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ABSTRACT

This thesis comprises four articles in multiplicative and additive number theory, two
subfields of analytic number theory, concerning e.g. the distribution of primes, mul-
tiplicative structures and additive structures.

In the first article, we consider a combination of two breakthroughs on prime
gaps (small prime gaps and large prime gaps), and improve on a previous result
given by Pintz. We also apply a similar strategy to improve on previous works on
lower bounds for the least prime in an arithmetic progression. The proofs rely on a
variant of the Maynard-Tao theorem and arguments used in proving long prime gaps.

In the second article, we study a lower bound for the 𝐿1 norm of the exponential
sum of the Möbius function over short intervals. This result extends the long interval
version given by Balog and Ruzsa. The proofs are based on the Balog-Ruzsa struc-
ture and an improvement for a key lemma. In the improvement we use two different
techniques — complex analysis and van der Corput’s method.

In the third article, we study Vinogradov’s three primes theorem with Piatetski-
Shapiro primes. Our result significantly improves the existing results via applying
the transference principle and Harman’s sieve method. Besides, we improve on a
Roth-type result for Piatetski-Shapiro primes given by Merik.

In the fourth article, we study 𝑑𝑘 bounded multiplicative functions in almost
all short intervals. Our results generalize the breakthrough given by Matomäki and
Radziwiłł and improve on Mangerel’s result. The proofs depend on the Matomäki-
Radziwiłł method and introducing restrictions on prime factors.

KEYWORDS: prime gaps, the least prime in an arithmetic progression, van der Cor-
put’s method, Möbius function, Vinogradov’s theorem, Piatetski-Shapiro primes, the
circle method, the transference principle, Harman’s sieve method, divisor function,
short intervals, the Matomäki-Radziwiłł method, Dirichlet polynomials
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TIIVISTELMÄ

Tämä väitöskirja koostuu neljästä artikkelista, jotka koskevat multiplikatiivista ja
additiivista lukuteoriaa, kahta analyyttisen lukuteorian osa-aluetta, jotka liittyvät e-
simerkiksi alkulukujen jakautumiseen sekä multiplikatiivisiin ja additiivisiin raken-
teisiin.

Ensimmäisessä artikkelissa tarkastelemme alkulukujen lyhyisiin ja pitkiin etäi-
syyksiin liittyvien läpimurtojen yhdistämistä parantaen Pintzin aiempaa tulosta. Sovel-
lamme samankaltaista strategiaa myös parantaaksemme aiempia tuloksia alarajalle
pienimmästä alkuluvusta aritmeettisessa jonossa. Todistukset perustuvat Maynard-
Tao -lauseen muunnelmaan ja alkulukujen pitkien välien tulosten todistuksiin.

Toisessa artikkelissa tutkimme alarajaa Möbiuksen funktion eksponenttisumman
𝐿1-normille lyhyillä väleillä. Tämä tulos yleistää Balogin ja Ruzsan todistaman
pitkien välien version. Todistukset perustuvat Balog-Ruzsan todistuksen rakenteeseen
ja avainlemman parannukseen. Parannuksessa käytetään kahta eri tekniikkaa —
kompleksianalyysiä ja van der Corputin menetelmää.

Kolmannessa artikkelissa tutkimme Vinogradovin kolmen alkuluvun lausetta Pia-
tetski-Shapiron alkuluvuille. Tuloksemme parantaa merkittävästi olemassa olevia
tuloksia soveltamalla transferenssiperiaatetta ja Harmanin seulamenetelmää. Lisäksi
parannamme Merikin todistamaa Roth-tyyppistä tulosta Piatetski-Shapiron alkulu-
vuille.

Neljännessä artikkelissa tutkimme 𝑑𝑘 -rajoitettuja multiplikatiivisia funktioita
melkein kaikilla lyhyillä väleillä. Tuloksemme yleistävät Matomäen ja Radziwiłłin
läpimurtoa ja parantavat Mangerelin tulosta. Todistukset hyödyntävät Matomäki-
Radziwiłł -menetelmää ja alkutekijöiden lukumäärän rajoittamista.

ASIASANAT: alkulukujen etäisyydet, pienin alkuluku aritmeettisessa jonossa, van
der Corputin menetelmä, Möbiuksen funktio, Vinogradovin lause, Piatetski-Shapiron
alkuluvut, ympyrämenetelmä, transferenssiperiaate, Harmanin seulamenetelmä, te-
kijäfunktio, lyhyet välit, Matomäki-Radziwiłł -menetelmä, Dirichlet’n polynomit

iv



Preface

Number theory, a field both simple and complex, has captivated many mathemati-
cians. I feel immensely happy to be among those dedicated to number theory re-
search. It is called simple because many of its problems are stated very straightfor-
wardly, such as Goldbach’s Conjecture: ”Is every even number greater than or equal
to 4 the sum of two prime numbers?” and the Twin Prime Conjecture: ”Are there
infinitely many pairs of prime numbers that differ by 2?” However, it is also called
complex because solving these problems can be extremely difficult, requiring pro-
found mathematical insights and tools, and sometimes they may remain unsolved.
For instance, both of these conjectures are yet to be proven.

Five years ago, I was anxious about finding a doctoral position because my un-
dergraduate and master’s degrees were not in mathematics, making it challenging to
find a Ph.D. position in mathematics/number theory. Fortunately, during my master’s
studies, I conducted some research in number theory, which served as the only proof
of my mathematical abilities.

An academically outstanding advisor is likely to produce good students. Con-
tacting Professor Kaisa Matomäki to be my advisor was a suggestion from my col-
laborator, Professor Hao Pan. I remember Hao Pan telling me, ”Matomäki is very
strong, and I believe she will become even stronger.” Although I was not very famil-
iar with multiplicative number theory (one Matomaki’s research fields) at the time, I
trusted Professor Pan’s words, as he knew me well.

My supervisor, Professor Kaisa Matomäki, is a master of analytic number theory
and one of the most mathematically talented individuals I have ever encountered.
When we first started communicating via email, I always addressed her as Professor
Matomäki. Later, she told me we could be more informal, so I began addressing
her as Kaisa. After the COVID, we would meet weekly to discuss mathematics,
sometimes for just a few minutes, sometimes for an hour. I was amazed by Kaisa’s
mathematical abilities, as even short meetings often provided me with profound in-
sights. Kaisa quickly grasped what I was saying and pointed out the critical points.
She is also an excellent teacher, capable of explaining profound mathematical theo-
rems in the simplest language. One of the most memorable moments was when Kaisa
explained the key parts of the transference principle to me in just over ten minutes.

During my Ph.D. studies, the pandemic was the most challenging period. For the
first year and a half, my studies were overshadowed by the pandemic. In September
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2020, I left China for Finland for the first time, feeling both worried about adapting
to life and eager to discuss mathematics with many excellent mathematicians. Things
turned out to be more challenging than expected. At the beginning of my Ph.D., I
hadn’t done mathematical research for a long time, had little knowledge of analytic
number theory techniques, and nearly everyone was working remotely from home.
Coupled with the Finnish winter, my emotions became very tense, and my academic
progress was slow. After eight months of rest in China, I returned to Finland to con-
tinue my unfinished doctoral journey. During my time back in China, Professor Lilu
Zhao invited me to Shandong University for a long-term visit, where we discussed
mathematics, played billiards, and had an unforgettable time. During the pandemic,
Kaisa and I kept in touch almost weekly through emails, discussing topics like the
circle method, sieve methods, exponential sum estimates, and mean value theorems.
Under her guidance, I completed a piece of work.

Upon returning to Finland, I worked my hardest until I finished my fourth paper.
I found that I could quickly learn advanced mathematical techniques and understand
deep mathematical ideas. These techniques and ideas have now become part of my
toolkit. Reflecting on the time when I completed my first paper during my Ph.D., my
English writing was very poor, and sometimes my English expression and sentence
structure were chaotic. Kaisa patiently helped me revise it at least six times until
it reached a submission-worthy version. For the subsequent papers, I paid more
attention to detail each time. Although I couldn’t achieve perfection, I tried to do
better within my abilities.

In the spring of 2023, China’s pandemic policies began to ease, making it easier
to return home. After attending conferences in Bristol and Oxford in the summer of
2023, I stayed in China for two months. Returning to my homeland after two years
was exhilarating. Many colleagues enthusiastically invited me for academic visits.
After returning to Europe, I attended a conference in Bonn, Germany, and then busily
prepared for postdoctoral applications. Writing materials, submitting resumes, and
waiting for interview opportunities took a long time, and the interviews were nerve-
wracking. Fortunately, in January 2024, I received a fantastic offer from Professor
Ben Krause at the University of Bristol, and I hope my future academic journey will
also be smooth.

In the following acknowledgment, I want to thank all my teachers, friends, and
family who helped me during my Ph.D. studies.

First, I want to express my special thanks to my supervisor, Professor Kaisa
Matomäki, for her patient and meticulous guidance in mathematics and paper writing
during my Ph.D. studies, and for providing many valuable suggestions. I am grateful
for her funding support, which allowed me to attend international conferences and
academic visits, listen many wonderful talks, and meet many academic peers. Her
concern for my well-being made me feel warm even in a foreign land.

I deeply appreciate the reviewers of my doctoral dissertation, Alexander Man-
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gerel and Aled Walker, for carefully reading my thesis and providing excellent eval-
uations and useful suggestions. I also want to thank Oleksiy Klurman for agreeing
to be my opponent.

I am sincerely thankful to Edufi, UTUGS Turku University Graduate School, and
the Academy of Finland project no. 333707 for funding my Ph.D. studies.

Special thanks go to my colleagues in the number theory group at the Univer-
sity of Turku: Sebastian Zuniga Alterman, Martin Čech, Jesse Jääsaari, Sarvagya
Jain, Olli Järviniemi, Mikko Jaskari, Stelios Sachpazis, Joni Teräväinen, and Mengdi
Wang. I cherish the times we spent dining together, discussing mathematics, and
having fun.

Additionally, I am grateful to the colleagues who invited me for talks or visits,
including Wang Chen at Nanjing Forestry University, Lixia Dai at Nanjing Nor-
mal University, Bingrong Huang and Yongxiao Lin at Shandong University, Max
Wenqiang Xu at Stanford University, Zikang Dong and Guangliang Zhou at Tongji
University, Zhenyu Guo and Ping Xi at Xi’an Jiaotong University, Yuchen Ding at
Yangzhou University as well as Jie Ma, Tuan Tran, and Lilu Zhao at the University
of Science and Technology of China. Thank you for giving me the opportunity to
present my work. Furthermore, I am thankful to Andrew Granville for discussions
on mathematics and guidance.

I am deeply grateful to my parents for their upbringing and constant encourage-
ment and support. They have always provided me with a loving and harmonious
family. My mother has great foresight, and my father has a tenacious will; they are
my role models. I also want to thank my family for their continued care and support.

Lastly, I want to thank all my friends who have accompanied me along the way.
Special thanks to my beloved Minqin Zhang, who is like a treasure in my life. You
have always been by my side, warming and supporting me through difficult times.
You are like a little sun, brightening my world.

May 27, 2024
Yu-Chen Sun
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前言

数论，这门既简单又复杂的学科，让无数数学家为之着迷。能够成为致力于

数论研究的一员，我感到无比高兴。说它简单，是因为许多问题的陈述非常

简洁，例如哥德巴赫猜想：“是否任何一个大于等于4的偶数都可以写成两个
质数的和？”以及孪生素数猜想：“是否存在无穷多对差为2的质数？”但说它
复杂，是因为解决这些问题极其困难，常常需要深刻的数学思想和工具，有

时甚至可能无法解决。例如，这两个著名猜想至今仍未被证明。

五年前，我为博士职位感到焦虑，因为我的本科和硕士都不是数学专业，

找一个数学/数论的博士岗位可能并不容易。幸运的是，在硕士期间，我进行
了一些数论方面的研究，这成为我数学能力的唯一证明。

一个学术能力出众的导师，往往能培养出优秀的学生。联系Kaisa Matomäki
教授做我的导师，是当时的合作者潘颢教授建议的。我记得潘颢教授对

我说：“Matomäki非常强，我相信她会变得更强。”尽管当时我对乘性数论
（Matomäki的主要研究方向之一）知之甚少，但我相信潘颢教授的判断，他
非常了解我。

我的导师Kaisa Matomäki教授是解析数论的专家，是我见过的最有数学天
赋的人之一。在我们刚开始通过邮件沟通时，我一直称呼她为Matomäki教
授。后来她告诉我可以随意一点，于是我开始称呼她为Kaisa。疫情后，我们
每周见面讨论数学，有时十几分钟，有时一个小时。Kaisa的数学能力令我惊
叹，哪怕是短短十几分钟的讨论，也能让我受益匪浅。她总是能迅速理解我

所表达的内容，并指出关键问题。Kaisa也是一位优秀的老师，能够用最简单
的语言解释深奥的数学定理。令我印象深刻的一次是，Kaisa仅用了十几分钟
就向我讲解了转换原理的关键部分。

读博期间，疫情是最艰难的时期。在我博士的前一年半，几乎全程都笼罩

在疫情阴影下。2020年9月，我第一次离开中国，前往芬兰留学，心情复杂，
既担心无法适应新生活，又期待与许多优秀的数学家交流。事情比预想中困

难得多，入学初期，由于很久没有从事数学研究，对解析数论的技术了解甚

少，加之几乎所有人都在家远程工作，又赶上芬兰的冬天，让我的情绪变得

非常紧张，学术进展甚微。回国休养了8个月后，我重新返回芬兰继续博士之
旅。回国期间，赵立璐教授邀请我去山东大学进行几个月的长期访问，我们

一起讨论数学、打桌球，度过了一段难忘的时光。疫情期间，我和Kaisa几乎
每周通过邮件沟通，讨论圆法、筛法、指数和估计、均值定理等内容，并在

她的指导下完成了一项工作。

回到芬兰后，直到我完成第四篇论文的那段时间，是我最努力的时候。我
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发现自己能够迅速掌握一些高级的数学技术，理解深刻的数学思想。这些技

术和思想现在已经成为我工具包的一部分。回想起博士期间完成第一篇论文

时，我的英文写作水平很差，表达混乱，结构不清。Kaisa耐心地帮我修改了
至少六遍，才使我的论文达到投稿标准。之后的几篇论文，每次写作时，我

都比上次更仔细一点，虽然无法做到完美，但力求在能力范围内有所提升。

2023年春天，中国的疫情政策开始放松，回国变得容易。2023年夏天，
我在布里斯托和牛津大学参加完会议后，回国待了两个月。时隔两年再次

回到祖国，心情激动。许多同事热情邀请我进行学术访问。回到欧洲后，

我先去德国波恩参加了一个会议，然后紧锣密鼓地准备博后申请。申请过

程中，写材料、投简历耗费了大量时间，等待面试机会时也非常紧张。幸

运的是，2024年1月，我接到了布里斯托大学Ben Krause教授的一份非常棒
的offer，希望未来的学术之旅一切顺利。
在此，我想感谢在博士期间帮助过我的所有老师、朋友和家人。

首先，我要特别感谢我的导师Kaisa Matomäki教授。在博士期间，她在数
学研究和论文写作上给予我耐心和细致的指导，并提供了许多宝贵的建议。

感谢她的基金支持我参加国际会议和学术访问，让我有机会听到许多精彩的

报告，结识许多学术同行。Kaisa一直关心我的生活，让我在异国他乡也感受
到温暖。

此外，非常感谢博士论文的审稿人Alexander Mangerel和Aled Walker，仔
细阅读了我的论文，给予了很好的评价和有用的修改意见。也要感谢Oleksiy
Klurman同意担任我的答辩对手。
我深深感谢Edufi、UTUGS图尔库大学研究生院和芬兰研究院对我博士项

目的资助。

特别感谢图尔库大学数论组的同事们：Sebastian Zuniga Alterman, Martin
Čech, Jesse Jääsaari, Sarvagya Jain, Olli Järviniemi, Mikko Jaskari, Stelios Sach-
pazis, Joni Teräväinen和王梦迪。与大家一起聚餐、讨论数学、玩耍的时光让
我倍感珍惜。

同时，我也要感谢那些邀请我进行报告或访问的同事们，包括南京林业大

学的王晨，南京师范大学的戴立霞，山东大学的黄炳荣和林永晓，斯坦福大

学的徐文强，同济大学的董自康和周广良，西安交通大学的郭振宇和郗平，

扬州大学的丁煜宸以及中国科技大学的马杰、Tuan Tran和赵立璐。感谢你们
给予我展示自己工作的机会。此外，我也要感谢Andrew Granville，多次与我
讨论数学并给予指导。

我要感谢南京大学的孙智伟教授和潘颢教授在我攻读硕士期间教我数论，

和我讨论数学并与我合作。他们的指导为我打下了坚实的基础，并让我有信

心追求数学事业。

感谢我的父母，他们一直鼓励和支持我。感谢父母为我建立了一个充满爱

的和谐家庭。我母亲有着卓越的远见，父亲有着坚韧的意志，他们是我学习

的榜样。也要感谢我的家人一直以来的关心爱护和支持。

最后，感谢所有爱我的朋友们，你们的陪伴让我倍感温暖。特别感谢我的

爱人，张敏勤，你像珍宝一样来到我的世界，在我遇到困境时总是陪伴我、
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温暖我、支持我。你像小太阳一样，照亮了我的世界。

二○二四年五月二十八日

孙宇宸
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1 Notations

1.1 Sets
• N — the set of positive integers {1, 2, 3, . . . }.

• Z — the set of all integers.

• R — the set of all real numbers.

• R≥0 — the set of all non-negative real numbers.

• C — the set of all complex numbers.

• [𝑁 ] — the finite set {1, 2, . . . , 𝑁}

• 𝒫 — the set of primes.

• 𝒫(𝑧) — the product of primes less or equal than 𝑧, 𝒫(𝑧) :=
∏︀

𝑝<𝑧 𝑝.

• N𝑐 — the set {⌊𝑛𝑐⌋ : 𝑛 ∈ N} for 𝑐 > 1.

• 𝒫𝑐 — the set of Piatetski-Shapiro primes, namely 𝒫𝑐 := 𝒫 ∩ N𝑐, for 𝑐 > 1.

• 𝜋𝑐(𝑥) — the number of 𝑝 ∈ 𝒫𝑐 with 𝑝 ≤ 𝑥𝑐 and 𝑐 > 1.

1.2 Functions
• 1𝑆(𝑛) or 1𝑛∈𝑆 — the indicator function of the set 𝑆, which equals 1 if 𝑛 ∈ 𝑆

and equals 0 otherwise.

• 𝜋(𝑥) — the number of primes no more than 𝑥.

• 𝑝, 𝑝1, 𝑝2, . . . , 𝑝𝑛 — prime numbers.

• 𝑒(𝛼) — the additive character 𝑒2𝜋𝑖𝛼 with 𝛼 ∈ R.

• 𝜑(𝑛) — Euler’s totient function, counting the number of integers 1 ≤ 𝑘 ≤ 𝑛

with (𝑘, 𝑛) = 1.

• Ω(𝑛) — the number of prime factors of 𝑛 counting the multiplicities.
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• 𝜔(𝑛) — the number of distinct prime factors of 𝑛.

• Λ(𝑛) — the Von Mangoldt function, which is equal to log 𝑝 if 𝑛 = 𝑝𝑘 for some
prime 𝑝 and 𝑘 ≥ 1, and equal to 0 otherwise.

• 𝜆(𝑛) — the Liouville function, given by 𝜆(𝑛) := (−1)Ω(𝑛).

• 𝜇(𝑛) — the Möbius function, given by 𝜇(𝑛) := 𝜆(𝑛)1squarefree numbers(𝑛).

• 𝑑(𝑛) — the number of the representations for writing 𝑛 as a product of two
positive integers, 𝑑(𝑛) :=

∑︀
𝑚1𝑚2=𝑛 1.

• 𝑑𝑘(𝑛) — the number of the representations for writing 𝑛 as a product of 𝑘

positive integers, 𝑑𝑘(𝑛) :=
∑︀

𝑚1𝑚2...𝑚𝑘=𝑛 1.

• P(X) — the probability of the event X.

• 𝜌+(𝑛), 𝜌−(𝑛) — upper bound and lower bound sieve weights satisfying 𝜌−(𝑛) ≤
1𝒫(𝑛) ≤ 𝜌+(𝑛).

• 𝜌(𝑛, 𝑧) — the indicator function of 𝑧-rough numbers, 𝜌(𝑛, 𝑧) := 1𝑝|𝑛⇒𝑝>𝑧 .

• ‖𝛼‖ — the distance from 𝛼 to the integer(s) closest to 𝛼, ‖𝛼‖ := min𝑛∈Z |𝛼−
𝑛|.

• log𝑘 𝑥 — the 𝑘-th iteration of the logarithm function, namely log1(𝑥) = log 𝑥

and log𝑘(𝑥) := log(log𝑘−1(𝑥)), 𝑘 ≥ 2.

1.3 Analysis
Let 𝑓 : R → C and 𝑔 : R → R≥0.

• 𝑓(𝑥) = 𝑂(𝑔(𝑥)) or 𝑓(𝑥) ≪ 𝑔(𝑥) — there exist some constant 𝐶 > 0 such
that |𝑓(𝑥)| ≤ 𝐶𝑔(𝑥) for all 𝑥 ∈ R.

• 𝑓(𝑥) ≫ 𝑔(𝑥) — there exist some constant 𝐶 > 0 such that 𝑓(𝑥) ≥ 𝐶𝑔(𝑥) for
all 𝑥 ∈ R.

• 𝑓(𝑥) ≍ 𝑔(𝑥) — we have 𝑓(𝑥) ≪ 𝑔(𝑥) and 𝑔(𝑥) ≪ 𝑓(𝑥).

• 𝑓(𝑥) = 𝑜(𝑔(𝑥)) — we have lim𝑥→∞ 𝑓(𝑥)/𝑔(𝑥) → 0.

• 𝑓(𝑥) ∼ 𝑔(𝑥) — we have lim𝑥→∞ 𝑓(𝑥)/𝑔(𝑥) → 1.
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1.4 Fourier language and norms
Let 𝑓, ℎ : [𝑁 ] → C and 𝑔 : [0, 1) → C.

• ̂︀𝑓(𝛼) — the Fourier transform of 𝑓 , namely, ̂︀𝑓(𝛼) :=
∑︀

𝑛≤𝑁 𝑓(𝑛)𝑒(𝑛𝛼).

• 𝑓 * ℎ — the convolution of 𝑓 and ℎ, (𝑓 * ℎ)(𝑛) :=
∑︀

𝑛1+𝑛2=𝑛 𝑓(𝑛1)ℎ(𝑛2).

• ‖𝑓‖𝑞 — 𝑙𝑞 norm of 𝑓 , ‖𝑓‖𝑞 := (
∑︀

1≤𝑛≤𝑁 |𝑓(𝑛)|𝑞)
1

𝑞 .

• ‖𝑔‖𝑞 — 𝐿𝑞 norm of 𝑔, ‖𝑔‖𝑞 := (
∫︀ 1
0 |𝑔(𝛼)|𝑞𝑑𝛼)

1

𝑞 .

1.5 Miscellaneous
• Δ𝐵(𝐴) — the relative upper density of 𝐴 in 𝐵, namely Δ𝐵(𝐴) := lim sup𝑁→∞

|𝐴∩[𝑁 ]|
|𝐵∩[𝑁 ]| .

• 𝛿𝐵(𝐴) — the relative lower density of 𝐴 in 𝐵, namely 𝛿𝐵(𝐴) := lim inf𝑁→∞
|𝐴∩[𝑁 ]|
|𝐵∩[𝑁 ]| .

• 𝑎 ∼ 𝐴 — the range 𝐴 < 𝑎 ≤ 2𝐴.
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2 Introduction

Additive number theory focuses on discovering additive structures within subsets of
integers. A classical tool in analytic number theory to study these additive structures
is the Hardy-Littlewood method, also known as the circle method. This approach
utilizes Fourier analysis and exponential sum estimates. In recent years, several new
methods have emerged to investigate additive structures. For instance, Green’s trans-
ference principle incorporates ideas from harmonic analysis.

Multiplicative number theory centers on the distribution of primes, multiplicative
functions, and multiplicative structures. Unlike additive number theory, the standard
tool in multiplicative number theory is complex analysis. A fundamental concept in
multiplicative number theory is the theory of the Riemann zeta function.

While these two research areas may seem distinct, there are instances where they
become intertwined, and some of the most notorious open problems in number theory
have elements from both areas. Our overarching objective in the thesis is to illustrate
several instances of these intersecting phenomena.

One of the most famous open problems in number theory is the twin prime con-
jecture, which conjectures that there are infinitely many prime pairs with difference
2. In recent years, significant progress has been made towards this conjecture, no-
tably by Zhang [85]. He proved that there are infinitely many prime pairs (𝑝, 𝑞) such
that |𝑝 − 𝑞| ≤ 7 × 107. Subsequently, the bound 107 has been improved multiple
times by [54; 65]. The best-known unconditional record for the bound is 246. If one
assumes a certain generalization of the Elliott–Halberstam conjecture, then 246 can
be improved to 6.

Turning to the existence of large prime gaps and letting 𝑝𝑛 be the 𝑛-th prime
number, Cramér made a heuristic argument, conjecturing that 𝑝𝑛 − 𝑝𝑛−1 ≪ log2 𝑛

for all 𝑛 ≥ 1. This conjecture suggests that the gaps between consecutive primes
do not become very large. In 2014, Ford, Green, Konyagin, Maynard and Tao [17]
proved that there are infinitely many consecutive prime pairs (𝑝𝑛, 𝑝𝑛+1) such that

𝑝𝑛+1 − 𝑝𝑛 ≫ log 𝑛 log2 𝑛 log4 𝑛

log3 𝑛
. (2.1)

In article [I], jointly with Hao Pan we study the distribution of the primes, where we
combine the small and large prime gaps together by proving that for any fixed 𝑚,
there are infinitely many 𝑚 + 1-tuples (𝑝𝑛−𝑚+1, 𝑝𝑛−𝑚+2, . . . , 𝑝𝑛, 𝑝𝑛+1) such that
𝑝𝑛 − 𝑝𝑛−𝑚+1 ≪ 1 and 𝑝𝑛+1 − 𝑝𝑛 satisfies (2.1).
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Another example that involves both multiplicative and additive number theory
is the study of the exponential sum of the Möbius function. This encompasses both
a multiplicative function, Möbius function and additive characters 𝑒(𝑛𝛼). In 1937,
Davenport [15], proved that for any 𝛼 ∈ [0, 1) and any fixed 𝐴 > 0

⃒⃒
⃒⃒
⃒⃒
∑︁

𝑛≤𝑋

𝜇(𝑛)𝑒(𝑛𝛼)

⃒⃒
⃒⃒
⃒⃒≪

𝑋

log𝐴𝑋
,

for all sufficiently large 𝑋 > 0. Recently, Matomäki and Teräväinen [51] studied the
short interval version of Davenport’s theorem and showed that, for any 𝐻 ≥ 𝑋3/5+𝜖

with any 𝜖 > 0, ⃒⃒
⃒⃒
⃒⃒

∑︁

𝑋<𝑛≤𝑋+𝐻

𝜇(𝑛)𝑒(𝑛𝛼)

⃒⃒
⃒⃒
⃒⃒ = 𝑜(𝐻),

improving a work of Zhan [84]. In 2001, Balog and Ruzsa [6] proved a lower bound
for the 𝐿1 norm for the exponential sum of the Möbius function by establishing that

∫︁ 1

0

⃒⃒
⃒⃒
⃒⃒
∑︁

𝑛≤𝑋

𝜇(𝑛)𝑒(𝑛𝛼)

⃒⃒
⃒⃒
⃒⃒ 𝑑𝛼 ≫ 𝑋1/6.

In article [II], we extend the Balog-Ruzsa theorem to short intervals by proving that
for sufficiently large 𝑋 and 𝐻 ≥ 𝑋9/17+𝜖 with any 𝜖 > 0, we have

∫︁ 1

0

⃒⃒
⃒⃒
⃒⃒

∑︁

𝑋<𝑛≤𝑋+𝐻

𝜇(𝑛)𝑒(𝑛𝛼)

⃒⃒
⃒⃒
⃒⃒ 𝑑𝛼 ≫ 𝐻1/6.

One of the famous open problem in additive number theory is the binary Gold-
bach problem, which conjectures that every even integer 𝑛 ≥ 4 can be written as
a sum of two primes. On the other hand, the weak version, the ternary Goldbach
problem, asks whether every odd integer 𝑛 ≥ 7 can be written as a sum of three
primes. This was proved by Vinogradov [79] for all sufficiently large odd integers.
This theorem is known as Vinogradov’s three primes theorem. In 2013, Helfgott [29]
announced a proof of the ternary Goldbach problem.

In article [III], jointly with Du and Pan, we study Vinogradov’s three primes
theorem where primes are restricted in a sparse subset of primes—Piatetski-Shapiro
primes (primes of the form ⌊𝑛𝑐⌋ for some fixed 𝑐 > 1). Specifically, we proved
Vinogradov’s three primes theorem for Piatetski-Shapiro primes whenever 1 < 𝑐 <

41/35 ≈ 1.171, improving upon the work of Jia [37].
Another interesting topic in additive combinatorics is Roth’s theorem, which as-

serts that any 𝐴 ⊂ N with positive upper density (ΔN(𝐴) > 0) contains non-trivial
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three term arithmetic progressions. In 2003, Green [25] proved a Roth-type theo-
rem for primes by showing that any 𝐴 ⊂ 𝒫 with relative positive upper density
(Δ𝒫(𝐴) > 0) contains non-trivial three term arithmetic progressions. In article [III],
we also proved that any subset of Piatetski-Shapiro primes, for 1 < 𝑐 ≤ 243/205 ≈
1.185, with relative positive upper density contains non-trivial three term arithmetic
progressions improving upon the work of Merik [56].

One topic studied in multiplicative number theory is the distribution of primes
and the sums of arithmetic functions in short intervals. For instance, Huxley [31]
proved that for all sufficiently large 𝑋 and 𝐻 ≥ 𝑋7/12+𝜖

∑︁

𝑋<𝑛≤𝑋+𝐻

Λ(𝑛) = (1 + 𝑜(1))𝐻.

Following this, Motohashi [57] and Ramachandra [68] independently proved that for
all sufficiently large 𝑋 and 𝐻 ≥ 𝑋7/12+𝜖

∑︁

𝑋<𝑛≤𝑋+𝐻

𝜇(𝑛) = 𝑜(𝐻).

Recently, Matomäki and Radziwiłł in their breakthrough paper [49] proved that for
any 1-bounded multiplicative function, any sufficiently large 𝑋 and ℎ → ∞ with
𝑋 → ∞,

1

ℎ

∑︁

𝑥<𝑛≤𝑥+ℎ

𝑓(𝑛) − 1

𝑥

∑︁

𝑥<𝑛≤2𝑥

𝑓(𝑛) = 𝑜

⎛
⎝ 1

𝑋

∑︁

𝑋<𝑛≤2𝑋

|𝑓(𝑛)|

⎞
⎠

holds for almost all 𝑥 ∈ [𝑋, 2𝑋]. In article [IV], we study the Matomäki-Radziwłł
theorem for 𝑑𝑘-bounded multiplicative functions in almost all short intervals. For any
fixed integer 𝑘 ≥ 2 and any sufficient large 𝑋 and for all ℎ ≥ (log𝑋)𝑘 log 𝑘−𝑘+1+𝜖

with any 𝜖 > 0, we are able to show that for almost all 𝑥 ∈ [𝑋, 2𝑋],

1

ℎ

∑︁

𝑥<𝑛≤𝑥+ℎ

𝑑𝑘(𝑛) − 1

𝑥

∑︁

𝑥<𝑛≤2𝑥

𝑑𝑘(𝑛) = 𝑜(log𝑘−1𝑋) (2.2)

holds. This improved on the work of Mangerel [47]. On the other hand, we proved
that the exponent 𝑘 log 𝑘−𝑘+1 is optimal by showing that if ℎ ≤ (log𝑋)𝑘 log 𝑘−𝑘+1−𝜖

with any 𝜖 > 0, then (2.2) fails for almost all 𝑥 ∈ [𝑋, 2𝑋].
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3 Gaps between consecutive primes

3.1 Primes and prime gaps
3.1.1 Primes and primes in short intervals

A prime number is a positive integer greater than 1 that is not a product of two smaller
natural numbers. For 𝑥 ≥ 2, recall that 𝜋(𝑥) denotes the number of primes up to 𝑥.
The prime number theorem states that

𝜋(𝑥) = (1 + 𝑜(1))
𝑥

log 𝑥
,

or equivalently ∑︁

𝑛≤𝑥

Λ(𝑛) = (1 + 𝑜(1))𝑥.

To understand the distribution of primes better, one studies primes in short intervals.
Specifically, it is of interest to study for how small 𝜃 > 0 one can show the asymptotic
formula ∑︁

𝑥<𝑛≤𝑥+𝑥𝜃

Λ(𝑛) = (1 + 𝑜(1))𝑥𝜃. (3.1)

By a zero-density argument, Huxley [31] showed that (3.1) holds for 𝜃 > 7/12,
which has been improved by Heath-Brown [28] by showing (3.1) holds for 𝜃 >

7/12 − 𝜖 for some small 𝜖 > 0 tending to 0 when 𝑥 tends to infinity.
To determine whether there is a prime in (𝑥, 𝑥+𝑥𝜃], we only need to find a lower

bound for the left-hand side of (3.1). The best known result is due to Baker, Harman
and Pintz [2], who show the lower bound

∑︁

𝑥<𝑛≤𝑥+𝑥𝜃

Λ(𝑛) ≫ 𝑥𝜃,

for 𝜃 > 0.525.

3.1.2 Small gaps between primes

Pairs (𝑝, 𝑝 + 2), where both 𝑝 and 𝑝 + 2 are primes, are called twin primes. The
recent breakthrough towards twin prime conjecture is due to Zhang [85] where he
proved the existence of infinitely many prime pairs (𝑝, 𝑞) with |𝑞 − 𝑝| ≤ 7 × 107.
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Subsequently, this upper bound was refined by Maynard [54] and Tao (unpublished)
to 600 and then was improved by Polymath project [65] to 246. Maynard and Tao ap-
plied almost the same method — multi-dimensional sieve method now also known as
the Maynard-Tao sieve method. In fact, the Maynard-Tao method can detect primes
from more general “admissible sets”.

We say that a set of integers

ℋ = {ℎ1, ℎ2, . . . , ℎ𝑘}

is an admissible set if for any prime 𝑝, there exist 𝑎 (mod 𝑝) such that ℎ𝑖 ̸≡ 𝑎 (mod 𝑝)

for all 1 ≤ 𝑖 ≤ 𝑘. Let us state [54, Theorem 1.1] which concerns small prime gaps.

Theorem 3.1. Let 𝑚 ≥ 2. There exists a constant 𝑘𝑚 depending on 𝑚 such that the
following holds. Suppose that ℋ = {ℎ1, ℎ2, . . . , ℎ𝑘𝑚

} is an admissible set. For every
sufficiently large 𝑋 , there exists an integer 𝑛 ∈ [𝑋, 2𝑋] such that 𝑛+ℋ contains at
least 𝑚 primes.

3.1.3 Large gaps between primes

For large prime gaps, there are two aspects to consider. One involves an upper bound
for the prime gaps, also known as primes in short intervals as mentioned earlier. The
other is a lower bound for the largest gap between two consecutive primes. Let 𝑝𝑛 be
the 𝑛-th prime number. From the prime number theorem 𝜋(𝑥) = (1 + 𝑜(1)) 𝑥

log 𝑥 , it
is easy to see there are infinitely many prime pairs (𝑝𝑛, 𝑝𝑛+1) such that 𝑝𝑛+1−𝑝𝑛 ≫
log 𝑛. Westzynthius [81] first proved the non-trivial result that there are infinitely
many consecutive prime pairs (𝑝𝑛, 𝑝𝑛+1) such that

𝑝𝑛+1 − 𝑝𝑛 ≫ 𝑓(𝑛) log 𝑛 (3.2)

where 𝑓(𝑛) → ∞ with 𝑛 → ∞. The lower bound in (3.2) was improved several
times. Brauer-Zeitz [9] improved it to

log 𝑛 log3 𝑛

log4 𝑛
,

then it was improved by Erdős [16] to

log 𝑛 log2 𝑛

(log3 𝑛)2
.

Later, Rankin [69] showed that there are infinitely many prime pairs (𝑝𝑛, 𝑝𝑛+1) such
that

𝑝𝑛+1 − 𝑝𝑛 ≥ 𝐶
log 𝑛 log2 𝑛 log4 𝑛

(log3 𝑛)2
, (3.3)
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for some constant 𝐶 > 0. Erdős offered a $10, 000 prize for a proof or disproof of
the claim that the constant 𝐶 in the above inequality may be taken arbitrarily large.

Recently, Maynard [55] and Ford, Green, Konyagin and Tao[18] independently
used different approaches and proved that 𝐶 = ∞. By combining the two meth-
ods, Ford, Green, Konyagin Maynard and Tao [18] improved the results further by
showing there are infinitely many integers 𝑛 such that

𝑝𝑛+1 − 𝑝𝑛 ≫ log 𝑛 log2 𝑛 log4 𝑛

log3 𝑛
. (3.4)

Motivated by the recent breakthroughs on small and large prime gaps, in article [I]
we proved the following theorem

Theorem 3.2. For any 𝑚 ≥ 1, there exist infinitely many 𝑛 such that

𝑝𝑛 − 𝑝𝑛−𝑚 ≤ 𝐶𝑚 (3.5)

and

𝑝𝑛+1 − 𝑝𝑛 ≥ 𝑐𝑚 log 𝑛 log2 𝑛 log4 𝑛

log3 𝑛
, (3.6)

where 𝐶𝑚, 𝑐𝑚 > 0 are two constants depending only on 𝑚.

This theorem improves on Pintz’s result [64].

3.2 The least prime in an arithmetic progression
Another topic related to large prime gaps is the least prime in an arithmetic pro-
gression. In fact, both large prime gaps and lower bounds for the least prime in an
arithmetic progression are connected to studying lower bounds for Jacobsthal’s func-
tion 𝑗, see [34]. If 𝑚 is a positive integer then 𝑗(𝑚) is defined to be the maximal gap
between integers coprime to 𝑚 and studying the large prime gaps is closely related
to studying lower bounds for 𝑗(𝑚) with 𝑚 =

∏︀
𝑝≤𝑥 𝑝 for some 𝑥 > 1. Pomerance

[66, Theorem] pointed out the lower bound for 𝑗(𝑚) also implies a lower bound for
the least prime in an arithmetic progression.

For any positive integers 𝑘 and 𝑙 with (𝑘, 𝑙) = 1, let 𝑝(𝑘, 𝑙) denote the least prime
of the form 𝑘𝑛 + 𝑙 with 𝑛 ≥ 1. There are three popular directions to study 𝑝(𝑘, 𝑙).
The most popular one is to investigate upper bounds for 𝑃 (𝑘) := max(𝑙,𝑘)=1 𝑝(𝑘, 𝑙).
Linnik [45] proved that 𝑃 (𝑘) ≤ 𝑘𝐿 with a large constant 𝐿. This result has been
called the Linnik theorem and the value 𝐿 has been improved many times see [60;
11; 38; 12; 23; 13; 80; 82]. The best known result is 𝐿 ≤ 5 due to Xylouris [83]. All
proofs above heavily rely on information concerning zeros of Dirichlet 𝐿-functions.

Very recently, there are three different 𝐿-function-free proofs of the Linnik theo-
rem. Granville, Harper and Soundararajan [24] applied pretentious approach to prove

9



Yu-Chen Sun

the Linnik theorem but did not give an explicit value of 𝐿. Friedlander and Iwaniec
gave a sieve-theoretic proof of Linnik’s theorem in [19, Chapter 24] and made it ex-
plicit in [20; 21], showing 𝐿 ≤ 7, 574, 400. Matomäki, Merikoski and Teräväinen
[52] developed a sieve that can detect primes in sets that are multiplicative structured
in a certain sense to show that 𝐿 ≤ 350. Assuming GRH (the Generalized Riemann
Hypothesis), Chowla [14] observed that 𝐿 ≤ 2 + 𝜖 for any 𝜖 > 0 and he further
conjectured that 𝐿 ≤ 1 + 𝜖 for any 𝜖 > 0.

The other two directions are studying lower bounds of 𝑃 (𝑘) and 𝑝(𝑘, 𝑙) with
fixed 𝑙. In fact, known lower bounds for these two are closely connected to lower
bounds for large prime gaps.

Concerning lower bounds for 𝑃 (𝑘), Pomerance [66] proved that, for any suffi-
ciently large positive integer 𝑘 which has no more than exp(log2 𝑘/ log3 𝑘) distinct
prime factors, we have

𝑃 (𝑘) ≫ 𝜑(𝑘)
log 𝑘 log2 𝑘 log4 𝑘

(log3 𝑘)2

and this result was improved by Li, Pratt and Shakan [44] who proved that, for any
sufficiently large positive integer 𝑘 with no more than exp

(︁
1
2
log2 𝑘 log4 𝑘

log3 𝑘

)︁
distinct

prime factors, we have

𝑃 (𝑘) ≫ 𝜑(𝑘)
log 𝑘 log2 𝑘 log4 𝑘

log3 𝑘
.

For the lower bound of 𝑝(𝑘, 𝑙) with fixed 𝑙, Prachar [67] and Schinzel [73] proved
the existence of infinitely many 𝑘 such that

𝑝(𝑘, 𝑙) ≫ 𝑘 log 𝑘 log2 𝑘 log4 𝑘

(log3 𝑘)2
.

In article [I], we improve the above lower bound to

𝑝(𝑘, 𝑙) ≫ 𝑘 log 𝑘 log2 𝑘 log4 𝑘

log3 𝑘
.

3.3 Long prime gaps and a covering idea
In order to have long gaps between consecutive primes 𝑝𝑛 and 𝑝𝑛+1, we need to
ensure that all integers between 𝑝𝑛 and 𝑝𝑛+1 are composite numbers. Hence, the key
to obtaining a better lower bound for long prime gaps is finding more consecutive
composite numbers between two primes. To achieve this goal we utilize a “covering
system” based on the following lemma

Lemma 3.1. Let 𝑦 > 𝑥 > 0 be sufficiently large integers and let 𝑀 =
∏︀

𝑝≤𝑥 𝑝.
If there exist residue classes {𝑎𝑝 (mod 𝑝)}𝑝≤𝑥 such that all integers 𝑛 ∈ [𝑥, 𝑦] are

10
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covered by {𝑎𝑝 (mod 𝑝)}𝑝≤𝑥 meaning that for any 𝑛 there is a prime 𝑝 ≤ 𝑥 such that
𝑛 ≡ 𝑎𝑝 (mod 𝑝), then there exists 1 ≤ 𝑏 ≤ 𝑀 such that 𝑛 ∈ [𝑀 +𝑥+ 𝑏,𝑀 + 𝑦+ 𝑏]

are all composite.

Proof. By the Chinese reminder theorem, there exist 1 ≤ 𝑏 ≤ 𝑀 such that 𝑏 ≡
−𝑎𝑝 (mod 𝑝) for all 𝑝 ≤ 𝑥. We claim that for all 𝑛 ∈ [𝑥, 𝑦], 𝑀 + 𝑏 + 𝑛 are all
composite. This is because, for each 𝑛 ∈ [𝑥, 𝑦], there exists a prime 𝑝 ≤ 𝑥 such that
𝑛 ≡ 𝑎𝑝 (mod 𝑝) and thus 𝑀 + 𝑛 + 𝑏 ≡ 0 (mod 𝑝). Since 𝑀 + 𝑛 + 𝑏 > 𝑥, these
numbers are all composite.

From the above lemma, we observe that choosing 𝑝𝑛 to be the largest prime
such that 𝑝𝑛 ≤ 𝑀 + 𝑥 + 𝑏 results in 𝑝𝑛+1 − 𝑝𝑛 ≥ 𝑦 − 𝑥. By the prime number
theorem, we have log𝑀 = (1 + 𝑜(1))𝑥 which implies that 𝑥 = (1 + 𝑜(1)) log 𝑝𝑛 =

(1 + 𝑜(1)) log 𝑛. The remaining task is to determine the largest possible 𝑦 such that
every 𝑛 ∈ [𝑥, 𝑦] is covered by {𝑎𝑝 (mod 𝑝)}𝑝≤𝑥. For instance, to prove (3.4), one
needs to show that for

𝑦 ≍ 𝑥 log 𝑥 log3 𝑥

log2 𝑥
, (3.7)

the condition of Lemma 3.1 holds. In the rest of this chapter we always let 𝑦 :=

𝑦(𝑥) ≍ 𝑥 log 𝑥 log3 𝑥
log2 𝑥

.

3.4 Digging holes
To successfully combine small prime gaps with large prime gaps, we aim to dig
some “holes” in the previously mentioned string of consecutive composite numbers.
Then we insert primes into some of the holes. The distances between these holes
need to be small to obtain small gaps between primes. By applying the Maynard-Tao
method, primes can be detected in admissible sets. In the following, we will employ
an admissible set to dig these holes. Recall the definition of admissible sets and let

ℋ𝑛 = {𝑞1, 𝑞2, . . . , 𝑞𝑛} for any primes 𝑞𝑖 > 𝑛

which is admissible, since 𝑞𝑖 ̸≡ 0 (mod 𝑝) for all primes 𝑝 ≤ 𝑛 and for all primes
𝑝 > 𝑛 there is 𝑎𝑝 (mod 𝑝) such that 𝑎𝑝 ̸≡ 𝑞𝑖 (mod 𝑝) for all 𝑖 = 1, 2, . . . , 𝑛.

Because we will dig holes in the interval [𝑥, 𝑦] and have bounded gaps between
the holes, having an admissible set within the range [𝑥, 𝑥+𝑂(1)] is essential. Thanks
to the Maynard-Tao theorem, we can find an 𝑛-tuple of primes (𝑞1, 𝑞2, . . . , 𝑞𝑛) with
bounded gaps in any sufficient large interval [𝑋, 2𝑋]. Then we can choose 𝑥 = 𝑞1.
Hence, we will employ ℋ𝑛 to create these gaps. The following lemma describes how
to dig holes.

Lemma 3.2. Let 𝑥 > 0 be sufficiently large integer and 𝑦 = 𝑦(𝑥) is as before.
Let ℋ = {ℎ1, ℎ2, . . . , ℎ𝑘} ⊂ [𝑥, 2𝑥] be an admissible set such that |ℎ𝑖 − ℎ𝑗 |

11
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are bounded for all 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘. Let 𝑀 =
∏︀

𝑝≤𝑥 𝑝. If there is a cover-
ing system {𝑎𝑝 (mod 𝑝)}𝑝≤𝑥 such that all integers 𝑛 ∈ [𝑥, 𝑦] ∖ ℋ are covered by
{𝑎𝑝 (mod 𝑝)}𝑝≤𝑥, then there exist 1 ≤ 𝑏 ≤ 𝑀 such that if

𝑛 ≡ 𝑏 (mod 𝑀),

then 𝑛 + [𝑥, 𝑦] ∖ 𝑛 + ℋ are all composite numbers.

Proof. See the proof of Lemma 3.1.

3.5 Overview of the proof
3.5.1 Small prime gaps (holes)

By looking at Lemma 3.2, we would like to find a prime tuple (𝑝1, 𝑝2, . . . , 𝑝𝑚) from
the set 𝑛 + ℋ where 𝑛 ≡ 𝑏 (mod 𝑀). Hence the first question is how does 𝑛 grows
with 𝑀 tending to infinity.

The original arguments for the Maynard-Tao theorem required that the modulus
𝑀 is not too large, specifically, it needed to satisfy

𝑀 ≤
∏︁

𝑝≪log log log𝑛

𝑝. (3.8)

Recall that 𝑥 = (1 + 𝑜(1)) log𝑀 and (3.7). If the largest size of 𝑀 is from (3.8),
then the large prime gap we obtain is

𝑦 − 𝑥 ≫ 𝑥 log 𝑥 log3 𝑥

log2 𝑥
≫ log3 𝑛 log4 𝑛 log6 𝑛

log5 𝑛

which is much smaller than we want. Fortunately, a variant of Maynard-Tao theorem
established by Banks, Freiberg and Maynard [7, Theorem 4.3] allows us to choose
𝑀 =

∏︀
𝑝≤𝑐 log𝑛

𝑏∤𝑞0
where 𝑐 > 0 is a small constant and 𝑞0 is an exceptional modulus.

3.5.2 Large prime gaps

In order to choose the suitable {𝑎𝑝 (mod 𝑝)}𝑝≤𝑥 satisfying the condition of Lemma
3.1, Ford, Green, Konyagin Maynard and Tao [17] employ a probabilistic method to
prove that with probability 1−𝑜(1), one can find such residue classes. In our case an
additional requirement is imposed: 𝑎𝑝 ̸∈ ℋ (mod 𝑝) for all 𝑝 ≤ 𝑥 with 𝑝 ∤ 𝑞0. With
slight modification of the discussions in [17], we successfully proved such residue
classes {𝑎𝑝 (mod 𝑝)}𝑝≤𝑥 exist with probability 1 − 𝑜(1).

In the following, we introduce the ideas for proving long prime gaps, which is
also the most important part in article [I].

12
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A sieve idea

Let

𝑧 := exp

(︂
log 𝑥 log4 𝑥

log2 𝑥

)︂

and recall that

𝑦 ≍ 𝑥 log 𝑥 log3 𝑥

log2 𝑥
.

For a fixed large constant 𝐶 > 0, consider the following sieving sets

𝒮 := {𝑠 ∈ 𝒫 : log10 𝑥 < 𝑠 ≤ 𝑧}
𝒯 := {𝑡 ∈ 𝒫 :

𝑥

2𝐶
< 𝑡 ≤ 𝑥

𝐶
}

𝒬 := {𝑞 ∈ 𝒫 :
𝑥

𝐶
< 𝑞 ≤ 𝑦}.

For residue classes a𝒮 = {𝑎𝑠 (mod 𝑠)}𝑠∈𝒮 and a𝒯 = {𝑎𝑡 (mod 𝑡)}𝑡∈𝒯 , let

𝑆(a𝒮) := {𝑛 ∈ Z : 𝑛 ̸≡ 𝑎𝑠 (mod 𝑠) for all 𝑠 ∈ 𝒮}

and
𝑇 (a𝒯 ) := {𝑛 ∈ Z : 𝑛 ̸≡ 𝑎𝑡 (mod 𝑡) for all 𝑡 ∈ 𝒯 }.

The following proposition is the key in [17].

Proposition 3.1. There are residue classes a𝒮 := {𝑎𝑠 (mod 𝑠)}𝑠∈𝒮 and a𝒯 :=

{𝑎𝑡 (mod 𝑡)}𝑡∈𝒯 such that

|𝒬 ∩ 𝑆(a𝒮) ∩ 𝑇 (a𝒯 )| ≤ 𝑥

2 log 𝑥
. (3.9)

Let us explain why Proposition 3.1 implies long prime gaps. We use a sieve
approach. Let a𝒮 and a𝒯 be as in Proposition 3.1 and define {𝑏𝑝 (mod 𝑝)}𝑝≤𝑥/𝐶

such that

𝑏𝑝 =

{︃
𝑎𝑝, if 𝑝 ∈ 𝒮 ∪ 𝒯 ,

0, otherwise

If 𝑛 ∈ [𝑥/𝐶, 𝑦] cannot be covered by {0 (mod 𝑝)}𝑝≤𝑥/𝐶
𝑝 ̸∈𝒮∪𝒯

, then 𝑛 is either 𝑧-smooth

or has the form 𝑝𝑑 with 𝑝 ∈ 𝒯 ∪ 𝒬 and 1 ≤ 𝑑 ≤ 𝑦
𝑥/2𝐶 implying that 𝑑 = 1.

Note that the number of the 𝑧-smooth numbers is ≤ 1
100

𝑥
log 𝑥 and #𝒯 ≤ 𝑥

𝐶 log 𝑥 .
By Proposition 3.1, we have

|𝒬 ∩ 𝑆(a𝒮) ∩ 𝑇 (a𝒯 )| ≤ 𝑥

2 log 𝑥
.

13
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Therefore, the number of integers in [𝑥/𝐶, 𝑦] that cannot be covered by {𝑏𝑝 (mod 𝑝)}𝑝≤𝑥/𝐶

is no more than

#{𝑛 ∈ [𝑥/𝐶, 𝑦] : 𝑛 is 𝑧-smooth} + #𝒯 + |𝒬 ∩ 𝑆(a𝒮) ∩ 𝑇 (a𝒯 )|

≤
(︂

1

100
+

1

𝐶
+

1

2

)︂
𝑥

log 𝑥
<

(︂
1 − 2

𝐶

)︂
𝑥

log 𝑥

for sufficiently large 𝐶 > 0. We can choose residue classes {𝑎𝑝 (mod 𝑝)}𝑥/𝐶<𝑝≤𝑥

to cover those integers one-by-one. Then the long prime gaps follow from Lemma
3.1.

Probabilistic ideas

Now we introduce the probabilistic ideas in the proof of Proposition 3.1 that allow
us to find a𝒮 and a𝒯 that cover most primes in 𝒬. We choose the random residue
classes a𝒮 = {𝑎𝑠 (mod 𝑠)}𝑠∈𝒮 by selecting each 𝑎𝑠 (mod 𝑠) uniformly at random
from Z/𝑠Z. Then we have the following lemma.

Lemma 3.3. With probability 1 − 𝑜(1), we have

|𝒬 ∩ 𝑆(a𝒮)| ≍ 𝑥

log 𝑥
log2 𝑥. (3.10)

Proof. See [17, Corollary 5].

The next step is to choose a𝒯 = {𝑎𝑡 (mod 𝑡)}𝑡∈𝒯 using probabilistic model
which is the hardest part. In fact, Ford, Green, Konyagin, Maynard and Tao [17]
used the hypergraph covering theorem [17, Theorem 3] in their proof. Let us just
explain the idea behind its application to long prime gaps. One finds a probabilistic
model and hypergraph such that the following conditions (non-rigorous) hold.

• (small edges): In [17], for all 𝑡 ∈ 𝒯 , a random edge e𝑡, with small size,
corresponds to a subset of the random residue class a𝑡. Later, they use a subset
of ∪𝑡∈𝒯 e𝑡 to cover 𝒬∩ 𝑆(a𝒮);

• (sparsity): P(𝑛 ∈ e𝑡) is “small” for all 𝑛 ∈ 𝒬 ∩ 𝑆(a𝒮) and 𝑡 ∈ 𝒯 . It means
that the probabilistic model is not concentrated on a small number of edges.

• (uniform covering):
∑︀

𝑡∈𝒯 P(𝑛 ∈ e𝑡) ≫ 1 for almost all 𝑛 ∈ 𝒬 ∩ 𝑆(a𝒮),
which means that almost all 𝑛 can be covered by many e𝑝.

• (small codegrees) For all distinct 𝑛1, 𝑛2 ∈ 𝒬 ∩ 𝑆(a𝒮),
∑︀

𝑡∈𝒯 P(𝑛1, 𝑛2 ∈ e𝑡)

is small, which means that |{𝑡 ∈ 𝒯 : 𝑛1 ∈ e𝑡 ∧ 𝑛2 ∈ e𝑡}| is small.
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Then, by the hypergraph theorem ([17, Corollary 4 and Theorem 4]), with probability
1 − 𝑜(1), (3.9) holds. The probabilistic model is chosen by the multidimensional
sieve, see [17, Sections 6 and 7]. We have now provided an overview of the idea
behind the proof, and we suggest the interested reader refer to article [I] for the
structure and [17] for more details.
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4 On the Balog-Ruzsa Theorem in short
intervals

4.1 Exponential sums
Estimating exponential sums is one of the most important tasks in the circle method
which can be used to study additive structures in subsets of integers. For example,
for understanding additive structures in primes, one needs to estimate

∑︁

𝑛≤𝑁

Λ(𝑛)𝑒(𝑛𝛼), (4.1)

for 𝛼 ∈ [0, 1). The following theorem ([58, Theorem 8.5]) claims that if 𝛼 is close
to a rational number with medium size denominator, then (4.1) is 𝑜(𝑁).

Theorem 4.1. Let 𝑎, 𝑞,𝑁 ∈ N and 1 ≤ 𝑎 < 𝑞 ≤ 𝑁 . If (𝑎, 𝑞) = 1 and
⃒⃒
⃒𝛼− 𝑎

𝑞

⃒⃒
⃒ ≤

1/𝑞2, then,

∑︁

𝑛≤𝑁

Λ(𝑛)𝑒(𝑛𝛼) ≪
(︂

𝑁

𝑞1/2
+ 𝑁4/5 + 𝑁1/2𝑞1/2

)︂
log4𝑁

It is natural to ask whether we can get some cancellation for other exponential
sums, e.g. exponential sums of multiplicative functions.

Davenport [15] proved that for sufficiently large 𝑁 , we have

∑︁

𝑛≤𝑁

𝜇(𝑛)𝑒(𝑛𝛼) ≪𝐴
𝑁

log𝐴𝑁
,

for any 𝛼 ∈ [0, 1) and any 𝐴 > 0.
Baker and Harman [1], under the Generalized Riemann Hypothesis (GRH), proved

that for sufficiently large 𝑁 , we have
∑︁

𝑛≤𝑁

𝜇(𝑛)𝑒(𝑛𝛼) ≪𝜖 𝑁
3/4+𝜖,

for any 𝛼 ∈ [0, 1) and any 𝜖 > 0.
In addition, another important task in the circle method is to estimate 𝐿𝑝 norms

of exponential sums, aiming to achieve power saving results for certain values of
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𝑝 > 0. For example, if we employ the circle method to attack the tenary Goldbach
problem, then it is useful to estimate the 𝐿2 norm of the exponential sum for the von
Mangoldt function. Thanks to Parserval’s identity, we have

∫︁ 1

0

⃒⃒
⃒⃒
⃒⃒
∑︁

𝑛≤𝑁

Λ(𝑛)𝑒(𝑛𝛼)

⃒⃒
⃒⃒
⃒⃒

2

𝑑𝛼 ≍ 𝑁 log𝑁.

However, when 𝑝 < 2, such as 𝑝 = 1, we can utilize the 𝐿2 norm to control the 𝐿1

norm. Using the Cauchy-Schwarz inequality, we obtain

∫︁ 1

0

⃒⃒
⃒⃒
⃒⃒
∑︁

𝑛≤𝑁

Λ(𝑛)𝑒(𝑛𝛼)

⃒⃒
⃒⃒
⃒⃒ 𝑑𝛼 ≤

⎛
⎝
∫︁ 1

0

⃒⃒
⃒⃒
⃒⃒
∑︁

𝑛≤𝑁

Λ(𝑛)𝑒(𝑛𝛼)

⃒⃒
⃒⃒
⃒⃒

2

𝑑𝛼

⎞
⎠

1/2

≪ 𝑁1/2 log1/2𝑁.

However, we cannot ascertain whether the upper bound for 𝐿1 norm is optimal. Mo-
tivated by this, it becomes imperative to delve into the exploration of the lower bound
for the 𝐿1 norm. For instance, Vaughan [78] proved that

∫︁ 1

0

⃒⃒
⃒⃒
⃒⃒
∑︁

𝑛≤𝑁

Λ(𝑛)𝑒(𝑛𝛼)

⃒⃒
⃒⃒
⃒⃒ 𝑑𝛼 ≫ 𝑁1/2.

For some other important arithmetic functions 𝑓 : N → C in number theory, one can
also consider bounds for the 𝐿1 norm of the exponential sum, i.e. study

∫︁ 1

0

⃒⃒
⃒⃒
⃒⃒
∑︁

𝑛≤𝑁

𝑓(𝑛)𝑒(𝑛𝛼)

⃒⃒
⃒⃒
⃒⃒ 𝑑𝛼. (4.2)

If 𝑓(𝑛) is the von Mangoldt function, then the best known upper bound for (4.2)
is ≪ 𝑁1/2 log1/2𝑁 while the best known lower bound is ≫ 𝑁1/2. When 𝑓(𝑛)

is the divisor function 𝑑(𝑛), Pandey [61] gave an asymptotic formula of the size
𝑁1/2 for (4.2) improving the work by Goldston and Pandey [22]. When 𝑓(𝑛) is
the Liouville function 𝜆(𝑛), Pandey and Radziwiłł [62] recently obtained (4.2) is
≫ 𝑁1/4, improving Balog and Perelli [5]. For 𝑓(𝑛) = 𝜇𝑟(𝑛), the indicator function
of 𝑟-free numbers, which equals 1 if for every prime 𝑝 | 𝑛 we have 𝑝𝑟 ∤ 𝑛, and
equals 0 otherwise, Balog and Ruzsa obtained the correct magnitude 𝑁

1

𝑟+1 for (4.2)
improving earlier work by Brüdern, Granville, Perelli, Vaughan, and Wooley [10].
We now state their result for 𝑟 = 2.

Theorem 4.2 (Balog-Ruzsa). Let 𝑁 ≥ 2. Then

𝑁
1

3 ≪
∫︁

T

⃒⃒
⃒⃒
⃒
𝑁∑︁

𝑛=1

𝜇2(𝑛)𝑒(𝑛𝛼)

⃒⃒
⃒⃒
⃒ 𝑑𝛼 ≪ 𝑁

1

3 .
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As a corollary, they deduce that if 𝑓(𝑛) = 𝜇(𝑛), the Möbius function, then (4.2)
is ≫ 𝑁1/6.

Inspired by investigations on primes in short intervals, in article [II], we proved
the short interval version of the Balog-Ruzsa theorem

Theorem 4.3. (i) Let 𝜖 > 0 and 𝑁 ≥ 𝐻 ≥ 𝑁
9

17
+𝜀. Then

∫︁

T

⃒⃒
⃒⃒
⃒⃒
∑︁

|𝑛−𝑁 |<𝐻

𝜇2(𝑛)𝑒(𝑛𝛼)

⃒⃒
⃒⃒
⃒⃒ 𝑑𝛼 ≫ 𝐻

1

3 .

(ii) Let 𝜖 > 0 and 𝑁 ≥ 𝐻 ≥ 𝑁
18

29
+𝜖. Then

∫︁

T

⃒⃒
⃒⃒
⃒⃒
∑︁

|𝑛−𝑁 |≤𝐻

𝜇2(𝑛)𝑒(𝑛𝛼)

⃒⃒
⃒⃒
⃒⃒ 𝑑𝛼 ≪ 𝐻

1

3 .

As a corollary, we also show that when 𝐻 ≥ 𝑁9/17+𝜖,

∫︁

T

⃒⃒
⃒⃒
⃒⃒
∑︁

|𝑛−𝑁 |<𝐻

𝜇(𝑛)𝑒(𝑛𝛼)

⃒⃒
⃒⃒
⃒⃒ 𝑑𝛼 ≫ 𝐻

1

6 .

4.2 Outline of the proof of Theorem 4.3
The proof of Theorem 4.3 starts from converting the single exponential sum into a
double exponential sum using the identity

𝜇2(𝑛) =
∑︁

𝑑2|𝑛
𝜇(𝑑).

Next, we split the double sum into two parts depending on the size of 𝑑, namely

𝑁∑︁

𝑛=1

𝜇2(𝑛)𝑒(𝑛𝛼) =

𝑁∑︁

𝑛=1

∑︁

𝑑2|𝑛
1≤𝑑≤𝑁1/2

𝜇(𝑑)𝑒(𝑛𝛼)

=

𝑁∑︁

𝑛=1

∑︁

𝑑2|𝑛
1≤𝑑≤𝐷

𝜇(𝑑)𝑒(𝑛𝛼) +

𝑁∑︁

𝑛=1

∑︁

𝑑2|𝑛
𝐷<𝑑≤𝑁1/2

𝜇(𝑑)𝑒(𝑛𝛼)

=:𝑇1 + 𝑇2. (4.3)
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On the Balog-Ruzsa Theorem in short intervals

The main task is to achieve an effective saving for the 𝐿2 norm of 𝑇2. In fact, for
trivial reasons, 𝑇2 is relatively small for large 𝐷. We have

𝑁∑︁

𝑛=1

∑︁

𝑑2|𝑛
𝐷<𝑑≤𝑁1/2

𝜇(𝑑)𝑒(𝑛𝛼) ≪
∑︁

𝐷<𝑑≤𝑁1/2

∑︁

1≤𝑛≤𝑁
𝑑2|𝑛

1

≪
∑︁

𝐷<𝑑≤𝑁1/2

∑︁

1≤𝑛≤𝑁
𝑑2|𝑛

1 ≪ 𝑁𝐷−1 + 𝑁1/2.

Remark. In practice, we will not directly apply the above trivial arguments. Instead,
we will apply 𝐿2 norm to bound the 𝐿1 norm of 𝑇2 and apply Parseval’s identity. We
will choose 𝐷 = 𝐻1/3 in our short interval case.

4.2.1 The key lemma

The above argument suggests that the 𝐿2 norm of 𝑇2 should be small. Therefore, we
can use the 𝐿2 norm of 𝑇2 to bound its 𝐿1 norm.

Lemma 4.1. For any 1 < 𝐾 ≤ 𝑁 and 𝑦 < 𝑑 ≤ 𝑧, we have
∑︁

𝑁−𝐾<𝑛≤𝑁

(︁ ∑︁

𝑑2|𝑛
𝐷<𝑑≤𝑁1/2

1
)︁2

≪ 𝐾𝐷−1 + 𝑁1/2 log3𝑁. (4.4)

Proof. See [6, Lemma 1].

For the long interval case, (4.4) is sufficient. However, if we consider the short
interval case with a length of interval shorter than 𝑁3/4, then (4.4) is not enough.
Let us use the upper bound case to explain the reason.

Suppose that we study
∑︁

𝑁<𝑛≤𝑁+𝐻

𝜇2(𝑛)𝑒(𝑛𝛼) =
∑︁

𝑁<𝑛≤𝑁+𝐻

∑︁

𝑑2|𝑛
1≤𝑑≤𝑁1/2

𝜇(𝑑)𝑒(𝑛𝛼)

=
∑︁

𝑁<𝑛≤𝑁+𝐻

∑︁

𝑑2|𝑛
1≤𝑑≤𝐷

𝜇(𝑑)𝑒(𝑛𝛼) +
∑︁

𝑁<𝑛≤𝑁+𝐻

∑︁

𝑑2|𝑛
𝐷<𝑑≤𝑁1/2

𝜇(𝑑)𝑒(𝑛𝛼)

=:𝑇 ′
1 + 𝑇 ′

2, (4.5)

and we can handle the 𝐿1 norm of 𝑇 ′
1 well by following Balog-Ruzsa’s arguments.

By the Cauchy-Schwarz inequality, Parserval’s identity and Lemma 4.1 with 𝐾 = 𝐻

and 𝐷 = 𝐻1/3, we have
∫︁ 1

0
|𝑇 ′

2|𝑑𝛼 ≪
(︂∫︁ 1

0
|𝑇 ′

2|2𝑑𝛼
)︂1/2

≪
(︁
𝐻2/3 + 𝑁1/2 log3𝑁

)︁1/2
≪ 𝐻1/3 + 𝑁1/4+𝜖.
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Recall the claim in Theorem 4.3. The first term above is corresponding to our ex-
pectation, but if we require the second term 𝑁1/4+𝜖 ≪ 𝐻1/3, then 𝐻 ≥ 𝑁3/4+𝜖.
Hence, in order to make the interval shorter than 𝑁3/4+𝜖, we have to improve on
Lemma 4.2. The following improvement of Lemma 4.1 is [II, Lemma 3.1].

Lemma 4.2. Let 1 ≤ 𝐾 < 𝑁 , 𝜖 > 0 and 1 ≤ 𝑦 < min{𝑧,𝐾1/2−𝜖}. We have

∑︁

𝑁−𝐾<𝑛≤𝑁

(︁ ∑︁

𝑑2|𝑛
𝑦<𝑑≤𝑧

1
)︁2

≪ 𝐾𝑦−1 + 𝑁
12

29
+𝜖𝑦−

10

29 . (4.6)

This is the crucial ingredient in article [II]. Let us outline the proof of Lemma
4.2. Initially, observe that the left-hand side of (4.6) can be bounded by

∑︁

𝑁−𝐾<𝑛≤𝑁

∑︁

[𝑑2
1,𝑑

2
2]|𝑛

𝑦<𝑑𝑖≤𝑧

1 ≤
∑︁

𝑁−𝐾<𝑛≤𝑁

∑︁

𝑛=ℎ2𝑑2
1𝑑

2
2𝑎

𝑦<ℎ𝑑𝑖≤𝑧
(𝑑1,𝑑2)=1

1. (4.7)

By a dyadic argument, we can assume 𝑑1 ∼ 𝐷1 and 𝑑2 ∼ 𝐷2 for some 𝐷1, 𝐷2 > 0.
Without loss of generality, we further assume 𝐷1 ≤ 𝐷2. We now apply two different
approaches to get the upper bound. Let 𝐷′ be an parameter that will be optimized
later. When 𝐷2 ≤ 𝐷′, we apply the hyperbola method to bound (4.7) by

∑︁

𝑑1∼𝐷1

𝑑2∼𝐷2

⎛
⎜⎜⎝

∑︁

𝑦

𝑑1
≤ℎ≤( 𝑁

𝑑2
1
𝑑2
2
)
1
3

∑︁

𝑁−𝐾

ℎ2𝑑2
1
𝑑2
2
≤𝑎≤ 𝑁

ℎ2𝑑2
1
𝑑2
2

1 +
∑︁

𝑎≤( 𝑁

𝑑2
1
𝑑2
2
)
1
3

∑︁

( 𝑁−𝐾

𝑎𝑑2
1
𝑑2
2
)
1
2 ≤ℎ≤( 𝑁

𝑎𝑑2
1
𝑑2
2
)
1
2

1

⎞
⎟⎟⎠ .

(4.8)
Then we apply a standard Fourier expansion of {𝑥} and the van der Corput bound to

yield that (4.8) is at most 𝑁
2(𝑝+𝑞)+1

6(𝑝+1)
+𝜖
𝐷

′2− 4𝑝+4𝑞+2

3(𝑝+1) , where (𝑝, 𝑞) is the exponent pair
(2/7, 1/14).

Remark. In the proof of Lemma 4.2, the exponent pair has to satisfy that 1−4𝑝+2𝑞 ≥
0, so it is convenient to choose (𝑝, 𝑞) = (2/7, 1/14). If one assumes the exponent
pair conjecture, namely (𝑝, 𝑞) = (𝜂, 𝜂) for any 𝜂 > 0, then we can improve the
second term in (4.6) to 𝑁

9

22
+𝜖𝑦−

4

11 which can yield a shorter 𝐻 in Theorem 4.3.
Specifically, under the exponent pair conjecture, the length 𝐻 in Theorem 4.3 (i) and
(ii) can be improved to 𝑁

27

52
+𝜖 < 𝐻 ≤ 𝑁 and 𝑁

81

104
+𝜖 < 𝐻 ≤ 𝑁 respectively, and

correspondingly, in the Möbius case, we can also improve 𝐻 to 𝑁
27

52
+𝜖 < 𝐻 ≤ 𝑁 .

When 𝐷2 > 𝐷′, we apply Perron’s formula to rewrite (4.7) as the integral

1

2𝜋𝑖

∫︁ 1+𝜀+𝑖𝑇0

1+𝜀−𝑖𝑇0

𝑁 𝑠 − (𝑁 −𝐾)𝑠

𝑠
𝜁(𝑠)𝑃 (2𝑠)𝑑𝑠 + 𝑁 𝜖, (4.9)
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where 𝑇0 ≍ 𝑁 and

𝑃 (𝑠) =

(︃ ∑︁

𝑑1∼𝐷1

1

𝑑𝑠1

)︃(︃ ∑︁

𝑑2∼𝐷2

1

𝑑𝑠2

)︃(︃∑︁

ℎ∼𝐻

1

ℎ𝑠

)︃

is a Dirichlet polynomial. By contour integration, we shift the integral in (4.9) to
the 1/2 line. It is not difficult to imagine that the residue at 𝑠 = 1 contributes
𝑂
(︁

𝐾
𝐷1𝐷2𝐻

)︁
, the contributions of two horizontal lines can be absorbed into 𝑂(𝑁 𝜖)

and the contribution of 1/2 line is ≪ 𝑁1/2+𝜖𝑦−1/2𝐷′− 1

2 .
Finally, we choose 𝐷′ = 𝑁

5

29
+𝜖𝑦−

9

29 to balance the two upper bounds obtained
above.

4.2.2 Balog-Ruzsa’s ideas

The Fejér kernel

The Fejér kernel, see (4.10), is the Cesàro mean of the Dirichlet kernel 𝐷𝑁 (𝛼) :=∑︀
|𝑛|≤𝑁 𝑒(𝑛𝛼). In some cases the Fejér kernel can be regarded as a smooth replace-

ment for the Dirichlet kernel. In Balog-Ruzsa [6], they utilized the Fejér kernel,
which can help save at least one log factor in the upper bound of 𝐿1 norm. This will
be explained in the following. Recall the definition of the Fejér kernel

𝐹𝑁 (𝛼) :=
∑︁

|𝑛|≤𝑁

(︂
1 − |𝑛|

𝑁

)︂
𝑒(𝑛𝛼) =

sin2(𝜋𝑁𝛼)

𝑁 sin2(𝜋𝛼)
≪ min

{︂
𝑁,

1

𝑁‖𝛼‖2
}︂
. (4.10)

By the uniform upper bound of 𝐷𝑁 (𝛼), the 𝐿1 norm of the Dirichlet kernel is
∫︁ 1

0
|𝐷𝑁 (𝛼)| 𝑑𝛼 ≪

∫︁ 1

0
min

{︂
𝑁,

1

‖𝛼‖

}︂
≪ log𝑁.

However, the 𝐿1 norm of the Fejér kernel is
∫︁ 1

0
|𝐹𝑁 (𝛼)|𝑑𝛼 ≪

∫︁ 1

0
min

{︂
𝑁,

1

𝑁‖𝛼‖2
}︂

≪ 1,

This suggests that one may be able to apply the Fejér kernel to save log𝑁 in upper
bounds of 𝐿1 norms.

The upper bound case for the Balog-Ruzsa theorem

By the previous discussion, we only need to focus on 𝐿1 norm of 𝑇1. However, if we
interchange the summations and bound the 𝐿1 norm of 𝑇1 by

∑︁

1≤𝑑≤𝐷

∫︁ 1

0

⃒⃒
⃒⃒
⃒⃒
⃒⃒
∑︁

1≤𝑛≤𝑁
𝑑2|𝑛

𝑒(𝑛𝛼)

⃒⃒
⃒⃒
⃒⃒
⃒⃒
𝑑𝛼,

21



Yu-Chen Sun

then we can imagine that an extra log𝑁 comes from the integral, since the Dirichlet
kernel appears. The idea to remove the log𝑁 is to utilize the Fejér kernel (other
good/smooth kernel should also be fine ) and actually Balog and Ruzsa smooth the
indicator 1[1,𝑁 ](𝑛) by a trapezoidal function which can be regarded as a Fourier
coefficient of 1

𝑁−𝐾 (𝑁𝐹𝑁 (𝛼) −𝐾𝐹𝐾(𝛼)) where 𝐾 = (1 − 𝜂)𝑁 for small 𝜂 > 0.

The lower bound case for the Balog-Ruzsa theorem

To prove the lower bound for the 𝐿1 norm, we utilize some ideas from the circle
method. Thanks to Parseval’s identity and Lemma 4.1 (or Lemma 4.2 for the short
interval version), we can see that the 𝐿1 norm of 𝑇2 is much smaller than the 𝐿1

norm of 𝑇1. Let us focus on estimating the 𝐿1 norm of 𝑇1. By interchanging the
summation, we have

𝑇1 =
∑︁

1≤𝑑≤𝐷

𝜇(𝑑)
∑︁

1≤𝑛≤𝑁
𝑑2|𝑛

𝑒(𝑛𝛼) =:
∑︁

1≤𝑑≤𝐷

𝜇(𝑑)𝐺𝑑(𝛼).

Let 1 ≤ 𝑎 ≤ 𝑑2 with 𝑑 sqaurefree. We choose suitably the major arcs

M𝑑2,𝑎 ⊂
{︂
𝛼 ∈ [0, 1) :

⃒⃒
⃒𝛼− 𝑎

𝑑2

⃒⃒
⃒ ≤ 1

𝑁

}︂
and M𝑑2 :=

⋃︁

1≤𝑎≤𝑑2

(𝑎,𝑑2) squarefree

M𝑑2,𝑎

and show that the following three conditions are satisfied:

• When 𝛼 ∈ M𝑑2 , 𝐺𝑑(𝛼) ≫ 𝑁
𝑑2 is significantly larger than other 𝐺𝑑0

(𝛼) with
𝑑0 ̸= 𝑑.

• The measure of M𝑑2 is not too small, meaning that |M𝑑2 | ≫ 𝑑2

𝑁

∏︀
𝑝|𝑑
(︁

1 − 1
𝑝2

)︁
≫

𝑑2

𝑁 .

• For distinct 𝑑1, 𝑑2, M𝑑2
1
∩M𝑑2

2
= ∅.

Then one can show that
∫︁ 1

0
|𝑇1|𝑑𝛼 ≫

∑︁

1≤𝑑≤𝐷

|M𝑑2 | min
𝛼∈M𝑑2

|𝐺𝑑(𝛼)| ≫ 𝐷 = 𝑁1/3

For more details the interested reader may refer to the article [II].
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5 Vinogradov’s theorem with
Piatetski-Shapiro primes

5.1 Vinogradov’s theorem and its variants

One of the most famous open problems in number theory is Goldbach’s problem
which ask whether any even number 𝑛 ≥ 4 can be written as a sum of two primes.

In 1937, Vinogradov (see e.g. [59, Chapter 8]) used the circle method to prove
a weak version of Goldbach’s problem by showing that any sufficiently large odd
integer 𝑛 can be written as a sum of three primes.

In recent years, many people have proved variants of Vinogradov’s three primes
theorem. From the combinatorics perspective, one can investigate Vinogradov’s
three primes theorem for subsets of primes with positive relative density. In 2010, Li
and Pan [43] established that if 𝐴1, 𝐴2, 𝐴2 are subsets of primes with positive relative
lower densities (𝛿𝒫(𝐴𝑖) > 0 for 𝑖 ∈ {1, 2, 3}), and 𝛿𝒫(𝐴1) + 𝛿𝒫(𝐴2) + 𝛿𝒫(𝐴3) > 2,
then any sufficiently large odd integer 𝑛 can be written as 𝑛 = 𝑝1 + 𝑝2 + 𝑝3 with
𝑝𝑖 ∈ 𝐴𝑖. Subsequently, Shao [75] considered Vinogradov’s three primes theorem
for a single subset of primes with positive relative lower density and showed that if
𝐴 ⊂ 𝒫 with 𝛿𝒫(𝐴) > 5/8, then any sufficiently large odd integer can be written as
a sum of three elements in 𝐴.

From the number theory perspective, number theorists have explored Vinogradov’s
three primes theorem for some special forms of primes. In 2017, Matomäki and Shao
[50] demonstrated that any sufficiently large integer 𝑛 ≡ 3 (mod 6) can be written
as a sum of three Chen primes (the set of primes 𝑝 such that 𝑝 + 2 has at most two
prime factors). Additionally, for any fixed 𝑚 ≥ 2, they proved that there exists
𝐻(𝑚) ≥ 0 such that any sufficiently large odd integer can be written as a sum of
three primes 𝑝1, 𝑝2, 𝑝3 such that [𝑝𝑖, 𝑝𝑖 + 𝐻(𝑚)] contains 𝑚 primes for 𝑖 = 1, 2, 3.
Many researchers have studied Vinogradov’s three primes theorem with primes in
short intervals. The shortest intervals have been reached by Matomäki, Maynard and
Shao [48] who showed that for any 𝜖 > 0, every sufficiently large odd integer 𝑛 can
be written as 𝑛 = 𝑝1 + 𝑝2 + 𝑝3 with |𝑝𝑖 − 𝑛/3| ≤ 𝑛0.55+𝜖. Teräväinen [76] proved
that Vinogradov’s three primes theorem also holds for Linnik’s primes (primes of the
form 𝑥2 + 𝑦2 + 1). All these works rely on the transference principle which was first
introduced by Green [25].
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5.2 Piatetski-Shapiro primes and our results
Recall that

N𝑐 = {⌊𝑛𝑐⌋ : 𝑛 ∈ N},

for 𝑐 > 1. There is another fascinating special form of primes known as Piatetski-
Shapiro primes (𝒫𝑐 = 𝒫∩N𝑐 for some 𝑐 > 1). One of the reasons to study Piatetski-
Shapiro primes is that, when 𝑐 > 1, these types of primes are remarkably rare.
Recall that 𝜋𝑐(𝑥) denotes the number of Piateski-Shapiro primes up to 𝑥𝑐. In 1953,
Piatetski-Shapiro [63] first proved that the asymptotic formula

𝜋𝑐(𝑥) ∼ 𝑥

𝑐 log 𝑥

holds for 1 < 𝑐 < 1.1. Over the years, several authors have improved the range
of 𝑐 for this asymptotic formula, and the record is due to Rivat and Sargos [70]
who showed that the asymptotic formula holds for 1 < 𝑐 < 2817/2426 ≈ 1.161,
improving previous works [40; 27; 39; 46]. When considering the lower bound of
𝜋𝑐(𝑥), the record is that, for 1 < 𝑐 < 243/205 ≈ 1.185, we have 𝜋𝑐(𝑥) ≫ 𝑥

log 𝑥 as
shown by Rivat and Wu [71] improving the previous results [36; 3; 35; 42].

In 1992, Balog and Friedlander [4] first proved Vinogradov’s three primes theo-
rem for Piatetski-Shapiro primes (for 1 < 𝑐 < 1.05). This result has been improved
by Kumchev [41] who established the asymptotic formula for the number of rep-
resentations of 𝑛 = 𝑝1 + 𝑝2 + 𝑝3 when 1 < 𝑐 < 1.06 and Jia [37] who applied
a sieve method to establish a lower bound for the number of representations when
1 < 𝑐 < 16/15 ≈ 1.067.

Let 𝐵 ⊂ 𝒫 ∩ N𝑐 with positive upper density for 𝑐 > 1. The Roth-type problem
for Piatetski-Shapiro primes is to find the largest 𝑐 > 1 such that 𝐵 contains many
non-trivial three term arithmetic progressions. (We say this is the Roth-type problem
because Roth [72] first proved that any subset of integers with positive upper density
contains a three term arithmetic progressions, see Theorem 5.3). Concerning the
Roth-type theorem for Piatetski-Shapiro primes, Merik [56] proved that 𝐵 contains
non-trivial three-term arithmetic progressions when 1 < 𝑐 < 72/71 ≈ 1.014.

In article [III], we proved the following theorems toward Vinogradov’s three
primes theorem and Roth-type theorem with Piatetski-Shapiro primes.

Theorem 5.1. For any 𝑐1, 𝑐2, 𝑐3 ∈ (1, 4135), every sufficiently large odd 𝑁 can be
represented as

𝑁 = 𝑝1 + 𝑝2 + 𝑝3,

where 𝑝𝑖 ∈ 𝒫𝑐𝑖 for each 1 ≤ 𝑖 ≤ 3.

Theorem 5.2. For any 𝑐 ∈ (1, 243205), any 𝐵 ⊂ 𝒫𝑐 with positive relative upper density
contains nontrivial 3-term arithmetic progressions.
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Note that 41
35 ≈ 1.171 and 243

205 ≈ 1.185. In order to apply the transference
principle to study Vinogradov’s three primes theorem for Piatetski-Shapiro primes,
we need a variant of the transference principle that was developed by Matomäki
Maynard and Shao [48]. Let us start from the original version of Green’s transference
principle and try to illustrate the ideas behind Green’s transference principle.

5.3 Green’s transference principle and its variant
The original version of Green’s transference principle was used to study 3-term arith-
metic progressions in subsets of primes with positive relative upper density. In 2005,
Green [25] proved that any subset of primes with positive relative upper density con-
tains a non-trivial three term arithmetic progression. Before introducing the idea
behind Green’s transference principle, let us review the Roth theorem which claims
that any subset of integers with positive upper density contains a non-trivial 3-term
arithmetic progression. Varnavides [77] used a clever combinatorial argument to
show a lower bound for the number of three term arithmetic progressions by proving
the following theorem.

Theorem 5.3. Suppose that 𝑁 > 3 is a sufficiently large integer and 𝒜 ⊂ [𝑁 ] with
|𝒜| ≫ 𝑁 . Then the set 𝒜 contains ≫ 𝑁2 non-trivial 3-term arithmetic progressions.

Proof. See [77].

Let us turn back to Green’s transference principle. Let 𝐴 be a set of primes
with positive relative upper density. The fundamental idea in the proof of Roth-type
theorem for primes is transferring this problem to study a subset of integers with
positive relative upper density. Now we formalize this idea although we do not give
a very rigorous argument.

Let 𝑓 : [𝑁 ] → C. We aim to study three-term arithmetic progressions by the
formula ∑︁

𝑛1+𝑛2=2𝑛3

𝑓(𝑛1)𝑓(𝑛2)𝑓(𝑛3). (5.1)

For instance, if 𝑓(𝑛) = 𝑓𝐴(𝑛) := log 𝑛 · 1𝐴(𝑛), then (5.1) serves to detect 3-term
arithmetic progressions in the set 𝐴. What we want to achieve next is to transfer 𝑓𝐴
into another function 𝑓0 : [𝑁 ] → R≥0 such that the uniform lower bound

𝑓0(𝑛) ≥ 𝑐01𝒜(𝑛) (5.2)

holds for some 𝑐0 > 0, where 𝒜 is a subset of integers with positive relative upper
density. Now (5.1) can be transferred to

≈
∑︁

𝑛1+𝑛2=2𝑛3

𝑓0(𝑛1)𝑓0(𝑛2)𝑓0(𝑛3) ≫
∑︁

𝑛1+𝑛2=2𝑛3

1𝒜(𝑛1)1𝒜(𝑛2)1𝒜(𝑛3). (5.3)
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This is ≫ 𝑁2 by Theorem 5.3. Now we discuss how to interpret ≈ in (5.3). By
rewriting (5.1) and the left-hand side of (5.3) using Fourier transform, what we want
is ∫︁ 1

0

̂︁𝑓𝐴(𝛼)̂︁𝑓𝐴(𝛼)̂︁𝑓𝐴(−2𝛼)𝑑𝛼 ≈
∫︁ 1

0

̂︀𝑓0(𝛼) ̂︀𝑓0(𝛼) ̂︀𝑓0(−2𝛼)𝑑𝛼. (5.4)

By using the telescoping method, e.g. see [III, (3.6)], we will encounter two ques-
tions

(i) Is max𝛼∈[0,1) |̂︁𝑓𝐴(𝛼) − ̂︀𝑓0(𝛼)| small (𝑜(𝑁)) ?

(ii) Do there exist 2 ≤ 𝑞 < 3 such that ‖̂︁𝑓𝐴‖𝑞 and ‖ ̂︀𝑓0‖𝑞 are small (≪ 𝑁1−1/𝑞)?

If (i) holds, then, for the special case 𝛼 = 0, we notice that | ̂︀𝑓𝐴(0) − ̂︀𝑓0(0)| = 𝑜(𝑁)

implies ∑︁

𝑛≤𝑁

𝑓𝐴(𝑛) ≫ 𝑁,

which will be called the mean condition. We will see later a stronger version of the
mean condition where uniform distribution in arithmetic progressions is required.
If (i) holds for 𝑓0 = 1[𝑁 ], we say 𝑓𝐴 is “pseudorandom” or satisfies pseudorandom-
ness. If (ii) is true, we say that 𝑓 satisfies the restriction estimate. In most cases, 𝐿2

norm does not satisfy the restriction estimate. For example, by Parserval’s identity

‖̂︁𝑓𝐴‖22 = ‖𝑓𝐴‖22 ≍ 𝑁 log𝑁,

which has an extra log𝑁 factor compared to what we need (see Theorem 5.4 for
our restriction estimate). Thus, one needs some new ideas to bound ‖̂︁𝑓𝐴‖𝑞 for some
2 < 𝑞 < 3. Fortunately, Bourgain [8] provided a very clever approach for handling
‖ ̂︀𝑓𝐴‖𝑞. We will give a brief explanation in Section 5.6.

Let us turn to discuss how to construct 𝑓0 that satisfies (i) and (5.2). The idea is
derived from harmonic analysis and we want to find a “good” kernel 𝐾 : [𝑁 ] → C
such that

(C1) ̂︀𝐾(0) = 1,

(C2) |̂︁𝑓𝐴 − ˆ︂𝑓𝐴 *𝐾| = |̂︁𝑓𝐴 −̂︁𝑓𝐴 ̂︀𝐾| is small.

(C3) There exist 𝒜 ⊂ [𝑁 ] with the size |𝒜| ≫ 𝑁 such that 𝑓𝐴 *𝐾 ≫ 1𝒜.

The convolution 𝑓𝐴 *𝐾 will be our 𝑓0. To define 𝐾, we introduce Bohr sets defined
by

𝐵(𝛼, 𝜖) :=
⋂︁

𝑖

𝐵(𝛼𝑖, 𝜖),

where
𝐵(𝛼𝑖, 𝜖) = {1 ≤ 𝑛 ≤ 𝑁 : ‖𝑛𝛼𝑖‖ ≤ 𝜖}.
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The definition implies that integers in a Bohr set have additive structure.
In practice, we choose 𝛼𝑖 to be 1/𝑁 -spaced points in [0, 1) such that |𝑓(𝛼𝑖)| are

large. For readers who are familiar with the circle method, these intervals around
𝛼𝑖 can be regarded as the “major arcs” while intervals far away from all 𝛼𝑖 can be
regarded as the “minor arcs”. If we only required (C1) and (C2), then the good kernel
𝐾 could be chosen to be

𝐾 ′(𝑛) =
1

|𝐵(𝛼, 𝜖)|1𝐵(𝛼,𝜖)(𝑛).

The condition (C1) holds trivially. Next we show that (C2) also holds. The reason
is that when 𝛼 is in the “minor arcs” (i.e. far way from any 𝛼𝑖), |̂︁𝑓𝐴(𝛼)| is small.
Otherwise, by the definition of the Bohr set, ̂︁𝐾 ′(𝛼) ≈ ̂︁𝐾 ′(0) = 1, so ̂︁𝑓𝐴(𝛼) −
̂︁𝑓𝐴 ̂︀𝐾(𝛼) = ̂︁𝑓𝐴(1 − ̂︀𝐾)(𝛼) is small. We leave details to the interested reader (or
see [25]). In order to satisfy (C3), we need a smoother kernel 𝐾 such that 𝑓𝐴 * 𝐾

is bounded (smoother). Therefore, we choose 𝐾 = 𝐾 ′ * 𝐾 ′ to make the kernel 𝐾
smoother. Then one can show that 𝑓𝐴 *𝐾 is bounded.

To apply Green’s transference principle in studying Vinogradov’s three primes
theorem with Piatetski-Shapiro primes, we require a variant of the transference prin-
ciple that was developed by Matomäki, Maynard and Shao [48].

Theorem 5.4 (Matomäki-Maynard-Shao’s transference principle). Let 𝜖, 𝜂 ∈ (0, 1).
Let 𝑁 be a positive integer and let 𝑓1, 𝑓2, 𝑓3 : [𝑁 ] → R≥0 be functions, with each
𝑓 ∈ {𝑓1, 𝑓2, 𝑓3} satisfying the following assumptions:

• (mean condition) For each arithmetic progression 𝑃 ⊂ [𝑁 ] with |𝑃 | ≥ 𝜂𝑁

we have E𝑛∈𝑃 𝑓(𝑛) ≥ 1/3 + 𝜖;

• (pseudorandomness) There exists a majorant 𝜈 : [𝑁 ] → R≥0 with 𝑓 ≤ 𝜈

pointwise, such that ‖̂︀𝜈 − ̂︀1[𝑁 ]‖∞ ≤ 𝜂𝑁 ;

• (restriction estimate)We have ‖ ̂︀𝑓‖𝑞 ≤ 𝐾𝑁1−1/𝑞 for some fixed 𝐾 ≥ 𝜂 and
𝑞 ∈ (2, 3).

Then, for each 𝑛 ∈ [𝑁/2, 𝑁 ], we have

𝑓1 * 𝑓2 * 𝑓3(𝑛) ≥ (𝑐(𝜖) −𝑂𝜖,𝐾,𝑞(𝜂))𝑁2,

where 𝑐(𝜖) > 0 is a constant depending only on 𝜖.

To define suitable 𝑓𝑖 for 𝑖 ∈ {1, 2, 3}, we can start with the normalized weighted
function by

𝑓 ′
𝑖(𝑛) :=

{︃
log 𝑛𝑐 · 𝑛1− 1

𝑐1𝒫(𝑛), if 𝑛 ∈ N𝑐,

0, otherwise.
(5.5)
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However, in order to fulfill the pseudorandomness and get a better 𝑐 , we need the
following complicated version of 𝑓𝑖 for 𝑖 ∈ {1, 2, 3}

𝑓𝑖(𝑛) :=

{︃
log𝑁𝑐

𝛼+ · 𝜑(𝑊 )
𝑊 (𝑊𝑛 + 𝑏𝑖)

1− 1

𝑐1𝒫(𝑊𝑛 + 𝑏𝑖), if 𝑊𝑛 + 𝑏𝑖 ∈ N𝑐,

0, otherwise,
(5.6)

where 𝑤 = log log log𝑁 and 𝑊 =
∏︀

𝑝≤𝑤 𝑝, and 𝛼+ will be defined later. The
reason we need to introduce 𝑤 will be explained in the next section.

5.4 Pseudorandomness and W-trick
In order to establish the pseudorandomness, we restrict elements in 𝒫𝑐 to the set
𝐴 = {𝑛 ≤ 𝑁 : 𝑊𝑛 + 𝑏 ∈ 𝒫𝑐}, where 𝑤 and 𝑊 are as before. This technique
is called the 𝑊 -trick. The primary motivation to utilize the 𝑊 -trick is, roughly
speaking, to avoid certain “local” problems.

Let us consider the prime numbers as an example and to illustrate what are “lo-
cal” problems. Without the 𝑊 -trick, for instance, for 𝜈(𝑛) = log𝑛 ·1𝒫(𝑛), we have,
by the prime number theorem,

̂︀𝜈(1/2) − ̂︀1[𝑁 ](1/2) =
∑︁

1≤𝑝≤𝑁

log 𝑝 · 𝑒(𝑝/2) −
∑︁

1≤𝑛≤𝑁

𝑒(𝑛/2)

= −
∑︁

3≤𝑝≤𝑁

log 𝑝 + 𝑂(1)

= −𝑁 + 𝑂

(︂
𝑁

log100𝑁

)︂
.

and thus 𝜈 is not pseudorandom. Moreover, for 𝑞 =
∏︀

2≤𝑝≤𝐶 𝑝 and (𝑎, 𝑞) = 1 with
any constant 𝐶 ≥ 2, we have

̂︀1[𝑁 ](𝑎/𝑞) = 𝑂(𝑞),

and by the Siegel–Walfisz theorem,

̂︀𝜈(𝑎/𝑞) =
∑︁

1≤𝑝≤𝑁

log 𝑝 · 𝑒(𝑎/𝑞) =
∑︁

(𝑏,𝑞)=1

∑︁

1≤𝑝≤𝑁
𝑝≡𝑏 (mod 𝑞)

log 𝑝 · 𝑒(𝑝𝑎/𝑞)

=
∑︁

(𝑏,𝑞)=1

𝑒(𝑏𝑎/𝑞)
∑︁

1≤𝑝≤𝑁
𝑝≡𝑏 (mod 𝑞)

log 𝑝 =
𝜇(𝑞)

𝜑(𝑞)
𝑁 + 𝑂

(︂
𝑁

log100𝑁

)︂
.

Now we have seen that “local” problems mean that |̂︀𝜈(𝜃) − ̂︀1[𝑁 ](𝜃)| ̸= 𝑜(𝑁) when
𝜃 close to 𝑎/𝑞 with small 𝑞. However, for the 𝑊 -tricked function

𝜈(𝑛) =
𝜑(𝑊 )

𝑊
log(𝑊𝑛 + 𝑏)1𝒫(𝑊𝑛 + 𝑏),

one can use standard exponential sum estimates to show that ‖̂︀𝜈 − ̂︀1[𝑁 ]‖∞ = 𝑜(𝑁).
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5.5 Mean condition and Harman’s sieve method
5.5.1 Mean condition

To satisfy the mean condition, we need to normalize the indicator function of Piatetski-
Shapiro primes. We choose 𝑓 as in (5.6) and

𝜈(𝑛) :=

{︃
𝑐 · log𝑋

𝛼+ · 𝜑(𝑊 )
𝑊 (𝑊𝑛 + 𝑏)1−

1

𝑐 𝜌+(𝑊𝑛 + 𝑏), if 𝑊𝑛 + 𝑏 ∈ N𝑐,

0, otherwise,
(5.7)

where 𝜌+ ≥ 1𝒫 and the constant 𝛼+ is chosen so that ̂︀𝜈(0) = 𝑁(1 + 𝑜(1)). Clearly,
𝜈 is a majorant function of 𝑓 . By utilizing the arithmetic information for the lower
bound result for the number of Piatetski-Shapiro primes, if we choose appropriate
lower bound sieve weight 𝜌− ≤ 1𝒫 , we have that

∑︁

𝑛∈𝑃
𝑓(𝑛) = 𝑐

log𝑋

𝛼+

𝜑(𝑊 )

𝑊

∑︁

𝑚∈(𝑊 ·𝑃+𝑏)∩N𝑐𝑖

𝑚
1− 1

𝑐𝑖 1𝒫(𝑚)

≥ 𝑐
log𝑋

𝛼+

𝜑(𝑊 )

𝑊

∑︁

𝑚∈(𝑊 ·𝑃+𝑏)∩N𝑐𝑖

𝑚
1− 1

𝑐𝑖 𝜌−(𝑚) ≥ 𝛼−

𝛼+
|𝑊 · 𝑃 + 𝑏| =

𝛼−

𝛼+
|𝑃 |,

where 𝛼− is the lower bound sieve coefficient corresponding to 𝜌−. Recalling the
mean condition, we must be very careful in choosing lower bound and upper bound
sieves such that 𝛼−

𝛼+ > 1
3 .

5.5.2 Harman’s sieve method

We now explain how we choose 𝜌+ and 𝜌− using Harman’s sieve method (for a
comprehensive account of Harman’s sieve, see [26]). Let

𝒜 = {𝑛 ∼ 𝑋 : 𝑛 ∈ N𝑐, 𝑛 ≡ 𝑙 (mod 𝑑)},

and
ℬ = {𝑛 ∼ 𝑋 : 𝑛 ≡ 𝑙 (mod 𝑑)},

To successfully apply Harman’s sieve method to find the lower bound sieve weights
𝜌− and the upper bound sieve weights 𝜌+ we employ the following Type I and II
information for 𝑎(𝑛), 𝑏(𝑛) ≪ 𝑑𝑘(𝑛) with some 𝑘 ≥ 2 and 𝑔(𝑛) = 1 or 𝑔(𝑛) = 𝑒(𝛼𝑛)

for 𝛼 ∈ [0, 1).

Type I : ∑︁

𝑑𝑛∈𝒜
𝑑≤𝐷

1

𝛾
𝑎(𝑑)(𝑑𝑛)1−𝛾𝑔(𝑑𝑛) =

∑︁

𝑑𝑛∈ℬ
𝑑≤𝐷

𝑎(𝑑)𝑔(𝑑𝑛) + 𝑂(𝑋1−𝛿)
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Type II :

∑︁

𝑚𝑛∈𝒜
𝑚∼𝑀

1

𝛾
𝑎(𝑚)𝑏(𝑛)(𝑚𝑛)1−𝛾𝑔(𝑚𝑛) =

∑︁

𝑚𝑛∈ℬ
𝑚∼𝑀

𝑎(𝑚)𝑏(𝑛)𝑔(𝑚𝑛) + 𝑂(𝑋1−𝛿),

where 𝐷 ≤ 𝑋𝜃1 and 𝑀 ∈ [𝑋1−𝜃2 , 𝑋𝜃2 ] ∪ [𝑋𝜃3 , 𝑋𝜃4 ] ∪ [𝑋1−𝜃4 , 𝑋1−𝜃3 ] and with
some suitable parameters 0 < 𝜃𝑖 < 1 depending on 𝑔 and 𝑐 for 𝑖 ∈ {1, 2, 3, 4}. The
interested reader can refer to [III, Sections 5 and 6] for the explicit values of 𝜃𝑖. In
practice, for the lower bound case, we need 𝑔 = 1 and for the upper bound case, we
need 𝑔(𝑛) = 𝑒(𝑛𝛼) for every fixed 𝛼 ∈ [0, 1).

Now, we provide a simple example about how to apply Type I and II information
to construct 𝜌− and 𝜌+ for 1 < 𝑐 < 15/13.

Recall the result of Liu and Rivat [46] who proved that for 1 < 𝑐 < 15/13 =

1.1538...,
𝜋𝑐(𝑥) ∼ 𝑥

log 𝑥
.

If we assume that 1 < 𝑐 < 15/13 = 1.1538..., then Type I information holds for
𝐷 < 𝑋7/15 and Type II information holds for 𝑋2/15 < 𝑀 < 𝑋1/3. Thanks to the
asymptotic formula of 𝜋𝑐(𝑥), we can take 𝜌−(𝑛) = 1𝒫(𝑛). For the upper bound
sieve, we choose 𝜌+(𝑛) = 𝜌(𝑛, 𝑥1/5) ≥ 1𝒫(𝑛). Now we have

𝑐
∑︁

𝑛≤𝑥
𝑛∈𝒜

𝑛1− 1

𝑐 𝜌(𝑛, 𝑥1/5)𝑒(𝑛𝛼) = 𝑐
∑︁

𝑑|𝒫(𝑥1/5)

𝜇(𝑑)
∑︁

𝑛𝑑≤𝑥
𝑛∈𝒜

(𝑑𝑛)1−
1

𝑐 𝑒(𝑛𝑑𝛼). (5.8)

If 𝑑 ≤ 𝑋1/3, then the right-hand side of (5.8) satisfies Type I condition. Otherwise
𝑑 = 𝑝1𝑝2 · · · 𝑝𝑘 > 𝑋1/3 with 𝑝𝑖 decreasing. Note that 𝑝𝑖 < 𝑋1/5 for all 𝑖 ∈
{1, 2, . . . , 𝑘}, so there exist 1 < 𝑡 < 𝑘 such that 𝑋2/15 = 𝑋1/3−1/5 < 𝑝1𝑝2 · · · 𝑝𝑡 <
𝑋1/3. Therefore we let 𝑚 = 𝑝1𝑝2 · · · 𝑝𝑡 be from the range of Type II information.
Thus (5.8), working out some technical details, equals

∑︁

𝑑|𝒫(𝑥1/5)

𝜇(𝑑)
∑︁

𝑛𝑑≤𝑥
𝑛∈ℬ

𝑒(𝑛𝑑𝛼) + 𝑂(𝑋1−𝛿) =
∑︁

𝑛≤𝑥
𝑛∈ℬ

𝜌(𝑛, 𝑥1/5)𝑒(𝑛𝛼) + 𝑂(𝑋1−𝛿),

for some 𝛿 > 0. The corresponding coefficient 𝛼+ ≤ 5
3(1 + log 2) < 3 = 3𝛼−, (see

[26, (1.4.16)]) and thus the mean condition is satisfied
In order to get the better result (larger range of 𝑐 for Vinogradov’s three primes

theorem with Piatetski-Shapiro primes) we need to do a more complicated Buchstab
decomposition. The coefficients 𝛼+ and 𝛼− of upper bound and lower bound sieves
come from the prime number theory and integrals of Buchstab’s function (see [26,
Chapter 1]). We suggest the interested reader to refer to [III, section 5 and 6] for
more details.
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5.6 Restriction estimate and Bourgain’s strategy
As mentioned in Section 5.3, in certain cases, the 𝐿2 norm may introduce an addi-
tional log𝑁 . In the context of Piatetski-Shapiro primes, the 𝐿2 norm even introduces
a larger term, specifically 𝑁1− 1

𝑐 , which deviates significantly from our expectations.
Let us turn to the reasons behind the challenges posed by the 𝐿2 norm and the ad-
vantages of studying 𝐿𝑞 norms, particularly for 2 < 𝑞 < 3.

Let us compare studying ternary Goldbach problem with studying Vinogradov’s
three primes theorem for Piatetski-Shapiro primes to see why we need to study 𝐿𝑞

norms for 2 < 𝑞 < 3 in Piatetski-Shapiro primes case. In the ternary Goldbach
problem, when applying the circle method, one breaks down the contributions from
the major arcs M and the minor arcs m writing

∫︁ 1

0

⎛
⎝∑︁

𝑝≤𝑁

log 𝑝 · 𝑒(𝑝𝛼)

⎞
⎠

3

𝑒(−𝑁𝛼)𝑑𝛼

=

∫︁

M

⎛
⎝∑︁

𝑝≤𝑁

log 𝑝 · 𝑒(𝑝𝛼)

⎞
⎠

3

𝑒(−𝑁𝛼)𝑑𝛼 +

∫︁

m

⎛
⎝∑︁

𝑝≤𝑁

log 𝑝 · 𝑒(𝑝𝛼)

⎞
⎠

3

𝑒(−𝑁𝛼)𝑑𝛼.

The main term comes from the integral over major arcs and is

∫︁

M

⎛
⎝∑︁

𝑝≤𝑁

log 𝑝 · 𝑒(𝑝𝛼)

⎞
⎠

3

𝑒(−𝑁𝛼)𝑑𝛼 = S(𝑁)𝑁2 + 𝑂

(︂
𝑁2

log𝑁

)︂
,

where S(𝑁) ≫ 1 if 𝑁 is a sufficiently large odd integer. Moving to the integral over
the minor arcs, by exponential sum estimates, if 𝛼 ∈ m, then

∑︁

𝑝≤𝑁

log 𝑝 · 𝑒(𝑝𝛼) ≪ 𝑁

log100𝑁
.

Hence, from the above and Parserval’s identity

∫︁

m

⎛
⎝∑︁

𝑝≤𝑁

log 𝑝 · 𝑒(𝑝𝛼)

⎞
⎠

3

𝑒(−𝑁𝛼)𝑑𝛼

≪ max
𝛼∈m

⃒⃒
⃒⃒
⃒⃒
∑︁

𝑝≤𝑁

log 𝑝 · 𝑒(𝑝𝛼)

⃒⃒
⃒⃒
⃒⃒
∫︁ 1

0

⃒⃒
⃒⃒
⃒⃒
∑︁

𝑝≤𝑁

log 𝑝 · 𝑒(𝑝𝛼)

⃒⃒
⃒⃒
⃒⃒

2

𝑑𝛼

≪ max
𝛼∈m

⃒⃒
⃒⃒
⃒⃒
∑︁

𝑝≤𝑁

log 𝑝 · 𝑒(𝑝𝛼)

⃒⃒
⃒⃒
⃒⃒𝑁 log𝑁

≪ 𝑁

log99𝑁
.
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If we apply the same strategy to deal with Vinogradov’s theorem for Piatetski-
Shapiro primes, we consider the integral

∫︁ 1

0
𝐹 (𝛼)3𝑒(−𝑁𝛼)𝑑𝛼,

where
𝐹 (𝛼) =

∑︁

𝑝≤𝑁
𝑝∈N𝑐

𝑐 · 𝑝1− 1

𝑐 log 𝑝 · 𝑒(𝑝𝛼).

We also split the interval [0, 1) into similar major arcs M and minor arcs m. For the
major arc case, standard arguments yield that the major arcs contribution is ≫ 𝑁2.
However, for the minor arc case, using Parseval’s identity to bound it, we get

∫︁

m

𝐹 (𝛼)3𝑒(−𝑁𝛼)𝑑𝛼 ≪ max
𝛼∈m

|𝐹 (𝛼)|
∫︁ 1

0
|𝐹 (𝛼)|2

≪ max
𝛼∈m

|𝐹 (𝛼)|𝑁2− 1

𝑐 log𝑁.

While we expect that the last term is bounded by 𝑜(𝑁2), achieving this requires
max𝛼∈m |𝐹 (𝛼)| = 𝑜(𝑁1/𝑐/ log𝑁), which becomes challenging when 𝑐 is somewhat
greater than 1.

To bypass this difficulty we apply the restriction estimate. Suppose there exist
some 2 < 𝑞 < 3 such that

∫︀ 1
0 |𝐹 (𝛼)|𝑞𝑑𝛼 ≪ 𝑁 𝑞−1. Then we have

∫︁

m

𝐹 (𝛼)3𝑒(−𝑁𝛼)𝑑𝛼 ≪ max
𝛼∈m

|𝐹 (𝛼)|3−𝑞

∫︁ 1

0
|𝐹 (𝛼)|𝑞

≪ max
𝛼∈m

|𝐹 (𝛼)|3−𝑞𝑁 𝑞−1.

This requires only max𝛼∈m |𝐹 (𝛼)| = 𝑜(𝑁), which can be achieved when 𝛼 is far
away from rational points with small denominators, even if 𝑐 is somewhat larger than
1.

Now we briefly discuss how to prove the restriction estimate when 1 < 𝑐 <

73/64 ≈ 1.141. Specifically, we need to show that there exist some 𝑞0 ∈ (2, 3) such
that ∫︁ 1

0
|𝐹 (𝛼)|𝑞0𝑑𝛼 ≪ 𝑁 𝑞0−1. (5.9)

If we can show that there exist some 𝑞 ∈ (2, 3) such that for all 𝑔(𝑛) ≤ 𝑛1− 1

𝑐1𝑛∈N𝑐

∫︁ 1

0

⃒⃒
⃒⃒
⃒⃒
∑︁

𝑛≤𝑁

𝑔(𝑛)𝑒(𝑛𝛼)

⃒⃒
⃒⃒
⃒⃒

𝑞

𝑑𝛼 ≪ 𝑁 𝑞−1, (5.10)
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then we have ∫︁ 1

0
|𝐹 (𝛼)|𝑞𝑑𝛼 ≪ 𝑁 𝑞−1(log𝑁)𝑞. (5.11)

It is possible to remove the extra (log𝑁)𝑞 by Bourgain’s strategy [8] which shows
that if the behavior of 𝐹 (𝛼) is similar to

∑︀
𝑝≤𝑁 log 𝑝 · 𝑒(𝑝𝛼), namely, for any suffi-

ciently large 𝐴 > 0, one has

max
𝛼∈[0,1)

⃒⃒
⃒⃒
⃒⃒𝐹 (𝛼) −

∑︁

𝑝≤𝑁

log 𝑝 · 𝑒(𝑝𝛼)

⃒⃒
⃒⃒
⃒⃒ = 𝑜

(︂
𝑁

log𝐴𝑁

)︂
, (5.12)

then one can remove the extra factor (log𝑁)𝑞 from (5.11) if one replaces 𝑞 by 𝑞 + 𝜖

for any 𝜖 > 0. For details of Bourgain’s strategy, see [8] or [III, Section 4].
Kumchev [41] showed that (5.12) holds for 1 < 𝑐 < 73/64 ≈ 1.141. Hence if

we can show (5.10) for some 2 < 𝑞 < 3 then by Bourgain’s strategy, (5.9) holds for
𝑞0 = 𝑞 + 𝜖.

Thus, the remaining task is to show (5.10). We write 𝐺(𝛼) =
∑︀

𝑛≤𝑁 𝑔(𝑛)𝑒(𝑛𝛼).
By van der Corput’s method, one can obtain that |𝐺(𝛼)| ≤ (1+𝑜(1))𝑁 for 1 ≤ 𝑐 < 2

(see e.g. [III, section 4]), so by a dyadic splitting, we have that

∫︁ 1

0
|𝐺(𝛼)|𝑞𝑑𝛼 ≪

∑︁

𝑛≥0

(︂
𝑁

2𝑛−1

)︂𝑞

𝜇

(︂{︂
𝛼 ∈ [0, 1) :

𝑁

2𝑛
< |𝐺(𝛼)| ≤ 𝑁

2𝑛−1

}︂)︂

where 𝜇 is the Lebesgue measure. Now we only need to show that for some 0 < 𝑡 <

𝑞, we have for every 𝑛 ≥ 0,

𝜇
(︀{︀

𝛼 ∈ [0, 1) : |𝐺(𝛼)| > 2−𝑛𝑁
}︀)︀

≪ 1

𝑁2−𝑡𝑛
. (5.13)

We first study the case that 𝑔 is pseudorandom, namely |𝐺(𝛼)−̂︂1[𝑁 ](𝛼)| is small for
all 𝛼 ∈ [0, 1). In this case, Parseval’s identity implies that

(2−𝑛𝑁)2𝜇
(︁{︁

𝛼 ∈ [0, 1) : |̂︂1[𝑁 ](𝛼)| > 2−𝑛𝑁
}︁)︁

≤
∫︁ 1

0
|̂︂1[𝑁 ](𝛼)|2𝑑𝛼 = 𝑁

and consequently

𝜇
(︁{︁

𝛼 ∈ [0, 1) : |̂︂1[𝑁 ](𝛼)| > 2−𝑛𝑁
}︁)︁

≤ 1

𝑁2−2𝑛
.

Hence (5.13) holds. In [III, Section 4], we will see that if 𝑔(𝑛) = 𝑛1− 1

𝑐1𝑛∈N𝑐 , then
max𝛼∈[0,1) |𝐺(𝛼) − ̂︂1[𝑁 ](𝛼)| = 𝑜(𝑁

3

2
− 1

𝑐 log𝑁). By working out some technical
details, we can prove (5.13) in the general case using the fact 𝑔 has a pseudorandom
majorant.
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In order to show that (5.9) holds for a larger range of 𝑐, we will choose 𝐹 (𝛼)

such that

max
𝛼∈[0,1)

⃒⃒
⃒⃒
⃒⃒𝐹 (𝛼) −

∑︁

𝑛≤𝑁

𝜌+(𝑛) log 𝑛 · 𝑒(𝑛𝛼)

⃒⃒
⃒⃒
⃒⃒ = 𝑜

(︂
𝑁

log𝐴𝑁

)︂
,

for some suitable upper bound sieve weights 𝜌+. For more details, the interested
reader may refer to [III].
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6 On divisor bounded multiplicative
functions in short intervals

6.1 Multiplicative functions in short intervals
Recall that Λ(𝑛) and 𝜇(𝑛) are the von Mangoldt function and the Möbius function.
In Chapter 3, we introduced results for primes and arithmetic functions in short in-
tervals. Here we concentrate on results in “almost all” short intervals, which means
that the results hold for all but at most 𝑜(𝑋) intervals [𝑥, 𝑥 + ℎ] with 𝑥 ∈ [𝑋, 2𝑋].
By the zero density result due to Huxley [31], one can prove an almost all intervals
result for primes. Specifically, if 𝑋 > 0 is sufficiently large, and ℎ ≥ 𝑋1/6+𝜖 with
any 𝜖 > 0, then

1

ℎ

∑︁

𝑥<𝑛≤𝑥+ℎ

Λ(𝑛) − 1

𝑋

∑︁

𝑋<𝑛≤2𝑋

Λ(𝑛) = 𝑜(1)

for all but 𝑜(𝑋) integers 𝑥 ∈ [𝑋, 2𝑋].
Ramachandra [68] applied a similar strategy to prove a similar result for the

Möbius function. He showed that for any sufficiently large 𝑋 and ℎ ≥ 𝑋1/6+𝜖 with
𝜖 > 0, we have

1

ℎ

∑︁

𝑥<𝑛≤𝑥+ℎ

𝜇(𝑛) − 1

𝑋

∑︁

𝑋<𝑛≤2𝑋

𝜇(𝑛) = 𝑜(1)

for all but 𝑜(𝑋) integers 𝑥 ∈ [𝑋, 2𝑋].
Assuming the Riemann hypothesis, the above two almost all results hold for

ℎ > log𝐴𝑋 for some 𝐴 > 0 (by [74] and an unpublished work of Peng Gao).
Recently, Matomäki and Radziwiłł [49] made a breakthrough concerning short

sums of 1-bounded multiplicative functions, significantly improving the previous
results even beyond those established under the Riemann hypothesis.

Theorem 6.1 (Matomäki-Radziwiłł theorem). Let 𝑋 ≥ ℎ ≥ 2 and 𝑓 : N → [−1, 1]

be a multiplicative function. Then for almost all 𝑥 ∈ [𝑋, 2𝑋],

1

ℎ

∑︁

𝑥<𝑛≤𝑥+ℎ

𝑓(𝑛) − 1

𝑋

∑︁

𝑋<𝑛≤2𝑋

𝑓(𝑛) = 𝑜(1), (6.1)

provided ℎ → ∞ with 𝑋 → ∞.
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To prove the Matomäki-Radziwiłł theorem, Matomäki and Radziwiłł utilized
more information about multiplicativity, for example, Ramaré’s identity.

Thanks to Matomäki-Radziwiłł methods, some previous results involving mul-
tiplicative functions can be improved. For example Matomäki and Teräväinen [51]
proved the following theorem.

Theorem 6.2. Suppose that 𝑋 is sufficiently large and 𝐻 ≥ 𝑋0.55+𝜖 for any 𝜖 > 0.
Then ∑︁

𝑋<𝑛≤𝑋+𝐻

𝜇(𝑛) = 𝑜(𝐻).

This improved the length 𝐻 ≥ 𝑋7/12+𝜖 due to Motohashi [57] and Ramachandra
[68].

6.2 Dirichlet divisor problem and divisor bounded mul-
tiplicative function in short intervals

The famous Dirichlet divisor problem is the conjecture that, for any 𝜖 > 0,
∑︁

𝑛≤𝑋

𝑑(𝑛) = 𝑋 log𝑋 + (2𝛾 − 1)𝑋 + 𝑂(𝑋1/4+𝜖).

By the hyperbola method, one can prove that for any 𝜖 > 0,
∑︁

𝑛≤𝑋

𝑑(𝑛) = 𝑋 log𝑋 + (2𝛾 − 1)𝑋 + 𝑂(𝑋1/2). (6.2)

The best known error term was given by Huxley [32], who proved that the error term
is 𝑂(𝑋131/416+𝜖). Naturally, the better the error term the better the implied result for
short sums.

In [IV] we consider the sum of 𝑑𝑘(𝑛) =
∑︀

𝑛=𝑚1𝑚2...𝑚𝑘
1 for 𝑘 ≥ 2 in almost all

short intervals and prove

Theorem 6.3. Let 𝜖 > 0 and 𝑘 ≥ 2. If ℎ ≥ (log𝑋)𝑘 log 𝑘−𝑘+1+𝜖, then

1

ℎ

∑︁

𝑥<𝑛≤𝑥+ℎ

𝑑𝑘(𝑛) − 1

𝑥

∑︁

𝑥<𝑛≤2𝑥

𝑑𝑘(𝑛) = 𝑜(log𝑘−1 𝑥) (6.3)

for all but at most 𝑜(𝑋) integers 𝑥 ∈ [𝑋, 2𝑋].

Note that
∑︀

𝑥<𝑛≤2𝑥 𝑑𝑘(𝑛) ≍ 𝑥 log𝑘−1 𝑥, so Theorem 6.3 gives an asymptotic
formula for almost all short intervals.

Mangerel’s [47, Theorem 1.7] shows that if ℎ ≥ ℎ0(log𝑋)(𝑘−1)2 and ℎ0 → ∞
with 𝑋 → ∞, then

∫︁ 2𝑋

𝑋

⃒⃒
⃒⃒
⃒⃒
1

ℎ

∑︁

𝑥<𝑛≤𝑥+ℎ

𝑑𝑘(𝑛) − 1

𝑥

∑︁

𝑥<𝑛≤2𝑥

𝑑𝑘(𝑛)

⃒⃒
⃒⃒
⃒⃒

2

𝑑𝑥 = 𝑜(𝑋 log2𝑘−2𝑋).
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In fact the length of short interval ℎ in [47, Theorem 1.7] is sharp, and as a corollary
in almost all short intervals sense, one can obtain that if ℎ ≥ ℎ0(log𝑋)(𝑘−1)2 , then
(6.3) holds for all but at most 𝑜(𝑋) integers. Hence, Theorem 6.3 is an improvement
of Mangerel’s result in almost all short intervals sense.

The exponent of log𝑋 in Theorem 6.3 is essentially optimal, meaning that re-
placing 𝜖 with −𝜖 renders this theorem incorrect. However, when comparing the
length of short intervals in our result to those in the Matomäki-Radziwiłł theorem
or Mangerel’s result, there is some room for improvement. This could be achieved
by optimising (log𝑋)𝜖 with some a function ℎ0(𝑋) that grows slower than (log𝑋)𝜖

and tends to infinity as 𝑋 → ∞.

6.3 Proof ideas
For convenience, I will use the divisor function case (𝑘 = 2) to illustrate the proof
ideas.

6.3.1 Two restrictions

We will restrict 𝑛 in our sum in two ways. The first one is to restrict to integers having
at least one prime factor from certain ranges. The purpose of the first restriction is to
help to create a bilinear structure as explained later.

Let 𝜖0 > 0. We define

𝑃1 := exp((log log𝑋)1/2), 𝑄1 := (log𝑋)𝜖0 (6.4)

𝑃2 := exp((log log𝑋)2), 𝑄2 := exp((log log𝑋)100) (6.5)

Let 𝐴 denote the set of all 𝑛 ∈ (𝑋, 2𝑋] having at least one prime factor in each
interval [𝑃𝑗 , 𝑄𝑗 ] for 𝑗 ∈ {1, 2}. The set 𝐴 is dense and we have

Lemma 6.1. Let 𝑋 > 0 be sufficiently large. Then
∑︁

𝑋≤𝑛≤2𝑋
𝑛̸∈𝐴

𝑑(𝑛) = 𝑜(𝑋 log𝑋).

Proof. See [IV, Lemma 2.2].

The second one is to restrict to integers that do not have too many prime factors.
The purpose of the second restriction is to have a good bound for the second moment
of the divisor function in this restricted set.

The famous Erdős-Kac theorem tells us that almost all integers in [𝑋, 2𝑋] have
Ω(𝑛) = (1 + 𝑜(1)) log log𝑋 , where Ω(𝑛) is the total number of prime factors.
However, if one consider the sum of the divisor function, the main contribution does

37



Yu-Chen Sun

not come from those integers having Ω(𝑛) = (1 + 𝑜(1)) log log𝑋 . This can be seen
from

1

𝑋

∑︁

𝑋≤𝑛≤2𝑋
Ω(𝑛)=((1+𝑜(1)) log log𝑋

𝑑(𝑛) ≤ 1

𝑋
𝑋2(1+𝑜(1)) log log𝑋 = log(1+𝑜(1)) log 2𝑋,

which is much smaller than the expected log𝑋 . The following lemma tells us that
the main contribution to the sum of divisor function comes from integers having
(2 + 𝑜(1)) log log𝑋 prime factors.

Lemma 6.2. Let 𝑙(𝑛) ∈ {𝜔(𝑛),Ω(𝑛)}. For any sufficiently large 𝑋 and small 𝜖′ > 0,
we have

𝑋

(log𝑋)(2+𝜖′) log 2−1
≪

∑︁

𝑋≤𝑛≤2𝑋
|𝑙(𝑛)−2 log log𝑋|≤𝜖′ log log𝑋

1 ≪ 𝑋

(log𝑋)(2−𝜖′) log 2−1
.

Proof. See [IV, Lemma 2.6].

From the above, we see that

∑︁

𝑋≤𝑛≤2𝑋
𝑙(𝑛)=(2+𝑜(1)) log log 𝑥

1 =
𝑋

(log𝑋)(2 log 2−1+𝑜(1))
,

so we get

∑︁

𝑋≤𝑛≤2𝑋
𝑙(𝑛)=(2+𝑜(1)) log log 𝑥

𝑑(𝑛) =
𝑋

(log𝑋)(2 log 2−1+𝑜(1))
2(2+𝑜(1)) log log𝑋 = 𝑋 log1+𝑜(1)𝑋

corresponding our expectation except 𝑜(1) in the exponent of log𝑋 . Thus, intu-
itively, the principal contribution to the sum comes from integers with approximately
2(1 + 𝑜(1)) log log𝑋 prime factors. For any 𝜖 > 0, let

𝐵 := {𝑛 ∈ [𝑋, 2𝑋] : |Ω(𝑛) − 2 log log𝑋| ≤ 𝜖 log log𝑋}.

Now we give the rigorous statement.

Lemma 6.3. Let 𝑋 > 0 be sufficiently large. Then
∑︁

𝑋<𝑛≤2𝑋
𝑛 ̸∈𝐵

𝑑(𝑛) ≪ 𝑋 log𝑋(log𝑋)−
1

100
min{1,𝜖2}.

Proof. See [IV, Lemma 2.3].
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Remark. Restricting our focus on the set 𝐵 is the key point in article [IV]. The
advantage is to obtain a better upper bound after applying a large-sieve type estimate.
In the next section, we will compare the long average to short average of the sum of
the divisor function in the 𝐿2 sense, then applying a large-sieve type estimate, after
getting a Parserval’s bound (see Lemma 6.4). The large-sieve type upper bound
consists of a diagonal term and an off-diagonal term. The off-diagonal term will be
easily controlled by Henriot’s bound (see [30, Theorem 3]). However, in case of the
diagonal term, i.e.,

∑︀
𝑋<𝑛≤2𝑋 𝑑2(𝑛), if we directly apply Shiu’s bound, as Mangerel

did, we will get an upper bound 𝑋(log𝑋)𝑘
2−1 which is much larger than we expect.

Fortunately, when we consider those integers in 𝐵, we have a pointwise upper bound
𝑑(𝑛) ≤ (log𝑋)2 log 2+𝜖 which means that we get a better upper bound

∑︁

𝑋<𝑛≤2𝑋
𝑛∈𝐵

𝑑2(𝑛) ≪ 𝑋(log𝑋)2 log 2+1+𝜖

for the diagonal term.

For convenience, we denote 𝑆 = 𝐴∩𝐵 in the following and we will restrict our
summation to the set 𝑆.

Recall (6.2) which implies that for ℎ ≥ 𝑋1/2,

1

ℎ

∑︁

𝑋<𝑛≤𝑋+ℎ

𝑑(𝑛) = (1 + 𝑜(1)) log𝑋.

Thus, by the above and Lemmas 6.1 and 6.3, we only need to prove that, for

(log𝑋)𝑘 log 𝑘−𝑘+1+𝜖 ≤ ℎ ≤ 𝑋1/2,

we have
1

ℎ

∑︁

𝑥<𝑛≤𝑥+ℎ
𝑛∈𝑆

𝑑(𝑛) − 1

𝑋1/2

∑︁

𝑋<𝑛≤𝑋+𝑋1/2

𝑛∈𝑆

𝑑(𝑛) = 𝑜(log𝑋)

holds almost all 𝑥 ∈ [𝑋, 2𝑋].

6.3.2 Parserval’s bound and the Matomäki-Radziwiłł method

In order to compare the short sum to the long sum of the divisor function on average,
we study

1

𝑋

∫︁ 2𝑋

𝑋

⃒⃒
⃒⃒
⃒⃒
⃒⃒
1

ℎ

∑︁

𝑥<𝑛≤𝑥+ℎ
𝑛∈𝑆

𝑑(𝑛) − 1

𝑋1/2

∑︁

𝑥<𝑛≤𝑥+𝑋1/2

𝑛∈𝑆

𝑑(𝑛)

⃒⃒
⃒⃒
⃒⃒
⃒⃒

2

𝑑𝑥. (6.6)
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One can now transfer the two discrete sums inside the integral of (6.6) to the integral
of two Dirichlet Polynomials, by applying Perron’s formula (see, e.g., [26, Lemma
1.1])

∑︁

𝑥≤𝑛≤𝑦

𝑑(𝑛) = lim
𝑇→∞

∫︁ 𝑇

−𝑇

∑︁

𝑥/2<𝑛<2𝑦

𝑑(𝑛)

𝑛1+𝑖𝑡

𝑦1+𝑖𝑡 − 𝑥1+𝑖𝑡

1 + 𝑖𝑡
𝑑𝑡.

The principal contribution of the above integral comes from the integral around 𝑡 =

0. Note that when 𝑡 ≈ 0, we have 𝑦1+𝑖𝑡 − 𝑥1+𝑖𝑡 ≈ 𝑦 − 𝑥. Therefore, if one applies
Perron’s formula to the averages of 1

𝑋1/2

∑︀
𝑥<𝑛≤𝑥+𝑋1/2 𝑑(𝑛) and 1

ℎ

∑︀
𝑥<𝑛≤𝑥+ℎ 𝑑(𝑛)

separately, then the principal contributions (integrals around 𝑡 = 0) of the integrals
of the two Dirichlet polynomials are eliminated. Then the remaining task to bound
(6.6) is to bound

1

𝑋

∫︁ 2𝑋

𝑋

⃒⃒
⃒⃒
⃒⃒
∫︁ ∞

𝑇0

∑︁

𝑥/2<𝑛<2𝑦

𝑑(𝑛)

𝑛1+𝑖𝑡

𝑦1+𝑖𝑡 − 𝑥1+𝑖𝑡

(𝑦 − 𝑥)(1 + 𝑖𝑡)
𝑑𝑡

⃒⃒
⃒⃒
⃒⃒

2

𝑑𝑥

for some 𝑦 ∈ {𝑥 + ℎ, 𝑥 + 𝑋1/2}. This can be bounded well by a “large sieve-type”
argument. The above process can be formulated as the following lemma.

Lemma 6.4.

1

𝑋

∫︁ 2𝑋

𝑋

⃒⃒
⃒⃒
⃒⃒
⃒⃒
1

ℎ

∑︁

𝑥<𝑛≤𝑥+ℎ
𝑛∈𝑆

𝑑(𝑛) − 1

𝑋1/2

∑︁

𝑥<𝑛≤𝑥+𝑋1/2

𝑛∈𝑆

𝑑(𝑛)

⃒⃒
⃒⃒
⃒⃒
⃒⃒

2

𝑑𝑥.

≪
∫︁

𝑋1/6≤|𝑡|≤𝑋/ℎ

⃒⃒
⃒⃒
⃒⃒
⃒

∑︁

𝑋<𝑛≤4𝑋
𝑛∈𝑆

𝑑(𝑛)

𝑛1+𝑖𝑡

⃒⃒
⃒⃒
⃒⃒
⃒

2

𝑑𝑡 + max
𝑇≥𝑋/ℎ

𝑋

ℎ𝑇

∫︁ 2𝑇

𝑇

⃒⃒
⃒⃒
⃒⃒
⃒

∑︁

𝑋<𝑛≤4𝑋
𝑛∈𝑆

𝑑(𝑛)

𝑛1+𝑖𝑡

⃒⃒
⃒⃒
⃒⃒
⃒

2

𝑑𝑡.

(6.7)

Proof. See [49, Lemma 14].

By looking at the integral of the Dirichlet polynomial, we may have several ideas
in mind. Firstly, one could consider to apply the mean-value theorem ([IV, Lemma
4.1]) which is effective when 𝑇ℎ/𝑋 is sufficiently large. The key challenge arises
when 𝑇 is close to 𝑋/ℎ as the mean-value theorem is no longer sufficient. Fortu-
nately, thanks to the Matomäki-Radiziwłł method, we are able to get a better upper
bound beyond the limitation of using the mean-value theorem.

Dirichlet polynomials and Ramare’s identity

We start from the following lemma giving a pointwise upper bound for a Dirichlet
polynomial over primes.
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Lemma 6.5. Let 𝜖 > 0, 𝐴 > 0 be given and 𝑋 ≥ 1. Assume that exp((log𝑋)2/3+𝜖) ≤
𝑃 ≤ 𝑄 ≤ 𝑋 . Then for |𝑡| ≤ 𝑋 ,

∑︁

𝑃≤𝑝≤𝑄

1

𝑝1+𝑖𝑡
≪ log𝑋

1 + |𝑡| + exp

(︂
− log𝑃

(log𝑋)2/3+𝜖

)︂
+

1

𝑃 1/2
. (6.8)

Proof. See [53, Lemma 2].

To apply Lemma 6.5, we need the following decomposition called Ramaré’s
identity, which follows from the multiplicativity. We leave the proof to the inter-
ested reader.

Lemma 6.6. Suppose that 𝑓 : N → C is a multiplicative function. Then, for any
𝑋 ≥ 𝑄 ≥ 𝑃 ≥ 1,

∑︁

𝑛≤𝑋

𝑓(𝑛) =
∑︁

𝑝∈[𝑃,𝑄]

𝑓(𝑝)
∑︁

𝑚≤𝑋/𝑝

𝑓(𝑚)

1 +
∑︀

𝑞∈[𝑃,𝑄]∖{𝑝} 1𝑞|𝑚

+
∑︁

𝑝∈[𝑃,𝑄]

∑︁

𝑚≤𝑋/𝑝2

𝑓(𝑝2𝑚) − 𝑓(𝑝)𝑓(𝑝𝑚)

1 +
∑︀

𝑞∈[𝑃,𝑄]∖{𝑝} 1𝑞|𝑚
+

∑︁

𝑛≤𝑋
𝑝|𝑛⇒𝑝 ̸∈[𝑃,𝑄]

𝑓(𝑛).

where 𝑝, 𝑞 are primes.

Now by Lemma 6.6 with slight modification, we have for 𝒯 ⊂ [−𝑇, 𝑇 ]

∫︁

𝒯

⃒⃒
⃒⃒
⃒⃒
⃒

∑︁

𝑛∈𝑆
𝑋<𝑛≤4𝑋

𝑑(𝑛)

𝑛1+𝑖𝑡

⃒⃒
⃒⃒
⃒⃒
⃒

2

𝑑𝑡

≪𝐻 log

(︂
𝑄

𝑃

)︂
×
∑︁

𝑣∈ℐ

∫︁

𝒯
|𝑄𝑣,𝐻(1 + 𝑖𝑡)𝑅𝑣,𝐻(1 + 𝑖𝑡)|2 𝑑𝑡 + ERROR,

where

𝑄𝑣,𝐻(𝑠) :=
∑︁

𝑃≤𝑝≤𝑄
𝑒𝑣/𝐻<𝑝≤𝑒(𝑣+1)/𝐻

1

𝑝𝑠
,

𝑅𝑣,𝐻(𝑠) a Dirichlet polynomial whose explicit form is not important, the “ERROR”
is acceptable and ℐ is the interval ⌊𝐻 log𝑃 ⌋ ≤ 𝑣 ≤ 𝐻 log𝑄. Thanks to Lemma
6.5, we may be able to evaluate the above integral by combining a pointwise upper
bound of 𝑄𝑣,𝐻(1 + 𝑖𝑡) with an upper bound for the mean-value of |𝑅𝑣,𝐻(1 + 𝑖𝑡)|2.
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Matomäki-Radziwiłł decomposition

Now we apply a Matomäki-Radziwiłł type decomposition to deal with the integral
∫︁ 𝑋/ℎ

𝑋1/6

|𝑄𝑣,𝐻(1 + 𝑖𝑡)𝑅𝑣,𝐻(1 + 𝑖𝑡)|2𝑑𝑡.

Let 𝑃1, 𝑄1, 𝑃2, 𝑄2 be as in (6.4) and (6.5), and

[𝑃3, 𝑄3] = [exp((log𝑋)9/10), exp((log𝑋)/(log log𝑋)100)],

𝛼1 = 1
4 − 1

50 , 𝛼2 = 1
4 − 1

100 and 𝐻 = 𝑃
1/6
1 . For any 𝑠 ∈ C, let

𝑄𝑣,𝑗(𝑠) :=
∑︁

𝑃𝑗≤𝑝≤𝑄𝑗

𝑒𝑣/𝐻<𝑝≤𝑒(𝑣+1)/𝐻

1

𝑝𝑠

We split [𝑋1/6, 𝑋/ℎ] = [𝑇0, 𝑇 ] into a disjoint union, where

𝒯1 = {𝑡 ∈ [𝑇0, 𝑇 ] : |𝑄𝑣,1(1 + 𝑖𝑡)| ≤ 𝑒−𝛼1𝑣/𝐻 for all 𝑣 ∈ ℐ1}
𝒯2 = {𝑡 ∈ [𝑇0, 𝑇 ] : |𝑄𝑣,2(1 + 𝑖𝑡)| ≤ 𝑒−𝛼2𝑣/𝐻 for all 𝑣 ∈ ℐ2} ∖ 𝒯1
𝒯3 = [𝑇0, 𝑇1] ∖ (𝒯1 ∪ 𝒯2)

We now briefly discuss how to use the Matomäki-Radziwiłł method to deal with
∫︁

𝒯𝑗

|𝑄𝑣,𝑗(1 + 𝑖𝑡)𝑅𝑣,𝑗(1 + 𝑖𝑡)|2𝑑𝑡

for 𝑗 ∈ {1, 2, 3}.

•
∫︀
𝒯1

: In this case, by the definition of 𝒯1, we have a uniform upper bound for
|𝑄𝑣,1(1 + 𝑖𝑡)|, so we can extract |𝑄𝑣,1(1 + 𝑖𝑡)|2 out from the integral and
bound it by its uniform upper bound. Since 𝑄1 < 𝐻 it then suffices to apply
the mean-value theorem to the remaining integral

∫︀
𝒯1
|𝑅𝑣,1(1 + 𝑖𝑡)|2𝑑𝑡.

•
∫︀
𝒯2

: In this case, by the definition of 𝒯2, we have a uniform upper bound
for |𝑄𝑣,2(1 + 𝑖𝑡)|. Additionally, for any 𝑡 ∈ 𝒯2, there exist some 𝑟 ∈ ℐ1
fulfilling the pointwise lower bound |𝑄𝑟,1(1 + 𝑖𝑡)| > 𝑒−𝛼1𝑟/𝐻 . Then we apply
Matomäki-Radziwłł amplification technique to bound

∫︀
𝒯2

by

𝑒−2𝛼2𝑣/𝐻
∑︁

𝑟∈ℐ1

𝑒2𝑙𝛼1𝑟/𝐻

∫︁

𝒯2,𝑟

|𝑄𝑟,1(1 + 𝑖𝑡)|2𝑙 × |𝑅𝑣,2(1 + 𝑖𝑡)|2𝑑𝑡,

where 𝒯2,𝑟 = {𝑡 ∈ 𝒯2 : |𝑄𝑟,1(1 + 𝑖𝑡)| > 𝑒−𝛼1𝑟/𝐻} and 𝑙 is chosen so that the
coefficients of the Dirichlet polynomial 𝑄𝑟,1(1+𝑖𝑡)𝑙𝑅𝑣,2(1+𝑖𝑡) are supported
around 𝑛 ≍ 𝑋 . Now, the upper bound from the mean-value theorem will not
waste a lot.
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•
∫︀
𝒯3

: In this case, for every 𝑡 ∈ 𝒯3, we have a pointwise lower bound for
𝑄𝑣,2(1 + 𝑖𝑡) for some 𝑣 ∈ ℐ2. Hence, we can apply a large value result for
Dirichlet polynomials, for example [49, Lemma 8], to show that 𝒯3 has small
measure. Now we bound the integral by a discrete sum, namely

∫︁

𝒯3

|𝑄𝑣,3(1 + 𝑖𝑡)𝑅𝑣,3(1 + 𝑖𝑡)|2𝑑𝑡 ≤
∑︁

𝑡∈𝒯 ′
3

|𝑄𝑣,3(1 + 𝑖𝑡)𝑅𝑣,3(1 + 𝑖𝑡)|2,

where 𝒯 ′
3 is a set of well-spaced points in 𝒯3. By Lemma 6.5, |𝑄𝑣,3(1+ 𝑖𝑡)| ≪

1
log𝐴 𝑋

for any 𝐴 > 0, so we can extract |𝑄𝑣,3(1 + 𝑖𝑡)|2 out from above sum
and bound it uniformly. Then we use a discrete mean-value theorem (see e.g.
[33, Theorem 9.6]) to bound

∑︀
𝑡∈𝒯 ′

3
|𝑅𝑣,3(1 + 𝑖𝑡)|2.

For the general case of the 𝑑𝑘 bounded multiplicative functions, we need to use a
Halász type result and more complicated arguments. The interested reader may refer
to [IV] for more details.
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[46] H. Q. Liu and J. Rivat. On the Pjateckii-Šapiro prime number theorem. Bull. Lond. Math. Soc.,

24(2):143–147, 1992.
[47] A. P. Mangerel. Divisor-bounded multiplicative functions in short intervals. Res. Math. Sci.,

10(1):Paper No. 12, 47, 2023.
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[76] J. Teräväinen. The Goldbach problem for primes that are sums of two squares plus one. Mathe-

matika, 64(1):20–70, 2018.
[77] P. Varnavides. On certain sets of positive density. J. Lond. Math. Soc., 34:358–360, 1959.
[78] R. C. Vaughan. The 𝐿1 mean of exponential sums over primes. Bull. Lond. Math. Soc., 20(2):121–

123, 1988.
[79] I. M. Vinogradov. The method of trigonometrical sums in the theory of numbers. Trav. Inst. Math.

Stekloff, 23:109, 1947.
[80] W. Wang. On the least prime in an arithmetic progression. Acta Math. Sin., New Ser., 7(3):279–

289, 1991.

46
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