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Abstract 

As the volume of data continues to expand and the intricacy of managing conventional on-premise data centers 

becomes increasingly burdensome, numerous organizations are transitioning their infrastructure to cloud-

based solutions. A pivotal aspect of this investigation is the integration of Zero Trust principles into cloud 

environments, with a particular emphasis on the widely recognized and globally utilized Amazon Web Services 

(AWS) platform. The thesis examines the limitations of traditional location-based security measures and 

highlights scenarios where they prove ineffective. Furthermore, it will elucidate how adopting a zero-trust 

approach can address these shortcomings and offer more robust security solutions in an automated, cost-

effective approach. Through examining case studies and adherence to AWS security best practices, the 

research provides insights into the practical implementation of ZTA on AWS. This encompasses 

considerations for identity and access management, network segmentation, and real-time monitoring to 

establish a comprehensive security posture.  

Moreover, the study assesses the feasibility of providing automated solutions for monitoring and threat 

remediation to alleviate the burden on the security team and mitigate human errors with the minimum costs 

possible. The proposed model, known as the Cost-Effective Zero-Trust (CEZT), demonstrated an enhancement 

in the security score of a cloud infrastructure on the AWS platform across five different security standards 

through a zero-trust approach. For the CIS AWS Foundations Benchmark v1.2.0, the security score improved 

from 23% prior to implementing CEZT to 26% post-implementation, marking the smallest improvement. 

Conversely, the most notable improvement was observed with the AWS Foundational Security Best Practices 

v1.0.0 standard, where the security score increased from 44% to 77%. Additionally, the CEZT model 

contributes to cost reduction for organizations by utilizing free or less expensive security tools. Furthermore, 

it also provides automation by enforcing security measures on resources automatically, thereby alleviating the 

burden on the security team and minimizing human errors. Through the use of zero-trust principles, CEZT also 

considers the possibility of insider threats, which is one thing the traditional perimetery-based security 

approaches lack. 
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1. Introduction 

The landscape of information technology has undergone a significant transformation with the 

widespread adoption of cloud computing. As organizations increasingly migrate their operations to 

cloud environments, there is an escalating demand for robust security measures. Several approaches 

have been proposed to enhance security in the rapidly evolving digital landscape, with cloud 

computing being one of the main concerns (Yan & Wang, 2020). Zero Trust is a promising solution, 

emphasizing its foundation on the principle of least privilege. This approach treats all resources as 

untrusted, regardless of their location within or outside the network, and incorporates robust logging 

practices to facilitate forensic investigations. This thesis investigates the application of Zero Trust 

Architecture (ZTA) as a strategic framework to enhance security in cloud environments. 

Zero Trust Architecture challenges the conventional perimeter-based network security model by 

postulating that threats may already exist within the network, encompassing both insider threats and 

external threats. This paradigm necessitates the continuous verification of every user and device, 

irrespective of their location or network connection. The work presented in this thesis 

comprehensively explores the principles and components of ZTA, elucidating its capacity to reinforce 

cloud infrastructures against dynamic cyber threats through automated processes. 

1.1 Research Problem  

Security is one of the main concerns of organizations due to increased digitalization. With businesses 

increasing there online presence to offer a wide array of digital services, the on-premise solution 

proves costly and does not scale. Due to this, cloud computing has increasingly become a major part 

of various businesses to host their service and applications. Migration to the cloud has changed 

security practices, and due to this change and newly-invented attack types, new security approaches 

should be considered. The vastness of cloud infrastructure and the sheer number of resources often 

make it difficult for security teams to safeguard all components effectively. Repetitive tasks further 

increase the risk of human error. Cloud service providers, such as AWS, offer numerous security 

solutions; however, these are typically expensive, as they are already-managed services. Managed 

services are those directly administered by AWS, whereas unmanaged services require user 

management. Although managed services offer benefits like ease of use by eliminating complex 

configurations, they also have some disadvantages. These managed services are designed to meet the 

needs of the majority, making customization difficult when specific requirements differ. Managed 

services, under the purview of AWS, are directly administered by the cloud provider, whereas 
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unmanaged services necessitate user management. While the utilization of managed services confers 

certain advantages, such as streamlining complex configurations, it also entails certain drawbacks: 

Lack of Flexibility: Managed services are pre-configured to suit prevalent use cases and may lack 

the adaptability required to address unique or industry-specific security requisites. For instance, a 

healthcare organization might necessitate specific compliance controls distinct from those of a 

financial institution. Conversely, an enterprise may need to adhere to its own security standards rather 

than industry-defined protocols. Consider, for example, a gaming company facing a higher 

susceptibility to DDoS attacks as opposed to phishing attempts. As such, prioritizing protection 

against DDoS incidents becomes paramount. Conversely, this priority might be inverted for another 

entity, such as a credit reporting firm, where safeguarding customers' sensitive data, such as Social 

Security Numbers, supersedes temporary service unavailability. 

Integration Challenges: The transition from on-premise systems to cloud-based infrastructure may 

pose challenges for certain organizations, particularly if their existing configurations are incompatible 

with the pre-established services provided by cloud vendors. 

Cost Implications: Managed security services often entail exorbitant costs, especially for small to 

medium-sized enterprises (SMEs) or start-ups, as cloud providers may levy charges not only for 

resource allocation but also for management services. Consequently, while these organizations may 

necessitate robust security measures, the steep expenses associated with comprehensive managed 

services may be beyond their financial means.  

This thesis aims to enhance cloud security by leveraging automation, ensuring cost-effectiveness, and 

implementing stringent security policies while limiting the use of managed services, suitable for 

critical infrastructures and start-ups. To maximize the security and avoid insider threats emphasized 

in section 2, the proposed model is based on a zero trust approach. 

1.2 Research Questions 

The primary focus of this investigation revolves around the following research questions: 

1. How can enterprises enhance the security of their cloud infrastructure to meet the stringent 

demands of critical infrastructure while also integrating automated security protocols to 

alleviate pressure on security teams and minimize the risk of human error?  

2. How can these security strategies be deployed in a manner that is both cost-effective and 

adaptable to the diverse needs and resources of organizations? 
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3. Does adopting a zero-trust approach significantly improve security or impose unnecessary 

burdens by enforcing overly strict policies without providing additional security? 

1.3 Research Objectives 

To address these challenges and achieve our research objectives, we propose the creation of Cost-

Effective Zero Trust (CEZT), a tailored automated security solution designed specifically for Amazon 

Web Services (AWS) environments. CEZT is designed to merge the principles of ZTA with 

sophisticated automation techniques to establish a robust and adaptable security framework. This 

solution aims to bolster the security stance of enterprises operating on AWS, safeguarding critical 

infrastructure assets while simplifying security management processes and optimizing resource 

allocation. The decision to choose AWS over other cloud platforms is based on its status as one of 

the most widely used cloud platforms globally. Additionally, AWS aims to expand its market 

presence in Europe, which is currently dominated by Microsoft Azure, with the launch of The AWS 

European Sovereign Cloud in Germany by the end of 2025 (Peterson, 2024). 

This thesis outlines the research objectives and methodology behind the development and deployment 

of CEZT. In particular, the objectives of the thesis are as follows: 

To explore the rationale for adopting a Zero Trust approach and highlight the benefits of automation 

in enhancing security effectiveness and operational efficiency.  

To examine cost optimization strategies within cloud security, emphasizing the need to strike a 

balance between security imperatives and financial constraints.  

To contribute to advancing cloud security practices by providing practical insights and solutions, 

address the evolving threat landscape, and empower organizations to safeguard their critical assets in 

an increasingly interconnected and digital environment. 

1.4 Organization of Thesis 

The thesis has been structured into separate chapters as follows. Chapter 2, the Introduction, serves 

to acquaint readers with pertinent terminology, including contemporary research on cloud computing 

and its security implications, relevant protocols, and diverse attack vectors targeted for mitigation. 

Real-world instances of these attacks are outlined, alongside an exploration of how adopting a zero-

trust approach can forestall such threats. Additionally, this section delves into zero-trust architecture 

and foundational models. Chapter 3 will delve into the technologies underpinning our proposed 
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methodology. Chapter 4 elucidates the methodology and design of the CEZT framework. It explains 

the practical implementation of CEZT on the AWS platform and its efficacy in mitigating security 

breaches. Chapter 5, the Analysis and Discussion section, will assess the CEZT's effectiveness 

through testing on an intentionally weakened AWS infrastructure, revealing notable reductions in 

security vulnerabilities post-implementation. In the final substantive section, Chapter 6, the research 

culminates in a conclusive summary.  
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2 Zero Trust in Cloud Computing: Enhancing Modern Infrastructure 

Security 

In this Chapter, the current state-of-the-art research about Zero Trust Architecture will be discussed, 

and different frameworks proposed by various organizations will be evaluated, followed by a 

comparison of their advantages and disadvantages and choosing one of them to deploy on AWS. 

Furthermore, the current research on ZTA deployments in cloud environments will also be studied. 

The principle of ZTA is that threats originate from inside the network in addition to external threats. 

ZTA can be replaced with traditional location-based network security policies that only consider 

external threats. The problem with these security frameworks lies in the fact that once the attacker 

has access to the network through various ways, such as a backdoor or a zero-day vulnerability, they 

no longer need to go through the process of identification. It makes the attack much easier once the 

attacker is inside the network.  

Another problem is malicious employees, also referred to as insider attackers. According to the 

National Institute of Standards and Technology (NIST), an "insider" refers to an individual or a 

collective entity possessing authorized access to an organization's information systems, facilities, or 

data (NIST, 2020). This category encompasses employees, contractors, or other individuals who have 

been officially granted legitimate access privileges. Based on a survey from over 326 cybersecurity 

professionals (Gurucul, 2023), 53% of the survey respondents believed that detecting insider attacks 

is more difficult on cloud platforms than on-premises environments. Amongst the respondents, 74% 

reported an increasing frequency of insider threats, raising concern over cloud solutions as more 

organizations migrate to the cloud environment.  

2.1 TLS/SSL Protocols 

Various attack types commonly employed against non-cloud infrastructures can also target cloud-

based solutions. Despite the widespread use of TLS (Transport Layer Security) as a security defence 

mechanism in cloud environments, vulnerabilities may still exist that could compromise the integrity 

of the cloud infrastructure, which can also result in other forms of attacks, e.g. MITM attacks 

(Abusaimeh, 2020). One potential avenue for compromise is through misconfiguration of the 

Certificate Authority (CA) server, which can occur due to a variety of factors. TLS stands as an 

evolution of the Secure Sockets Layer (SSL), conceived as its successor to address inherent 

vulnerabilities. According to the RFC (Rescorla, 2018), the TLS handshake unfolds through the 

following steps: 
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Step 1: The client initiates communication by dispatching a hello message to the server, 

encapsulating pertinent details such as supported TLS versions, cipher suites, and additional 

parameters. 

Step 2: In response, the server provides a reply inclusive of the highest TLS version and 

cipher suites compatible with the client's system. 

Step 3: Subsequently, the server crafts and authenticates a certificate containing its public 

key, which is then transmitted to the client for authentication purposes. 

Step 4: Upon receipt, the client generates a premaster secret, encrypts it utilizing the server's 

public key, and forwards it to the server. 

Step 5: Following this exchange, both parties derive a master secret from the premaster secret, 

serving as a foundation for generating encryption keys. 

Step 6: Upon completion of the key exchange, both entities transmit a concluding message to 

signify the completion of the handshake process. With the handshake successfully concluded, 

subsequent data transmission between the two parties proceeds in an encrypted format, 

facilitated by the keys generated during the 4th step. 

2.2 Cloud Computing 

As the amount of data grows and the complexity of managing traditional on-premise data centers 

becomes more challenging, many organizations are opting to migrate their infrastructure to cloud-

based solutions. By transitioning from on-premise to cloud infrastructure, organizations and users can 

access a broad array of managed resources, leading to potential cost and time savings (Sunyaev & 

Sunyaev, 2020). This approach allows users to concentrate primarily on developing their services, 

with less concern for the underlying infrastructure, as it is provided and maintained by the cloud 

provider. Additionally, depending on the type of cloud environment, managed and/or unmanaged 

services are available. The degree of control that users can exert over the underlying resources varies 

depending on the service model, which generally falls into the following four main categories. 

Software as a Service (SaaS): Rani & Ranjan (2014) describe this model as entailing software 

utilization via the cloud, accessible to clients without the necessity of installation. Users can procure 

and utilize the software directly via internet connectivity, typically through web browsers. Each client 

retains the ability to configure settings and allocate resources according to their specific requirements. 
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However, in this paradigm, users are not granted access to the underlying infrastructure; their 

interaction is confined solely to the software application, e.g. Google Drive. 

Platform as a Service (PaaS): In contrast to Software as a Service (SaaS), PaaS affords users 

expanded capabilities by enabling them to develop custom applications within the cloud environment. 

Importantly, users are spared the necessity of detailed knowledge about the underlying infrastructure 

supporting their applications. Essentially, in this model, users craft and deploy their applications 

utilizing the cloud provider's infrastructure resources (Dillon et al., 2010), e.g., Azure Blob Storage. 

Infrastructure as a Service (IaaS): Analogous to Platform as a Service (PaaS), this model empowers 

users to develop their applications (Mohammed & Zeebaree, 2021). Nevertheless, users enjoy 

heightened access to the underlying infrastructure. They possess the capability to virtually and 

occasionally physically reserve and utilize certain resources provided by the cloud service provider. 

Moreover, users are permitted to modify the configuration of the infrastructure to a certain extent, 

granting them greater flexibility compared to SaaS and PaaS models. For instance, within AWS, users 

can virtually reserve a portion of the infrastructure as a virtual private cloud (VPC). 

Container as a Service (CaaS): Alouffi et al. (2021) characterize this model as leveraging 

containerization techniques to render applications independent of environment specifications, 

exemplified by platforms such as Amazon Elastic Container Service (ECS) and Amazon Elastic 

Kubernetes Service (EKS). 

2.3 Cloud Security 

In the field of information security, cloud security has become a prominent area of discussion and 

concern. In contrast to established security domains, such as network or application security, cloud 

security represents a comparatively developing area of research. Its significance has garnered 

increasing attention from both academic and industrial quarters. A comprehensive analysis of 

scholarly literature spanning the decade from 2010 to 2020, conducted by Alouffi et al. (2021) 

identified seven principal security threats pertinent to cloud computing. Notably, among the topics 

extensively deliberated upon in the reviewed literature are data tampering and leakage. Additionally, 

the study underscored the pivotal role of intrusion detection systems (IDS) within cloud 

environments. For this purpose our proposed model, the CEZT, will use Snort as the IDS. 

Another scholar posited that security is a primary factor influencing the apprehension surrounding 

the adoption of cloud services. Vidal & Choo (2018) approached cloud security threats through the 

lens of criminology, offering a conceptual model rooted in the principles of situational crime 
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prevention (SCP). This model aims to diminish the appeal of cloud-related crimes and dissuade 

potential offenders. 

In terms of services, cloud models are classified into 4 main categories, as discussed in the previous 

section. The possibility of enhancing security is maximum in the IaaS model amongst all the models 

as the user has the most access to the underlying infrastructure. This can also act as a double-edged 

sword, which can be a disadvantage to the user if they do not have a suitable security background and 

skills. This thesis aims to develop a ZT model for IaaS, specifically AWS. According to the shared 

responsibility model (Amazon Web Services, 2006), AWS is responsible for the security of the cloud, 

while the user is responsible for the security in the cloud. 

Numerous cyberattacks have targeted cloud-based infrastructures. in this section three recent attacks 

on cloud enviromnets have been emphasized. The following attacks happened due to insider threat 

and human error. 

Case 1 – Capital One 2019 Attack 

One notable example is the 2019 Capital One breach. In this incident, the sensitive data of 

approximately 106 million users of Capital One, a major U.S. bank, was compromised due to a 

misconfiguration leading to an insider attack. The cloud-based nature of the infrastructure raised 

concerns about the security and reliability of cloud environments.  

Paige Thompson, a former AWS employee, exploited a misconfigured Web Application Firewall 

(WAF) within the AWS environment. This misconfiguration allowed Thompson to perform a Server-

Side Request Forgery (SSRF) attack on the metadata service, enabling her to obtain security 

credentials. She then used these credentials to access an AWS S3 bucket belonging to Capital One, 

which contained sensitive user information, including names, credit scores, addresses, and social 

security numbers (U.S. Department of Justice, 2022). 

After Capital One was informed about the incident, the company sought assistance from professional 

cybersecurity experts both within and outside the organization, as well as law enforcement, to assess 

the severity of the attack and the extent of the compromised resources. Notably, the misconfiguration 

originated from AWS and not from Capital One, classifying this breach as an insider attack. 

Traditional perimeter-based security controls are ineffective against insider attacks since, once inside 

the network, attackers are considered trusted entities. A zero trust approach could prevent such attack 

by considering all the users, even AWS employees, untrusted entities. 
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Case 2 – Equifax 2017 Data Breach 

In 2017, the sensitive data of approximately 147 million users of Equifax, a credit reporting firm, was 

exposed due to a vulnerability in Apache Struts. This breach serves as an example of human error 

and negligence, as a security update to patch the vulnerability was already available but was ignored 

by the company. The use of cloud-based data infrastructure by Equifax raised concerns about the 

security of cloud environments (U.S. Federal Trade Commission, 2022). 

In this instance, the responsibility lay with the company rather than the cloud provider. The attack 

highlighted the critical importance of regular patching and updates, emphasizing the role of human 

error in such incidents and suggesting how automation could prevent such disasters. Automated 

update could avoid such disaster. 

Case 3 – Pegasus 2022 Data Breach 

A recent incident is the data breach of Pegasus Airlines caused due to misconfiguration of the cloud 

platform of the company by a privileged user, leading to exposure of around 6.5 terabytes of sensitive 

data, encompassing staff’s PII, flight data and source code from Electronic Flight Bad (EFB) software 

(SafetyDetectives Cybersecurity Team, 2022). The data was leaked from a compromised AWS S3 

bucket, raising concerns about the reliability of cloud environments. Automated configuration could 

avoid this incident. 

2.4 Security Attack Types 

In this section, various cyber attack types and how they can be a threat to cloud environments will be 

discussed. Depending on the network topology and architecture, these attacks can be a concern for 

cloud. 

2.4.1 SSL/TLS attacks 

Despite the age of TLS attacks and mitigation strategies, they continue to occur, often due to 

misconceptions among users who believe that the mere use of TLS certificates ensures the security 

of the transport layer. However, this assumption is flawed, particularly in instances where the CA 

server is misconfigured.  

FREAK: Factoring RSA Export keys (FREAK) also known as Server Spoof Attack against 

Browsers, this attack is possible due to the use of weak export cipher suites used by TLS, implemented 

within several TLS libraries including but not limited to LibReSSL, IBM JSSE, and OpenSSL (the 
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problematic TLS libraries were discovered in 2015, and updated library versions have patched this 

vulnerability to an extent, but not completely (Durumeric et al., 2015). Through MITM attacks, the 

attackers can make the user’s browser to use weak export keys. This is possible with RSA keys with 

a length less than 512 bits (Extreme Networks, 2015).  

Bar Mitzvah: An attack in which the assailant endeavours to uncover vulnerable keys by focusing 

on the initial 100 bytes of encrypted data, within which 36 bytes pertain to the SSL/TLS finished 

message. Since the finished message contains highly predictable content, plain finished messages are 

subjected to an XOR operation with encrypted finished messages to extract segments of Pseudo 

Random Number Generator Sequences (PRNGS). Subsequently, PRNGS that deviate from the 

pattern of weakly generated keys are discarded, and the remaining keys from the selected PRNGS are 

employed to decipher the ciphertext intercepted by the attacker, utilizing the RC4 algorithm (Roos, 

1995) (Mantin, 2015). 

BEAST:  Found in the first version of TLS, it is a brute force attack in which the attacker tries to 

guess the cipher key through taking advantages of symmetric encryption and cipher block chaining 

(CBC) method (Newman, 2014). 

CRIME: Compression Ratio Info Leak Mass Exploitation (CRIME) is a cryptographic attack that 

exploits vulnerabilities in the compression algorithms used in TLS (Transport Layer Security) and 

SPDY, a protocol developed by Google for enhancing web browsing speed. Both TLS and SPDY 

employ the DEFLATE compression algorithm, which removes duplicate strings during compression 

and encryption processes. The vulnerability arises from the way compression interacts with 

encryption. By sending multiple encrypted, compressed requests to a legitimate website and 

observing variations in the size of the HTTP responses, the attacker can deduce patterns in the 

encrypted data. If the size of the response is smaller than expected, it suggests that certain characters 

were removed through compression. Through repeated attempts, the attacker can eventually deduce 

the encryption key, compromising the security of the system (Sarkar & Fitzgerald, 2014) (Shaji & 

Subramanian, 2021). 

SSL Renegotiation: This vulnerability enables attackers to inject commands into the client's 

requests, downgrade HTTPS connections to HTTP, inject customized responses, or execute denial-

of-service (DoS) attacks (Shaji & Subramanian, 2021) (Zoller, 2011). 

POODLE: The vulnerability known as Padding Oracle on Downgraded Legacy Encryption 

(POODLE) manifests when the browser of the target system transitions from the more secure TLS 
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protocol to the less secure SSL 3.0. This transition permits attackers to exploit weaknesses in the 

encryption scheme, potentially intercepting plaintext data. Consequently, sensitive information such 

as credit card details or login credentials may be compromised (Shaji & Subramanian, 2021) (Möller 

et al., 2014). 

TLS Truncation: Smyth & Pironti (2013) explain an attack in which the attacker makes the log-out 

request performed by user invalid to the server through injecting RESET or TCP FIN messages prior 

to the request due to abnormal termination of connection, keeping the session alive without the user 

knowing. 

BREACH: This is an extension of the CRIME attack targeting HTTPS, where the attacker leverages 

HTTP compression to make guesses about characters. These guesses are then reflected in the response 

body. To execute this attack, the attacker and victim need to be on the same network, highlighting the 

principle of "no one is trusted, even internal entities" in Zero Trust Architecture (Satapathy & 

Livingston, 2016) (Gluck et al., 2013). 

RC4 BIASES: AlFardan et al. (2013) discovered the use of RC4-128 can be problematic if it uses 

128-bit long keys to generate random keys, followed by generating the keys and XORing them with 

the plaintext to produce the ciphertext. Mantin (2015) further explains that the problem is because the 

keys are not random enough, resulting in the possibility of recovering some parts of plaintexts, 

particularly when the same plaintext is encrypted using multiple different cipher keys. Since there is 

a possibility of some parts of those ciphertexts to match, attackers can use statical analysis of 

individual locations of the ciphertexts.  

In case of using a CA server to provide certificates in the cloud infrastructure, the cloud-based 

infrastructure can be compromised if the CA server is misconfigured. Users are advised to carefully 

consider the mentioned attacks and their mitigation methods, which will be explained in the next 

subsection, during its configuration process. 

2.4.2 DoS and DDoS 

Denial of Service (DoS) attacks involve the deliberate interruption of services over an extended 

period by obstructing legitimate traffic by inundating the target with a significant volume of malicious 

traffic. Distributed Denial of Service (DDoS) attacks occur when a network of compromised systems, 

known as a botnet, is orchestrated via a command and control (C&C) server to execute a more potent 

form of DoS utilizing multiple systems simultaneously. Presently, such attacks can escalate to a 

magnitude of approximately 1 Terabit per second of malicious traffic (Zhijun et al., 2020) (S. Kumar 
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& Chandavarkar, 2021). DoS and DDoS are two of the main concerns of this research. This is because 

this thesis approach is inspired by the concept of Software Defined Networking (SDN), and both DoS 

and DDoS can be used to flood either the control plane, data plane or the communication channel 

between them (Eliyan & Di Pietro, 2021). In a paper by Douligeris & Mitrokotsa (2004) it was stated 

that DDoS consisted 14% of attacks on cloud environments during the corresponding year. 

Gupta et al. (2023) classify DDoS attack types into five distinct categories: 

Spoofed Attacks: These attacks involve the use of modified packets with fake IP addresses, 

making it more challenging to trace the attacker. 

Amplification Attacks: In this type, attackers use intermediary servers to send malicious 

traffic through different channels with increased intensity. This makes it more difficult to trace 

and mitigate the attack due to the heightened traffic volume. 

Application Layer DDoS Attacks: These attacks target specific applications by exploiting 

vulnerabilities, such as HTTP flooding attacks. 

Volumetric Attacks: These are high-volume flooding attacks, such as ICMP attacks, that 

overwhelm the network with a massive amount of traffic. 

Protocol Attacks: Attackers exploit flaws in protocols, such as by initiating multiple 

incomplete TCP handshakes, causing sockets to become flooded as they wait for the 

handshake process to complete. 

Exploiting DoS/DDoS attacks, resources hosted on cloud environments can become inaccessible for 

a period, disrupting services and damaging the company's reputation. For instance, AWS EC2 

instances and S3 buckets are potential targets of such attacks, especially if adequate security controls 

are not implemented, such as unnecessarily allowing traffic from all sources. 

2.4.3 MITM & MITC Attacks  

Al-Shareeda et al. (2020) describe Man-in-the-Middle Attack (MITM) as a form of intrusion where 

a malicious actor positions themselves between two victims, potentially intercepting packets 

containing sensitive information. This attack manifests in two distinct forms; passive and active. In 

the passive variant, known as sniffing, the attacker solely eavesdrops on the target network without 

actively altering data. Conversely, the active iteration involves the attacker engaging in manipulative 

actions including delaying, dropping, or tampering with messages transmitted between the victims. 
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According to a research conducted by Goyal et al. (2016) an element contributing to the severity of 

this threat lies in the abundance of accessible tools, such as Mirage, BTLeJuice, and GATTack, 

alongside the possibility of performing the attack using available inexpensive hardware.  

Numerous scenarios of MITM attacks can occur in cloud environments. For example, when 

connecting to an AWS EC2 instance through the HTTPS protocol, an attacker can employ SSL 

Stripping attacks, such as the previously mentioned POODLE attack, to downgrade the connection 

from HTTPS to HTTP, thereby exploiting the unencrypted data. 

The Man in the Cloud (MITC) attack, inspired by the MITM concept, involves exploiting cloud file 

synchronization services such as AWS Cloud Sync, AWS DataSync, and AWS S3 Sync. According 

to Popli (2019) this can happen due to the predominant utilization of synchronization tokens for 

application authentication, rendering them ineffective in distinguishing malicious traffic from normal 

activity. 

2.4.4 Application Layer Attacks 

The application layer, positioned as the final layer in the Open Systems Interconnection (OSI) model, 

directly interfaces with end users, and thus application layer threats are one of the main concerns 

when securing the cloud (Tewari & Gupta, 2020). Within this layer, a spectrum of attacks exists.   

Mishra & Pandya (2021) categorize these attacks into five primary classifications: sniffing attacks, 

access control attacks, service interruption attacks, malicious code injection attacks, reprogram 

attacks, and cross-site scripting attacks. Considering the attack types, different authors show different 

opinions regarding the level of importance. For example, while Ahlawat et al. (2020) identify access 

control attacks as a major concern, particularly due to the allocation of unique privileges to certain 

users, granting them access to a substantial portion, if not the entirety, of the enterprise infrastructure, 

leading to these privileges becoming susceptible to compromise and potentially resulting in 

unauthorized access to sensitive systems and data, on the other hand, Prabadevi's & Jeyanthi's concern 

(2018) is mainly sniffing attacks due to the availability of various tools used for the attack and one of 

the main reasons of DoS/DDoS attacks.  

Various factors can lead to successful application attacks on cloud environments, including accepting 

raw input from users without proper filtration. This oversight can result in multiple attack 

possibilities, such as injection attacks. 
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2.4.5 Brute-Force Attacks 

A brute-force attack is characterized by the assailant's systematic attempt to uncover sensitive 

information, including credentials, by exhaustively testing all conceivable combinations. This form 

of attack, deemed one of the earliest methods employed by malicious actors, can be executed across 

diverse services, such as SSH and FTP, through various available automated tools, including but not 

limited to Hydra, John the Ripper, and Aircrack-ng, as noted by Hossain et al. (2020). 

Misconfiguration is a significant factor that can render cloud-based resources vulnerable to brute 

force attacks. For example, if an attacker is allowed to send a large volume of traffic to guess login 

credentials without any protective policies in place, such as enforcing a delay between login attempts 

or limiting the number of invalid credential inputs, it can compromise the security of the cloud 

environment. 

2.5 Some Prevention Methods 

To protect the enterprise against attacks on SSL/TLS, Satapathy & Livingston (2016) propose the 

following mitigation methods:  

Table 1. SSL/TLS Attack Prevention 

Attack Method Mitigation 

FREAK Utalizing higher versions of cipher and TLS, Disabling the export cipher 

suite in browsers to  avoid Logjam attack (Kerner, 2015). 

Bar Mitzvah RC4 needs to be disabled. 

BEAST opt using AES 256, 3DES or RC4 (using of RC4 can avoid BEAST attack 

but it is still prone to Bar Mitzvah and RC4 BIASES attacks). 

CRIME TLS Compression needs to be disabled. 

SSL Renegotiation The mitigation strategy involves either disabling renegotiation at the server 

level or implementing prior handshake verification by both the server and 

client. 

POODLE SSL version 3 needs to be disabled. 

TLS Truncation opt using a centralized authentication method and chain sign outs. 

BREACH HTTP compression needs to be disabled. 

RC4 BIASES RC4 needs to be disabled. 
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Saharan & Gupta (2021) categorize DDoS protection methods into detection, mitigation, and 

prevention strategies. Furthermore, within the prevention category, they distinguish between ideal 

prevention, where the network is theoretically never compromised, and true prevention, which 

involves the network recovering after attacks within acceptable intervals. 

For brute force mitigarion, Nadeem et al. (2021) conclude that employing an IDS can significantly 

enhance defense against brute-force attacks on cloud platforms. They emphasize that the effectiveness 

of this approach hinges on the capability of the detection algorithm to accurately identify and respond 

to such threats. 

The effectiveness of zero trust architecture in mitigating insider threats and the ineffectiveness of 

traditional premitery-based security approaches will be discussed in the following subsection. 

2.6 Insider Threat  

Previously a number of real-world cloud-based attacks were mentioned. In this subsection the 

importance of insider attack prevention is illustrated, which is one of the main reasons that the focus 

of this research is on ZTA, as primetry-based security approaches do not consider the risk of insider 

threats. First two recent attacks which could not be prevented by primetry-based security approaches 

will be mentioned, and then the importance of ZTA and how effective it can be to prevent such attacks 

will be discussed. 

In May 2022, a senior research scientist employed at Yahoo, Qian Sang, undertook the downloading 

of approximately 570,000 pages of crucial information pertaining to Yahoo, subsequent to receiving 

a job offer from a rival company. This compromised data encompassed significant details, including 

source code, backend advertising architecture, ad-placement controlling algorithms, and pertinent 

earnings tracking information related to the Yahoo Demand Side Platform. Additionally, the acquired 

information included insights into the strategic aspects underlying Yahoo's backend advertising 

technology (Barnett, 2022). Another example is the 2023 data breach of Mailchimp caused by the 

compromise of credential of at least one employee through phishing attacks, resulting in the 

compromise of more than 132 Mailchimp user accounts (Rowe, 2023). 

Additionally, according to two reports from Ponemon Institute, (Ponemon Institute, 2020) (Ponemon 

Institute, 2022), the total average cost of insider-originated incidents surged from $11.45 million in 

2019 to $15.38 million in 2021 and the frequency of incidents spiked by 47% from 2018 to 2020. In 

the 2022 report, Ponemon classifies insiders into three categories: Negligent insiders (e.g. the 
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mentioned Pegasus Airline’s incident), criminal or malicious insiders (e.g. the mentioned Yahoo’s 

incident), and credential thieves (e.g. the mentioned Mailchimp’s incident). 

He et al. (2022) emphasize the importance of ZTA due to the downsides of perimeter-based security 

architecture. The authors describe perimeter-based security architecture as dividing the network into 

internal and external parts, separated with firewalls, IDSs and IPSs. An entity in a perimeter-based 

security architecture is either trusted or untrusted based on their location. If the entity is inside the 

internal network, then it is trusted, otherwise it is considered untrusted and needs to authenticate to 

reach the network. The authors explain this kind of architecture can be problematic because if a 

malicious entity gains access to the internal network, they can keep attacking the network for a long 

time since in a perimeter-based security architecture when an untrusted entity authenticates and 

becomes trusted, they can keep the session.  

2.7 Zero-Trust Architecture 

To tackle the security issues mentioned in the previous section, Kindervag (2010) proposed a new 

type of security architecture different from perimeter-based architecture. Based on what the author 

proposed, ZTA assumes an entity is always considered untrusted; thus, authentication and 

authorization are required for an entity to establish a connection with enterprise resources. Later 

various companies and organizations proposed their own ZTA models. According to Rose et al. 

(2020), in ZTA a trusted status is granted to an entity based on the following factors: identity 

authentication (used to realize the identification of an entity of ZTA), access control (for maintaining 

secure and efficient access of ZTA entities to the enterprise resources), trust evaluation algorithms 

(to facilitate the determination of the trust level associated with the ZTA entity, serving as the primary 

credential for both identity authentication and access control purposes), and micro-segmentation of 

the network and the segment where the entity is located. 

The authors further describe the main components in their ZT approach:  

Policy Engine (PE): This component assumes the pivotal role of making the final determination 

regarding access authorization for a specific subject seeking access to a particular resource. It utilizes 

enterprise policies in conjunction with input from external sources, employing these inputs as 

parameters for a trust algorithm.  

Trust Algorithm (TA): PE’s logic on deciding whether to grant access to a resources or not is based 

on an algorithm known as TA.  
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Policy Administrator (PA): This module assumes the role of initiating or terminating the 

communication pathway linking a subject with a resource by issuing commands to pertinent Policy 

Enforcement Points (PEPs). Additionally, it is responsible for generating any session-specific 

authentication tokens or credentials essential for a client to access an enterprise resource. Intricately 

interconnected with the PE component, the PA relies on the decisions made by PE to ultimately 

authorize or reject a session. Upon successful authentication or denial of a session, or if a prior 

approval is revoked, the PA sends a signal to the PEP to either establish or terminate the connection 

between the client and the designated resource. 

Policy enforcement point (PEP): This system is tasked with facilitating, overseeing, and ultimately 

discontinuing connections between a client and an enterprise resource. The PEP engages in 

communication with the Policy Administration (PA), forwarding requests, and/or receiving policy 

updates from the PA. While constituting a single logical component within the ZTA, it may be 

decomposed into two distinct elements: one operating on the client side (e.g., an agent on a laptop) 

and the other on the resource side (e.g., data resources behind a gateway). Alternatively, a singular 

portal component may be employed, assuming the role of a gatekeeper for communication pathways. 

Beyond the PEP lies the trust zone housing the enterprise resource. 

2.7.1 More on Trust Algorithm 

There are various proposed techniques for designing a TA proposed by different authors. For 

example, Brosso et al. (2010) proposed a solution for continuous authentication, leveraging user 

behaviour and employing a neuro-fuzzy logic technique. This method entails the ongoing update of 

user behaviour data within a database, facilitating more accurate measurement of trust levels over 

time. Later, Chen et al. (2020) presented a methodology akin to the least privilege principle, 

employing a behaviour-based anomaly detection technique. This method scrutinizes user and device 

identities, terminal security status, and both user and system behaviours to evaluate trust levels. In 

accordance with this proposed approach, access authorization is contingent upon the attainment of a 

specific trust threshold. Likewise, Yao et al. (2020) introduce a dynamic Trust-Based Access Control 

(TBAC) system, where user or resource access is permitted solely upon the fulfilment of a designated 

behaviour trust (BT) level. This determination is informed by diverse factors, including login-related 

metrics such as login time and method, operational behaviour such as resource interactions or access 

records, and network behaviour metrics such as TCP or UDP traffic volume. Lastly, an additional 

scholar introduces FURZE, a framework designed by Vanickis et al. (2018) designed for risk-adaptive 

access control (RAdAC). This framework enables the system to enforce ZT policies by precisely and 
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dynamically granting or rejecting access based on operational requirements and security threats. 

There exist commonalities across all the three methodologies. Each of the proposed solutions 

regulates access contingent upon a trust level, determined through the evaluation of behaviour-based 

anomaly detection factors, such as login pattern, user conduct, network activities, and operational 

patterns.  

Furthermore, the trust models within these proposed solutions draw inspiration from the principle of 

least privilege. Continuous authentication and monitoring should be designed to minimize 

inconvenience to the user, such as avoiding the need for repeated password entry for every action. A 

recommended approach involves initially employing Multi-Factor Authentication (MFA) during the 

login process, followed by continuous analysis of user behaviour over time to dynamically establish 

and maintain trust levels within the system (Teerakanok et al., 2021) (Embrey, 2020). 

2.7.2 NIST ZT Models 

Rose et al. (2020) also delineated three distinct categories of ZT deployment, each differentiated by 

the extent of integration severity with organizational resources: 

Device Agent/Gateway-Based Deployment: In this conceptual framework, the enforcement of 

policies is intricately linked to both endpoints involved: the user's endpoint device, representing the 

enterprise system, and the targeted data resources. A specialized agent is incorporated into the 

enterprise system, while the data resources are positioned beyond a gateway. In accordance with 

established policies and identity parameters, the agent exercises discretion to either permit or deny 

the enterprise system's access to the designated data resource. This model's advantage lies in the 

potential for comprehensive control deployment based on specified policies. However, its drawback 

stems from the requisite high level of integration between the enterprise system and the agent, as well 

as the necessity for the data resources to interact extensively or be fully integrated with the gateway, 

thereby rendering it a challenging model to implement.  
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Figure 1. Device Agent/Gateway Model (Rose et al., 2020, Figure 3). 

Enclave-Based Deployment: This model bears resemblance to the initial model, differing in the 

placement of policy enforcement, which is positioned anterior to a resource or an enclave of 

resources, serving as a gateway. Consequently, the necessity for extensive integration between the 

gateway and resources is obviated, rendering this model comparatively simpler to deploy than its 

precursor. However, a drawback of this model emerges from the existence of an implicit trust zone 

between the gateway and resources. In this configuration, the gateway lacks precise information about 

the specific application or resource the user intends to access, resulting in a limitation on the extent 

to which policy enforcement can be effectively implemented.  
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Figure 2. Enclave Gateway Model (Rose et al., 2020, Figure 4). 

Resource Portal-Based Deployment: This model shares similarities with the second model, 

differing in that it does not necessitate the installation of an agent on endpoint devices, rendering it a 

more straightforward deployment. The Policy Enforcement Point (PEP) assumes a central position, 

functioning as a gateway. Behind this gateway, there may be one or multiple resources, such as a unit 

or section of an organization. A limitation of this model is its vulnerability to Distributed Denial of 

Service (DoS) attacks, as the PEP portal may become a potential bottleneck. Additionally, the absence 

of an agent on end devices implies that no information about the device is available prior to the 

establishment of the connection between the device and the PEP portal.  
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Figure 3. Resource Portal Model (Rose et al., 2020, Figure 5). 

2.7.3 Some Real-World ZT Solutions 

The NIST ZTA is theoretical and describes the foundations of ZTA. For real-world scenarios, there 

are models for ZTA developed by various organizations based on the three mentioned NIST ZT 

models, including: 

Google’s BeyondCorp model: Introduced by Ward & Beyer (2014), based on this model an access 

to enterprise resources is granted to an entity only by taking two steps: identity authentication 

followed by authorization through the access control engine inspired by the Device Agent/Gateway-

based Deployment NIST model. According to this model facilitating user access to services should 

not be contingent upon a specific network connection. Instead, access to services is granted based on 

identification of the user and the device. Access to services is permissible solely when authentication, 

authorization, and encryption measures are concurrently in place. 
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Figure 4. BeyondCorp Components and Access Flow (Ward & Beyer, 2014, Figure 1). 

 

Next-Generation Firewall (NGFW)/Forrester Zero Trust Extended (ZTX) Model: Proposed by   

Kindervag (2010), within this model, enterprise resources are isolated on Very Large Area Networks 

(VLANs), separating the enterprise network into multiple “microcore and perimeter” (MCAP) 

segments. A cutting-edge firewall designated as a next-generation firewall assumes a central role 

within the network, functioning as a segmentation engine and conforming to the “Resource Portal” 

NIST deployment model previously explained.  

Uttecht (2020) believes the Forrester ZT model is possibly one of the most cost-effective and easily 

implementable models, as this approach requires minimal adjustments to resources within the 

enterprise network. The primary modifications are confined to the resources within the central 

network that necessitate replacement or updating. Nonetheless, a drawback of this model stems from 

its reliance on network stack enforcement, limiting its capacity to enforce trust solely based on the 

protocol information available in the data packets. This granularity is notably lower compared to 

architectures that establish more intimate integration with endpoints and applications. Since users do 

not authenticate directly with the segmentation engine, policy enforcement based on user or device 

attributes is inherently constrained. Policy enforcement, therefore, relies on IP addresses as identity, 

unless the segmentation engine is integrated with additional authentication technologies. Mitigating 

this limitation involves enhancing integration between the firewall and other technologies such as 

VPNs, Identity and Access Management (IAM), or device management systems. 
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Figure 5. Zero Trust Network Architecture Segmentation (Kindervag, 2010, Figure 10). 

Later, the ZT strategy delineated by Cunningham (2018) extended the previous 2010 paper by 

comprising seven pivotal pillars aimed at optimizing network security when appropriately 

implemented. These pillars encompass: 

Zero Trust Data: Recognizing the paramount role of data in a ZT strategy, the author recommends 

comprehensive encryption for data in both transit and at rest. This safeguards data in the event of 

unauthorized access. Additionally, the author advocates for meticulous data management, 

categorization, and classification within appropriate schemas. 

Zero Trust People: A fundamental pillar involves the consideration of individuals. Within a ZT 

framework, the author proposes restricting user access and securing their connections and interactions 

through authentication solutions, continuous monitoring, and governance of data/resource access and 

privileges. The core tenet in ZT is minimizing user access to the utmost extent and permitting access 

only to essentials required for organizational functions. 
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Zero Trust Network: To enhance network security and enable effective monitoring and governance 

of data, resources, and individuals, the standard ZT models advocate segmenting the network into 

microsegments, each isolated from others. Forrester's model employs a firewall as a gateway between 

resources, strictly enforcing security policies across the network. 

Zero Trust Device: Another integral aspect of Forrester's ZT strategy pertains to network devices. 

The security team is tasked with classifying all IoT and network-enabled devices as untrusted entities, 

necessitating their isolation, continuous monitoring, and governance. 

Zero Trust Workloads: Particularly pertinent for enterprises on public cloud platforms, this pillar 

emphasizes the classification of workloads, spanning the entire application stack including all front-

end and back-end systems and processes used to run the organization and serve the customers, as 

untrusted entities. This entails stringent monitoring and governance aligned with ZT policies, 

mirroring the treatment of people and devices. 

Visibility and Analytics: The research focal point centres on comprehending and defending against 

threats and attacks. Utilizing tools like security user behaviour analytics (SUBA), traditional security 

information management (SIM), and advanced security analytics platforms is advocated. The 

research underscores the employment of various tools from both AWS and external services for 

heightened security and automation. 

Automation and Orchestration: The conclusive pillar underscores the significance of automation 

and orchestration across an enterprise. Various tools and technologies, including those mentioned in 

the previous pillar, are posited as instrumental in achieving this goal within the extended ZT strategy 

proposed by Forrester. Below you can find a photo illustrating the components in the extended ZT 

strategy: 
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Figure 6. The Extended ZT's Components (Cunningham, 2018, Figure 1). 

 

VMWare/NSX: Tailored for enterprises employing a virtual desktop infrastructure (VDI) and 

predominantly relying on virtualized systems, this model aligns with the NIST Device-agent/gateway 

deployment paradigm. In essence, all resources and applications in this model are hosted on virtual 

servers, and users gain remote access to them through successful authentication to the VDI server. 

All virtual desktops and servers adhere to policies defined by VMware's network and security 

virtualization software, NSX, functioning as a firewall.  

According to Uttecht (2020), an advantageous feature of this model lies in the administrator's ability 

to finely segment the network, a concept termed micro-segmentation. Additionally, the model 

facilitates the creation, maintenance, and dynamic scaling of virtual desktops in an auto-scaling mode, 

enabling administrators to add or remove virtual desktops as needed. This capability proves beneficial 

in preventing permanent access for attackers who may have gained access to a virtual desktop (most 

commonly through phishing attacks). However, the model has inherent drawbacks, including 

potential cost implications for organizations transitioning to VDI-based architectures, particularly if 

their enterprise is not already utilizing such technology. Furthermore, it may not be a suitable 
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approach for enterprises housing numerous resources incompatible with virtualization, such as 

Internet of Things (IoT) devices. 

 

Figure 7. ZT Model Using NSX (K. Kumar, 2017, Figure 1). 

 

Software-Defined Perimeter: proposed by Cloud Security Alliance (2013), Software-Defined 

Perimeter (SDP) uses two agents, one at the end device and the other at the application without being 

integrated with it, falling under the NIST Enclave-based deployment model, it basically acts as a 

gateway by creating another network on top of the existing network. To access the enterprise 

resources, the user needs to authenticate to the SDP server, then the SDP server creates a VPN tunnel 

between the user and the requested resource/application. However, unlike the traditional VPN, SDP 

VPN does not grant full access to all the enterprise resources to authenticated users, instead it gives 

access to specific resources based on various factors including attributes, roles, and/or user trust. 

Uttecht (2020) suggests that this model is generally well-suited for a broad spectrum of federated 

solutions, as it does not necessitate integration with applications/resources, hosting on external cloud 

providers, or substantial modifications to users' working environments. Furthermore, it represents a 

cost-effective solution and proves applicable to enterprises with a substantial quantity of Internet of 

Things (IoT) resources by employing an SDP server to serve as a gateway for these resources. 
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Figure 8. Workflow of the architecture of SDP (Cloud Security Alliance, 2013, Figure 1). 

The author further recommends each organization to select a ZTA model based on their requirements 

and situation. They state for a governmental entity primarily engaged in public interaction, any of the 

aforementioned architectural frameworks would suffice, with the selection contingent upon the pre-

existing infrastructure. Optimal advantages would be derived from adopting a virtualized architecture 

akin to VMWare/NSX, despite the potential complexities associated with migration. Conversely, a 

public safety-focused agency, characterized by numerous field operatives with intermittent internet 

connectivity and reliance on diverse sensors and Internet of Things (IoT) devices, would find a SDP-

based solution particularly advantageous. In instances where a broader organizational structure 

encompasses sub-entities akin to the previously delineated exemplars, a federated architectural model 

is recommended to adeptly accommodate the array of distinct requirements.  

2.8 Discussion 

For this research, based on the various ZT models covered so far, a federated ZT solution designed 

particularly for AWS platform will be proposed. Due to time constraints and budget issues, only a 

very small model will be proposed considering the main factors in each model. According to the 
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author, there are various factors we should consider when deciding whether or not to upgrade the 

organization to a ZT architecture. We should ask ourselves: 

What level of integration do we need? ZT can be used to provide maximum security, but 

possibly at the expense of more complicated resource management. 

What level of policy enforcement do we need? Not all policies are compatible with ZT. 

Security policies and standards should be chosen based on our organization’s needs and 

values. 

Is there a whole single network across our organization or multiple sub networks with 

different policies?  

Are our applications and devices fully supported by the chosen ZT architecture? Sometimes 

the already-established protocols make it difficult to migrate to a ZT model. 

How can we identify the diversity of missions across our organization as a whole and as 

various units?  

Should we start implementing ZTA from scratch (impossible in many cases), or in an 

incremental solution? Do we have the budget for it? 

Although ZTA has the potential to enhance the security of our organization when appropriately 

integrated with identity and access management, continuous monitoring, adherence to security best 

practices, and compliance with policies and guidance, it is susceptible to threats primarily linked to 

ZT. Some of these threats encompass: 

Threat 1: PE, PA, and PEP can act as bottlenecks and limit access or even completely disrupt 

services if configured improperly. In addition to limiting access, if compromised they can also 

allow malicious traffic into the internal network and directed to the resources. 

Threat 2: DDoS/DoS attacks are one of the main concerns of ZTA. This is because PE, PA 

and PEP can be targeted by attackers as critical connectors.  

Threat 3: Since in ZT trust is based on policies and not based on location, attackers need to 

gain access to accounts through various methods such as phishing, social engineering or even 

insider attackers. The accounts with high privilege become the targets, and if compromised, 

it can lead to severe consequences. High level administrators should respect security as their 

account have the highest privilege across the organization. 
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3 Methodology and Design 

AWS users can use services and solutions offered both by AWS and other companies supported by 

AWS known as Partner Solutions. In this section, various AWS services and external services (partner 

solutions) which will be used in the implementation of the CEZT will be introduced to facilitate the 

understanding of this research and the corresponding implementation.  

The reason behind choosing AWS over other alternatives is the global reach of AWS as it is 

recognized and widely used across all over the world. 

3.1 Partner Solutions 

OpenVPN: a free open-source VPN service which can be used to route traffic both on-premise and 

in the cloud (such as AWS) providing various security services including but not limited to 

encryption, advanced IP routing, DNS-based content filtering and enforcing strict identity-based 

policies suitable for ZT strategies thanks to integrating with Cyber Shield, a built-in DNS-based 

intrusion detection and prevention (IDPS) content filtering feature. Another reason for choosing 

OpenVPN is its cost-free nature, aligning with our cost-effective strategy. 

Pfsense: a firewall service which offers several features, such as Snort, VPN and NAT. The rationale 

for selecting pfSense is its provision of multiple services essential for CEZT. The ability to utilize all 

its features, such as the CA server, NAT, firewall, and built-in IDS, simplifies management and can 

be more cost-effective compared to relying solely on AWS managed services. For instance, instead 

of using a NAT gateway, PfSense's NAT service can be employed, along with its other features, for 

a reasonable subscription fee. 

3.2 AWS Services/Solutions 

In this section various AWS services used during this research are listed. 

3.2.1 Storage and Server Services 

EC2: Amazon Elastic Compute Cloud (Amazon EC2) is a cloud-based web service offered by 

Amazon Web Services (AWS) designed to offer secure and scalable computing resources. 

Amazon S3: S3 is a cloud-based object storage service offered by AWS. It facilitates the storage and 

safeguarding of diverse volumes of data for various purposes, including data lakes, websites, cloud-
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native applications, backups, archives, machine learning, and analytics. Security measures such as 

encryption and adherence to security policies are employed to ensure the protection of stored data. 

3.2.2 Tools used for Automation 

AWS Lambda: AWS Lambda is a serverless service provided by AWS enabling the execution of 

scripts in response to events occurring on cloud resources and facilitates their management.  

AWS SSM Runbooks: Runbooks offered by AWS Systems Manager (SSM) can be used to perform 

repeated tasks on well-defined events with the least data required. 

3.2.3 Security Services 

Security Hub: A cloud security posture management service offered by Amazon which automates 

the security checks against AWS resources. There are many benefits for security hub, including but 

not limited to: 

Benefit 1: Consolidated findings of all security checks from AWS security services and AWS 

partner network products (APN). 

Benefit 2: The findings from all these services are automatically normalized by AWS based 

on the AWS Security Finding Format (ASFF), which in turn reduces the Mean Time to 

Remediate (MTTR) and managing the findings. 

Benefit 3: Security Hub can be integrated with many external security services from APN, 

such as Security Information and Event Management (SIEM), Security Orchestration, 

Automation, and Response (SOAR) and Governance, Risk, and Compliance (GRC) tools. 

Benefit 4: Automated, continues security monitoring and threat detection based on AWS 

security best practices and other industry or custom compliance frameworks. 

Benefit 5: Automated remediation based on the findings. 

Benefit 6: Single account, multi-account and cross-region aggregation monitoring and 

remediation. 

Amazon Inspector: a tool offered by AWS for automated security monitoring and vulnerability 

remediation based on AWS security best practices and other security standards. Amazon Inspector 

continuously scans the target resources through agents installed on the resources, alerts the 
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administrator in case of vulnerability findings, and offers remediation steps. The findings include: 

Name of assessment target and template, assessment details including start and end times and status, 

name of rule package, details about the finding including name, severity, and its description, 

remediation guidance. Rule Packages Amazon Inspector works with include: 

Centre of Internet Security (CIS) benchmark, Common Vulnerabilities and Exposures (CVEs), 

security best practices defined by AWS security experts, and runtime behaviour analysis; the process 

of continuous monitoring and analysis of systems and applications in their runtime to detect 

anomalies, deviations and unusual behaviours and vulnerabilities during the runtime phase. Amazon 

Inspector monitors resources at both network level and application level. 

Amazon GuardDuty: A managed regional-based security service offered by AWS for which can be 

used to automate monitoring one’s AWS environment for malicious and anomalous activities. It also 

provides malware detection and protection, and forensics investigations. Threat detection by Amazon 

GuardDuty is done by continuously analysing data from AWS CloudTrail, Amazon Elastic 

Kubernetes Service (EKS) audit logs, DNS logs, Amazon Virtual Private Cloud (VPC) Flow Logs, 

and Amazon Simple Storage Service (S3) events. Amazon GuardDuty submits the security findings 

to both CloudWatch Events and GuardDuty console in detail, which makes it possible to actionize 

alerts and integrate them into existing event management or workflow systems, providing automatic 

remediation. Threats are intelligently detected by AWS, and you do not need to write the rule sets or 

detection logics as they are created and continuously updated and maintained by AWS. Amazon 

GuardDuty employs multiple detection methods, including Heuristics, machine learning (ML), 

anomaly detection, and fused threat intelligence, to detect potential signs of compromise. Automated 

remediation is possible by integrating Amazon GuardDuty with other services (both AWS services 

and external security information and event management (SIEM) and other security tools), such as 

Amazon EventBridge, AWS Lambda, and AWS Security Hub. Forensics investigations for finding 

the root cause of the security issues is also possible thanks to tight integration of Amazon GuardDuty 

and Amazon Detective. Some other benefits to use Amazon GuardDuty include: first, the possibility 

of using it cross-accounts, providing security across multiple AWS accounts through AWS 

Organization; second, the ability to send alerts to security staff through email or SMS, informing 

them about the threats right away; and third, clear fees as they are only based on the analysed events 

without any upfront payment. 
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in addition, Amazon GuardDuty functions autonomously from your resources, ensuring no 

compromise to the performance or accessibility of your workloads. The detections can be categorized 

into 5 different groups: 

Group 1 - Reconnaissance: Indications hinting at reconnaissance by an assailant encompass 

atypical API behavior, internal VPC port scanning, irregular sequences of unsuccessful logic 

requests, or unhindered probing of ports originating from a recognized malicious IP address. 

Group 2 - Instance Compromise: Signs signalling a potential instance compromise 

encompassing various indicators such as cryptocurrency mining, an upsurge in network 

traffic, utilization of unfamiliar network protocols, outgoing denial-of-service (DoS) 

activities, and communication between an EC2 instance and a malicious IP address. 

Group 3 - Account Compromise: Frequent indications suggesting potential account 

compromise involve patterns such as API requests originating from an atypical geolocation 

through anonymizing proxies, endeavours to deactivate AWS CloudTrail logging, abnormal 

launches of instances or infrastructure, deployment of infrastructure in unconventional 

regions, and API activities originating from a malicious IP address. 

Group 4 - Bucket Compromise: Indicators signalling a potential compromise of a bucket 

including irregular data access patterns suggesting potential credential misuse, uncommon S3 

API behaviour originating from a distant host, unauthorized access to S3 from recognized 

malicious IPs, and API requests to retrieve data from an S3 bucket by a user lacking a history 

of accessing the bucket or initiated from an unusual location. 

Group 5 - Amazon EKS Cluster Compromise: signs signalling an Amazon EKS cluster 

compromise including access by unauthorized actors or from Tor network, API calls 

originating from anonymous users indicating misconfiguration or patterns of known 

privileged-escalation methods. 

AWS CloudTrail: AWS CloudTrail is a multi-region multi-account service which serves as a pivotal 

security service within the AWS ecosystem, meticulously documenting activities, and all API calls, 

auditing events classified into management events (control plane operations such as configuring 

security groups, launching instances, and setting up logging within one’s AWS account), data events 

(data plane operations executed on or within resources, encompassing object-level actions on S3 

buckets and objects, Amazon DynamoDB activity at the object level within tables, AWS Lambda 

function operations, and other supported AWS services that contribute to data-related activities), and 
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CloudTrail Insights events (events based on anomalies when substantial variances in API usage 

patterns diverge from the account's established norms, triggered after establishing a baseline of 

routine AWS activity), enabling operational and risk auditing, governance, and compliance across an 

individual's AWS infrastructure in addition to creating insights based on the logs to identify 

anomalies. It meticulously records the identity of the entity effecting a change, the specific resources 

subjected to modification, and the intricate details of the alteration itself. This service empowers users 

to view, audit, analyse, and respond to account activities comprehensively. CloudTrail's 

comprehensive logs provide a chronological sequence detailing the initiator, timestamp, nature, and 

description of each alteration, fostering enhanced accountability, and facilitating forensic analysis 

within the AWS environment. The benefits of CloudTrail include: 

Benefit 1: Ability to archive all audited events during the last 90 days and search through 

them based on time, API operation, username, or resources. 

Benefit 2: The capability to seamlessly integrate with numerous AWS services and a wide 

array of partner integrations across various operational and security solutions. 

Benefit 3: CloudTrail Insights expedites the detection and handling of unconventional 

operational behaviour, promptly identifying anomalies like sudden increases in resource 

provisioning, surges in IAM activities, and interruptions in routine maintenance cycles. 

Automating the analysis of API calls and usage patterns allows for the swift detection of any 

atypical behaviour, including unusual error rates, enhancing the ability to pinpoint 

irregularities within your AWS account. 

Benefit 4: Trails for CloudTrail adeptly gather and persist both management and data events 

spanning multi-Region and multi-account setups. Tailoring log retention periods enables 

adherence to regulatory requirements. Additionally, integrating trails with CloudWatch Logs 

or CloudTrail Lake facilitates the storage of activities, while employing advanced event 

selectors streamlines the filtering process for data events, ensuring a more refined and 

seamless data handling mechanism. 

Benefit 5: CloudTrail Lake serves as a purpose-built managed multi-region multi-account 

data lake, consolidating, securely housing, and facilitating query access to CloudTrail events. 

Tailored for auditing, security investigations, and operational issue resolution, it ensures 

complete immutability of stored events. Its architecture optimizes event data storage for a 

default 7-year period, allowing efficient querying through SQL-based searches. Operating 
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within your AWS Organization, CloudTrail Lake conveniently centralizes event management 

from diverse accounts and Regions. Advanced event selectors further streamline event 

filtration, enhancing its utility for seamless event handling. 

Amazon Detective: A managed security tool offered by AWS which facilitates the process of 

forensics investigations through machine learning, statistical analysis, and graph theory after 

aggregating and analysing security findings ingested from various sources including AWS 

CloudTrail, Amazon VPC Flow Logs, Amazon Elastic Kubernetes Service (Amazon EKS) audit logs, 

and GuardDuty findings by maintaining a maximum of a one-year period of historical data through a 

set of visualizations. Some of the benefits Amazon Detective provides include: detecting anomalies 

suggesting security issues over time, finding resources affected and linked to those anomalies, 

followed by analysing the anomalies to find the root cause of security issues. 

One of the security common practices to use CloudTrail is to store CloudTrail logs in a dedicated S3 

bucket in an administration account and possibly use S3 Object Lock to prevent attackers from 

changing or deleting the logs, should any credentials be compromised. However, due to budget 

constraints, for this research I will use all the services including CloudTrail inside one AWS account. 

Another best practice is to use AWS Organizations to divide each team of the organization into 

different groups with different accounts. Then the security tools are managed by, and security findings 

are stored to the security team account. However, again due to budget constraints for this research no 

organization will be created, and all the lab entities will be provisioned in the same AWS account. 

Next, the factors considered for developing a tailored ZT model suitable for deployment on the AWS 

platform are delineated, drawing inspiration from the literature review and various ZTA approaches.  

When confronted with the decision of selecting from different NIST ZT models, it is acknowledged 

that each model possesses merits, and the optimal choice hinges on organizational considerations.  
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4 Zero trust Architecture Design for Cloud Computing 

The preceding Chapter outlined pertinent questions that should be deliberated before opting for a 

specific ZT approach, which are, how to provide robust ZT security policies for infrastructure 

deployed on AWS platform in an automatic and cost-effective way. 

Among the available options, namely Device Agent/Gateway-Based Deployment, Enclave-Based 

Deployment, and Resource Portal-Based Deployment, the latter has been chosen for this research 

endeavor. The rationale behind this decision is rooted in the ability to forego the installation of an 

agent on end-point devices, aligning with the imperative of expediency imposed by time constraints 

and the limitations inherent in being a solo researcher. In addition, SDN was chosen to be the base of 

this model, as it simplifies network and security management through decoupling the control plane 

from the data plane (Eliyan & Di Pietro, 2021). 

In the context of Resource Portal-Based Deployment, the Policy Enforcement Point (PEP) portal is 

strategically positioned as a gateway. The policy engine (PE), policy administrator (PA), and the 

policy enforcement point (PEP) can be seamlessly integrated into a singular component. To 

operationalize this configuration, Pfsense, a well-regarded open-source firewall, emerges as a viable 

option due to its widespread recognition and functionality. 

As policy engine (PE): Pfsense can enforce various policies as a firewall to either grant access, refuse 

or terminate an existing connection. 

As policy administrator (PA): Pfsense can allow/disallow access according to the rules set by the 

administrator. 

As policy enforcement point (PEP): Pfsense can use Network Address Translation (NAT) to direct 

traffic to the target resource according to the policies. 

For a ZT approach, there are some similarities between all ZT models that we can take into account: 

Common Rule 1: All unused ports must be closed. 

Common Rule 2: connections need to be encrypted, preferably through VPN. 

Common Rule 3: Secure Contingency Planning, to minimize access of both regular users and 

administrators through proper privilege assignment.  

Common Rule 4: A whitelist approach to allow connections only from trusted users. 
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Common Rule 5: Automation of manual processes for managing policies as much as possible 

to decrease burden and human error. 

Common Rule 6: Continuous monitoring for security threats, both internal and external using 

various services such as IDS. 

In establishing secure communication between users and AWS, OpenVPN emerges as a highly 

advantageous option due to its status as a freely available VPN service with widespread recognition 

and usage. An alternative to OpenVPN is AWS VPN, a managed service provided by Amazon Web 

Services. While opting for AWS VPN simplifies management procedures given its status as a fully 

managed service by AWS, it should be noted that this convenience comes at a cost, as AWS VPN is 

not provided as a free solution. In contrast, the implementation of OpenVPN demands a more intricate 

configuration process and poses challenges in deployment. However, its cost-effectiveness makes it 

a viable choice within our financial considerations. It is essential to acknowledge that while 

OpenVPN itself is free, the deployment necessitates an Amazon Elastic Compute Cloud (EC2) 

instance, the usage of which incurs costs. Despite this cost implication, opting for an EC2 instance 

remains a more economical alternative compared to the expenses associated with AWS VPN. Thus, 

the decision to prioritize cost efficiency involves a trade-off, where the complexity of OpenVPN 

deployment is accepted for the sake of reduced expenditure. An additional advantage of choosing 

OpenVPN over AWS VPN lies in the potential incorporation of "Cyber Shield," serving as a 

supplementary security layer for our enterprise. This feature functions as an intrusion detection and 

prevention system, enhancing the overall security posture of the VPN deployment. OpenVPN, being 

an open-source solution, offers the flexibility to integrate third-party security solutions like Cyber 

Shield, allowing for a comprehensive approach to threat detection and prevention. This capability 

positions OpenVPN as a versatile choice for enterprises seeking to fortify their network infrastructure 

with advanced security measures beyond the standard VPN functionality provided by AWS VPN. 

Within the realm of ZT strategies explored in the literature review, the decision has been strategy's 

comprehensive approach, delineated through various pillars, rendering it more intricate and detailed 

compared to the NIST ZT models. While NIST ZT models tend to adopt a more generic stance, the 

Forrester extended ZT strategy stands out due to its nuanced and detailed framework, providing a 

more granular and specialized perspective on implementing Zero Trust principles. This strategic focus 

aligns with the aim of pursuing a ZT approach that offers a more elaborate and tailored guidance for 

enhancing cybersecurity within the organizational context. 
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In the context of implementing identity-based policies within a ZT model on our AWS platform, the 

chosen approach involves leveraging AWS Lambda. The rationale behind this decision lies in the 

serverless nature of AWS Lambda, which facilitates the execution of custom scripts without the 

necessity for explicit server configuration. AWS Lambda provides a seamless and resource-efficient 

environment for running code in response to events, making it an optimal solution for enforcing 

identity-based policies within a ZT framework. By utilizing Lambda, custom scripts can be developed 

and executed in a serverless manner, contributing to operational simplicity and flexibility. The 

serverless architecture of AWS Lambda aligns well with the principles of Zero Trust, as it minimizes 

the attack surface and reduces the need for persistent infrastructure. This approach not only enhances 

security by enforcing identity-based policies but also ensures efficiency and ease of maintenance in 

the dynamic and evolving landscape of a ZT model. Figure 9 presents the basic architecture of CEZT. 
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Figure 9. CEZT Basic Architecture. Diagram created by AWS CloudFormation Designer 

In the delineated model, as depicted in the Figure 9, the Virtual Private Network (VPC) is partitioned 

into a public subnet and a private subnet. The former is linked to the internet via an Internet Gateway 

(IG), while the latter is deliberately isolated from direct internet access, yet possesses an indirect route 

through adherence to policies specified by Pfsense. This conceptual framework advocates for the 

concentration of all resources within the private subnet, leveraging security groups for EC2 and RDS, 

and bucket policies for S3 buckets to establish isolation. A security group for an EC2 instance and an 
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RDS database, as well as a bucket policy for an S3 bucket, act as dedicated firewalls for each, 

enforcing policies based on pre-defined rules. As an illustration, EC2Webserver1 interfaces with 

RDSDB (database) while maintaining isolation from other services. Corresponding security groups 

enforce the isolation policies on both entities. 

Conversely, EC2Webserver2 connects to an S3 bucket based on policies dictated by the respective 

security group for EC2 and the bucket policy for S3, similarly isolated from other services. Both EC2 

servers within the private subnet are linked to a load balancer, which, in turn, interfaces with a 

Network Address Translation (NAT) gateway. The NAT gateway establishes a connection to Pfsense, 

which is interlinked with a VPN gateway (OpenVPN), ultimately affording the VPN gateway internet 

access through the Internet Gateway. Consequently, resources in the private subnet retain internet 

accessibility in accordance with stringent policies enforced by Pfsense and the VPN server located in 

the public subnet, aligning with a zero-trust strategy. The Lambda function diligently monitors the 

entire VPC, systematically implementing the CEZT policies on both resources and users, thereby 

offering an automated approach. 

4.1 Segmentation of the Network 

Initially, segmentation of the Virtual Private Cloud (VPC) into distinct subnets is imperative, 

delineating a public and private subnets. The public subnet facilitates direct connectivity to the 

internet and serves as the locus for implementing zero trust policies, whereas the private subnet 

affords only indirect internet access through the intermediary of the public subnet. The establishment 

of subnets can be achieved through the utilization of a code akin to that depicted in Figure 10, 

employing the AWS Command Line Interface (CLI). It is pertinent to acknowledge that sensitive 

data, such as IP addresses, have been redacted as "****" to uphold security measures. 
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subnet_id=$(aws ec2 create-subnet \ 

            --vpc-id **** \ 

            --cidr-block **** \ 

            --availability-zone **** \ 

            --tag-specifications 'ResourceType=subnet,Tags=[{Key=Name,Value=****}]' \ 

           --query 'Subnet.SubnetId' \ 

           --output text) 
 

Figure 10. Sample Code for Creating Subnets in AWS CLI 

This code facilitates the creation of a subnet endowed with direct internet access via a routing table. 

To transform the subnet into a private entity, the routing table can be eliminated utilizing the AWS 

CLI, as elucidated in Figure 11. 

While the public subnet enjoys unfettered connectivity to the internet along with a public IP address, 

the private subnet necessitates indirect internet access via the public subnet. For this purpose, the 

private subnet leverages either a NAT gateway or a NAT instance, ensuring internet access through 

the intermediary of the public subnet. Both NAT gateway and NAT instance necessitate a static IP 

address to maintain persistent connectivity amidst infrastructure alterations. The initial step entails 

the creation of an elastic IP, followed by the establishment of a NAT gateway linked to the elastic IP. 

Figure 11 delineates the exemplar code for generating an elastic IP, alongside the corresponding 

response garnered from the AWS CLI. 
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# Allocate a new Static IP address 

aws ec2 allocate-address --domain vpc 

# Response from AWS CLI 

{ 

    "PublicIp": "****", 

    "AllocationId": "****", 

    "PublicIpv4Pool": "amazon", 

    "NetworkBorderGroup": "****", 

    "Domain": "vpc" 

} 
 

Figure 11. Generating an Elastic/Static IP 

The subsequent task involves associating the NAT gateway with the Allocation ID. Following this, 

the creation of a NAT gateway and its association with the Allocation ID is imperative. Please refer 

to Figure 12 for detailed instructions on executing this process via the AWS CLI. Ensure to utilize 

the ID of the public subnet for the Subnet ID parameter during the execution. 

 

nat_gateway_id=$(aws ec2 create-nat-gateway \ 

    --subnet-id **** \ 

    --allocation-id **** \ 

    --output text \ 

    --query 'NatGateway.NatGatewayId') 
 

Figure 12. Creating a NAT Gateway for the Public Subnet through AWS CLI. 

To eliminate direct internet access from the private subnet, it is imperative to disassociate the 

associated routing table. However, given that the routing table is utilized across all subnets and the 

objective is to solely remove it from the private subnet, a sequential process is necessitated. Initially, 

a new routing table is created, followed by its association with the private subnet. Subsequently, the 

routing table is removed, ensuring exclusive removal of routes solely from the private subnet. Figure 

13 elucidates the procedural steps involved in creating a routing table, associating it with the private 

subnet, and subsequently removing it through the AWS CLI. 
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# Create a new routing table 

private_route_table_id=$(aws ec2 create-route-table --vpc-id **** --query 
'RouteTable.RouteTableId' --output text) 

# Associate the routing table to the private subnet 

aws ec2 associate-route-table --subnet-id **** --route-table-id **** 

# Add a new route to the routing table which directs all the outbound traffic to the NAT 
Gateway 

aws ec2 create-route \ 

    --route-table-id **** \ 

    --destination-cidr-block 0.0.0.0/0 \ 

    --gateway-id **** 

# Remove any other routes except the default local route 

aws ec2 delete-route --route-table-id **** --destination-cidr-block **** 
 

Figure 13. Associating a NAT Gateway to the Private Subnet through AWS CLI 

An alternative solution involves employing a NAT instance instead of a NAT Gateway. While both 

serve the same purpose of facilitating outbound internet connectivity for private subnets, a key 

distinction lies in their management approach. NAT Gateways are AWS-managed services, relieving 

users of maintenance and security concerns, whereas NAT instances necessitate continuous user 

oversight, including maintenance, updates, and security patching. Although NAT Gateways offer 

simplicity, NAT instances present a cost-effective option, as users only incur expenses for the EC2 

instance hosting the NAT instance, which is typically less costly than a managed NAT Gateway. The 

selection between the two options hinges on organizational objectives and budgetary considerations. 

For instance, a nascent startup with limited financial resources may opt for a NAT instance to align 

with budget constraints during the initial stages of operation. 

In this research endeavor, cost-effectiveness emerges as a primary consideration, thus motivating the 

utilization of a NAT instance over a NAT Gateway. Establishing a NAT instance entails provisioning 

an EC2 instance and deploying a NAT-supporting operating system or product. Among the widely 

recognized products compatible with AWS, PfSense emerges as a prominent choice for its versatility 

and NAT capabilities. 

In the proposed implementation, a PfSense instance will be deployed within the public subnet to 

enable internet access through the internet gateway. Subsequent to installation, adjustments to NAT 

rules are imperative to facilitate internet access for resources residing in the private subnet via 

PfSense. This necessitates the removal of default NAT rules assigned by AWS and the incorporation 
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of additional rules tailored to the enterprise's architectural requirements, particularly those pertaining 

to IPSec for the public subnet. 

Furthermore, configuring PfSense settings to capture all traffic, including traffic with a destination 

address other than that of Pfsense, is essential to prevent packet loss. By default, AWS configures 

PfSense to drop packets with destination addresses other than its own, necessitating adjustments to 

accommodate comprehensive traffic handling. 

4.1.1 Setting up the Required Policy-Enforcing Resources in the Public Subnet 

The public subnet is used to enforce most of the ZT policies on the resources placed in the private 

subnet. All the resources needed in the public subnet include: 

Firewall: To enforce firewall regulations on inter-subnet traffic, PfSense will be leveraged. In line 

with Zero Trust principles, these regulations must adhere to company requirements and be structured 

in a whitelist format to strictly control permissible communication paths. However, for flexibility, the 

enterprise may opt for a grey-list approach based on specific needs. It's important to note that while 

a whitelist approach is recommended for safeguarding critical infrastructure due to its stringent 

control measures, a grey list offers a degree of flexibility by permitting communication unless 

explicitly restricted. Thus, the choice between whitelist and grey-list formats should be made 

considering the organization's security priorities and operational requirements. 

IDS/IPS: To detect anomalies and known threat patterns, an IDS based on Snort, supported by 

PfSense, will be implemented. This system will be configured with a diverse array of Snort rules 

aimed at identifying and mitigating attacks. These rules encompass a broad spectrum of threats, 

including but not limited to SQL injection (SQLI) attacks, Cross-Site Scripting (XSS) attacks, various 

Denial of Service (DoS) attacks, and Spoofing attacks. The comprehensive set of rules will enable 

proactive identification and alerting of suspicious activity, empowering administrators to promptly 

respond to potential security breaches. In addition, the MITC attacks mentioned in the earlier sections 

can be mitigated to a great extent, as now all inbound and outbound traffic can be monitored by Snort 

to spot malicious traffic. 

Internet Gateway: the internet gateway to bring internet access to the public subnet. 

VPN Server: A VPN server serves dual purposes: firstly, to encrypt traffic between the cloud and 

external networks (such as the internet), and secondly, to distribute SSL/TLS certificates to users 

outside the cloud. This approach aligns with the Zero Trust principle of "trust no one," ensuring that 
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only users possessing certificates issued by the VPN server are authorized to transmit and receive 

packets with resources located in the private subnet. For the VPN server implementation, the VPN 

service provided by PfSense will be utilized in conjunction with OpenVPN, a free and open-source 

solution. This choice is consistent with the cost-effectiveness considerations inherent in the CEZT 

strategy. By leveraging OpenVPN's capabilities within the PfSense framework, the organization can 

establish a secure and scalable VPN infrastructure that effectively meets encryption and 

authentication requirements, thereby enhancing overall network security posture. 

NAT Instance: for NAT, the NAT service offered by Pfsense will be used. 

Elastic IP: Assigning Pfsense, which serves as the VPN server, IDS/IPS system, firewall, and NAT, 

with an elastic (static) IP is essential. The utilization of a static IP aims to ensure network stability, 

consistent performance, and minimized interruptions. Additionally, employing a static IP simplifies 

management tasks, streamlining administrative processes associated with network configuration and 

maintenance. By assigning a static IP to Pfsense, the organization can reliably access and manage 

critical network components, enhancing overall operational efficiency and facilitating seamless 

network operations. 

4.2 ZT Policies Enforcement on EC2 

AWS CloudWatch and AWS Lambda are integrated to create a Lambda function capable of 

responding to events triggered by resource creation. This Lambda function is designed with 

appropriate security groups and IAM roles to inspect newly created resources, specifically focusing 

on EC2 instances situated within the public subnet. Upon detection, the function runs a custom AWS 

SSM Runbook to enforce policies to relocate the instance to the private subnet while adjusting its 

security group and IAM role to restrict traffic exclusively to and from PfSense. 

To provide flexibility and circumvent ZT policies when necessary, a tag-based approach is adopted. 

The Lambda function is configured to examine whether an EC2 instance possesses a tag labeled 

"Isolation" with a value of "False." Instances bearing this tag are exempted from ZT policies. 

Furthermore, mitigation measures against Denial of Service (DoS)/Distributed Denial of Service 

(DDoS) attacks are implemented. If an instance is deemed vulnerable, its connections to PfSense are 

cut, and a more resilient infrastructure is deployed. This involves creating a load balancer and an Auto 

Scaling Group (ASG) within the private subnet. The EC2 instance is then associated with the ASG, 

which dynamically adjusts instance capacity based on traffic volume. The load balancer distributes 
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incoming traffic among instances, enhancing resilience against DoS/DDoS attacks by constant 

instance health monitoring and swiftly replacing compromised instances. 

Additionally, to uphold the Zero Trust principle, all EC2 instances, regardless of their subnet 

placement, are treated as untrusted. PfSense is designated as a Certificate Authority (CA) to issue and 

distribute certificates. Only instances possessing a valid certificate signed by the CA are deemed 

trustworthy, thereby enforcing stringent security measures. 

This multifaceted approach ensures robust security enforcement while offering flexibility and 

resilience to accommodate varying operational requirements and mitigate potential threats 

effectively. 

Whenever an instance is moved from one subnet to another by Lambda and SSM, SSM triggers SNS 

to send an email to the administrator to inform them about the action. Server-side encryption should 

be enabled for the encryption of data at rest. Data at transit is automatically encrypted by SNS.  In 

addition, to be in line with a ZT approach, all emails sent by SNS should be logged in Cloudwatch. 

for this, proper IAM rules need to be assigned to the SNS topic. For the SNS topic, a whitelist format 

of users who can receive the email should be added. It is suggested to use proper filtering to filter the 

message in terms of sensitive data to show to different priviledge users only the information they 

need to know. Figure 14 shows the diagram of the custom SSM runbook. 



46 
 

 

 

Figure 14. SSM RunBook Diagram. Diagram generated by AWS SSM. 

This customized operational procedure utilizes a combination of AWS runbooks (both custom and 

AWS-offered), customized sub-runbooks, and AWS APIs associated with Simple Notification 

Service (SNS) and Elastic Compute Cloud (EC2). The runbook encompasses diverse inputs, 
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including the EC2 instance ID, randomly generated names for load balancer and Auto Scaling Group 

(if applicable), security group IDs, and the corresponding SNS Amazon Resource Name (ARN). The 

sequential steps involved are outlined as follows: 

AWSSupport_CopyEC2Instance: This initial step leverages an AWS-provided runbook to address 

the limitation on AWS, where changing the subnet ID of an instance is not feasible. By employing 

this runbook, an Amazon Machine Image (AMI) of the instance is created, followed by launching a 

new instance based on the generated AMI within the private subnet. Subsequent actions involve 

terminating the original instance, essentially facilitating the relocation of an instance from one subnet 

to another. 

Runscript and UpdateVariable_1: This phase encompasses the execution of a Python script 

designed to extract pertinent information from the payload of the preceding step, notably including 

the ID of the newly created instance. 

Branch: This segment conducts a verification process to ascertain whether the DoS Protection tag is 

enabled. If affirmative, the workflow proceeds to step 5. 

Email Notification via SNS: In the absence of DoS Protection tag activation, this step orchestrates 

the dispatch of an email notification via SNS, encompassing comprehensive details regarding the 

executed action. The whole process ends here. 

ASG and Load Balancer Configuration: This stage involves the creation of an Auto Scaling Group 

(ASG) and a load balancer. Subsequently, the new instance is integrated into the ASG, followed by 

attaching the ASG to the load balancer. Furthermore, the load balancer is interconnected with Pfsense. 

Termination of Initial EC2 Instance: Here, the original EC2 instance situated within the public 

subnet is terminated, ensuring the seamless transition of operations. 

Email Notification via SNS: Analogous to step 4, this final step orchestrates the dispatch of an email 

notification via SNS, furnishing comprehensive details regarding the executed action. 

This structured procedure encapsulates a series of meticulously orchestrated steps to facilitate the 

seamless management and migration of EC2 instances within the AWS infrastructure, leveraging a 

combination of runbooks, scripts, and AWS services. 
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4.3 ZT Policies Enforcement on S3 

Unlike EC2 instances, which are assigned to VPCs and subnets, S3 buckets lack this capability. 

Instead, they are globally accessible within the AWS infrastructure. It's worth noting that EC2 

instances can access S3 buckets through VPC endpoints, which enable the traffic to flow through the 

AWS network rather than being routed over the internet. For this purpose, an endpoint has been 

attached to the VPC. To enforce a zero-trust model, all S3 buckets must be encrypted and inaccessible 

to the public by default, while also implementing replication for DoS/DDoS attack mitigation. For 

forensics purposes, all the actions done on the bucket, such as deleting objects or any API calls related 

to the bucket, should be logged. A custom SSM runbook is created to automate these tasks. 

CloudWatch alarms are set to trigger an AWS Lambda function upon S3 bucket creation events. The 

Lambda function checks for an exception tag; if absent or disabled, it triggers the SSM runbook, 

which ensures logging, encryption, access control, and replication policies are applied appropriately. 

This comprehensive approach ensures consistent security posture across all S3 buckets, with 

automated responses to potential security threats. 
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Figure 15. Diagram of Custom SSM Runbook for S3 Buckets. Figure Generated by AWS SSM 

The runbook shown in Figure 15 consists of five key steps: 

AWS_DisableS3BucketPublicReadWrite: This disables public accessibility for the S3 bucket, 

enhancing security by preventing unauthorized access. 

AWS_EnableS3BucketKeys: Optionally assigns bucket keys to reduce the cost of server-side 

encryption by KMS, optimizing cost efficiency while maintaining security. 

AWS_EnableS3BucketEncryption: Ensures encryption of the bucket and all objects at rest, 

bolstering data security, especially in scenarios where network intrusions may occur. 
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AWS_ConfigureS3BucketLogging: Enables logging of the bucket and stores the data in another 

bucket used for logging. It is recommended to place the target bucket in another account as the 

security account. It will later be used by Amazon Detective for forensics purposes. 

PutBucketReplication: Utilizes the AWS API to replicate the bucket, providing protection against 

DoS/DDoS attacks and enabling efficient incident response in case of bucket unavailability or 

deletion. Together, these steps establish a robust security framework for S3 buckets, safeguarding 

data integrity and availability. Unlike the previous steps, this step requires a long JSON payload as 

input. A sample can be provided upon request. 

SNS Publish: Using the API, administrators are informed about the actions performed by SSM 

through an email sent by SNS. 

4.4 ZT Policies Enforcement on RDS 

In configuring a ZT model for Amazon Relational Database Service (RDS), it's imperative to adhere 

to several key principles. Firstly, according to the principle of least privilege policies, RDS instances 

should be shielded from public accessibility when not necessary. Secondly, measures must be 

implemented to fortify the infrastructure against potential denial-of-service (DoS/DDoS) attacks, 

ensuring resilience and availability. Thirdly, frequent backups should be considered for incidence 

response purposes. Finally, safeguards should be instituted to mitigate the risk of accidental or 

malicious deletion of critical data. To streamline the automation of these security protocols, AWS 

Lambda and Systems Manager (SSM) are harnessed. CloudWatch serves as the initial trigger, 

prompting a Lambda function to verify the presence and activation status of an exception tag upon 

the creation of an RDS instance. If this tag is not found or enabled, Lambda seamlessly communicates 

the pertinent details of the RDS instance to a bespoke SSM runbook, which orchestrates the 

subsequent security measures as shown in Figure 16. 
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Figure 16. Diagram of SSM Runbook for RDS ZT Enforcement. Figure generated by AWS SSM 

For successful operation of the custom runbook, Pfsense needs to be enabled as the NAT instance, 

and proper endpoints for the VPC should be configured, otherwise a timeout error is raised. The steps 

are as follows: 

AWSConfigRemediation_DisablePublicAccessToRDSInstance: Public access to the RDS 

instance is disabled as a security precaution to restrict unauthorized access. 
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AWSConfigRemediation_EnableMultiAZOnRDSInstance: To mitigate the risk of denial-of-

service (DoS/DDoS) attacks, the runbook configures the RDS instance to operate in multiple AZs. 

This ensures continued service availability even if one AZ is compromised. 

AWSConfigRemediation_EnableRDSClusterDeletionProtection: Deletion protection is enabled 

at the cluster level to prevent accidental or malicious deletion of the entire cluster. 

AWSConfigRemediation_EnableRDSInstanceDeletionProtection: Similar to the previous step, 

deletion protection is activated at the individual RDS instance level to safeguard against inadvertent 

deletion. 

AWSConfigRemediation_EnableRDSInstanceBackup: Regular backups are enabled for the RDS 

instance to facilitate incident response and data recovery in the event of a security breach or data loss. 

SNS Publish: Using the API, administrators are informed about the actions performed by SSM 

through an email sent by SNS. 

These steps collectively establish a comprehensive security posture for RDS instances and clusters, 

aligning with the principles of zero-trust architecture and ensuring robust protection against potential 

threats and vulnerabilities. 

4.5 ZT Policies Enforcement on Users 

In adopting a zero-trust framework, several key considerations emerge. Initially, the enforcement of 

MFA for all users stands as a fundamental practice. Subsequently, users necessitate classification into 

distinct user pools to facilitate the allocation of privileges. Each pool should be associated with a 

dedicated certificate, subject to periodic renewal. Finally, a routine evaluation of IAM credentials is 

essential, wherein privileges are revoked should users demonstrate prolonged inactivity, thereby 

adhering to the principles of least privilege. The following figure shows a custom SSM runbook 

consisting of several scripts and sub-runbooks designed for automation of this purpose. The runbook 

is triggered by a Lambda function periodically. To make exceptions for the policies, assigning tags 

for each resource is one of the best practices of AWS. 
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Figure 17. Runbook Diagram for ZT enforcement on Users. Figure generated by AWS SSM. 
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The comprehensive shown in Figure 17 outlines a series of steps within the runbook. To summarize, 

the initial phase involves the extraction of IAM resource identifiers, encompassing users, groups, 

roles, and policies. Subsequently, it proceeds to disable any inactive IAM credentials linked to these 

identifiers. Following this, the runbook retrieves user pool identifiers, ensures the activation of MFA 

for all users if previously disabled, and conducts certificate renewal procedures as necessary. All the 

scripts are written in Python. For successful operation of this runbook, AWS Cognito and AWS 

Config must be enabled. 
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5 Analysis and Further Discussion 

This chapter presents the evaluation of ZT architecture design presented in Chapter 3. To evaluate 

the efficacy of our methodology in enhancing security measures, we will employ the following 

services: AWS GuardDuty, Amazon Detective, AWS Macie, AWS Inspector, and AWS Security 

Hub. 

All the aforementioned services must be activated. Subsequently, Security Hub will be utilized to 

consolidate the results obtained from the aforementioned four services, as well as the findings derived 

from the following standards: 

CIS AWS Foundations Benchmark v1.2.0 & v1.4.0: A set of AWS security best practices, 

consisting of various controls including but not limited to operating systems, network devices and 

cloud services (Amazon Web Services, 2024). 

NIST Special Publication 800-53 Revision 5: A collection of various controls for providing security 

and privacy for information systems and enterprises developed by National Institute of Standards and 

Technology (NIST, 2020). 

AWS Foundational Security Best Practices v1.0.0: A set of various controls for identifying non-

compliant AWS resources and accounts with AWS security best practices defined by AWS experts 

(Amazon Web Services, 2024). 

PCI DSS v3.2.1: A security standard suitable for organizations and enterprises who process 

cardholder data (PCI Security Standards Council, 2018). 

Each standard caters to specific types of enterprises. For instance, PCI DSS v3.2.1 is tailored for 

organizations involved in transactions, such as banks, whereas the NIST framework is applicable for 

general purposes. 

The test comprises two phases. In phase one, the framework is deactivated, and a vulnerable network 

is established. To ensure objectivity in the creation process, ChatGPT was utilized to propose a 

vulnerable network with diverse security risks. The vulnerable enterprise comprised two EC2 

instances with enabled public access, situated in public subnets facing the internet, two S3 buckets 

with public access enabled, predominantly configured with default settings, and lacking encryption 

for both. Additionally, numerous unused security groups were present in the account, many of which 

granted public access to ports 22 and 3389. A MySQL database was also instantiated with default 

configurations. Alongside the vulnerable resources, various risks contradicting the principle of least 
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privilege of Zero Trust approach were present, and some resources inside the network were treated 

as trusted entities. Subsequently, CloudFormation served as the IaaS tool to instantiate the enterprise. 

Following this, AWS Config transmitted all configurations of the resources to Security Hub, which 

subsequently generated a security score for the enterprise, as depicted in Figure 18. 

 

Figure 18. Overall Security Score Measured by Security Hub with the CEZT Disabled. 

According to Security Hub metrics, the overall security level without enabling the CEZT stood at 

31%. The lowest security scores were observed with the CIS AWS Foundations Benchmarks, each 

scoring only 23%, while the highest score was attained by PCI DSS v3.2.1, registering only 50%. 

Evidently, the enterprise faces substantial susceptibility to cyber-attacks. Figure 19 delineates all 

identified risks categorized by severity. 
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Figure 19. All the Risks Grouped by Severity, Measured by Security Hub Before Enabling the CEZT. 

Furthermore, risks associated with compromised IAM rules were identified as the most prevalent 

threat type, as depicted in Figure 20. 

 

Figure 20. Most Common Threat Before Enabling the CEZT. 

The second phase commenced with the removal of all resources instantiated by CloudFormation. 

Subsequently, the CEZT was activated to initiate enforcement measures. Following this, the identical 

stack was regenerated using CloudFormation. However, in this iteration, Lambda functions were 

employed to trigger various custom SSM runbooks outlined in the preceding section. These runbooks 

were designed to implement the policies delineated earlier onto the resources. Subsequent to this 

action, a 24-hour delay was observed to allow for the update of Security Hub. This delay was 

necessitated by the fact that Security Hub conducts security control checks based on the information 

relayed by AWS Config, which in turn may take up to 24 hours to transmit all configuration changes 
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to Security Hub. After this period elapsed, the security scores associated with all referenced security 

standards exhibited a notable increase, as depicted in Figure 21. 

 

 

Figure 21. Security Scores measured by Security Hub with the CEZT in Effect. 

The security scores for CIS AWS Foundations Benchmarks displayed the least enhancement, whereas 

significant improvements were observed across all other standards. Notably, NIST Special 

Publication 800-53 Rev. 5 and AWS Foundational Security Best Practices exhibited the most 

substantial improvements, achieving scores of 77% (up from 44%) and 80% (up from 50%), 

respectively. Figure 22 illustrates the threats categorized by severity with the CEZT activated. 

 

Figure 22. Threats grouped by severity with the CEZT in effect. 

The quantity of threats categorized as critical or high risk witnessed a notable reduction; however, 

there was a contrasting increase in the number of threats classified as medium or low risk. Once more, 
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broken IAM configuration emerged as the most prevalent threat identified. Table 2 compares the 

number of security threats grouped by severity. 

Table 2. Comparison of Security Scores Before and After Enabling the CEZT. 

Security Standard Security 

Score with 

the CEZT 

disabled (%) 

Security 

Score with 

the CEZT 

enabled (%) 

Change 

    

CIS AWS Foundations Benchmark v1.2.0 23 26 +3 

CIS AWS Foundations Benchmark v1.4.0 23 28 +5 

NIST Special Publication 800-53 Rev. 5 38 68 +30 

AWS Foundational Security Best Practices v1.0.0 44 77 +33 

PCI DSS v3.2.1 50 80 +30 

Overall Security 31 70 +39 

 

 

Table 3. Comparison of Security Threats Findings Grouped by Severity Before and After Enabling the CEZT. 

Severity Level Number of threats with the CEZT 

disabled 

Number of threats with the CEZT 

enabled 

Change 

Critical 75 11 -64 

High 166 37 -129 

Medium 65 100 +35 

Low 56 62 +6 

 

When assigning equal weight to all severity levels, the implementation of the CEZT resulted in a 

reduction of the total number of security threats by 152. However, when applying weights of 4, 3, 2, 

and 1 to critical, high, medium, and low severities respectively, the CEZT effectively mitigated 719 

threats. This substantiates the significant enhancement in security achieved by our model within the 

enterprise.  

While not free, the CEZT model is notably more cost-effective compared to solely relying on AWS 

managed services. Substituting tools like Pfsence instead of NAT Gateway, AWS Network Firewall, 
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AWS Certificate Manager (ACM), AWS WAF, and Amazon GuardDuty (utilized solely for the 

analysis section of the research, not active protection of the enterprise) not only reduces costs but also 

offers greater flexibility in configuring desired settings. 

The semi-SDN micro-segmentation of the enterprise into control plane and data plane with having 

all the resources isolated from each other, simplifies the enforcement of ZT policies and provides 

security in case of existing of insider intruders and some resources under their control. In addition, 

combining the created runbooks with various Lambda functions and CloudWatch Events provides 

automation, which can in turn decrease the number of human errors. Continuous monitoring of traffic 

through Pfsense and its Snort-based IDS adds an additional customizable layer of security. 

However, it's important to note that this research was limited to a simulated environment, and real-

world results may vary. Additionally, the CEZT model currently focuses on a subset of AWS resource 

types (EC2, S3, RDS, LDR, ASG), potentially leaving other resource types without ZT enforcement. 

Future research avenues could include extending the model to cover all major cloud platforms (e.g., 

AWS, Azure, GCP) and conducting tests on real-world enterprises to validate the model's efficacy.  

Access to source codes is available upon request. 
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6 Conclusion 

In conclusion, this research positions Zero Trust Architecture as a strategic paradigm for enhancing 

the security posture of AWS-based infrastructures. Embracing the principles of continuous 

verification and monitoring and least privilege access empowers organizations to bolster their digital 

assets against an ever-evolving threat landscape. The findings derived from this study serve as a 

foundational resource for informed decision-making and the effective implementation of ZTA, 

contributing to the development of resilient and secure cloud infrastructures.  

6.1 Evaluation of Research Questions and Their Resolutions 

As a reminder the research questions are highlighted below. 

1. How can enterprises enhance the security of their cloud infrastructure to meet the stringent 

demands of critical infrastructure while also integrating automated security protocols to 

alleviate pressure on security teams and minimize the risk of human error?  

2. How can these security strategies be deployed in a manner that is both cost-effective and 

adaptable to the diverse needs and resources of organizations? 

3. Does adopting a zero-trust approach significantly improve security or impose unnecessary 

burdens by enforcing overly strict policies without providing additional security? 

Regarding the first question, the traditional perimeter-based security approaches, as discussed in 

Section 2, are ineffective against insider threats. Critical infrastructures can enhance their protection 

against insider threats by implementing zero trust principles. Automated policy enforcement reduces 

the burden on the security team and subsequently decreases the likelihood of human errors, since two 

factors of human error are the nature of forgetfulness or neglection, as discussed in section 2 in one 

of the recent incidents, which does not happen with machines. 

Regarding the second question, the strateg proposed in this research is cost-effective due to the limited 

reliance on managed services. For example, rather than employing a NAT gateway, which is a 

managed NAT service offered by AWS, a NAT instance was utilized, which is significantly less 

expensive. To mitigate DDoS/DoS attacks, a micro-segmentation approach was adopted, 

incorporating one control plane (public subnet) and multiple data planes (private subnet), as well as 

auto-scaling groups (ASG) and load balancers, instead of using AWS Shield, a paid managed DDoS 

protection service from AWS. Since load balancers and auto-scaling groups are commonly employed 
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in AWS environments, leveraging them within a micro-segmentation framework under the 

governance of a control plane is unlikely to incur additional costs for the company. It is also 

customizable thanks to the use of SSM runbooks and custom scripts. 

Regarding the third question, based on the analysis, CEZT effectively enhances cloud security across 

four key security standards by employing zero trust principles. In contrast to perimeter-based security 

approaches, CEZT acknowledges the potential for insider threats and, therefore, does not trust any 

entity by default, even those within the network. Entities are required to use certificates issued by the 

CA server and comply with the stringent zero trust (ZT) policies enforced by the control plane to 

interact with one another, regardless of their location within the same subnet. Across the four security 

standards used to measure the security score of the vulnerable network before and after enabling 

CEZT, including CIS AWS Foundations Benchmarks (v1.2.0 and v1.4.0), PCI DSS v3.2.1,  NIST 

Special Publication 800-53 Rev. 5, and AWS Foundational Security Best Practices v1.0.0, the 

security score improved ranging from +3% for the former, CIS AWS Foundations Benchmark v1.2.0, 

to +33% for the latter, AWS Foundational Security Best Practices v1.0.0. In addition, the overal 

security increased by 39%. After enabling CEZT, although the number of low-level threats increased, 

+6 for low-level security threats and +35 for medium levels, the number of high-level security threats 

decreased,  -64 for critical security threats and -129 for high-level security threats, which in turn, the 

network became more secure. The level of security was determined by the mentioned security 

standards. 

6.2 Limitations and Future Work 

CEZT is specifically tailored for the AWS platform. While AWS is a prominent and widely 

recognized cloud service provider, many organizations utilize alternative platforms like Azure. This 

platform-specific design limits the applicability of CEZT to companies that rely solely on AWS, 

potentially excluding those who use other cloud services. 

Future research could explore the development of a similar model for other cloud platforms or, more 

ideally, create a universal model that is compatible with multiple platforms. Additionally, this study 

did not cover all AWS services, indicating that there is further potential to expand the scope of CEZT 

to include a more comprehensive range of AWS offerings. 
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