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Artificial intelligence has taken remarkable steps in recent years. Natural language processing 

technology and large language models have changed many aspects of software development process. 

Different tools have been developed to aid in the software development process. In this study we aim 

to evaluate GitHub Copilot’s abilities in automated unit test generation. The study is motivated by the 

critical role of testing in software development. Effective testing ensures code quality, reliability, and 

maintainability. Software systems have grown increasingly complex and with it the demand for 

efficient test generation tools. This study aims to assess GitHub Copilot’s abilities in real-world 

software development standards of testing by introducing unit tests to a legacy software system.  

Four research questions guide the evaluation: the immediate usability of Copilot’s test suggestions 

based on their compilation success rates, the correctness of these suggestions through execution error 

analysis, the effectiveness of test suggestions measured by code coverage, and the presence of test 

smells indicating potential maintainability problems. The research methodology employs an iterative 

one-shot method to evaluate GitHub Copilot's performance in generating and refining test cases, 

structured into three primary steps. First, test cases are generated by prompting Copilot within an IDE, 

followed by verifying and correcting their syntactic accuracy using IDE feedback and Copilot's 

correction suggestions. Finally, the syntactically correct test cases are executed, corrected as needed, 

and assessed for functional correctness and quality metrics like code coverage and test smells. 

The research findings indicate that GitHub Copilot can generate valid unit tests, but its performance is 

inconsistent and frequently requires human intervention. Copilot struggles with complex mocking 

scenarios, often fails to detect straightforward errors, and relies heavily on the provided context, 

leading to potential reliability issues. Code coverage analysis shows that Copilot is effective in 

straightforward testing scenarios, achieving high coverage in simple methods, but performs poorly 

with methods of high cyclomatic complexity. Additionally, Copilot’s tests exhibit common test smells 

such as Magic Number Tests and Lazy Tests, which are more common in complex code, suggesting a 

preference for speed over quality and a tendency to overlook best practices in unit testing. Overall, 

while Copilot can produce reasonable quality tests, its effectiveness diminishes with increased code 

complexity. 

The results indicate the need of frequent of human intervention for error correction and test quality 

enhancement. Also, the presence of common test smells may indicate a preference for speed over best 

practices. Copilot might also benefit from internal feedback system, where it could execute and assess 

its code suggestions. These insights suggest that Copilot is valuable for straightforward testing 

scenarios, but its reliability decreases with more complex code.  

 

Key words: artificial intelligence, natural language processing, large language models, software 

testing, unit testing. 

 

 

  



 
 

Table of contents 

1 Introduction 1 

2 Unit Testing 3 

2.1 Test-driven Development 3 

2.2 Unit Testing 4 

2.3 Unit Test Evaluation Metrics 5 

2.3.1 Code Coverage 5 

2.3.2 Test Smells 8 

2.3.3 Flawed Test Cases 12 

2.4 Best Practices in Unit Testing 13 

3 Natural Language Processing and LLM-based Software Engineering 17 

3.1 Natural Language Processing Techniques in Software Engineering 17 

3.2 Overview of Large Language Models 18 

3.3 LLMs Capabilities and Limitations in Software Engineering 21 

3.3.1 Capabilities 21 

3.3.2 Limitations 22 

4 Unit Test Generation with Large Language Models 24 

4.1 Research Review 24 

4.2 Related Work 25 

4.2.1 Coverage 27 

4.2.2 Correctness 28 

4.2.3 Test Smells 30 

4.2.4 Research on Test Generation with GitHub Copilot 32 

5 Research Settings and Methods 35 

5.1 System Description 35 

5.2 Research Questions 37 

5.3 Methodology 38 

5.4 Results 40 

5.4.1 Validity and Correctness 40 

5.4.2 Code Coverage 46 

5.4.3 Test Smells 49 



 
 

6 Conclusions 53 

6.1 Summary of Findings 53 

6.1.1 Validity and Correctness 53 

6.1.2 Code Coverage 54 

6.1.3 Test Smells 55 

6.2 Future Research 56 

6.3 Implications 56 

References 58 

 



1 
 

1 Introduction 

Recent advancements in artificial intelligence (AI) and natural language processing (NLP) are 

changing the software development industry in many different aspects. With AI-powered 

code completion tools, such as GitHub Copilot, code generation and testing can be automated 

to a degree. Copilot suggests code snippets, entire functions, and even test cases, which helps 

to streamline the software development process and possibly increase productivity. But the 

usability and reliability of Copilot's test generation features still need examination in real-

world settings. 

The motivation for this study comes from the importance of testing in software development. 

In the case study we are adding unit tests to a legacy system in order to apply better with the 

test-driven development (TDD) approach. Effective testing ensures code quality, reliability, 

and maintainability. Thorough testing prevents bugs and reduces long-term maintenance 

costs. As software systems become more complex, the need for efficient and accurate test 

generation tools grows. GitHub Copilot can provide a good opportunity to improve testing 

approaches. It is important to assess whether Copilot can meet the standards required for 

practical use in real-world software development. Evaluating Copilot's ability to generate 

valid, correct, and comprehensive test cases provides understanding of its strengths and 

limitations, which in turn gives insights into the ways the tool can be integrated into the 

development workflow. 

This study focuses on identifying common errors, execution issues, code coverage, and test 

smells in Copilot's suggestions, addressing critical aspects of test quality and maintainability. 

We explore how GitHub Copilot generates and refines test cases through four key research 

questions. First, we assess Copilot’s test suggestions by examining their compilation success 

rates, identifying common errors like syntax errors and type mismatches. Through this their 

immediate usability can be assessed. The second question evaluates the correctness of 

Copilot’s test suggestions by analyzing execution errors, such as exceptions or incorrect logic. 

We run the tests, record errors, and assess if they validate intended functionality. The aim is to 

determine their reliability. Next, we measure code coverage to evaluate the effectiveness of 

Copilot’s suggestions in testing various parts of the codebase. Finally, we identify and 

analyze test smells in Copilot’s suggestions, indicators of potential problems like excessive 

setup code or overly complex logic. This analysis provides insights into the quality and 

maintainability of Copilot’s suggestions, offering areas for improvement. 
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To address these research questions, the methodology follows a structured procedure in three 

main steps. Initially, Copilot generates test cases, which are then saved for evaluation. Next, 

the correctness of these tests is assessed, and only viable ones proceed to execution. Finally, 

successful tests are evaluated for quality, while failed ones are corrected and re-evaluated. 

This process is repeated to explore Copilot's error correction ability, with the goal of 

determining overall test quality and maintainability. 

The structure of this thesis is designed to provide a comprehensive theoretical understanding 

of unit testing, NLP, and large language models (LLMs) before moving to describing the 

study in detail. Chapter 1 introduces the thesis by explaining its aims, scope, and importance. 

Chapter 2 explores unit testing, starting with TDD principles and techniques. It discusses the 

purpose and techniques of unit testing, evaluation metrics like code coverage, and common 

issues in test cases. Recommended practices for creating effective unit tests are also provided. 

Next in Chapter 3 we discuss the use of NLP and LLMs in software engineering, covering 

their applications, strengths, and weaknesses. It includes an overview of LLM architecture 

and capabilities, as well as challenges associated with their use. We then move to reviewing 

existing research on LLMs in software engineering, focusing on unit test generation in 

Chapter 4. It explores their impact on code coverage, test accuracy, and the occurrence of test 

smells. A case study on GitHub Copilot's use for test generation is also presented. Chapter 5 

presents the original research conducted for the thesis, describing the research system, tasks, 

and methodology. It presents findings on LLM-generated test accuracy, coverage, and test 

quality. Lastly in Chapter 6 we summarize the key findings, discuss their implications, and 

suggest future research directions. 

In closing, this thesis looks into how software development is evolving, especially with new 

AI and NLP technologies like GitHub Copilot. While Copilot offers ways to automate code 

writing and testing, its reliability in real-world situations needs careful consideration. 
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2 Unit Testing 

In this chapter the theoretical motivation of this thesis is discussed. First, TDD is introduced. 

The approach is the primary motivation behind the research that is conducted in this thesis. 

Next unit testing is discussed. Unit testing is one of the main methods of TDD. Metrics used 

to evaluate the efficacy of unit testing are also discussed. Lastly, best practices in unit test 

generation are summarized. 

2.1 Test-driven Development 

In this study we are introducing unit testing to legacy code. The motivation behind this is to 

apply more of the principles of TDD to the software in question. TDD is a practice where 

code is written after the test (Beck, 2022). The aim of the practice is to produce better quality 

code that has fewer defects. According to Madeyski (2010) TDD provides instant feedback on 

whether a new functionality has been implemented as intended and whether it interferes with 

previously implemented functionality. It encourages developers to break down problems into 

small, manageable programming tasks to enhance productivity. TDD enforces keeping tests 

up to date, which enable avoiding complexities in the code through continuous refactoring. 

Running tests frequently helps ensure a certain level of quality and test coverage. 

Additionally, tests provide context for making low-level design decisions, such as naming 

classes and methods and defining interfaces. They also serve as a form of communication and 

documentation, showcasing concrete examples of how to exercise a class's functionality 

which also provides knowledge to new participating developers, hence encouraging 

refactoring and maintenance activities (Madeyski, 2010). 

According to Madeyski (2010) the TDD approach also offers a new perspective on software 

product quality by considering the quality of test code. The quality of tests can indicate the 

quality of the related production code, especially when writing tests is an integral part of the 

development practice. Turhan et al. (2010) found that adopting TDD in the software 

development process may improve internal and external quality of code, but this is dependent 

on the evaluation metric. Complexity is often reduced, but better cohesion is oftentimes not 

achieved. The TDD approach is said to increase productivity (Turhan et al., 2010), but as 

Madeyski (2010) points out the process of adopting TDD is labor intensive. It may even 

decrease productivity in the initial stages of adoption. However, Madeyski (2010) concludes 

that despite the initial drop in productivity, continuous testing and refactoring can eventually 
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increase development speed. According to Acharya (2014) in TDD code is only written to 

satisfy a test and the code is refactored to improve its quality. The test-first practice is also 

thought to increase the maintainability and reliability of the code (Tosun et al., 2018). 

2.2 Unit Testing 

Unit testing is one of the testing practices of the TDD approach. The classical definition of a 

unit test is that it is a piece of code, typically a method, that calls another piece of code and 

verifies the accuracy of certain assumptions (Saleh, 2013). Acharya (2014) describes unit 

testing as performing sanity check of code, i.e.. checking whether the software produces 

coherent responses. A good unit test should possess several key characteristics.  

Firstly, it should be automated, meaning that it can be executed automatically without manual 

intervention. This allows other developers to easily repeat the test for every significant code 

change. Secondly, a unit test should be repeatable. This means that it consistently produces 

the same results when executed multiple times. By ensuring repeatability, any changes or 

issues in the code can be identified and addressed promptly.  

Furthermore, a unit test should be easy to understand. It should be clear and comprehensible 

to other developers, enabling them to grasp the purpose and functionality of the test. This 

facilitates collaboration and encourages the addition of new test cases or updates to existing 

ones. In addition, a good unit test should be incremental. This implies that the test should be 

updated whenever a new relevant defect is detected in the code. By continuously improving 

the test, the likelihood of recurring defects is minimized. Also, a unit test should be easy to 

run. It should be executable with a simple command or by clicking a button. The execution 

time of the test should also be relatively short, as fast unit tests contribute to the overall 

productivity of the development team. (Saleh, 2013) 

Saleh (2013) argues that unit testing is not just a nice-to-have, but a mandatory activity in 

software engineering. It plays a crucial role in ensuring the success and stability of software 

solutions, especially when dealing with changes over time. One of the key advantages of unit 

testing is that it simplifies the integration of different components within a system. Without 

proper unit testing, the process of tracing defects and identifying problematic components 

becomes complex and time-consuming. This can lead to ineffective use of resources. (Saleh, 

2013) 
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Furthermore Saleh (2013) argues that unit testing helps manage the number of new defects 

and regression defects that arise as the code base becomes more complicated. By having 

repeatable test cases, developers can ensure that resolved defects do not reappear after 

subsequent code changes. This significantly improves the quality of the software and reduces 

the time spent on testing during each deployment or phase. Unit testing also serves as a 

valuable reference for system documentation. It includes test scenarios for system use cases 

and demonstrates how system application programming interfaces (APIs) are utilized, 

reflecting the current design of the system. This makes unit testing an essential foundation for 

code and design refactoring, enabling further enhancements in the system. (Saleh, 2013) 

2.3 Unit Test Evaluation Metrics 

In this chapter metrics used to evaluate the efficacy of unit tests are discussed. One of the 

most common metrics used is code coverage, which has different aspects of evaluating 

coverage. The research in this thesis is evaluated by statement and branch coverage, which are 

discussed. One commonly used coverage metric is input space coverage. It refers to designing 

test cases that cover all possible inputs, including valid and invalid inputs as well as boundary 

values and combinations of different inputs. However, this metric is not used in the existing 

research literature to evaluate LLM’s test generation performance, hence it is not considered 

in this research either. We are mainly interested in the correctness of the generated tests and 

how well the LLM is able to correct failing tests based on error message feedback. Another 

evaluation method is test smells. Some of the benefits and limitations of test smells are 

discussed and some tools that assess test smells are introduced. In this research tsDetect tool 

is used to assess the generated tests. The tool is discussed in further detail in Chapter 5.3. 

Lastly, best practices in unit testing are discussed to provide an outlook on the expected 

behavior of the LLM. 

2.3.1 Code Coverage 

Code coverage refers simply to the percentage of the code that the testing covers. There are 

different aspects that can be measured. In this work the two available code coverage values 

are statement and branch coverage. To measure these metrics, we use JaCoCo, an open-source 

Java code coverage library1. This tool is discussed in further detail in Chapter 5.3. 

 

1 https://github.com/jacoco/jacoco, visited 10.6.2024 
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Statement coverage is a basic part of software testing with several advantages. It provides a 

measurable way to check how complete the testing is. By analyzing statement coverage, 

testers can see how much of the source code the test suite has covered, which helps identify 

areas that need more testing. Statement coverage also helps find code that hasn’t been run, 

highlighting parts that weren’t covered during testing. This is important for finding dead code 

or areas that couldn’t be reached because of logical mistakes or insufficient test coverage. 

(Cornett, 1996) 

High statement coverage is also important for quality assurance. When it’s achieved, it means 

a lot of the code has been tested, which can make us more confident in the software’s quality. 

While it doesn’t mean there are no defects, it does show that the testing has been thorough. 

The data from statement coverage can also be useful for debugging. If a test fails or 

something unexpected happens, it can help identify the parts of the code that were run before 

the failure, making debugging easier and helping to focus on areas that might have problems. 

(Hemmati, 2015) 

Even though its useful, statement coverage has a few limitations that need to be thought about 

when evaluating unit testing. (Cai & Lyu, 2005). A significant limitation is that it only 

measures if individual lines of code have been run but doesn’t give any information about 

how good or effective the tests are. This means that even if statement coverage is high, it can’t 

ensure that all possible situations, edge cases, or combinations of inputs have been covered. 

(Jay et al., 2015) 

Also, statement coverage might not work as well with complex logic paths in code, especially 

in loops and conditional statements. It’s meant to make sure all the code is run, but it might 

miss some paths, leaving important parts of the code untested and open to unnoticed defects. 

Plus, focusing too much on statement coverage can lead testers to care more about getting 

high coverage percentages than about the quality and relevance of the tests. This “check-the-

box” testing can hurt the testing process by not thoroughly checking the software’s 

correctness and robustness. (Hemmati, 2015) 

Statement coverage can help find code that hasn’t been run, but it’s not always good at 

finding all types of faults. Some mistakes, like semantic or integration errors, might not be 

found even when coverage is high, so different testing methods are needed to find all defects 

(Cai & Lyu, 2005). Trying to get 100% statement coverage is often not practical, especially 
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with big and complex codebases. Things like external dependencies, behavior specific to a 

platform, and exceptional error conditions can make it hard to get complete coverage, making 

it not cost-effective to try to cover everything (Acharya, 2014). 

Just using statement coverage to measure how complete the testing is can give a false sense of 

security. Even if coverage is high, there might still be defects or vulnerabilities that haven’t 

been found. So, it’s important to use other testing methods along with statement coverage to 

make sure the testing is thorough, and quality is assured. A variety of testing methods and 

measures make sure the testing is rigorous and quality is thoroughly checked. 

Branch coverage in software testing helps give a comprehensive evaluation of how complete 

the testing is. It’s different from statement coverage because it gives a more detailed check, 

making sure not just every line of code is run, but also that different decision paths in the code 

are covered (Cornett, 1996). This complete approach helps find potential defects or unusual 

things related to conditional logic, which makes the testing more effective. Branch coverage is 

good at finding specific decision points in the code where not all possible outcomes have been 

looked at. This is key for finding what’s missing in the test suite and deciding where more 

testing is needed to fully cover these areas (Hemmati, 2015). 

Branch coverage is a useful measure in software testing, but it has some limitations. One 

limitation is how it deals with decision coverage. Branch coverage checks if each branch in a 

decision statement has been run, but it doesn’t make sure all possible conditions in each 

decision have been tested. For example, getting branch coverage on an if-else statement 

doesn’t necessarily mean both the true and false conditions have been thoroughly tested, 

which shows there might be a gap in how complete the coverage is. (Wei et al., 2012) 

Branch coverage faces challenges when dealing with complex logic scenarios. Code 

structures containing nested or intricate conditional statements can create multiple decision 

paths that are difficult to cover entirely using branch coverage alone. Achieving high branch 

coverage may require an impractical number of test cases or may be unattainable altogether. 

Additionally, achieving 100% branch coverage is often unrealistic, especially in complex 

codebases with intricate decision logic. Some branches may be hard to reach or require 

specific input conditions that are challenging to replicate in test cases, making comprehensive 

coverage difficult. (Wei et al., 2012) In summary, branch coverage is a useful metric for 

assessing testing thoroughness. However, it’s essential to combine it with other testing 
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techniques and metrics to achieve comprehensive test coverage and ensure high-quality 

software. 

Applying both statement and branch coverage metrics typically leads to better test 

coverage and improved quality assurance compared to using either metric in isolation. When 

untested code segments are identified and different types of scenarios and conditions are 

considered during testing, a more thorough investigation of the codebase makes the approach 

more comprehensive. A more detailed understanding of where to focus during testing can be 

achieved when statement and branch coverage are combined as these ensure that both every 

line of code and different decision paths are covered. When both statement and branch 

coverage are high, it demonstrates that different aspects of the code are tested, growing 

confidence in the reliability and quality of the system. Also, combining the two measures the 

risk of undiscovered defects and vulnerabilities can be reduced especially in critical parts of 

the code. Using both metrics also helps in debugging and troubleshooting as the root cause 

can be pinpointed more quickly and accurately. In conclusion, either metric alone can provide 

valuable insights, but combining them a more comprehensive and effective quality assurance 

is achieved. (Chekam et al., 2017) 

2.3.2 Test Smells 

Test smells are patterns or characteristics that can be found in the design, implementation, 

execution of software tests. They can indicate problems, weaknesses, or deficiencies in the 

software that is being tested. Test smells are similar to code smells (Tufano et al., 2016), 

which point to problems in source code. Test smells highlight areas of the code where 

effectiveness, maintainability, or reliability is compromised. They can manifest in different 

ways, such as overly complex test logic, redundant or duplicated tests, inadequate coverage, 

or they may be coupled to implementation details. Maintaining a robust and efficient testing 

strategy relies on identifying and addressing test smells. They may impact the test suite's 

reliability, maintainability, and effectiveness. (Deursen et al., 2001) 

Test smells cover a range of issues that can affect how reliable and maintainable the test suite 

is. For example, fragile tests are prone to breaking when even small things change in the 

system or its environment, usually because they're too tightly connected to specific details of 

how things are implemented. Similarly, brittle assertions might lead to test failures over 

minor changes in system behavior, showing the need for stronger assertions. Problems like 

duplicated or conditional test logic, along with tests that are hard to understand, make it 
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harder to maintain and work with the test suite. Using mocks or stubs too much can make test 

setups overly complicated and obscure what the system is really doing, making tests harder to 

keep up. Eager test setup and lazy test verification can also affect how well tests work and 

how much they cover. Things like integration tests in disguise or tests relying on magic 

values add extra complications and risks to the testing process. Trusting the results of tests 

that run slowly, are inconsistent, or are in any way unreliable is difficult. There may be issues 

with leaking test data, the tests try to do too much at once, or they make too many 

assumptions. This emphasizes the need for evaluation and fixing of such issues. Regularly 

reviewing and improving tests through refactoring and code review processes are essential for 

keeping the testing process strong and making sure the software being tested is of high quality 

and reliability, as noted by Kim et al. (2021). Different test smell types are described in Table 

1 below. 
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Table 1. Different test smell types 

 

  

Test Smell Description 

Fragile Test 
Tests highly sensitive to changes in the system under test, often due to 
excessive coupling to implementation details. 

Brittle Assertion 
Tests with overly specific assertions about the system's behavior, prone to 
failure with minor changes in implementation. 

Duplicate Test 
Logic 

Duplication of test logic across multiple tests, leading to increased 
maintenance effort and decreased readability. 

Conditional Test 
Logic 

Tests with conditional logic (e.g., if statements) that obscure the test's intent 
and make it harder to understand and maintain. 

Hard-to-Read Test 
Tests with convoluted or unclear logic that is difficult to understand at a 
glance, impeding maintenance and comprehension. 

Overuse of 
Mocks/Stubs 

Excessive use of mocks or stubs in tests, resulting in overly complex test 
setups and potentially obfuscating the system's behavior. 

Eager Test Setup 
Tests performing excessive setup or configuration before exercising the 
system, leading to slower test execution and increased brittleness. 

Lazy Test 
Verification 

Tests lacking sufficient assertions or verification steps, resulting in 
incomplete validation of the system's behavior. 

Integration Test in 
Disguise 

Tests blurring the line between unit and integration tests by exercising 
multiple components or dependencies, leading to longer test execution times 
and increased fragility. 

Resource Leak 
Test 

Tests inadvertently leaking resources (e.g., memory, database connections) 
due to improper cleanup or teardown. 

Magic Test Values 
Tests relying on "magic" values (e.g., hard-coded constants) without clear 
explanation or justification, reducing maintainability. 

Long-Running Test 
Tests taking an excessive amount of time to execute, often due to complex 
setup or teardown procedures or inefficient test logic. 

Flaky Test 
Tests exhibiting non-deterministic behavior, producing different outcomes 
under identical conditions, often due to race conditions or timing issues. 

Unstable Test 
Tests failing intermittently without changes to the code or environment, 
making it difficult to trust their results. 

Test Data Leakage 
Tests inadvertently leaking sensitive or confidential data into test outputs or 
logs, posing security or privacy risks. 

Non-Atomic Test 
Tests relying on shared state or dependencies, leading to interference 
between tests and potential false positives or negatives. 

Over-assertive Test 
Tests with too many assertions, making it hard to isolate the cause of failures 
and increasing the likelihood of false positives. 

Untestable Code 
Code difficult or impossible to test due to excessive coupling, lack of 
modularity, or other design issues. 
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Benefits and limitations of test smells in assessing test quality 

Using test smells as a tool to evaluate the effectiveness of unit tests offers several advantages. 

It helps detect issues early in the test suite, serving as a signal for potential weaknesses. This 

early detection allows developers to address problems before they become significant 

obstacles. It also helps enhance the overall quality of tests by highlighting areas needing 

attention. By focusing on improving individual tests, developers can make them clearer, easier 

to maintain, and more reliable. Additionally, test smells assist in managing the test suite by 

identifying duplication, complexity, or fragility. By addressing these issues, developers can 

make the test suite easier to understand, modify, and expand, reducing the effort needed to 

maintain tests and freeing up time for other tasks (Garousi & Kücük, 2018). Dealing with test 

smells increases confidence in test results, ensuring that tests are well-designed and thorough. 

It also guides targeted refactoring efforts, making improvements efficiently (Panichella et al., 

2021). Following established best practices helps developers ensure that their tests meet 

industry standards. Overall, strategically using test smells helps developers identify and 

resolve issues, leading to a more reliable test suite and improved software quality (Garousi & 

Kücük, 2018). 

There are also limitations in using test smells to assess the effectiveness of unit tests. Firstly, 

there's a subjective aspect to identifying test smells, which means different developers or 

teams may interpret them differently. This can lead to inconsistencies in evaluation (Tufano et 

al., 2016). False positives can also complicate the evaluation process. Not all instances of test 

smells indicate real issues in the test suite; some might be harmless or depend on the context, 

so sensitivity is needed to avoid unnecessary refactoring (Panichella et al., 2021). On the other 

hand, false negatives are significant shortcomings that might not show up as recognizable 

smells, potentially leading to important deficiencies in testing practices being overlooked 

(Panichella et al., 2021). Additionally, while test smells mainly focus on structural aspects of 

tests like duplication or complexity, they might miss issues related to test coverage, adequacy, 

or relevance, giving an incomplete assessment of the test suite (Panichella et al., 2021). 

Furthermore, the importance of a test smell can vary depending on the context of the software 

project, so it's important to understand its implications within specific domains or 

methodologies (Kim et al., 2021). 
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Test smell tools 

Aljedaani et al. (2021) conducted a systematic review of different tools used for analyzing test 

smells. Their examination of these tools revealed several important findings. Firstly, while 

there's some overlap in the types of smells detected by various tools, there are differences in 

how they're implemented and defined. Most test smell detection tools are designed for Java 

systems using the JUnit framework. However, there's not much reporting on how accurate 

these tools are or how bias is handled in evaluating their quality. Creating a standard for 

validating test smell detection tools could improve trust and reliability of the tools. There is 

also a need to develop the tools to give appropriate refactoring suggestions and not act only as 

a way to detect test smells, as noted by Aljedaani et al. (2021). 

In this study, we used tsDetect, an open-source software designed to find test smells in Java-

based software systems. This is described in more detail in Chapter 5.3. It works by applying 

a set of preset rules to detect these smells in test code (tsDetect). Aljedaani et al. (2021) 

evaluated tsDetect's performance using a benchmark of 65 unit test files, which included 

examples of 19 different types of test smells. The results showed that tsDetect is highly 

accurate in detecting these smells, with an average precision score of 96% and an average 

recall score of 97%. In terms of correctness, tsDetect consistently identified test smells 

accurately, with precision scores ranging from 85% to 100% and recall scores ranging from 

90% to 100%. The average F-score, which combines precision and recall, was found to be 

96.5% (Aljedaani et al., 2001). These findings suggest that tsDetect is a highly effective tool 

for the detection of test smells within Java software systems. This level of effectiveness 

makes it a valuable asset in the current study to evaluate the quality of unit tests generated by 

LLMs. 

2.3.3 Flawed Test Cases 

Flawed test cases in unit testing come in various forms, highlighting potential weaknesses in 

the testing process. These cases can lead to inaccuracies and reduce the effectiveness of 

testing. One common type of flawed test case occurs when there are incorrect assumptions 

about how the code should behave. Such cases may produce inaccurate results, leading to 

errors in assessing software correctness. Flawed test cases often result from poorly defined or 

unclear test scenarios, making it difficult to establish accurate assessment criteria. These 

issues can stem from misunderstandings or ambiguities in requirements or expectations, 

complicating the testing process. (Mathur, 2008) 
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Misunderstanding the system requirements or specifications can lead to flawed test cases. If 

the requirements are not clear, they may be interpreted differently by stakeholders. This may 

lead to test cases that do not capture the intended software functionality. Making flawed 

assumptions about user behavior, such as inputs or interactions, can also result in test cases 

that do not represent real-world usage. (Mathur, 2008) 

The outcomes of flawed test cases due to incorrect assumptions can be significant. If the 

expected software behavior is not matched, incorrect test results may often occur. This again 

can lead to false positives or negatives and as a result incorrect conclusions of the software’s 

correctness are made. Additionally, flawed test cases may miss defects or vulnerabilities, 

especially in critical areas or edge cases influenced by incorrect assumptions. If undetected, 

these defects could cause problems in production environments. (Mustafa et al., 2021) 

Addressing the impact of flawed test cases caused by incorrect assumptions involves a 

comprehensive strategy. It's crucial to have clear and precise requirements to develop accurate 

test cases. This requires collaboration among stakeholders to clarify any uncertainties and 

resolve misunderstandings. Validating test cases through user research, stakeholder input, and 

real-world testing helps to make sure that the assumptions align with actual user behavior and 

scenarios. To maintain the accuracy of test cases they should be regularly reviewed and 

refined according to changing requirements and feedback. Accuracy and reliability of testing 

can be improved by correcting the flawed test cases that result from incorrect assumptions. 

The quality and the integrity of the software can be improved by aligning the tests with the 

software’s requirements and user expectations. This can lead to better customer satisfaction 

and user experience. (Mustafa et al., 2021) 

2.4 Best Practices in Unit Testing 

Unit testing becomes effective when certain key elements are in place. Firstly, automation is 

crucial. This means that tests are run automatically, following predefined steps, which ensures 

consistency and adherence to established principles. Secondly, the speed of test execution is 

essential. Tests should ideally complete within milliseconds to avoid unnecessary delays in 

the testing phase. Fast execution preserves the integrity of the feedback loop, ensuring that 

developers receive immediate insights into the code's behavior. As the number of unit tests 

increases within a system, the need for fast execution becomes even more important. 

Otherwise, the total time taken by tests could significantly hinder the usefulness of the testing 
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process. Therefore, maintaining a balance between automation and rapid execution is vital for 

the efficacy of unit testing in the development process. (Acharya, 2014) 

Unit tests should operate independently, without depending on the results of other tests or the 

order they are run in. This makes tests more resilient to changes in execution conditions, 

ensuring they reliably reflect system functionality. Likewise, separating tests from external 

factors like databases or files requires using substitutes, like test doubles, to create isolated 

and reproducible testing environments. (Acharya, 2014) 

Unit testing is effective because it provides consistent and portable results over time and 

different locations. Tests should give the same results no matter when or where they are run, 

which helps ensure they accurately reflect how the system behaves. Additionally, it is 

important for tests to be clear and concise. They not only validate the system but also serve as 

documentation. This is evident in how tests are named, with descriptive names making test 

suites easier to understand. (Acharya, 2014) 

Finally, it is crucial to note that unit tests are integral components of software. Just like how 

code is refined and improved through refactoring, it is necessary to continually update and 

enhance unit tests to maintain their effectiveness and manageability. Managing large test 

classes can be challenging, so breaking them down into smaller, more organized suites 

supports iterative development and makes them easier to handle. (Acharya, 2014) 

Appel (2015) discusses the typical structure of a unit test through the following example. This 

approach is commonly known as "arrange, act, assert" or "build, operate, check," but here we 

follow Meszaros' (2007) terminology of setup, exercise, verify, and teardown, which is shown 

below in Code excerpt 1. 

private final static int NEW_FETCH_COUNT = Timeline.DEFAULT_FETCH_COUNT + 1; 

 

@Test public void setFetchCount() { 

 // (1) setup (arrange, build) Timeline timeline = new Timeline(); 

 // (2) exercise (act, operate) timeline.setFetchCount( NEW_FETCH_COUNT ); } 

 // (3) verify (assert, check) assertEquals( NEW_FETCH_COUNT, timeline.getFetchCount() ); 

} 

Code excerpt 1. Meszaros' (2007) unit test structure 
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He states the following: 

1. The first step sets up the object being examined, often called the system under test (SUT) 

(Meszaros, 2007). This establishes the starting point for the SUT, including specific inputs 

and conditions. 

2. Once the setup is complete, attention turns to testing the particular functionality of the 

SUT. Usually, this means calling a single method and recording the results for evaluation. 

3. Checking that the actual outcome matches what we expect follows. This involves verifying 

that the observed result aligns with the anticipated behavior. 

4. It is important for a test to clean up after itself, returning the environment to its original 

state. This ensures that any changes made during setup or testing do not affect subsequent 

tests unexpectedly. Although teardown is not always included in basic unit tests, it is crucial 

for maintaining test independence and reliability. 

In addition to a clear structure, it is important to take into consideration what inputs are used 

in the tests. Starting with the happy path, defined by Meszaros (2007) as the typical flow of 

actions within a software scenario, ensures smooth progress towards user or system objectives 

without unexpected issues. This prioritizes delivering the most important business value and 

aligns with what the component is expected to do. Focusing on the normal flow initially helps 

lay a solid foundation for meeting requirements and avoids potential inefficiencies that can 

come from dealing with edge cases too soon. Additionally, when a component has multiple 

functions, it is important to choose the happy path that brings the most business value. 

However, sometimes it is also helpful to begin with a simple function, known as a "low 

hanging fruit," especially in certain situations (Kaczanowski, 2013). 

Although focusing on the happy path usually covers the main requirements of the component 

being tested, it does not mean the job is done. Often, the most critical issues come from 

boundary conditions, which might not show up until later in development but can have a big 

impact. It is important to find and address these less common cases through thorough testing 

strategies. Even with careful testing, there can still be oversights, which is where code 

coverage tools come in handy. They help identify areas of code that have not been tested yet 

and potential issues within the component. However, just because a path of code is covered 

does not mean it is thoroughly tested. Even a small change in a covered path could lead to 

unexpected results without causing existing tests to fail. (Appel, 2015) 
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Choosing the right names in software development is laborious. It is important for names to 

be clear and short, whether they are for classes, methods, or variables. Test names should 

describe exactly what is being tested, including what inputs or conditions are expected and 

what outcomes are anticipated. While naming patterns like 

[UnitOfWork_StateUnderTest_ExpectedBehavior] help with organization and 

clarity, other methods like using 'should' at the beginning aim to make test intentions clear. 

However, these approaches might make things more complicated, especially for complex 

behaviors. The challenge is finding a balance between making names meaningful and keeping 

them short and easy to read, as discussed by Appel (2015). 
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3 Natural Language Processing and LLM-based Software 

Engineering 

In this study AI-powered LLMs are utilized in unit test generation. LLMs are based on NLP 

technology, which have been used in software engineering to create for example translation 

applications. In this chapter NLP technology is first described. Next, we move to discuss the 

LLM technology and its benefits and limitations.  

3.1 Natural Language Processing Techniques in Software Engineering 

NLP refers to the technology that converts speech or writing into a machine recognizable 

form. The technology matches the content on a semantic level, but it also has some common-

sense knowledge and reasoning ability to overcome issues with context. (Cambria & White, 

2014) NLP is one of the important fields of study in computational linguistics and AI research 

(Young et al., 2018) and has formed a basis for the development of Large Language Models. 

The main aim of NLP is language translation, i.e. getting the computer to understand human 

language. Gurbuz, Rabhi & Demirors (2019) suggest that there are two main processes in the 

NLP mechanism. Natural language understanding (NLU) refers to processes where natural 

content is processed and recognized by the computer and natural language generation (NLG) 

refers to the process where the computer produces natural language. As mentioned, machine 

translation is one of the main aims of NLP. It involves both NLU and NLG. Advancements in 

speech recognition, machine translation technology and deep neural networks have shifted the 

research from written text translation to automatic translation of spoken language 

(Ghazizadeh & Zhu, 2020). 

Second important research area in NLP is text categorization. This refers to the process of 

classifying documents into categories based on the content or attributes of the document 

(Dasgupta, 2009). Main area of research in this field is the construction of a classification 

model. Search engines also utilize NLP techniques (Taskin, 2019). The user's search query 

needs to be recognized, but also matching the search results to the query requires 

understanding of natural language. 

There are many challenges in NLP, but one of the key difficulties is the ambiguity of natural 

language (Young et al., 2018). Ambiguity refers to homonyms, synonyms, context-

dependency and other human language phenomena that change the meaning of an expression 
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or give it multiple possible meanings. If this ambiguity is not properly handled, the computer 

cannot properly understand the expression. The computer also needs contextual information 

to interpret the expression correctly. The context may arise from surrounding sentences or 

environment. (Ghazizadeh & Zhu, 2020) 

3.2 Overview of Large Language Models 

LLMs are an advancement in NLP with their ability to process and generate natural language 

fluently and coherently. LLMs are based on transformer architectures which capture 

contextual information and relationships within textual data. They are trained on vast amounts 

of data that enables them to learn nuances and intricacies of language. LLMs have brought 

significant advances in machine translation, text summarization and text analysis. (Hou et al., 

2024) 
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Figure 1. Main components of the transformer model from the original paper. (Wikipedia contributors2) 

 

The basis of LLMs is the transformer model, which extracts an encoder-decoder structure. 

Above in Figure 1 are the main components of the model. The encoder processes input and 

prepares it for a further decoding process, while the decoder produces output based on the 

representation of the encoder. The representation maintains the context information for each 

token of the input. These tokens interact with each other through self-attention, which refers 

to a mechanism to capture the relations and dependencies of the tokens. An attention score 

denotes an importance measure for each token, hence understanding long-range dependencies 

and context. The self-attention mechanism is operated many times in parallel, and with this, 

the notion of a multi-head attention model arises: each head handles different aspects of the 

input sequence. These are then combined to create the final representation of each token. As 

 

2 https://en.wikipedia.org/wiki/Transformer_(deep_learning_architecture), visited 10.6.2024 



20 
 

transformers do not intrinsically look at the order of the token sequences, LLMs add another 

dimensionality to the transformer, called positional encoding, which enriches information 

representing the position of all tokens in the input sequence to help the model discriminate 

between the tokens. (Vaswani et al., 2017) 

Pre-training is an important phase in the process. During the process they are trained on 

extensive text data to learn general patterns of languages. This process is computationally 

intensive and involves many iterations. During training, the model's parameters are adapted so 

that the difference between the predicted and actual tokens in the training data is minimized. 

LLMs are generally pre-trained on huge amounts of text data collected from various sources: 

books, articles, websites, and many others. This data is cleaned and pre-processed to remove 

noise and ensure consistency. During pre-training, LLMs are trained to predict the next token 

in a sequence of text. The transformer architecture is used in the pre-training process, 

whereby the model can effectively capture long-distance dependencies and contextual 

information through constituent self-attention modules. (Naveed et al., 2024) 

After pre-training on a large corpus of text data, LLMs can be fine-tuned for specific tasks or 

domains. This involves adjusting the model's parameters to improve performance on specific 

tasks. Fine-tuning uses transfer learning, where the knowledge gained from pre-training on a 

large dataset is applied to a new task with a smaller dataset. This allows LLMs to adapt to 

new tasks or domains more efficiently, requiring less labeled data for training. Fine-tuning 

usually involves giving the pre-trained LLM task-specific labeled data. The model's 

parameters are then adjusted using backpropagation based on the task's objective, like 

classification accuracy or sequence generation metrics. (Naveed et al., 2024) 

LLMs are increasingly being utilized in various aspects of software development. They can be 

trained on large code repositories to generate code snippets, functions, or even entire 

programs. Tools like OpenAI's Codex and GitHub Copilot use natural language descriptions 

and partial code snippets to provide code suggestions and auto-completion. (Naveed et al., 

2024) 

LLMs can also be automated to generate for example documentation for codebases. They 

analyze the code comments, function signatures, and source code and based on the 

information they generate human-readable summaries describing the purpose, functionality, 

and usage of the code. (Bhattacharya et al., 2023) LLMs can also be used for static code 

analysis and bug detection. They are able to find potential errors, vulnerabilities, or bad 
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practices in source code. LLMs are taught with large codebases and can spot common coding 

mistakes, suggest best practices, and also offer insights into code quality. (Venkatesh et al., 

2024) Requirements engineering is also a part of LLMs repertoire as they can analyze natural 

language requirements documents, user stories, or feature requests and extract key insights, 

identify dependencies, and facilitate requirement extraction and prioritization (Hou et al., 

2024). 

LLMs can also aid in automated testing. They are able to generate test cases, identify edge 

cases, and predict potential failure scenarios based on natural language descriptions or 

specifications. This can complement traditional testing approaches and help ensure 

comprehensive test coverage, faster release cycles, and improved software reliability. (Wang 

et al., 2024) LLMs in test generation is discussed further in Chapter 5. 

3.3 LLMs Capabilities and Limitations in Software Engineering 

Large Language Models are promising tools in aiding software engineering. They have many 

capabilities and as the models are developed further even more can arise. However, currently 

there are still limitations to these capabilities that may eat away their efficiency. In this 

chapter current capabilities and limitations of LLMs in software engineering are discussed. 

3.3.1 Capabilities 

Large Language Models are showing proficiency in various areas of software engineering, 

including code generation, test generation, bug localization, verification, test automation, fault 

localization, program repair, code clone detection, code review, debugging, and bug 

reproduction. Hou et al. (2024) and Zhang et al. (2023) published large research review 

articles that discuss the current capabilities and limitations of LLMs in software engineering. 

The articles' found that LLMs have demonstrated their ability to interpret natural language 

descriptions, code comments, and requirements, and then generate corresponding code 

snippets that fulfill the given specifications. This ability helps in quickly creating prototypes 

and automating repetitive coding tasks. LLMs are especially useful in program synthesis, 

improving productivity by generating code from high-level instructions. Their dual 

understanding of natural language and programming languages makes them suitable tools for 

advancing software engineering and streamlining the development lifecycle. The interactive 

coding approach, where code is run and the model receives feedback on its functionality, 
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improves the model's ability to generate correct code. Overall, LLMs can help understand 

requirements and produce accurate code, speeding up development and improving software 

quality. (Hou et al., 2024, Zhang et al., 2023) 

Using LLMs with software testing methods has improved test case generation, bug 

classification, and defect prediction, making the testing process more precise and efficient. 

For example, LLMs can be fine-tuned for specific projects to create custom test cases, helping 

to detect subtle bugs or security issues early. Additionally, combining LLMs with traditional 

static and dynamic program analysis enhances code analysis. LLMs use their natural language 

processing abilities to understand code-related text, such as comments and documentation, 

making it easier to grasp code functionality, identify dependencies, and produce relevant 

documentation. (Hou et al., 2024, Zhang et al., 2023) 

LLMs like Codex have led to the development of commercial products such as GitHub 

Copilot and open-source models like StarCoder and Code LLAMA. These models, based on 

pretrained transformers, have been successful in code processing tasks. Research shows that 

LLMs can also use external tools for complex reasoning. For example, models like PAL and 

PoT extend Codex with Python interpreters for numerical calculations, while ViperGPT uses 

vision APIs to gather information from visual inputs. (Hou et al., 2024, Zhang et al., 2023) 

3.3.2 Limitations 

LLMs proved their potential in software engineering tasks, however they also come with 

several limitations. Hou et al. (2024) and Zhang et al. (2023) discuss limitations in their 

effectiveness, reliability, interpretability, privacy, and security. 

In terms of effectiveness, LLMs have been examined in various coding tasks and their 

integration into development tools. They could enhance software maintenance and evolution, 

but there are challenges in using LLMs because they're large and need a lot of computing 

power. Also, training needs huge datasets that might introduce biases. There are concerns 

about how LLMs generate code ambiguously and if they work well across various tasks or 

areas. Moreover, training LLMs is costly, especially when fine-tuning them with specific 

data. In complex problems, LLMs might generate code solutions that aren't very effective. 

(Hou et al., 2024, Zhang et al., 2023) 

Reliability is another limitation. To handle ambiguity in code generation, more context, 

domain-specific knowledge can be added, or multiple models used together. Making LLMs 
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more adaptable to different software tasks is crucial for producing dependable code. (Hou et 

al., 2024, Zhang et al., 2023) 

Interpretability is also a concern. The effectiveness of current evaluation metrics for judging 

LLM performance in software engineering is questioned, stressing the importance of 

interpretability and trustworthiness. Ethical concerns are also raised, especially about using 

LLM-generated code in real-world applications. Developers might be cautious about using 

LLM-generated code if they don't understand how it was generated. Tools must explain how 

the model works and why it produces certain outputs. (Hou et al., 2024, Zhang et al., 2023) 

Security is also a limitation. The transparency of some models has been a concern, as many of 

the LLMs do not disclose how they are trained. The training data may have issues with 

quality, representativeness, and even ownership. There is a possibility of adversarial attacks, 

where the LLM is deliberately fed vulnerabilities. This can result in code suggestions that 

have exploitable weaknesses. Developers and stakeholders need to be aware of the issues like 

prompt injection attacks, source code vulnerability and data sensitivity and they should have 

strategies to address these issues. (Hou et al., 2024, Zhang et al., 2023) 

LLMs like GitHub Copilot have raised concerns regarding privacy issues. These models are 

trained on vast amounts of data, including publicly available code from platforms like 

GitHub. Consequently, there's a chance of revealing sensitive or proprietary details from the 

training data. Also, LLMs can create code snippets that might accidentally contain 

confidential or copyrighted material. To use and deploy LLMs ethically privacy issues need to 

be considered and there needs to be measures to protect sensitive information.  (Hou et al., 

2024, Zhang et al., 2023) 

Use of resources needs to be addressed also. LLMs are complex AI systems that require a 

considerable amount of computing power in both training and running. They often require 

specialized hardware, such as GPUs and TPUs. Energy consumption is also high, which raises 

environmental and financial issues. Plus, training LLMs needs vast amounts of data, which 

can be tricky to store and manage. (Hou et al., 2024, Zhang et al., 2023) 
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4 Unit Test Generation with Large Language Models 

Large Language Models are adopted also in unit test generation. In recent years there have 

been many specified tools developed that are used in unit test generation. One such is GitHub 

Copilot’s Gentest which is also used in the research conducted in this thesis. The field is 

naturally very young, therefore not a lot of research has yet been published. Next, we 

represent a short research review and then discuss further five studies focusing on unit test 

generation. The findings of these studies are discussed. 

4.1 Research Review 

Wang et al. (2024) published a systematic review of LLMs in software testing. They analyzed 

102 relevant studies which used LLMs in testing. Focusing mainly on unit testing were 20 

studies that were published between 2020-2023. Most of these (17 studies) were published in 

2023 indicating that the research area is picking up, but also that there is a relatively small 

number of publications available. In evaluating the performance of unit test case generation 

across different studies, it's important to note that they use different datasets, making direct 

comparisons challenging. Main findings of these studies are discussed next. 

Several studies have examined pre-training or fine-tuning LLMs for unit test case generation. 

This approach was commonly used due to the limitations of early-stage LLMs. Even in recent 

studies, this method persists, aiming to improve LLMs' understanding of domain knowledge. 

This approach proved efficient, and coverage and validity of the generated tests were 

significantly higher (Rao et al., 2023, Steenhoek et al., 2023, Shin et al., 2023, Tufano et al., 

2020, Alagarsamy et al., 2023). Focus has then shifted towards designing effective prompts 

for LLMs to enhance their performance. Instead of relying solely on pre-training or fine-

tuning, these studies aim to optimize LLMs by refining prompts to improve their 

understanding of context. Chen et al. (2023) proposed a generation-validation-repair 

mechanism that rectifies errors in generated unit tests. This method produced higher line 

coverage and their user analysis supported the mechanism as efficient. Similar post-

generation-processing method was adapted by Dakhel et al. (2024) and Yuan et al. (2023). 

Both conclude that providing the LLM with feedback on the generated tests enhances the 

performance. 

More innovative methods for test generation have been explored by Vikram et al. (2023). 

They propose the use of LLMs to generate property-based tests with the assistance of API 
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documentation. They suggest that API method documentation can help LLMs create logic for 

generating random inputs and deriving meaningful result properties for verification. Similarly, 

Plein et al. (2023) generated tests based on bug reports from users, thus moving away from 

using source code to generate unit tests. Their results suggest that bug reports are a useful tool 

for the LLM as it is able to generate unit tests based on the reports.  

Some studies have adopted an approach of using LLMs as support to traditional software 

testing techniques such as search-based techniques. Lemieux et al. (2023) used the LLM to 

further enhance coverage results after the selected traditional tool Pynguin plateaued in its 

efforts. Their findings show that this approach significantly enhances coverage results. Two 

studies have also been conducted to compare the LLMs performance against traditional 

search-based tools (Tang et al., 2024, Bhatia et al., 2023). Both found that the tests generated 

by LLMs were comparable to search-based software testing (SBST) techniques. Findings 

from these two studies are discussed in more detail in Chapter 4.2.  

4.2 Related Work 

In this section we discuss the findings of five recent studies on using LLMs in unit test 

generation. First, we represent a study that researched GitHub Copilot’s abilities in Python 

code generation. Secondly, we discuss four studies that examined ChatGPT, GPT-3.5-Turbo, 

StarCoder and Codex. The study setups of these four studies are represented in more detail. 

Then the results of these studies are discussed, namely regarding code coverage, correctness 

and test smells. In Chapter 5.2.4 we discuss the results of a study using GitHub Copilot in test 

generation.  

Yetistiren, Ozsoy et Tuzun (2022) published research that studied GitHub Copilot in code 

generation. They generated Python code using the HumanEval dataset. They extracted 

problems from the dataset and created both human solutions and GitHub Copilot generated 

solutions to the problems. Solutions generated by Copilot were then evaluated for their 

validity and correctness. This approach is similar to the current study’s approach as validity is 

evaluated by the syntactical correctness of the code. However, correctness was evaluated 

against the human written unit tests. In this thesis we generate unit tests with Copilot and 

correctness is evaluated based on whether these generated tests pass. Yetistiren, Ozsoy et 

Tuzun (2022) reported a success rate of 91,5% in code validity. Correctness was distributed to 

three categories: correct, partially correct, and incorrect generations. One third of the 



26 
 

generated code was correct and half of the generated code was partially correct. 

Approximately 20% was incorrect.  

Bhatia et al., (2023) concluded a study comparing ChatGPT to Pyngyin in unit test 

generation. They examined large code samples that ranged from 100 to 300 lines of code. The 

main focus was on two types of code: 1) function-based modular code where functions are 

clearly defined, and they act like independent units of code and 2) class-based modular code 

where the primary units are structured around classes and objects. The prompts to generate the 

tests were designed using two parts: 1) a Python program (100-300 lines) and 2) a task 

description. ChatGPT was provided with the complete code to see if it can identify units. Next 

ChatGPT was prompted to "Write unit tests using Pytest for the given Python code that covers 

all edge cases." Then the generated tests were compared to those from Pynguin for statement 

and branch coverage, noting any missed statements. To improve coverage, a new prompt was 

created with the indices of missed statements, asking ChatGPT to generate more tests. This 

process was repeated until no further improvement was observed. The analysis was done by 

comparing the performance of unit tests generated by the two systems. Main focus was on 

statement and branch coverage across various code structures and complexities. After this the 

ChatGPT was iteratively prompted to enhance coverage until no longer any enhancement was 

achieved. Finally, the correctness of the generated tests was evaluated. 

Siddiq et al. (2024) researched three LLMs (GPT-3.5-Turbo, StarCoder and Codex) on unit 

test generation. They extracted classes from open-source datasets SF110 (194 classes) and 

HumanEval (160). The LLMs performance was evaluated based on branch/line coverage, 

correctness and quality in terms of test smells. Second part of the study consists of evaluating 

how context influences the generated tests. They generated JUnit tests for scenarios that 

contained a different set of code elements and evaluated their performance based on 

compilation rates, code coverage, the number of correct unit tests, and the occurrence of test 

smells. Details of the test methodology were not discussed in the research paper. 

Tang et al. (2024) conducted a comparative evaluation of LLMs (ChatGPT) and SBST in 

generating unit test suites. The generated suites were evaluated by their correctness, 

readability, code coverage and bug detection aiming to better understand the LLMs potential 

in unit test generation. The dataset used in the study consisted of 248 Java classes that were 

collected from 79 different projects. In investigating the bug detection ability of the LLM they 

used a dataset that contains 835 bugs from 17 projects. The test generation prompts were 
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identified through a series of expressions: "Write a unit test for ${input}" with the code 

segment as input, "Can you create unit tests using JUnit for ${input}?" with the code segment 

as input, and "Create a full test with test cases for the following Java code: ${input}?" with 

the code segment as input. Based on these findings, the prompt was summarized as: "Write a 

JUnit test case to cover methods in the following code (one test case for each method): 

${input}?" with the code segment as input. Their goal was not to compare and evaluate 

prompts to find the best-performing one, but to create a reasonable prompt that simulates how 

developers might use ChatGPT in a real-world environment. 

Yuan et al. (2023) researched ChatGPT's abilities in unit test generation. They had a dataset 

of 1000 Java classes in executable project environments. Prompting the LLM was done by 

providing it with a natural language description of the task and a code context of the focal 

method. This contained the complete focal method, including the signature and body; the 

name of the focal class (i.e., the class that the focal method belongs to); the field in the focal 

class; and the signatures of all methods defined in the focal class. This was then completed 

with a natural language explanation as follows: “You are a professional who writes Java test 

methods. Please write a test method for the {focal method name} based on the given 

information using {Junit version}”. This procedure was applied to all focal methods. The 

generated tests were then evaluated for their correctness, coverage, readability, and usability. 

The two latter questions were studied through a user interview. Based on the findings of these 

research questions they also suggested a novel approach, called ChatTester, that generates 

unit tests via ChatGPT. 

4.2.1 Coverage 

Code coverage is used as an assessment tool in all the aforementioned studies. Both statement 

and branch coverage are employed. The results of statement coverage range between 93,26 - 

55,4% and branch coverage 65,6 - 92,8%. Bhatia et al. (2023) achieved the highest 

percentages implying that their technique is the most efficient. Siddiq et al. (2024) reported 

results in line coverage. It cannot be directly assessed identical as statement coverage as line 

coverage entails the statements. Hence, the line coverage values of Siddiq et al. (2024) are not 

completely comparable to the other studies. All results are presented in Table 2. 
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Table 2. Code coverage percentages 

 Bhatia et al. Siddiq et al. Yuan et al. Tang et al. 

Statement/Line 
coverage 

91,55 - 93,26% 67 - 87,7% 82,3% 55,4% 

Branch coverage 89,5 - 91,68% 69,3 - 92,8% 65,6% NA 

 

Bhatia et al. (2023) used iterative prompting in their research. Prompting was continued until 

the coverage results reached their peak values. Statement coverage was increased by 15,25 - 

27,95% on average. Tang et al. (2024) on the other hand created a "reasonable prompt", as 

they describe it. This refers to finding the prompt through a series of trials and then using the 

same prompt derived from this to create test cases. Yuan et al. (2023) provided the LLM with 

a natural language description and the code context in the prompt but did not iteratively 

enhance the prompt. This suggests that using a template-based prompt is not an effective 

style. Providing the LLM with more information of the context clearly enhances the coverage 

reached and iterating the prompts yields the best coverage results. Tang et al. (2024) note that 

the incomplete specifications and lack of feedback mechanism may have contributed to the 

low coverage values in their research. 

4.2.2 Correctness 

Correctness is used to evaluate unit tests. The term may refer to compilation and failing 

assertions and the nature of the errors in failing assertions. Siddiq et al. (2024) report the 

percentage of compilable unit tests of four different LLMs (Codex (2K), Codex (4K), 

GPT3.5-Turbo, and StarCoder) when the LLM is not provided context. StarCoder performed 

the best with 70% compilable tests, whereas the other LLMs generated less than half 

compilable tests. Tang et al. (2024) found similarly that 69,6% of the tests generated by 

ChatGPT were compilable and Yuan et al. (2024) had 42,1% compilable tests. However, 

when the LLMs were provided with context, the compilation rate increased to up to 53,8% 

(Siddiq et al., 2024). Also, a notable change was GPT-3.5-Turbo's performance, which 

dropped to 2.5%. This was found to result from duplicated package declarations. 
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Siddiq et al. (2024) observed that there were repeatedly similar syntax errors that caused the 

compilation errors when the LLM was not provided with the context. They found that LLMs 

1) tend to create additional test classes that may not be fully developed, 2) often include 

explanations in natural language before and after the generated code, 3) information is 

sometimes repeated such as the class being tested or the test prompt, 4) package declaration is 

changed or even removed, 5) generated integer constants that exceed the usual maximum 

value and 6) incomplete unit tests resulted when the test code reaches a certain limit. They 

then applied automated heuristics to fix these issues and were able to improve the compilation 

percentage to 76,9 - 100%. Siddiq et al. (2024) noted that tests that could not be fixed through 

heuristics were found to contain semantic errors, such as unknown symbols, incompatible 

conversions and abstract class instantiations. Unknown symbols were the most common error 

type. Yuan et al. (2023) similarly report frequent occurrences of unresolved symbols, type 

errors, access errors and invalid instantiation of abstract classes. 

Tang et al. (2024) also found that compilation errors are often a result of ChatGPT's attempt 

to predict parameters, parameter types and such. They argue that this is due to the fact that the 

LLM did not have an overview of the entire project. Siddiq's (2024) findings support this as 

the results were improved (without the exception of GPT-3.5-Turbo) after providing the LLM 

with context. Yuan et al. (2024) suggest that a post-generation validation mechanism could 

improve the compilation percentage. 

The amount of passing test methods were also analyzed to evaluate the tests correctness. 

Bhatia et al. (2024) reported that 39% of Category 2 (function-based modular code) and 28% 

of Category 3 (class-based modular code) assertions were incorrect in the tests generated. 

They argue that ChatGPT may generate correct assertions better to a well-defined structure 

within the code. Yuan et al. (2023) similarly reported that only 24,8% of the generated tests 

were executed without any execution errors. Majority of these execution errors (85,5%) were 

assertion errors. All of these errors were found to be caused by incorrect assertions generated 

by ChatGPT. Rest of the execution errors were different types of runtime exceptions, which 

according to Yuan et al. (2023) may imply that ChatGPT may be unaware of external 

resources during test generation. 

In their analysis Siddiq et al. (2024) examined the correctness by categorizing the results into 

two categories: 1) all methods pass, i.e. correct tests and 2) some methods pass, i.e. somewhat 

correct tests. The two different datasets (HumanEval and SF110) yielded different results. The 
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LLMs generated 52,3 - 81,3% correct tests with the HumanEval dataset, whereas the SF110 

performed poorly with 6,9 - 51,9% correct tests. GPT-3.5-Turbo performed the worst, 

generating the lowest scores and StarCoder had the best results. Somewhat correct tests were 

reported to be 81,3 - 92,3% of the HumanEval dataset and 16,1 - 62,7% of the SF110 dataset. 

In this category GPT-3.5-Turbo performed best with the HumanEval dataset and surprisingly 

the worst with the SF110 dataset. Results were similar in their second scenario where the 

LLM was provided context. Overall, the correctness results of these studies imply that LLMs 

often fail to comprehend the focal method, thus generating low quality tests. However, as 

Siddiq et al. (2024) point out, the somewhat correct tests are also useful. 

4.2.3 Test Smells 

The quality of unit tests can also be measured by the presence of so-called test smells. 

Steenhoek et al. (2023) found that unit tests generated by LLMs often contain test smells. 

Unit tests generated by OpenAI Codex Cushman model were analyzed to find four different 

test smell types. They found that Duplicate Asserts and Conditional Test Logic were 

commonly observed, but Redundant Print and Empty Test were rare. They noted that the tests 

containing the smells were complex, hence challenging to comprehend. 
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Table 3. Test smells in the HumanEval dataset found by Siddiq et al. (2024) 

Test Type Frequency 

Assertion Roulette Common 

Conditional Logic Common 

Empty Test Common 

Exception Handling Common 

Eager Test Common 

Lazy Test Most common 

Duplicate Assert Common 

Unknown Test Common 

Magic Number Test Most common 

 

Siddiq et al. (2024) conducted more thorough research on the occurrence of test smells in 

LLM generated unit tests. They analyzed the tests on 16 different test smell types and found 9 

of them occurring. Based on the analysis the LLMs generate in the HumanEval dataset 

Assertion Roulette, Conditional Logic Test, Empty Test, Exception Handling, Eager Test, 

Lazy Test, Duplicate Assert, Unknown Test and Magic Number Test types. Magic Number 

Test and Lazy Test were the most frequent. Assertion Roulette, Eager Test and Duplicate 

Assert were also common. These are presented in Table 3. In the SF110 dataset Magic 

Number Test, Assertion Roulette and Eager Test types are most common. Additional test 

smells were also observed, which did not occur in the HumanEval dataset. These were 

Constructor Initialization, Mystery Guest, Redundant Print, Redundant Assertion, Sensitive 

Equality, Ignored Test and Resource Optimism. These findings are presented in Table 4. The 

results in both datasets were similar in the scenario of providing the LLM with context. 
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Table 4. Test smells in the SF110 dataset found by Siddiq et al. (2024) 

Test Type Frequency 

Magic Number Test Most common 

Assertion Roulette Most common 

Eager Test Most common 

Constructor Initialization Occasional 

Mystery Guest Occasional 

Redundant Print Occasional 

Redundant Assertion Occasional 

Sensitive Equality Occasional 

Ignored Test Occasional 

Resource Optimism Occasional 

 

4.2.4 Research on Test Generation with GitHub Copilot 

GitHub Copilot is an AI-powered code completion tool that assists developers in writing code 

by suggesting completions based on context3. It integrates with existing IDEs, such as Visual 

Studio Code and IntelliJ. Copilot utilizes OpenAI's Codex LLM, which has been fine-tuned 

on open-source GitHub projects. One of its notable features is test generation, where it can 

generate tests for code snippets, aiding in creating comprehensive test suites. This feature is 

particularly useful for scenarios where existing tests are lacking, as it can generate tests even 

without prior test cases. The generated tests can be influenced by varying the code and 

comments in their code files before invoking Copilot, prompting questions about the optimal 

formulation of code comments to improve test generation usability. 

 

3 https://github.com/features/copilot, visited 10.6.2024 
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GitHub Copilot's test generation performance was studied by El Haji et al. (2024). The study 

investigates the effectiveness of generated tests with and without an existing test suite, placing 

particular emphasis on scenarios lacking pre-existing tests. It examines how manipulating 

code and comments before using Copilot influences test generation, prompting questions 

about the best way to formulate code comments for improved test usability. The research 

specifically evaluates the usability of test generations under different test method comment 

strategies, both within and without an existing test suite. The generated tests were assessed on 

their syntactic correctness, runtime correctness, passing and coverage. 

In initial manual assessments, they noted that method comments affect tests produced by 

Copilot. To investigate further, tests were categorized into two groups: those with comments 

and those without. They explored four types of method comments. The first type, called 

"Minimal Method Comment," provides a brief description of a test method. In contrast, the 

"Behavior-Driven Development Comment" describes a scenario using the format "Given x 

when y then z." Another type, the "Usage Example Comment," includes a code snippet 

demonstrating a potential call of the code under test (CUT), without necessarily linking to a 

specific test scenario. Lastly, they examined the effectiveness of combining all these comment 

styles into a single method comment, a "Combined comment". These different approaches 

aimed to understand how comment styles influence the usability and quality of Copilot-

generated tests. 

The results of El Haji et al.'s (2024) study shows similar results as studies discussed 

previously. They found that 54,72% of tests with-context and 92,45% without-context failed. 

Most common reasons for tests to fail were syntax and runtime errors (22,64% with-context, 

71,70% without-context). Most common runtime errors were non-existent attributes and 

incorrect parameters. Thus, they argue that Copilot does not consider the CUT, it relies only 

on other test methods in its context. However, the closed-source nature of Copilot does not 

allow us to examine the exact context used to prompt test generations. Also, 16,98% of tests 

with-context and 18,87% without-context failed due to assert mismatch, which leads to 

conclude that Copilot did not have sufficient information to determine the expected value of 

one or multiple assertions. Additionally, the amount of passing tests were 45,28% with-

context and 7,55% without-context. El Haji et al. (2024) that some of the passing tests 

appeared to mimic other tests in the context. Without the context Copilot cannot mimic the 

context, hence the lower rate of passing tests. 
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When examining passing tests With-Context, it was observed that out of 24 generated passing 

tests, 17 covered the same branches as their human-written counterparts. Additionally, one 

generated test covered the same branches and even more new branches. Only six generated 

tests covered strictly fewer branches or included new branches. Consequently, the majority of 

passing tests generated by Copilot With-Context do not cover fewer branches than the original 

test, which positively affects usability. However, when considering tests generated Without-

Context, only one test covered the same branches as its human-written counterpart, while the 

rest covered fewer or new branches. This suggests that tests generated Without-Context, even 

if passing, are less suitable. Overall, El Haji et al. (2024) conclude that the usability of 

Copilot-generated tests is poor as most tests need to be modified. 

In their examination of the effect of commenting the test method, El Haji et al. (2024) finds 

that using the Usage Example Comment strategy resulted in the highest percentage of passing 

tests (34.78%) and the lowest number of broken tests (17.39%) within an existing test suite 

context. Additionally, this strategy produced test generations with the highest average ratio of 

covered branches matching their human-written counterparts. Similarly, they observed that 

employing the Combined Comment strategy resulted in the highest percentage of passing tests 

(21.74%) and the lowest number of broken tests (30.43%) in situations where there was no 

existing test suite. Additionally, this approach generated test iterations with the highest 

average ratio of covered branches matching those in the human-written tests. 
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5 Research Settings and Methods 

In this chapter we describe the current study’s definition and methodology. A description of 

the system under testing is also given. After this the results are presented. The results of 

research question 1 and 2 are discussed together in Chapter 5.4.1 and questions 3 and 4 are 

discussed individually in chapters 5.4.4 and 5.4.3.  

5.1 System Description 

The system, initially developed for a single research institute in 2013, is now being expanded 

to two additional large research institutes. It is essentially a project management platform that 

supports various functionalities such as project planning, solicitation of statements, and 

processing of applications and permits. Automation in specific areas improves efficiency and 

serves collaboration, facilitating the sharing of research findings. The system also provides a 

robust and user-friendly digital working platform for researchers. 

The system is designed for scalability, and it provides services to organizations of different 

sizes and supports a range of roles, including researchers, research coordinators, and project 

coordinators. It is initially set to support about 400 users and manage 1300 to 1500 

applications and permits. The system complies with national legislation and rigorous 

information system architecture requirements, with interoperable interfaces for seamless 

integration. Its modular design allows for the integration of existing features and flexibility 

for future needs. 
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Figure 2. System architecture 

 

The system employs Enterprise Java Beans (EJB) technology for database connections and 

has subsequently integrated representational state transfer (REST) architecture as shown in 

Figure 2. The backend technology has been kept constant, but the REST interfaces were 

implemented later to enhance the system's functionality. In its current version, the connections 

between the frontend and backend are entirely managed through REST calls, ensuring 

efficient communication and data exchange. This architectural approach allows for more 

flexible and scalable interactions between the system components. The EJB container in the 

application server is vital, providing a runtime environment for enterprise beans and 

managing services such as transaction management, security, and remote access. This enables 

the system to handle complex business logic and maintain transactional integrity, crucial for 

research management and digital services (Jendrock et al., 2013).  
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5.2 Research Questions 

RQ1: How valid are GitHub Copilot’s test suggestions in terms of compilation errors? 

This research question seeks to evaluate the validity of GitHub Copilot's test suggestions by 

focusing on their ability to compile successfully. The investigation involves analyzing the 

suggested test cases to determine the frequency and types of compilation errors that occur. 

Compilation errors may result from syntax errors, type mismatches, unresolved references and 

other similar issues that prevent the code from compiling. The goal is to quantify the 

proportion of test suggestions that compile without errors and identify common patterns or 

specific areas where GitHub Copilot struggles. By understanding the validity in terms of 

compilation, we can assess the immediate usability of Copilot's test suggestions in a software 

development workflow. 

RQ2: How correct are GitHub Copilot’s test suggestions in terms of execution errors? 

This research question aims to assess the correctness of GitHub Copilot's test suggestions by 

examining the occurrence of execution errors. Execution errors refer to runtime issues such as 

exceptions, incorrect logic, or failures in the test cases when they are run against the code. 

The study involves running the generated tests and recording the types and frequencies of 

execution errors. This includes analyzing whether the tests correctly validate the intended 

functionality and whether they produce false positives or negatives. By evaluating the 

correctness in terms of execution, the research seeks to determine how reliable and useful 

GitHub Copilot's test suggestions are in practice. 

RQ3: How effective are GitHub Copilot’s test suggestions in terms of code coverage? 

This research question investigates the effectiveness of GitHub Copilot's test suggestions by 

measuring code coverage. Code coverage refers to the extent to which the test cases exercise 

the different parts of the codebase, including statements and branches in our research. The 

research involves generating tests with GitHub Copilot, running them, and using coverage 

analysis tool JaCoCo to measure the resulting code coverage metrics. The aim is to find out 

whether testing is comprehensive by identifying which areas of the code are well-tested and 

which are not. High code coverage implies thorough testing, which leads to better code 

quality as bugs are caught. 
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RQ4: Are there specific test smell trends in GitHub Copilot’s test suggestions? 

This research question aims to identify and analyze the presence of test smells in GitHub 

Copilot's test suggestions. Test smells are indicators of potential problems in test code that 

can lead to maintenance issues or unreliable tests. Common test smells include excessive 

setup code, hard-coded values, lack of assertions, or overly complex test logic. The study 

involves systematically reviewing the generated test cases to detect recurring patterns of test 

smells. By identifying these trends, the research seeks to understand the quality and 

maintainability of the tests suggested by GitHub Copilot. This analysis can reveal areas where 

GitHub Copilot's test generation might need improvement to produce better quality tests. 

5.3 Methodology 

The research methodology employs a comprehensive one-shot method to evaluate the 

performance of GitHub Copilot in generating and refining test cases. This approach is 

structured into three primary steps, ensuring a thorough assessment of GitHub Copilot's 

capabilities. The test setup is described in Figure 3 below. 

 

Figure 3. Test setup 

 

Step 1: Test generation 

The initial phase involves prompting GitHub Copilot to create a test case. This process begins 

by selecting a method within the integrated development environment (IDE) using the right 

mouse button, which opens a contextual menu. Within this menu, the "Generate tests" option 

under the GitHub Copilot section is selected. Copilot’s response, containing the generated test 
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cases, appears in the chat box. These test cases are then carefully extracted from the chat box 

and saved into a designated test class for further evaluation. 

Step 2: Syntactic correctness verification and correction 

Following the generation of test cases, their syntactic correctness is verified using IDE hints 

and feedback mechanisms. If a test case is syntactically correct, it proceeds directly to the 

execution phase. However, if the test case contains syntax errors, the methodology involves 

using GitHub Copilot's "Fix this" function to request corrections. Copilot provides suggested 

corrections in the chat box, which are then extracted and saved into the test class. 

At this stage, the viability of Copilot's suggested corrections is critically assessed. If the 

corrections are significantly off-target or require extensive manual intervention to become 

functional, they may be rejected. Conversely, if the corrections are close to being accurate and 

only require minimal manual adjustments, these adjustments are made manually. This step 

ensures that only potentially viable test cases move forward in the process. 

Step 3: Test execution and quality evaluation 

Once the test cases are confirmed to be syntactically correct, they are executed to verify their 

functional correctness. Successful execution of a test case indicates that it is ready for the 

quality evaluation phase. If a test case fails during execution, the system-generated error 

messages are provided to GitHub Copilot with a request for further corrections, articulated 

using natural language commands in the chat box. The responses from Copilot, containing the 

suggested fixes, are reviewed, extracted, and incorporated into the test class. The test is then 

re-executed to check for successful execution. This cycle of requesting corrections and re-

execution is repeated a few times to explore Copilot's ability to rectify errors. 

If, after multiple attempts, the test case continues to fail and the necessary corrections are not 

easily identifiable or feasible, the test case is ultimately rejected. However, if a successful 

correction is achieved, the test case is executed again to ensure its correctness and is 

subsequently moved to the quality evaluation phase. During quality evaluation, various 

metrics such as code coverage and the presence of test smells are assessed to determine the 

overall quality and maintainability of the test case.  

To evaluate code coverage values are extracted from JaCoCo. It operates by first 

instrumenting the code, which involves adding extra code to Java classes to monitor coverage. 
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This can be done either at runtime with a Java agent or before runtime during the build 

process. As tests are run, the instrumented code collects execution data, showing which parts 

of the code were executed. After testing, JaCoCo creates reports in formats like HTML, 

XML, or CSV, which help developers see how much of their code is covered by tests and spot 

any areas that need more testing. 

Analysis of the presence of test smells is done with tsDetect, a tool that is designed to identify 

test smells in the code. The test smell detector works by first identifying the test and 

production files in a project. It then parses these files to create an Abstract Syntax Tree 

(AST). Each test smell detection module checks the AST for specific issues based on set 

rules. For example, to find "Redundant Print" smells, the tool looks at method calls in test 

methods to spot unnecessary print statements. The results are saved in a CSV file, showing 

whether each smell is present or not. (Aljedaani et al., 2021) These results are utilized in our 

analysis.  

This methodology provides a reasonable understanding of GitHub Copilot’s ability to 

generate valid, correct, and high-quality test cases in a system that utilizes the Java EE system 

by documenting key metrics. The methodology assesses Copilot's current capabilities and 

identifies specific areas for potential improvement, contributing insights into the development 

and refinement of automated test generation tools. 

5.4 Results 

In this chapter we represent the results of our research. Research questions 1 and 2 (validity 

and correctness) are discussed together. After this code coverage results are considered and 

lastly, test smells are evaluated. All chapters include examples of the tests generated by 

GitHub Copilot. 

5.4.1 Validity and Correctness 

GitHub Copilot generated a total of 62 tests of which 18 had to be discarded. 44 tests were 

accepted either one shot valid or correct or after corrections. Only 6 tests needed validity 

corrections, whereas correctness proved harder for GitHub Copilot and 21 tests needed to be 

corrected. For one focal method Copilot generated 1-3 test methods. Copilot was commonly 

able to generate all test methods one shot valid and correct if the focal method had more than 

one test method. This would suggest that test generation is more effortless when Copilot 
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decides to generate more than one test method. Results of validity and correctness are 

presented in Table 5. 

Table 5. Validity and correctness of generated tests.  

Classes named “E+number” are EJB classes and names that end in “R” are API classes. 

Focal method Test method One shot 
valid 

One shot 
correct 

E1 getEntity1FromDTO getEntity1FromDtoTest x  

E1 getByEntity1Ids shouldReturnEntity1ListWhenEntity1IdsProvided x x 

shouldReturnEmptyListWhenNoEntity1IdsProvided x x 

shouldReturnEmptyListWhenEntity1NotInCache x x 

E1 getEntity8AsEntity1 shouldReturnEntity1WhenEntity8Exists x  

shouldCreateNewEntity1WhenEntity8DoesNotExis
t 

x  

E1 getEntity1ByIdentifier shouldReturnEntity1WhenIdentifierExists x  

shouldThrowExceptionWhenMultipleEntity1WithSa
meIdentifier 

x  

shouldReturnNullWhenIdentifierDoesNotExist x  

E1 cloneEntity1 shouldCloneEntity1Successfully x x 

E2 getPopulatedListBySear
ch 

getPopulatedListBySearchReturnsCorrectList x x 

getPopulatedListBySearchReturnsEmptyListWhen
NoMatch 

x x 

E2 createEntity2 createEntity2ReturnsCorrectlyPopulatedObject x  

createEntity2ReturnsNewObjectWithUniqueIdentifi
er 

x x 

createEntity2AssignsCorrectTila x  

E2 populateEntity9 populateEntity9AssignsCorrectValuesWhenEntity9
DoesNotExist 

x  

E2 populateEntity10 testPopulateEntity10   

E2 populateEntity3 testPopulateEntity3 x x 

E2 createEntity2FromDTO testCreateEntity2FromDTO x x 

E2 getEntity11 testGetEntity2Tilatiedot x x 

E3 createEntity3 shouldCreateEntity3ForExternalUser x x 

E3 createEntity3FromDTO shouldCreateEntity3FromValidDTO x x 

E3 copyEntity3 shouldCopyEntity3Successfully   

E3 hasRightToEdit shouldReturnResponseWhenGetEntity2ByProjectI
dIsCalled 

x  

E4 getValueByIdAndType getValueByIdAndTypeReturnsCorrectValue   
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E4 getValuesByType getValuesByTypeReturnsCorrectValues x x 

getValuesByTypeReturnsEmptyArrayWhenNoMat
ch 

x x 

E12 createEntity12 testCreateEntity12 x  

E5 createEntity5 shouldCreateEntity5Successfully x x 

E5 findByParameter1AndP
arameter2 

shouldFindByParameter1AndParameter2Successf
ully 

x x 

shouldReturnEmptyListWhenNoEntity5Found x x 

E5 createEntityFromDTO shouldCreateEntityFromDTONewEntity x x 

shouldCreateEntityFromDTOExistingEntity x x 

E6 createEntityFromDTO createEntityFromDTOTest x  

E2R getEntity2ListByEntity3I
d 

shouldReturnPermissionErrorWhenUserHasNoPer
missionForProjectId 

x  

E2R getEntity2ById shouldReturnServerErrorWhenExceptionOccurs x  

E2R getEntity2ListForUser shouldReturnEntity2ListForUser x  

shouldHandleExceptionWhenGettingEntity2ListFor
User 

  

E2R getParameter3Entity2Li
stForUser 

shouldReturnParameter3Entity2ListForUser x  

shouldHandleExceptionWhenGettingParameter3E
ntity2ListForUser 

  

E5R getEntity5List shouldReturnAllEntity5WhenGetIsCalled x x 

shouldReturnEmptyListWhenNoEntity5Exist x x 

E5R saveNewEntity5 testSaveNewEntity5  x 

E5R deleteEntity5 testDeleteEntity5 x x 

 

Copilot was asked to fix errors that were either due to syntactical or execution errors. The 

prompt contained the error message and a natural language prompt “Correct test based on this 

error message”. As stated earlier 18 of the generated tests could not be corrected through this 

procedure. In these cases, Copilot generated such poor quality test code that manual 

corrections would have replaced almost entirely the generated test. As these would not 

anymore represent Copilot’s abilities, the tests were discarded.  

There were several issues due to which the generated tests were discarded. Firstly, there were 

misconfigurations in the mock objects, which were ineffective for the test scenario. Secondly, 

Copilot regularly creates unnecessary mocks and at the same time leaves out crucial mocks. 

This resulted repeatedly in null pointer exceptions during the execution of the tests. When a 

test was affected with both of the issues simultaneously, the resulting test code had only one 
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or two usable lines. Manually correcting these would have taken considerable effort, hence 

they were discarded. An example of a discarded test is represented in Code excerpt 2. 

    @Test 

    void shouldReturnEntityWhenIdExists() { 

        Long existingId = 1L; 

        Version version = new Version(1L); 

        Entity13 expectedEntity = new Entity13(); 

        when(entity13DAO.findById(existingId, version)).thenReturn(expectedEntity); 

 

        Entity13 result = entity13EJB.getById(existingId, version); 

 

        assertEquals(expectedEntity, result); 

    } 

 

Code excerpt 2. Discarded test 

 

On some occasions a test had to be rejected due to Copilot not being able to detect an obvious 

error. In Figure 4 Copilot has generated a test with two methods named identically. It did not 

spot this on its own, even after a correction request was made. Copilot's answer of not being 

able to detect any problems demonstrates it lacking abilities in detecting issues that to the 

human eye seems very straightforward.  

 

Figure 4. Screenshot of Copilot's correction suggestions 

 

Another demonstration of Copilot’s limitations on understanding contextual issues is 

represented below in Code excerpt 3 and 4. In its first suggestion Copilot uses a wrong 

Mockito method, “.returns”. After the error message was provided to Copilot, it was able to 
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successfully correct the issue and used the “.thenReturn” method. A possible reason behind 

this behavior of using non-existent methods can be that Copilot misunderstands or oversights 

the context it is provided. It is possible that Copilot did not comprehend the correct usage of 

the Mockito framework resulting in a hallucinated method.  

    @Test 

    public void shouldReturnEmptyListWhenSearchDoesNotMatch() { 

        Entity13Search search = new Entity13Search(); 

        Version version = new Version(1L); 

        when(entity13DAO.findBySearch(search, version)).returns(new ArrayList<>()); 

        List<Entity13> result = entity13EJB.getPopulatedListBySearch(search, version); 

        assertTrue(result.isEmpty()); 

    } 

Code excerpt 3. First suggestion by Copilot 

 

    @Test 

    public void shouldReturnEmptyListWhenSearchDoesNotMatch() { 

        Entity13Search search = new Entity13Search(); 

        Version version = new Version(1L); 

        when(entity13DAO.findBySearch(search, version)).thenReturn(new ArrayList<>()); 

        List<Entity13> result = entity13EJB.getPopulatedListBySearch(search, version); 

        assertTrue(result.isEmpty()); 

    } 

Code excerpt 4. Successful correction after fix-prompt 

 

The Code excerpts 5 (Initial suggestion), 6 (Correction prompt) and 7 (Corrected suggestion) 

below demonstrate another mocking issue in Copilot’s tests. In the first suggestion it did not 

mock entity8. The error message was provided to Copilot and the corrected suggestion had 

a properly mocked entity8, which prevented the initial execution error.  

 



45 
 

    @Test 

    public void shouldReturnPermissionErrorWhenUserHasNoPermision() { 

        // Given 

        Long id = 1L; 

        when(Entity3EJB.hasRightToEdit(anyLong(), any())).thenReturn(false); 

 

        // When 

        Response response = entity2Resources.getEntity2ListByEntity3Id(id); 

 

        // Then 

        verify(entity3EJB, times(1)).hasRightToEdit(anyLong(), any()); 

    } 

Code excerpt 5. First suggestion by Copilot 

 

Correct test based on this error message: 

 

[ERROR] Tests run: 2, Failures: 0, Errors: 1, Skipped: 0, Time elapsed: 0.461 s <<< 

FAILURE! - in package1.Entity2ResourcesTest 

[ERROR] package1.Entity2ResourcesTest.shouldReturnPermissionErrorWhenUserHasNoPermission  

Time elapsed: 0.305 s  <<< ERROR! 

java.lang.NullPointerException: Cannot invoke "package2.Entity8.getUserName()" because 

"entity8" is null 

        at package1.BaseRestResources.checkPermission(BaseRestResources.java:103) 

        at package1.Entity2Resources.getEntity2ListByEntity3Id(Entity2Resources.java:164) 

        at 

package1.Entity2ResourcesTest.shouldReturnPermissionErrorWhenUserHasNoPermission(Entity2R

esourcesTest.java:59) 

Code excerpt 6. Prompt given to Copilot to fix the issue 
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    @Test 

    public void shouldReturnPermissionErrorWhenUserHasNoPermission() { 

        // Given 

        Long id = 1L; 

        Entity8 entity8 = mock(Entity8.class); 

        when(userSessionEJB.getEntity8()).thenReturn(entity8); 

        when(entity3EJB.hasRightToEdit(anyLong(), any())).thenReturn(false); 

 

        // When 

        Response response = entity2Resources.getEntity2ListByEntity3Id(id); 

 

        // Then 

        verify(entity2EJB, times(1)).hasRightToEdit(anyLong(), any()); 

    } 

Code excerpt 7. Correction suggestion by Copilot 

 

All in all, Copilot does not perform consistently. There is no clear pattern to be found behind 

the incorrect behavior. Mocking appears to be the main stumbling block. One possible reason 

behind this erratic behavior is the fact that Copilot is not able to test its suggestions. It 

generates the suggestions based on its training data and understanding of programming 

patterns, but it has no internal feedback system. Without this capability to execute and 

validate the code, it may produce incorrect suggestions. This may be especially true in 

complex scenarios where context is pivotal, mocking being one of these scenarios. Copilot 

relies very much on the prompt and the context it's provided, so ambiguities in either can lead 

it astray. Thus, Copilot still requires human oversight and validation to generate good quality 

and correct output.  

5.4.2 Code Coverage 

Analysis of the code coverage results reveal that Copilot’s performance is again inconsistent. 

The line coverage values of the generated tests vary between 0% and 100%. Similarly, branch 

coverage results alter between 0% and 100%. All values are represented in Table 6. The table 

also includes Cyclomatic complexity values that measure the different independent paths 

through a program's source code, showing its complexity and the variety of ways it can run. 

The number of lines within the class is also shown in the table. 
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Table 6. Code coverage values of generated tests 

Element Line 
coverage 

Branch 
coverage 

Cyclomatic 
complexity 

Lines 

getEntity1FromDTO 89% 50% 13 34 

getByEntity1Ids 100% 100% 3 8 

getEntity8AsEntity1 81% 40% 6 25 

getEntity1ByIdentifier 100% 100% 3 9 

cloneEntity1 100% 100% 2 21 

getPopulatedListBySearch 100% 100% 2 8 

createEntity2 100% 50% 2 15 

populateEntity9 89% 50% 5 16 

populateEntity10 100% 75% 3 12 

getEntity11 0% 0% 4 7 

createEntity3 92% 50% 2 18 

createEntity3FromDTO 89% 56% 107 367 

copyEntity3 85% 31% 9 97 

getValueByIdAndType 94% 50% 2 7 

getValuesByType 100% n/a 1 4 

createEntity12 100% n/a 1 5 

createEntity5 100% n/a 1 2 

findByParameter1AndParameter2 100% 50% 2 6 

createEntityFromDTO 64% 20% 6 19 

createEntityFromDTO 84% 25% 7 44 

getEntity2ListById 24% 21% 8 34 

getEntity2ByEntity3Id 36% 25% 5 19 

getEntity2ListForUser 74% 33% 4 17 

getParameter3Entity2ForUser 77% 40% 6 19 

deleteEntity5 66% 50% 3 12 

getEntity5List 100% n/a 1 6 

saveNewEntity5 75% 50% 2 12 

Average values 80% 50%   

 

Certain patterns can be found when analyzing these results. If a test has a 100% line and 

branch coverage, it generally has a low cyclomatic complexity and low number of lines. 

These test scenarios are straightforward, single-path methods. On the other hand, high line 

coverage and lower branch coverage is found in tests that have a moderate cyclomatic 

complexity and a varying number of lines. This may suggest that some branches are missed 

even though they cover multiple paths. Further on, a high cyclomatic complexity and 

significant number of lines combined with low line and branch coverage, imply insufficient 

test coverage in complex methods. A method with high cyclomatic complexity typically has 

many conditional branches, loops or other control flow structures. This naturally creates more 
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potential execution paths that need to be covered. There are also some cases where line 

coverage is 100% and branch coverage n/a. These have a very low cyclomatic complexity and 

low number of lines, which indicates that there are no branches, hence no branch coverage 

value available.  

On the other end of the spectrum are tests that have a 0% coverage, in either of the two values 

or both. This indicates that the method or some paths are not tested at all. Code excerpt 8 

represents one of these situations. In this example the focal method itself is mocked by 

Copilot and not executed. Also, unnecessary mocks are added.  

    @Test 

    void testGetEntity11() { 

        // Arrange 

        Entity8 mockedEntity8 = Mockito.mock(Entity8.class); 

        when(entity14EJB.getEntity8()).thenReturn(mockedEntity8); 

        when(mockedEntity8.getEntity8TechnicalId()).thenReturn(1L); 

 

        Entity2 mockedEntity2 = Mockito.mock(Entity2.class); 

        Entity11DTO realEntity11DTO = new Entity11DTO(); 

        doReturn(realEntity11DTO).when(entity2EJB).getEntity11(any()); 

 

        // Act 

        Entity11DTO result = entity2EJB.getEntity11(mockedEntity2); 

 

        // Assert 

        assertEquals(realEntity11DTO, result); 

    } 

Code excerpt 8. Spectacular failure 

 

Copilot typically isolates the test method to minimize any dependencies, which might lead to 

this type of behavior. This ensures that tests can run independent of external factors, as is a 

normal testing strategy, but as is seen in this example, it may lead to excess mocking. 

However, this incorrect mocking may also result from complexity of the method. By mocking 

the method itself, Copilot might try to avoid the intricacies of the method. In this case the end 

result is an oversimplification that results in no test being performed. 

In conclusion, the more complex the method is, the lower coverage it seems to reach. A 

correlation between high cyclomatic complexity and lower line coverage is found, but not 

with branch coverage. When the complexity value is under 4, line coverage is on average 
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95%, but branch coverage is 71%. On the other hand, complexity value over 3 results in 

average line coverage of 72% and branch coverage of 36%. It needs to be stated that the 

research data has only two methods with a significantly high cyclomatic complexity, so 

understanding this tendency would need more data. But it is clear based on the results that the 

more complex the code is, the more difficult it is to achieve complete, or even higher, 

coverage to Copilot. The results are not surprising; when the focal method is practically 

always called only once with a single input per test, it can only follow one path per test. 

5.4.3 Test Smells 

Results from the test smell analysis of the generated tests are presented in Table 7. The table 

contains only those categories of which an occurrence was found. The tsDetect tool has found 

54 different tests. The difference in the number of tests can be explained through the 

difference in interpretation of test methods. The tool also includes the initialization methods 

in the overall number. The following percentages are calculated on previously mentioned 44 

tests. 
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Table 7. Test smells in generated tests 

Test class Number of 
methods 

Assertion 
Roulette 

Exception 
Catching 
Throwing 

Print 
Statement 

Eager 
Test 

Lazy 
Test 

Unknown 
Test 

Magic 
Number 
Test 

E1 11 0 0 0 0 0 0 0 

E2 11 2 0 0 4 8 2 6 

E3 4 0 0 0 0 0 0 0 

E4 4 1 0 0 0 2 0 3 

E5 2 0 0 0 0 0 0 0 

E12 6 0 0 0 0 4 0 5 

E6 2 0 0 0 0 0 0 0 

ER1 9 2 1 1 0 8 2 8 

ER2 5 0 0 0 0 0 0 0 

Sum 54 5 1 1 4 22 4 22 

 

Most common types of test smells found were Magic Number Test and Lazy Test. Both had 

22 occurrences, which means that 50% of the tests had either type of test smell. Magic 

Number Test is a test that uses hard-coded values in the test code, whereas Lazy Test 

performs weakly and might miss important validations. Assertion Roulette (5 occurrences), 

Eager Test (4 occurrences) and Unknown Test (4 occurrences) follow with significantly lower 

prevalence to Magic Number Test and Lazy Test. Assertion Roulette refers to a situation 

where the test has multiple assertions, but there is no clear indication which of them failed. 

Eager Test on the other hand results from situations of testing too much at once, making the 

demonstration of failures harder. Unknown Tests on the other hand are tests that potentially 

point to unstructured or poorly defined test cases as they do not fit into any recognizable 

patterns.  
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The significantly higher number of certain tests over others may indicate various factors 

influencing GitHub Copilot’s behavior. Firstly, Copilot might be biased to prioritize certain 

patterns or behaviors. Since it is a closed system, it is not possible to investigate this further. 

But also, the complexity of the code and code coverage may play a role here. The more 

complex the code and functionalities are, the higher the occurrence of certain test smells, for 

instance Magic Number Test and Lazy Test, may be.  

Copilot seems not to apply best practices of unit test generation, which results in the high 

prevalence Magic Number Tests. This may be a result of Copilot focusing on readability or 

maintainability of the tests, leading it to overlook coding standards. The instances of Magic 

Number Tests did not occur in edge cases or less common scenarios that many times make 

human developers overlook best practices. Code excerpt 9 exhibits a Magic Number Test 

smell. In the test Copilot has mocked a method making it return an arbitrary number “1L”, 

which has no specific meaning. The method where the number is inputted could also be 

mocked itself. This technique does not provide any additional value to this test. 

    @Test 

    void testPopulateEntity3() { 

        // Arrange 

        Entity2 entity2 = new Entity2(); 

        Entity3 mockedEntity3 = Mockito.mock(Entity3.class); 

        when(mockedEntity3.getId()).thenReturn(1L); 

        when(entity3EJB.getById(anyLong(), any())).thenReturn(mockedEntity3); 

 

        // Act 

        entity2EJB.populateEntity3(entity2); 

 

        // Assert 

        assertEquals(mockedEntity3, entity2.getEntity3()); 

    } 

Code excerpt 9. Magic number test smell example 

 

GitHub Copilot is marketed as increasing productivity and taking over mundane tasks, so that 

human developers can focus on more creative tasks. This strongly implies that speed is 

emphasized when optimizing its performance. Pursuing quick results when prompted may 

lead to Copilot oversimplifying complex scenarios. This again can lead to generation of 

simplistic tests, which only verify the most obvious or direct outcomes. It might not even 

have a goal of thoroughly going through the code and its various aspects. This is seen in a 
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high prevalence of Lazy Test Smells. A more detailed prompt might lead to more thorough 

testing, but as this research’s goal was to replicate a real-world use case of GitHub Copilot, 

complex and detailed prompts are not in the scope of this study.  
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6 Conclusions 

This case study evaluated unit tests generated by GitHub Copilot by their validity, 

correctness, coverage, and quality based on test smells. Overall, 62 test cases were generated 

of which 44 were included in the study. The discarded 18 tests were not executable and 

correcting these issues would have required considerable effort, in some cases rewriting the 

test fully. The study provides insights into the capabilities and limitations of GitHub Copilot 

with test generation automation. The findings of each research question are shortly 

summarized. Then implications of the findings are discussed and lastly a short discussion of 

future research goals concludes the study. 

6.1 Summary of Findings 

In this chapter the findings of each research question are summarized. First, the findings on 

research questions 1 and 2, validity and correctness, are discussed. Next findings for research 

question 3, code coverage, are briefly explained. And lastly, summarization of research 

question 4, test smells, is given. 

6.1.1 Validity and Correctness 

The first research question (RQ1) examined Copilot’s ability to generate compilable unit tests. 

Out of the 44 tests selected for this study only 6 required validity corrections. This suggests 

that Copilot is able to produce valid tests, however there were suggestions that failed to 

compile. These failures were mainly due to mock object configurations and the generation of 

unnecessary mocks or mocks completely missing. This suggests that Copilot has significant 

limitations in handling complex mocking scenarios without human intervention.  

The second research question (RQ2) focused on the correctness of the tests by analyzing the 

occurrence of execution errors. The study found this to be more challenging to Copilot than 

validity. Out of the 44 accepted tests, 21 required corrections due to failures. Common 

correctness issues were runtime exceptions, incorrect logic, or failures in validation of 

functionalities. Performance was also inconsistent where some tests were generated correct in 

the first attempt, while others required several correction rounds. The results show that 

Copilot has issues in detecting obvious errors, e.g. duplicate method names. It also often uses 

incorrectly the mocking frameworks.  
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In conclusion, Copilot is able to generate valid and correct unit tests, but the performance is 

inconsistent. Human intervention is needed frequently. The primary areas of difficulty for 

Copilot include handling complex mocking scenarios, detecting straightforward errors, and 

maintaining contextual understanding during test generation. The lack of an internal feedback 

system to execute and validate the generated code contributes to these limitations. Copilot is 

not able to test its own code, and therefore it relies heavily on the provided context. This in 

return may lead to hallucinated methods and other errors that risks the reliability of the 

generated tests. 

6.1.2 Code Coverage 

Research question 4 (RQ4) aimed to evaluate the effectiveness of Copilot’s tests by the means 

of code coverage. Coverage analysis tool JaCoCo was utilized in measuring line and branch 

coverage values. JaCoCo also provides measurement of cyclomatic complexity of the CUT’s 

complexity, and this was utilized in the analysis. The results highlight a significant variability 

in Copilot’s performance. Both coverage values ranged from 0% to 100%. When these 

inconsistent values are evaluated against the cyclomatic complexity values of the code, we 

found that the more complex the focal method is, the more Copilot struggles.  

The results show a clear inverse relationship with cyclomatic complexity and code coverage. 

Both line and branch coverage values were higher when the focal method's cyclomatic 

complexity value was low. For example, methods with a cyclomatic complexity under 4 had 

an average line coverage of 95% and branch coverage of 71%. In contrast, methods with a 

cyclomatic complexity over 3 had significantly lower coverage, with an average line coverage 

of 72% and branch coverage of 36%. 

The complex methods that proved difficult for Copilot often had many conditional branches 

and control flow structures, which created several execution paths. Covering these 

comprehensively with test automation by Copilot proved challenging. Reversely, with simple, 

single-path methods Copilot performed well. It often achieved 100% line and branch coverage 

in methods with low cyclomatic complexity and low number of lines. These results indicate 

that Copilot is very effective in straightforward testing scenarios.  

An additional challenge for Copilot was mocking issues, in this case excess mocking. Its 

tendency to minimize dependencies led in some situations to excess mocking. This resulted in 

not executing the actual method, which in turn resulted in 0% coverage. This behavior was 
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again observed in complex methods, which implies that Copilot might oversimplify the test to 

avoid intricate dependencies, which leads to failing to perform meaningful tests.  

In conclusion, Copilot generates comprehensive test cases in simple focal methods, but 

struggles with more complex methods. And as was observed in research question 1 and 2, 

mocking is challenging to Copilot and the challenges are bigger the more complex the focal 

method is. 

6.1.3 Test Smells 

Lastly, research question 4 evaluated the quality of Copilot’s tests by the prevalence of test 

smells. The aim was to study whether recurring patterns were found and provide insights to 

Copilot’s limitations. Our findings suggest that certain types of test smells occur more often 

in Copilot’s suggestions than others and code complexity is also at play here. Copilot’s 

behavior also suggests biases towards certain patterns, and it may prefer speedy response time 

over good quality. There also seems to be challenges in adhering to test generation best 

practices.  

The most common test smell types were Magic Number Test and Lazy Test. These occurred 

in more complex focal methods. This suggests that complexity affects Copilot’s performance 

in test generation. The more complex the code and functionalities were, the more these test 

smell types occurred. The results indicate that Copilot prefers certain patterns and behaviors, 

such as introducing magic numbers or creating multiple, similar tests for one focal method. 

This might lead to think that the system is biased inherently to utilize these types of unwanted 

patterns and behaviors. It may also favor speed over quality, in expense of thorough and 

robust test generation. GitHub markets the system as increasing productivity and might be 

pursued by emphasizing speedy response times of the system. This may lead to the generation 

of simplistic tests that verify only the most obvious or direct outcomes.  

Results of the fourth research question also indicate that Copilot does not apply best practices 

of unit testing very consistently. The high amount of Magic Number Tests and Lazy Tests is a 

testament of Copilot’s tendency to overlook coding standards. It may do this in order to favor 

readability and maintainability of the tests. The root cause of this behavior may lay in the 

emphasis of quick and straightforward suggestions.  

All in all, Copilot produces tests of reasonable quality, but it is affected by the complexity of 

the code and its possible, inherent features. Complex code may lead it to overlook coding 
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standards and start using undesirable patterns and behavior. It may also favor speed over 

quality, which in return weakens the test code quality. 

6.2 Future Research 

Future research on GitHub Copilot’s capabilities is needed. Most evident issue is the handling 

of complex test scenarios that involve intricate mocking. It could be beneficial to investigate 

how Copilot could be provided with internal feedback. It might be beneficial if it could 

execute and validate its own suggestions and thus enhance its reliability.  

This study was performed with a relatively small dataset. In the future exploring a larger and 

more diverse dataset could provide a more comprehensive understanding of Copilot’s 

effectiveness. Using methods with varying complexities might yield more insights on the 

reasons behind the challenges Copilot faces in complex code. It could also provide 

understanding to the relationship between complexity and code coverage. Adding other 

metrics could also be beneficial. In addition to the metrics used in this study, test execution 

time, fault detection capability and maintainability of the tests could provide more insights to 

the tool’s performance.  

In this study prompting was repeated similarly in all test generation situations. More detailed 

and specific prompts might produce better results. However, writing intricate prompts is time 

consuming and resource demanding, which could simply change the nature of the developers 

work, but not provide any benefits in resources. So, even though this approach might optimize 

the performance of the tool, it may not bring any real-life benefits. Lastly, future research 

could benefit from examining the generated tests longitudinally. Assessing their 

maintainability and reliability over time could provide insights to the long-term impact of this 

type of automated test generation. 

6.3 Implications 

GitHub Copilot shows potential in assisting the unit test generation process. It creates well-

structured and clearly named tests that provide savings in resources. That being said, its 

abilities diminish in situations involving complex code. It is very effective in generating tests 

for methods with low cyclomatic complexity, and in such cases performs very productively. 

Copilot’s challenges with mocking need to be considered when using the tool. Even though 

tests are generated, they may be meaningless and oversimplified. As it is also prone to using 
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unwanted patterns, such as test smells, the suggestions need to be carefully reviewed. 

Reviewing and refining the generated tests may prove hard to automate as Copilot is on some 

occasions oblivious to the most obvious errors in its suggestions. 

This study underscores the need for human insight in the test generation process. Copilot can 

streamline the process and provide useful suggestions, but human developers must always, 

even for the simple code, review the suggestions. GitHub Copilot can serve as a helping hand, 

but it cannot yet replace the expertise and critical judgment of developers. In conclusion, 

while GitHub Copilot shows promise in generating effective tests for simple methods, its 

performance is inconsistent and particularly challenged by complex methods. Developers can 

utilize Copilot for straightforward scenarios but should be prepared to review and refine its 

suggestions in more complex codebases. 
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