

Unit Test Generation with GitHub Copilot

A Case Study

Faculty of Technology

Information and Communication Technology, Software Engineering

Master of Science in Technology thesis

Author:

Sami Humalajoki

Supervisor:

Antero Järvi

16.6.2024

Turku

The originality of this thesis has been checked in accordance with the University of Turku quality

assurance system using the Turnitin Originality Check service.

Master of Science in Technology thesis

Subject: Software Engineering

Author: Sami Humalajoki

Title: Unit test generation with GitHub Copilot, A Case Study

Number of pages: 63 pages

Date: 16.6.2024

Artificial intelligence has taken remarkable steps in recent years. Natural language processing

technology and large language models have changed many aspects of software development process.

Different tools have been developed to aid in the software development process. In this study we aim

to evaluate GitHub Copilot’s abilities in automated unit test generation. The study is motivated by the

critical role of testing in software development. Effective testing ensures code quality, reliability, and

maintainability. Software systems have grown increasingly complex and with it the demand for

efficient test generation tools. This study aims to assess GitHub Copilot’s abilities in real-world

software development standards of testing by introducing unit tests to a legacy software system.

Four research questions guide the evaluation: the immediate usability of Copilot’s test suggestions

based on their compilation success rates, the correctness of these suggestions through execution error

analysis, the effectiveness of test suggestions measured by code coverage, and the presence of test

smells indicating potential maintainability problems. The research methodology employs an iterative

one-shot method to evaluate GitHub Copilot's performance in generating and refining test cases,

structured into three primary steps. First, test cases are generated by prompting Copilot within an IDE,

followed by verifying and correcting their syntactic accuracy using IDE feedback and Copilot's

correction suggestions. Finally, the syntactically correct test cases are executed, corrected as needed,

and assessed for functional correctness and quality metrics like code coverage and test smells.

The research findings indicate that GitHub Copilot can generate valid unit tests, but its performance is

inconsistent and frequently requires human intervention. Copilot struggles with complex mocking

scenarios, often fails to detect straightforward errors, and relies heavily on the provided context,

leading to potential reliability issues. Code coverage analysis shows that Copilot is effective in

straightforward testing scenarios, achieving high coverage in simple methods, but performs poorly

with methods of high cyclomatic complexity. Additionally, Copilot’s tests exhibit common test smells

such as Magic Number Tests and Lazy Tests, which are more common in complex code, suggesting a

preference for speed over quality and a tendency to overlook best practices in unit testing. Overall,

while Copilot can produce reasonable quality tests, its effectiveness diminishes with increased code

complexity.

The results indicate the need of frequent of human intervention for error correction and test quality

enhancement. Also, the presence of common test smells may indicate a preference for speed over best

practices. Copilot might also benefit from internal feedback system, where it could execute and assess

its code suggestions. These insights suggest that Copilot is valuable for straightforward testing

scenarios, but its reliability decreases with more complex code.

Key words: artificial intelligence, natural language processing, large language models, software

testing, unit testing.

Table of contents

1 Introduction 1

2 Unit Testing 3

2.1 Test-driven Development 3

2.2 Unit Testing 4

2.3 Unit Test Evaluation Metrics 5

2.3.1 Code Coverage 5

2.3.2 Test Smells 8

2.3.3 Flawed Test Cases 12

2.4 Best Practices in Unit Testing 13

3 Natural Language Processing and LLM-based Software Engineering 17

3.1 Natural Language Processing Techniques in Software Engineering 17

3.2 Overview of Large Language Models 18

3.3 LLMs Capabilities and Limitations in Software Engineering 21

3.3.1 Capabilities 21

3.3.2 Limitations 22

4 Unit Test Generation with Large Language Models 24

4.1 Research Review 24

4.2 Related Work 25

4.2.1 Coverage 27

4.2.2 Correctness 28

4.2.3 Test Smells 30

4.2.4 Research on Test Generation with GitHub Copilot 32

5 Research Settings and Methods 35

5.1 System Description 35

5.2 Research Questions 37

5.3 Methodology 38

5.4 Results 40

5.4.1 Validity and Correctness 40

5.4.2 Code Coverage 46

5.4.3 Test Smells 49

6 Conclusions 53

6.1 Summary of Findings 53

6.1.1 Validity and Correctness 53

6.1.2 Code Coverage 54

6.1.3 Test Smells 55

6.2 Future Research 56

6.3 Implications 56

References 58

1

1 Introduction

Recent advancements in artificial intelligence (AI) and natural language processing (NLP) are

changing the software development industry in many different aspects. With AI-powered

code completion tools, such as GitHub Copilot, code generation and testing can be automated

to a degree. Copilot suggests code snippets, entire functions, and even test cases, which helps

to streamline the software development process and possibly increase productivity. But the

usability and reliability of Copilot's test generation features still need examination in real-

world settings.

The motivation for this study comes from the importance of testing in software development.

In the case study we are adding unit tests to a legacy system in order to apply better with the

test-driven development (TDD) approach. Effective testing ensures code quality, reliability,

and maintainability. Thorough testing prevents bugs and reduces long-term maintenance

costs. As software systems become more complex, the need for efficient and accurate test

generation tools grows. GitHub Copilot can provide a good opportunity to improve testing

approaches. It is important to assess whether Copilot can meet the standards required for

practical use in real-world software development. Evaluating Copilot's ability to generate

valid, correct, and comprehensive test cases provides understanding of its strengths and

limitations, which in turn gives insights into the ways the tool can be integrated into the

development workflow.

This study focuses on identifying common errors, execution issues, code coverage, and test

smells in Copilot's suggestions, addressing critical aspects of test quality and maintainability.

We explore how GitHub Copilot generates and refines test cases through four key research

questions. First, we assess Copilot’s test suggestions by examining their compilation success

rates, identifying common errors like syntax errors and type mismatches. Through this their

immediate usability can be assessed. The second question evaluates the correctness of

Copilot’s test suggestions by analyzing execution errors, such as exceptions or incorrect logic.

We run the tests, record errors, and assess if they validate intended functionality. The aim is to

determine their reliability. Next, we measure code coverage to evaluate the effectiveness of

Copilot’s suggestions in testing various parts of the codebase. Finally, we identify and

analyze test smells in Copilot’s suggestions, indicators of potential problems like excessive

setup code or overly complex logic. This analysis provides insights into the quality and

maintainability of Copilot’s suggestions, offering areas for improvement.

2

To address these research questions, the methodology follows a structured procedure in three

main steps. Initially, Copilot generates test cases, which are then saved for evaluation. Next,

the correctness of these tests is assessed, and only viable ones proceed to execution. Finally,

successful tests are evaluated for quality, while failed ones are corrected and re-evaluated.

This process is repeated to explore Copilot's error correction ability, with the goal of

determining overall test quality and maintainability.

The structure of this thesis is designed to provide a comprehensive theoretical understanding

of unit testing, NLP, and large language models (LLMs) before moving to describing the

study in detail. Chapter 1 introduces the thesis by explaining its aims, scope, and importance.

Chapter 2 explores unit testing, starting with TDD principles and techniques. It discusses the

purpose and techniques of unit testing, evaluation metrics like code coverage, and common

issues in test cases. Recommended practices for creating effective unit tests are also provided.

Next in Chapter 3 we discuss the use of NLP and LLMs in software engineering, covering

their applications, strengths, and weaknesses. It includes an overview of LLM architecture

and capabilities, as well as challenges associated with their use. We then move to reviewing

existing research on LLMs in software engineering, focusing on unit test generation in

Chapter 4. It explores their impact on code coverage, test accuracy, and the occurrence of test

smells. A case study on GitHub Copilot's use for test generation is also presented. Chapter 5

presents the original research conducted for the thesis, describing the research system, tasks,

and methodology. It presents findings on LLM-generated test accuracy, coverage, and test

quality. Lastly in Chapter 6 we summarize the key findings, discuss their implications, and

suggest future research directions.

In closing, this thesis looks into how software development is evolving, especially with new

AI and NLP technologies like GitHub Copilot. While Copilot offers ways to automate code

writing and testing, its reliability in real-world situations needs careful consideration.

3

2 Unit Testing

In this chapter the theoretical motivation of this thesis is discussed. First, TDD is introduced.

The approach is the primary motivation behind the research that is conducted in this thesis.

Next unit testing is discussed. Unit testing is one of the main methods of TDD. Metrics used

to evaluate the efficacy of unit testing are also discussed. Lastly, best practices in unit test

generation are summarized.

2.1 Test-driven Development

In this study we are introducing unit testing to legacy code. The motivation behind this is to

apply more of the principles of TDD to the software in question. TDD is a practice where

code is written after the test (Beck, 2022). The aim of the practice is to produce better quality

code that has fewer defects. According to Madeyski (2010) TDD provides instant feedback on

whether a new functionality has been implemented as intended and whether it interferes with

previously implemented functionality. It encourages developers to break down problems into

small, manageable programming tasks to enhance productivity. TDD enforces keeping tests

up to date, which enable avoiding complexities in the code through continuous refactoring.

Running tests frequently helps ensure a certain level of quality and test coverage.

Additionally, tests provide context for making low-level design decisions, such as naming

classes and methods and defining interfaces. They also serve as a form of communication and

documentation, showcasing concrete examples of how to exercise a class's functionality

which also provides knowledge to new participating developers, hence encouraging

refactoring and maintenance activities (Madeyski, 2010).

According to Madeyski (2010) the TDD approach also offers a new perspective on software

product quality by considering the quality of test code. The quality of tests can indicate the

quality of the related production code, especially when writing tests is an integral part of the

development practice. Turhan et al. (2010) found that adopting TDD in the software

development process may improve internal and external quality of code, but this is dependent

on the evaluation metric. Complexity is often reduced, but better cohesion is oftentimes not

achieved. The TDD approach is said to increase productivity (Turhan et al., 2010), but as

Madeyski (2010) points out the process of adopting TDD is labor intensive. It may even

decrease productivity in the initial stages of adoption. However, Madeyski (2010) concludes

that despite the initial drop in productivity, continuous testing and refactoring can eventually

4

increase development speed. According to Acharya (2014) in TDD code is only written to

satisfy a test and the code is refactored to improve its quality. The test-first practice is also

thought to increase the maintainability and reliability of the code (Tosun et al., 2018).

2.2 Unit Testing

Unit testing is one of the testing practices of the TDD approach. The classical definition of a

unit test is that it is a piece of code, typically a method, that calls another piece of code and

verifies the accuracy of certain assumptions (Saleh, 2013). Acharya (2014) describes unit

testing as performing sanity check of code, i.e.. checking whether the software produces

coherent responses. A good unit test should possess several key characteristics.

Firstly, it should be automated, meaning that it can be executed automatically without manual

intervention. This allows other developers to easily repeat the test for every significant code

change. Secondly, a unit test should be repeatable. This means that it consistently produces

the same results when executed multiple times. By ensuring repeatability, any changes or

issues in the code can be identified and addressed promptly.

Furthermore, a unit test should be easy to understand. It should be clear and comprehensible

to other developers, enabling them to grasp the purpose and functionality of the test. This

facilitates collaboration and encourages the addition of new test cases or updates to existing

ones. In addition, a good unit test should be incremental. This implies that the test should be

updated whenever a new relevant defect is detected in the code. By continuously improving

the test, the likelihood of recurring defects is minimized. Also, a unit test should be easy to

run. It should be executable with a simple command or by clicking a button. The execution

time of the test should also be relatively short, as fast unit tests contribute to the overall

productivity of the development team. (Saleh, 2013)

Saleh (2013) argues that unit testing is not just a nice-to-have, but a mandatory activity in

software engineering. It plays a crucial role in ensuring the success and stability of software

solutions, especially when dealing with changes over time. One of the key advantages of unit

testing is that it simplifies the integration of different components within a system. Without

proper unit testing, the process of tracing defects and identifying problematic components

becomes complex and time-consuming. This can lead to ineffective use of resources. (Saleh,

2013)

5

Furthermore Saleh (2013) argues that unit testing helps manage the number of new defects

and regression defects that arise as the code base becomes more complicated. By having

repeatable test cases, developers can ensure that resolved defects do not reappear after

subsequent code changes. This significantly improves the quality of the software and reduces

the time spent on testing during each deployment or phase. Unit testing also serves as a

valuable reference for system documentation. It includes test scenarios for system use cases

and demonstrates how system application programming interfaces (APIs) are utilized,

reflecting the current design of the system. This makes unit testing an essential foundation for

code and design refactoring, enabling further enhancements in the system. (Saleh, 2013)

2.3 Unit Test Evaluation Metrics

In this chapter metrics used to evaluate the efficacy of unit tests are discussed. One of the

most common metrics used is code coverage, which has different aspects of evaluating

coverage. The research in this thesis is evaluated by statement and branch coverage, which are

discussed. One commonly used coverage metric is input space coverage. It refers to designing

test cases that cover all possible inputs, including valid and invalid inputs as well as boundary

values and combinations of different inputs. However, this metric is not used in the existing

research literature to evaluate LLM’s test generation performance, hence it is not considered

in this research either. We are mainly interested in the correctness of the generated tests and

how well the LLM is able to correct failing tests based on error message feedback. Another

evaluation method is test smells. Some of the benefits and limitations of test smells are

discussed and some tools that assess test smells are introduced. In this research tsDetect tool

is used to assess the generated tests. The tool is discussed in further detail in Chapter 5.3.

Lastly, best practices in unit testing are discussed to provide an outlook on the expected

behavior of the LLM.

2.3.1 Code Coverage

Code coverage refers simply to the percentage of the code that the testing covers. There are

different aspects that can be measured. In this work the two available code coverage values

are statement and branch coverage. To measure these metrics, we use JaCoCo, an open-source

Java code coverage library1. This tool is discussed in further detail in Chapter 5.3.

1 https://github.com/jacoco/jacoco, visited 10.6.2024

6

Statement coverage is a basic part of software testing with several advantages. It provides a

measurable way to check how complete the testing is. By analyzing statement coverage,

testers can see how much of the source code the test suite has covered, which helps identify

areas that need more testing. Statement coverage also helps find code that hasn’t been run,

highlighting parts that weren’t covered during testing. This is important for finding dead code

or areas that couldn’t be reached because of logical mistakes or insufficient test coverage.

(Cornett, 1996)

High statement coverage is also important for quality assurance. When it’s achieved, it means

a lot of the code has been tested, which can make us more confident in the software’s quality.

While it doesn’t mean there are no defects, it does show that the testing has been thorough.

The data from statement coverage can also be useful for debugging. If a test fails or

something unexpected happens, it can help identify the parts of the code that were run before

the failure, making debugging easier and helping to focus on areas that might have problems.

(Hemmati, 2015)

Even though its useful, statement coverage has a few limitations that need to be thought about

when evaluating unit testing. (Cai & Lyu, 2005). A significant limitation is that it only

measures if individual lines of code have been run but doesn’t give any information about

how good or effective the tests are. This means that even if statement coverage is high, it can’t

ensure that all possible situations, edge cases, or combinations of inputs have been covered.

(Jay et al., 2015)

Also, statement coverage might not work as well with complex logic paths in code, especially

in loops and conditional statements. It’s meant to make sure all the code is run, but it might

miss some paths, leaving important parts of the code untested and open to unnoticed defects.

Plus, focusing too much on statement coverage can lead testers to care more about getting

high coverage percentages than about the quality and relevance of the tests. This “check-the-

box” testing can hurt the testing process by not thoroughly checking the software’s

correctness and robustness. (Hemmati, 2015)

Statement coverage can help find code that hasn’t been run, but it’s not always good at

finding all types of faults. Some mistakes, like semantic or integration errors, might not be

found even when coverage is high, so different testing methods are needed to find all defects

(Cai & Lyu, 2005). Trying to get 100% statement coverage is often not practical, especially

7

with big and complex codebases. Things like external dependencies, behavior specific to a

platform, and exceptional error conditions can make it hard to get complete coverage, making

it not cost-effective to try to cover everything (Acharya, 2014).

Just using statement coverage to measure how complete the testing is can give a false sense of

security. Even if coverage is high, there might still be defects or vulnerabilities that haven’t

been found. So, it’s important to use other testing methods along with statement coverage to

make sure the testing is thorough, and quality is assured. A variety of testing methods and

measures make sure the testing is rigorous and quality is thoroughly checked.

Branch coverage in software testing helps give a comprehensive evaluation of how complete

the testing is. It’s different from statement coverage because it gives a more detailed check,

making sure not just every line of code is run, but also that different decision paths in the code

are covered (Cornett, 1996). This complete approach helps find potential defects or unusual

things related to conditional logic, which makes the testing more effective. Branch coverage is

good at finding specific decision points in the code where not all possible outcomes have been

looked at. This is key for finding what’s missing in the test suite and deciding where more

testing is needed to fully cover these areas (Hemmati, 2015).

Branch coverage is a useful measure in software testing, but it has some limitations. One

limitation is how it deals with decision coverage. Branch coverage checks if each branch in a

decision statement has been run, but it doesn’t make sure all possible conditions in each

decision have been tested. For example, getting branch coverage on an if-else statement

doesn’t necessarily mean both the true and false conditions have been thoroughly tested,

which shows there might be a gap in how complete the coverage is. (Wei et al., 2012)

Branch coverage faces challenges when dealing with complex logic scenarios. Code

structures containing nested or intricate conditional statements can create multiple decision

paths that are difficult to cover entirely using branch coverage alone. Achieving high branch

coverage may require an impractical number of test cases or may be unattainable altogether.

Additionally, achieving 100% branch coverage is often unrealistic, especially in complex

codebases with intricate decision logic. Some branches may be hard to reach or require

specific input conditions that are challenging to replicate in test cases, making comprehensive

coverage difficult. (Wei et al., 2012) In summary, branch coverage is a useful metric for

assessing testing thoroughness. However, it’s essential to combine it with other testing

8

techniques and metrics to achieve comprehensive test coverage and ensure high-quality

software.

Applying both statement and branch coverage metrics typically leads to better test

coverage and improved quality assurance compared to using either metric in isolation. When

untested code segments are identified and different types of scenarios and conditions are

considered during testing, a more thorough investigation of the codebase makes the approach

more comprehensive. A more detailed understanding of where to focus during testing can be

achieved when statement and branch coverage are combined as these ensure that both every

line of code and different decision paths are covered. When both statement and branch

coverage are high, it demonstrates that different aspects of the code are tested, growing

confidence in the reliability and quality of the system. Also, combining the two measures the

risk of undiscovered defects and vulnerabilities can be reduced especially in critical parts of

the code. Using both metrics also helps in debugging and troubleshooting as the root cause

can be pinpointed more quickly and accurately. In conclusion, either metric alone can provide

valuable insights, but combining them a more comprehensive and effective quality assurance

is achieved. (Chekam et al., 2017)

2.3.2 Test Smells

Test smells are patterns or characteristics that can be found in the design, implementation,

execution of software tests. They can indicate problems, weaknesses, or deficiencies in the

software that is being tested. Test smells are similar to code smells (Tufano et al., 2016),

which point to problems in source code. Test smells highlight areas of the code where

effectiveness, maintainability, or reliability is compromised. They can manifest in different

ways, such as overly complex test logic, redundant or duplicated tests, inadequate coverage,

or they may be coupled to implementation details. Maintaining a robust and efficient testing

strategy relies on identifying and addressing test smells. They may impact the test suite's

reliability, maintainability, and effectiveness. (Deursen et al., 2001)

Test smells cover a range of issues that can affect how reliable and maintainable the test suite

is. For example, fragile tests are prone to breaking when even small things change in the

system or its environment, usually because they're too tightly connected to specific details of

how things are implemented. Similarly, brittle assertions might lead to test failures over

minor changes in system behavior, showing the need for stronger assertions. Problems like

duplicated or conditional test logic, along with tests that are hard to understand, make it

9

harder to maintain and work with the test suite. Using mocks or stubs too much can make test

setups overly complicated and obscure what the system is really doing, making tests harder to

keep up. Eager test setup and lazy test verification can also affect how well tests work and

how much they cover. Things like integration tests in disguise or tests relying on magic

values add extra complications and risks to the testing process. Trusting the results of tests

that run slowly, are inconsistent, or are in any way unreliable is difficult. There may be issues

with leaking test data, the tests try to do too much at once, or they make too many

assumptions. This emphasizes the need for evaluation and fixing of such issues. Regularly

reviewing and improving tests through refactoring and code review processes are essential for

keeping the testing process strong and making sure the software being tested is of high quality

and reliability, as noted by Kim et al. (2021). Different test smell types are described in Table

1 below.

10

Table 1. Different test smell types

Test Smell Description

Fragile Test
Tests highly sensitive to changes in the system under test, often due to
excessive coupling to implementation details.

Brittle Assertion
Tests with overly specific assertions about the system's behavior, prone to
failure with minor changes in implementation.

Duplicate Test
Logic

Duplication of test logic across multiple tests, leading to increased
maintenance effort and decreased readability.

Conditional Test
Logic

Tests with conditional logic (e.g., if statements) that obscure the test's intent
and make it harder to understand and maintain.

Hard-to-Read Test
Tests with convoluted or unclear logic that is difficult to understand at a
glance, impeding maintenance and comprehension.

Overuse of
Mocks/Stubs

Excessive use of mocks or stubs in tests, resulting in overly complex test
setups and potentially obfuscating the system's behavior.

Eager Test Setup
Tests performing excessive setup or configuration before exercising the
system, leading to slower test execution and increased brittleness.

Lazy Test
Verification

Tests lacking sufficient assertions or verification steps, resulting in
incomplete validation of the system's behavior.

Integration Test in
Disguise

Tests blurring the line between unit and integration tests by exercising
multiple components or dependencies, leading to longer test execution times
and increased fragility.

Resource Leak
Test

Tests inadvertently leaking resources (e.g., memory, database connections)
due to improper cleanup or teardown.

Magic Test Values
Tests relying on "magic" values (e.g., hard-coded constants) without clear
explanation or justification, reducing maintainability.

Long-Running Test
Tests taking an excessive amount of time to execute, often due to complex
setup or teardown procedures or inefficient test logic.

Flaky Test
Tests exhibiting non-deterministic behavior, producing different outcomes
under identical conditions, often due to race conditions or timing issues.

Unstable Test
Tests failing intermittently without changes to the code or environment,
making it difficult to trust their results.

Test Data Leakage
Tests inadvertently leaking sensitive or confidential data into test outputs or
logs, posing security or privacy risks.

Non-Atomic Test
Tests relying on shared state or dependencies, leading to interference
between tests and potential false positives or negatives.

Over-assertive Test
Tests with too many assertions, making it hard to isolate the cause of failures
and increasing the likelihood of false positives.

Untestable Code
Code difficult or impossible to test due to excessive coupling, lack of
modularity, or other design issues.

11

Benefits and limitations of test smells in assessing test quality

Using test smells as a tool to evaluate the effectiveness of unit tests offers several advantages.

It helps detect issues early in the test suite, serving as a signal for potential weaknesses. This

early detection allows developers to address problems before they become significant

obstacles. It also helps enhance the overall quality of tests by highlighting areas needing

attention. By focusing on improving individual tests, developers can make them clearer, easier

to maintain, and more reliable. Additionally, test smells assist in managing the test suite by

identifying duplication, complexity, or fragility. By addressing these issues, developers can

make the test suite easier to understand, modify, and expand, reducing the effort needed to

maintain tests and freeing up time for other tasks (Garousi & Kücük, 2018). Dealing with test

smells increases confidence in test results, ensuring that tests are well-designed and thorough.

It also guides targeted refactoring efforts, making improvements efficiently (Panichella et al.,

2021). Following established best practices helps developers ensure that their tests meet

industry standards. Overall, strategically using test smells helps developers identify and

resolve issues, leading to a more reliable test suite and improved software quality (Garousi &

Kücük, 2018).

There are also limitations in using test smells to assess the effectiveness of unit tests. Firstly,

there's a subjective aspect to identifying test smells, which means different developers or

teams may interpret them differently. This can lead to inconsistencies in evaluation (Tufano et

al., 2016). False positives can also complicate the evaluation process. Not all instances of test

smells indicate real issues in the test suite; some might be harmless or depend on the context,

so sensitivity is needed to avoid unnecessary refactoring (Panichella et al., 2021). On the other

hand, false negatives are significant shortcomings that might not show up as recognizable

smells, potentially leading to important deficiencies in testing practices being overlooked

(Panichella et al., 2021). Additionally, while test smells mainly focus on structural aspects of

tests like duplication or complexity, they might miss issues related to test coverage, adequacy,

or relevance, giving an incomplete assessment of the test suite (Panichella et al., 2021).

Furthermore, the importance of a test smell can vary depending on the context of the software

project, so it's important to understand its implications within specific domains or

methodologies (Kim et al., 2021).

12

Test smell tools

Aljedaani et al. (2021) conducted a systematic review of different tools used for analyzing test

smells. Their examination of these tools revealed several important findings. Firstly, while

there's some overlap in the types of smells detected by various tools, there are differences in

how they're implemented and defined. Most test smell detection tools are designed for Java

systems using the JUnit framework. However, there's not much reporting on how accurate

these tools are or how bias is handled in evaluating their quality. Creating a standard for

validating test smell detection tools could improve trust and reliability of the tools. There is

also a need to develop the tools to give appropriate refactoring suggestions and not act only as

a way to detect test smells, as noted by Aljedaani et al. (2021).

In this study, we used tsDetect, an open-source software designed to find test smells in Java-

based software systems. This is described in more detail in Chapter 5.3. It works by applying

a set of preset rules to detect these smells in test code (tsDetect). Aljedaani et al. (2021)

evaluated tsDetect's performance using a benchmark of 65 unit test files, which included

examples of 19 different types of test smells. The results showed that tsDetect is highly

accurate in detecting these smells, with an average precision score of 96% and an average

recall score of 97%. In terms of correctness, tsDetect consistently identified test smells

accurately, with precision scores ranging from 85% to 100% and recall scores ranging from

90% to 100%. The average F-score, which combines precision and recall, was found to be

96.5% (Aljedaani et al., 2001). These findings suggest that tsDetect is a highly effective tool

for the detection of test smells within Java software systems. This level of effectiveness

makes it a valuable asset in the current study to evaluate the quality of unit tests generated by

LLMs.

2.3.3 Flawed Test Cases

Flawed test cases in unit testing come in various forms, highlighting potential weaknesses in

the testing process. These cases can lead to inaccuracies and reduce the effectiveness of

testing. One common type of flawed test case occurs when there are incorrect assumptions

about how the code should behave. Such cases may produce inaccurate results, leading to

errors in assessing software correctness. Flawed test cases often result from poorly defined or

unclear test scenarios, making it difficult to establish accurate assessment criteria. These

issues can stem from misunderstandings or ambiguities in requirements or expectations,

complicating the testing process. (Mathur, 2008)

13

Misunderstanding the system requirements or specifications can lead to flawed test cases. If

the requirements are not clear, they may be interpreted differently by stakeholders. This may

lead to test cases that do not capture the intended software functionality. Making flawed

assumptions about user behavior, such as inputs or interactions, can also result in test cases

that do not represent real-world usage. (Mathur, 2008)

The outcomes of flawed test cases due to incorrect assumptions can be significant. If the

expected software behavior is not matched, incorrect test results may often occur. This again

can lead to false positives or negatives and as a result incorrect conclusions of the software’s

correctness are made. Additionally, flawed test cases may miss defects or vulnerabilities,

especially in critical areas or edge cases influenced by incorrect assumptions. If undetected,

these defects could cause problems in production environments. (Mustafa et al., 2021)

Addressing the impact of flawed test cases caused by incorrect assumptions involves a

comprehensive strategy. It's crucial to have clear and precise requirements to develop accurate

test cases. This requires collaboration among stakeholders to clarify any uncertainties and

resolve misunderstandings. Validating test cases through user research, stakeholder input, and

real-world testing helps to make sure that the assumptions align with actual user behavior and

scenarios. To maintain the accuracy of test cases they should be regularly reviewed and

refined according to changing requirements and feedback. Accuracy and reliability of testing

can be improved by correcting the flawed test cases that result from incorrect assumptions.

The quality and the integrity of the software can be improved by aligning the tests with the

software’s requirements and user expectations. This can lead to better customer satisfaction

and user experience. (Mustafa et al., 2021)

2.4 Best Practices in Unit Testing

Unit testing becomes effective when certain key elements are in place. Firstly, automation is

crucial. This means that tests are run automatically, following predefined steps, which ensures

consistency and adherence to established principles. Secondly, the speed of test execution is

essential. Tests should ideally complete within milliseconds to avoid unnecessary delays in

the testing phase. Fast execution preserves the integrity of the feedback loop, ensuring that

developers receive immediate insights into the code's behavior. As the number of unit tests

increases within a system, the need for fast execution becomes even more important.

Otherwise, the total time taken by tests could significantly hinder the usefulness of the testing

14

process. Therefore, maintaining a balance between automation and rapid execution is vital for

the efficacy of unit testing in the development process. (Acharya, 2014)

Unit tests should operate independently, without depending on the results of other tests or the

order they are run in. This makes tests more resilient to changes in execution conditions,

ensuring they reliably reflect system functionality. Likewise, separating tests from external

factors like databases or files requires using substitutes, like test doubles, to create isolated

and reproducible testing environments. (Acharya, 2014)

Unit testing is effective because it provides consistent and portable results over time and

different locations. Tests should give the same results no matter when or where they are run,

which helps ensure they accurately reflect how the system behaves. Additionally, it is

important for tests to be clear and concise. They not only validate the system but also serve as

documentation. This is evident in how tests are named, with descriptive names making test

suites easier to understand. (Acharya, 2014)

Finally, it is crucial to note that unit tests are integral components of software. Just like how

code is refined and improved through refactoring, it is necessary to continually update and

enhance unit tests to maintain their effectiveness and manageability. Managing large test

classes can be challenging, so breaking them down into smaller, more organized suites

supports iterative development and makes them easier to handle. (Acharya, 2014)

Appel (2015) discusses the typical structure of a unit test through the following example. This

approach is commonly known as "arrange, act, assert" or "build, operate, check," but here we

follow Meszaros' (2007) terminology of setup, exercise, verify, and teardown, which is shown

below in Code excerpt 1.

private final static int NEW_FETCH_COUNT = Timeline.DEFAULT_FETCH_COUNT + 1;

@Test public void setFetchCount() {

 // (1) setup (arrange, build) Timeline timeline = new Timeline();

 // (2) exercise (act, operate) timeline.setFetchCount(NEW_FETCH_COUNT); }

 // (3) verify (assert, check) assertEquals(NEW_FETCH_COUNT, timeline.getFetchCount());

}

Code excerpt 1. Meszaros' (2007) unit test structure

15

He states the following:

1. The first step sets up the object being examined, often called the system under test (SUT)

(Meszaros, 2007). This establishes the starting point for the SUT, including specific inputs

and conditions.

2. Once the setup is complete, attention turns to testing the particular functionality of the

SUT. Usually, this means calling a single method and recording the results for evaluation.

3. Checking that the actual outcome matches what we expect follows. This involves verifying

that the observed result aligns with the anticipated behavior.

4. It is important for a test to clean up after itself, returning the environment to its original

state. This ensures that any changes made during setup or testing do not affect subsequent

tests unexpectedly. Although teardown is not always included in basic unit tests, it is crucial

for maintaining test independence and reliability.

In addition to a clear structure, it is important to take into consideration what inputs are used

in the tests. Starting with the happy path, defined by Meszaros (2007) as the typical flow of

actions within a software scenario, ensures smooth progress towards user or system objectives

without unexpected issues. This prioritizes delivering the most important business value and

aligns with what the component is expected to do. Focusing on the normal flow initially helps

lay a solid foundation for meeting requirements and avoids potential inefficiencies that can

come from dealing with edge cases too soon. Additionally, when a component has multiple

functions, it is important to choose the happy path that brings the most business value.

However, sometimes it is also helpful to begin with a simple function, known as a "low

hanging fruit," especially in certain situations (Kaczanowski, 2013).

Although focusing on the happy path usually covers the main requirements of the component

being tested, it does not mean the job is done. Often, the most critical issues come from

boundary conditions, which might not show up until later in development but can have a big

impact. It is important to find and address these less common cases through thorough testing

strategies. Even with careful testing, there can still be oversights, which is where code

coverage tools come in handy. They help identify areas of code that have not been tested yet

and potential issues within the component. However, just because a path of code is covered

does not mean it is thoroughly tested. Even a small change in a covered path could lead to

unexpected results without causing existing tests to fail. (Appel, 2015)

16

Choosing the right names in software development is laborious. It is important for names to

be clear and short, whether they are for classes, methods, or variables. Test names should

describe exactly what is being tested, including what inputs or conditions are expected and

what outcomes are anticipated. While naming patterns like

[UnitOfWork_StateUnderTest_ExpectedBehavior] help with organization and

clarity, other methods like using 'should' at the beginning aim to make test intentions clear.

However, these approaches might make things more complicated, especially for complex

behaviors. The challenge is finding a balance between making names meaningful and keeping

them short and easy to read, as discussed by Appel (2015).

17

3 Natural Language Processing and LLM-based Software

Engineering

In this study AI-powered LLMs are utilized in unit test generation. LLMs are based on NLP

technology, which have been used in software engineering to create for example translation

applications. In this chapter NLP technology is first described. Next, we move to discuss the

LLM technology and its benefits and limitations.

3.1 Natural Language Processing Techniques in Software Engineering

NLP refers to the technology that converts speech or writing into a machine recognizable

form. The technology matches the content on a semantic level, but it also has some common-

sense knowledge and reasoning ability to overcome issues with context. (Cambria & White,

2014) NLP is one of the important fields of study in computational linguistics and AI research

(Young et al., 2018) and has formed a basis for the development of Large Language Models.

The main aim of NLP is language translation, i.e. getting the computer to understand human

language. Gurbuz, Rabhi & Demirors (2019) suggest that there are two main processes in the

NLP mechanism. Natural language understanding (NLU) refers to processes where natural

content is processed and recognized by the computer and natural language generation (NLG)

refers to the process where the computer produces natural language. As mentioned, machine

translation is one of the main aims of NLP. It involves both NLU and NLG. Advancements in

speech recognition, machine translation technology and deep neural networks have shifted the

research from written text translation to automatic translation of spoken language

(Ghazizadeh & Zhu, 2020).

Second important research area in NLP is text categorization. This refers to the process of

classifying documents into categories based on the content or attributes of the document

(Dasgupta, 2009). Main area of research in this field is the construction of a classification

model. Search engines also utilize NLP techniques (Taskin, 2019). The user's search query

needs to be recognized, but also matching the search results to the query requires

understanding of natural language.

There are many challenges in NLP, but one of the key difficulties is the ambiguity of natural

language (Young et al., 2018). Ambiguity refers to homonyms, synonyms, context-

dependency and other human language phenomena that change the meaning of an expression

18

or give it multiple possible meanings. If this ambiguity is not properly handled, the computer

cannot properly understand the expression. The computer also needs contextual information

to interpret the expression correctly. The context may arise from surrounding sentences or

environment. (Ghazizadeh & Zhu, 2020)

3.2 Overview of Large Language Models

LLMs are an advancement in NLP with their ability to process and generate natural language

fluently and coherently. LLMs are based on transformer architectures which capture

contextual information and relationships within textual data. They are trained on vast amounts

of data that enables them to learn nuances and intricacies of language. LLMs have brought

significant advances in machine translation, text summarization and text analysis. (Hou et al.,

2024)

19

Figure 1. Main components of the transformer model from the original paper. (Wikipedia contributors2)

The basis of LLMs is the transformer model, which extracts an encoder-decoder structure.

Above in Figure 1 are the main components of the model. The encoder processes input and

prepares it for a further decoding process, while the decoder produces output based on the

representation of the encoder. The representation maintains the context information for each

token of the input. These tokens interact with each other through self-attention, which refers

to a mechanism to capture the relations and dependencies of the tokens. An attention score

denotes an importance measure for each token, hence understanding long-range dependencies

and context. The self-attention mechanism is operated many times in parallel, and with this,

the notion of a multi-head attention model arises: each head handles different aspects of the

input sequence. These are then combined to create the final representation of each token. As

2 https://en.wikipedia.org/wiki/Transformer_(deep_learning_architecture), visited 10.6.2024

20

transformers do not intrinsically look at the order of the token sequences, LLMs add another

dimensionality to the transformer, called positional encoding, which enriches information

representing the position of all tokens in the input sequence to help the model discriminate

between the tokens. (Vaswani et al., 2017)

Pre-training is an important phase in the process. During the process they are trained on

extensive text data to learn general patterns of languages. This process is computationally

intensive and involves many iterations. During training, the model's parameters are adapted so

that the difference between the predicted and actual tokens in the training data is minimized.

LLMs are generally pre-trained on huge amounts of text data collected from various sources:

books, articles, websites, and many others. This data is cleaned and pre-processed to remove

noise and ensure consistency. During pre-training, LLMs are trained to predict the next token

in a sequence of text. The transformer architecture is used in the pre-training process,

whereby the model can effectively capture long-distance dependencies and contextual

information through constituent self-attention modules. (Naveed et al., 2024)

After pre-training on a large corpus of text data, LLMs can be fine-tuned for specific tasks or

domains. This involves adjusting the model's parameters to improve performance on specific

tasks. Fine-tuning uses transfer learning, where the knowledge gained from pre-training on a

large dataset is applied to a new task with a smaller dataset. This allows LLMs to adapt to

new tasks or domains more efficiently, requiring less labeled data for training. Fine-tuning

usually involves giving the pre-trained LLM task-specific labeled data. The model's

parameters are then adjusted using backpropagation based on the task's objective, like

classification accuracy or sequence generation metrics. (Naveed et al., 2024)

LLMs are increasingly being utilized in various aspects of software development. They can be

trained on large code repositories to generate code snippets, functions, or even entire

programs. Tools like OpenAI's Codex and GitHub Copilot use natural language descriptions

and partial code snippets to provide code suggestions and auto-completion. (Naveed et al.,

2024)

LLMs can also be automated to generate for example documentation for codebases. They

analyze the code comments, function signatures, and source code and based on the

information they generate human-readable summaries describing the purpose, functionality,

and usage of the code. (Bhattacharya et al., 2023) LLMs can also be used for static code

analysis and bug detection. They are able to find potential errors, vulnerabilities, or bad

21

practices in source code. LLMs are taught with large codebases and can spot common coding

mistakes, suggest best practices, and also offer insights into code quality. (Venkatesh et al.,

2024) Requirements engineering is also a part of LLMs repertoire as they can analyze natural

language requirements documents, user stories, or feature requests and extract key insights,

identify dependencies, and facilitate requirement extraction and prioritization (Hou et al.,

2024).

LLMs can also aid in automated testing. They are able to generate test cases, identify edge

cases, and predict potential failure scenarios based on natural language descriptions or

specifications. This can complement traditional testing approaches and help ensure

comprehensive test coverage, faster release cycles, and improved software reliability. (Wang

et al., 2024) LLMs in test generation is discussed further in Chapter 5.

3.3 LLMs Capabilities and Limitations in Software Engineering

Large Language Models are promising tools in aiding software engineering. They have many

capabilities and as the models are developed further even more can arise. However, currently

there are still limitations to these capabilities that may eat away their efficiency. In this

chapter current capabilities and limitations of LLMs in software engineering are discussed.

3.3.1 Capabilities

Large Language Models are showing proficiency in various areas of software engineering,

including code generation, test generation, bug localization, verification, test automation, fault

localization, program repair, code clone detection, code review, debugging, and bug

reproduction. Hou et al. (2024) and Zhang et al. (2023) published large research review

articles that discuss the current capabilities and limitations of LLMs in software engineering.

The articles' found that LLMs have demonstrated their ability to interpret natural language

descriptions, code comments, and requirements, and then generate corresponding code

snippets that fulfill the given specifications. This ability helps in quickly creating prototypes

and automating repetitive coding tasks. LLMs are especially useful in program synthesis,

improving productivity by generating code from high-level instructions. Their dual

understanding of natural language and programming languages makes them suitable tools for

advancing software engineering and streamlining the development lifecycle. The interactive

coding approach, where code is run and the model receives feedback on its functionality,

22

improves the model's ability to generate correct code. Overall, LLMs can help understand

requirements and produce accurate code, speeding up development and improving software

quality. (Hou et al., 2024, Zhang et al., 2023)

Using LLMs with software testing methods has improved test case generation, bug

classification, and defect prediction, making the testing process more precise and efficient.

For example, LLMs can be fine-tuned for specific projects to create custom test cases, helping

to detect subtle bugs or security issues early. Additionally, combining LLMs with traditional

static and dynamic program analysis enhances code analysis. LLMs use their natural language

processing abilities to understand code-related text, such as comments and documentation,

making it easier to grasp code functionality, identify dependencies, and produce relevant

documentation. (Hou et al., 2024, Zhang et al., 2023)

LLMs like Codex have led to the development of commercial products such as GitHub

Copilot and open-source models like StarCoder and Code LLAMA. These models, based on

pretrained transformers, have been successful in code processing tasks. Research shows that

LLMs can also use external tools for complex reasoning. For example, models like PAL and

PoT extend Codex with Python interpreters for numerical calculations, while ViperGPT uses

vision APIs to gather information from visual inputs. (Hou et al., 2024, Zhang et al., 2023)

3.3.2 Limitations

LLMs proved their potential in software engineering tasks, however they also come with

several limitations. Hou et al. (2024) and Zhang et al. (2023) discuss limitations in their

effectiveness, reliability, interpretability, privacy, and security.

In terms of effectiveness, LLMs have been examined in various coding tasks and their

integration into development tools. They could enhance software maintenance and evolution,

but there are challenges in using LLMs because they're large and need a lot of computing

power. Also, training needs huge datasets that might introduce biases. There are concerns

about how LLMs generate code ambiguously and if they work well across various tasks or

areas. Moreover, training LLMs is costly, especially when fine-tuning them with specific

data. In complex problems, LLMs might generate code solutions that aren't very effective.

(Hou et al., 2024, Zhang et al., 2023)

Reliability is another limitation. To handle ambiguity in code generation, more context,

domain-specific knowledge can be added, or multiple models used together. Making LLMs

23

more adaptable to different software tasks is crucial for producing dependable code. (Hou et

al., 2024, Zhang et al., 2023)

Interpretability is also a concern. The effectiveness of current evaluation metrics for judging

LLM performance in software engineering is questioned, stressing the importance of

interpretability and trustworthiness. Ethical concerns are also raised, especially about using

LLM-generated code in real-world applications. Developers might be cautious about using

LLM-generated code if they don't understand how it was generated. Tools must explain how

the model works and why it produces certain outputs. (Hou et al., 2024, Zhang et al., 2023)

Security is also a limitation. The transparency of some models has been a concern, as many of

the LLMs do not disclose how they are trained. The training data may have issues with

quality, representativeness, and even ownership. There is a possibility of adversarial attacks,

where the LLM is deliberately fed vulnerabilities. This can result in code suggestions that

have exploitable weaknesses. Developers and stakeholders need to be aware of the issues like

prompt injection attacks, source code vulnerability and data sensitivity and they should have

strategies to address these issues. (Hou et al., 2024, Zhang et al., 2023)

LLMs like GitHub Copilot have raised concerns regarding privacy issues. These models are

trained on vast amounts of data, including publicly available code from platforms like

GitHub. Consequently, there's a chance of revealing sensitive or proprietary details from the

training data. Also, LLMs can create code snippets that might accidentally contain

confidential or copyrighted material. To use and deploy LLMs ethically privacy issues need to

be considered and there needs to be measures to protect sensitive information. (Hou et al.,

2024, Zhang et al., 2023)

Use of resources needs to be addressed also. LLMs are complex AI systems that require a

considerable amount of computing power in both training and running. They often require

specialized hardware, such as GPUs and TPUs. Energy consumption is also high, which raises

environmental and financial issues. Plus, training LLMs needs vast amounts of data, which

can be tricky to store and manage. (Hou et al., 2024, Zhang et al., 2023)

24

4 Unit Test Generation with Large Language Models

Large Language Models are adopted also in unit test generation. In recent years there have

been many specified tools developed that are used in unit test generation. One such is GitHub

Copilot’s Gentest which is also used in the research conducted in this thesis. The field is

naturally very young, therefore not a lot of research has yet been published. Next, we

represent a short research review and then discuss further five studies focusing on unit test

generation. The findings of these studies are discussed.

4.1 Research Review

Wang et al. (2024) published a systematic review of LLMs in software testing. They analyzed

102 relevant studies which used LLMs in testing. Focusing mainly on unit testing were 20

studies that were published between 2020-2023. Most of these (17 studies) were published in

2023 indicating that the research area is picking up, but also that there is a relatively small

number of publications available. In evaluating the performance of unit test case generation

across different studies, it's important to note that they use different datasets, making direct

comparisons challenging. Main findings of these studies are discussed next.

Several studies have examined pre-training or fine-tuning LLMs for unit test case generation.

This approach was commonly used due to the limitations of early-stage LLMs. Even in recent

studies, this method persists, aiming to improve LLMs' understanding of domain knowledge.

This approach proved efficient, and coverage and validity of the generated tests were

significantly higher (Rao et al., 2023, Steenhoek et al., 2023, Shin et al., 2023, Tufano et al.,

2020, Alagarsamy et al., 2023). Focus has then shifted towards designing effective prompts

for LLMs to enhance their performance. Instead of relying solely on pre-training or fine-

tuning, these studies aim to optimize LLMs by refining prompts to improve their

understanding of context. Chen et al. (2023) proposed a generation-validation-repair

mechanism that rectifies errors in generated unit tests. This method produced higher line

coverage and their user analysis supported the mechanism as efficient. Similar post-

generation-processing method was adapted by Dakhel et al. (2024) and Yuan et al. (2023).

Both conclude that providing the LLM with feedback on the generated tests enhances the

performance.

More innovative methods for test generation have been explored by Vikram et al. (2023).

They propose the use of LLMs to generate property-based tests with the assistance of API

25

documentation. They suggest that API method documentation can help LLMs create logic for

generating random inputs and deriving meaningful result properties for verification. Similarly,

Plein et al. (2023) generated tests based on bug reports from users, thus moving away from

using source code to generate unit tests. Their results suggest that bug reports are a useful tool

for the LLM as it is able to generate unit tests based on the reports.

Some studies have adopted an approach of using LLMs as support to traditional software

testing techniques such as search-based techniques. Lemieux et al. (2023) used the LLM to

further enhance coverage results after the selected traditional tool Pynguin plateaued in its

efforts. Their findings show that this approach significantly enhances coverage results. Two

studies have also been conducted to compare the LLMs performance against traditional

search-based tools (Tang et al., 2024, Bhatia et al., 2023). Both found that the tests generated

by LLMs were comparable to search-based software testing (SBST) techniques. Findings

from these two studies are discussed in more detail in Chapter 4.2.

4.2 Related Work

In this section we discuss the findings of five recent studies on using LLMs in unit test

generation. First, we represent a study that researched GitHub Copilot’s abilities in Python

code generation. Secondly, we discuss four studies that examined ChatGPT, GPT-3.5-Turbo,

StarCoder and Codex. The study setups of these four studies are represented in more detail.

Then the results of these studies are discussed, namely regarding code coverage, correctness

and test smells. In Chapter 5.2.4 we discuss the results of a study using GitHub Copilot in test

generation.

Yetistiren, Ozsoy et Tuzun (2022) published research that studied GitHub Copilot in code

generation. They generated Python code using the HumanEval dataset. They extracted

problems from the dataset and created both human solutions and GitHub Copilot generated

solutions to the problems. Solutions generated by Copilot were then evaluated for their

validity and correctness. This approach is similar to the current study’s approach as validity is

evaluated by the syntactical correctness of the code. However, correctness was evaluated

against the human written unit tests. In this thesis we generate unit tests with Copilot and

correctness is evaluated based on whether these generated tests pass. Yetistiren, Ozsoy et

Tuzun (2022) reported a success rate of 91,5% in code validity. Correctness was distributed to

three categories: correct, partially correct, and incorrect generations. One third of the

26

generated code was correct and half of the generated code was partially correct.

Approximately 20% was incorrect.

Bhatia et al., (2023) concluded a study comparing ChatGPT to Pyngyin in unit test

generation. They examined large code samples that ranged from 100 to 300 lines of code. The

main focus was on two types of code: 1) function-based modular code where functions are

clearly defined, and they act like independent units of code and 2) class-based modular code

where the primary units are structured around classes and objects. The prompts to generate the

tests were designed using two parts: 1) a Python program (100-300 lines) and 2) a task

description. ChatGPT was provided with the complete code to see if it can identify units. Next

ChatGPT was prompted to "Write unit tests using Pytest for the given Python code that covers

all edge cases." Then the generated tests were compared to those from Pynguin for statement

and branch coverage, noting any missed statements. To improve coverage, a new prompt was

created with the indices of missed statements, asking ChatGPT to generate more tests. This

process was repeated until no further improvement was observed. The analysis was done by

comparing the performance of unit tests generated by the two systems. Main focus was on

statement and branch coverage across various code structures and complexities. After this the

ChatGPT was iteratively prompted to enhance coverage until no longer any enhancement was

achieved. Finally, the correctness of the generated tests was evaluated.

Siddiq et al. (2024) researched three LLMs (GPT-3.5-Turbo, StarCoder and Codex) on unit

test generation. They extracted classes from open-source datasets SF110 (194 classes) and

HumanEval (160). The LLMs performance was evaluated based on branch/line coverage,

correctness and quality in terms of test smells. Second part of the study consists of evaluating

how context influences the generated tests. They generated JUnit tests for scenarios that

contained a different set of code elements and evaluated their performance based on

compilation rates, code coverage, the number of correct unit tests, and the occurrence of test

smells. Details of the test methodology were not discussed in the research paper.

Tang et al. (2024) conducted a comparative evaluation of LLMs (ChatGPT) and SBST in

generating unit test suites. The generated suites were evaluated by their correctness,

readability, code coverage and bug detection aiming to better understand the LLMs potential

in unit test generation. The dataset used in the study consisted of 248 Java classes that were

collected from 79 different projects. In investigating the bug detection ability of the LLM they

used a dataset that contains 835 bugs from 17 projects. The test generation prompts were

27

identified through a series of expressions: "Write a unit test for ${input}" with the code

segment as input, "Can you create unit tests using JUnit for ${input}?" with the code segment

as input, and "Create a full test with test cases for the following Java code: ${input}?" with

the code segment as input. Based on these findings, the prompt was summarized as: "Write a

JUnit test case to cover methods in the following code (one test case for each method):

${input}?" with the code segment as input. Their goal was not to compare and evaluate

prompts to find the best-performing one, but to create a reasonable prompt that simulates how

developers might use ChatGPT in a real-world environment.

Yuan et al. (2023) researched ChatGPT's abilities in unit test generation. They had a dataset

of 1000 Java classes in executable project environments. Prompting the LLM was done by

providing it with a natural language description of the task and a code context of the focal

method. This contained the complete focal method, including the signature and body; the

name of the focal class (i.e., the class that the focal method belongs to); the field in the focal

class; and the signatures of all methods defined in the focal class. This was then completed

with a natural language explanation as follows: “You are a professional who writes Java test

methods. Please write a test method for the {focal method name} based on the given

information using {Junit version}”. This procedure was applied to all focal methods. The

generated tests were then evaluated for their correctness, coverage, readability, and usability.

The two latter questions were studied through a user interview. Based on the findings of these

research questions they also suggested a novel approach, called ChatTester, that generates

unit tests via ChatGPT.

4.2.1 Coverage

Code coverage is used as an assessment tool in all the aforementioned studies. Both statement

and branch coverage are employed. The results of statement coverage range between 93,26 -

55,4% and branch coverage 65,6 - 92,8%. Bhatia et al. (2023) achieved the highest

percentages implying that their technique is the most efficient. Siddiq et al. (2024) reported

results in line coverage. It cannot be directly assessed identical as statement coverage as line

coverage entails the statements. Hence, the line coverage values of Siddiq et al. (2024) are not

completely comparable to the other studies. All results are presented in Table 2.

28

Table 2. Code coverage percentages

 Bhatia et al. Siddiq et al. Yuan et al. Tang et al.

Statement/Line
coverage

91,55 - 93,26% 67 - 87,7% 82,3% 55,4%

Branch coverage 89,5 - 91,68% 69,3 - 92,8% 65,6% NA

Bhatia et al. (2023) used iterative prompting in their research. Prompting was continued until

the coverage results reached their peak values. Statement coverage was increased by 15,25 -

27,95% on average. Tang et al. (2024) on the other hand created a "reasonable prompt", as

they describe it. This refers to finding the prompt through a series of trials and then using the

same prompt derived from this to create test cases. Yuan et al. (2023) provided the LLM with

a natural language description and the code context in the prompt but did not iteratively

enhance the prompt. This suggests that using a template-based prompt is not an effective

style. Providing the LLM with more information of the context clearly enhances the coverage

reached and iterating the prompts yields the best coverage results. Tang et al. (2024) note that

the incomplete specifications and lack of feedback mechanism may have contributed to the

low coverage values in their research.

4.2.2 Correctness

Correctness is used to evaluate unit tests. The term may refer to compilation and failing

assertions and the nature of the errors in failing assertions. Siddiq et al. (2024) report the

percentage of compilable unit tests of four different LLMs (Codex (2K), Codex (4K),

GPT3.5-Turbo, and StarCoder) when the LLM is not provided context. StarCoder performed

the best with 70% compilable tests, whereas the other LLMs generated less than half

compilable tests. Tang et al. (2024) found similarly that 69,6% of the tests generated by

ChatGPT were compilable and Yuan et al. (2024) had 42,1% compilable tests. However,

when the LLMs were provided with context, the compilation rate increased to up to 53,8%

(Siddiq et al., 2024). Also, a notable change was GPT-3.5-Turbo's performance, which

dropped to 2.5%. This was found to result from duplicated package declarations.

29

Siddiq et al. (2024) observed that there were repeatedly similar syntax errors that caused the

compilation errors when the LLM was not provided with the context. They found that LLMs

1) tend to create additional test classes that may not be fully developed, 2) often include

explanations in natural language before and after the generated code, 3) information is

sometimes repeated such as the class being tested or the test prompt, 4) package declaration is

changed or even removed, 5) generated integer constants that exceed the usual maximum

value and 6) incomplete unit tests resulted when the test code reaches a certain limit. They

then applied automated heuristics to fix these issues and were able to improve the compilation

percentage to 76,9 - 100%. Siddiq et al. (2024) noted that tests that could not be fixed through

heuristics were found to contain semantic errors, such as unknown symbols, incompatible

conversions and abstract class instantiations. Unknown symbols were the most common error

type. Yuan et al. (2023) similarly report frequent occurrences of unresolved symbols, type

errors, access errors and invalid instantiation of abstract classes.

Tang et al. (2024) also found that compilation errors are often a result of ChatGPT's attempt

to predict parameters, parameter types and such. They argue that this is due to the fact that the

LLM did not have an overview of the entire project. Siddiq's (2024) findings support this as

the results were improved (without the exception of GPT-3.5-Turbo) after providing the LLM

with context. Yuan et al. (2024) suggest that a post-generation validation mechanism could

improve the compilation percentage.

The amount of passing test methods were also analyzed to evaluate the tests correctness.

Bhatia et al. (2024) reported that 39% of Category 2 (function-based modular code) and 28%

of Category 3 (class-based modular code) assertions were incorrect in the tests generated.

They argue that ChatGPT may generate correct assertions better to a well-defined structure

within the code. Yuan et al. (2023) similarly reported that only 24,8% of the generated tests

were executed without any execution errors. Majority of these execution errors (85,5%) were

assertion errors. All of these errors were found to be caused by incorrect assertions generated

by ChatGPT. Rest of the execution errors were different types of runtime exceptions, which

according to Yuan et al. (2023) may imply that ChatGPT may be unaware of external

resources during test generation.

In their analysis Siddiq et al. (2024) examined the correctness by categorizing the results into

two categories: 1) all methods pass, i.e. correct tests and 2) some methods pass, i.e. somewhat

correct tests. The two different datasets (HumanEval and SF110) yielded different results. The

30

LLMs generated 52,3 - 81,3% correct tests with the HumanEval dataset, whereas the SF110

performed poorly with 6,9 - 51,9% correct tests. GPT-3.5-Turbo performed the worst,

generating the lowest scores and StarCoder had the best results. Somewhat correct tests were

reported to be 81,3 - 92,3% of the HumanEval dataset and 16,1 - 62,7% of the SF110 dataset.

In this category GPT-3.5-Turbo performed best with the HumanEval dataset and surprisingly

the worst with the SF110 dataset. Results were similar in their second scenario where the

LLM was provided context. Overall, the correctness results of these studies imply that LLMs

often fail to comprehend the focal method, thus generating low quality tests. However, as

Siddiq et al. (2024) point out, the somewhat correct tests are also useful.

4.2.3 Test Smells

The quality of unit tests can also be measured by the presence of so-called test smells.

Steenhoek et al. (2023) found that unit tests generated by LLMs often contain test smells.

Unit tests generated by OpenAI Codex Cushman model were analyzed to find four different

test smell types. They found that Duplicate Asserts and Conditional Test Logic were

commonly observed, but Redundant Print and Empty Test were rare. They noted that the tests

containing the smells were complex, hence challenging to comprehend.

31

Table 3. Test smells in the HumanEval dataset found by Siddiq et al. (2024)

Test Type Frequency

Assertion Roulette Common

Conditional Logic Common

Empty Test Common

Exception Handling Common

Eager Test Common

Lazy Test Most common

Duplicate Assert Common

Unknown Test Common

Magic Number Test Most common

Siddiq et al. (2024) conducted more thorough research on the occurrence of test smells in

LLM generated unit tests. They analyzed the tests on 16 different test smell types and found 9

of them occurring. Based on the analysis the LLMs generate in the HumanEval dataset

Assertion Roulette, Conditional Logic Test, Empty Test, Exception Handling, Eager Test,

Lazy Test, Duplicate Assert, Unknown Test and Magic Number Test types. Magic Number

Test and Lazy Test were the most frequent. Assertion Roulette, Eager Test and Duplicate

Assert were also common. These are presented in Table 3. In the SF110 dataset Magic

Number Test, Assertion Roulette and Eager Test types are most common. Additional test

smells were also observed, which did not occur in the HumanEval dataset. These were

Constructor Initialization, Mystery Guest, Redundant Print, Redundant Assertion, Sensitive

Equality, Ignored Test and Resource Optimism. These findings are presented in Table 4. The

results in both datasets were similar in the scenario of providing the LLM with context.

32

Table 4. Test smells in the SF110 dataset found by Siddiq et al. (2024)

Test Type Frequency

Magic Number Test Most common

Assertion Roulette Most common

Eager Test Most common

Constructor Initialization Occasional

Mystery Guest Occasional

Redundant Print Occasional

Redundant Assertion Occasional

Sensitive Equality Occasional

Ignored Test Occasional

Resource Optimism Occasional

4.2.4 Research on Test Generation with GitHub Copilot

GitHub Copilot is an AI-powered code completion tool that assists developers in writing code

by suggesting completions based on context3. It integrates with existing IDEs, such as Visual

Studio Code and IntelliJ. Copilot utilizes OpenAI's Codex LLM, which has been fine-tuned

on open-source GitHub projects. One of its notable features is test generation, where it can

generate tests for code snippets, aiding in creating comprehensive test suites. This feature is

particularly useful for scenarios where existing tests are lacking, as it can generate tests even

without prior test cases. The generated tests can be influenced by varying the code and

comments in their code files before invoking Copilot, prompting questions about the optimal

formulation of code comments to improve test generation usability.

3 https://github.com/features/copilot, visited 10.6.2024

33

GitHub Copilot's test generation performance was studied by El Haji et al. (2024). The study

investigates the effectiveness of generated tests with and without an existing test suite, placing

particular emphasis on scenarios lacking pre-existing tests. It examines how manipulating

code and comments before using Copilot influences test generation, prompting questions

about the best way to formulate code comments for improved test usability. The research

specifically evaluates the usability of test generations under different test method comment

strategies, both within and without an existing test suite. The generated tests were assessed on

their syntactic correctness, runtime correctness, passing and coverage.

In initial manual assessments, they noted that method comments affect tests produced by

Copilot. To investigate further, tests were categorized into two groups: those with comments

and those without. They explored four types of method comments. The first type, called

"Minimal Method Comment," provides a brief description of a test method. In contrast, the

"Behavior-Driven Development Comment" describes a scenario using the format "Given x

when y then z." Another type, the "Usage Example Comment," includes a code snippet

demonstrating a potential call of the code under test (CUT), without necessarily linking to a

specific test scenario. Lastly, they examined the effectiveness of combining all these comment

styles into a single method comment, a "Combined comment". These different approaches

aimed to understand how comment styles influence the usability and quality of Copilot-

generated tests.

The results of El Haji et al.'s (2024) study shows similar results as studies discussed

previously. They found that 54,72% of tests with-context and 92,45% without-context failed.

Most common reasons for tests to fail were syntax and runtime errors (22,64% with-context,

71,70% without-context). Most common runtime errors were non-existent attributes and

incorrect parameters. Thus, they argue that Copilot does not consider the CUT, it relies only

on other test methods in its context. However, the closed-source nature of Copilot does not

allow us to examine the exact context used to prompt test generations. Also, 16,98% of tests

with-context and 18,87% without-context failed due to assert mismatch, which leads to

conclude that Copilot did not have sufficient information to determine the expected value of

one or multiple assertions. Additionally, the amount of passing tests were 45,28% with-

context and 7,55% without-context. El Haji et al. (2024) that some of the passing tests

appeared to mimic other tests in the context. Without the context Copilot cannot mimic the

context, hence the lower rate of passing tests.

34

When examining passing tests With-Context, it was observed that out of 24 generated passing

tests, 17 covered the same branches as their human-written counterparts. Additionally, one

generated test covered the same branches and even more new branches. Only six generated

tests covered strictly fewer branches or included new branches. Consequently, the majority of

passing tests generated by Copilot With-Context do not cover fewer branches than the original

test, which positively affects usability. However, when considering tests generated Without-

Context, only one test covered the same branches as its human-written counterpart, while the

rest covered fewer or new branches. This suggests that tests generated Without-Context, even

if passing, are less suitable. Overall, El Haji et al. (2024) conclude that the usability of

Copilot-generated tests is poor as most tests need to be modified.

In their examination of the effect of commenting the test method, El Haji et al. (2024) finds

that using the Usage Example Comment strategy resulted in the highest percentage of passing

tests (34.78%) and the lowest number of broken tests (17.39%) within an existing test suite

context. Additionally, this strategy produced test generations with the highest average ratio of

covered branches matching their human-written counterparts. Similarly, they observed that

employing the Combined Comment strategy resulted in the highest percentage of passing tests

(21.74%) and the lowest number of broken tests (30.43%) in situations where there was no

existing test suite. Additionally, this approach generated test iterations with the highest

average ratio of covered branches matching those in the human-written tests.

35

5 Research Settings and Methods

In this chapter we describe the current study’s definition and methodology. A description of

the system under testing is also given. After this the results are presented. The results of

research question 1 and 2 are discussed together in Chapter 5.4.1 and questions 3 and 4 are

discussed individually in chapters 5.4.4 and 5.4.3.

5.1 System Description

The system, initially developed for a single research institute in 2013, is now being expanded

to two additional large research institutes. It is essentially a project management platform that

supports various functionalities such as project planning, solicitation of statements, and

processing of applications and permits. Automation in specific areas improves efficiency and

serves collaboration, facilitating the sharing of research findings. The system also provides a

robust and user-friendly digital working platform for researchers.

The system is designed for scalability, and it provides services to organizations of different

sizes and supports a range of roles, including researchers, research coordinators, and project

coordinators. It is initially set to support about 400 users and manage 1300 to 1500

applications and permits. The system complies with national legislation and rigorous

information system architecture requirements, with interoperable interfaces for seamless

integration. Its modular design allows for the integration of existing features and flexibility

for future needs.

36

Figure 2. System architecture

The system employs Enterprise Java Beans (EJB) technology for database connections and

has subsequently integrated representational state transfer (REST) architecture as shown in

Figure 2. The backend technology has been kept constant, but the REST interfaces were

implemented later to enhance the system's functionality. In its current version, the connections

between the frontend and backend are entirely managed through REST calls, ensuring

efficient communication and data exchange. This architectural approach allows for more

flexible and scalable interactions between the system components. The EJB container in the

application server is vital, providing a runtime environment for enterprise beans and

managing services such as transaction management, security, and remote access. This enables

the system to handle complex business logic and maintain transactional integrity, crucial for

research management and digital services (Jendrock et al., 2013).

37

5.2 Research Questions

RQ1: How valid are GitHub Copilot’s test suggestions in terms of compilation errors?

This research question seeks to evaluate the validity of GitHub Copilot's test suggestions by

focusing on their ability to compile successfully. The investigation involves analyzing the

suggested test cases to determine the frequency and types of compilation errors that occur.

Compilation errors may result from syntax errors, type mismatches, unresolved references and

other similar issues that prevent the code from compiling. The goal is to quantify the

proportion of test suggestions that compile without errors and identify common patterns or

specific areas where GitHub Copilot struggles. By understanding the validity in terms of

compilation, we can assess the immediate usability of Copilot's test suggestions in a software

development workflow.

RQ2: How correct are GitHub Copilot’s test suggestions in terms of execution errors?

This research question aims to assess the correctness of GitHub Copilot's test suggestions by

examining the occurrence of execution errors. Execution errors refer to runtime issues such as

exceptions, incorrect logic, or failures in the test cases when they are run against the code.

The study involves running the generated tests and recording the types and frequencies of

execution errors. This includes analyzing whether the tests correctly validate the intended

functionality and whether they produce false positives or negatives. By evaluating the

correctness in terms of execution, the research seeks to determine how reliable and useful

GitHub Copilot's test suggestions are in practice.

RQ3: How effective are GitHub Copilot’s test suggestions in terms of code coverage?

This research question investigates the effectiveness of GitHub Copilot's test suggestions by

measuring code coverage. Code coverage refers to the extent to which the test cases exercise

the different parts of the codebase, including statements and branches in our research. The

research involves generating tests with GitHub Copilot, running them, and using coverage

analysis tool JaCoCo to measure the resulting code coverage metrics. The aim is to find out

whether testing is comprehensive by identifying which areas of the code are well-tested and

which are not. High code coverage implies thorough testing, which leads to better code

quality as bugs are caught.

38

RQ4: Are there specific test smell trends in GitHub Copilot’s test suggestions?

This research question aims to identify and analyze the presence of test smells in GitHub

Copilot's test suggestions. Test smells are indicators of potential problems in test code that

can lead to maintenance issues or unreliable tests. Common test smells include excessive

setup code, hard-coded values, lack of assertions, or overly complex test logic. The study

involves systematically reviewing the generated test cases to detect recurring patterns of test

smells. By identifying these trends, the research seeks to understand the quality and

maintainability of the tests suggested by GitHub Copilot. This analysis can reveal areas where

GitHub Copilot's test generation might need improvement to produce better quality tests.

5.3 Methodology

The research methodology employs a comprehensive one-shot method to evaluate the

performance of GitHub Copilot in generating and refining test cases. This approach is

structured into three primary steps, ensuring a thorough assessment of GitHub Copilot's

capabilities. The test setup is described in Figure 3 below.

Figure 3. Test setup

Step 1: Test generation

The initial phase involves prompting GitHub Copilot to create a test case. This process begins

by selecting a method within the integrated development environment (IDE) using the right

mouse button, which opens a contextual menu. Within this menu, the "Generate tests" option

under the GitHub Copilot section is selected. Copilot’s response, containing the generated test

39

cases, appears in the chat box. These test cases are then carefully extracted from the chat box

and saved into a designated test class for further evaluation.

Step 2: Syntactic correctness verification and correction

Following the generation of test cases, their syntactic correctness is verified using IDE hints

and feedback mechanisms. If a test case is syntactically correct, it proceeds directly to the

execution phase. However, if the test case contains syntax errors, the methodology involves

using GitHub Copilot's "Fix this" function to request corrections. Copilot provides suggested

corrections in the chat box, which are then extracted and saved into the test class.

At this stage, the viability of Copilot's suggested corrections is critically assessed. If the

corrections are significantly off-target or require extensive manual intervention to become

functional, they may be rejected. Conversely, if the corrections are close to being accurate and

only require minimal manual adjustments, these adjustments are made manually. This step

ensures that only potentially viable test cases move forward in the process.

Step 3: Test execution and quality evaluation

Once the test cases are confirmed to be syntactically correct, they are executed to verify their

functional correctness. Successful execution of a test case indicates that it is ready for the

quality evaluation phase. If a test case fails during execution, the system-generated error

messages are provided to GitHub Copilot with a request for further corrections, articulated

using natural language commands in the chat box. The responses from Copilot, containing the

suggested fixes, are reviewed, extracted, and incorporated into the test class. The test is then

re-executed to check for successful execution. This cycle of requesting corrections and re-

execution is repeated a few times to explore Copilot's ability to rectify errors.

If, after multiple attempts, the test case continues to fail and the necessary corrections are not

easily identifiable or feasible, the test case is ultimately rejected. However, if a successful

correction is achieved, the test case is executed again to ensure its correctness and is

subsequently moved to the quality evaluation phase. During quality evaluation, various

metrics such as code coverage and the presence of test smells are assessed to determine the

overall quality and maintainability of the test case.

To evaluate code coverage values are extracted from JaCoCo. It operates by first

instrumenting the code, which involves adding extra code to Java classes to monitor coverage.

40

This can be done either at runtime with a Java agent or before runtime during the build

process. As tests are run, the instrumented code collects execution data, showing which parts

of the code were executed. After testing, JaCoCo creates reports in formats like HTML,

XML, or CSV, which help developers see how much of their code is covered by tests and spot

any areas that need more testing.

Analysis of the presence of test smells is done with tsDetect, a tool that is designed to identify

test smells in the code. The test smell detector works by first identifying the test and

production files in a project. It then parses these files to create an Abstract Syntax Tree

(AST). Each test smell detection module checks the AST for specific issues based on set

rules. For example, to find "Redundant Print" smells, the tool looks at method calls in test

methods to spot unnecessary print statements. The results are saved in a CSV file, showing

whether each smell is present or not. (Aljedaani et al., 2021) These results are utilized in our

analysis.

This methodology provides a reasonable understanding of GitHub Copilot’s ability to

generate valid, correct, and high-quality test cases in a system that utilizes the Java EE system

by documenting key metrics. The methodology assesses Copilot's current capabilities and

identifies specific areas for potential improvement, contributing insights into the development

and refinement of automated test generation tools.

5.4 Results

In this chapter we represent the results of our research. Research questions 1 and 2 (validity

and correctness) are discussed together. After this code coverage results are considered and

lastly, test smells are evaluated. All chapters include examples of the tests generated by

GitHub Copilot.

5.4.1 Validity and Correctness

GitHub Copilot generated a total of 62 tests of which 18 had to be discarded. 44 tests were

accepted either one shot valid or correct or after corrections. Only 6 tests needed validity

corrections, whereas correctness proved harder for GitHub Copilot and 21 tests needed to be

corrected. For one focal method Copilot generated 1-3 test methods. Copilot was commonly

able to generate all test methods one shot valid and correct if the focal method had more than

one test method. This would suggest that test generation is more effortless when Copilot

41

decides to generate more than one test method. Results of validity and correctness are

presented in Table 5.

Table 5. Validity and correctness of generated tests.

Classes named “E+number” are EJB classes and names that end in “R” are API classes.

Focal method Test method One shot
valid

One shot
correct

E1 getEntity1FromDTO getEntity1FromDtoTest x

E1 getByEntity1Ids shouldReturnEntity1ListWhenEntity1IdsProvided x x

shouldReturnEmptyListWhenNoEntity1IdsProvided x x

shouldReturnEmptyListWhenEntity1NotInCache x x

E1 getEntity8AsEntity1 shouldReturnEntity1WhenEntity8Exists x

shouldCreateNewEntity1WhenEntity8DoesNotExis
t

x

E1 getEntity1ByIdentifier shouldReturnEntity1WhenIdentifierExists x

shouldThrowExceptionWhenMultipleEntity1WithSa
meIdentifier

x

shouldReturnNullWhenIdentifierDoesNotExist x

E1 cloneEntity1 shouldCloneEntity1Successfully x x

E2 getPopulatedListBySear
ch

getPopulatedListBySearchReturnsCorrectList x x

getPopulatedListBySearchReturnsEmptyListWhen
NoMatch

x x

E2 createEntity2 createEntity2ReturnsCorrectlyPopulatedObject x

createEntity2ReturnsNewObjectWithUniqueIdentifi
er

x x

createEntity2AssignsCorrectTila x

E2 populateEntity9 populateEntity9AssignsCorrectValuesWhenEntity9
DoesNotExist

x

E2 populateEntity10 testPopulateEntity10

E2 populateEntity3 testPopulateEntity3 x x

E2 createEntity2FromDTO testCreateEntity2FromDTO x x

E2 getEntity11 testGetEntity2Tilatiedot x x

E3 createEntity3 shouldCreateEntity3ForExternalUser x x

E3 createEntity3FromDTO shouldCreateEntity3FromValidDTO x x

E3 copyEntity3 shouldCopyEntity3Successfully

E3 hasRightToEdit shouldReturnResponseWhenGetEntity2ByProjectI
dIsCalled

x

E4 getValueByIdAndType getValueByIdAndTypeReturnsCorrectValue

42

E4 getValuesByType getValuesByTypeReturnsCorrectValues x x

getValuesByTypeReturnsEmptyArrayWhenNoMat
ch

x x

E12 createEntity12 testCreateEntity12 x

E5 createEntity5 shouldCreateEntity5Successfully x x

E5 findByParameter1AndP
arameter2

shouldFindByParameter1AndParameter2Successf
ully

x x

shouldReturnEmptyListWhenNoEntity5Found x x

E5 createEntityFromDTO shouldCreateEntityFromDTONewEntity x x

shouldCreateEntityFromDTOExistingEntity x x

E6 createEntityFromDTO createEntityFromDTOTest x

E2R getEntity2ListByEntity3I
d

shouldReturnPermissionErrorWhenUserHasNoPer
missionForProjectId

x

E2R getEntity2ById shouldReturnServerErrorWhenExceptionOccurs x

E2R getEntity2ListForUser shouldReturnEntity2ListForUser x

shouldHandleExceptionWhenGettingEntity2ListFor
User

E2R getParameter3Entity2Li
stForUser

shouldReturnParameter3Entity2ListForUser x

shouldHandleExceptionWhenGettingParameter3E
ntity2ListForUser

E5R getEntity5List shouldReturnAllEntity5WhenGetIsCalled x x

shouldReturnEmptyListWhenNoEntity5Exist x x

E5R saveNewEntity5 testSaveNewEntity5 x

E5R deleteEntity5 testDeleteEntity5 x x

Copilot was asked to fix errors that were either due to syntactical or execution errors. The

prompt contained the error message and a natural language prompt “Correct test based on this

error message”. As stated earlier 18 of the generated tests could not be corrected through this

procedure. In these cases, Copilot generated such poor quality test code that manual

corrections would have replaced almost entirely the generated test. As these would not

anymore represent Copilot’s abilities, the tests were discarded.

There were several issues due to which the generated tests were discarded. Firstly, there were

misconfigurations in the mock objects, which were ineffective for the test scenario. Secondly,

Copilot regularly creates unnecessary mocks and at the same time leaves out crucial mocks.

This resulted repeatedly in null pointer exceptions during the execution of the tests. When a

test was affected with both of the issues simultaneously, the resulting test code had only one

43

or two usable lines. Manually correcting these would have taken considerable effort, hence

they were discarded. An example of a discarded test is represented in Code excerpt 2.

 @Test

 void shouldReturnEntityWhenIdExists() {

 Long existingId = 1L;

 Version version = new Version(1L);

 Entity13 expectedEntity = new Entity13();

 when(entity13DAO.findById(existingId, version)).thenReturn(expectedEntity);

 Entity13 result = entity13EJB.getById(existingId, version);

 assertEquals(expectedEntity, result);

 }

Code excerpt 2. Discarded test

On some occasions a test had to be rejected due to Copilot not being able to detect an obvious

error. In Figure 4 Copilot has generated a test with two methods named identically. It did not

spot this on its own, even after a correction request was made. Copilot's answer of not being

able to detect any problems demonstrates it lacking abilities in detecting issues that to the

human eye seems very straightforward.

Figure 4. Screenshot of Copilot's correction suggestions

Another demonstration of Copilot’s limitations on understanding contextual issues is

represented below in Code excerpt 3 and 4. In its first suggestion Copilot uses a wrong

Mockito method, “.returns”. After the error message was provided to Copilot, it was able to

44

successfully correct the issue and used the “.thenReturn” method. A possible reason behind

this behavior of using non-existent methods can be that Copilot misunderstands or oversights

the context it is provided. It is possible that Copilot did not comprehend the correct usage of

the Mockito framework resulting in a hallucinated method.

 @Test

 public void shouldReturnEmptyListWhenSearchDoesNotMatch() {

 Entity13Search search = new Entity13Search();

 Version version = new Version(1L);

 when(entity13DAO.findBySearch(search, version)).returns(new ArrayList<>());

 List<Entity13> result = entity13EJB.getPopulatedListBySearch(search, version);

 assertTrue(result.isEmpty());

 }

Code excerpt 3. First suggestion by Copilot

 @Test

 public void shouldReturnEmptyListWhenSearchDoesNotMatch() {

 Entity13Search search = new Entity13Search();

 Version version = new Version(1L);

 when(entity13DAO.findBySearch(search, version)).thenReturn(new ArrayList<>());

 List<Entity13> result = entity13EJB.getPopulatedListBySearch(search, version);

 assertTrue(result.isEmpty());

 }

Code excerpt 4. Successful correction after fix-prompt

The Code excerpts 5 (Initial suggestion), 6 (Correction prompt) and 7 (Corrected suggestion)

below demonstrate another mocking issue in Copilot’s tests. In the first suggestion it did not

mock entity8. The error message was provided to Copilot and the corrected suggestion had

a properly mocked entity8, which prevented the initial execution error.

45

 @Test

 public void shouldReturnPermissionErrorWhenUserHasNoPermision() {

 // Given

 Long id = 1L;

 when(Entity3EJB.hasRightToEdit(anyLong(), any())).thenReturn(false);

 // When

 Response response = entity2Resources.getEntity2ListByEntity3Id(id);

 // Then

 verify(entity3EJB, times(1)).hasRightToEdit(anyLong(), any());

 }

Code excerpt 5. First suggestion by Copilot

Correct test based on this error message:

[ERROR] Tests run: 2, Failures: 0, Errors: 1, Skipped: 0, Time elapsed: 0.461 s <<<

FAILURE! - in package1.Entity2ResourcesTest

[ERROR] package1.Entity2ResourcesTest.shouldReturnPermissionErrorWhenUserHasNoPermission

Time elapsed: 0.305 s <<< ERROR!

java.lang.NullPointerException: Cannot invoke "package2.Entity8.getUserName()" because

"entity8" is null

 at package1.BaseRestResources.checkPermission(BaseRestResources.java:103)

 at package1.Entity2Resources.getEntity2ListByEntity3Id(Entity2Resources.java:164)

 at

package1.Entity2ResourcesTest.shouldReturnPermissionErrorWhenUserHasNoPermission(Entity2R

esourcesTest.java:59)

Code excerpt 6. Prompt given to Copilot to fix the issue

46

 @Test

 public void shouldReturnPermissionErrorWhenUserHasNoPermission() {

 // Given

 Long id = 1L;

 Entity8 entity8 = mock(Entity8.class);

 when(userSessionEJB.getEntity8()).thenReturn(entity8);

 when(entity3EJB.hasRightToEdit(anyLong(), any())).thenReturn(false);

 // When

 Response response = entity2Resources.getEntity2ListByEntity3Id(id);

 // Then

 verify(entity2EJB, times(1)).hasRightToEdit(anyLong(), any());

 }

Code excerpt 7. Correction suggestion by Copilot

All in all, Copilot does not perform consistently. There is no clear pattern to be found behind

the incorrect behavior. Mocking appears to be the main stumbling block. One possible reason

behind this erratic behavior is the fact that Copilot is not able to test its suggestions. It

generates the suggestions based on its training data and understanding of programming

patterns, but it has no internal feedback system. Without this capability to execute and

validate the code, it may produce incorrect suggestions. This may be especially true in

complex scenarios where context is pivotal, mocking being one of these scenarios. Copilot

relies very much on the prompt and the context it's provided, so ambiguities in either can lead

it astray. Thus, Copilot still requires human oversight and validation to generate good quality

and correct output.

5.4.2 Code Coverage

Analysis of the code coverage results reveal that Copilot’s performance is again inconsistent.

The line coverage values of the generated tests vary between 0% and 100%. Similarly, branch

coverage results alter between 0% and 100%. All values are represented in Table 6. The table

also includes Cyclomatic complexity values that measure the different independent paths

through a program's source code, showing its complexity and the variety of ways it can run.

The number of lines within the class is also shown in the table.

47

Table 6. Code coverage values of generated tests

Element Line
coverage

Branch
coverage

Cyclomatic
complexity

Lines

getEntity1FromDTO 89% 50% 13 34

getByEntity1Ids 100% 100% 3 8

getEntity8AsEntity1 81% 40% 6 25

getEntity1ByIdentifier 100% 100% 3 9

cloneEntity1 100% 100% 2 21

getPopulatedListBySearch 100% 100% 2 8

createEntity2 100% 50% 2 15

populateEntity9 89% 50% 5 16

populateEntity10 100% 75% 3 12

getEntity11 0% 0% 4 7

createEntity3 92% 50% 2 18

createEntity3FromDTO 89% 56% 107 367

copyEntity3 85% 31% 9 97

getValueByIdAndType 94% 50% 2 7

getValuesByType 100% n/a 1 4

createEntity12 100% n/a 1 5

createEntity5 100% n/a 1 2

findByParameter1AndParameter2 100% 50% 2 6

createEntityFromDTO 64% 20% 6 19

createEntityFromDTO 84% 25% 7 44

getEntity2ListById 24% 21% 8 34

getEntity2ByEntity3Id 36% 25% 5 19

getEntity2ListForUser 74% 33% 4 17

getParameter3Entity2ForUser 77% 40% 6 19

deleteEntity5 66% 50% 3 12

getEntity5List 100% n/a 1 6

saveNewEntity5 75% 50% 2 12

Average values 80% 50%

Certain patterns can be found when analyzing these results. If a test has a 100% line and

branch coverage, it generally has a low cyclomatic complexity and low number of lines.

These test scenarios are straightforward, single-path methods. On the other hand, high line

coverage and lower branch coverage is found in tests that have a moderate cyclomatic

complexity and a varying number of lines. This may suggest that some branches are missed

even though they cover multiple paths. Further on, a high cyclomatic complexity and

significant number of lines combined with low line and branch coverage, imply insufficient

test coverage in complex methods. A method with high cyclomatic complexity typically has

many conditional branches, loops or other control flow structures. This naturally creates more

48

potential execution paths that need to be covered. There are also some cases where line

coverage is 100% and branch coverage n/a. These have a very low cyclomatic complexity and

low number of lines, which indicates that there are no branches, hence no branch coverage

value available.

On the other end of the spectrum are tests that have a 0% coverage, in either of the two values

or both. This indicates that the method or some paths are not tested at all. Code excerpt 8

represents one of these situations. In this example the focal method itself is mocked by

Copilot and not executed. Also, unnecessary mocks are added.

 @Test

 void testGetEntity11() {

 // Arrange

 Entity8 mockedEntity8 = Mockito.mock(Entity8.class);

 when(entity14EJB.getEntity8()).thenReturn(mockedEntity8);

 when(mockedEntity8.getEntity8TechnicalId()).thenReturn(1L);

 Entity2 mockedEntity2 = Mockito.mock(Entity2.class);

 Entity11DTO realEntity11DTO = new Entity11DTO();

 doReturn(realEntity11DTO).when(entity2EJB).getEntity11(any());

 // Act

 Entity11DTO result = entity2EJB.getEntity11(mockedEntity2);

 // Assert

 assertEquals(realEntity11DTO, result);

 }

Code excerpt 8. Spectacular failure

Copilot typically isolates the test method to minimize any dependencies, which might lead to

this type of behavior. This ensures that tests can run independent of external factors, as is a

normal testing strategy, but as is seen in this example, it may lead to excess mocking.

However, this incorrect mocking may also result from complexity of the method. By mocking

the method itself, Copilot might try to avoid the intricacies of the method. In this case the end

result is an oversimplification that results in no test being performed.

In conclusion, the more complex the method is, the lower coverage it seems to reach. A

correlation between high cyclomatic complexity and lower line coverage is found, but not

with branch coverage. When the complexity value is under 4, line coverage is on average

49

95%, but branch coverage is 71%. On the other hand, complexity value over 3 results in

average line coverage of 72% and branch coverage of 36%. It needs to be stated that the

research data has only two methods with a significantly high cyclomatic complexity, so

understanding this tendency would need more data. But it is clear based on the results that the

more complex the code is, the more difficult it is to achieve complete, or even higher,

coverage to Copilot. The results are not surprising; when the focal method is practically

always called only once with a single input per test, it can only follow one path per test.

5.4.3 Test Smells

Results from the test smell analysis of the generated tests are presented in Table 7. The table

contains only those categories of which an occurrence was found. The tsDetect tool has found

54 different tests. The difference in the number of tests can be explained through the

difference in interpretation of test methods. The tool also includes the initialization methods

in the overall number. The following percentages are calculated on previously mentioned 44

tests.

50

Table 7. Test smells in generated tests

Test class Number of
methods

Assertion
Roulette

Exception
Catching
Throwing

Print
Statement

Eager
Test

Lazy
Test

Unknown
Test

Magic
Number
Test

E1 11 0 0 0 0 0 0 0

E2 11 2 0 0 4 8 2 6

E3 4 0 0 0 0 0 0 0

E4 4 1 0 0 0 2 0 3

E5 2 0 0 0 0 0 0 0

E12 6 0 0 0 0 4 0 5

E6 2 0 0 0 0 0 0 0

ER1 9 2 1 1 0 8 2 8

ER2 5 0 0 0 0 0 0 0

Sum 54 5 1 1 4 22 4 22

Most common types of test smells found were Magic Number Test and Lazy Test. Both had

22 occurrences, which means that 50% of the tests had either type of test smell. Magic

Number Test is a test that uses hard-coded values in the test code, whereas Lazy Test

performs weakly and might miss important validations. Assertion Roulette (5 occurrences),

Eager Test (4 occurrences) and Unknown Test (4 occurrences) follow with significantly lower

prevalence to Magic Number Test and Lazy Test. Assertion Roulette refers to a situation

where the test has multiple assertions, but there is no clear indication which of them failed.

Eager Test on the other hand results from situations of testing too much at once, making the

demonstration of failures harder. Unknown Tests on the other hand are tests that potentially

point to unstructured or poorly defined test cases as they do not fit into any recognizable

patterns.

51

The significantly higher number of certain tests over others may indicate various factors

influencing GitHub Copilot’s behavior. Firstly, Copilot might be biased to prioritize certain

patterns or behaviors. Since it is a closed system, it is not possible to investigate this further.

But also, the complexity of the code and code coverage may play a role here. The more

complex the code and functionalities are, the higher the occurrence of certain test smells, for

instance Magic Number Test and Lazy Test, may be.

Copilot seems not to apply best practices of unit test generation, which results in the high

prevalence Magic Number Tests. This may be a result of Copilot focusing on readability or

maintainability of the tests, leading it to overlook coding standards. The instances of Magic

Number Tests did not occur in edge cases or less common scenarios that many times make

human developers overlook best practices. Code excerpt 9 exhibits a Magic Number Test

smell. In the test Copilot has mocked a method making it return an arbitrary number “1L”,

which has no specific meaning. The method where the number is inputted could also be

mocked itself. This technique does not provide any additional value to this test.

 @Test

 void testPopulateEntity3() {

 // Arrange

 Entity2 entity2 = new Entity2();

 Entity3 mockedEntity3 = Mockito.mock(Entity3.class);

 when(mockedEntity3.getId()).thenReturn(1L);

 when(entity3EJB.getById(anyLong(), any())).thenReturn(mockedEntity3);

 // Act

 entity2EJB.populateEntity3(entity2);

 // Assert

 assertEquals(mockedEntity3, entity2.getEntity3());

 }

Code excerpt 9. Magic number test smell example

GitHub Copilot is marketed as increasing productivity and taking over mundane tasks, so that

human developers can focus on more creative tasks. This strongly implies that speed is

emphasized when optimizing its performance. Pursuing quick results when prompted may

lead to Copilot oversimplifying complex scenarios. This again can lead to generation of

simplistic tests, which only verify the most obvious or direct outcomes. It might not even

have a goal of thoroughly going through the code and its various aspects. This is seen in a

52

high prevalence of Lazy Test Smells. A more detailed prompt might lead to more thorough

testing, but as this research’s goal was to replicate a real-world use case of GitHub Copilot,

complex and detailed prompts are not in the scope of this study.

53

6 Conclusions

This case study evaluated unit tests generated by GitHub Copilot by their validity,

correctness, coverage, and quality based on test smells. Overall, 62 test cases were generated

of which 44 were included in the study. The discarded 18 tests were not executable and

correcting these issues would have required considerable effort, in some cases rewriting the

test fully. The study provides insights into the capabilities and limitations of GitHub Copilot

with test generation automation. The findings of each research question are shortly

summarized. Then implications of the findings are discussed and lastly a short discussion of

future research goals concludes the study.

6.1 Summary of Findings

In this chapter the findings of each research question are summarized. First, the findings on

research questions 1 and 2, validity and correctness, are discussed. Next findings for research

question 3, code coverage, are briefly explained. And lastly, summarization of research

question 4, test smells, is given.

6.1.1 Validity and Correctness

The first research question (RQ1) examined Copilot’s ability to generate compilable unit tests.

Out of the 44 tests selected for this study only 6 required validity corrections. This suggests

that Copilot is able to produce valid tests, however there were suggestions that failed to

compile. These failures were mainly due to mock object configurations and the generation of

unnecessary mocks or mocks completely missing. This suggests that Copilot has significant

limitations in handling complex mocking scenarios without human intervention.

The second research question (RQ2) focused on the correctness of the tests by analyzing the

occurrence of execution errors. The study found this to be more challenging to Copilot than

validity. Out of the 44 accepted tests, 21 required corrections due to failures. Common

correctness issues were runtime exceptions, incorrect logic, or failures in validation of

functionalities. Performance was also inconsistent where some tests were generated correct in

the first attempt, while others required several correction rounds. The results show that

Copilot has issues in detecting obvious errors, e.g. duplicate method names. It also often uses

incorrectly the mocking frameworks.

54

In conclusion, Copilot is able to generate valid and correct unit tests, but the performance is

inconsistent. Human intervention is needed frequently. The primary areas of difficulty for

Copilot include handling complex mocking scenarios, detecting straightforward errors, and

maintaining contextual understanding during test generation. The lack of an internal feedback

system to execute and validate the generated code contributes to these limitations. Copilot is

not able to test its own code, and therefore it relies heavily on the provided context. This in

return may lead to hallucinated methods and other errors that risks the reliability of the

generated tests.

6.1.2 Code Coverage

Research question 4 (RQ4) aimed to evaluate the effectiveness of Copilot’s tests by the means

of code coverage. Coverage analysis tool JaCoCo was utilized in measuring line and branch

coverage values. JaCoCo also provides measurement of cyclomatic complexity of the CUT’s

complexity, and this was utilized in the analysis. The results highlight a significant variability

in Copilot’s performance. Both coverage values ranged from 0% to 100%. When these

inconsistent values are evaluated against the cyclomatic complexity values of the code, we

found that the more complex the focal method is, the more Copilot struggles.

The results show a clear inverse relationship with cyclomatic complexity and code coverage.

Both line and branch coverage values were higher when the focal method's cyclomatic

complexity value was low. For example, methods with a cyclomatic complexity under 4 had

an average line coverage of 95% and branch coverage of 71%. In contrast, methods with a

cyclomatic complexity over 3 had significantly lower coverage, with an average line coverage

of 72% and branch coverage of 36%.

The complex methods that proved difficult for Copilot often had many conditional branches

and control flow structures, which created several execution paths. Covering these

comprehensively with test automation by Copilot proved challenging. Reversely, with simple,

single-path methods Copilot performed well. It often achieved 100% line and branch coverage

in methods with low cyclomatic complexity and low number of lines. These results indicate

that Copilot is very effective in straightforward testing scenarios.

An additional challenge for Copilot was mocking issues, in this case excess mocking. Its

tendency to minimize dependencies led in some situations to excess mocking. This resulted in

not executing the actual method, which in turn resulted in 0% coverage. This behavior was

55

again observed in complex methods, which implies that Copilot might oversimplify the test to

avoid intricate dependencies, which leads to failing to perform meaningful tests.

In conclusion, Copilot generates comprehensive test cases in simple focal methods, but

struggles with more complex methods. And as was observed in research question 1 and 2,

mocking is challenging to Copilot and the challenges are bigger the more complex the focal

method is.

6.1.3 Test Smells

Lastly, research question 4 evaluated the quality of Copilot’s tests by the prevalence of test

smells. The aim was to study whether recurring patterns were found and provide insights to

Copilot’s limitations. Our findings suggest that certain types of test smells occur more often

in Copilot’s suggestions than others and code complexity is also at play here. Copilot’s

behavior also suggests biases towards certain patterns, and it may prefer speedy response time

over good quality. There also seems to be challenges in adhering to test generation best

practices.

The most common test smell types were Magic Number Test and Lazy Test. These occurred

in more complex focal methods. This suggests that complexity affects Copilot’s performance

in test generation. The more complex the code and functionalities were, the more these test

smell types occurred. The results indicate that Copilot prefers certain patterns and behaviors,

such as introducing magic numbers or creating multiple, similar tests for one focal method.

This might lead to think that the system is biased inherently to utilize these types of unwanted

patterns and behaviors. It may also favor speed over quality, in expense of thorough and

robust test generation. GitHub markets the system as increasing productivity and might be

pursued by emphasizing speedy response times of the system. This may lead to the generation

of simplistic tests that verify only the most obvious or direct outcomes.

Results of the fourth research question also indicate that Copilot does not apply best practices

of unit testing very consistently. The high amount of Magic Number Tests and Lazy Tests is a

testament of Copilot’s tendency to overlook coding standards. It may do this in order to favor

readability and maintainability of the tests. The root cause of this behavior may lay in the

emphasis of quick and straightforward suggestions.

All in all, Copilot produces tests of reasonable quality, but it is affected by the complexity of

the code and its possible, inherent features. Complex code may lead it to overlook coding

56

standards and start using undesirable patterns and behavior. It may also favor speed over

quality, which in return weakens the test code quality.

6.2 Future Research

Future research on GitHub Copilot’s capabilities is needed. Most evident issue is the handling

of complex test scenarios that involve intricate mocking. It could be beneficial to investigate

how Copilot could be provided with internal feedback. It might be beneficial if it could

execute and validate its own suggestions and thus enhance its reliability.

This study was performed with a relatively small dataset. In the future exploring a larger and

more diverse dataset could provide a more comprehensive understanding of Copilot’s

effectiveness. Using methods with varying complexities might yield more insights on the

reasons behind the challenges Copilot faces in complex code. It could also provide

understanding to the relationship between complexity and code coverage. Adding other

metrics could also be beneficial. In addition to the metrics used in this study, test execution

time, fault detection capability and maintainability of the tests could provide more insights to

the tool’s performance.

In this study prompting was repeated similarly in all test generation situations. More detailed

and specific prompts might produce better results. However, writing intricate prompts is time

consuming and resource demanding, which could simply change the nature of the developers

work, but not provide any benefits in resources. So, even though this approach might optimize

the performance of the tool, it may not bring any real-life benefits. Lastly, future research

could benefit from examining the generated tests longitudinally. Assessing their

maintainability and reliability over time could provide insights to the long-term impact of this

type of automated test generation.

6.3 Implications

GitHub Copilot shows potential in assisting the unit test generation process. It creates well-

structured and clearly named tests that provide savings in resources. That being said, its

abilities diminish in situations involving complex code. It is very effective in generating tests

for methods with low cyclomatic complexity, and in such cases performs very productively.

Copilot’s challenges with mocking need to be considered when using the tool. Even though

tests are generated, they may be meaningless and oversimplified. As it is also prone to using

57

unwanted patterns, such as test smells, the suggestions need to be carefully reviewed.

Reviewing and refining the generated tests may prove hard to automate as Copilot is on some

occasions oblivious to the most obvious errors in its suggestions.

This study underscores the need for human insight in the test generation process. Copilot can

streamline the process and provide useful suggestions, but human developers must always,

even for the simple code, review the suggestions. GitHub Copilot can serve as a helping hand,

but it cannot yet replace the expertise and critical judgment of developers. In conclusion,

while GitHub Copilot shows promise in generating effective tests for simple methods, its

performance is inconsistent and particularly challenged by complex methods. Developers can

utilize Copilot for straightforward scenarios but should be prepared to review and refine its

suggestions in more complex codebases.

58

References

Acharya, Sujoy. Mastering unit testing using Mockito and JUnit. Packt Publishing Ltd, 2014.

Alagarsamy, Saranya, Chakkrit Tantithamthavorn, and Aldeida Aleti. "A3test: Assertion-

augmented automated test case generation." arXiv preprint arXiv:2302.10352 (2023).

Aljedaani, Wajdi, et al. "Test smell detection tools: A systematic mapping study."

Proceedings of the 25th International Conference on Evaluation and Assessment in

Software Engineering. 2021.

Appel, Frank. Testing with JUnit. Packt Publishing Ltd, 2015.

Beck, Kent. Test driven development: By example. Addison-Wesley Professional, 2022.

Bhatia, Shreya, et al. "Unit test generation using generative ai: A comparative performance

analysis of autogeneration tools." arXiv preprint arXiv:2312.10622 (2023).

Bhattacharya, Paheli, et al. "Exploring Large Language Models for Code Explanation." arXiv

preprint arXiv:2310.16673 (2023).

Cai, Xia, and Michael R. Lyu. "The effect of code coverage on fault detection under different

testing profiles." Proceedings of the 1st International Workshop on Advances in

Model-based Testing. 2005.

Cambria, Erik, and Bebo White. "Jumping NLP curves: A review of natural language

processing research." IEEE Computational intelligence magazine 9.2 (2014): 48-57.

Chekam, Thierry Titcheu, et al. "An empirical study on mutation, statement and branch

coverage fault revelation that avoids the unreliable clean program assumption." 2017

IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE,

2017.

59

Chen, Yinghao, et al. "ChatUniTest: A Framework for LLM-Based Test Generation." arXiv

e-prints (2023): arXiv-2305.

Cornett, S. “Code Coverage Analysis” Electronic source (1996),

https://www.bullseye.com/coverage.html, visited 10.6.2024

Dakhel, Arghavan Moradi, et al. "Effective test generation using pre-trained large language

models and mutation testing." Information and Software Technology 171 (2024):

107468.

Dasgupta, Sajib, and Vincent Ng. "Mine the easy, classify the hard: a semi-supervised

approach to automatic sentiment classification." Proceedings of the Joint Conference

of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on

Natural Language Processing of the AFNLP. 2009.

Van Deursen, Arie, et al. "Refactoring test code." Proceedings of the 2nd international

conference on extreme programming and flexible processes in software engineering

(XP2001). Citeseer, 2001.

El Haji, Khalid, Carolin Brandt, and Andy Zaidman. "Using GitHub Copilot for Test

Generation in Python: An Empirical Study." (2024).

Garousi, Vahid, and Barış Küçük. "Smells in software test code: A survey of knowledge in

industry and academia." Journal of systems and software 138 (2018): 52-81.

Ghazizadeh, Eghbal, and Pengxiang Zhu. "A systematic literature review of natural language

processing: Current state, challenges and risks." Proceedings of the future technologies

conference. Cham: Springer International Publishing, 2020.

Gurbuz, Ozge, Fethi Rabhi, and Onur Demirors. "Process ontology development using natural

language processing: a multiple case study." Business Process Management Journal

25.6 (2019): 1208-1227.

60

Hemmati, Hadi. "How effective are code coverage criteria?." 2015 IEEE International

Conference on Software Quality, Reliability and Security. IEEE, 2015.

Hou, Xinyi, et al. Large Language Models for Software Engineering: A Systematic Literature

Review. 2024.

Jay, Caroline, Jorge Arturo Wong-Mozqueda, and Robert Haines. "Is code quality related to

test coverage?." International Workshop on Sustainable Software Systems

Engineering. 2015.

Jendrock, Eric, et al. The Java EE 6 tutorial: advanced topics. Addison-Wesley, 2013.

Kaczanowski, Tomek. Practical unit testing with JUnit and mockito. Tomasz Kaczanowski,

2013.

Kim, Dong Jae, Tse-Hsun Chen, and Jinqiu Yang. "The secret life of test smells-an empirical

study on test smell evolution and maintenance." Empirical Software Engineering 26

(2021): 1-47.

Lemieux, Caroline, et al. "Codamosa: Escaping coverage plateaus in test generation with pre-

trained large language models." 2023 IEEE/ACM 45th International Conference on

Software Engineering (ICSE). IEEE, 2023.

Madeyski, Lech. Test-Driven Development: An Empirical Evaluation of Agile Practice. 1.

Aufl. Berlin, Heidelberg: Springer-Verlag, 2010. Web.

Mathur, Aditya P. "Foundations of software testing." Dorling Kindersley 184 (2009).

Meszaros, Gerard. xUnit test patterns: Refactoring test code. Pearson Education, 2007.

Mustafa, Ahmad, et al. "Automated test case generation from requirements: A systematic

literature review." Computers, Materials and Continua 67.2 (2021): 1819-1833.

61

Naveed, Humza, et al. "A comprehensive overview of large language models." arXiv preprint

arXiv:2307.06435 (2023).

Panichella, Annibale, et al. "Test smells 20 years later: detectability, validity, and reliability."

Empirical Software Engineering 27.7 (2022): 170.

Plein, Laura, et al. "Automatic generation of test cases based on bug reports: a feasibility

study with large language models." Proceedings of the 2024 IEEE/ACM 46th

International Conference on Software Engineering: Companion Proceedings. 2024.

Rao, Nikitha, et al. "CAT-LM training language models on aligned code and tests." 2023 38th

IEEE/ACM International Conference on Automated Software Engineering (ASE).

IEEE, 2023.

Saleh, Hazem. JavaScript Unit Testing. Packt Pub., 2013.

Shin, Jiho, et al. "Domain Adaptation for Deep Unit Test Case Generation." arXiv e-prints

(2023): arXiv-2308.

Siddiq, Mohammed Latif, et al. "Using Large Language Models to Generate JUnit Tests: An

Empirical Study." (2024).

Steenhoek, Benjamin, et al. "Reinforcement Learning from Automatic Feedback for High-

Quality Unit Test Generation." arXiv preprint arXiv:2310.02368 (2023).

Tang, Yutian, et al. "Chatgpt vs sbst: A comparative assessment of unit test suite generation."

IEEE Transactions on Software Engineering (2024).

Tosun, Ayse, et al. "On the effectiveness of unit tests in test-driven development."

Proceedings of the 2018 International Conference on Software and System Process.

2018.

62

Tufano, Michele, et al. "An empirical investigation into the nature of test smells." Proceedings

of the 31st IEEE/ACM international conference on automated software engineering.

2016.

Tufano, Michele, et al. "Unit test case generation with transformers and focal context." arXiv

preprint arXiv:2009.05617 (2020).

Turhan, Burak, et al. "How effective is test-driven development." Making Software: What

Really Works, and Why We Believe It (2010): 207-217.

Venkatesh, Ashwin Prasad Shivarpatna, et al. "The Emergence of Large Language Models in

Static Analysis: A First Look through Micro-Benchmarks." arXiv preprint

arXiv:2402.17679 (2024).

Vikram, Vasudev, Caroline Lemieux, and Rohan Padhye. "Can large language models write

good property-based tests?." arXiv preprint arXiv:2307.04346 (2023).

Wang, Junjie, et al. "Software testing with large language models: Survey, landscape, and

vision." IEEE Transactions on Software Engineering (2024).

Wei, Yi, Bertrand Meyer, and Manuel Oriol. "Is branch coverage a good measure of testing

effectiveness?." Empirical Software Engineering and Verification: International

Summer Schools, LASER 2008-2010, Elba Island, Italy, Revised Tutorial Lectures

(2012): 194-212.

Yetistiren, Burak, Isik Ozsoy, and Eray Tuzun. "Assessing the quality of GitHub copilot’s

code generation." Proceedings of the 18th international conference on predictive

models and data analytics in software engineering. 2022.

Young, Tom, et al. "Recent trends in deep learning based natural language processing." ieee

Computational intelligenCe magazine 13.3 (2018): 55-75.

Yuan, Zhiqiang, et al. "No more manual tests? evaluating and improving chatgpt for unit test

generation." arXiv preprint arXiv:2305.04207 (2023).

63

Zhang, Ziyin, et al. "Unifying the perspectives of nlp and software engineering: A survey on

language models for code." arXiv preprint arXiv:2311.07989 (2023).

