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ABSTRACT

This thesis comprises four articles in multiplicative and additive number theory, two
subfields of analytic number theory, concerning e.g. the distribution of primes, mul-
tiplicative structures and additive structures.

In the first article, we consider a combination of two breakthroughs on prime
gaps (small prime gaps and large prime gaps), and improve on a previous result
given by Pintz. We also apply a similar strategy to improve on previous works on
lower bounds for the least prime in an arithmetic progression. The proofs rely on a
variant of the Maynard-Tao theorem and arguments used in proving long prime gaps.

In the second article, we study a lower bound for the L; norm of the exponential
sum of the Mobius function over short intervals. This result extends the long interval
version given by Balog and Ruzsa. The proofs are based on the Balog-Ruzsa struc-
ture and an improvement for a key lemma. In the improvement we use two different
techniques — complex analysis and van der Corput’s method.

In the third article, we study Vinogradov’s three primes theorem with Piatetski-
Shapiro primes. Our result significantly improves the existing results via applying
the transference principle and Harman’s sieve method. Besides, we improve on a
Roth-type result for Piatetski-Shapiro primes given by Merik.

In the fourth article, we study dj bounded multiplicative functions in almost
all short intervals. Our results generalize the breakthrough given by Matomiki and
Radziwitt and improve on Mangerel’s result. The proofs depend on the Matomiki-
Radziwilt method and introducing restrictions on prime factors.

KEYWORDS: prime gaps, the least prime in an arithmetic progression, van der Cor-
put’s method, M6bius function, Vinogradov’s theorem, Piatetski-Shapiro primes, the
circle method, the transference principle, Harman’s sieve method, divisor function,
short intervals, the Matomaki-Radziwilt method, Dirichlet polynomials
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THVISTELMA

Tamé viitoskirja koostuu neljastd artikkelista, jotka koskevat multiplikatiivista ja
additiivista lukuteoriaa, kahta analyyttisen lukuteorian osa-aluetta, jotka liittyvit e-
simerkiksi alkulukujen jakautumiseen sekd multiplikatiivisiin ja additiivisiin raken-
teisiin.

Ensimmadisessi artikkelissa tarkastelemme alkulukujen lyhyisiin ja pitkiin etédi-
syyksiin liittyvien ldpimurtojen yhdistdmisti parantaen Pintzin aiempaa tulosta. Sovel-
lamme samankaltaista strategiaa my0s parantaaksemme aiempia tuloksia alarajalle
pienimmastd alkuluvusta aritmeettisessa jonossa. Todistukset perustuvat Maynard-
Tao -lauseen muunnelmaan ja alkulukujen pitkien vilien tulosten todistuksiin.

Toisessa artikkelissa tutkimme alarajaa Mobiuksen funktion eksponenttisumman
Li-normille lyhyilld vileilld. Tdmaé tulos yleistdd Balogin ja Ruzsan todistaman
pitkien vélien version. Todistukset perustuvat Balog-Ruzsan todistuksen rakenteeseen
ja avainlemman parannukseen. Parannuksessa kéytetddn kahta eri tekniikkaa —
kompleksianalyysid ja van der Corputin menetelmad.

Kolmannessa artikkelissa tutkimme Vinogradovin kolmen alkuluvun lausetta Pia-
tetski-Shapiron alkuluvuille. Tuloksemme parantaa merkittdvésti olemassa olevia
tuloksia soveltamalla transferenssiperiaatetta ja Harmanin seulamenetelméad. Liséksi
parannamme Merikin todistamaa Roth-tyyppisté tulosta Piatetski-Shapiron alkulu-
vuille.

Neljannessd artikkelissa tutkimme dj, -rajoitettuja multiplikatiivisia funktioita
melkein kaikilla lyhyilld vileilld. Tuloksemme yleistdvidt Matomien ja Radziwittin
lapimurtoa ja parantavat Mangerelin tulosta. Todistukset hyodyntidvidt Matomaki-
Radziwilt -menetelmasi ja alkutekijoiden lukumiirén rajoittamista.

ASTASANAT: alkulukujen etdisyydet, pienin alkuluku aritmeettisessa jonossa, van
der Corputin menetelmi, Mobiuksen funktio, Vinogradovin lause, Piatetski-Shapiron
alkuluvut, ympyramenetelmd, transferenssiperiaate, Harmanin seulamenetelmad, te-
kijafunktio, lyhyet vélit, Matomaiki-Radziwilt -menetelmi, Dirichlet’n polynomit



Preface

Number theory, a field both simple and complex, has captivated many mathemati-
cians. I feel immensely happy to be among those dedicated to number theory re-
search. It is called simple because many of its problems are stated very straightfor-
wardly, such as Goldbach’s Conjecture: “Is every even number greater than or equal
to 4 the sum of two prime numbers?” and the Twin Prime Conjecture: ”Are there
infinitely many pairs of prime numbers that differ by 2?7 However, it is also called
complex because solving these problems can be extremely difficult, requiring pro-
found mathematical insights and tools, and sometimes they may remain unsolved.
For instance, both of these conjectures are yet to be proven.

Five years ago, I was anxious about finding a doctoral position because my un-
dergraduate and master’s degrees were not in mathematics, making it challenging to
find a Ph.D. position in mathematics/number theory. Fortunately, during my master’s
studies, I conducted some research in number theory, which served as the only proof
of my mathematical abilities.

An academically outstanding advisor is likely to produce good students. Con-
tacting Professor Kaisa Matoméki to be my advisor was a suggestion from my col-
laborator, Professor Hao Pan. I remember Hao Pan telling me, "Matomiki is very
strong, and I believe she will become even stronger.” Although I was not very famil-
iar with multiplicative number theory (one Matomaki’s research fields) at the time, I
trusted Professor Pan’s words, as he knew me well.

My supervisor, Professor Kaisa Matomaki, is a master of analytic number theory
and one of the most mathematically talented individuals I have ever encountered.
When we first started communicating via email, I always addressed her as Professor
Matomiki. Later, she told me we could be more informal, so I began addressing
her as Kaisa. After the COVID, we would meet weekly to discuss mathematics,
sometimes for just a few minutes, sometimes for an hour. I was amazed by Kaisa’s
mathematical abilities, as even short meetings often provided me with profound in-
sights. Kaisa quickly grasped what I was saying and pointed out the critical points.
She is also an excellent teacher, capable of explaining profound mathematical theo-
rems in the simplest language. One of the most memorable moments was when Kaisa
explained the key parts of the transference principle to me in just over ten minutes.

During my Ph.D. studies, the pandemic was the most challenging period. For the
first year and a half, my studies were overshadowed by the pandemic. In September

\'



2020, I left China for Finland for the first time, feeling both worried about adapting
to life and eager to discuss mathematics with many excellent mathematicians. Things
turned out to be more challenging than expected. At the beginning of my Ph.D., I
hadn’t done mathematical research for a long time, had little knowledge of analytic
number theory techniques, and nearly everyone was working remotely from home.
Coupled with the Finnish winter, my emotions became very tense, and my academic
progress was slow. After eight months of rest in China, I returned to Finland to con-
tinue my unfinished doctoral journey. During my time back in China, Professor Lilu
Zhao invited me to Shandong University for a long-term visit, where we discussed
mathematics, played billiards, and had an unforgettable time. During the pandemic,
Kaisa and I kept in touch almost weekly through emails, discussing topics like the
circle method, sieve methods, exponential sum estimates, and mean value theorems.
Under her guidance, I completed a piece of work.

Upon returning to Finland, I worked my hardest until I finished my fourth paper.
I found that I could quickly learn advanced mathematical techniques and understand
deep mathematical ideas. These techniques and ideas have now become part of my
toolkit. Reflecting on the time when I completed my first paper during my Ph.D., my
English writing was very poor, and sometimes my English expression and sentence
structure were chaotic. Kaisa patiently helped me revise it at least six times until
it reached a submission-worthy version. For the subsequent papers, 1 paid more
attention to detail each time. Although I couldn’t achieve perfection, I tried to do
better within my abilities.

In the spring of 2023, China’s pandemic policies began to ease, making it easier
to return home. After attending conferences in Bristol and Oxford in the summer of
2023, I stayed in China for two months. Returning to my homeland after two years
was exhilarating. Many colleagues enthusiastically invited me for academic visits.
After returning to Europe, I attended a conference in Bonn, Germany, and then busily
prepared for postdoctoral applications. Writing materials, submitting resumes, and
waiting for interview opportunities took a long time, and the interviews were nerve-
wracking. Fortunately, in January 2024, I received a fantastic offer from Professor
Ben Krause at the University of Bristol, and I hope my future academic journey will
also be smooth.

In the following acknowledgment, I want to thank all my teachers, friends, and
family who helped me during my Ph.D. studies.

First, I want to express my special thanks to my supervisor, Professor Kaisa
Matomaiki, for her patient and meticulous guidance in mathematics and paper writing
during my Ph.D. studies, and for providing many valuable suggestions. I am grateful
for her funding support, which allowed me to attend international conferences and
academic visits, listen many wonderful talks, and meet many academic peers. Her
concern for my well-being made me feel warm even in a foreign land.

I deeply appreciate the reviewers of my doctoral dissertation, Alexander Man-
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gerel and Aled Walker, for carefully reading my thesis and providing excellent eval-
uations and useful suggestions. I also want to thank Oleksiy Klurman for agreeing
to be my opponent.

I am sincerely thankful to Edufi, UTUGS Turku University Graduate School, and
the Academy of Finland project no. 333707 for funding my Ph.D. studies.

Special thanks go to my colleagues in the number theory group at the Univer-
sity of Turku: Sebastian Zuniga Alterman, Martin Cech, Jesse Jéisaari, Sarvagya
Jain, Olli Jarviniemi, Mikko Jaskari, Stelios Sachpazis, Joni Terdviinen, and Mengdi
Wang. I cherish the times we spent dining together, discussing mathematics, and
having fun.

Additionally, I am grateful to the colleagues who invited me for talks or visits,
including Wang Chen at Nanjing Forestry University, Lixia Dai at Nanjing Nor-
mal University, Bingrong Huang and Yongxiao Lin at Shandong University, Max
Wengiang Xu at Stanford University, Zikang Dong and Guangliang Zhou at Tongji
University, Zhenyu Guo and Ping Xi at Xi’an Jiaotong University, Yuchen Ding at
Yangzhou University as well as Jie Ma, Tuan Tran, and Lilu Zhao at the University
of Science and Technology of China. Thank you for giving me the opportunity to
present my work. Furthermore, I am thankful to Andrew Granville for discussions
on mathematics and guidance.

I am deeply grateful to my parents for their upbringing and constant encourage-
ment and support. They have always provided me with a loving and harmonious
family. My mother has great foresight, and my father has a tenacious will; they are
my role models. I also want to thank my family for their continued care and support.

Lastly, I want to thank all my friends who have accompanied me along the way.
Special thanks to my beloved Mingin Zhang, who is like a treasure in my life. You
have always been by my side, warming and supporting me through difficult times.
You are like a little sun, brightening my world.

May 27, 2024
Yu-Chen Sun
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1 Notations

1.1

Sets
N — the set of positive integers {1,2,3,... }.
Z, — the set of all integers.
R — the set of all real numbers.
R>o — the set of all non-negative real numbers.
C — the set of all complex numbers.
[N] — the finite set {1,2,..., N}
P — the set of primes.
P(2) — the product of primes less or equal than z, P(2) := [[,, p-
N¢ — the set {[n¢] : n € N} for ¢ > 1.
‘P. — the set of Piatetski-Shapiro primes, namely P, := P N N¢, for ¢ > 1.

7c(z) — the number of p € P, with p < z°and ¢ > 1.

Functions

1g(n) or 1,,cs — the indicator function of the set S, which equals 1 if n € S
and equals 0 otherwise.

7(2) — the number of primes no more than x.
D, P1,D2, - - - , Pn — prime numbers.
e(a) — the additive character 2™ with o € R.

¢(n) — Euler’s totient function, counting the number of integers 1 < k < n
with (k,n) = 1.

Q(n) — the number of prime factors of n counting the multiplicities.



Yu-Chen Sun

* w(n) — the number of distinct prime factors of n.

* A(n) — the Von Mangoldt function, which is equal to log p if n = p* for some
prime p and k£ > 1, and equal to 0 otherwise.

* A(n) — the Liouville function, given by A(n) := (—1)2(").
* p(n) — the M&bius function, given by 11(n) := A(n) Lsquarefree numbers (72)-

* d(n) — the number of the representations for writing n as a product of two
positive integers, d(n) := > 1

mimo=n '

* di(n) — the number of the representations for writing n as a product of &
positive integers, di(n) := >

mimse..Mr=n "

» P(X) — the probability of the event X.

p~ (n) — upper bound and lower bound sieve weights satisfying p~ (n) <
1p(n) < p* (n).
* p(n, z) — the indicator function of z-rough numbers, p(n, 2) := 1, ps .-

* ||| — the distance from « to the integer(s) closest to a, ||« := min,ez | —

* log;, © — the k-th iteration of the logarithm function, namely log, (z) = log
and log, () := log(log;,_,(x)), k > 2.

1.3 Analysis
Let f:R— Candg: R — Rxo.

e f(z) = O(g(x)) or f(x) < g(x) — there exist some constant C' > 0 such
that [ f(x)| < Cg(x) forall x € R.

* f(x) > g(x) — there exist some constant C' > 0 such that f(z) > Cg(x) for
allz e R.

* f(z) < g(z) —wehave f(z) < g(z) and g(x) < f(x).
e f(x) = o(g(x)) — we have lim,_,~ f(x)/g(x) — 0.

* f(z) ~ g(xz) — we have lim,_,o f(z)/g(x) — 1.



Notations

1.4 Fourier language and norms
Let f,h:[N] - Candg:[0,1) — C.

* f(a) — the Fourier transform of f, namely, f(a) := >, -y f(n)e(na).

* f * h— the convolution of f and h, (f * h)(n) :=>_, . _. f(n1)h(n2).
* 1fllg— L norm of £, [ fllq = (Cycpen £,

1 1
* |lgll¢ — Lq norm of g, [|gllq := ([ lg(a)|9da)s.

1.5 Miscellaneous
* Ap(A)— therelative upper density of A in B, namely Ap(A) := limsup_, %.

* 6p(A) — the relative lower density of A in B, namely dp(A) := liminfy_,~ \‘EQFJ\\;H .

e a~A—therange A < a < 2A.



2 Introduction

Additive number theory focuses on discovering additive structures within subsets of
integers. A classical tool in analytic number theory to study these additive structures
is the Hardy-Littlewood method, also known as the circle method. This approach
utilizes Fourier analysis and exponential sum estimates. In recent years, several new
methods have emerged to investigate additive structures. For instance, Green’s trans-
ference principle incorporates ideas from harmonic analysis.

Multiplicative number theory centers on the distribution of primes, multiplicative
functions, and multiplicative structures. Unlike additive number theory, the standard
tool in multiplicative number theory is complex analysis. A fundamental concept in
multiplicative number theory is the theory of the Riemann zeta function.

While these two research areas may seem distinct, there are instances where they
become intertwined, and some of the most notorious open problems in number theory
have elements from both areas. Our overarching objective in the thesis is to illustrate
several instances of these intersecting phenomena.

One of the most famous open problems in number theory is the twin prime con-
jecture, which conjectures that there are infinitely many prime pairs with difference
2. In recent years, significant progress has been made towards this conjecture, no-
tably by Zhang [85]. He proved that there are infinitely many prime pairs (p, ¢) such
that [p — q| < 7 x 107. Subsequently, the bound 107 has been improved multiple
times by [54; 65]. The best-known unconditional record for the bound is 246. If one
assumes a certain generalization of the Elliott—Halberstam conjecture, then 246 can
be improved to 6.

Turning to the existence of large prime gaps and letting p,, be the n-th prime
number, Cramér made a heuristic argument, conjecturing that p, — pn—1 < log®n
for all n > 1. This conjecture suggests that the gaps between consecutive primes
do not become very large. In 2014, Ford, Green, Konyagin, Maynard and Tao [17]
proved that there are infinitely many consecutive prime pairs (py,, pr+1) such that

lognlogs nlogyn

Pn+1 — Pn > 2.1)

logsn

In article [1], jointly with Hao Pan we study the distribution of the primes, where we
combine the small and large prime gaps together by proving that for any fixed m,
there are infinitely many m + 1-tuples (Pp—m+1, Pn—m—+2; - - - » Pn, Pnt1) Such that
Pn — Pn—m+1 < 1 and p,41 — pn, satisfies (2.1).
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Introduction

Another example that involves both multiplicative and additive number theory
is the study of the exponential sum of the Mobius function. This encompasses both
a multiplicative function, M&bius function and additive characters e(na). In 1937,
Davenport [15], proved that for any « € [0, 1) and any fixed A > 0

X
> lmena)| < -5

n<X

for all sufficiently large X > 0. Recently, Matoméki and Terdvéinen [51] studied the
short interval version of Davenport’s theorem and showed that, for any H > X3/5+¢
with any € > 0,

S un)e(na)| = o(H),

X<n<X+H

improving a work of Zhan [84]. In 2001, Balog and Ruzsa [6] proved a lower bound
for the L1 norm for the exponential sum of the M&bius function by establishing that

/1 > p(n)e(na)| da > X0,
0

n<X

In article [II], we extend the Balog-Ruzsa theorem to short intervals by proving that
for sufficiently large X and H > X9/17t€ with any € > 0, we have

/ 1 Z p(n)e(na)| da > HYS.
0

X<n<X+H

One of the famous open problem in additive number theory is the binary Gold-
bach problem, which conjectures that every even integer n > 4 can be written as
a sum of two primes. On the other hand, the weak version, the ternary Goldbach
problem, asks whether every odd integer n > 7 can be written as a sum of three
primes. This was proved by Vinogradov [79] for all sufficiently large odd integers.
This theorem is known as Vinogradov’s three primes theorem. In 2013, Helfgott [29]
announced a proof of the ternary Goldbach problem.

In article [III], jointly with Du and Pan, we study Vinogradov’s three primes
theorem where primes are restricted in a sparse subset of primes—Piatetski-Shapiro
primes (primes of the form |n¢| for some fixed ¢ > 1). Specifically, we proved
Vinogradov’s three primes theorem for Piatetski-Shapiro primes whenever 1 < ¢ <
41/35 ~ 1.171, improving upon the work of Jia [37].

Another interesting topic in additive combinatorics is Roth’s theorem, which as-
serts that any A C N with positive upper density (An(A) > 0) contains non-trivial

5
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three term arithmetic progressions. In 2003, Green [25] proved a Roth-type theo-
rem for primes by showing that any A C P with relative positive upper density
(Ap(A) > 0) contains non-trivial three term arithmetic progressions. In article [III],
we also proved that any subset of Piatetski-Shapiro primes, for 1 < ¢ < 243/205 =~
1.185, with relative positive upper density contains non-trivial three term arithmetic
progressions improving upon the work of Merik [56].

One topic studied in multiplicative number theory is the distribution of primes
and the sums of arithmetic functions in short intervals. For instance, Huxley [31]
proved that for all sufficiently large X and H > X 7/12+¢

z A(n) = (1+o0(1))H.

X<n<X+H

Following this, Motohashi [57] and Ramachandra [68] independently proved that for
all sufficiently large X and H > X 7/12+¢

X<n<X+H

Recently, Matomiki and Radziwilt in their breakthrough paper [49] proved that for
any 1-bounded multiplicative function, any sufficiently large X and h — oo with
X — oo,

S| =

S st Y fm=oly S I
z<n<z+h

r<n<2x X<n<2X

holds for almost all z € [X,2X]. In article [IV], we study the Matomiki-Radziwtt
theorem for dj-bounded multiplicative functions in almost all short intervals. For any
fixed integer k > 2 and any sufficient large X and for all h > (log X )klogk—k+l+e
with any € > 0, we are able to show that for almost all z € [X, 2X],

% Z dy(n) — é Z d(n) = o(log"~! X) (2.2)

z<n<z+h r<n<2c

holds. This improved on the work of Mangerel [47]. On the other hand, we proved
that the exponent k log k—k+1 is optimal by showing that if b < (log X )* 108 k—hk+1—¢
with any € > 0, then (2.2) fails for almost all z € [X, 2.X].



3 Gaps between consecutive primes

3.1 Primes and prime gaps
3.1.1  Primes and primes in short intervals

A prime number is a positive integer greater than 1 that is not a product of two smaller
natural numbers. For z > 2, recall that 7(x) denotes the number of primes up to .
The prime number theorem states that

m(2) = (1+0(1))

log x’

> A(n) = (1+o(1))z.

n<x

or equivalently

To understand the distribution of primes better, one studies primes in short intervals.
Specifically, it is of interest to study for how small # > 0 one can show the asymptotic
formula
Y An) = (1+0(1))a’. (3.1)
r<n<z+z?

By a zero-density argument, Huxley [31] showed that (3.1) holds for 6 > 7/12,
which has been improved by Heath-Brown [28] by showing (3.1) holds for 6 >
7/12 — e for some small ¢ > 0 tending to 0 when x tends to infinity.

To determine whether there is a prime in (x, 2 + Y], we only need to find a lower
bound for the left-hand side of (3.1). The best known result is due to Baker, Harman
and Pintz [2], who show the lower bound

Z A(n) > ¥,

z<n<z+zf

for 6 > 0.525.

3.1.2 Small gaps between primes

Pairs (p,p + 2), where both p and p + 2 are primes, are called twin primes. The
recent breakthrough towards twin prime conjecture is due to Zhang [85] where he
proved the existence of infinitely many prime pairs (p, ¢) with |¢ — p| < 7 x 10",

7
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Subsequently, this upper bound was refined by Maynard [54] and Tao (unpublished)
to 600 and then was improved by Polymath project [65] to 246. Maynard and Tao ap-
plied almost the same method — multi-dimensional sieve method now also known as
the Maynard-Tao sieve method. In fact, the Maynard-Tao method can detect primes
from more general “admissible sets”.

We say that a set of integers

H = {hi, ha, ... hy}

is an admissible set if for any prime p, there exist a (mod p) such that h; #Z a (mod p)
for all 1 < ¢ < k. Let us state [54, Theorem 1.1] which concerns small prime gaps.

Theorem 3.1. Let m > 2. There exists a constant k,,, depending on m such that the
following holds. Suppose that H = {h1, ha, ..., hy,, } is an admissible set. For every
sufficiently large X, there exists an integer n € [ X, 2X]| such that n + H contains at
least m primes.

3.1.3 Large gaps between primes

For large prime gaps, there are two aspects to consider. One involves an upper bound
for the prime gaps, also known as primes in short intervals as mentioned earlier. The
other is a lower bound for the largest gap between two consecutive primes. Let p,, be
the n-th prime number. From the prime number theorem 7(z) = (1 + o(1)) 155, it
is easy to see there are infinitely many prime pairs (py,, pn+1) such that p, 11 —p, >
logn. Westzynthius [81] first proved the non-trivial result that there are infinitely

many consecutive prime pairs (py, pn+1) such that

Pn+l — Pn > f(n) logn (3.2)

where f(n) — oo with n — oo. The lower bound in (3.2) was improved several
times. Brauer-Zeitz [9] improved it to

log nlogs n
logy n

then it was improved by Erd6s [16] to
log nlogy n
(logz n)? -

Later, Rankin [69] showed that there are infinitely many prime pairs (py,, pn+1) such

that
log nlogy nlogyn

(1og3 n)2

Pnt1—pn 2 C 3.3)
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for some constant C' > 0. ErdGs offered a $10, 000 prize for a proof or disproof of
the claim that the constant C' in the above inequality may be taken arbitrarily large.

Recently, Maynard [55] and Ford, Green, Konyagin and Tao[18] independently
used different approaches and proved that C' = oo. By combining the two meth-
ods, Ford, Green, Konyagin Maynard and Tao [18] improved the results further by
showing there are infinitely many integers n such that

log nlog, nlogy n

Pn+l — Pn > (3.4)

logs n

Motivated by the recent breakthroughs on small and large prime gaps, in article [I]
we proved the following theorem

Theorem 3.2. For any m > 1, there exist infinitely many n such that

Pn — Pn—-m S Cm (35)

and
cm lognlogy nlogyn

Pn+1 —Pn =2 ) (36)

logsn

where Cy,, ¢y, > 0 are two constants depending only on m.

This theorem improves on Pintz’s result [64].

3.2 The least prime in an arithmetic progression

Another topic related to large prime gaps is the least prime in an arithmetic pro-
gression. In fact, both large prime gaps and lower bounds for the least prime in an
arithmetic progression are connected to studying lower bounds for Jacobsthal’s func-
tion j, see [34]. If m is a positive integer then j(1m) is defined to be the maximal gap
between integers coprime to m and studying the large prime gaps is closely related
to studying lower bounds for j(m) with m = [],., p for some = > 1. Pomerance
[66, Theorem] pointed out the lower bound for j(m) also implies a lower bound for
the least prime in an arithmetic progression.

For any positive integers k and [ with (k, ) = 1, let p(k, [) denote the least prime
of the form kn + [ with n > 1. There are three popular directions to study p(k,1).
The most popular one is to investigate upper bounds for P(k) := max 3)— p(k, ).
Linnik [45] proved that P(k) < kL with a large constant L. This result has been
called the Linnik theorem and the value L has been improved many times see [60;
11; 38; 12; 23; 13; 80; 82]. The best known result is L < 5 due to Xylouris [83]. All
proofs above heavily rely on information concerning zeros of Dirichlet L-functions.

Very recently, there are three different L-function-free proofs of the Linnik theo-
rem. Granville, Harper and Soundararajan [24] applied pretentious approach to prove

9
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the Linnik theorem but did not give an explicit value of L. Friedlander and Iwaniec
gave a sieve-theoretic proof of Linnik’s theorem in [19, Chapter 24] and made it ex-
plicit in [20; 21], showing L < 7,574,400. Matomiki, Merikoski and Terdvidinen
[52] developed a sieve that can detect primes in sets that are multiplicative structured
in a certain sense to show that L < 350. Assuming GRH (the Generalized Riemann
Hypothesis), Chowla [14] observed that L. < 2 + ¢ for any ¢ > 0 and he further
conjectured that L < 1 + € for any € > 0.

The other two directions are studying lower bounds of P(k) and p(k,l) with
fixed [. In fact, known lower bounds for these two are closely connected to lower
bounds for large prime gaps.

Concerning lower bounds for P(k), Pomerance [66] proved that, for any suffi-
ciently large positive integer k£ which has no more than exp(log, k/ logs k) distinct
prime factors, we have

log k log, k log, k
(logs k)?
and this result was improved by Li, Pratt and Shakan [44] who proved that, for any

P(k) > ¢(k)

sufficiently large positive integer k£ with no more than exp (%%#) distinct
3

prime factors, we have

log k log, klogy k

P(k) > ¢(k) o,

For the lower bound of p(k, [) with fixed [, Prachar [67] and Schinzel [73] proved
the existence of infinitely many & such that

klog klogsy klog, k
(logs k)?

In article [I], we improve the above lower bound to

p(k,1) >

klog klogsy klog, k
k,l .

3.3 Long prime gaps and a covering idea

In order to have long gaps between consecutive primes p, and p,y1, we need to
ensure that all integers between p,, and p,, 11 are composite numbers. Hence, the key
to obtaining a better lower bound for long prime gaps is finding more consecutive
composite numbers between two primes. To achieve this goal we utilize a “covering
system” based on the following lemma

Lemma 3.1. Let y > x > 0 be sufficiently large integers and let M = HPS 2D
If there exist residue classes {a, (mod p)}p<y such that all integers n € [x,y] are

10
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covered by {a, (mod p) } p<, meaning that for any n there is a prime p < x such that
n = ap, (mod p), then there exists 1 < b < M such thatn € [M +x+b, M +y+ b
are all composite.

Proof. By the Chinese reminder theorem, there exist 1 < b < M such that b =
—ap (mod p) for all p < x. We claim that for all n € [z,y], M + b + n are all
composite. This is because, for each n € [z, y], there exists a prime p < x such that
n = ap (mod p) and thus M + n + b = 0 (mod p). Since M + n + b > x, these
numbers are all composite. O

From the above lemma, we observe that choosing p,, to be the largest prime
such that p, < M + x + b results in p,+1 — p, > y — x. By the prime number
theorem, we have log M = (1 + o(1))x which implies that 2 = (1 4 o(1)) log p, =
(1 4+ 0(1)) logn. The remaining task is to determine the largest possible y such that
every n € [z,y] is covered by {a, (mod p)},<,. For instance, to prove (3.4), one
needs to show that for

_ xlogzlogsyx

(3.7)
logy x

the condition of Lemma 3.1 holds. In the rest of this chapter we always let y :=

1 1
y(o) = =R

3.4 Digging holes

To successfully combine small prime gaps with large prime gaps, we aim to dig
some “holes” in the previously mentioned string of consecutive composite numbers.
Then we insert primes into some of the holes. The distances between these holes
need to be small to obtain small gaps between primes. By applying the Maynard-Tao
method, primes can be detected in admissible sets. In the following, we will employ
an admissible set to dig these holes. Recall the definition of admissible sets and let

Hn ={q1,92,...,qn} for any primes ¢; > n

which is admissible, since ¢; #Z 0 (mod p) for all primes p < n and for all primes
p > n there is a;, (mod p) such that a,, # ¢; (mod p) foralli =1,2,...,n.

Because we will dig holes in the interval [z, y] and have bounded gaps between
the holes, having an admissible set within the range [x, 2+ O(1)] is essential. Thanks
to the Maynard-Tao theorem, we can find an n-tuple of primes (g1, g2, . . ., ¢,) With
bounded gaps in any sufficient large interval [ X, 2X]. Then we can choose = = ¢;.
Hence, we will employ H,, to create these gaps. The following lemma describes how
to dig holes.

Lemma 3.2. Let x > 0 be sufficiently large integer and y = y(x) is as before.
Let H = {hi,ho,...,hi} C [x,2x] be an admissible set such that |h; — h]|

11
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are bounded for all 1 < i < j < k. Let M = Hpgzp. If there is a cover-
ing system {a, (mod p)}p<y such that all integers n € [x,y| \ H are covered by
{ap (mod p) }p<az, then there exist 1 < b < M such that if

n = b (mod M),
thenn + [x,y] \ n + H are all composite numbers.

Proof. See the proof of Lemma 3.1. ]

3.5 Overview of the proof
3.5.1  Small prime gaps (holes)

By looking at Lemma 3.2, we would like to find a prime tuple (p1, p2, . .., pm) from
the set n + H where n = b (mod M ). Hence the first question is how does n grows
with M tending to infinity.

The original arguments for the Maynard-Tao theorem required that the modulus
M 1is not too large, specifically, it needed to satisfy

M < H p. (3.8)

p<Klogloglogn

Recall that = (1 + o(1)) log M and (3.7). If the largest size of M is from (3.8),
then the large prime gap we obtain is

zlog x logs x loga nlog, nlogsn
y—z> g X 1083 > g3 &4 g6

logy logs n
which is much smaller than we want. Fortunately, a variant of Maynard-Tao theorem
established by Banks, Freiberg and Maynard [7, Theorem 4.3] allows us to choose

M = T]p<ciogn Where ¢ > 0 is a small constant and ¢y is an exceptional modulus.
b)f%

3.5.2 Large prime gaps

In order to choose the suitable {a, (mod p)},<, satisfying the condition of Lemma
3.1, Ford, Green, Konyagin Maynard and Tao [17] employ a probabilistic method to
prove that with probability 1 — o(1), one can find such residue classes. In our case an
additional requirement is imposed: a, ¢ H (mod p) for all p < x with p { go. With
slight modification of the discussions in [17], we successfully proved such residue
classes {a, (mod p)},<, exist with probability 1 — o(1).

In the following, we introduce the ideas for proving long prime gaps, which is
also the most important part in article [1].

12
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A sieve idea

Let

and recall that
_ xlogzlogyx

—~

log, x

For a fixed large constant C' > 0, consider the following sieving sets

Si={secP:logz<s<z}

x x
] = D < —=
fte® ZC<t_C'}

x
Q:={qeP:—= <qg<uy}.
C
For residue classes as = {as (mod s)}ses and a7 = {a; (mod t) }e7, let
S(as) :={n €Z:n# as (mod s) forall s € S}

and
T(ar) :={n€Z:n#a (modt)forallte T}.

The following proposition is the key in [17].

Proposition 3.1. There are residue classes as = {as (mod s)}scs and ay =
{a; (mod t) }sc7 such that

12N S(as) NT(ar)| < 5

: 3.9
2logx (3-9)
Let us explain why Proposition 3.1 implies long prime gaps. We use a sieve
approach. Let as and a7 be as in Proposition 3.1 and define {b, (mod p)},<./c
such that
% ifpeSUT,
b 0, otherwise

If n € [x/C,y| cannot be covered by {0 (mod p)},<,/c then n is either z-smooth
pESUT
or has the form pd withp € TUQand 1 < d < I/%C implying that d = 1.
Note that the number of the z-smooth numbers is < ﬁ lozx and #7 < ﬁgz.
By Proposition 3.1, we have

X

QN S(as)NT(ar)| < Slogz

13



Yu-Chen Sun

Therefore, the number of integers in [z/C, y] that cannot be covered by {b), (mod p) },<./c
is no more than

#{n € [x/C,y] : nis z-smooth} + #T + |Q N S(as) N T(ar)|

< 1 n 1 n 1 z < (1 2 T

—\100 C  2)logzx C /) logx
for sufficiently large C' > 0. We can choose residue classes {a, (mod p)},/c<p<a

to cover those integers one-by-one. Then the long prime gaps follow from Lemma
3.1.

Probabilistic ideas

Now we introduce the probabilistic ideas in the proof of Proposition 3.1 that allow
us to find ag and a7 that cover most primes in Q. We choose the random residue
classes as = {as (mod s)}scs by selecting each as (mod s) uniformly at random
from Z/sZ. Then we have the following lemma.

Lemma 3.3. With probability 1 — o(1), we have

|QN S(as)| < log, . (3.10)

X
log =
Proof. See [17, Corollary 5]. ]

The next step is to choose a7 = {a; (mod t)};c7 using probabilistic model
which is the hardest part. In fact, Ford, Green, Konyagin, Maynard and Tao [17]
used the hypergraph covering theorem [17, Theorem 3] in their proof. Let us just
explain the idea behind its application to long prime gaps. One finds a probabilistic
model and hypergraph such that the following conditions (non-rigorous) hold.

* (small edges): In [17], for all £ € T, a random edge e;, with small size,
corresponds to a subset of the random residue class a;. Later, they use a subset
of Uretes to cover QN S(as);

* (sparsity): P(n € e;) is “small” foralln € Q N S(as) and ¢ € T. It means
that the probabilistic model is not concentrated on a small number of edges.

* (uniform covering): >, .+ P(n € e;) > 1 for almost all n € Q N S(as),
which means that almost all » can be covered by many e,,.

* (small codegrees) For all distinct n1,n2 € QN S(as), > ,crP(n1,n2 € )
is small, which means that [{t € T : n; € e; Ang € e;}| is small.

14



Gaps between consecutive primes

Then, by the hypergraph theorem ([17, Corollary 4 and Theorem 4]), with probability
1 — o(1), (3.9) holds. The probabilistic model is chosen by the multidimensional
sieve, see [17, Sections 6 and 7]. We have now provided an overview of the idea
behind the proof, and we suggest the interested reader refer to article [I] for the
structure and [17] for more details.
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4 On the Balog-Ruzsa Theorem in short
intervals

4.1 Exponential sums

Estimating exponential sums is one of the most important tasks in the circle method
which can be used to study additive structures in subsets of integers. For example,
for understanding additive structures in primes, one needs to estimate

Z A(n)e(na), 4.1

n<N

for a € [0,1). The following theorem ([58, Theorem 8.5]) claims that if « is close
to a rational number with medium size denominator, then (4.1) is o( V).

<

Theorem 4.1. Let a,q, N € Nand1 < a < q < N. If(a,q) = 1 and ‘a—%
1/q2, then,

Z A(n)e(na) < <q1]\§2 + N5 4 N1/2q1/2> log? N
n<N

It is natural to ask whether we can get some cancellation for other exponential
sums, e.g. exponential sums of multiplicative functions.
Davenport [15] proved that for sufficiently large IV, we have

)

Z u(n)e(na) <4

A
nN log™ N

forany @ € [0,1) and any A > 0.
Baker and Harman [ 1], under the Generalized Riemann Hypothesis (GRH), proved
that for sufficiently large N, we have

Z p(n)e(na) < N3/4+e,
n<N

for any a € [0, 1) and any € > 0.
In addition, another important task in the circle method is to estimate L, norms
of exponential sums, aiming to achieve power saving results for certain values of
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p > 0. For example, if we employ the circle method to attack the tenary Goldbach
problem, then it is useful to estimate the Lo norm of the exponential sum for the von
Mangoldt function. Thanks to Parserval’s identity, we have

2

/ ZA e(na)| da =< Nlog N.

n<N

However, when p < 2, such as p = 1, we can utilize the Lo norm to control the L
norm. Using the Cauchy-Schwarz inequality, we obtain

2 1/2

/ZA )| da < / > An) da < NY210g'/? N.

n<N n<N

However, we cannot ascertain whether the upper bound for L; norm is optimal. Mo-
tivated by this, it becomes imperative to delve into the exploration of the lower bound
for the L; norm. For instance, Vaughan [78] proved that

/ ZA (na) doz>>N1/2

n<N

For some other important arithmetic functions f : N — C in number theory, one can
also consider bounds for the L; norm of the exponential sum, i.e. study

/ > fn (4.2)

n<N

If f(n) is the von Mangoldt function, then the best known upper bound for (4.2)
is < N'/2log!/? N while the best known lower bound is > N'/2. When f(n)
is the divisor function d(n), Pandey [61] gave an asymptotic formula of the size
N2 for (4.2) improving the work by Goldston and Pandey [22]. When f (n) is
the Liouville function A(n), Pandey and Radziwilt [62] recently obtained (4.2) is
> N'/4, improving Balog and Perelli [5]. For f(n) = u,(n), the indicator function
of r-free numbers, which equals 1 if for every prime p | n we have p” t n, and
equals 0 otherwise, Balog and Ruzsa obtained the correct magnitude N =+ for (4.2)
improving earlier work by Briidern, Granville, Perelli, Vaughan, and Wooley [10].
We now state their result for r = 2.

Theorem 4.2 (Balog-Ruzsa). Let N > 2. Then

N§<< )| da < N.
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As a corollary, they deduce that if f(n) = p(n), the Mobius function, then (4.2)
is > N1/6,

Inspired by investigations on primes in short intervals, in article [II], we proved
the short interval version of the Balog-Ruzsa theorem

Theorem 4.3. (i) Lete > 0and N > H > N1, Then

/T Z 12 (n)e(na)| do > Hs.

[n—N|<H

(ii) Lete >0and N > H > N21¢, Then
/ Z p2(n)e(na)| do < Hs.
T lin—N|<H
As a corollary, we also show that when H > N9/17+¢,

/T Z u(n)e(na)| da > Hs.

In—N|<H

4.2 Outline of the proof of Theorem 4.3

The proof of Theorem 4.3 starts from converting the single exponential sum into a
double exponential sum using the identity

pA(n) = uld).

d?|n

Next, we split the double sum into two parts depending on the size of d, namely

N N
S imena) =" S p(d)e(na)
n=1

n=1  d?n

1<d<N'/2
N N
Y ety Y wldetna)
n=1 d?n n=1  d?n
1<d<D D<d<N*'/?
=T +Ts. 4.3)
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The main task is to achieve an effective saving for the L, norm of 75. In fact, for
trivial reasons, 75 is relatively small for large D. We have

Z Z p(d)e(na) < Z Z 1

n=1  d%|n D<d<N1/21<n<N
D<d<N'/2 dIn

< > Y 1<ND 4N

D<d<N'/2 1<n<N
d?|n

Remark. In practice, we will not directly apply the above trivial arguments. Instead,
we will apply L2 norm to bound the L; norm of 75 and apply Parseval’s identity. We
will choose D = H'/3 in our short interval case.

4.2.1 The key lemma

The above argument suggests that the Ly norm of T, should be small. Therefore, we
can use the Ly norm of 75 to bound its L; norm.

Lemma 4.1. Forany1 < K < N and y < d < z, we have

2
3 ( S 1) < KD~ ' 4 NY210g3 N. (4.4)
N—-K<n<N d?|n
D<d<N'/?
Proof. See [6, Lemma 1]. ]

For the long interval case, (4.4) is sufficient. However, if we consider the short
interval case with a length of interval shorter than N3/4, then (4.4) is not enough.
Let us use the upper bound case to explain the reason.

Suppose that we study

Y Bmema)= S S ulde(na)

N<n<N+H N<n<N+H d?|n
1<d<N'/2?
= Y Y e+ Y Y u(deno)
N<n<N+H d2|n N<n<N+H  d?|n
1<d<D D<d<N'/?
=T+ Ty, (4.5)

and we can handle the L; norm of 7] well by following Balog-Ruzsa’s arguments.
By the Cauchy-Schwarz inequality, Parserval’s identity and Lemma 4.1 with K = H
and D = H'/3, we have

1 1 1/2 12
Tjlda < TiPda) < (H*P+N'"2log N) '~ < HY3 4 NVAte,
2 2
0 0
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Recall the claim in Theorem 4.3. The first term above is corresponding to our ex-
pectation, but if we require the second term NY/4t¢ <« HY/3 then H > N3/4te,
Hence, in order to make the interval shorter than N 3/ 4+€ we have to improve on
Lemma 4.2. The following improvement of Lemma 4.1 is [II, Lemma 3.1].

Lemma4.2. Let1 <K < N, e> 0and1 <y < min{z, K'/2~¢}. We have

2 12 10
3 ( 3 1) < Ky~ '+ N¥+ey=5, (4.6)
N-K<n<N = d[n
y<d<z

This is the crucial ingredient in article [II]. Let us outline the proof of Lemma
4.2. Initially, observe that the left-hand side of (4.6) can be bounded by

> o1 Y > (4.7

N—-K<n<N [d?,d%]|n N—-K<n<N n=h%d2d2a
y<d;<z y<hd;<z
(dl,dg)zl

By a dyadic argument, we can assume d; ~ D; and da ~ D5 for some Dy, Dy > 0.
Without loss of generality, we further assume D; < D>. We now apply two different
approaches to get the upper bound. Let D’ be an parameter that will be optimized
later. When Do < D', we apply the hyperbola method to bound (4.7) by

3 I oD S P SN VI

di~D N i <a< ] 1
d;ND; ﬁﬁhg(wﬁ 12d2d2—a—12d2d2 a<(d2d2)3 ad2d2)2 <h< (d§d§)2

(4.8)

Then we apply a standard Fourier expansion of {z} and the van der Corput bound to
2(p+g)+1 19— 4ptdqt2

yield that (4.8) is at most N ¢w+h " “D'*”"sa+1) | where (p, ¢) is the exponent pair
(2/7,1/14).

Remark. In the proof of Lemma 4.2, the exponent pair has to satisfy that 1—-4p+2qg >
0, so it is convenient to choose (p,q) = (2/7,1/14). If one assumes the exponent
pair conjecture, namely (p,q) = (n,n) for any n > 0, then we can improve the
second term in (4.6) to N %J“Ey_% which can yield a shorter H in Theorem 4.3.
Specifically, under the exponent pair conjecture, the length H in Theorem 4.3 (i) and
(ii) can be improved to N %t < H< Nand Niwitc < H< N respectively, and
correspondingly, in the Mobius case, we can also improve H to N Lteom < N.

When Dy > D', we apply Perron’s formula to rewrite (4.7) as the integral

1 14-e+iTo NS — (N _ K)S

27 J1qe—iT, s

C(s)P(2s)ds + N°, (4.9)
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where T < N and

1 1 1
di~Dy L do~Dy 2 h~H

is a Dirichlet polynomial. By contour integration, we shift the integral in (4.9) to
the 1/2 line. It is not difficult to imagine that the residue at s = 1 contributes

) (ﬁ), the contributions of two horizontal lines can be absorbed into O(N€)
and the contribution of 1/2 line is < N/2+ey=1/2D/~3

Finally, we choose D' = N %+Ey_% to balance the two upper bounds obtained
above.

4.2.2 Balog-Ruzsa’s ideas
The Fejér kernel

The Fejér kernel, see (4.10), is the Cesaro mean of the Dirichlet kernel Dy («) :=
E\nlg ~ €(na). In some cases the Fejér kernel can be regarded as a smooth replace-
ment for the Dirichlet kernel. In Balog-Ruzsa [6], they utilized the Fejér kernel,
which can help save at least one log factor in the upper bound of L; norm. This will
be explained in the following. Recall the definition of the Fejér kernel

In| sin?(rNa) ) 1
F — _ =+ N, ——— . (4.10
N (@) Z < N e(na) N sin?(ra) D N|la? (4.10)
In|<N
By the uniform upper bound of Dy («), the L1 norm of the Dirichlet kernel is
1 1
1
/ | Dy ()] da < / min {N, } < log N.
0 0 ]

However, the L; norm of the Fejér kernel is

1 1
1
|Fn(a)|de <</ min{N,} < 1,
/o 0 Njo?

This suggests that one may be able to apply the Fejér kernel to save log N in upper
bounds of L norms.

The upper bound case for the Balog-Ruzsa theorem

By the previous discussion, we only need to focus on L; norm of 77. However, if we
interchange the summations and bound the L; norm of 77 by

3 /01 S e(na)|da,

1<d<D 1<n<N
d?|n
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then we can imagine that an extra log NV comes from the integral, since the Dirichlet
kernel appears. The idea to remove the log N is to utilize the Fejér kernel (other
good/smooth kernel should also be fine ) and actually Balog and Ruzsa smooth the
indicator 1j; nj(n) by a trapezoidal function which can be regarded as a Fourier
coefficient of 527 (NFy(a) — KFg (a)) where K = (1 —n)N for small ) > 0.

The lower bound case for the Balog-Ruzsa theorem

To prove the lower bound for the L; norm, we utilize some ideas from the circle
method. Thanks to Parseval’s identity and Lemma 4.1 (or Lemma 4.2 for the short
interval version), we can see that the L; norm of 75 is much smaller than the I
norm of 77. Let us focus on estimating the L; norm of 77. By interchanging the
summation, we have

Ti= 3 ud) Y etna)= Y wdGala).

1<d<D 1<n<N 1<d<D
d?|n

Let 1 < a < d? with d sqaurefree. We choose suitably the major arcs
. a 1 .
Mepqa Cael0,1): ‘a — ﬁ‘ < N and My = U Mz 4
1<a<d?
(a,d?) squarefree

and show that the following three conditions are satisfied:

* When a € Mgz, Gy(ar) > I is significantly larger than other G4, () with
do # d.

¢ The measure of 142 is not too small, meaning that |9t 42| > sz Hp‘ d (1 — z%) >

d2

W.
* For distinct dy, d, Mgz N Mgz = 0.

Then one can show that
1
T |do > My>| min |Gy(e)| > D = N3
| mldas 3 ol min (Gate)

1<d<D

For more details the interested reader may refer to the article [II].
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5 Vinogradov’s theorem with
Piatetski-Shapiro primes

5.1 Vinogradov’s theorem and its variants

One of the most famous open problems in number theory is Goldbach’s problem
which ask whether any even number n > 4 can be written as a sum of two primes.

In 1937, Vinogradov (see e.g. [59, Chapter 8]) used the circle method to prove
a weak version of Goldbach’s problem by showing that any sufficiently large odd
integer n can be written as a sum of three primes.

In recent years, many people have proved variants of Vinogradov’s three primes
theorem. From the combinatorics perspective, one can investigate Vinogradov’s
three primes theorem for subsets of primes with positive relative density. In 2010, Li
and Pan [43] established that if A, Ao, A5 are subsets of primes with positive relative
lower densities (dp(A4;) > 0fori € {1,2,3}), and 6p (A1) +0p(A2) +dp(A43) > 2,
then any sufficiently large odd integer n can be written as n = p; + p2 + p3 with
pi € A;. Subsequently, Shao [75] considered Vinogradov’s three primes theorem
for a single subset of primes with positive relative lower density and showed that if
A C P with 6p(A) > 5/8, then any sufficiently large odd integer can be written as
a sum of three elements in A.

From the number theory perspective, number theorists have explored Vinogradov’s
three primes theorem for some special forms of primes. In 2017, Matomiki and Shao
[50] demonstrated that any sufficiently large integer n = 3 (mod 6) can be written
as a sum of three Chen primes (the set of primes p such that p 4+ 2 has at most two
prime factors). Additionally, for any fixed m > 2, they proved that there exists
H(m) > 0 such that any sufficiently large odd integer can be written as a sum of
three primes p1, p2, ps such that [p;, p; + H(m)| contains m primes for i = 1,2, 3.
Many researchers have studied Vinogradov’s three primes theorem with primes in
short intervals. The shortest intervals have been reached by Matoméki, Maynard and
Shao [48] who showed that for any ¢ > 0, every sufficiently large odd integer n can
be written as n = p1 + pe + p3 with |p; — n/3] < n%?5T¢, Teriviinen [76] proved
that Vinogradov’s three primes theorem also holds for Linnik’s primes (primes of the
form 22 4 y2 + 1). All these works rely on the transference principle which was first
introduced by Green [25].
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5.2 Piatetski-Shapiro primes and our results

Recall that
N¢ = {|n°]| : n € N},

for ¢ > 1. There is another fascinating special form of primes known as Piatetski-
Shapiro primes (P, = P NN€ for some ¢ > 1). One of the reasons to study Piatetski-
Shapiro primes is that, when ¢ > 1, these types of primes are remarkably rare.
Recall that 7.(z) denotes the number of Piateski-Shapiro primes up to €. In 1953,
Piatetski-Shapiro [63] first proved that the asymptotic formula

x

me(x) ~ clogx

holds for 1 < ¢ < 1.1. Over the years, several authors have improved the range
of ¢ for this asymptotic formula, and the record is due to Rivat and Sargos [70]
who showed that the asymptotic formula holds for 1 < ¢ < 2817/2426 ~ 1.161,
improving previous works [40; 27; 39; 46]. When considering the lower bound of
7e(w), the record is that, for 1 < ¢ < 243/205 ~ 1.185, we have m.(z) > i as
shown by Rivat and Wu [71] improving the previous results [36; 3; 35; 42].

In 1992, Balog and Friedlander [4] first proved Vinogradov’s three primes theo-
rem for Piatetski-Shapiro primes (for 1 < ¢ < 1.05). This result has been improved
by Kumchev [41] who established the asymptotic formula for the number of rep-
resentations of n = p; + p2 + p3 when 1 < ¢ < 1.06 and Jia [37] who applied
a sieve method to establish a lower bound for the number of representations when
1 <e<16/15 ~ 1.067.

Let B C P N N€¢ with positive upper density for ¢ > 1. The Roth-type problem
for Piatetski-Shapiro primes is to find the largest ¢ > 1 such that B contains many
non-trivial three term arithmetic progressions. (We say this is the Roth-type problem
because Roth [72] first proved that any subset of integers with positive upper density
contains a three term arithmetic progressions, see Theorem 5.3). Concerning the
Roth-type theorem for Piatetski-Shapiro primes, Merik [56] proved that B contains
non-trivial three-term arithmetic progressions when 1 < ¢ < 72/71 =~ 1.014.

In article [III], we proved the following theorems toward Vinogradov’s three
primes theorem and Roth-type theorem with Piatetski-Shapiro primes.

Theorem 5.1. For any cy,ca,c3 € (1, %) every sufficiently large odd N can be
represented as

N =p1+p2 + ps,
where p; € P foreach 1 <1 < 3.
Theorem 5.2. Forany c € (1, %g), any B C P, with positive relative upper density
contains nontrivial 3-term arithmetic progressions.
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Note that % ~ 1.171 and giog ~ 1.185. In order to apply the transference
principle to study Vinogradov’s three primes theorem for Piatetski-Shapiro primes,
we need a variant of the transference principle that was developed by Matoméki
Maynard and Shao [48]. Let us start from the original version of Green’s transference

principle and try to illustrate the ideas behind Green’s transference principle.

5.3 Green’s transference principle and its variant

The original version of Green’s transference principle was used to study 3-term arith-
metic progressions in subsets of primes with positive relative upper density. In 2005,
Green [25] proved that any subset of primes with positive relative upper density con-
tains a non-trivial three term arithmetic progression. Before introducing the idea
behind Green’s transference principle, let us review the Roth theorem which claims
that any subset of integers with positive upper density contains a non-trivial 3-term
arithmetic progression. Varnavides [77] used a clever combinatorial argument to
show a lower bound for the number of three term arithmetic progressions by proving
the following theorem.

Theorem 5.3. Suppose that N > 3 is a sufficiently large integer and A C [N] with
|A| > N. Then the set A contains > N? non-trivial 3-term arithmetic progressions.

Proof. See [77]. ]

Let us turn back to Green’s transference principle. Let A be a set of primes
with positive relative upper density. The fundamental idea in the proof of Roth-type
theorem for primes is transferring this problem to study a subset of integers with
positive relative upper density. Now we formalize this idea although we do not give
a very rigorous argument.

Let f : [N] — C. We aim to study three-term arithmetic progressions by the
formula

> f(n)f(n2)f(na). (5.1)

n1+nq,=2ns

For instance, if f(n) = fa(n) := logn - 14(n), then (5.1) serves to detect 3-term
arithmetic progressions in the set A. What we want to achieve next is to transfer f4
into another function fy : [N] — R>( such that the uniform lower bound

fo(n) > colg(n) (5.2)

holds for some ¢y > 0, where A is a subset of integers with positive relative upper
density. Now (5.1) can be transferred to

~ Y fom)fo(na)folns) > Y La(na)la(ng)la(ng). (5.3)

ni+n.=2ns3 ni1+n2.=2ns
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This is > N? by Theorem 5.3. Now we discuss how to interpret ~ in (5.3). By
rewriting (5.1) and the left-hand side of (5.3) using Fourier transform, what we want
i

1/\ —~ e~ 1/\ -~ bl
/ Fa(@) Fale@) Fa(=2a)da ~ / Fol) o) Fo(—200)dar. (5.4)
0 0

By using the telescoping method, e.g. see [III, (3.6)], we will encounter two ques-
tions

(i) Ts maxaepo1) [ fa(a) — fo(e)] small (o(N)) ?
(ii) Do there exist 2 < g < 3 such that ||]/"2Hq and ||]?0Hq are small (< N1~1/9)?

If (i) holds, then, for the special case o = 0, we notice that | f4(0) — fo(0)| = o(N)
implies

> fa(n) >N,

n<N
which will be called the mean condition. We will see later a stronger version of the
mean condition where uniform distribution in arithmetic progressions is required.
If (i) holds for fo = 1|}, we say f4 is “pseudorandom” or satisfies pseudorandom-
ness. If (ii) is true, we say that f satisfies the restriction estimate. In most cases, Lo
norm does not satisfy the restriction estimate. For example, by Parserval’s identity

I£all3 = Ifall3 < Nlog N,

which has an extra log [V factor compared to what we need (see Theorem 5.4 for
our restriction estimate). Thus, one needs some new ideas to bound || f4|, for some
2 < ¢ < 3. Fortunately, Bourgain [8] provided a very clever approach for handling
HfA |l;- We will give a brief explanation in Section 5.6.

Let us turn to discuss how to construct f; that satisfies (i) and (5.2). The idea is
derived from harmonic analysis and we want to find a “good” kernel K : [N] — C
such that

(C1) K(0) =1,
(C2) [fa— fa* K| = |fa — FaK] is small,
(C3) There exist A C [N] with the size | A| > N such that f4 x K > 14.

The convolution f4 * K will be our fj. To define K, we introduce Bohr sets defined
by
B(a’ 6) = ﬂ B(Oé“ 6)7
i

where
B(aj,e) ={1 <n < N:|nal| < e}

26



Vinogradov’s theorem with Piatetski-Shapiro primes

The definition implies that integers in a Bohr set have additive structure.

In practice, we choose «; to be 1/N-spaced points in [0, 1) such that | f(c;)| are
large. For readers who are familiar with the circle method, these intervals around
«; can be regarded as the “major arcs” while intervals far away from all o; can be
regarded as the “minor arcs”. If we only required (C1) and (C2), then the good kernel
K could be chosen to be

1

K'(n) = mlB(a,e) (n).
The condition (C1) holds trivially. Next we show that (C2) also holds. The reason
is that when « is in the “minor arcs” (i.e. far way from any ), |f/2(a)| is small.
Otherwise, by the definition of the Bohr set, K'(a) ~ K'(0) = 1, so fa(a) —
faK(a) = fa(1 — K)(«) is small. We leave details to the interested reader (or
see [25]). In order to satisfy (C3), we need a smoother kernel K such that f4 * K
is bounded (smoother). Therefore, we choose K = K’ x K’ to make the kernel K
smoother. Then one can show that f4 * K is bounded.

To apply Green’s transference principle in studying Vinogradov’s three primes
theorem with Piatetski-Shapiro primes, we require a variant of the transference prin-
ciple that was developed by Matoméki, Maynard and Shao [48].

Theorem 5.4 (Matomiki-Maynard-Shao’s transference principle). Let €, € (0, 1).
Let N be a positive integer and let f1, fa, f3 : [N] — Rxq be functions, with each
f €{f1, fo, f3} satisfying the following assumptions:

* (mean condition) For each arithmetic progression P C [N] with |P| > nN
we have Epepf(n) > 1/3 + ¢

* (pseudorandomness) There exists a majorant v : [N] — Rsq with f < v
pointwise, such that ||V — 1 |l < nN;

* (restriction estimate)We have ||ﬂ|q < KN'Y4 for some fixed K > n and
q € (2,3).

Then, for eachn € [N/2, N|, we have

fix f2 % fs(n) > (c(e) — Oek,q(m)N?,
where c(€) > 0 is a constant depending only on e.

To define suitable f; fori € {1, 2,3}, we can start with the normalized weighted
function by

1 c . 17%1 if c
f,(n)::{ogn n p(n), ifne N 5.5)

i .
0, otherwise.
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However, in order to fulfill the pseudorandomness and get a better ¢ , we need the
following complicated version of f; for i € {1,2,3}

fi(n) := {biiv . %(Wﬂ + o) 1p(Wn+b;), if Wn+b; € N,

. (5.6)
0, otherwise,

where w = logloglog N and W = H <w D> and ot will be defined later. The
reason we need to introduce w will be explamed in the next section.

5.4 Pseudorandomness and W-trick

In order to establish the pseudorandomness, we restrict elements in P, to the set
A={n< N :Wn+b € P.}, where w and W are as before. This technique
is called the W-trick. The primary motivation to utilize the W -trick is, roughly
speaking, to avoid certain “local” problems.

Let us consider the prime numbers as an example and to illustrate what are “lo-
cal” problems. Without the W -trick, for instance, for v(n) = logn-1p(n), we have,
by the prime number theorem,

D(1/2) = 1n(1/2) = ) logp-e(p/2)— D e(n/2)

1<p<N 1<n<N

Z logp + O(1)

3<p<N

N
=—-N+O| —— ).
+ <10g100 N)

and thus v is not pseudorandom. Moreover, for ¢ = H2<p<C' p and (a,q) = 1 with
any constant C' > 2, we have

1inj(a/q) = O(a),
and by the Siegel-Walfisz theorem,

D(a/q)= > logp-ela/q)= > > logp-e(pa/q)

lspsN (bg)=1 1<p<N
p=b (mod q)
1(q) N
(b,g)=1 1<p<N #(q) log"™" N
p=b (mod q)

Now we have seen that “local” problems mean that |D(0) — 1 (n)(0)] # o(N) when
6 close to a/q with small g. However, for the W -tricked function

one can use standard exponential sum estimates to show that |7 — I[ Nlloo = o(N).

log(Wn + b)1p(Wn + b),
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5.5 Mean condition and Harman’s sieve method
5.5.1 Mean condition

To satisfy the mean condition, we need to normalize the indicator function of Piatetski-
Shapiro primes. We choose f as in (5.6) and

g X W)y 4 B gt (Wi b),  if Wn £ b e N°
m)—{c G (Wn 4 b) = pt(Wn+b), if Wn+ )

0, otherwise,

where pt > 1p and the constant o is chosen so that 7(0) = N(1 + o(1)). Clearly,
v is a majorant function of f. By utilizing the arithmetic information for the lower
bound result for the number of Piatetski-Shapiro primes, if we choose appropriate
lower bound sieve weight p~ < 1p, we have that

Zf B logX<Z5(W) Z mlfilp(m)

nepr me(W-P+b)NN¢i

log X ¢(W) —a a- -
> > m T pT(m) > WP b = yP|,

me(W-P+b)NNei

where o~ is the lower bound sieve coefficient corresponding to p~. Recalling the
mean condition, we must be very careful in choosing lower bound and upper bound
sieves such that 9 > 3

5.5.2 Harman’s sieve method

We now explain how we choose p™ and p~ using Harman’s sieve method (for a
comprehensive account of Harman’s sieve, see [26]). Let

A={n~X:neNn=I(modd)},

and
B={n~X:n=1[(modd)},

To successfully apply Harman’s sieve method to find the lower bound sieve weights
p~ and the upper bound sieve weights p* we employ the following Type I and II
information for a(n), b(n) < di(n) withsome k > 2and g(n) = 1 or g(n) = e(an)
for w € [0, 1).

Typel :
3 ia(d)(dnﬂ—vg(dn) = 3 a(d)g(dn) + O(X*9)
dneA dneB
d<D d<D
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Type II :
> ia(m)b(n)(mn)lﬂg(mn) = Y a(m)b(n)g(mn) + O(X'™),
sy it

where D < X% and M € [X17% X%y [X%, X% U [X1~% X17%] and with
some suitable parameters 0 < 6; < 1 depending on g and ¢ for i € {1,2,3,4}. The
interested reader can refer to [III, Sections 5 and 6] for the explicit values of 6;. In
practice, for the lower bound case, we need g = 1 and for the upper bound case, we
need g(n) = e(n«) for every fixed a € [0, 1).

Now, we provide a simple example about how to apply Type I and II information
to construct p~ and p* for 1 < ¢ < 15/13.

Recall the result of Liu and Rivat [46] who proved that for 1 < ¢ < 15/13 =
1.1538...,

T

Te(x) ~ gz

If we assume that 1 < ¢ < 15/13 = 1.1538..., then Type I information holds for
D < X7/15 and Type II information holds for X%/ < M < X'/3. Thanks to the
asymptotic formula of 7.(x), we can take p~(n) = 1p(n). For the upper bound
sieve, we choose pt(n) = p(n, z'/%) > 1p(n). Now we have

c Z nl_%p(n,xl/f))e(na) =c Z p(d) Z (dn)l_%e(nda). (5.8)

n<z d|P(z/5) nd<x
neA neA

Ifd <X 1/ 3 then the right-hand side of (5.8) satisfies Type I condition. Otherwise
d = pipa---pr > X3 with p; decreasing. Note that p; < X1/5 for all i €
{1,2,...,k}, so there exist 1 < t < k such that X2/1> = X1/3=1/5 < pippy .. py <
X1/3_ Therefore we let . = pips - - - p; be from the range of Type II information.
Thus (5.8), working out some technical details, equals

Z ,u(d)z e(nda) + O(X179) anm e(na) + O(X179),
d|P(z1/5) nd<z n<z
neB neB

for some & > 0. The corresponding coefficient at < %(1 +log2) <3 =3a",(see
[26, (1.4.16)]) and thus the mean condition is satisfied

In order to get the better result (larger range of ¢ for Vinogradov’s three primes
theorem with Piatetski-Shapiro primes) we need to do a more complicated Buchstab
decomposition. The coefficients " and o~ of upper bound and lower bound sieves
come from the prime number theory and integrals of Buchstab’s function (see [26,
Chapter 1]). We suggest the interested reader to refer to [III, section 5 and 6] for
more details.
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5.6 Restriction estimate and Bourgain’s strategy

As mentioned in Section 5.3, in certain cases, the L, norm may introduce an addi-
tional log N. In the context of Piatetski Shapiro primes, the Lo norm even introduces
a larger term, specifically N1~ ¢, which deviates significantly from our expectations.
Let us turn to the reasons behind the challenges posed by the Ly norm and the ad-
vantages of studying L, norms, particularly for 2 < ¢ < 3.

Let us compare studying ternary Goldbach problem with studying Vinogradov’s
three primes theorem for Piatetski-Shapiro primes to see why we need to study L,
norms for 2 < ¢ < 3 in Piatetski-Shapiro primes case. In the ternary Goldbach
problem, when applying the circle method, one breaks down the contributions from
the major arcs 91 and the minor arcs m writing

3
1
/ Z logp-e(pa) | e(—Na)da
0 \p<n
3 3
/ Z logp-e(pa) | e(—Na)da + / Z logp-e(pa) | e(—Na)da.
p<N ™ \p<N

The main term comes from the integral over major arcs and is
3

N?
—_ — 2
/ E logp-e(pa) | e(—Na)da = S(N)N*+ O <logN> ,

where S(N) > 1if N is a sufficiently large odd integer. Moving to the integral over
the minor arcs, by exponential sum estimates, if & € m, then

Zlogp e(par) N
1,100 A7
o< 1 N’

Hence, from the above and Parserval’s identity
3

/ Z logp-e(pa) | e(—Na)da

p<N
2

<<Icrul€an}1< Zlogp-e(poz) / Zlogp e(pa)| da
p<N p<N

< max Z logp - e(pa)| N log N
p<N

< N
log? N
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If we apply the same strategy to deal with Vinogradov’s theorem for Piatetski-
Shapiro primes, we consider the integral

/1 F(a)®e(~Na)da,
0

where

F(a)=> c-p'"=logp-e(pa).
p<N
peN*®

We also split the interval [0, 1) into similar major arcs 9t and minor arcs m. For the
major arc case, standard arguments yield that the major arcs contribution is > N2.
However, for the minor arc case, using Parseval’s identity to bound it, we get

1
/ F(a)’e(~Na)da < max |F(a) /0 F(a)?

< max |F(a)|N*"< log N.

acm

While we expect that the last term is bounded by o(N?), achieving this requires
maXacm |[F(a)| = o(N'/¢/log N), which becomes challenging when ¢ is somewhat
greater than 1.

To bypass this difficulty we apply the restriction estimate. Suppose there exist
some 2 < g < 3 such that fol |F(a)]9da; < N971. Then we have

1
| Fleye(-Nayda < max|F(a)*~ /0 ()"

< max |F(a)7INIL,
a€m

This requires only maxyem |F'(a)| = o(IN), which can be achieved when « is far
away from rational points with small denominators, even if c is somewhat larger than
1.

Now we briefly discuss how to prove the restriction estimate when 1 < ¢ <
73/64 ~ 1.141. Specifically, we need to show that there exist some gp € (2, 3) such
that

1
/ |F(a)|®da < N1, (5.9)
0

If we can show that there exist some ¢ € (2, 3) such that for all g(n) < nl=e 1,ene

q

1
/ Z g(n)e(na)| da < N1 (5.10)
0

n<N
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then we have .
/ |F(a)|%da < N7 ! (log N)4. (5.11)
0

It is possible to remove the extra (log V)¢ by Bourgain’s strategy [8] which shows
that if the behavior of F'(«) is similar to )\ log p - e(pa), namely, for any suffi-
ciently large A > 0, one has

N
max |F(« Zlogp e(par) :0< = >, (5.12)

a€l0,1) o log” N

then one can remove the extra factor (log V)¢ from (5.11) if one replaces g by ¢ + €
for any € > 0. For details of Bourgain’s strategy, see [8] or [III, Section 4].

Kumchev [41] showed that (5.12) holds for 1 < ¢ < 73/64 ~ 1.141. Hence if
we can show (5.10) for some 2 < g < 3 then by Bourgain’s strategy, (5.9) holds for
qo =q + €.

Thus, the remaining task is to show (5.10). We write G(a) = >, -y g(n)e(na).
By van der Corput’s method, one can obtain that |G ()| < (14-0(1))N for1 < ¢ < 2
(see e.g. [III, section 4]), so by a dyadic splitting, we have that

/G qdoz<<z<2n 1) <{ae[071):§1<lG(a)lé2ivl})

n>0

where (i is the Lebesgue measure. Now we only need to show that for some 0 < t <
q, we have for every n > 0,

1

p({ael0,1):|G(a)] >27"N}) < No—tn"

(5.13)

We first study the case that g is pseudorandom, namely |G («) — 1/[\N] (cv)] is small for
all & € [0,1). In this case, Parseval’s identity implies that

(27"N)2u ({a € [0,1) : [Ty ()] > 2_”N}) < /01 T (a)Pda = N

and consequently

1
N2— 2n "

u({a €1[0,1) : [ipy(a)] > 2 ”N})

Hence (5.13) holds. In [III Section 4], we will see that if g(n) = nl_%lneNa, then
maX,eo,1) |G(a) — 1 N]( a) = o(Nz"<log N). By working out some technical
details, we can prove (5.13) in the general case using the fact g has a pseudorandom
majorant.
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In order to show that (5.9) holds for a larger range of ¢, we will choose F'(«)
such that

max |F(a)— Y pT(n)logn - e(na) :0< N )

a€l0,1) = logA N

for some suitable upper bound sieve weights p™. For more details, the interested
reader may refer to [II1].
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6 On divisor bounded multiplicative
functions in short intervals

6.1 Multiplicative functions in short intervals

Recall that A(n) and p(n) are the von Mangoldt function and the Mgbius function.
In Chapter 3, we introduced results for primes and arithmetic functions in short in-
tervals. Here we concentrate on results in “almost all”” short intervals, which means
that the results hold for all but at most o(X) intervals [z, z + h] with z € [X,2X].
By the zero density result due to Huxley [31], one can prove an almost all intervals
result for primes. Specifically, if X > 0 is sufficiently large, and h > X 1/6+¢ with
any € > 0, then

1 1
. > An) -+ > Aln) =o(1)

rz<n<z+h X<n<2X

for all but o( X) integers = € [ X, 2X].

Ramachandra [68] applied a similar strategy to prove a similar result for the
Mobius function. He showed that for any sufficiently large X and h > X1/6+¢ with
e > 0, we have

EY - Y um)=o()

r<n<z+h X<n<2X

for all but o( X) integers = € [ X, 2X].
Assuming the Riemann hypothesis, the above two almost all results hold for
h > log? X for some A > 0 (by [74] and an unpublished work of Peng Gao).
Recently, Matoméki and Radziwilt [49] made a breakthrough concerning short
sums of 1-bounded multiplicative functions, significantly improving the previous
results even beyond those established under the Riemann hypothesis.

Theorem 6.1 (Matomiki-Radziwitt theorem). Let X > h > 2and f : N — [—1,1]
be a multiplicative function. Then for almost all x € [X,2X],

1 1
S T 5 Y0 ) =o(1), (6.1)

z<n<z+h X<n<2X

provided h — oo with X — oo.
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To prove the Matoméki-Radziwilt theorem, Matoméiki and Radziwilt utilized
more information about multiplicativity, for example, Ramaré’s identity.

Thanks to Matomiki-Radziwilt methods, some previous results involving mul-
tiplicative functions can be improved. For example Matoméki and Terdviinen [51]
proved the following theorem.

Theorem 6.2. Suppose that X is sufficiently large and H > X%95%¢ for any ¢ > 0.
Then

X<n<X+H

This improved the length H > X 7/12+¢ due to Motohashi [57] and Ramachandra
[68].

6.2 Dirichlet divisor problem and divisor bounded mul-
tiplicative function in short intervals

The famous Dirichlet divisor problem is the conjecture that, for any € > 0,
D d(n) = Xlog X + (27 — 1)X + O(X'/**°).
n<X
By the hyperbola method, one can prove that for any € > 0,
> d(n) = Xlog X + (2y - 1)X + O(X'/?). (6.2)
n<X

The best known error term was given by Huxley [32], who proved that the error term
is O(X131/416+€) Naturally, the better the error term the better the implied result for
short sums.

In [IV] we consider the sum of di(n) = >
short intervals and prove

Theorem 6.3. Let e > 0 and k > 2. If h > (log X )Flogk=k+1te thep

B ) D () =oflog ) (6.3)

r<n<z+h r<n<2z

. 1 for k > 2 in almost all

n=mimsz...m

for all but at most o(X) integers x € [X,2X].

Note that ,_, <o, dx(n) = zlogh=1

formula for almost all short intervals.
Mangerel’s [47, Theorem 1.7] shows that if » > hg(log X)(k_1)2 and hg — o0
with X — oo, then

x, so Theorem 6.3 gives an asymptotic

2

2X 11 1 2k—2
/ B2 )= Y di(n)] do = o(X log™ T X).

X rz<n<z+h r<n<2z
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In fact the length of short interval h in [47, Theorem 1.7] is sharp, and as a corollary
in almost all short intervals sense, one can obtain that if » > hg(log X )(’“‘1)2, then
(6.3) holds for all but at most o(.X') integers. Hence, Theorem 6.3 is an improvement
of Mangerel’s result in almost all short intervals sense.

The exponent of log X in Theorem 6.3 is essentially optimal, meaning that re-
placing € with —e renders this theorem incorrect. However, when comparing the
length of short intervals in our result to those in the Matomiki-Radziwilt theorem
or Mangerel’s result, there is some room for improvement. This could be achieved
by optimising (log X )¢ with some a function ho(X) that grows slower than (log X )¢
and tends to infinity as X — oo.

6.3 Proof ideas

For convenience, I will use the divisor function case (k = 2) to illustrate the proof
ideas.

6.3.1 Two restrictions

We will restrict n in our sum in two ways. The first one is to restrict to integers having
at least one prime factor from certain ranges. The purpose of the first restriction is to
help to create a bilinear structure as explained later.

Let g > 0. We define

Py := exp((loglog X)'/?), Q1 := (log X)® 6.4)
Py := exp((loglog X)?),  Qa := exp((loglog X)'") (6.5)

Let A denote the set of all n € (X,2X] having at least one prime factor in each
interval [P;, Q;] for j € {1, 2}. The set A is dense and we have

Lemma 6.1. Let X > 0 be sufficiently large. Then

> d(n) = o(Xlog X).
X<n<2X
ngA
Proof. See [1V, Lemma 2.2]. O

The second one is to restrict to integers that do not have too many prime factors.
The purpose of the second restriction is to have a good bound for the second moment
of the divisor function in this restricted set.

The famous Erd6s-Kac theorem tells us that almost all integers in [X, 2X ]| have
Q(n) = (1 4 o(1))loglog X, where ©(n) is the total number of prime factors.
However, if one consider the sum of the divisor function, the main contribution does
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not come from those integers having 2(n) = (1 4 o(1)) loglog X. This can be seen
from

Z d(n) < ! X2(+o(1)loglog X _ 5 (1+0(1))log2 x

X
X<n<2X
Q(n)=((140(1)) loglog X

1
X

which is much smaller than the expected log X. The following lemma tells us that
the main contribution to the sum of divisor function comes from integers having
(24 0o(1)) loglog X prime factors.

Lemma 6.2. Letl(n) € {w(n),2(n)}. Forany sufficiently large X and small € > 0,
we have

X < > 1< X
(10g X)(Q—i—s’)log 2—1 a2y (log X)(Q—s’)log 2—1°
[l(n)—21log log X |<¢' loglog X
Proof. See [1V, Lemma 2.6]. ]

From the above, we see that

X

X<;2X - (log X)(2log2=1+o(1))”
(m)=(2-+o(D)) loglog &
so we get
Z d(n) = (log X (2f 2—1+o(1)) pretloslos X — X og!+ell) ¥
X<n<2X g X)(2log

l(n)=(240(1)) loglog =

corresponding our expectation except o(1) in the exponent of log X. Thus, intu-
itively, the principal contribution to the sum comes from integers with approximately
2(1 4 o(1)) loglog X prime factors. For any ¢ > 0, let

B :={n € [X,2X]:|Q(n) — 2loglog X| < eloglog X }.
Now we give the rigorous statement.

Lemma 6.3. Let X > 0 be sufficiently large. Then

Z d(n) < Xlog X (log X)—llﬁ min{1,e2}
X<n<2X
ngB

Proof. See [1V, Lemma 2.3]. ]
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Remark. Restricting our focus on the set B is the key point in article [IV]. The
advantage is to obtain a better upper bound after applying a large-sieve type estimate.
In the next section, we will compare the long average to short average of the sum of
the divisor function in the Lo sense, then applying a large-sieve type estimate, after
getting a Parserval’s bound (see Lemma 6.4). The large-sieve type upper bound
consists of a diagonal term and an off-diagonal term. The off-diagonal term will be
easily controlled by Henriot’s bound (see [30, Theorem 3]). However, in case of the
diagonal term, i.e., > v _,, <o x d*(n), if we directly apply Shiu’s bound, as Mangerel
did, we will get an upper bound X (log X )k2_1 which is much larger than we expect.
Fortunately, when we consider those integers in B, we have a pointwise upper bound
d(n) < (log X)2'°82+¢ which means that we get a better upper bound

Z d2(n) <<X(10gX)210g2+1+e

X<n<2X
neB

for the diagonal term.

For convenience, we denote S = AN B in the following and we will restrict our
summation to the set .S.
Recall (6.2) which implies that for h > X 1/ 2,

% > d(n) = (1+0(1)log X.
X<n<X+h

Thus, by the above and Lemmas 6.1 and 6.3, we only need to prove that, for
(logX)klogk:—k—i-l-i-e <h< X1/2,

we have

1 1
E E d(n)—'BEiE' E d(n)::oﬂog)()
z<n<z+h X<n<X+X1/?
nes nes

holds almost all z € [X,2X].

6.3.2 Parserval’'s bound and the Matomaki-Radziwit method

In order to compare the short sum to the long sum of the divisor function on average,
we study

1 2X 1 1
= / LY A -y Y d)| do, (6.6)

z<n<z+h r<n<z+X1/?
nes nes
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One can now transfer the two discrete sums inside the integral of (6.6) to the integral
of two Dirichlet Polynomials, by applying Perron’s formula (see, e.g., [26, Lemma

1.1
]) ) d(n) y1+# _,x1+#
2 dln) = lim / DL i T

z<n<y z/2<n<2

The principal contribution of the above integral comes from the integral around ¢ =
0. Note that when ¢ ~ 0, we have yHit 2% ~ y — x. Therefore, if one applies
Perron’s formula to the averages of w175 >, _p<piyi2d(n)and £330 . d(n)
separately, then the principal contributions (integrals around ¢ = 0) of the integrals
of the two Dirichlet polynomials are eliminated. Then the remaining task to bound
(6.6) is to bound

2

2X 14it . 14it
/ / dn) y T at| da
X T, nItit (y — x)(1 + it)

x/2<n<2y

for some 3y € {x 4 h,x + X'/2}. This can be bounded well by a “large sieve-type”
argument. The above process can be formulated as the following lemma.

Lemma 6.4.

2X 1
X/ > dn XW > d(n)| da.

a:<n<a3+h z<n<z+X1/?
nes nes
2 2
d X [ d
< O T M DI =
XVOLSX/h | x Cnzax " T2X/h BT X<n<ax
nes nes

(6.7)
Proof. See [49, Lemma 14]. ]

By looking at the integral of the Dirichlet polynomial, we may have several ideas
in mind. Firstly, one could consider to apply the mean-value theorem ([IV, Lemma
4.1]) which is effective when T'h/ X is sufficiently large. The key challenge arises
when T is close to X/h as the mean-value theorem is no longer sufficient. Fortu-
nately, thanks to the Matoméiki-Radiziwlt method, we are able to get a better upper
bound beyond the limitation of using the mean-value theorem.

Dirichlet polynomials and Ramare’s identity

We start from the following lemma giving a pointwise upper bound for a Dirichlet
polynomial over primes.
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Lemma 6.5. Lete > 0, A > 0 be given and X > 1. Assume that exp((log X )?/3+¢) <
P < Q< X. Thenfor|t| < X,

1 logX < log P > 1
E — < — texp|-— + . (6.8)
1+it 2/3+¢ 172
potoP 1+ \t\ (log X)2/3+ 2%
Proof. See [53, Lemma 2]. O

To apply Lemma 6.5, we need the following decomposition called Ramaré’s
identity, which follows from the multiplicativity. We leave the proof to the inter-
ested reader.

Lemma 6.6. Suppose that f : N — C is a multiplicative function. Then, for any
X>Q=>P2>1,

S i)=Y 0 Y et

n<X pE[P,Q] m<X/p Ql\ipy Lam
f*m) — f(p)f(pm
Ly oy M ”<>+ S f).
pE[PQ]m<X/p aclPQ\{p} Lalm n<X
pIn=pg[P,Q]

where p, q are primes.

Now by Lemma 6.6 with slight modification, we have for 7 C [T, T

2

JA

nes

X<n<4X

Q

<Hlog ( x ) IQUH 1+ it)Ry g (1 + it)|* dt + ERROR,
veEL
where

1
Quals)= > l

P<p<@
v/ H <p< vt/ H
R, 1 (s) aDirichlet polynomial whose explicit form is not important, the “ERROR”
is acceptable and Z is the interval | H log P| < v < Hlog(@. Thanks to Lemma
6.5, we may be able to evaluate the above integral by combining a pointwise upper
bound of Q, g (1 + it) with an upper bound for the mean-value of | R, g (1 + it)[?.
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Matomaki-Radziwitt decomposition
Now we apply a Matomiki-Radziwilt type decomposition to deal with the integral

X/h
/ 1Qu i1 (1 + it) Ro st (1 + it)2dt.
X1/6

Let P1,Q1, P>, Q2 be as in (6.4) and (6.5), and

[Ps, Qs] = [exp((log X)*/'°), exp((log X) /(log log X)'),

1
_%’az:%_ﬁandH:Pl/Es.ForanysEC,let

Qi)=Y

P;<p<Q;
ev/H <p<evt D)/ H

a1 =

PN

We split [X1/6, X /h] = [Ty, T into a disjoint union, where
Ti={t € [To,T] : |Qui(1+it)| < e /H forallv € 7,}

To={t € [To,T] : |Qua(l+it)| < e/ Hforallve I} \ Tq
T3 = [To, W]\ (LU T2)

We now briefly discuss how to use the Matoméki-Radziwitt method to deal with

/ Quj (1 +it)Ry ;(1 + it)|2dt
7

for j € {1,2,3}.

. le: In this case, by the definition of 77, we have a uniform upper bound for
|Qu1(1 + it)|, so we can extract |Q,,1(1 + it)|? out from the integral and
bound it by its uniform upper bound. Since (); < H it then suffices to apply
the mean-value theorem to the remaining integral le |Ry1 (1 + it)|?dt.

. f7—2 : In this case, by the definition of 75, we have a uniform upper bound
for |Qy2(1 + it)|. Additionally, for any ¢ € 7T, there exist some r € Z;
fulfilling the pointwise lower bound |Q,.1 (1 4 it)| > ="/ Then we apply
Matomaki-RadziwH amplification technique to bound f7_2 by

e R0/ 7 Rl /I / 1Qra (14 it)[2 X [Ryo(1 + it)|2dt,

reZ, Tz.r

where 73, = {t € T2 : |Qr1(1 +it)] > e*a“"/H} and [ is chosen so that the
coefficients of the Dirichlet polynomial @), 1 (1+ z't)le,z(l +it) are supported
around n < X. Now, the upper bound from the mean-value theorem will not
waste a lot.
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. f7-33 In this case, for every t € 73, we have a pointwise lower bound for
Qu,2(1 + it) for some v € Zy. Hence, we can apply a large value result for
Dirichlet polynomials, for example [49, Lemma 8], to show that 73 has small
measure. Now we bound the integral by a discrete sum, namely

/ |Qus(1+ it)Rys(1+it)Pdt < > |Qua(l+it)Rys(1+it)],
75 t67;/

where 73 is a set of well-spaced points in 73. By Lemma 6.5, |Q, 3(1 +it)| <
bg%x for any A > 0, so we can extract |@Q, 3(1 + it)|? out from above sum
and bound it uniformly. Then we use a discrete mean-value theorem (see e.g.
[33, Theorem 9.6]) to bound 3=, .7 [ Ry 3(1 + it)|*.

For the general case of the dj bounded multiplicative functions, we need to use a
Hal4sz type result and more complicated arguments. The interested reader may refer
to [IV] for more details.

43



List of References

(1]
(2]
(3]
(4]
(5]
(6]
(7]

(8]
(9]

(10]

(11]
[12]
(13]
(14]
[15]

[16]
(17]

(18]
(19]
(20]

(21]

44

R. C. Baker and G. Harman. Exponential sums formed with the Mobius function. J. Lond. Math.
Soc., II. Ser., 43(2):193-198, 1991.

R. C. Baker and G. Harman. The difference between consecutive primes. Proc. Lond. Math. Soc.
(3), 72(2):261-280, 1996.

R. C. Baker, G. Harman, and J. Rivat. Primes of the form [n°]. J. Number Theory, 50(2):261-277,
1995.

A. Balog and J. Friedlander. A hybrid of theorems of Vinogradov and Piatetski-Shapiro. Pac. J.
Math., 156(1):45-62, 1992.

A. Balog and A. Perelli. On the L' mean of the exponential sum formed with the Mobius function.
J. Lond. Math. Soc., 1I. Ser., 57(2):275-288, 1998.

A. Balog and I. Z. Ruzsa. On the exponential sum over r-free integers. Acta Math. Hungar.,
90(3):219-230, 2001.

W. D. Banks, T. Freiberg, and J. Maynard. On limit points of the sequence of normalized prime
gaps. Proc. Lond. Math. Soc. (3), 113(4):515-539, 2016.

J. Bourgain. On A (p)-subsets of squares. Isr. J. Math., 67(3):291-311, 1989.

A. Brauer and H. Zeitz. Uber eine zahlentheoretische Behauptung von Legendre. Sitzungsber.
Berliner Math. Ges. 29, 116-125 (1930)., 1930.

J. Briidern, A. Granville, A. Perelli, R. C. Vaughan, and T. D. Wooley. On the exponential sum
over k-free numbers. Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 356(1738):739—
761, 1998.

J. R. Chen. On the least prime in an arithmetical progression and two theorems concerning the
zeros of Dirichlet’s L-functions. Sci. Sin., 20:529-562, 1977.

J. R. Chen. On the least prime in an arithmetical progression and theorems concerning the zeros
of Dirichlet’s L-functions. II. Sci. Sin., 22:859-889, 1979.

J.R. Chen and J. Liu. On the least prime in an arithmetical progression. III, IV. Sci. China, Ser.
A 32, No. 6, 654-673; No. 7, 792-807 (1989)., 1989.

S. Chowla. On the least prime in an arithmetical progression. J. Indian Math. Soc., New Ser.,
1:1-3, 1934.

H. Davenport. On some infinite series involving arithmetical functions (II). Q. J. Math., os-
8(1):313-320, 01 1937.

P. Erdos. On the difference of consecutive primes. Q. J. Math., Oxf. Ser., 6:124—128, 1935.

K. Ford, B. Green, S. Konyagin, J. Maynard, and Terence Tao. Long gaps between primes. J.
Amer. Math. Soc., 31(1):65-105, 2018.

K. Ford, B. Green, S. Konyagin, and T. Tao. Large gaps between consecutive prime numbers.
Ann. of Math. (2), 183(3):935-974, 2016.

J. B. Friedlander and H. Iwaniec. Opera de cribro, volume 57 of Collog. Publ., Am. Math. Soc.
Providence, RI: American Mathematical Society (AMS), 2010.

J. B. Friedlander and H. Iwaniec. Selberg’s sieve of irregular density. Acta Arith., 209:385-396,
2023.

J. B. Friedlander and H. Iwaniec. Sifting for small primes from an arithmetic progression. Sci.
China, Math., 66(12):2715-2730, 2023.



(22]

(23]
[24]

[25]
[26]

(27]
(28]
[29]
[30]

[31]
[32]

(33]
[34]

[35]
(36]
(371
(38
[39
[40

—_

[41]
[42]
[43]
[44]
[45]
[46]
[47]
(48]
[49]
[50]

[51]

LIST OF REFERENCES

D. A. Goldston and M. Pandey. On the L' norm of an exponential sum involving the divisor
function. Arch. Math., 112(3):261-268, 2019.

S. W. Graham. On Linnik’s constant. Acta Arith., 39:163-179, 1981.

A. Granville, A. J. Harper, and K. Soundararajan. A new proof of Haldsz’s theorem, and its
consequences. Compos. Math., 155(1):126-163, 2019.

B. Green. Roth’s theorem in the primes. Ann. of Math. (2), 161(3):1609-1636, 2005.

G. Harman. Prime-detecting sieves, volume 33 of Lond. Math. Soc. Monogr. Ser. Princeton, NJ:
Princeton University Press, 2007.

D. R. Heath-Brown. The Pjateckii-Sapiro prime number theorem. J. Number Theory, 16(2):242—
266, 1983.

D. R. Heath-Brown. The number of primes in a short interval. J. Reine Angew. Math., 389:22—63,
1988.

H. A. Helfgott. The ternary Goldbach problem. In Proceedings of the International Congress of
Mathematicians—Seoul 2014. Vol. I, pages 391-418. Kyung Moon Sa, Seoul, 2014.

K. Henriot. Nair-Tenenbaum bounds uniform with respect to the discriminant. Math. Proc. Camb.
Philos. Soc., 152(3):405-424, 2012.

M. N. Huxley. On the difference between consecutive primes. Invent. Math., 15:164-170, 1972.

M. N. Huxley. Exponential sums and lattice points. IIl. Proc. Lond. Math. Soc. (3), 87(3):591-
609, 2003.

Henryk Iwaniec and Emmanuel Kowalski. Analytic number theory, volume 53 of Collog. Publ.,
Am. Math. Soc. Providence, RI: American Mathematical Society (AMS), 2004.

Ernst Jacobsthal. Uber Sequenzen ganzer Zahlen, von denen keine zu n teilerfremd ist. I-IIL.
Norske Vid. Selsk. Forhdl., 33:117-124, 125-131, 132-139, 1960.

C. H. Jia. On Pjateckii-Sapiro prime number theorem. IL. Sci. China Ser. A, 36(8):913-926, 1993.
C. H. Jia. On Pjateckii-Sapiro prime number theorem. Chin. Ann. Math., Ser. B, 15(1):9-22, 1994.
C. H. Jia. On the Piatetski-Shapiro-Vinogradov theorem. Acta Arith., 73(1):1-28, 1995.

M. Jutila. On Linnik’s constant. Math. Scand., 41:45-62, 1977.

G. Kolesnik. Primes of the form [n°]. Pac. J. Math., 118:437-447, 1985.

G. A. Kolesnik. Distribution of primes in sequences of the form [n°]. Marth. Notes, 2:553-560,
1968.

A. Kumchev. On the Piatetski-Shapiro-Vinogradov theorem. J. Théor. Nombres Bordeaux,
9(1):11-23, 1997.

A. Kumchev. On the distribution of prime numbers of the form [n°]. Glasg. Math. J., 41(1):85—
102, 1999.

H. Li and H. Pan. A density version of Vinogradov’s three primes theorem. Forum Math.,
22(4):699-714, 2010.

J. Li, K. Pratt, and G. Shakan. A lower bound for the least prime in an arithmetic progression. Q.
J. Math., 68(3):729-758, 2017.

Yu. V. Linnik. On the least prime in an arithmetic progression. I: The basic theorem. Mat. Sb.,
Nov. Ser., 15:139-178, 1944.

H. Q. Liu and J. Rivat. On the Pjateckii—gapiro prime number theorem. Bull. Lond. Math. Soc.,
24(2):143-147, 1992.

A. P. Mangerel. Divisor-bounded multiplicative functions in short intervals. Res. Math. Sci.,
10(1):Paper No. 12, 47, 2023.

K. Matomiki, J. Maynard, and X. C. Shao. Vinogradov’s theorem with almost equal summands.
Proc. Lond. Math. Soc. (3), 115(2):323-347, 2017.

K. Matomiki and M. Radziwill. Multiplicative functions in short intervals. Ann. of Math. (2),
183(3):1015-1056, 2016.

K. Matomiki and X. C. Shao. Vinogradov’s three primes theorem with almost twin primes.
Compos. Math., 153(6):1220-1256, 2017.

K. Matomiki and J. Terdviinen. On the Mobius function in all short intervals. J. Eur. Math. Soc.
(JEMS), 25(4):1207-1225, 2023.

45



Yu-Chen Sun

[52]
(53]
[54]
[55]
[56]
[57]
(58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]

[68]
[69]

[70]
(71]
[72]
(73]
[74]
[75]

[76]

(771
(78]

[79]

[80]

46

K. Matomiki, J. Merikoski, and J. Terdvidinen. Primes in arithmetic progressions and short inter-
vals without L-functions. arXiv preprint arXiv:2401.17570, 2024.

K. Matomiki and M. Radziwitt. A note on the liouville function in short intervals. arXiv preprint
arXiv:1502.02374, 2015.

J. Maynard. Small gaps between primes. Ann. of Math. (2), 181(1):383-413, 2015.

J. Maynard. Large gaps between primes. Ann. of Math. (2), 183(3):915-933, 2016.

M. Mirek. Roth’s theorem in the Piatetski-Shapiro primes. Rev. Mat. Iberoam., 31(2):617-656,
2015.

Y. Motohashi. On the sum of the Mobius function in a short segment. Proc. Japan Acad.,
52(9):477-479, 1976.

M. B. Nathanson. Additive number theory, volume 165 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1996. Inverse problems and the geometry of sumsets.

M. B. Nathanson. Additive number theory. The classical bases, volume 164 of Grad. Texts Math.
New York, NY: Springer, 1996.

C. D. Pan. On the least prime in an arithmetical progression. Science Record, n. Ser., 1:311-313,
1957.

M. Pandey. On the distribution of additive twists of the divisor function and Hecke eigenvalues.
arXiv preprint arXiv:2110.03202, 2021.

M. Pandey and M. Radziwitt. L' means of exponential sums with multiplicative coefficients. i.
arXiv preprint arXiv:2307.10329, 2023.

Ilya I. Piatetski-Shapiro. On the distribution of the prime numbers in sequences of the form [f(n)].
Mat. Sb., Nov. Ser., 33:559-566, 1953.

J. Pintz. On the ratio of consecutive gaps between primes. In Analytic number theory. In honor of
Helmut Maier’s 60th birthday, pages 285-304. Cham: Springer, 2015.

D. H. J. Polymath. Variants of the Selberg sieve, and bounded intervals containing many primes.
Res. Math. Sci., 1:Art. 12, 83, 2014.

C. Pomerance. A note on the least prime in an arithmetic progression. J. Number Theory, 12:218—
223, 1980.

K. Prachar. Uber die kleinste Primzahl einer arithmetischen Reihe. J. Reine Angew. Math., 206:3—
4, 1961.

K. Ramachandra. Some problems of analytic number theory. Acta Arith., 31(4):313-324, 1976.
R. A. Rankin. The Difference between Consecutive Prime Numbers. J. London Math. Soc.,
13(4):242-247, 1938.

J. Rivat and P. Sargos. Nombres premiers de la forme [n¢]. (prime numbers of the form [n]).
Can. J. Math., 53(2):414-433, 2001.

J. Rivat and J. Wu. Prime numbers of the form [n°]. Glasg. Math. J., 43(2):237-254, 2001.

K. F. Roth. On certain sets of integers. J. Lond. Math. Soc., 28:104-109, 1953.

A. Schinzel. Remark on the paper of K. Prachar ’iiber die kleinste Primzahl einer arithmetischen
Reihe’. J. Reine Angew. Math., 210:121-122, 1962.

A. Selberg. On the normal density of primes in small intervals, and the difference between con-
secutive primes. Arch. Math. Naturvid., 47(6):87-105, 1943.

X. C. Shao. A density version of the Vinogradov three primes theorem. Duke Math. J.,
163(3):489-512, 2014.

J. Terdviinen. The Goldbach problem for primes that are sums of two squares plus one. Mathe-
matika, 64(1):20-70, 2018.

P. Varnavides. On certain sets of positive density. J. Lond. Math. Soc., 34:358-360, 1959.

R. C. Vaughan. The L' mean of exponential sums over primes. Bull. Lond. Math. Soc., 20(2):121-
123, 1988.

I. M. Vinogradov. The method of trigonometrical sums in the theory of numbers. Trav. Inst. Math.
Stekloff, 23:109, 1947.

W. Wang. On the least prime in an arithmetic progression. Acta Math. Sin., New Ser., 7(3):279—
289, 1991.



[81] E.Westzynthius. Uber die Verteilung der Zahlen, die zu den n ersten Primzahlen teilerfremd sind.
Commentationes Helsingfors 5, Nr. 25, 37 S. (1931)., 1931.

[82] T. Xylouris. On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet
L-functions. Acta Arith., 150(1):65-91, 2011.

[83] T. Xylouris. Uber die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in
einer arithmetischen Progression, volume 404 of Bonn. Math. Schr. Bonn: Univ. Bonn, Math-
ematisches Institut; Bonn: Univ. Bonn, Mathematisch-Naturwissenschaftliche Fakultét (Diss.),
2011.

[84] T. Zhan. On the representation of large odd integer as a sum of three almost equal primes. Acta
Math. Sinica (N.S.), 7(3):259-272, 1991. A Chinese summary appears in Acta Math. Sinica 35
(1992), no. 4, 575.

[85] Y. T. Zhang. Bounded gaps between primes. Ann. of Math. (2), 179(3):1121-1174, 2014.



N2

TURUN
YLIOPISTO
UNIVERSITY
OF TURKU

Painosalama, Turku, Finland 2024

ISBN 978-951-29-9785-5 (PRINT)
ISBN 978-951-29-9786-2 (PDF)

ISSN 0082-7002 (PRINT)
ISSN 2343-3175 (ONLINE)




	ABSTRACT
	TIIVISTELMÄ
	Preface
	前言
	Table of Contents
	List of Original Publications
	1 Notations
	1.1 Sets
	1.2 Functions
	1.3 Analysis
	1.4 Fourier language and norms
	1.5 Miscellaneous

	2 Introduction
	3 Gaps between consecutive primes
	3.1 Primes and prime gaps
	3.1.1 Primes and primes in short intervals
	3.1.2 Small gaps between primes
	3.1.3 Large gaps between primes

	3.2 The least prime in an arithmetic progression
	3.3 Long prime gaps and a covering idea
	3.4 Digging holes
	3.5 Overview of the proof
	3.5.1 Small prime gaps (holes)
	3.5.2 Large prime gaps


	4 On the Balog-Ruzsa Theorem in short intervals
	4.1 Exponential sums
	4.2 Outline of the proof of Theorem 4.3
	4.2.1 The key lemma
	4.2.2 Balog-Ruzsa's ideas


	5 Vinogradov's theorem with Piatetski-Shapiro primes
	5.1 Vinogradov's theorem and its variants
	5.2 Piatetski-Shapiro primes and our results
	5.3 Green's transference principle and its variant
	5.4 Pseudorandomness and W-trick
	5.5 Mean condition and Harman's sieve method
	5.5.1 Mean condition
	5.5.2 Harman's sieve method

	5.6 Restriction estimate and Bourgain's strategy

	6 On divisor bounded multiplicative functions in short intervals
	Multiplicative functions in short intervals
	Dirichlet divisor problem and divisor bounded multiplicative function in short intervals
	Proof ideas
	Two restrictions
	Parserval's bound and the Matomäki-Radziwiłł method


	List of References


 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 6.929 x 9.843 inches / 176.0 x 250.0 mm
     Shift: none
     Normalise (advanced option): 'original'
     Keep bleed margin: no
      

        
     D:20240729081955
      

        
     Shift
     32
            
       D:20231003151711
       708.6614
       B5
       Blank
       498.8976
          

     Tall
     1
     0
     No
     1785
     784
     None
     Left
     15.0236
     0.0000
            
                
         Both
         150
         AllDoc
         180
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus5
     Quite Imposing Plus 5.3k
     Quite Imposing Plus 5
     1
      

        
     15
     180
     179
     180
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: before current page
     Number of pages: 2
     Page size: same as current
      

        
     D:20240729082007
      

        
     Blanks
     Always
     2
     1
            
       D:20240604134416
       311.8110
       Blank
       255.1181
          

     1
     Tall
     1561
     636
     0
     1
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsCur
     BeforeCur
      

        
     QITE_QuiteImposingPlus5
     Quite Imposing Plus 5.3k
     Quite Imposing Plus 5
     1
      

        
     0
     2
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 2
     Page size: same as current
      

        
     D:20240729082135
      

        
     Blanks
     Always
     2
     1
            
       D:20240604134416
       311.8110
       Blank
       255.1181
          

     1
     Tall
     1561
     636
     0
     1
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus5
     Quite Imposing Plus 5.3k
     Quite Imposing Plus 5
     1
      

        
     182
     2
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 108 to page 149
     Trim: none
     Shift: move right by 17.01 points
     Normalise (advanced option): 'original'
     Keep bleed margin: no
      

        
     D:20240729083059
      

        
     Shift
     32
            
       D:20231003151711
       708.6614
       B5
       Blank
       498.8976
          

     Tall
     1
     0
     No
     1785
     784
     Fixed
     Right
     17.0079
     0.0000
            
                
         Both
         108
         SubDoc
         149
              

       CurrentAVDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus5
     Quite Imposing Plus 5.3k
     Quite Imposing Plus 5
     1
      

        
     107
     184
     148
     42
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 152 to page 182
     Trim: none
     Shift: move right by 13.04 points
     Normalise (advanced option): 'original'
     Keep bleed margin: no
      

        
     D:20240729083131
      

        
     Shift
     32
            
       D:20231003151711
       708.6614
       B5
       Blank
       498.8976
          

     Tall
     1
     0
     No
     1785
     784
    
     Fixed
     Right
     13.0394
     0.0000
            
                
         Both
         152
         SubDoc
         182
              

       CurrentAVDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus5
     Quite Imposing Plus 5.3k
     Quite Imposing Plus 5
     1
      

        
     152
     184
     181
     31
      

   1
  

 HistoryList_V1
 qi2base





