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Sharing synthetic data that preserves privacy has been suggested as an option for
releasing sensitive data without compromising individuals’ privacy. The synthetic
data should maintain the structure and statistical characteristics of the original
data, while ensuring individuals privacy. Differential privacy (DP) effectively assures
privacy concerns, while preserving structure and characteristics of the original data.
Objectives of this research is to evaluate Students T-test and Mann-Whitney U
test empirically to verify if those tests are prone to result in loss of tests validity
or decreased power. Empirically demonstrating this is done in terms of Type I
and Type II errors. I evaluate the statistical hypothesis tests on sets of additively
smoothed DP synthetic data generated from sets of original data. The original data
sets are simulated questionnaire data (n=20 000) following 5-point Likert Scale and
10-point Likert Scale and Kaggle Cardiovascular Dataset (n=70 000). The validity
of tests was preserved for all privacy budget values (0.001 ≤ ϵ ≤ 100) and sampled
dataset sizes (50,100,500,1000) for all data. The power of the tests was considerably
reduced in all cases.
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1 Introduction

1.1 Context of the Research

As digital information continues to grow at an unprecedented rate, with a projected

doubling every three years, the interest for using and sharing the data for research

and innovation is also rising [1]. Data has become an essential part of daily life.

For example Netflix uses data to recommend users similar movies, based on their

watching history. Google uses targeted advertising based on users browsing history,

to recommend users similar products what they have browsed before. Pharmacies

that share de-identified prescription records with private research firms emphasizes

the importance for stronger healthcare data privacy to prevent the re-identification

of patients [2].

The rise of Artificial Intelligence (AI) has increased the demand of data to train

and generate models for forecasting. Deep learning based generative models such

as Generative Adversarial Networks (GANs), can be used to generate synthetic

samples. However, due to the high model complexity of deep networks, GANs can

easily memorize the training data which can lead to potential privacy disclosure

if trained on sensitive data such as patient medical records [3]. Privacy is not too

often discussed when using data, which leads to increase risk of disclosing individuals

confidential information.

The potential risks and vulnerabilities associated with the sharing or public expo-
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sure of individuals data, such as the existence of various techniques to extract private

information from anonymized datasets highlights the importance for robust privacy

measures in order to protect individuals privacy. Techniques which are used to ex-

tract private information from anonymized datasets are for example re-identification

attacks [4][5], reconstruction attacks [6] and differencing attacks [6]. It is possible

to utilize the existing data within a dataset to deduce missing information or data

that has been partially anonymized, in order to reconstruct the dataset. Another

approach for extracting information involves linking one dataset with another that

contains data about the exact same individuals. Extraction of personal data can also

be achieved through the use of auxiliary information. If the auxiliary information

matches the data in the dataset, it is possible to single out an individual. [6]

There exists different privacy-preserving techniques to protect personal data.

Often used technique is for instance anonymization which means that the identifying

information is removed from the dataset. Examples of such techniques include n-

confusion, l-diversity and t-closeness [7]. However the primary drawback of these

techniques aimed at safeguarding privacy, is that they frequently compromise the

accuracy of data analysis. The aim of privacy research is to discover algorithms that

offer robust privacy protection for individuals while minimizing the loss of accuracy

as much as possible. In certain situations, privacy is assured but not delivered,

and instead only basic anonymization is employed which fails to protect against the

extraction of personal data. To address this issue, more advanced anonymization

mechanisms have been developed and put into practice. [6][7]

The concept of differential privacy (DP) was introduced by Cynthia Dwork in

2006 [8] as a means of anonymizing data and safeguarding the privacy of individuals

by injecting random noise into the data. DP provides a solution to the dilemma of

extracting useful information about a group while still preserving the confidentiality

of an individual’s data [8]. There has been proposed several DP methods for deep
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learning applications. Example of these applications are GANs [3], Convolutional

Neural Networks (CNNs) [9] and Reinforcement Learning (RL) [10]. These are used

to protect against for example model inversion attacks [4].

Synthetic data, proposed by Rubin in 1993 involves generating data using com-

puter algorithms instead of collecting it from real-world sources [11]. Synthetic data

is often discussed as a method for privacy preservation, however this is not the

case since it has been demonstrated that synthetic data can leak original informa-

tion. For example in the worst case scenario, generative models such as GANs [3]

can generate copies of the original data it was trained on, which leads to leaking

individuals privacy. The utilization of synthetic data offers numerous potential ad-

vantages, such as enabling the exploration of scenarios that may be impractical with

real-world data, mitigating privacy concerns, and supporting the creation of more

diverse and inclusive datasets [12]. Synthetic data has been used in various fields,

such as healthcare, finance, and cybersecurity. It is generated artificially and tries

to accurately reflect real-world data collected from actual sources. Synthetic data

presents both advantages and drawbacks. By synthesizing real world dataset, data

could become too noisy and does not accurately depict actual data. One advantage

of utilizing synthetic data is that it can be generated in large quantities and be

customized for different scenarios. Creating synthetic data once allows it to be used

indefinitely [6]. Synthetic data can also be combined with DP to create more private

data, called differentially private synthetic data (DP synthetic data) [13][12].

DP synthetic data refers to synthetic data that has been generated in a way

that protects the privacy of the individuals represented in the data. The distinction

between DP synthetic data and synthetic data without DP can be written in terms

of utility, privacy and amount of data-trade off.

The amount of utility, meaning how accurate synthetic data is to have the same

statistical properties of real data, differs when adding DP. For DP synthetic data,
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utility usually suffers compared to synthetic data without DP. [14][13][15]

Since synthetic data offers little to no privacy, adding DP to synthetic data is a

solid option to guarantee privacy. However when improving privacy of DP synthetic

data, utility of the DP synthetic data usually suffers. This is because adding too

much noise reduces utility of synthetic data and in a worse case scenario would render

the synthetic data useless, and synthetic data would not give any information about

real data [15].

DP synthetic data research focuses on providing algorithms that emphasize util-

ity. When conducting research that is sensitive, it is recommended to use DP syn-

thetic data instead of regular synthetic data to preserve privacy. Upside of DP

synthetic data is that it can be used indefinitely and also combined with another

dataset and still preserve its privacy guarantee [6]. Downside about DP synthetic

data is that either utility or the privacy of the data suffers. Too much privacy could

decrease the utility of DP synthetic data, making the DP synthetic data unusable.

It is important to keep the validity of a statistical test such as Student’s t-test

when it is applied to DP synthetic data [16]. Statistical hypothesis testing is a way

to learn about a population using a sample. Appropriate tests for different cases are

also needed. For instance for normally distributed data, Student’s t-test is a solid

option for statistical hypothesis testing [17]. One common use of the Student’s t-test

is to compare the means of two groups to determine whether they are significantly

different. For example a healthcare researcher compares the average pain scores

of patients who received a new pain management treatment to those who received

standard care. Using a Student’s t-test, the researcher analyzes the data from the

treatment and control groups to determine if the difference in mean pain scores is

statistically significant, indicating the effectiveness of the new treatment.

For DP synthetic data it could be problematic to do hypothesis testing. This is

because by adjusting the parameters of DP synthetic data algorithm, the distribution
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might change entirely. For example normally distributed dataset might turn into

uniform distribution, and it is then impossible to do accurate hypothesis testing

with Student’s t-tests. It is important to carefully design the Student’s t-test in

order to ensure that it is properly evaluating the relevant properties of the synthetic

data. This may involve specifying the appropriate null and alternative hypotheses

and choosing the appropriate level of significance for the test.

Agree-Disagree rating scales are popularly used method in social science research

questionnaires [18][19]. However such questionnaires need to be adjusted correctly

so that they yield good quality data. Agree-Disagree rating scales are susceptible

for biases. Some respondents may agree with the statement regardless of its content,

if the statement is generally depicted positive. For example "Immigration is good

for the economy" may have more Agree votes than "Immigration is bad for the

economy" since peoples tendency to be polite [19]. In this thesis main focus relies on

5-point Likert scale data, however 10-point Likert scale data is also briefly described.

Since Likert Scale is ordinal data, usually statistical hypothesis testing is done with

nonparametric tests such as Mann Whitney U-test or Wilcoxon matched paired

tests. However several studies show that parametric tests such as Student’s t-test is

a valid option to evaluate the validity and utility of DP synthetic data [20][21]. Even

though Student’s t-test is not usually done for Likert Scale, study [17] concluded

that Student’s t-test and Mann-Whitney-Wilcoxon (MWW) have similar power for

5-point Likert scale. However, there are significant power differences between the

two tests when the distributions are skewed, peaked, or multimodal.

1.2 Contributions of This Research

The research question of this thesis is to test the validity and utility of the Student’s

t-test on DP synthetic data as well as Mann-Whitney U test, generated using DP

Smoothed Histogram algorithm provided by Wasserman and Zhou [22] that has been
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modified by (Pahikkala et al) [16].

This thesis follows the contributions of this paper [16] where there has been

done empirical study of Mann-Whitney U-test on DP synthetic data with several

variations of DP synthetic data. In that paper same method was used to empirically

evaluate Mann-Whitney U test. That paper also used several other methods focusing

solely on simulated parametric data and real-world parametric data. However in this

thesis I focus solely on DP synthetic data that has been generated via Additively

Smoothed Differentially Private Synthetic Data (AS-DPSD) to evaluate Student’s

t-test and Mann-Whitney U test. These contributions will add some insight how

these two statistical tests behave on this particularly generated DP synthetic data.

This thesis also gives insights into the differences of simulated and real world data on

Additively Smoothed DP synthetic data. It also provides perspective how data size

and privacy budget dependent the Additively Smoothed DP synthetic data method

is for simulated and real world data.

1.3 Structure

In this thesis I focus on evaluating statistical hypothesis tests with Type I and Type

II errors on histogram-based DP synthetic data.

This thesis is organized to six main sections:

• Chapter 2 introduces DP and its main concepts such as privacy-accuracy

dilemma, post-processing and different DP mechanisms.

• Chapter 3 introduces the concept of synthetic data and gives an introduction

how to create synthetic data from original data. This chapter also describes different

methods to smooth histograms and sample from the smoothed histograms.

• Chapter 4 introduces the concept of DP synthetic data and gives an imple-

mentation how to create DP synthetic data with an algorithm that is specifically

designed for nonnumeric data.
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• Chapter 5, discusses using statistical hypothesis testing for differentially private

algorithms and gives a summary for the algorithm designed in chapter 5

• Chapter 6, discusses the results obtained when testing the validity of Student’s

t-test and Mann-Whitney U test on DP synthetic data.

• Finally, the conclusion of this work, presented in chapter 7, outlines future

work directions.



2 Differential Privacy

2.1 Introduction to Differential Privacy

The goal of differential privacy (DP) is to keep each person’s data private while still

being able to study the whole dataset. DP is a standard way to extract information

from a dataset while simultaniously maintaining information [8]. The idea behind

DP is that the distribution of the output of a privacy-preserving algorithm should

not change significantly whether an individual’s data is included in the dataset or

not. In DP individuals data cannot be concluded from the output of the algorithm.

DP protects data of an individual against several types of attacks, for example re-

identification attacks, reconstruction attacks and differencing attacks. In order to

achieve DP, carefully designed noise addition to algorithms that produce differen-

tially private dataset is needed [23].

DP aims creating a transformed dataset Z from an input dataset X, by protecting

individuals privacy while preserving information. In particular, if changing one

entry in the dataset X cannot change the probability distribution drastically, then

we can claim that a single individual cannot guess whether he is in the original

dataset or not [22]. For numeric datasets you can add noise to perturb the result.

However, nonnumerical queries require mechanism that can effectively introduce

noise to the dataset while accurately maintaining the discrete set of information.

This distinction between numerical and nonnumerical data is crucial in the context
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of privacy-preserving techniques such as DP, as it points out the need for specialized

approaches to protect sensitive data in nonnumerical domains [7][6].

2.2 Definitions and Theorems

Definition 1. Differential Privacy. A randomized algorithm M satisfies -DP, if for

any two datasets x and y satisfying d(x, y) ≤ 1 and for any possible output O of M ,

we have

Pr[M(x) = O] ≤ exp(ϵ)Pr[M(y) = O], (2.1)

where Pr[·] denotes the probability of an event, ϵ denotes the privacy budget

of DP algorithm and d denotes the Hamming distance between the two datasets

[23]. Privacy budget ϵ controls the level of privacy. Smaller ϵ value guarantees more

privacy, however reduces the accuracy of the dataset and vice versa [24][25].

Definition 2. Hamming distance. Given two datasets X = (X1, ..., Xn) and Y =

(Y1, ..., Yn), let δ(X, Y ) denote the Hamming distance between X and Y [22].

δ(X, Y ) = i : Xi ̸= Yi. (2.2)

In other words Hamming distance in DP could be defined as the number of pairs

of individuals for which the total value changes by less or equal to one.

Definition 3. Approximate Differential Privacy, also called (ϵ, δ)-DP, is a relax-

ation of ϵ-DP.

Pr[F (x) = S] ≤ eϵPr[F (x′) = s] + δ (2.3)
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Intuitively, this definition means that with probability 1−δ the same guarantee as

pure DP is provided. With probability δ, guarantee does not exist. Hyperparameter

δ needs to be adjusted so it does not happen. For example adjusting δ such as

δ ≤ 1
n2 , where n denotes the dataset size [6].

Definition 4. Suppose a mechanism M provides (ϵj, δj)-DP for j = 1, ..., k

a) Sequential composition: The sequence of Mj(X) applied on the same X pro-

vides
∑︁

j ϵj,
∑︁

j δj

b) Parallel composition: let Dj be disjoint subsets of the input domain D the

sequence of Mj(X ∩Dj) provides (max(ϵj), (max(δj))-DP [13]

Composition theorems explore whether privacy guarantee remains intact when

the DP-algorithms are used multiple times [8][6]. One of the composition theorem

used in DP is Sequential composition. Sequential composition has total privacy

cost of kϵ since the mechanism M is run k amount of times. Parallel composition

is another way to calculate the total privacy cost of multiple data releases. It in-

volves splitting the dataset into separate chunks and applying a differentially private

method to each chunk independently. The total privacy cost of parallel composition

is only ϵ, since parallel composition is only ran M amount of times [6]. In our case

we automatically use parallel composition, since histograms are partitioned into dis-

jointed cells [8]. Given that the chunks are disjoint, each individual’s data is confined

to a single chunk. Therefore, when the mechanism, denoted as M , is executed k

amount of times with a total of k chunks, it ensures that every individual’s data is

processed only once by the mechanism M [6].

Theorem 1. Post-Processing Theorem: Let M be an ϵ-differentially private mecha-

nism and g be an arbitrary mapping from the set of possible outputs to an arbitrary

set. Then, g ◦M is ϵ-differentially private.[26]

The post-processing property ensures the safety of conducting any arbitrary

computations on the output of a differentially private mechanism. Additionally,
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it guarantees that the privacy protection offered by the mechanism remains intact,

eliminating any possibility of compromising the privacy protection of the mecha-

nism. Post-processing is used in differentially private algorithms to reduce noise

and improve the accuracy of their results [6].

In DP, noise needed to calibrate the privacy budget ϵ depends on the querys

sensitivity. Sensitivity of a function measures the influence one individual can have

on the output of the query [27]. There exists different variants of sensitivity. For

example smooth sensitivity, global sensitivity and local sensitivity. The most widely

used variant of sensitivity is global sensitivity [6][27].

Definition 5. For a query f : D → R, the global sensitivity of f is defined as

GS(f) = max
x,x′:d(x,x′)≤1

|f(x)− f(x′)| (2.4)

[6]

Definition 6. Local sensitivity of a function f : D → R at x : D is defined as:

LS(f, x) = max
x′:d(x,x′)≤1

|f(x)− f(x′)| (2.5)

[6]

The biggest distinction between global and local sensitivity is that the query f

and the actual dataset x affects local sensitivity, where in global sensitivity only

query f affects to global sensitivity [6].

Histograms have sensitivity of 1 by default, since they are partitioned into dis-

jointed cells. Since addition or removal of single element has sensitivity of 1 [8],

global sensitivity is automatically defined. Global sensitivity works well when queries

have relative lower sensitivity values, such as counting or sum queries. For queries

such as median, average, the global sensitivity yields high values comparing with

true answers. For these type of problems local sensitivity is needed [28].
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2.3 Differentially Private mechanisms

Various mechanisms exist that satisfy DP. However, what sets these mechanisms

apart is their effectiveness on different types of data. For instance, data that is

mostly numerical is for Laplace or Gaussian Mechanism suitable. Nonnumerical

data on the other hand may rely on Exponential Mechanism to make the dataset

differentially private [6].

Definition 7. Laplace mechanism: For a function f(x) which returns a number,

the following definition of satisfies (ϵ, 0)-DP:

F (x) = f(x) + Lap(
s

ϵ
) (2.6)

[6]

where s is the sensitivity of f , and Lap(S) denotes sampling from the Laplace

distribution with center 0 and scale S. [6]

Definition 8. The Gaussian Mechanism satisfies (ϵ, δ)-DP by adding Gaussian

noise with zero mean and variance, σ2, such that

F (x) = f(x) +N (σ2) (2.7)

where σ2 =
2s2 log(1.25/δ)

ϵ2
(2.8)

where s is the sensitivity of f , and N (σ2) denotes sampling from the Gaussian

distribution with center 0 and variance σ2.

The Gaussian mechanism can be utilized in the same manner as the Laplace

mechanism for real-valued functions f : D → R, and it is simple to compare the

outcomes of both mechanisms for a given value of ϵ. It differs from the Laplace

mechanism by introducing Gaussian noise instead of Laplacian noise. It serves as

an alternative approach to the Laplace mechanism. The Gaussian mechanism does

not satisfy pure ϵ-DP, but does satisfy (ϵ, δ)-DP [6].
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Definition 9. Exponential Mechanism; 1. The analyst selects a set R of possible

outputs 2. The analyst specifies a scoring function u : D×R → R with global sensi-

tivity ∆u 3. The exponential mechanism outputs r ∈ R with probability proportional

to:

exp
(︂ϵu(x, r)

2∆u

)︂
(2.9)

[6]

Exponential Mechanism was invented for situations where the "best" response

should be chosen but adding noise directly could destroy the value [8]. The analyst

defines which element is the “best” by specifying a scoring function that outputs a

score for each element in the set, and also defines the set of things to pick from. The

mechanism provides DP by approximately maximizing the score of the element it

returns. However to satisfy DP, the Exponential Mechanism sometimes returns an

element from the set which does not have the highest score [6].

The biggest practical difference between the Exponential Mechanism and other

mechanisms such as Laplace mechanism and Gaussian Mechanism is that the out-

put of the Exponential Mechanism is always a member of the set R. Exponential

Mechanism is used in scenarios where for example Laplace Mechanism would destroy

the outcome. For example in Likert 5-scale data Laplace Mechanism should not be

used, since it could turn answer: "Neither agree or disagree" to "Disagree" [6].

Usually the problems in Exponential Mechanism arise when talking about local

DP and time complexity. Local DP as already told has higher time complexity

compared to global DP. This is why there has been developed many variants of

Exponential Mechanism such as Base 2 - Exponential Mechanism [29], Concentrated

DP with Exponential Mechanism [30], Joint Exponential Mechanism combined with

Top-k sampling [31] and Multiplicative Weights Exponential Mechanism [32].

Report noisy-max is an alternative version of Exponential Mechanism. Instead of

applying score function s of value exp
(︂

ϵu(x,r)
2∆u

)︂
, Report noisy-max algorithm produces
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score function s with u(x, r) + Lap( s
ϵ
), however it is nϵ-differentially private, thus

releases more information than Exponential Mechanism [6]. We can conclude that

for nonnumeric queries the best way to maintain accuracy and same time apply DP

is Exponential Mechanism.

2.4 Different Types of Attacks

There exists different types of attacks to get de-identified information from a dataset.

Example of these attacks are re-identification attacks, reconstruction attacks and

differencing attacks.

Re-identification attacks are type of attacks that re-identify individuals from

"anonymized" dataset. One example of re-identification attacks are linkage attacks.

Linkage attacks are attacks, that match anonymized records from a different dataset

with non-anonymized records from another dataset. An example of this is the Netflix

Prize competition. In this competition, Netflix made available a training dataset

consisting of movie records that had been anonymized. These records were linked to

similar users in the Internet Movie Database, which allowed for the identification of

the IMDB users even though their records had been at least partially anonymized

[8]. DP fixes this issue because if dataset is differentially private, it doesn´t have any

effect on auxiliary information. For instance if Netflix’s training data is differentially

private, it is close to impossible to create a linkage with it with another dataset

because other part of the linkage is differentially private, say in other words not the

same data, even if the data the user inputted to both parts of the linkage is the same

[8][6]. Another example of re-identification attack is for example the following: A

person gives an discrete answer to some non-differentially-private, yet anonymized

questionnaire, which includes age. Now if adversary has auxiliary information about

persons age, it can search by age all of the persons. And vice versa, if age is

anonymized, and adversary knows precisely the answer, it can conclude the age.



2.5 PRIVACY-ACCURACY DILEMMA 15

Another type of attack is a differencing attack. It takes into account multi-

ple statistics that include the target’s data to get sensitive information about that

person. Differencing attack means that if an adversary already knows auxiliary in-

formation about individual from the dataset, it can use that information to direct

the attack to the individual person. For example if an adversary knows that some

person is 30 years old and has blonde hair, then he searches those attributes from

the dataset [6].

A reconstruction attack is a type of privacy attack on aggregate data that re-

constructs a significant portion of a raw dataset. If we know some information

about the dataset, we can reconstruct it like a sudoku puzzle. For example: given I

know x-y things about the dataset x, I can conclude y things because I know some

x already. A type of reconstruction attack is for example model-inversion attack.

Model-Inversion attack is an attack which purpose is to recover images from a facial

recognition system [4].

Sometimes DP is not enough however to protect against re-identification attacks.

Paper [33] proposed a new way type of re-identification attack which uses noisy-

sample mean to breach in to the dataset. However there exists continously newer

methods to protect against re-identification attacks. For example paper [5] proposed

an algorithm which combines k-anonymity and pure DP to emphasize the security

which DP provides.

2.5 Privacy-Accuracy dilemma

In DP there is a dilemma between privacy and accuracy. The more private the data

is, the less accurate it becomes and vice versa. The ϵ parameter in the definition

of DP is called the privacy budget. Small ϵ values have more noise in the outputs,

which leads to stronger privacy protection. In contrast to small ϵ values, larger

values of ϵ introduce less noise in the outputs, resulting in less privacy [6].
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Figure 2.1: Central model of DP.

Figure 2.2: Local model of DP.

Adjusting privacy budget usually depends on the granularity of the data. If

very sensitive data, that can harm individuals privacy is used, it is better to adjust

privacy budget such that it maintains higher privacy over higher accuracy. Privacy

budget also depends on the variant of DP. For instance Concentrated DP, (ϵ, δ)-DP

and (ϵ, 0)-DP do not have the same way to adjust privacy budget. [34]

In DP the challenge is to add enough noise to satisfy the definition of DP, but

not so much that the answer becomes too noisy to be useful. For this process, basic

mechanisms have been developed. Mechanisms try to answer the questions: what

kind of noise and how much noise to use. For example Laplace mechanism tends to

work better in pure DP and Gaussian mechanism better in approximate DP [6].

2.6 Central version and Local version of DP

Central model of DP is a model where there is a curator who applies DP to a single

dataset [5]. An alternative to the central model of DP is the local model of DP. In

local model of DP, there is no need for trusted data curator, since the data is already

made differentially private before it arrives to the data curator. One example of local

model of DP is Randomized Response Mechanism [6].

Local model has also significant disadvantages over a central model. The accu-
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racy of the differentially private data is usually much lower in local model than in

central model [6]. Illustration of central model is shown in Figure 2.1. Illustration

of local model is seen in figure 2.2. Example of local model versus central model:

Central model: Question data is gathered from 1000 individuals, each one of the

individuals answer 10 questions. Now to implement central DP to such data, we

need to use any mechanism M to the whole dataset M(1000i× 10q). Local model:

Question data is gathered from 1000 individuals, each one of the individuals answer

10 questions. Now to implement local DP to such data, we need to use a mecha-

nism M such that for single individuals 1i answer 1q − 10q, the answer is already

differentially private before it gets combined with other individuals data [6].

2.7 Summary

In previous chapters I introduced the concept of DP. I explained why is it needed for

privacy preservation of data. How it protects against certain types of attacks such

as reconstruction attacks, re-identification attacks and differencing attacks. I also

introduced several variants such as the (ϵ, δ)-DP variant and concluded that (ϵ, 0)-

DP is the most suitable approach for the experiments that will be conducted in this

thesis. I also introduced two models of DP, central and local model. Explanation

regarding the hyperparameters which control the privacy-accuracy dilemma was

also briefly described. Mechanisms were also introduced, emphasizing Exponential

mechanism which will be the main mechanism in this thesis.



3 Synthetic Data

Synthetic data was proposed by Rubin in 1993 [11]. In its simplest terms synthetic

data produces arbitrary data which elements are not original, since it is generated

using statistical models from original data. The main idea of synthetic data is

to produce data similar to original data, so that original data is protected and

synthetic data could be safely used for example, for studies. However it is shown

that for example GANs [3] using original data as a training set, can generate copies

of the data it was trained on. This has a potential to compromise personal privacy.

Synthetic data is a new form of data that is generated from existing data. Synthetic

data can be used to fill in gaps in the current dataset or to create a dataset that never

existed before. Synthetic data can be generated either from scratch or by sampling

from existing dataset. In this thesis I focus primarily on generating synthetic data

by sampling from existing dataset. Synthetic data is pivotal in the modern age since

as the data continues to grow in exponential rate, and companies use data to sell

more products, privacy is often neglected. Synthetic data gives an arbitrary version

of original data, but still preserves the same properties as the original data if done

correctly.

Synthetic data has several valuable applications in computer vision training.

Usually computer vision training needs large amount of accurately labeled data,

which could cost a lot. With the help of synthetic data, it is possibly to generate

labeled data as a solution. In these situations privacy is not in the main concern
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because synthetic data is intended to complement real world data [12]. Synthetic

data also allows to investigate data with same causal structure as original data but

with modified distributions, which enables research under different circumstances

[12].

Given a dataset X, a synthetic dataset Y is a new dataset that has the same

structure as X , but whose elements are not original. Now we could argue that by

randomly sampling x ∈ X from the original dataset would produce synthetic data

Y where information of the people in the original dataset is secured. However this

is not the case since there still are patterns from the original distribution.

3.1 Histograms

One of the most common synthetic representation is a histogram that is used in

this thesis. Histogram has many good qualities for DP, for example it automatically

satisfies parallel composition [6]. Every "bin" in a histogram is determined by a po-

tential value associated with a data attribute. Since it is not possible for a single row

to possess multiple values for an attribute simultaneously, the definition of these bins

ensures their distinctness and disjointness [6]. There exists different ways to create

differentially private data from histograms. One way to release differentially private

numerical data is to generate differentially private histograms and then synthesize

numerical data [15].

The difference between synthetic representation and synthetic data is that syn-

thetic representation is not in the same shape as original data [6]. Histogram is

an example of synthetic representation. To make the synthetic representation in

the same shape as original data, synthetic data needs to be made from synthetic

representation. The biggest advantage of synthetic representation is that, we can

answer infinitely many queries without additional privacy budget [6].
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3.2 Sampling from a histogram

Synthetic representation is created as follows. First we want to ensure that all nu-

merical values are non-negative. Then we need to sum each count in histogram bins

so they sum to 1 and treat them as probabilities. The last phase is to produce new

samples based on these probabilities. New samples are obtained from the distribu-

tion by randomly selecting a bin of the histogram, with the choice being influenced

by he probabilities assigned to each option [6]. This last phase can be done for ex-

ample with NumPy-librarys random.choice method, which will be the main method

in this thesis to create new samples from a histogram.



4 DP synthetic data

DP synthetic data is a combination of DP and synthetic data which enables disclos-

ing data that is analytically useful while preserving the privacy of individuals in the

data. DP synthetic data is used in variety of different applications such as binary

data, categorical data, continous data and network data [13]. There exists various

ways how DP synthetic data can be generated, one example is via supervised learn-

ing model like in the paper [25]. Other data generation methods are also possible for

DP synthetic data like GANs [3] and various histogram methods such as smoothed

histogram method and perturbed histogram methods like in the paper [22].

Synthetic data usually almost always loses utility with the addition of DP. The

goal is to reduce as little utility as possible. In other words, the addition of DP should

not reduce the usefulness of synthetic data. Adding too much noise could potentially

make the synthetic data unusable for certain situations that need to retain as much

utility as possible. One of these situations could be for example cancer diagnostic of

patients. Some datasets however would rather have strong privacy guarantee on the

cost of utility. DP synthetic data is useful for such applications when people need to

only play around the dataset and not having fear of revealing sensitive information

[13].
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4.1 Creating DP synthetic data

There exists different types of differentially private made histograms, from which

differentially private synthetic data can be sampled. The paper [22] introduces two

different DP histograms. The first method draws observations from a smoothed

histogram and the second method proposed in the paper draws observations from

a randomly perturbed histogram. For histogram based DP synthetic data methods

the histogram can be made differentially private by adding for instance Laplace

noise to each count in the histogram. This satisfies DP definition because of parallel

composition [6]. The emphasis of this thesis is on the algorithm of Pahikkala et al.,

where the main focus is smoothed histogram method. Smoothing from a perturbed

histogram is not the main goal in this thesis [16].

4.2 Additively Smoothed Differentially Private Syn-

thetic Data

Additively Smoothed Differentially Private Synthetic Data (AS-DPSD) method gen-

erates synthetic data by drawing data from the probability distribution determined

by a histogram in which the probabilities of the bins are proportional to ci+
2m
ϵ

. The

number of original data in every i histogram bin is denoted as ci and the amount

of synthetic data drawn is denoted as m. The approach is similar to the one in the

paper [22]. Unlike the other considered DP methods, the utility of this method is

inversely proportional also to the amount synthetic data drawn. Therefore, in our

experiments the amount of synthetic data drawn generated is considerably smaller

than the original data [16]. The AS-DPSD-algorithm is illustrated in Figure 4.1.
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Figure 4.1: AS-DPSD algorithm

4.2.1 Hyperparameters

The AS-DPSD algorithm is heavily dependent on the hyperparameters e.g privacy

budget and the amount of synthetic data drawn from the histogram. The amount

m of synthetic data sampled from the histogram usually should be at most m = n
10

,

where n denotes the number of original data. It also depends on the type and shape

of the data, e.g if the data is continuous or discrete.

In the intermediate phase (Figure 4.3), it can be seen how different hyperparam-

eters influence the outcome of the probabilities. Based on these probabilities the

synthetic sample is drawn. This is shown in Figure 4.4.

In figure 4.3 it is seen that the lower the privacy budget ϵ is, the more the

normal distribution tends to look like uniform distribution. This leads to too much

noise and as a conclusion the synthetic dataset can not give any insight about the

original dataset, thus becomes useless. In the figure it can also be seen that when the

synthetic sample size is 100, it seems that ϵ value does not seem to have difference

and both tend to follow normal distribution. However due to the sample size being
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Figure 4.2: Original data distribution with size of 10000

only 100, it does not produce valid results.

Utility of the AS-DPSD algorithm is dependent on epsilon, number of synthetic

data drawn, number of original data and number of bins. Illustration of how every

hyperparameter and bin effects the utility is shown in Chapter 4.2.2. Figures 4.5-4.6

illustrate the simulated Likert data which is later used in the thesis.

4.2.2 Effect of bins

In this subsection I demonstrate what kind of effect do bins have on the data.

Figures 4.12-4.16 were produced by AS-DPSD from Cardiovascular Dataset with

different hyperparameters and bin sizes and Figure 4.11 shows the original dataset.

Hyperparameters ϵ was set to (0.001, 0.1, 1) and synthetic sample size was set to

1000.
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Figure 4.3: Probabilities of the AS-DPSD histogram. Original data is shown in

figure 4.2.
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Figure 4.4: Illustration of final output of the AS-DPSD algorithm. Original data is

shown in figure 4.2, and the probabilities from which the synthetic data is drawn is

shown in figure 4.3
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Figure 4.5: Simulated Likert 5-Scale data

Figure 4.6: Simulated Likert 10-Scale data
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Figure 4.7: Likert 5-scale without AS-DPSD algorithm, bins set to 5
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Figure 4.8: Likert 5-scale question 3 for males, synthetic sample size 1000, epsilon

0.001

Figure 4.9: Likert 5-scale question 3 for males, synthetic sample size 1000, epsilon 1
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Figure 4.10: Likert 5-scale question 3 for males, synthetic sample size 1000, epsilon

100

Cardiovascular dataset

In the following graphs its easier to see what kind of effect different bin sizes have

on the AS-DPSD algortihm. Looking at Figures 4.15, 4.16 and it can be seen

that having more bins makes it less accurate even though other hyperparameters

are set same, thus can be concluded that by decreasing the number of bins in AS-

DPSD makes the algorithm more accurate, which makes it easier to generate private

synthetic data.
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Figure 4.11: Cardiovascular Dataset Presence of Cardiovascular disease without AS-

DPSD algorithm, bins set to 100
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Figure 4.12: Cardiovascular Dataset AS-DPSD Presence of Cardiovascular disease

Synthetic sample size 1000, bins 100, epsilon 0.001

Figure 4.13: Cardiovascular Dataset AS-DPSD Presence of Cardiovascular disease

Synthetic sample size 1000, bins 100, epsilon 1
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Figure 4.14: Cardiovascular Dataset AS-DPSD Presence of Cardiovascular disease

Synthetic sample size 1000, bins 100, epsilon 100

Figure 4.15: Cardiovascular Dataset AS-DPSD Presence of Cardiovascular disease

Synthetic sample size 1000, bins 10, epsilon 1
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Figure 4.16: Cardiovascular Dataset AS-DPSD Presence of Cardiovascular disease

Synthetic sample size 1000, bins 1000, epsilon 1



5 Statistical Hypothesis Testing

5.1 Parametric Hypothesis Testing

Parametric hypothesis testing relies on specific probability distributions and as-

sumptions population characteristics using data collected from samples. One of the

parametric test is Student´s T-test. The fundamental concept in parametric hy-

pothesis testing is to select appropriate test statistics, such as p-value or t-statistic

[17][20].

Another concept is the p-value, which describes how much results deviate from

null hypothesis. Smaller p-value indicates stronger evidence and larger p-value sug-

gests there is less evidence for the conclusion of null hypothesis. Practical example

would be to have 2 groups with different test scores (people who study and people

who do not study). Conducting a Student’s t-test with p-value of 0.05 we have a

stronger evidence that studying helps (null hypothesis in this scenario is "there is

no significant difference in test scores between the study group and the non-study

group). Alternative hypothesis in this case is "Students who study perform better

on the test". So when the p-value is less than α, null hypothesis is rejected in favor

of alternative hypothesis. In this thesis α = 0.05 is used as a threshold value for the

significance level in parametric hypothesis tests.

Normally parametric hypothesis testing is not used in ordinal data, however,

based on study [17] normally distributed Likert scale survey has only 5 percent
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difference compared to nonparametric Mann Whitney-Wilcoxon and another paper

[20] says assumption of normality does not need to hold when conducting parametric

hypothesis testing with Student’s t-test. In this thesis I use Student’s t-test to

conduct the experiment, where X is normally distributed and I want to show that

X ∼ X ′.

Definition 10. Independent two-sample Student’s t-test:

t =
X̄1 − X̄2

sp

√︂
2
n

where

sp =

√︄
s2X1

+ s2X2

2
.

A hypothesis test can have two types of errors: type I and type II. A type I error

occurs if the test incorrectly rejects H0 when it is in fact true. A type II error occurs

if the test fails to reject H0 when the alternative hypothesis is true [24].

In this thesis all Student’s t-test experiments were done using SciPy (v1.10.1).

5.1.1 Students T-test

Student’s t-test also known as t-test, is widely used statistical test to compare

groups’ means for a particular variable. It was proposed by Mr. William Gosset,

who published his work under the pseudonym "Student", thus the name Student’s

t-test is commonly used in literature. Student’s t-test is similar to the z-test in

the way that a Student’s t-test may apply to a single sample or two-sample situa-

tions [35]. Usually Student’s t-test is used for normally distributed continuous data,

however [20] and [17] conducted otherwise. The paper [20] demonstrated the valid-

ity of Student’s t-test by simulating extremely non-Normal data. For example [17]

showed that for multimodal distributions Student’s t-test was more powerful when

the strong multimodal distribution was compared with a skewed or peak distribu-

tion, with power advantages up to 26 percent. Paper [17] showed that for Likert
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scale Type I error rate was close to the nominal value of 5 percent for all sample

sizes and for all combinations of distributions. When conducting Student’s t-test

we want also know which variation of Student’s t-test should be the most suitable

for the testing. There exists 3 variations of Student’s t-test and they all excel in

specific scenarios [35]

Usually conducting tests with Student’s t-test we want to first know if the dis-

tribution we evaluate is normally distributed or not. So we want to know if the

assumption of normality holds, this is conducted by using Shapiro-Wilk test to

show the normality of it first. Student’s t-test is said to be parametric because it is

assumed it follows normal distribution for the data.

5.2 Nonparametric hypothesis testing

Statistical hypothesis tests such as Mann-Whitney U test, Wilcoxon two-sample

test and Kruskal-Wallis tests are said to be nonparametric since is assumed it does

not follow a no specific distribution where in the case Student’s t-test does [20].

DPSD Likert scale examples in figure 5.3 are ordinal data and could work better for

nonparametric tests such as Wilcoxon, Mann-Whitney U test and Kruskal-Wallis.

5.2.1 Mann-Whitney U test

The purpose of Mann-Whitney U test is to specify if two groups from the same

distribution. Similarly like Student’s T-test. However Student’s T-test assumes

data is normally distributed where Mann-Whitney U test does not.

Mann-Whitney U test calculates the U statistic for each group Ux, Uy. Mann-

Whitney U test is defined mathematically:
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Definition 11.

Ux = nxny +
nx(nx + 1)

2
−Rx (5.1)

Uy = nxny +
ny(ny + 1)

2
−Ry (5.2)

[36]

where nx, ny represents the data and Rx, Ry represents the sum of ranks assigned

on groups Ux, Uy.

5.3 Type I and Type II errors

A Type I error is an incorrect rejection of a true null hypothesis. This type of error

is also called a false positive. The probability of a Type I error can be reduced by

decreasing the significance level (e.g., from 0.05 to 0.01). Type I error comes from

if statistical hypothesis test such as Mann Whitney U-test says that there exists

difference between two samples when there actually is no difference [24]. Unlike

Type I error, Type II error occurs if a statistical hypothesis test fails to reject false

hypothesis. In this thesis we focus on the null hypothesis H0, which is that two

samples or groups are drawn from the same distribution. An illustration of the

possible outcomes of statistical hypothesis tests are shown in Figure 5.1.

H0 is true H0 is false

Reject H0 Type I error TP

Fail to reject H0 TN Type II error

Figure 5.1: Illustration of all of the possible outcomes of statistical tests.



6 Results

This chapter consists of evaluating parametric tests such as the Student’s t-test

on DP synthetic data generated from Likert 5-scale data, Likert 10-scale data and

Cardiovascular dataset BMI data. Type I and Type II errors are used to test whether

statistical hypothesis testing performed on differentially private synthetic data is

likely lead to loss of tests validity or decreased power. I will also conduct the

evaluation on nonparametric tests such as Mann-Whitney U test on Likert 5-scale

data, Likert 10-scale data and Cardiovascular dataset BMI data.

6.1 Experimental Evaluation

Set of experiments was performed when using DP synthetic datasets generated from

both simulated and real-world datasets. This is to evaluate the utility of the Stu-

dent’s t-test on DP synthetic data empirically. In the following subsections, we

present the datasets, the implementation details of the DP synthetic data genera-

tion method used (Additively Smoothed Differentially Private Synthetic Data) and

the experiments conducted. The original dataset in this thesis is Kaggle Cardio-

vascular dataset [37]. This dataset consists of two variables, one is binary and the

other one is a continuous variable. The binary variable represents the label of two

groups (healthy and non-healthy). The continuous variable on the other hand is

used to compare the groups (healthy and nonhealthy) with Student’s t-test and

Mann-Whitney U test. Simulated data in this thesis is 5-point Likert scale, 10-
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point Likert scale. Similarly like the original dataset implementation, this dataset

was split into binary variable and ordinal variable when evaluating the power (Type

II error) of Student’s t-test and Mann-Whitney U test. We also evaluate the utility

(Type I error) of Student’s t-test and Mann-Whitney U test with 5-point Likert

scale and 10-point Likert scale AS-DPSD data. More accurate description of how

the simulated data is generated is shown in the Chapter 6.2.

6.2 Implementations

In this thesis the data is generated using Pythons built-in Random library. The type

of data which was generated follows mainly 5-point Likert scale, where the choices

are Neither agree or disagree, disagree, agree, strongly agree and strongly disagree.

I used these answers to be generated since they are commonly used in question data

-related queries [18]. I also take a brief look into 10-point Likert scale. I also choose

one parametric test and one non-parametric tests for evaluation of the DP synthetic

data. The main focus relies on evaluating the utility of Student’s t-test, however

MW u-test is also used for evaluation of the same data. In this thesis the data

was simulated very careful way in which it still resembles normal distribution even

though the data itself is ordinal.

6.2.1 Simulated Data

This procedure goes as follows: First we initialize c which has length of histogram

count vector h. Then we initialize m which is the number of synthetic data to be

drawn. The privacy budget is ϵ which has the values of [0.05, 1]. Original data has

the size of 10000, from which AS-DPSD algorithm takes m amount of data which

is 50, 100, 500, 1000. Sample sizes greater than 5, do not require the assumption of

normality and will yield nearly correct answers even for manifestly nonnormal and
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asymetric distributions like exponentials [21].

We can see from this simulated Likert Data that all of these behave similarly. In

this particular scenario Type II error starts to fall of when the dataset size is 100

and the epsilon is 1 or above. This is also predictable because mostly commonly in

the DP-literature the privacy budget is set to be between 0.01 and 1. This can be

seen for example in the paper [15], where different groups competing in Differential

Privacy Synthetic Data Challenge used ϵ values ranging from 0.01 to 1.

It is also important to categorize the Student’s t-test and Mann-Whitney U

test evaluation between power and utility. This is done by generating simulated

signal data and nonsignal data. In signal data the data is sampled from two distinct

distributions while in nonsignal data the data is sampled from the same distribution.

Experiment is done in this way because we want to show Type I for nonsignal data

and Type II errors for signal data. Illustration of different types of errors is shown

in Figure 5.1 and in Figure 5.2.

6.2.2 Results with original data before AS-DPSD

The results of Student’s t-test and Mann-Whitney U test with the original data

before AS-DPSD algorithm were the following. The p-value of the Student’s t-test

for the Nonsignal 5-point Likert scale before AS-DPSD algorithm was ≈ 0.46 and

for Nonsignal 10-point Likert Scale before AS-DPSD algorithm was ≈ 0.06. The

p-value of the The Mann-Whitney U test for the Nonsignal 5-point Likert Scale

was ≈ 0.35 and for Nonsignal 10-point Likert Scale before AS-DPSD algorithm was

≈ 0.08.

Student’s t-test for the Signal 5-point Likert scale before AS-DPSD algorithm

was 0 and for Signal 10-point Likert Scale before AS-DPSD algorithm was ≈ 6.21×

10−262. The Mann-Whitney U test for the Signal 5-point was 0 and for Signal

10-point Likert Scale before AS-DPSD algorithm was ≈ 7.21× 10−296.
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a) Non-Signal Data

b) Signal Data

Figure 6.1: Student’s T-test for 5-point Likert Scale data

For both signal data, all of the p-values before AS-DPSD algorithm are below

0.05 and for non-signal data the values are above 0.05.

6.2.3 Data generation

Nonsignal data was generated to evaluate the validity of Student´s T-test and Mann-

Whitney U test with Type I errors. Note that test is valid, for example Student´s
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a) Non-Signal Data

b) Signal Data

Figure 6.2: Student’s T-test for 10-point Likert Scale data

T-test is valid, if the proportion of Type I error is below significance level (0.05).

Signal data on the other hand was generated to evaluate the power of statistical

hypothesis tests in this thesis. The power of a statistical hypothesis test is the

probability of correctly rejecting a false null hypothesis that is below significance

level [16]. Likert 5-scale nonsignal data was generated by using Numpys Random-

library. Generation consists of creating two groups of data "male" and "female" and
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creating a scale with options "Strongly Disagree", "Disagree", "Neutral", "Agree",

"Strongly Agree". The weights were put [0.1, 0.2, 0.4, 0.2, 0.1] for the 5-scale data,

from which 10000 males and 10000 females were sampled evenly. Likert 5-scale

signal data was generated similar way as the nonsignal data, but male and females

having different weights. For instance females having weights [0.2, 0.3, 0.5, 0.1, 0.1]

and males [0.1, 0.1, 0.5, 0.3, 0.2]. Nonsignal and signal Likert 10-scale data follows

the same protocol.

6.2.4 Real world data

For the real world data, the experimentation was used with Kaggle Cardiovascular

dataset. Comparison was done by calculating body-mass index (BMI) from weight

and height columns. Then the experimentation was done by splitting the data into

two. One group that have cardiovascular disease and another group who do not have

cardiovascular disease (yes-disease and non-disease). Null hypothesis H0 in this case

is “The BMI level for individuals with the presence of cardiovascular disease and the

ones with absence cardio-vascular disease originate from the same distribution” [16].

Experiments were repeated 1000 times to compute the proportion of Type II error.

6.2.5 Results with data after AS-DPSD algorithm

The Figures 6.1-6.4 have very similar results on both Mann-Whitney U test and

Student’s T-test. There is almost no difference between Likert 5-scale and Likert

10-scale on Type I error neither for Mann-Whitney U test nor Student’s T-test.

However for Type II error, Likert 5-scale reaches Type II error at 100 for synthetic

size 1000 for both Mann-Whitney U test and Student’s T-test. Likert 10-scale

reaches Type II error at around 7 for both Mann-Whitney U test and Student’s

t-test.

We can see from the Figure 6.5 that the difference between Mann-Whitney U
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a) Mann-Whitney U

test Type I error for 5-point Likert Scale data

b) Mann-Whitney U

test Type II error for 5-point Likert Scale data

Figure 6.3: Mann-Whitney U test evaluation with Type I and Type II errors on

AS-DPSD Exponential Mechanism with 5-point Likert scale scale data.

test and Student’s T-test is that the Type II error starts to fall sooner towards 0.05

and for Student’s T-test much later. However both tests reach 0.05 mark on 102.

From Figure 6.6 the impact of bin size can be seen. The decrease in power is larger
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a) Non-Signal Data

10-point Likert Scale Mann-Whitney U test

b) Signal Data

10-point Likert Scale Mann-Whitney U test

Figure 6.4: Mann-Whitney U test evaluation with Type I and Type II errors on

AS-DPSD Exponential Mechanism with 10-point Likert Scale

on Figure 6.6(a) than on Figure 6.6(b). Similar results as in Figure 6.6 can be seen

in Figure 6.7.
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a) Signal Data

cardiovascular dataset Student’s t-test

b) Signal Data

cardiovascular dataset Mann-Whitney U test

Figure 6.5: Cardiovascular dataset 10 bins
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a) Signal Data

cardiovascular dataset Student’s t-test

b) Signal Data

cardiovascular dataset Mann-Whitney U test

Figure 6.6: Cardiovascular dataset 100 bins
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a) Signal Data

cardiovascular dataset Student’s t-test

b) Signal Data

cardiovascular dataset Mann-Whitney U test

Figure 6.7: Cardiovascular dataset 1000 bins



7 Conclusion

The aim of this thesis was to study the validity and utility of the Student’s t-test

and Mann Whitney U test on DPSD that is sampled from AS-DPSD-algorithm. In

this study it was shown that Mann-Whitney U test and Student´s T-test performed

on Likert 5-scale data led to decreased power for ϵ values being ≤ 100 for both

tests. Mann-Whitney U test and Student’s T-test performed on Likert 10-scale led

to decreased power for ϵ values being ≤ 101 for both tests. Mann-Whitney U test

and Student’s T-test got similar Type I errors on both Likert 5-scale data and Likert

10-scale data, where the p-value being around 0.05. Note that the test is valid if the

Type I error is less or equal than the significance level. Looking at Figure 6.2(a)

for instance it can be seen that the Type I error is not always less than 0.05 for all

ϵ values. By using AS-DPSD one should carefully consider the hyperparameters of

the algorithm or when simulating data. This is more crucial when the simulated

data is ordinal scale. However according the results of this thesis and paper [18],

it should not have too much effect when using statistical hypothesis test to ordinal

scale data.

7.1 Future works

In future works it would be beneficial to include the evaluation of utilities of other

parametric and non-parametric tests used with the same AS-DPSD (Additively

Smoothed Differentially Private Synthetic Data) - algorithm. Also more real datasets
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are needed, since in this thesis I only delved into Kaggles Cardiovascular dataset.

The variety of hyperparameters is needed with the combination of dataset size and

the type of simulated data. Given only few Likert type of datas with really specific

distributions were used, it would be beneficial to see different distributions, other

than normal distributions. Smaller and larger Likert scales could be used in future

experiments.
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