / dad - on - the -

run/hacking-my-infant-twins-sleep-with-machine-learning-and-

data-science-6c1e38a71677.

[43] W. Hidayat, T. Tambunan, and R. Budiawan, ”Empowering wearable sensor

generated data to predict changes in individual’s sleep quality”, May 2018.

doi: 10.1109/ICoICT.2018.8528750.

[44] A. Sathyanarayana, J. Srivastava, and L. Fernandez-Luque, ”The science of

sweet dreams: Predicting sleep efficiency from wearable device data”, Com-

puter, vol. 50, pp. 30–38, Apr. 2017. doi: 10.1109/MC.2017.91.

[45] A. Sathyanarayana, S. Joty, L. Fernandez-Luque, et al., ”Sleep quality predic-

tion from wearable data using deep learning”, JMIR Mhealth Uhealth, vol. 4,

no. 4, e125, Nov. 2016, issn: 2291-5222. doi: 10.2196/mhealth.6562.

https://doi.org/10.1155/2018/7619102
https://doi.org/10.1093/sleep/zsz067.425
https://doi.org/10.48550/arXiv.2204.13584
https://doi.org/10.48550/arXiv.2204.13584
https://doi.org/10.1007/s42979-021-00643-3
https://medium.com/dad-on-the-run/hacking-my-infant-twins-sleep-with-machine-learning-and-data-science-6c1e38a71677
https://medium.com/dad-on-the-run/hacking-my-infant-twins-sleep-with-machine-learning-and-data-science-6c1e38a71677
https://medium.com/dad-on-the-run/hacking-my-infant-twins-sleep-with-machine-learning-and-data-science-6c1e38a71677
https://doi.org/10.1109/ICoICT.2018.8528750
https://doi.org/10.1109/MC.2017.91
https://doi.org/10.2196/mhealth.6562

REFERENCES 64

[46] O. Azuara and Z. Gillette, ”Using machine learning to determine optimal

sleeping schedules of individual college students”, in Oct. 2022, pp. 13–25,

isbn: 978-3-031-17901-3. doi: 10.1007/978-3-031-17902-0_2.

[47] K. Park, S. Lee, C. Lee, et al., ”Prediction of good sleep with physical activity

and light exposure: A preliminary study”, Journal of clinical sleep medicine:

JCSM: official publication of the American Academy of Sleep Medicine, vol. 18,

Jan. 2022. doi: 10.5664/jcsm.9872.

[48] J. Mindell, E. Leichman, J. Composto, C. Lee, B. Bhullar, and R. Walters,

”Development of infant and toddler sleep patterns: Real-world data from a

mobile application”, Journal of sleep research, vol. 25, Jun. 2016. doi: 10.

1111/jsr.12414.

[49] S. D. Harlow, X. Lin, and M. Ho, ”Analysis of menstrual diary data across

the reproductive life span applicability of the bipartite model approach and

the importance of within-woman variance”, Journal of Clinical Epidemiology,

vol. 53, no. 7, pp. 722–733, 2000, issn: 0895-4356. doi: 10.1016/S0895-

4356(99)00202-4.

[50] T. Oliveira, G. Bruinvels, C. Pedlar, and J. Newell, ”Modelling menstrual cycle

length in athletes using state-space models”, Dec. 2020. doi: 10.21203/rs.

3.rs-122553/v1.

[51] I. Urteaga, K. Li, A. Shea, V. J. Vitzthum, C. H. Wiggins, and N. Elhadad,

”A generative modeling approach to calibrated predictions: A use case on

menstrual cycle length prediction”, in Proceedings of the 6th Machine Learning

for Healthcare Conference, K. Jung, S. Yeung, M. Sendak, M. Sjoding, and R.

Ranganath, Eds., ser. Proceedings of Machine Learning Research, vol. 149,

PMLR, Aug. 2021, pp. 535–566. [Online]. Available: https://proceedings.

mlr.press/v149/urteaga21a.html.

https://doi.org/10.1007/978-3-031-17902-0_2
https://doi.org/10.5664/jcsm.9872
https://doi.org/10.1111/jsr.12414
https://doi.org/10.1111/jsr.12414
https://doi.org/10.1016/S0895-4356(99)00202-4
https://doi.org/10.1016/S0895-4356(99)00202-4
https://doi.org/10.21203/rs.3.rs-122553/v1
https://doi.org/10.21203/rs.3.rs-122553/v1
https://proceedings.mlr.press/v149/urteaga21a.html
https://proceedings.mlr.press/v149/urteaga21a.html

REFERENCES 65

[52] K. Li, I. Urteaga, A. Shea, V. Vitzthum, C. Wiggins, and N. Elhadad, ”A

generative, predictive model for menstrual cycle lengths that accounts for po-

tential self-tracking artifacts in mobile health data”, Feb. 2021. doi: 10.48550/

arXiv.2102.12439.

[53] K. Li, I. Urteaga, A. Shea, V. J. Vitzthum, C. H. Wiggins, and N. Elhadad,

”A predictive model for next cycle start date that accounts for adherence in

menstrual self-tracking”, Journal of the American Medical Informatics Asso-

ciation, vol. 29, no. 1, pp. 3–11, Sep. 2021, issn: 1527-974X. doi: 10.1093/

jamia/ocab182.

[54] P. Bortot, G. Masarotto, and B. Scarpa, ”Sequential predictions of menstrual

cycle lengths”, Biostatistics, vol. 11, no. 4, pp. 741–755, Apr. 2010, issn: 1465-

4644. doi: 10.1093/biostatistics/kxq020.

[55] O. Bastidas, S. Zahia, A. Fuente-Vidal, et al., ”Predicting physical exercise ad-

herence in fitness apps using a deep learning approach”, International Journal

of Environmental Research and Public Health, vol. 18, p. 10 769, Oct. 2021.

doi: 10.3390/ijerph182010769.

[56] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., ”Scikit-learn: Machine learn-

ing in Python”, Journal of Machine Learning Research, vol. 12, pp. 2825–2830,

2011. [Online]. Available: www.scikit-learn.org/.

[57] M. M. Ahsan, M. A. P. Mahmud, P. K. Saha, K. D. Gupta, and Z. Siddique,

”Effect of data scaling methods on machine learning algorithms and model

performance”, Technologies, vol. 9, no. 3, 2021, issn: 2227-7080. doi: 10 .

3390/technologies9030052.

[58] T. D.K., P. B.G, and F. Xiong, ”Auto-detection of epileptic seizure events

using deep neural network with different feature scaling techniques”, Pattern

https://doi.org/10.48550/arXiv.2102.12439
https://doi.org/10.48550/arXiv.2102.12439
https://doi.org/10.1093/jamia/ocab182
https://doi.org/10.1093/jamia/ocab182
https://doi.org/10.1093/biostatistics/kxq020
https://doi.org/10.3390/ijerph182010769
www.scikit-learn.org/
https://doi.org/10.3390/technologies9030052
https://doi.org/10.3390/technologies9030052

REFERENCES 66

Recognition Letters, vol. 128, pp. 544–550, 2019, issn: 0167-8655. doi: 10.

1016/j.patrec.2019.10.029.

[59] Martín Abadi, Ashish Agarwal, Paul Barham, et al., TensorFlow: Large-scale

machine learning on heterogeneous systems, Software available from tensor-

flow.org, 2015. [Online]. Available: www.tensorflow.org/.

https://doi.org/10.1016/j.patrec.2019.10.029
https://doi.org/10.1016/j.patrec.2019.10.029
www.tensorflow.org/

Appendix A Loss Curves

A.1 Learning curve on Neural Networks

A learning curve is a graphical representation that shows the model’s performance

on both the training and validation datasets as the training progresses. This curve

helps in understanding how well the model is learning and can indicate issues such

as over-fitting or under-fitting.

LSTM

Figure A.1: LSTM Learning curve - number of naps

A.1 LEARNING CURVE ON NEURAL NETWORKS A-2

Figure A.2: LSTM Learning curve - duration & starting time

RNN

Figure A.3: RNN Learning curve - number of naps

Figure A.4: RNN Learning curve - duration & starting time

Appendix B Code

The main code for this thesis was written using Python, which was adapted from

previous Jupyter Notebooks. Found here are the most relevant files used to execute

the code pipeline. In order to do so, the main.py file, in Section B.1, has to be called.

This one calls preprocess.py, in Section B.2, and features.py, in Section B.3. Once

we have the dataset ready to use for the machine learning models, the main code

calls on ml.py, Section B.4, which feeds from models.py, Section B.5 and plots.py

Section B.6.

B.1 MAIN

The script imports necessary modules for preprocessing, feature extraction, and

machine learning tasks, along with pandas for data manipulation and sklearn for

label encoding.

It defines a main function responsible for reading log and baby data, preprocess-

ing, and performing evaluations using machine learning models. The main function

takes several parameters such as paths for data and output files, along with flags

for preprocessing and feature extraction. It initializes parameters for window size,

model information, and number of days to predict, which are then passed to the

rest of functions. Based on the flags, it either preprocesses the data or reads prepro-

cessed data from files. Next, it iterates over the specified number of days to predict,

splitting the data into training and testing sets, and performs machine learning

B.1 MAIN B-2

evaluations. Finally, it evaluates predictions, saves results, and returns accumulated

predicted data and evaluation metrics. The script also includes conditional state-

ments to run the main function based on command-line arguments.

1 from preprocess import *

2 from features import *

3 from ml import *

4 import sys

5 import pandas as pd

6 from sklearn.preprocessing import LabelEncoder

7

8

9 #----------------- MAIN -----------------#

10 def main(preprocess , features , path_log , path_baby ,

output_path_processed , output_path_stats , models_path ,

results_path , features_path):

11 """

12 Main function that reads the log and baby data , preprocesses

the data , and performs the evaluation.

13 """

14 window_size = {

15 'naps_babyid ': '7',

16 'duration_babyid ': '7',

17 'start_babyid ': '7'

18 }

19

20 model_info = {

21 'retrain ': False ,

22 'model_type ': 'XGBoost ', # 'LSTM ', 'RNN ', 'KNN ', 'RF'

23

24 # params LSTM or RNN

25 'num_epoch ': '3',

B.1 MAIN B-3

26 'batch_size ': '32',

27 'loss': 'mean_squared_error ',

28

29 # params XGBoost

30 'num_estimators ': '100',

31 'learning_rate ': '0.1',

32 'objective ': 'reg:squarederror ',

33

34 # params KNN

35 'num_neighbors ': '3',

36

37 # params RF

38 'max_depth ': 10,

39 'n_estimators ': 100,

40 'bootstrap ': True

41 }

42

43 num_days_to_predict = 1

44 evaluate_on_only_naps = True

45 orig_log_size = 30044030

46

47 column_names = ['id', 'babyId ', 'category ', 'createdAt ', 'end',

'start', 'timezone_offset_minutes ', 'skipped ', 'birthday ']

48

49 if preprocess == True:

50 print(' - About to read log')

51 df_log = pd.read_csv(path_log , names=column_names)

52 df_log.drop(df_log.index [0], inplace=True)

53 orig_log_size = df_log.shape [0]

54 print(f' - Reading data done , original data size: {

orig_log_size}')

55 print(' - Preprocess starting ')

56 df_proc = preprocessing(df_log , output_path_processed ,

B.1 MAIN B-4

output_path_stats)

57 elif preprocess == False:

58 df_proc = pd.read_csv(output_path_processed)

59

60 df = df_proc.copy()

61 label_encoder = LabelEncoder ()

62 df['babyId '] = label_encoder.fit_transform(df['babyId '])

63 joblib.dump(label_encoder , os.path.join(models_path , '

baby_encoder.joblib '))

64 category_encoder = LabelEncoder ()

65 df['category '] = category_encoder.fit_transform(df['category '])

66 joblib.dump(category_encoder , os.path.join(models_path , '

category_encoder.joblib '))

67

68 df = df.sort_values(by=['start'])

69 last_day_per_baby = df.groupby('babyId ')['date'].max()

70

71 if features == True:

72 print(' - Feature extraction starting ')

73 print(df.columns)

74 df_feat_naps = add_features_num_naps(df , window_size)

75 df_feat = add_features(df, window_size , output_path_stats)

76

77 df_feat_naps = df_feat_naps [['babyId ', 'date', 'category ',

'num_nap ', 'age_on_log_dec ', 'naps_that_day ','

mean_naps_at_age ', 'std_naps_at_age ', '

rolling_mean_naps_that_day_babyid ', '

rolling_std_naps_that_day_babyid ']]

78 df_feat = df_feat [['babyId ', 'date', 'category ', 'num_nap ',

'age_on_log_dec ', 'duration ', 'start_24hr ', 'start', '

timezone_offset_minutes ', 'end', 'naps_that_day ', '

mean_duration ', 'mean_start_24hr ', 'std_duration ', '

std_start_24hr ', 'rolling_mean_duration_babyid ', '

B.1 MAIN B-5

rolling_std_duration_babyid ', '

rolling_mean_start_24hr_babyid ', '

rolling_std_start_24hr_babyid ']]

79 df_feat_naps.to_parquet(os.path.join(features_path , '

sample_filtered_70_features_naps.parquet '))

80 df_feat.to_parquet(os.path.join(features_path , '

sample_filtered_70_features.parquet '))

81

82 elif features == False:

83 df_feat_naps = pd.read_parquet(os.path.join(features_path ,

'sample_filtered_70_features_naps.parquet '))

84 df_feat = pd.read_parquet(os.path.join(features_path , '

sample_filtered_70_features.parquet '))

85 predicted_data_accumulated = pd.DataFrame ()

86 evaluation_metrics = pd.DataFrame(columns =['mae_naps ', '

accuracy_naps ', 'medae_naps ', 'r2_naps ', 'mae_duration ', '

medae_duration ', 'r2_duration ', 'mae_start ', 'medae_start ',

'r2_start '])

87

88 training_sizes = []

89 testing_sizes = []

90

91 for i in range(0, num_days_to_predict):

92 # print(f'Iteration {i+1} out of {num_days_to_predict }')

93 print(' - Train/test split starting ')

94 training_data_naps , testing_data_naps , training_data ,

testing_data = train_test_split(df_feat_naps , df_feat ,

last_day_per_baby , i)

95 training_sizes.append(training_data.shape [0])

96 testing_sizes.append(testing_data.shape [0])

97 predicted_data , y_pred_naps , y_test_naps =

perform_evaluation(training_data_naps , testing_data_naps

, training_data , testing_data , label_encoder ,

B.1 MAIN B-6

category_encoder , models_path , results_path , model_info)

98 predicted_data_accumulated = pd.concat ([

predicted_data_accumulated , predicted_data])

99 evaluation_metrics = evaluate_predictions(

predicted_data_accumulated , y_pred_naps , y_test_naps ,

evaluation_metrics , df_proc.shape[0], training_sizes ,

testing_sizes , orig_log_size , model_info ,

evaluate_on_only_naps)

100 save_results(predicted_data_accumulated , evaluation_metrics ,

model_info , results_path)

101

102 return predicted_data_accumulated , evaluation_metrics

103

104 if __name__ == "__main__":

105 preprocess = sys.argv [1]

106 preprocess = True if preprocess == 'True' else False

107 features = sys.argv [2]

108 features = True if features == 'True' else False

109 path_log = '/home/ubuntu/ANNA -THESIS/DATA/log/

baby_logs_sample_filtered_70.csv'

110 path_baby = '/home/ubuntu/ANNA -THESIS/DATA/baby/part -00000 -

f022d9fe -b173 -434c-8200 -4 af77a4e96bd -c000.snappy.parquet '

111 output_path_processed = '/home/ubuntu/ANNA -THESIS/DATA/

processed/processed_baby_logs_sample_filtered_70.csv'

112 output_path_stats = '/home/ubuntu/ANNA -THESIS/DATA/processed/

stats_baby_logs_sample_filtered_70.csv'

113 features_path = '/home/ubuntu/ANNA -THESIS/DATA/features/'

114 models_path = '/home/ubuntu/ANNA -THESIS/DATA/models/'

115 results_path = '/home/ubuntu/ANNA -THESIS/DATA/results/'

116 main(preprocess , features , path_log , path_baby ,

output_path_processed , output_path_stats , models_path ,

results_path , features_path)

B.2 PREPROCESS B-7

B.2 PREPROCESS

This script processes a log dataframe for baby sleep data. The preprocessing func-

tions include merging and renaming columns, normalizing timezones, calculating the

baby’s age at the time of the log, and fixing data by filtering out unwanted records.

Additionally, it calculates the duration of each sleep event, the number of naps per

day, and various statistics such as the previous wake time and the mean number of

naps at different ages. The processed data and statistics are then saved to specified

file paths.

1 import pandas as pd

2

3 # --------------------- PRE PROCESSING ---------------------

4 def merge_log_baby (df_log):

5 """

6 Merge the log and baby dataframes.

7 """

8 df_log['birthday '] = pd.to_datetime(df_log['birthday '])

9 df_log['birthday '] = df_log['birthday '].dt.tz_localize(None)

10 df_log = df_log.rename(columns ={'babyid ': 'babyId '})

11 earliest_birthday = df_log['birthday '].min()

12 latest_birthday = df_log['birthday '].max()

13 print(f'Earliest birthday: {earliest_birthday}')

14 print(f'Latest birthday: {latest_birthday}')

15 df = df_log.copy()

16 df['createdAt '] = pd.to_datetime(df['createdAt '])

17 df['createdAt '] = df['createdAt '].dt.tz_localize(None)

18 df['start'] = pd.to_datetime(df['start'])

19 df['start'] = df['start'].dt.tz_localize(None)

20 df['end'] = pd.to_datetime(df['end'])

21 df['end'] = df['end'].dt.tz_localize(None)

B.2 PREPROCESS B-8

22 df['createdAt '] = pd.to_datetime(df['createdAt '])

23 df['birthday '] = pd.to_datetime(df['birthday '])

24

25 return df

26

27 def normalize_timezone(df):

28 """

29 Normalize the timezone of the log dataframe.

30 """

31 df['start'] = pd.to_datetime(df['start'])

32 df['end'] = pd.to_datetime(df['end'])

33 df.dropna(subset =['timezone_offset_minutes '], inplace=True)

34 df['start'] = pd.to_datetime(df['start']) + pd.to_timedelta(df[

'timezone_offset_minutes ']. astype(float).astype(int), unit='

m')

35 df['end'] = pd.to_datetime(df['end']) + pd.to_timedelta(df['

timezone_offset_minutes ']. astype(float).astype(int), unit='m

')

36 df['createdAt '] = pd.to_datetime(df['createdAt ']) + pd.

to_timedelta(df['timezone_offset_minutes ']. astype(float).

astype(int), unit='m')

37

38 return df

39

40 def age_on_log(df):

41 """

42 Compute the age of the baby at the time of the log.

43 """

44 df['age_on_log '] = df['createdAt '] - df['birthday ']

45 df['age_on_log '] = df['age_on_log '].dt.days

46 df['age_on_log '] = df['age_on_log '] / 30

47 df['start'] = pd.to_datetime(df['start'])

48 df['date'] = df['start'].dt.date

B.2 PREPROCESS B-9

49 df['date'] = pd.to_datetime(df['date'])

50

51 return df

52

53 def fix_data(df):

54 """

55 Fix the data from the log dataframe.

56 Remove logs from dates earlier than August 2020.

57 Take only logs under 30 months.

58 """

59 df = df[df['date'] >= '2020 -08 -01']

60 df = df[df['age_on_log '] >= 2]

61 df = df[df['age_on_log '] <= 24]

62

63 return df

64

65 def duration(df_2):

66 """

67 Compute the duration of each entry.

68 """

69 df_2['duration '] = df_2['end'] - df_2['start']

70 df_2['duration '] = df_2['duration '].dt.total_seconds () / 60

71 df_2.loc[df_2['category '] == 'BED_TIME ', 'duration '] = 0

72

73 return df_2

74

75 def naps_per_day(df):

76 """

77 Compute the number of naps per day.

78 """

79 df_nap = df[df['category '] == 'NAP']

80 df_nap['naps_that_day '] = 0

81 df_nap = df_nap [((df_nap['end']-df_nap['start']).dt.

B.2 PREPROCESS B-10

total_seconds ()/60) >= 5]

82 df_nap = df_nap [((df_nap['end']-df_nap['start']).dt.

total_seconds ()/60) <= 300]

83 df_nap = df_nap.groupby (['babyId ', 'date']).agg({'naps_that_day

': 'count'}).reset_index ()

84 df_nap = df_nap [~ df_nap.duplicated(keep='first')]

85 df_merged = pd.merge(df , df_nap [['babyId ', 'date', '

naps_that_day ']], left_on =['babyId ', 'date'], right_on =['

babyId ', 'date'], how='left')

86 df_merged['naps_that_day '] = df_merged['naps_that_day ']. fillna

(0)

87 df_merged = df_merged [((df_merged['category '] != 'NAP') | (((

df_merged['end']-df_merged['start']).dt.total_seconds ()/60)

>= 5))]

88 df_merged = df_merged [((df_merged['category '] != 'NAP') | (((

df_merged['end']-df_merged['start']).dt.total_seconds ()/60)

<= 600))]

89 df_2 = df_merged.copy()

90 df_2 = df_merged [['babyId ','category ', 'date', 'start', 'end',

'age_on_log ', 'duration ', 'naps_that_day ', '

timezone_offset_minutes ']]

91 df_2['start'] = pd.to_datetime(df_2['start'])

92 df_2['end'] = pd.to_datetime(df_2['end'])

93

94 return df_2

95

96 def num_nap(df):

97 """

98 Compute the number of nap that day.

99 """

100 df['num_nap '] = 0

101 df.loc[df['category '] == 'BED_TIME ', 'num_nap '] = df.loc[df['

category '] == 'BED_TIME ', 'naps_that_day '] + 1

B.2 PREPROCESS B-11

102 nap_entries = df['category '] == 'NAP'

103 df = df.sort_values (['babyId ', 'start'])

104 df.loc[nap_entries , 'num_nap '] = df[nap_entries]. groupby (['

babyId ', 'date']).cumcount () + 1

105

106 return df

107

108 def prev_wake_time(df):

109 """

110 Compute the previous wake time.

111 The previous wake time is the time between the end of the

previous sleep and the start of the current sleep.

112 If the previous wake time is more than 20 hours , it is set to

0.

113 """

114 filtered_df = df[df['category '].isin(['NAP', 'BED_TIME ', '

WOKE_UP '])]

115 filtered_df = filtered_df.sort_values (['babyId ', 'start'])

116 filtered_df['time_diff '] = filtered_df.groupby('babyId ')['start

'].diff().dt.total_seconds () / 60

117 filtered_df['previous_wake_time '] = (filtered_df['start'] -

filtered_df['end'].shift ()).fillna(pd.Timedelta(seconds =0)).

dt.total_seconds () / 60

118 mask = (filtered_df['start'] - filtered_df['end'].shift ()) >=

pd.Timedelta(days =1)

119 filtered_df.loc[mask , 'previous_wake_time '] = 0

120 mask = (filtered_df['start'] < filtered_df['end'].shift ())

121 filtered_df.loc[mask , 'previous_wake_time '] = 0

122 filtered_df.loc[filtered_df['time_diff '] >= 1320, 'time_diff ']

= 0

123 filtered_df.loc[filtered_df['time_diff '].isna(), '

previous_wake_time '] = 0

124 df['prev_wake_time '] = 0

B.2 PREPROCESS B-12

125 df.loc[df['category '].isin(['NAP', 'BED_TIME ', 'WOKE_UP ']), '

prev_wake_time '] = filtered_df['previous_wake_time ']

126 df.loc[df['prev_wake_time '] > 1200, 'prev_wake_time '] = 0 #

more than 20 hours

127 df.loc[df['prev_wake_time '] < -1200, 'prev_wake_time '] = 0 #

more than 20 hours

128 # Accumulated wake time

129 df['accumulated_wake_time '] = df.groupby (['babyId ', 'date'])['

prev_wake_time ']. cumsum ()

130

131 return df

132

133 def mean_naps_age_on_log(df):

134 """

135 Data analysis to compute the mean duration of naps , bed time

and the number of naps per day.

136 """

137 df['age_on_log_dec '] = df['age_on_log ']. astype(float).round (1)

138 df['age_on_log '] = df['age_on_log ']. astype(int)

139 df['age_on_log '] = df['age_on_log ']. astype(str)

140 df['age_on_log '] = df['age_on_log '].str.replace('.0', '', regex

=False)

141 df['age_on_log '] = df['age_on_log ']. astype(int)

142 means_naps_age = df[df['category '] == 'NAP']. groupby (['

age_on_log_dec ']).agg({'naps_that_day ': 'mean'}).reset_index

()

143 means_naps_age.rename(columns ={'naps_that_day ': '

mean_naps_at_age '}, inplace=True)

144

145 return df , means_naps_age

146

147 def save_stats (df_stats , path_stats , df , path_new):

148 """

B.2 PREPROCESS B-13

149 Save the statistics and the processed log dataframe to parquet

files with snappy compression method.

150 """

151 df['timezone_offset_minutes ']. fillna(0, inplace=True)

152 df['timezone_offset_minutes '] = pd.to_numeric(df['

timezone_offset_minutes '], errors='coerce ')

153 df_stats.to_csv(path_stats)

154 df.to_csv(path_new)

155

156 def take_sleep_logs(df):

157 """

158 Take the naps that have an age of at least 2 months.

159 """

160 nap_data = df[df['category '].isin(['NAP', 'WOKE_UP ', 'BED_TIME '

])]

161

162 return nap_data

163

164 def time_epochs(df):

165 """

166 Compute the start time in epoch format.

167 """

168 df_start = df['start'].apply(lambda x: x.strftime('%H:%M:%S'))

169 df_start = pd.to_datetime(df_start , format='%H:%M:%S')

170 df['start_epoch '] = df_start.apply(lambda x: x.timestamp ()/60)

in minutes

171

172 return df

173

174 def time_to_24hr_cycle(df , time_column):

175 """

176 Convert the time to a 24-hour cycle.

177 """

B.2 PREPROCESS B-14

178 df_copy = df.copy()

179 df_copy['start_24hr '] = df_copy[time_column]. apply(lambda x: x.

hour + x.minute / 60 if not pd.isnull(x) else None)

180 return df_copy

181

182 def reduce_outliers(df , means_naps_age):

183 """

184 Remove the outliers from the log dataframe.

185 Remove the BED_TIME category that have duration 0 and delete

the whole day if baby WOKE_UP after 14:00.

186 """

187 df['start'] = pd.to_datetime(df['start'])

188 means_naps_age = means_naps_age.rename(columns ={'

mean_naps_at_age ': 'mean_naps_at_age '})

189 df = pd.merge(df , means_naps_age , on='age_on_log_dec ', how='

left')

190 # Delete the whole day if

191 mask = (

192 (df['category '] == 'WOKE_UP ') & (df['start'].dt.hour >= 14)

|

193 (df['category '] == 'WOKE_UP ') & (df['start'].dt.hour <= 4)

|

194 (df['category '] == 'BED_TIME ') & (df['start'].dt.hour <=

17) |

195 (df['category '] == 'NAP') & (df['duration '] >= 210) |

196 (df['category '] == 'NAP') & (df['start'].dt.hour <= 5)

197)

198 indices_to_delete = df[mask]. index

199 babyId_date_combinations = df.loc[indices_to_delete , ['babyId ',

'start']]. apply(lambda x: (x['babyId '], x['start'].date()),

axis =1)

200 df = df[~((df.set_index (['babyId ', df['start'].dt.date]).index.

isin(babyId_date_combinations)))]

B.2 PREPROCESS B-15

201 no_wokeup_or_bedtime_indices = df.groupby (['babyId ', df['start'

].dt.date]).filter(lambda x: not (('WOKE_UP ' in x['category '

]. values) and ('BED_TIME ' in x['category ']. values))).index

202 df = df.drop(index=no_wokeup_or_bedtime_indices)

203 print(' - number of logs to remove because they dont have

wokeup / bedtime:', len(no_wokeup_or_bedtime_indices))

204 df['log_count_per_baby '] = df.groupby('babyId ')['babyId '].

transform('size')

205 df = df[df['log_count_per_baby '] > 25]

206 df = df.drop(columns =['log_count_per_baby '])

207

208 return df

209

210 def means_data(df):

211 df['start'] = pd.to_datetime(df['start'])

212 std_naps_age = df[df['category '] == 'NAP']. groupby (['

age_on_log_dec ']).agg({'naps_that_day ': ['std']}).

reset_index ()

213 std_naps_age.columns = ['age_on_log_dec ', 'std_naps_at_age ']

214 df = df.merge(std_naps_age , on='age_on_log_dec ', how='left')

215 df_stats = df[df['category '].isin(['NAP', 'BED_TIME ', 'WOKE_UP '

])]. groupby (['age_on_log_dec ', 'category ', 'naps_that_day ',

'num_nap ']).agg({'duration ': ['mean', 'std'], 'start_24hr ':

['mean', 'std']}).reset_index ()

216 df_stats.columns = ['age_on_log_dec ', 'category ', '

naps_that_day ', 'num_nap ', 'duration_mean ', 'duration_std ',

'start_24hr_mean ', 'start_24hr_std ']

217 df_stats_melted_duration_mean = pd.melt(df_stats , id_vars =['

age_on_log_dec ', 'category ', 'naps_that_day ', 'num_nap '],

value_vars =['duration_mean '],var_name='duration_mean ',

value_name='duration_mean_value ')

218 df_stats_melted_duration_std = pd.melt(df_stats , id_vars =['

age_on_log_dec ', 'category ', 'naps_that_day ', 'num_nap '],

B.2 PREPROCESS B-16

value_vars =['duration_std '],var_name='duration_std ',

value_name='duration_std_value ')

219 df_stats_melted_start_mean = pd.melt(df_stats , id_vars =['

age_on_log_dec ', 'category ', 'naps_that_day ', 'num_nap '],

value_vars =['start_24hr_mean '], var_name='start_24hr_mean ',

value_name='start_24hr_mean_value ')

220 df_stats_melted_start_std = pd.melt(df_stats , id_vars =['

age_on_log_dec ', 'category ', 'naps_that_day ', 'num_nap '],

value_vars =['start_24hr_std '], var_name='start_24hr_std ',

value_name='start_24hr_std_value ')

221 df_stats_combined = pd.concat ([df_stats_melted_duration_mean ,

df_stats_melted_duration_std['duration_std_value '],

222 df_stats_melted_start_mean['start_24hr_mean_value '],

df_stats_melted_start_std['start_24hr_std_value ']], axis =1)

223 df_stats_combined.drop(columns =['duration_mean '], inplace=True)

224 return df, df_stats_combined

225

226 #--------------------- MAIN ---------------------

227 def preprocessing(df_log , output_path_processed , output_path_stats)

:

228 """

229 Preprocess the data and save the statistics and the processed

log dataframe to parquet files.

230 """

231 df = merge_log_baby(df_log)

232 print(' - After merge log:', df.shape [0])

233 df = normalize_timezone(df)

234 print(' - After normalize timezone:', df.shape [0])

235 df = age_on_log(df)

236 print(' - After age on log:', df.shape [0])

237 df = fix_data(df)

238 print(' - After fix data:', df.shape [0])

239 df = duration(df)

B.3 FEATURES B-17

240 print(' - After duration:', df.shape [0])

241 df = naps_per_day(df)

242 print(' - After naps per day:', df.shape [0])

243 df = num_nap(df)

244 print(' - After num nap:', df.shape [0])

245 df = prev_wake_time(df)

246 print(' - After prev wake time:', df.shape [0])

247 df , means_naps_age = mean_naps_age_on_log(df)

248 print(' - After means data:', df.shape [0])

249 df_naps = take_sleep_logs(df)

250 print(' - After take sleep logs:', df_naps.shape [0])

251 df_time = time_epochs(df_naps)

252 print(' - After time epochs:', df_time.shape [0])

253 df_time_24 = time_to_24hr_cycle(df_time , 'start')

254 print(' - After time to 24hr cycle:', df_time_24.shape [0])

255 df = reduce_outliers(df_time_24 , means_naps_age)

256 print(' - After reduce outliers:', df.shape [0])

257 df , df_stats = means_data(df)

258 save_stats(df_stats , output_path_stats , df ,

output_path_processed)

259

260 return df

B.3 FEATURES

The code defines functions to calculate rolling mean and standard deviation for

specified columns in a dataframe, optionally grouped by other columns. These

functions (rolling_mean and rolling_std) shift data by a given number of periods

and use a defined window size.

The add_general_features function merges and renames statistical features in

the dataframe. The main functions, add_features_num_naps and add_features,

B.3 FEATURES B-18

add these rolling statistics to baby sleep data, focusing on naps per day, duration,

and start time. They ensure the data is sorted and properly typed. The script’s

main section processes the data by calling these functions.

1 import pandas as pd

2 import numpy as np

3

4 # --------------------- STATISTICAL FEATURES ---------------------

5 def rolling_mean(df , target_col , n=1, groupby_cols=None ,

window_size =2, name_col=None):

6 """

7 Calculates the rolling mean of a target column , with the option

to group by other columns.

8 """

9

10 rolling_mean_col = f'rolling_mean_{target_col}_{name_col}'

11 if groupby_cols:

12 grouped = df.groupby(groupby_cols)[target_col]. transform(

lambda x: x.shift(periods=-n).rolling(window=window_size

, min_periods =1).mean())

13 else:

14 grouped = df[target_col].shift(periods=-n).rolling(window=

window_size , min_periods =1).mean()

15 df[rolling_mean_col] = grouped

16

17 return df

18

19 def rolling_std(df , target_col , n=1, groupby_cols=None , window_size

=2, name_col=None):

20 """

21 Calculates the rolling standard deviation of a target column ,

with the option to group by other columns.

B.3 FEATURES B-19

22 """

23 rolling_std_col = f'rolling_std_{target_col}_{name_col}'

24

25 if groupby_cols:

26 grouped = df.groupby(groupby_cols)[target_col]. transform(

lambda x: x.shift(periods=-n).rolling(window=window_size

, min_periods =1).std())

27 else:

28 grouped = df[target_col].shift(periods=-n).rolling(window=

window_size , min_periods =1).std()

29 df[rolling_std_col] = grouped

30

31 return df

32

33 def add_general_features(df, stats):

34 df = df.merge(stats , how='left', on=['age_on_log_dec ', '

naps_that_day ', 'num_nap '])

35 df = df.rename(columns ={'category_x ': 'category ', '

duration_mean_value ': 'mean_duration ', 'duration_std_value ':

'std_duration ', 'start_24hr_mean_value ': 'mean_start_24hr ',

'start_24hr_std_value ': 'std_start_24hr '})

36 df.drop(columns =['category_y '], inplace=True)

37

38 return df

39

40 def add_features_num_naps(preprocessed_data , window_size):

41 """

42 Adds rolling mean , rolling standard deviation , and rolling root

mean square features to the preprocessed data.

43 """

44 window_size_naps_babyid = int(window_size['naps_babyid '])

45 df = preprocessed_data

46 df = df.sort_values (['start'])

B.3 FEATURES B-20

47 # NAPS

48 n = 1

49 woke_up_logs = df[df['category '] == 2]

50 woke_up_logs = woke_up_logs.sort_values (['start'])

51 woke_up_logs = rolling_mean(woke_up_logs , 'naps_that_day ', n, [

'babyId '], window_size_naps_babyid , 'babyid ')

52 woke_up_logs = rolling_std(woke_up_logs , 'naps_that_day ', n, ['

babyId '], window_size_naps_babyid , 'babyid ')

53 print(' - number of naps features added')

54 columns_to_round = ['mean_naps_at_age ', 'std_naps_at_age ', '

rolling_mean_naps_that_day_babyid ', '

rolling_std_naps_that_day_babyid ']

55 columns_to_int = ['timezone_offset_minutes ', 'naps_that_day ', '

num_nap ', 'category ']

56 woke_up_logs[columns_to_round] = woke_up_logs[columns_to_round

]. astype(float).round (3)

57 woke_up_logs[columns_to_int] = woke_up_logs[columns_to_int].

astype('int8')

58

59 return woke_up_logs

60

61 def add_features(preprocessed_data , window_size , stats_features):

62 """

63 Adds rolling mean , rolling standard deviation , and rolling root

mean square features to the preprocessed data.

64 """

65 stats = pd.read_csv(stats_features)

66 df = add_general_features(preprocessed_data , stats)

67 window_size_duration_babyid = int(window_size['duration_babyid '

])

68 window_size_start_babyid = int(window_size['start_babyid '])

69 df = df.sort_values (['start'])

70 # DURATION

B.4 ML B-21

71 n = 1

72 df = rolling_mean(df, 'duration ', n, ['num_nap ', 'naps_that_day

', 'babyId '], window_size_duration_babyid , 'babyid ')

73 df = rolling_std(df, 'duration ', n, ['num_nap ', 'naps_that_day '

, 'babyId '], window_size_duration_babyid , 'babyid ')

74 # START TIME

75 n = 1

76 df = rolling_mean(df, 'start_24hr ',n, ['num_nap ', '

naps_that_day ', 'babyId '], window_size_start_babyid , 'babyid

')

77 df = rolling_std(df, 'start_24hr ', n, ['num_nap ', '

naps_that_day ', 'babyId '], window_size_start_babyid , 'babyid

')

78 print(' - duration and start time features added ')

79 columns_to_round = ['start_24hr ', 'mean_duration ', '

mean_start_24hr ', 'std_duration ', 'std_start_24hr ', '

rolling_mean_duration_babyid ', 'rolling_std_duration_babyid '

, 'rolling_mean_start_24hr_babyid ', '

rolling_std_start_24hr_babyid ']

80 columns_to_int = ['timezone_offset_minutes ', 'naps_that_day ', '

num_nap ', 'category ']

81 df[columns_to_round] = df[columns_to_round]. astype(float).round

(3)

82 df[columns_to_int] = df[columns_to_int]. astype('int8')

83

84 return df

B.4 ML

This script processes baby sleep data by importing necessary libraries and defin-

ing functions for data handling and model evaluation. It includes cycle_to_time

B.4 ML B-22

for converting cycle times to a 24-hour format, train_test_split for splitting data

into training and testing sets, and plot_features_importance for visualizing feature

correlations. The predicted_outcomes function generates a dataframe of predicted

outcomes for nap duration and start times. evaluate_predictions assesses predic-

tion performance with various metrics. The main evaluation is handled by per-

form_evaluation, which manages the prediction process and generates plots, while

save_results saves the evaluation metrics and predicted data to CSV files, detailing

model parameters. This provides a streamlined workflow for analyzing baby sleep

patterns with machine learning models.

1 import pandas as pd

2 from plots import *

3 from models import *

4 import numpy as np

5 from sklearn.metrics import mean_absolute_error , r2_score ,

median_absolute_error , accuracy_score

6 from sklearn.metrics import mean_absolute_error

7 import seaborn as sns

8 import matplotlib.pyplot as plt

9

10 import os

11

12

13 """ -------------------------------"""

14 def cycle_to_time(df , cycle_column):

15 """

16 Convert cycle time to 24-hour time format.

17

18 Args:

19 - df (pd.DataFrame): Dataframe with the cycle time column.

20 - cycle_column (str): Name of the cycle time column.

B.4 ML B-23

21

22 Returns:

23 - df_copy (pd.DataFrame): Copy of the input dataframe with the

cycle time converted to 24-hour time format.

24 """

25

26 df_copy = df.copy()

27 df_copy['start_time_predicted_24hr '] = pd.to_datetime(df_copy[

cycle_column] * 60, unit='m').dt.strftime('%H:%M:%S')

28 return df_copy [['start_time_predicted_24hr ']]

29

30

31 def train_test_split(df_feat_naps , df_feat , last_day_per_baby , i=0)

:

32 """

33 Splits the data into training and testing sets.

34 For the training set for naps per day only the last 3 weeks of

data are used.

35 And the testing set is the last day of data for each baby.

36

37 Args:

38 - df (pd.DataFrame): The data to split into training and

testing sets.

39

40 Returns:

41 - training_data (pd.DataFrame): The training data.

42 - training_data_naps (pd.DataFrame): The training data for naps

per day.

43 - testing_data (pd.DataFrame): The testing data.

44 """

45

46 df_feat.dropna(inplace=True)

47 df_feat_naps.dropna(inplace=True)

B.4 ML B-24

48 last_day_per_baby = df_feat_naps.groupby('babyId ')['date'].max

()

49 print(' - number i passed:', i)

50 last_day_per_baby = pd.to_datetime(last_day_per_baby)

51 df_feat_naps['date'] = pd.to_datetime(df_feat_naps['date'])

52 df_feat['date'] = pd.to_datetime(df_feat['date'])

53 last_day_per_baby = last_day_per_baby - pd.DateOffset(i)

54 training_data_naps = df_feat_naps[df_feat_naps.apply(lambda x:

x['date'] < last_day_per_baby[x['babyId ']], axis =1)]

55 testing_data_naps = df_feat_naps[df_feat_naps.apply(lambda x: x

['date'] == last_day_per_baby[x['babyId ']], axis =1)]

56 # last_day_per_baby = df_feat.groupby('babyId ')['date '].max()

57 training_data = df_feat[df_feat.apply(lambda x: x['date'] <

last_day_per_baby[x['babyId ']], axis =1)]

58 testing_data = df_feat[df_feat.apply(lambda x: x['date'] ==

last_day_per_baby[x['babyId ']], axis =1)]

59

60 return training_data_naps , testing_data_naps , training_data ,

testing_data

61

62

63 def plot_features_importance(results_path , df , title):

64 plt.figure(figsize =(10, 7))

65 single_unique_columns = df.columns[df.nunique () == 1]

66 df = df.drop(columns=single_unique_columns)

67 df = df.drop(columns =['babyId ', 'date'])

68 if 'start' in df.columns:

69 df = df.drop(columns =['start', 'end'])

70 sns.set(rc = {'figure.figsize ' : (10, 7)})

71 corr = df.corr()

72 corr_map = sns.heatmap(corr , fmt = ".1g", cmap = "coolwarm")

73 plt.title(f'Correlation Matrix of Features for {title}')

74 plt.savefig(os.path.join(results_path , f'

B.4 ML B-25

correlation_matrix_features_{title}.png'))

75

76

77 def predicted_outcomes (X_test , y_pred , y_test , X_test_naps ,

y_pred_naps , y_test_naps , label_encoder , category_encoder):

78 """

79 Create a dataframe with the predicted outcomes.

80 """

81 predicted_data = y_pred

82 y_pred_naps_df = pd.DataFrame(y_pred_naps , columns =['

predicted_naps_per_day '])

83 y_test_naps_df = pd.DataFrame(y_test_naps.values , columns =['

actual_naps_per_day '])

84 merged_a = pd.concat ([y_pred_naps_df , y_test_naps_df], axis =1)

85 merged_a.index = y_test_naps.index

86 merged_b = pd.concat ([X_test_naps , merged_a], axis =1)

87 merged_df = pd.merge(X_test , merged_b [['babyId ', 'date', '

predicted_naps_per_day ', 'actual_naps_per_day ']], on=['

babyId ', 'date'], how='left')

88 y_pred_naps_extended = merged_df['predicted_naps_per_day ']

89 y_test_naps_extended = merged_df['actual_naps_per_day ']

90 actual_duration = y_test['duration ']. values

91 actual_start_24hr = y_test['start_24hr ']. values

92 predicted_data = pd.DataFrame ({

93 'babyId ': X_test['babyId '],

94 'babyId_orig ': label_encoder.inverse_transform(X_test['

babyId ']),

95 'category ': X_test['category '],

96 'category_orig ': category_encoder.inverse_transform(

X_test['category ']),

97 'age_on_log_dec ': X_test['age_on_log_dec '],

98 'date': X_test['date'],

99 'num_nap ': X_test['num_nap '],

B.4 ML B-26

100 'predicted_naps_per_day ': y_pred_naps_extended.values ,

101 'actual_naps_per_day ':y_test_naps_extended.values ,

102 'predicted_duration ': y_pred[:, 0],

103 'actual_duration ': actual_duration ,

104 'predicted_start_24hr ': y_pred[:, 1],

105 'actual_start_24hr ': actual_start_24hr

106 })

107 predicted_data['predicted_start '] = cycle_to_time(

predicted_data , 'predicted_start_24hr ')

108 predicted_data['actual_start '] = cycle_to_time(predicted_data ,

'actual_start_24hr ')

109

110 return predicted_data , y_pred_naps , y_test_naps

111

112 def evaluate_predictions(predicted_data , y_pred_naps , y_test_naps ,

evaluation_metrics , size_processed , training_sizes ,

testing_sizes , orig_log_size , model_info , only_naps=False):

113 """

114 Evaluate the predicted outcomes.

115 """

116 model_type = model_info['model_type ']

117 if model_type == 'XGBoost ':

118 params = {

119 'N. estimators ': int(model_info['num_estimators ']),

120 'Learning rate': float(model_info['learning_rate ']),

121 'Objective ': model_info['objective '],

122 }

123 elif model_type == 'KNN':

124 params = {

125 'N. Neighbors ': model_info['num_neighbors '],

126 }

127 elif model_type == 'LSTM' or model_type == 'RNN':

128 params = {

B.4 ML B-27

129 'N. epochs ': int(model_info['num_epoch ']),

130 'Batch size': int(model_info['batch_size ']),

131 'Loss': model_info['loss'],

132 }

133 elif model_type == 'RF':

134 params = {

135 'N. estimators ': int(model_info['n_estimators ']),

136 'Max depth ': float(model_info['max_depth ']),

137 'Bootstrap ': model_info['bootstrap '],

138 }

139

140 if only_naps == True:

141 # from predicted data drop the rows with category_orig set

to BED_TIME and WOKE_UP for the duration field

142 predicted_data_nap = predicted_data[predicted_data['

category '] != 0]

143 predicted_data_nap = predicted_data_nap[predicted_data_nap[

'category '] != 2]

144 else:

145 predicted_data_nap = predicted_data

146

147 print('')

148 print('

')

149 print(f' PREDICTION RESULTS - {model_type}')

150 print('')

151 print('Size of original dataset:', orig_log_size)

152 print('Size of processed dataset:', size_processed)

153 for i, (train_size , test_size) in enumerate(zip(training_sizes ,

testing_sizes), start =1):

154 print(f"Iteration {i}: Training size - {train_size},

Testing size - {test_size}")

B.4 ML B-28

155 print('Number of babies:', predicted_data['babyId ']. nunique ())

156 print('Parameters:', params)

157 print('')

158 print('---NAPS_PER_DAY ---')

159 mae_naps = mean_absolute_error(y_test_naps , y_pred_naps)

160 print(f"Mean Absolute Error (MAE) for Naps per Day: {mae_naps

:.2f} naps")

161 accuracy_naps = accuracy_score(y_test_naps , y_pred_naps) * 100

162 print(f"Accuracy for Naps per Day: {accuracy_naps :.2f}")

163 medae_naps = median_absolute_error(y_test_naps , y_pred_naps)

164 print(f"Median Absolute Error (MedAE) for Naps per Day: {

medae_naps :.2f} naps")

165 r2_naps = r2_score(y_test_naps , y_pred_naps)

166 print(f"R^2 for Naps per Day: {r2_naps :.2f}")

167

168 print('')

169 print('---DURATION ---')

170 mae_duration = mean_absolute_error(predicted_data_nap['

actual_duration '], predicted_data_nap['predicted_duration '])

171 print(f"Mean Absolute Error (MAE) for Duration: {mae_duration

:.2f} minutes")

172 medae_duration = median_absolute_error(predicted_data_nap['

actual_duration '], predicted_data_nap['predicted_duration '])

173 print(f"Median Absolute Error (MedAE) for Duration: {

medae_duration :.2f} minutes")

174 r2_duration = r2_score(predicted_data_nap['actual_duration '],

predicted_data_nap['predicted_duration '])

175 print(f"R^2 for Duration: {r2_duration :.2f}")

176

177 print('')

178 print('---START_TIME ---')

179 mae_start = (mean_absolute_error(predicted_data['

actual_start_24hr '], predicted_data['predicted_start_24hr '])

B.4 ML B-29

)*60

180 print(f"Mean Absolute Error (MAE) for Start Time: {mae_start :.2

f} minutes")

181 medae_start = (median_absolute_error(predicted_data['

actual_start_24hr '], predicted_data['predicted_start_24hr '])

)*60

182 print(f"Median Absolute Error (MedAE) for Start Time: {

medae_start :.2f} minutes")

183 r2_start = r2_score(predicted_data['actual_start_24hr '],

predicted_data['predicted_start_24hr '])

184 print(f"R^2 for Start Time: {r2_start :.2f}")

185 new_row = pd.DataFrame ({

186 'mae_naps ': [mae_naps],

187 'accuracy_naps ': [accuracy_naps],

188 'medae_naps ': [medae_naps],

189 'r2_naps ': [r2_naps],

190 'mae_duration ': [mae_duration],

191 'medae_duration ': [medae_duration],

192 'r2_duration ': [r2_duration],

193 'mae_start ': [mae_start],

194 'medae_start ': [medae_start],

195 'r2_start ': [r2_start]

196 })

197 evaluation_metrics = pd.concat ([evaluation_metrics , new_row],

ignore_index=True)

198

199 return evaluation_metrics

200

201 def perform_evaluation(training_data_naps , testing_data_naps ,

training_data , testing_data , label_encoder , category_encoder ,

models_path , results_path , model_info):

202 """

203 Perform evaluation of machine learning models.

B.4 ML B-30

204 """

205 print(' - Naps starting ')

206 X_test_naps , y_pred_naps , y_test_naps , history_naps =

predict_naps(training_data_naps , testing_data_naps ,

model_info , models_path)

207 print(' - Duration and start time starting ')

208 X_test , y_pred , y_test , history = predict_log(training_data ,

testing_data , model_info , models_path)

209 # Make predictions

210 predicted_data , y_pred_naps , y_test_naps = predicted_outcomes(

X_test , y_pred , y_test , X_test_naps , y_pred_naps ,

y_test_naps , label_encoder , category_encoder)

211 # PLOTS

212 save_plots(predicted_data , results_path , history_naps , history ,

model_info)

213

214 return predicted_data , y_pred_naps , y_test_naps

215

216 def save_results(predicted_data , evaluation_metrics , model_info ,

results_path):

217 """

218 Save the results of the evaluation.

219 """

220 model_type = model_info['model_type ']

221 if model_type == 'XGBoost ':

222 param_1 = int(model_info['num_estimators '])

223 param_1_txt = 'estimators '

224 param_2 = float(model_info['learning_rate '])

225 param_2_txt = 'learning_rate '

226 param_3 = model_info['objective ']

227 param_3_txt = 'objective '

228 elif model_type == 'LSTM' or model_type == 'RNN':

229 param_1 = int(model_info['num_epoch '])

B.5 MODELS B-31

230 param_1_txt = 'epochs '

231 param_2 = int(model_info['batch_size '])

232 param_2_txt = 'batch_size '

233 param_3 = model_info['loss']

234 param_3_txt = 'loss'

235 elif model_type == 'KNN':

236 param_1 = int(model_info['num_neighbors '])

237 param_1_txt = 'neighbors '

238 param_2 = ''

239 param_2_txt = ''

240 param_3 = ''

241 param_3_txt = ''

242 elif model_type == 'RF':

243 param_1 = model_info['max_depth ']

244 param_1_txt = 'max_depth '

245 param_2 = int(model_info['n_estimators '])

246 param_2_txt = 'n_estimators '

247 param_3 = int(model_info['bootstrap '])

248 param_3_txt = 'bootstrap '

249 results_csv_path = os.path.join(results_path , f'{model_type}_{

param_1 }{ param_1_txt}_{param_2 }{ param_2_txt}_{param_3 }{

param_3_txt}_results_all_logs_2024 -04 -15. csv')

250 predicted_data.to_csv(results_csv_path)

251 metric_csv_path = os.path.join(results_path , f'{model_type}_{

param_1 }{ param_1_txt}_{param_2 }{ param_2_txt}_{param_3 }{

param_3_txt}_metrics_all_logs_2024 -04 -15. csv')

252 evaluation_metrics.to_csv(metric_csv_path)

B.5 MODELS

The provided code includes functions for predicting nap patterns and sleep logs using

various machine learning models like XGBoost, LSTM, RNN, KNN, and Random

B.5 MODELS B-32

Forest. It incorporates the use of libraries such as joblib for model serialization,

numpy for numerical operations, scikit-learn for traditional ML models, and keras

for deep learning models. Each prediction function supports model retraining and

loading pre-trained models, scaling input data, and saving the trained models and

scalers. The code handles the training and prediction processes for both nap counts

and sleep logs, ensuring the data is appropriately processed and models are properly

managed.

1 import joblib

2 import numpy as np

3 from sklearn.model_selection import train_test_split

4 from sklearn.preprocessing import MinMaxScaler

5 from sklearn.preprocessing import StandardScaler

6 from keras.models import Sequential

7 from sklearn.ensemble import RandomForestRegressor

8 from sklearn.neighbors import KNeighborsRegressor

9 from keras.layers import LSTM , Dense , SimpleRNN

10 from keras.layers import Dropout , Bidirectional

11 from tensorflow.keras.models import load_model

12 from sklearn.neighbors import KNeighborsRegressor

13 import xgboost as xgb

14 import os

15

16 def predict_naps(training_data_naps , testing_data_nap , model_info ,

models_path):

17 model_type = model_info['model_type ']

18 if model_type == 'XGBoost ':

19 X_test , y_pred , y_test , history = predict_naps_xgboost(

training_data_naps , testing_data_nap , model_info ,

models_path)

20 elif model_type == 'LSTM':

B.5 MODELS B-33

21 X_test , y_pred , y_test , history = predict_naps_lstm(

training_data_naps , testing_data_nap , model_info ,

models_path)

22 elif model_type == 'RNN':

23 X_test , y_pred , y_test , history = predict_naps_rnn(

training_data_naps , testing_data_nap , model_info ,

models_path)

24 elif model_type == 'KNN':

25 X_test , y_pred , y_test , history = predict_naps_knn(

training_data_naps , testing_data_nap , model_info ,

models_path)

26 elif model_type == 'RF':

27 X_test , y_pred , y_test , history = predict_naps_rf(

training_data_naps , testing_data_nap , model_info ,

models_path)

28

29 return X_test , y_pred , y_test , history

30

31 def predict_log(training_data , testing_data , model_info ,

models_path):

32 model_type = model_info['model_type ']

33 if model_type == 'XGBoost ':

34 X_test , y_pred , y_test , history = predict_log_xgboost(

training_data , testing_data , model_info , models_path)

35 elif model_type == 'LSTM':

36 X_test , y_pred , y_test , history = predict_log_lstm(

training_data , testing_data , model_info , models_path)

37 elif model_type == 'RNN':

38 X_test , y_pred , y_test , history = predict_log_rnn(

training_data , testing_data , model_info , models_path)

39 elif model_type == 'KNN':

40 X_test , y_pred , y_test , history = predict_log_knn(

training_data , testing_data , model_info , models_path)

B.5 MODELS B-34

41 elif model_type == 'RF':

42 X_test , y_pred , y_test , history = predict_log_rf(

training_data , testing_data , model_info , models_path)

43

44 return X_test , y_pred , y_test , history

45

46 def predict_naps_xgboost(training_data_naps , testing_data_naps ,

model_info , models_path):

47 retrain = model_info['retrain ']

48 model_type = model_info['model_type ']

49 n_estimators = int(model_info['num_estimators '])

50 learning_rate = float(model_info['learning_rate '])

51 objective = model_info['objective ']

52 model_path = os.path.join(models_path , f'{model_type}

_model_naps_{n_estimators}_{learning_rate}_{objective}

_sample_filtered.pkl')

53 scaler_path = os.path.join(models_path , f'{model_type}

_scaler_naps_{n_estimators}_{learning_rate}_{objective}

_sample_filtered.joblib ')

54 X_train = training_data_naps.drop(['naps_that_day ', 'num_nap ',

'category ', 'age_on_log_dec '], axis =1)

55 X_test = testing_data_naps.drop(['naps_that_day ', 'num_nap ', '

category ', 'age_on_log_dec '], axis =1)

56 y_train = training_data_naps['naps_that_day ']

57 y_test = testing_data_naps['naps_that_day ']

58 X_train_processed = X_train.drop('date', axis =1)

59 X_test_processed = X_test.drop('date', axis =1)

60 print(' - Columns passed for training number of naps:',

X_train_processed.columns.tolist ())

61 if retrain == True:

62 if not os.path.exists(model_path):

63 print('Model NOT FOUND , training from scratch ...')

64 retrain = False

B.5 MODELS B-35

65 else:

66 xgb_naps = joblib.load(model_path)

67 scaler = joblib.load(scaler_path)

68 # Scale features

69 scaler.partial_fit(X_train_processed)

70 X_train_scaled = scaler.transform(X_train_processed)

71 X_test_scaled = scaler.transform(X_test_processed)

72 # Training the model for 'naps_that_day '

73 history = xgb_naps.fit(X_train_scaled , y_train)

74 # Predicting for 'naps_that_day '

75 y_pred = xgb_naps.predict(X_test_scaled)

76 if retrain == False:

77 # Scale features

78 scaler = StandardScaler ()

79 X_train_scaled = scaler.fit_transform(X_train_processed)

80 X_test_scaled = scaler.transform(X_test_processed)

81 # Building and training the model for 'naps_that_day '

82 xgb_naps = xgb.XGBRegressor(objective=objective ,

n_estimators=n_estimators , learning_rate=learning_rate ,

random_state =42)

83 history = xgb_naps.fit(X_train_scaled , y_train)

84 # Predicting for 'naps_that_day '

85 y_pred = xgb_naps.predict(X_test_scaled)

86 # Rounding 'naps_that_day ' predictions

87 y_pred = np.round(y_pred , 0)

88 joblib.dump(xgb_naps , model_path)

89 joblib.dump(scaler , scaler_path)

90

91 return X_test , y_pred , y_test , history

92

93 def predict_log_xgboost(training_data , testing_data , model_info ,

models_path):

94 retrain = model_info['retrain ']

B.5 MODELS B-36

95 model_type = model_info['model_type ']

96 n_estimators = int(model_info['num_estimators '])

97 learning_rate = float(model_info['learning_rate '])

98 objective = model_info['objective ']

99 model_path = os.path.join(models_path , f'{model_type}

_model_double_{n_estimators}_{learning_rate}_{objective}

_sample_filtered.pkl')

100 scaler_path = os.path.join(models_path , f'{model_type}

_scaler_double_{n_estimators}_{learning_rate}_{objective}

_sample_filtered.joblib ')

101 X_train = training_data.drop(['duration ', 'start_24hr ', '

naps_that_day '], axis =1)

102 X_test = testing_data.drop(['duration ', 'start_24hr ', '

naps_that_day '], axis =1)

103 # y_train = training_data [['duration ', 'start_24hr ']]

104 y_train_dur = training_data['duration ']

105 y_train_start = training_data['start_24hr ']

106 y_test = testing_data [['duration ', 'start_24hr ']]

107 X_train_processed = X_train.drop(['date', 'start', '

age_on_log_dec ', 'timezone_offset_minutes ', 'end'], axis =1)

108 X_test_processed = X_test.drop(['date', 'start', '

age_on_log_dec ', 'timezone_offset_minutes ', 'end'], axis =1)

109 print(' - Columns passed for training duration and start

time:', X_train_processed.columns.tolist ())

110 if retrain == True:

111 if not os.path.exists(model_path):

112 print('Model NOT FOUND , training from scratch ...')

113 retrain = False

114 else:

115 xgb_double = joblib.load(model_path)

116 scaler = joblib.load(scaler_path)

117 # Scale features

118 scaler.partial_fit(X_train_processed)

B.5 MODELS B-37

119 X_train_scaled = scaler.transform(X_train_processed)

120 X_test_scaled = scaler.transform(X_test_processed)

121 # Training the model for 'duration ' and 'start_24hr '

122 history = xgb_double.fit(X_train_scaled , np.

column_stack ((y_train_dur , y_train_start)))

123 # Predicting for 'duration ' and 'start_24hr '

124 y_duration_pred , y_start_pred = xgb_double.predict(

X_test_scaled).T

125 y_pred = np.column_stack ((y_duration_pred , y_start_pred

))

126 if retrain == False:

127 # Scale features

128 scaler = StandardScaler ()

129 X_train_scaled = scaler.fit_transform(X_train_processed)

130 X_test_scaled = scaler.transform(X_test_processed)

131 # Building and training the model for 'duration ' and '

start_24hr '

132 xgb_double = xgb.XGBRegressor(objective=objective ,

n_estimators=n_estimators , learning_rate=learning_rate ,

random_state =42)

133 history = xgb_double.fit(X_train_scaled , np.column_stack ((

y_train_dur , y_train_start)))

134 # Predicting for 'duration ' and 'start_24hr '

135 y_duration_pred , y_start_pred = xgb_double.predict(

X_test_scaled).T

136 y_pred = np.column_stack ((y_duration_pred , y_start_pred))

137 joblib.dump(xgb_double , model_path)

138 joblib.dump(scaler , scaler_path)

139

140 return X_test , y_pred , y_test , history

141

142 def predict_naps_knn(training_data_naps , testing_data_naps ,

model_info , models_path):

B.5 MODELS B-38

143 n_neighbors = int(model_info['num_neighbors '])

144 model_path = os.path.join(models_path , f'KNN_model_naps_{

n_neighbors}_sample_filtered.pkl')

145 X_train = training_data_naps.drop(['naps_that_day ', 'num_nap ',

'category ', 'age_on_log_dec '], axis =1)

146 X_test = testing_data_naps.drop(['naps_that_day ', 'num_nap ', '

category ', 'age_on_log_dec '], axis =1)

147 y_train = training_data_naps['naps_that_day ']

148 y_test = testing_data_naps['naps_that_day ']

149 X_train_processed = X_train.drop('date', axis =1)

150 X_test_processed = X_test.drop('date', axis =1)

151 if not os.path.exists(model_path):

152 print('Model NOT FOUND , training from scratch ...')

153 knn_naps = KNeighborsRegressor(n_neighbors=n_neighbors)

154 knn_naps.fit(X_train_processed , y_train)

155 else:

156 knn_naps = joblib.load(model_path)

157 y_pred = knn_naps.predict(X_test_processed)

158 y_pred = np.round(y_pred , 0)

159 joblib.dump(knn_naps , model_path)

160 return X_test , y_pred , y_test , None # No history for KNN

161

162 def predict_log_knn(training_data , testing_data , model_info ,

models_path):

163 n_neighbors = int(model_info['num_neighbors '])

164 model_path = os.path.join(models_path , f'KNN_model_log_{

n_neighbors}_sample_filtered.pkl')

165 X_train = training_data.drop(['duration ', 'start_24hr ', '

naps_that_day '], axis =1)

166 X_test = testing_data.drop(['duration ', 'start_24hr ', '

naps_that_day '], axis =1)

167 # y_train = training_data [['duration ', 'start_24hr ']]

168 y_train_dur = training_data['duration ']

B.5 MODELS B-39

169 y_train_start = training_data['start_24hr ']

170 y_test = testing_data [['duration ', 'start_24hr ']]

171 X_train_processed = X_train.drop(['date', 'start', '

age_on_log_dec ', 'timezone_offset_minutes ', 'end'], axis =1)

172 X_test_processed = X_test.drop(['date', 'start', '

age_on_log_dec ', 'timezone_offset_minutes ', 'end'], axis =1)

173 if not os.path.exists(model_path):

174 print('Model NOT FOUND , training from scratch ...')

175 knn_log = KNeighborsRegressor(n_neighbors=n_neighbors)

176 knn_log.fit(X_train_processed , np.column_stack ((y_train_dur

, y_train_start)))

177 else:

178 knn_log = joblib.load(model_path)

179 y_duration_pred , y_start_pred = knn_log.predict(

X_test_processed).T

180 y_pred = np.column_stack ((y_duration_pred , y_start_pred))

181 joblib.dump(knn_log , model_path)

182

183 return X_test , y_pred , y_test , None # No history for KNN

184

185 def predict_naps_rf(training_data_naps , testing_data_naps ,

model_info , models_path):

186 retrain = model_info['retrain ']

187 max_depth = model_info['max_depth ']

188 bootstrap = model_info['bootstrap ']

189 model_type = model_info['model_type ']

190 n_estimators = int(model_info['num_estimators '])

191 model_path = os.path.join(models_path , f'{model_type}

_model_naps_{n_estimators}_sample_filtered.pkl')

192 scaler_path = os.path.join(models_path , f'{model_type}

_scaler_naps_{n_estimators}_sample_filtered.joblib ')

193 X_train = training_data_naps.drop(['naps_that_day ', 'num_nap ',

'category ', 'age_on_log_dec '], axis =1)

B.5 MODELS B-40

194 X_test = testing_data_naps.drop(['naps_that_day ', 'num_nap ', '

category ', 'age_on_log_dec '], axis =1)

195 y_train = training_data_naps['naps_that_day ']

196 y_test = testing_data_naps['naps_that_day ']

197 X_train_processed = X_train.drop('date', axis =1)

198 X_test_processed = X_test.drop('date', axis =1)

199 print(' - Columns passed for training number of naps:',

X_train_processed.columns.tolist ())

200 if retrain:

201 if not os.path.exists(model_path):

202 print('Model NOT FOUND , training from scratch ...')

203 retrain = False

204 else:

205 rf_naps = joblib.load(model_path)

206 scaler = joblib.load(scaler_path)

207 # Scale features

208 scaler.partial_fit(X_train_processed)

209 X_train_scaled = scaler.transform(X_train_processed)

210 X_test_scaled = scaler.transform(X_test_processed)

211 # Training the model for 'naps_that_day '

212 history = rf_naps.fit(X_train_scaled , y_train)

213 # Predicting for 'naps_that_day '

214 y_pred = rf_naps.predict(X_test_scaled)

215 if not retrain:

216 # Scale features

217 scaler = StandardScaler ()

218 X_train_scaled = scaler.fit_transform(X_train_processed)

219 X_test_scaled = scaler.transform(X_test_processed)

220 # Building and training the model for 'naps_that_day '

221 rf_naps = RandomForestRegressor(n_estimators=n_estimators ,

bootstrap=bootstrap , max_depth=max_depth , random_state

=42)

222 history = rf_naps.fit(X_train_scaled , y_train)

B.5 MODELS B-41

223 # Predicting for 'naps_that_day '

224 y_pred = rf_naps.predict(X_test_scaled)

225 # Rounding 'naps_that_day ' predictions

226 y_pred = np.round(y_pred , 0)

227 joblib.dump(rf_naps , model_path)

228 joblib.dump(scaler , scaler_path)

229

230 return X_test , y_pred , y_test , history

231

232 def predict_log_rf(training_data , testing_data , model_info ,

models_path):

233 retrain = model_info['retrain ']

234 max_depth = model_info['max_depth ']

235 bootstrap = model_info['bootstrap ']

236 model_type = model_info['model_type ']

237 n_estimators = int(model_info['num_estimators '])

238 model_path = os.path.join(models_path , f'{model_type}

_model_double_{n_estimators}_sample_filtered.pkl')

239 scaler_path = os.path.join(models_path , f'{model_type}

_scaler_double_{n_estimators}_sample_filtered.joblib ')

240 X_train = training_data.drop(['duration ', 'start_24hr ', '

naps_that_day '], axis =1)

241 X_test = testing_data.drop(['duration ', 'start_24hr ', '

naps_that_day '], axis =1)

242 y_train_dur = training_data['duration ']

243 y_train_start = training_data['start_24hr ']

244 y_test = testing_data [['duration ', 'start_24hr ']]

245 X_train_processed = X_train.drop(['date', 'start', '

age_on_log_dec ', 'timezone_offset_minutes ', 'end'], axis =1)

246 X_test_processed = X_test.drop(['date', 'start', '

age_on_log_dec ', 'timezone_offset_minutes ', 'end'], axis =1)

247 print(' - Columns passed for training duration and start

time:', X_train_processed.columns.tolist ())

B.5 MODELS B-42

248 if retrain:

249 if not os.path.exists(model_path):

250 print('Model NOT FOUND , training from scratch ...')

251 retrain = False

252 else:

253 rf_double = joblib.load(model_path)

254 scaler = joblib.load(scaler_path)

255 # Scale features

256 scaler.partial_fit(X_train_processed)

257 X_train_scaled = scaler.transform(X_train_processed)

258 X_test_scaled = scaler.transform(X_test_processed)

259 # Training the model for 'duration ' and 'start_24hr '

260 history = rf_double.fit(X_train_scaled , np.column_stack

((y_train_dur , y_train_start)))

261 # Predicting for 'duration ' and 'start_24hr '

262 y_duration_pred , y_start_pred = rf_double.predict(

X_test_scaled).T

263 y_pred = np.column_stack ((y_duration_pred , y_start_pred

))

264 if not retrain:

265 # Scale features

266 scaler = StandardScaler ()

267 X_train_scaled = scaler.fit_transform(X_train_processed)

268 X_test_scaled = scaler.transform(X_test_processed)

269 # Building and training the model for 'duration ' and '

start_24hr '

270 rf_double = RandomForestRegressor(n_estimators=n_estimators

, bootstrap=bootstrap , max_depth=max_depth , random_state

=42)

271 history = rf_double.fit(X_train_scaled , np.column_stack ((

y_train_dur , y_train_start)))

272 # Predicting for 'duration ' and 'start_24hr '

273 y_duration_pred , y_start_pred = rf_double.predict(

B.5 MODELS B-43

X_test_scaled).T

274 y_pred = np.column_stack ((y_duration_pred , y_start_pred))

275 joblib.dump(rf_double , model_path)

276 joblib.dump(scaler , scaler_path)

277

278 return X_test , y_pred , y_test , history

279

280 def predict_naps_lstm(training_data_naps , testing_data_naps ,

model_info , models_path):

281 retrain = model_info['retrain ']

282 model_type = model_info['model_type ']

283 n_epoch = int(model_info['num_epoch '])

284 n_batch = int(model_info['batch_size '])

285 loss = model_info['loss']

286 model_path = os.path.join(models_path , f'{model_type}

_model_naps_{n_epoch}_{n_batch}_{loss}_sample_filtered.keras

')

287 scaler_path = os.path.join(models_path , f'{model_type}

_scaler_naps_{n_epoch}_{n_batch}_{loss}_sample_filtered.

joblib ')

288 X_train = training_data_naps.drop(['naps_that_day ', 'num_nap ',

'category ', 'age_on_log_dec '], axis =1)

289 X_test = testing_data_naps.drop(['naps_that_day ', 'num_nap ', '

category ', 'age_on_log_dec '], axis =1)

290 y_train = training_data_naps['naps_that_day ']

291 y_test = testing_data_naps['naps_that_day ']

292 X_train_processed = X_train.drop('date', axis =1)

293 X_test_processed = X_test.drop('date', axis =1)

294 print(' - Columns passed for training number of naps:',

X_train_processed.columns.tolist ())

295 if retrain == True:

296 if not os.path.exists(model_path):

297 print('Model NOT FOUND , training from scratch ...')

B.5 MODELS B-44

298 retrain = False

299 else:

300 model_naps = load_model(model_path)

301 scaler = joblib.load(scaler_path)

302 # Scale features

303 scaler.partial_fit(X_train_processed)

304 X_train_scaled = scaler.transform(X_train_processed)

305 X_test_scaled = scaler.transform(X_test_processed)

306 # Reshape for LSTM

307 X_train_reshaped = np.reshape(X_train_scaled , (

X_train_scaled.shape[0], 1, X_train_scaled.shape [1])

)

308 X_test_reshaped = np.reshape(X_test_scaled , (

X_test_scaled.shape [0], 1, X_test_scaled.shape [1]))

309 # Training the model for 'naps_that_day '

310 history = model_naps.fit(X_train_reshaped , y_train)

311 # Predicting for 'naps_that_day '

312 y_pred = model_naps.predict(X_test_reshaped)

313 if retrain == False:

314 # Scale features

315 scaler = MinMaxScaler ()

316 X_train_scaled = scaler.fit_transform(X_train_processed)

317 X_test_scaled = scaler.transform(X_test_processed)

318 # Reshape for LSTM

319 X_train_reshaped = np.reshape(X_train_scaled , (

X_train_scaled.shape[0], 1, X_train_scaled.shape [1]))

320 X_test_reshaped = np.reshape(X_test_scaled , (X_test_scaled.

shape[0], 1, X_test_scaled.shape [1]))

321 # Building and training the model for 'naps_that_day '

322 model_naps = Sequential ()

323 model_naps.add(LSTM(units =100, input_shape =(

X_train_reshaped.shape[1], X_train_reshaped.shape [2])))

324 model_naps.add(Dense(units=1, activation='relu'))

B.5 MODELS B-45

325 model_naps.compile(optimizer='adam', loss=loss)

326 history = model_naps.fit(X_train_reshaped , y_train , epochs=

n_epoch , batch_size=n_batch , validation_split =0.2,

shuffle=False , verbose =1)

327 # Predicting for 'naps_that_day '

328 y_pred = model_naps.predict(X_test_reshaped)

329 # Rounding 'naps_that_day ' predictions

330 y_pred = np.round(y_pred)

331 model_naps.save(model_path , include_optimizer=False)

332 joblib.dump(scaler , scaler_path)

333

334 return X_test , y_pred , y_test , history

335

336 def predict_log_lstm(training_data , testing_data , model_info ,

models_path):

337 retrain = model_info['retrain ']

338 model_type = model_info['model_type ']

339 n_epoch = int(model_info['num_epoch '])

340 n_batch = int(model_info['batch_size '])

341 loss = model_info['loss']

342 model_path = os.path.join(models_path , f'{model_type}

_model_double_{n_epoch}_{n_batch}_{loss}_sample_filtered.

keras')

343 scaler_path = os.path.join(models_path , f'{model_type}

_scaler_double_{n_epoch}_{n_batch}_{loss}_sample_filtered.

joblib ')

344 X_train = training_data.drop(['duration ', 'start_24hr ', '

naps_that_day '], axis =1)

345 X_test = testing_data.drop(['duration ', 'start_24hr ', '

naps_that_day '], axis =1)

346 y_train = training_data [['duration ', 'start_24hr ']]

347 y_test = testing_data [['duration ', 'start_24hr ']]

348 X_train_processed = X_train.drop(['date', 'start', '

B.5 MODELS B-46

age_on_log_dec ', 'timezone_offset_minutes ', 'end'], axis =1)

349 X_test_processed = X_test.drop(['date', 'start', '

age_on_log_dec ', 'timezone_offset_minutes ', 'end'], axis =1)

350 print(' - Columns passed for training duration and start

time:', X_train_processed.columns.tolist ())

351 if retrain == True:

352 if not os.path.exists(model_path):

353 print('Model NOT FOUND , training from scratch ...')

354 retrain = False

355 else:

356 model = load_model(model_path)

357 scaler = joblib.load(scaler_path)

358 # Scale features

359 scaler.partial_fit(X_train_processed)

360 X_train_scaled = scaler.transform(X_train_processed)

361 X_test_scaled = scaler.transform(X_test_processed)

362 # Reshape for LSTM

363 X_train_reshaped = np.reshape(X_train_scaled , (

X_train_scaled.shape[0], 1, X_train_scaled.shape [1])

)

364 X_test_reshaped = np.reshape(X_test_scaled , (

X_test_scaled.shape [0], 1, X_test_scaled.shape [1]))

365 # Training the model for 'duration ' and 'start_24hr '

366 history = model.fit(X_train_reshaped , y_train)

367 # Predicting for 'duration ' and 'start_24hr '

368 y_pred = model.predict(X_test_reshaped)

369 if retrain == False:

370 # Scale features

371 scaler = MinMaxScaler ()

372 X_train_scaled = scaler.fit_transform(X_train_processed)

373 X_test_scaled = scaler.transform(X_test_processed)

374 # Reshape for LSTM

375 X_train_reshaped = np.reshape(X_train_scaled , (

B.5 MODELS B-47

X_train_scaled.shape[0], 1, X_train_scaled.shape [1]))

376 X_test_reshaped = np.reshape(X_test_scaled , (X_test_scaled.

shape[0], 1, X_test_scaled.shape [1]))

377 # Building and training the model for 'duration ' and '

start_24hr '

378 model = Sequential ()

379 model.add(LSTM(units =100, input_shape =(X_train_reshaped.

shape[1], X_train_reshaped.shape [2])))

380 model.add(Dense(units=2, activation='relu'))

381 model.compile(optimizer='adam', loss=loss)

382 history = model.fit(X_train_reshaped , y_train , epochs=

n_epoch , batch_size=n_batch , validation_split =0.2,

shuffle=False , verbose =1)

383 # Predicting for 'duration ' and 'start_24hr '

384 y_pred = model.predict(X_test_reshaped)

385 model.save(model_path , include_optimizer=False)

386 joblib.dump(scaler , scaler_path)

387

388 return X_test , y_pred , y_test , history

389

390

391 def predict_naps_rnn(training_data_naps , testing_data_naps ,

model_info , models_path):

392 retrain = model_info['retrain ']

393 model_type = model_info['model_type ']

394 n_epoch = int(model_info['num_epoch '])

395 n_batch = int(model_info['batch_size '])

396 loss = model_info['loss']

397 model_path = os.path.join(models_path , f'{model_type}

_model_naps_{n_epoch}_{n_batch}_{loss}_sample_filtered.keras

')

398 scaler_path = os.path.join(models_path , f'{model_type}

_scaler_naps_{n_epoch}_{n_batch}_{loss}_sample_filtered.

B.5 MODELS B-48

joblib ')

399 X_train = training_data_naps.drop(['naps_that_day ', 'num_nap ',

'category ', 'age_on_log_dec '], axis =1)

400 X_test = testing_data_naps.drop(['naps_that_day ', 'num_nap ', '

category ', 'age_on_log_dec '], axis =1)

401 y_train = training_data_naps['naps_that_day ']

402 y_test = testing_data_naps['naps_that_day ']

403 X_train_processed = X_train.drop('date', axis =1)

404 X_test_processed = X_test.drop('date', axis =1)

405 print(' - Columns passed for training number of naps:',

X_train_processed.columns.tolist ())

406 if retrain == True:

407 if not os.path.exists(model_path):

408 print('Model NOT FOUND , training from scratch ...')

409 retrain = False

410 else:

411 model_naps = load_model(model_path)

412 scaler = joblib.load(scaler_path)

413 # Scale features

414 scaler.partial_fit(X_train_processed)

415 X_train_scaled = scaler.transform(X_train_processed)

416 X_test_scaled = scaler.transform(X_test_processed)

417 # Reshape for RNN

418 X_train_reshaped = np.reshape(X_train_scaled , (

X_train_scaled.shape[0], 1, X_train_scaled.shape [1])

)

419 X_test_reshaped = np.reshape(X_test_scaled , (

X_test_scaled.shape [0], 1, X_test_scaled.shape [1]))

420 # Training the model for 'naps_that_day '

421 history = model_naps.fit(X_train_reshaped , y_train)

422 # Predicting for 'naps_that_day '

423 y_pred = model_naps.predict(X_test_reshaped)

424 if retrain == False:

B.5 MODELS B-49

425 # Scale features

426 scaler = MinMaxScaler ()

427 X_train_scaled = scaler.fit_transform(X_train_processed)

428 X_test_scaled = scaler.transform(X_test_processed)

429 # Reshape for RNN

430 X_train_reshaped = np.reshape(X_train_scaled , (

X_train_scaled.shape[0], 1, X_train_scaled.shape [1]))

431 X_test_reshaped = np.reshape(X_test_scaled , (X_test_scaled.

shape[0], 1, X_test_scaled.shape [1]))

432 # Building and training the model for 'naps_that_day '

433 model_naps = Sequential ()

434 model_naps.add(SimpleRNN(units =100, input_shape =(

X_train_reshaped.shape[1], X_train_reshaped.shape [2])))

435 model_naps.add(Dense(units=1, activation='relu'))

436 model_naps.compile(optimizer='adam', loss=loss)

437 history = model_naps.fit(X_train_reshaped , y_train , epochs=

n_epoch , batch_size=n_batch , validation_split =0.2,

shuffle=False , verbose =1)

438

439 # Predicting for 'naps_that_day '

440 y_pred = model_naps.predict(X_test_reshaped)

441 # Rounding 'naps_that_day ' predictions

442 y_pred = np.round(y_pred)

443 model_naps.save(model_path , include_optimizer=False)

444 joblib.dump(scaler , scaler_path)

445 return X_test , y_pred , y_test , history

446

447 def predict_log_rnn(training_data , testing_data , model_info ,

models_path):

448 retrain = model_info['retrain ']

449 model_type = model_info['model_type ']

450 n_epoch = int(model_info['num_epoch '])

451 n_batch = int(model_info['batch_size '])

B.5 MODELS B-50

452 loss = model_info['loss']

453 model_path = os.path.join(models_path , f'{model_type}

_model_double_{n_epoch}_{n_batch}_{loss}_sample_filtered.

keras')

454 scaler_path = os.path.join(models_path , f'{model_type}

_scaler_double_{n_epoch}_{n_batch}_{loss}_sample_filtered.

joblib ')

455 X_train = training_data.drop(['duration ', 'start_24hr ', '

naps_that_day '], axis =1)

456 X_test = testing_data.drop(['duration ', 'start_24hr ', '

naps_that_day '], axis =1)

457 y_train = training_data [['duration ', 'start_24hr ']]

458 y_test = testing_data [['duration ', 'start_24hr ']]

459 X_train_processed = X_train.drop(['date', 'start', '

age_on_log_dec ', 'timezone_offset_minutes ', 'end'], axis =1)

460 X_test_processed = X_test.drop(['date', 'start', '

age_on_log_dec ', 'timezone_offset_minutes ', 'end'], axis =1)

461 print(' - Columns passed for training duration and start

time:', X_train_processed.columns.tolist ())

462 if retrain == True:

463 if not os.path.exists(model_path):

464 print('Model NOT FOUND , training from scratch ...')

465 retrain = False

466 else:

467 model = load_model(model_path)

468 scaler = joblib.load(scaler_path)

469 # Scale features

470 scaler.partial_fit(X_train_processed)

471 X_train_scaled = scaler.transform(X_train_processed)

472 X_test_scaled = scaler.transform(X_test_processed)

473 # Reshape for RNN

474 X_train_reshaped = np.reshape(X_train_scaled , (

X_train_scaled.shape[0], 1, X_train_scaled.shape [1])

B.5 MODELS B-51

)

475 X_test_reshaped = np.reshape(X_test_scaled , (

X_test_scaled.shape [0], 1, X_test_scaled.shape [1]))

476 # Training the model for 'duration ' and 'start_24hr '

477 history = model.fit(X_train_reshaped , y_train)

478 # Predicting for 'duration ' and 'start_24hr '

479 y_pred = model.predict(X_test_reshaped)

480 if retrain == False:

481 # Scale features

482 scaler = MinMaxScaler ()

483 X_train_scaled = scaler.fit_transform(X_train_processed)

484 X_test_scaled = scaler.transform(X_test_processed)

485 # Reshape for RNN

486 X_train_reshaped = np.reshape(X_train_scaled , (

X_train_scaled.shape[0], 1, X_train_scaled.shape [1]))

487 X_test_reshaped = np.reshape(X_test_scaled , (X_test_scaled.

shape[0], 1, X_test_scaled.shape [1]))

488 # Building and training the model for 'duration ' and '

start_24hr '

489 model = Sequential ()

490 model.add(SimpleRNN(units =100, input_shape =(

X_train_reshaped.shape[1], X_train_reshaped.shape [2])))

491 model.add(Dense(units=2, activation='relu'))

492 model.compile(optimizer='adam', loss=loss)

493 history = model.fit(X_train_reshaped , y_train , epochs=

n_epoch , batch_size=n_batch , validation_split =0.2,

shuffle=False , verbose =1)

494 # Predicting for 'duration ' and 'start_24hr '

495 y_pred = model.predict(X_test_reshaped)

496 model.save(model_path , include_optimizer=False)

497 joblib.dump(scaler , scaler_path)

498

499 return X_test , y_pred , y_test , history

B.6 PLOTS B-52

B.6 PLOTS

This script generates and saves various plots to visualize the results of different

machine learning models used for predicting nap-related data. It includes a main

function, save_plots, that selects specific plots to create based on the model type

(XGBoost, KNN, LSTM, RNN, RF). The script contains helper functions to gen-

erate scatter plots for actual vs. predicted values, residual plots to show prediction

errors, and learning curves to illustrate the model’s training and validation perfor-

mance over epochs. These plots are saved as PDF files in the specified directory,

helping in the assessment and comparison of model performance.

1 import os

2 import matplotlib.pyplot as plt

3 import numpy as np

4

5 def save_plots(predicted_data , results_path , history_naps , history ,

model_info):

6 model_type = model_info['model_type ']

7 if model_type == 'XGBoost ':

8 params = {

9 'model_type ': 'XGBoost ',

10 'param_1 ': int(model_info['num_estimators ']),

11 'param_1_txt ': 'estimators ',

12 'param_2 ': float(model_info['learning_rate ']),

13 'param_2_txt ': 'learning_rate ',

14 'param_3 ': model_info['objective '],

15 'param_3_txt ': 'objective '

16 }

B.6 PLOTS B-53

17 save_plot_actual_vs_predicted(predicted_data , results_path ,

params)

18 save_plot_residuals(predicted_data , results_path , params)

19 elif model_type == 'KNN':

20 params = {

21 'model_type ': 'KNN',

22 'param_1 ': int(model_info['num_neighbors ']),

23 'param_1_txt ': 'neighbors ',

24 'param_2 ': '',

25 'param_2_txt ': '',

26 'param_3 ': '',

27 'param_3_txt ': ''

28 }

29 save_plot_actual_vs_predicted(predicted_data , results_path ,

params)

30 save_plot_residuals(predicted_data , results_path , params)

31 elif model_type == 'LSTM':

32 params = {

33 'model_type ': 'LSTM',

34 'param_1 ': int(model_info['num_epoch ']),

35 'param_1_txt ': 'epochs ',

36 'param_2 ': int(model_info['batch_size ']),

37 'param_2_txt ': 'batch_size ',

38 'param_3 ': model_info['loss'],

39 'param_3_txt ': 'loss'

40 }

41 save_plot_actual_vs_predicted(predicted_data , results_path ,

params)

42 save_plot_residuals(predicted_data , results_path , params)

43 save_plot_learning_curve(history_naps , history ,

results_path , params)

44 elif model_type == 'RNN':

45 params = {

B.6 PLOTS B-54

46 'model_type ': 'RNN',

47 'param_1 ': int(model_info['num_epoch ']),

48 'param_1_txt ': 'epochs ',

49 'param_2 ': int(model_info['batch_size ']),

50 'param_2_txt ': 'batch_size ',

51 'param_3 ': model_info['loss'],

52 'param_3_txt ': 'loss'

53 }

54 save_plot_actual_vs_predicted(predicted_data , results_path ,

params)

55 save_plot_residuals(predicted_data , results_path , params)

56 save_plot_learning_curve(history_naps , history ,

results_path , params)

57 elif model_type == 'RF':

58 params = {

59 'model_type ': 'RF',

60 'param_1 ' : int(model_info['max_depth ']),

61 'param_1_txt ': 'max_depth ',

62 'param_2 ': int(model_info['n_estimators ']),

63 'param_2_txt ': 'n_estimators ',

64 'param_3 ': model_info['bootstrap '],

65 'param_3_txt ': 'bootstrap '

66 }

67 save_plot_actual_vs_predicted(predicted_data , results_path ,

params)

68 save_plot_residuals(predicted_data , results_path , params)

69

70 def save_plot_actual_vs_predicted(predicted_data , save_path , params

):

71 model_type = params['model_type ']

72 param_1 = params['param_1 ']

73 param_1_txt = params['param_1_txt ']

74 param_2 = params['param_2 ']

B.6 PLOTS B-55

75 param_2_txt = params['param_2_txt ']

76 param_3 = params['param_3 ']

77 param_3_txt = params['param_3_txt ']

78 plt.figure(figsize =(8, 6))

79 plt.scatter(predicted_data['actual_duration '], predicted_data['

predicted_duration '], alpha =0.5)

80 ax = plt.gca()

81 ax.plot(plt.xlim(), plt.xlim(), color='red', linestyle='--')

82 plt.xlabel('Actual Duration ')

83 plt.ylabel('Predicted Duration ')

84 plt.title(f'Actual vs. Predicted Values for Duration \n {

model_type} Model with {param_1 }{ param_1_txt}, {param_2 }{

param_2_txt} and {param_3 }{ param_3_txt}')

85 plt.grid(True)

86 plt.savefig(os.path.join(save_path , f'{model_type}_{param_1 }{

param_1_txt}_{param_2 }{ param_2_txt}_{param_3 }{ param_3_txt}

_actual_vs_predicted_variable_duration.pdf'))

87 plt.close ()

88 plt.figure(figsize =(8, 6))

89 plt.scatter(predicted_data['actual_start_24hr '], predicted_data

['predicted_start_24hr '], alpha =0.5)

90 ax = plt.gca()

91 ax.plot(plt.xlim(), plt.xlim(), color='red', linestyle='--')

92 plt.xlabel('Actual Start Time')

93 plt.ylabel('Predicted Start Time')

94 plt.title(f'Actual vs. Predicted Values for Start Time \n {

model_type} Model with {param_1 }{ param_1_txt}, {param_2 }{

param_2_txt} and {param_3 }{ param_3_txt}')

95 plt.grid(True)

96 plt.savefig(os.path.join(save_path , f'{model_type}_{param_1 }{

param_1_txt}_{param_2 }{ param_2_txt}_{param_3 }{ param_3_txt}

_actual_vs_predicted_variable_start_time.pdf'))

97 plt.close ()

B.6 PLOTS B-56

98 plt.figure(figsize =(8, 6))

99 plt.scatter(predicted_data['actual_naps_per_day '],

predicted_data['predicted_naps_per_day '], alpha =0.5)

100 ax = plt.gca()

101 ax.plot(plt.xlim(), plt.xlim(), color='red', linestyle='--')

102 plt.xlabel('Actual Number of Naps')

103 plt.ylabel('Predicted Number of Naps')

104 plt.title(f'Actual vs. Predicted Values for Number of Naps \n {

model_type} Model with {param_1 }{ param_1_txt}, {param_2 }{

param_2_txt} and {param_3 }{ param_3_txt}')

105 plt.grid(True)

106 plt.savefig(os.path.join(save_path , f'{model_type}_{param_1 }{

param_1_txt}_{param_2 }{ param_2_txt}_{param_3 }{ param_3_txt}

_actual_vs_predicted_number_of_naps.pdf'))

107 plt.close ()

108

109 def save_plot_residuals(predicted_data , save_path , params):

110 model_type = params['model_type ']

111 param_1 = params['param_1 ']

112 param_1_txt = params['param_1_txt ']

113 param_2 = params['param_2 ']

114 param_2_txt = params['param_2_txt ']

115 param_3 = params['param_3 ']

116 param_3_txt = params['param_3_txt ']

117 plt.figure(figsize =(8, 6))

118 residuals_duration = predicted_data['actual_duration '] -

predicted_data['predicted_duration ']

119 plt.scatter(predicted_data['actual_duration '],

residuals_duration , alpha =0.5)

120 plt.axhline(y=0, color='red', linestyle='--')

121 plt.xlabel('Actual Duration ')

122 plt.ylabel('Residuals ')

123 plt.title(f'Residual Plot for Duration \n {model_type} Model

B.6 PLOTS B-57

with {param_1 }{ param_1_txt}, {param_2 }{ param_2_txt} and {

param_3 }{ param_3_txt}')

124 plt.grid(True)

125 plt.savefig(os.path.join(save_path , f'{model_type}_{param_1 }{

param_1_txt}_{param_2 }{ param_2_txt}_{param_3 }{ param_3_txt}

_residual_plot_variable_duration.pdf'))

126 plt.close ()

127 plt.figure(figsize =(8, 6))

128 residuals_start_time = predicted_data['actual_start_24hr '] -

predicted_data['predicted_start_24hr ']

129 plt.scatter(predicted_data['actual_start_24hr '],

residuals_start_time , alpha =0.5)

130 plt.axhline(y=0, color='red', linestyle='--')

131 plt.xlabel('Actual Start Time')

132 plt.ylabel('Residuals ')

133 plt.title(f'Residual Plot for Start Time \n {model_type} Model

with {param_1 }{ param_1_txt}, {param_2 }{ param_2_txt} and {

param_3 }{ param_3_txt}')

134 plt.grid(True)

135 plt.savefig(os.path.join(save_path , f'{model_type}_{param_1 }{

param_1_txt}_{param_2 }{ param_2_txt}_{param_3 }{ param_3_txt}

_residual_plot_variable_start_time.pdf'))

136 plt.close ()

137 plt.figure(figsize =(8, 6))

138 residuals_naps = predicted_data['actual_naps_per_day '] -

predicted_data['predicted_naps_per_day ']

139 plt.scatter(predicted_data['actual_naps_per_day '],

residuals_naps , alpha =0.5)

140 plt.axhline(y=0, color='red', linestyle='--')

141 plt.xlabel('Actual Number of Naps')

142 plt.ylabel('Residuals ')

143 plt.title(f'Residual Plot for Number of Naps \n {model_type}

Model with {param_1 }{ param_1_txt}, {param_2 }{ param_2_txt}

B.6 PLOTS B-58

and {param_3 }{ param_3_txt}')

144 plt.grid(True)

145 plt.savefig(os.path.join(save_path , f'{model_type}_{param_1 }{

param_1_txt}_{param_2 }{ param_2_txt}_{param_3 }{ param_3_txt}

_residual_plot_variable_number_of_naps.pdf'))

146 plt.close ()

147

148 def save_plot_learning_curve(history_naps , history , save_path ,

params , metric='Loss', metric_label='Loss'):

149 model_type = params['model_type ']

150 param_1 = params['param_1 ']

151 param_1_txt = params['param_1_txt ']

152 param_2 = params['param_2 ']

153 param_2_txt = params['param_2_txt ']

154 param_3 = params['param_3 ']

155 param_3_txt = params['param_3_txt ']

156 epochs = np.arange(1, len(history.history['loss']) + 1)

157 plt.figure(figsize =(8, 6))

158 plt.plot(epochs , history.history['loss'], label='Training ' +

metric_label)

159 if 'val_loss ' in history.history:

160 plt.plot(epochs , history.history['val_loss '], label='

Validation ' + metric_label)

161 plt.xlabel('Epochs ')

162 plt.ylabel(metric)

163 plt.title(f'Learning Curve for duration and start time \n {

model_type} Model with {param_1 }{ param_1_txt}, {param_2 }{

param_2_txt} and {param_3 }{ param_3_txt}')

164 plt.legend ()

165 plt.grid(True)

166 plt.savefig(os.path.join(save_path , f'{model_type}_{param_1 }{

param_1_txt}_{param_2 }{ param_2_txt}_{param_3 }{ param_3_txt}

_learning_curve_duration_start.pdf'))

B.6 PLOTS B-59

167 plt.close ()

168 epochs = np.arange(1, len(history_naps.history['loss']) + 1)

169 plt.figure(figsize =(8, 6))

170 plt.plot(epochs , history_naps.history['loss'], label='Training

' + metric_label)

171 if 'val_loss ' in history_naps.history:

172 plt.plot(epochs , history_naps.history['val_loss '], label='

Validation ' + metric_label)

173 plt.xlabel('Epochs ')

174 plt.ylabel(metric)

175 plt.title(f'Learning Curve for Naps \n {model_type} Model with

{param_1 }{ param_1_txt}, {param_2 }{ param_2_txt} and {param_3

}{ param_3_txt}')

176 plt.legend ()

177 plt.grid(True)

178 plt.savefig(os.path.join(save_path , f'{model_type}_{param_1 }{

param_1_txt}_{param_2 }{ param_2_txt}_{param_3 }{ param_3_txt}

_learning_curve_naps.pdf'))

	Introduction
	Problem statement
	Research questions
	Contributions
	Delimitations
	Structure

	Background
	Babies' sleeping habits
	Preprocessing techniques
	Machine Learning Models
	Regression

	Evaluation metrics

	Related Work
	Sleep pattern understanding and prediction
	Machine learning-based sleep analysis
	Wearable technology
	Individualized sleep scheduling

	Data adherence and generative models

	Dataset
	Data collection
	Data cleaning

	Proposed Method
	Proposed model architecture
	Feature engineering
	Quality checked dataset
	Feature extraction
	Feature selection
	Feature scaling

	Model training
	Train - test split
	Used models

	Results and Discussion
	Performance evaluation
	Model 1. Number of naps per day
	Model 2. Duration and Start time of naps

	Discussion

	Conclusions
	Future work

	References
	Loss Curves
	Learning curve on Neural Networks

	Code
	MAIN
	PREPROCESS
	FEATURES
	ML
	MODELS
	PLOTS

