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GNSS positioning systems are inside almost every device interested in getting their
location in external environments. Recently, these devices have been performing
tasks in environments inside infrastructures where they still require to know their
location. Different methods exist and keep developing for indoor positioning, and
outdoor positioning is practically solved using GNSS technologies. This work focuses
on the scenario where devices benefit from a seamless transition between contexts.
The seamless transition goal is to have uninterrupted access to the machine’s po-
sition, ensuring success for the overall objective of the tasks it is performing. A
tool helpful in accomplishing a seamless transition is detecting when the device is
transitioning from an outdoor environment to an indoor one. With this transition
detection, the device can prepare accordingly to avoid problems in challenging sur-
roundings that limit the positioning system’s capabilities. The method this thesis
proposes involves machine learning to learn the distribution of outdoor data cap-
tured when the device interacts with this environment and later raises a flag when
the conditions of the measurements change. The intent is to depend less on hard
thresholds and adapt better to different locations while overcoming the challenges
of data collection and labeling. The strategy relies on one-class support vector ma-
chines for their proven effectiveness with novelty and fault detection, along with
delay embedding for its suitability to convert time series data to a set of vectors to
accomplish the desired target. The resulting algorithm is evaluated in a series of
trajectories covering an outdoor-to-indoor transition and portrays the functionality
of the methodologies in fulfilling the objective. The evidence shows the potential
and advantages of the process to make the detection. It also provides visibility on
improvements and additions that can help integrate the algorithm into a general
system to leverage the low need for manual configuration and high adaptability.

Keywords: GNSS, Unsupervised Learning, Anomaly Detection, Outdoor-Indoor Tran-
sition
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1 Introduction

Positioning is the process of determining the location of an object according to a

reference point in a given frame of reference, and it is a fundamental operation

in many scientific research, industrial applications, commerce, and daily life [1].

The Global Navigation Satellite System (GNSS) is the most popular positioning

system for localization and navigation tasks, especially for those in open-sky areas

or outdoors. GNSS not only provides a solution for current problems, but it also has

the potential to improve and evolve to power more sophisticated solutions emerging

in the near and distant future [2].

One main component of a GNSS positioning system is the receiver. The GNSS

receiver collects the signals from the satellites and processes them to provide the

position (usually, along with velocity and time) solution to the user. There is a

wide range of GNSS receivers available, with two main differential aspects being the

quality of the solution they provide and the size of the component. These qualities

allow GNSS positioning systems to meet their users’ expectations and fit well with

the surrounding subsystems in their solutions. Therefore, GNSS technology is the

main choice for positioning solutions in outdoor open environments, and it is added

to a variety of devices to satisfy the positioning requirements. Often, these devices

perform operations also near or inside buildings. GNSS receivers face more diffi-

culty providing accurate position solutions in environments that block or deviate

the signals from the satellites [3].
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To counter the performance downgrade of the positioning system, users fusion

the GNSS information with an auxiliary method that can help to correct or even-

tually substitute it when the data from the receiver is not reliable anymore [4].

Nowadays, one active area of research is to achieve seamless transitions from out-

door to indoor environments [5]. Seamless transitions aim to exploit the complete

capacity and benefits of GNSS positioning systems in outdoor environments, aid

their performance with additional sensors while navigating through spaces between

the outdoor and indoor frontier, and finally change the positioning system to one

more suitable for indoor environments, where users can apply a great variety of tech-

nologies, each one with different strengths and weaknesses [6]. One component of

seamless outdoor-indoor transition processes is detecting the environment’s change.

This detection alerts the device when the surrounding environment has changed (for

example, from an open-sky area to an urban area with surrounding buildings) to

activate actions that minimize the impact on position accuracy for the device. De-

tecting this transition enables devices to make the right decision on the navigation

mode [7] they want to use in these different contexts, empowering their systems to

exploit their advantages as much as possible in the right environments and use them

efficiently throughout the whole navigation task.

Outdoor-Indoor detection solutions rely on external sensors (such as vision, light,

and pressure) to assess the situation and provide feedback on the device’s context [8],

[9]. But they also rely on evaluating the performance of the GNSS receiver attributes

[10]. Integrity monitoring in navigation systems is responsible for providing feedback

about the ability of the system to provide accurate and integral solutions [11], and

extensive research has explored different methods for its application, adapting to the

increase of demand for GNSS systems in multiple applications. Leveraging the stud-

ies on GNSS Integrity, methods for outdoor-indoor detection emerge by connecting

the faulty and abnormal behavior of the positioning system to the GNSS receiver
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performance when entering environments that challenge the satellite signals [12].

Both the growing number of use cases and the wide range of parameters and agents

involved in GNSS positioning systems represent a difficulty when building integrity

monitoring systems, as the attributes constantly change from day to day, and relying

on specific thresholds and measurement ranges limits the adaptability and longevity

of the solution. Achieving better adaptability and handling the complexity of the

GNSS raw data are objectives that machine learning techniques promise to tackle

[13]. Specifically, when detecting faulty and abnormal behavior, machine-learning

techniques can excel at learning to classify and differentiate data that complies with

the expectations from data that indicates the presence of errors in a malfunctioning

system [14].

This thesis presents the development and implementation of a method for detect-

ing outdoor-indoor transitions by monitoring GNSS attributes. The basis of the

detection is the capture of regular performance by an unsupervised data learning

method to compare later measurements to identify and categorize them as inside

or outside of the learned regular behavior. This research aims to design and imple-

ment a detection system that relies very little on prior knowledge and configuration

to make the detection and can be used well in different environments by focusing

solely on the degrading performance of GNSS positioning systems when making the

outdoor-indoor transition.

1.1 Related Works

Kuusniemi in [15] covers the terms of integrity monitoring and reliability in satellite

navigation with methods that seek to secure confidence in the solution of a position-

ing system and possible causes of disruption. Reliability testing is a method that

determines if the basic postulates are still true in the system or if something has

gone wrong with it. Usually, statistical tests are applied for reliability where the
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null hypothesis corresponds to a fault-free system and the alternative hypothesis to

a system with a fault present. A common approach when using this method is to

perform a global test to identify if the measurements followed the assumed distri-

bution, followed by a local test over the measurements to go into detail to identify

any outliers and find the origin of the fault. Therefore, fault detection and exclusion

schemes apply this process to improve the results of the solution.

Aviation applications use Receiver Autonomous Integrity Monitoring (RAIM)

extensively to provide integrity and detect when a satellite failure has occurred [16].

One of the best attributes of RAIM is that it allows the GNSS receiver to detect

errors without additional equipment, traditional RAIM can only detect one fault

at a time, but improvements now allow for the method to asses multiple faults.

Teunissen [17] already demonstrate a procedure applicable to GPS failure and in-

tegrity checking by checking the change in the mean of predicted residuals caused

by data outliers or sensor failures. Pesonen [18] proposes a Bayesian framework

for RAIM that focuses on urban navigation results in an improvement from tradi-

tional RAIM but requires a considerable amount of computation resources. Blanch

et al. [19] present an advanced RAIM technique that handles multiple faults and

a multi-constellation environment, overcoming the limitations of traditional RAIM

algorithms. An evaluation of two fault detection and exclusion methods in [20] for

GNSS systems working in urban environments presents the difficulty of consistency

checks on satellite measurements in these contexts, highlighting the difference in the

inconsistency between clean measurements and measurements blocked or deviated.

Kim et al. [21] presents a solution relying on neural networks that expands RAIM

to overcome its limitation by stating the integrity monitoring task as an anomaly

check for unexpected behavior. Besides improvements in accuracy, other works fo-

cus on faster integrity checking. Zhang et al. [22] modifies the RAIM algorithm for

a difference test statistic and procedure that requires less compute resources and
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runs faster on devices. In addition, research in integrity checking in systems that

integrate GNSS with other positioning technologies exists because of the increas-

ing need for GNSS technology in urban environments. Sun et al. [23] develop a

fault detection and exclusion algorithm in a GNSS and Inertial Measurement Unit

(IMU) integrated system, tackling the need to detect multiple faults by combining

IMU data with raw satellite measurements. Similarly, in [24], a GNSS and Ultra-

wideband (UWB) navigation integrated system includes a fault detection algorithm

that focuses on its performance in urban areas. The fault detection frameworks have

been expanded to collaborative systems as well. Zhuang et al. [25] present a method

based on cooperative reliability messages. This method expands the idea of using

prior knowledge of nearby devices to assess the quality of GNSS raw measurements

in another device. More recently, [26] introduced a method for slow-changing faults

with a dual-threshold method in a GNSS and Internial Navigation System (INS)

integrated navigation.

Research reflects vast strategies and methods for developing fault detection sys-

tems. Machine learning shows usefulness and advantages for GNSS applications [27]

and fault detection systems [28]. A novel design of a fault detection algorithm using

a neural network for an integrated navigation system improves the overall perfor-

mance positioning accuracy in [29]. Biddle et al. [30] uses support vector machines

(SVMs) to detect and identify faulty sensors in autonomous vehicle systems. SVMs

appear in [31] to classify nominal and faulty phases in a unmanned aerial vehicle

(UAV). A variation of SVMs, one-class support vector machines (OC-SVM), pro-

vides [32] a solution to identify unknown status and possible faults in chiller systems.

Ma et al. [33] study OC-SVM for their fitness and adequacy for novelty detection

with time series data, especially when projecting this data in phase space. Guo

et al. [34] expand on the idea of phase-space projection to build a fault detection

algorithm for a GNSS sub-system filter using a one-class support vector machine.
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Another area where machine learning strategies are providing improvements to

develop working solutions is outdoor-indoor transition detection in navigation sys-

tems, along with algorithms that prioritize thresholds and statistical tests. Zhou et

al. in [8] present IODetector for location and context switching in outdoor-indoor

environments. This detector is a lightweight sensing service that detects outdoor

or indoor environments by taking advantage of sensing resources without assuming

prior knowledge. Radu et al. [35] also use lightweight sensors on a smartphone

to build a detection system for indoor and outdoor environments. Their method

can adapt and learn online using machine learning. Other approaches choose to

use GNSS measurements with or without additional sensors. Chen et al [12] use

the number of visible satellites in the GNSS receiver to build an indicator of the

indoor-outdoor status by performing a satellite existence search. Zhu et al. [36]

design a method that extracts geometry distribution, time sequence, and statistical

properties features from GNSS measurements to feed a supervised machine learning

model to predict indoor-outdoor status. Xia et al. [37] describe four categories for

environments in an outdoor to indoor transition (deep indoor, shallow indoor, semi-

outdoor, and open outdoor). They show that scenario recognition improves with

the availability of more GNSS constellations in the receiver and that using position-

independent features for a recurrent neural network model allows high recognition

accuracy. Research in [10] introduces a different approach for detecting outdoor,

indoor, and transition areas using a time series analysis of different GNSS error

statistics. They later use that detection for trajectory estimation and switching be-

tween GNSS and VIO for positioning. Siemuri et al. [7] reach for seamless navigation

for indoor-outdoor environments. They use an indoor-outdoor detection strategy to

choose the most adequate navigation mode.
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1.2 Contributions

This work seeks to contribute an alternative solution for detecting the change in

environments during that allows the system to act accordingly to reach a seamless

transition from outdoor to indoor environments in positioning tasks. Specifically,

this work makes the following contributions:

• An analysis of the GNSS receiver’s measurements during an outdoor-to-indoor

transition and justification of a suitable variable selection that helps to detect

the context change.

• The study of applying an unsupervised machine learning method, such as one-

class support vector machines, to GNSS data considering the proper treatment

of time series data with delay embeddings.

• The design and implementation of an algorithm that raises a flag when de-

tecting the transition between outdoor to close to indoor environments and its

respective evaluation on real-world trajectories.

1.3 Structure

The structure of this work consists of the following chapters:

• Chapter 2 gives a detailed explanation of the technologies involved in devel-

oping the method applied in the experiments.

• Chapter 3 explains how each of the parts inside the algorithm works, the

ideas and theory behind their use, and the implementation details to carry

out the experiments.

• Chapter 4 describes the experiments, the tools utilized, and the tasks per-

formed. It gives a deeper look at the results and evidence of how the methods
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work and the accomplishments of the algorithm.

• Chapter 5 discusses the conclusions, additional improvements, and areas of

opportunity found with this work.



2 Background

This work presents the design and implementation of a system that explores GNSS

measurements in the receiver component to detect the transition from an outdoor

to an indoor environment using machine-learning techniques based on the anomalies

found in normal behavior distorted by the complications of the surrounding context.

This chapter discusses the main topics and technologies that are involved in and

support this development.

2.1 GNSS (Global Navigation Satellite System)

The Global Navigation Satellite System, or GNSS, is a collection of multiple satellite

navigation systems [38]. The term can also refer to a single global satellite navi-

gation system. GPS (U.S. Global Positioning System) is the most popular global

satellite navigation system, but it is not the only one. Other global satellite navi-

gation systems are GLONASS (The Russian Federation Global Navigation Satellite

System), the European Galileo System, IRNSS (Indian Regional Navigation Satel-

lite System), and BDS (Chinese BeiDou Navigation Satellite System) [39]. GNSS

has been powering many navigation tasks over the years since its introduction, and

its use for localization keeps growing. Sometimes, it is considered the undisputed

method for determining position in outdoor environments [40]. Applications for

GNSS positioning systems vary from big machines (like airplanes) to small devices

(such as smartphones) [41]. This wide range of adaptability allows the technology
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to appear in many different sectors with multiple options for accuracy, size, and

accessibility. GNSS collections contain constellations. These are groups of satellites

orbiting the planet to cover it entirely and to provide precise and continuous posi-

tion information to the users of these constellations. Nowadays, users can leverage

multiple constellations at once and compute better position solutions [42]. Besides

satellites alone, these navigation systems work with passive receivers on the surface

and monitoring networks to fulfill their goals. The main working principle for GNSS

positioning systems is the concept of time-of-arrival (TOA) ranging [38]. This tech-

nique starts with an emitter sending a signal that includes its known location and

specific emission time. Another device (the receiver) captures the signal, computes

the time interval (propagation time) from emission to reception, and multiplies it by

the signal propagation speed, obtaining the distance between the emitter and itself.

At least four measurements (from four different satellites) are necessary to get a full

latitude, longitude, and altitude solution [41].

2.1.1 GNSS Receivers

GNSS receivers are the components of a satellite navigation system that compute

the solution to determine the user’s position [16]. Therefore, they stay with the

object of interest and constantly communicate with the collection of satellites in

orbit. GNSS technology improvements allow receivers to compute accurate solu-

tions and integrate into smaller systems. The progress on receiver development has

also made the component more accessible for mass applications at the trade-off of

being less precise with the solution [43]. Generally, all GNSS receivers face the

same challenges and work under the same principles. The main problems affect-

ing a receiver are signal blockage, signal attenuation because of the environment’s

conditions, noise interference, and multipath [38]. Choices in design help overcome

these problems, making some receivers more robust and well-adjusted for specific use
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cases. Nonetheless, some situations, like multipath in urban environments, require

additional action from external systems that complement the receiver performance

[44].

A GNSS receiver acquires signals from the satellites that contain replica code

phase and replica carrier Doppler phase or frequency [16]. These measurements

allow the receiver to compute the transit time and estimate the distance between

the satellite and the device. They make this computation after synchronizing the

local replica of the code or carrier phase with the one coming from the signal. After

achieving the sync, the receiver keeps tracking the signal to maintain an accurate

and stable lock. After this signal processing, the receiver gets valuable information

to obtain the final solution [38].

The process receivers make before starting computing the position solution re-

quires that the users wait for a complete start and fixation of measurements [45]. A

cold start refers to the receiver needing to capture all the information from satellites

and evaluate it before it allows signals to go through the following steps in the sys-

tem. Faster starts are possible by allowing the receiver to save data for the satellites

it expects to lock and fix. Warm and hot starts follow this procedure, and their

difference is in the amount and type of data they have pre-loaded in the receiver

before they start processing incoming signals from the satellites [46].

2.1.2 GNSS Measurements

Users can access GNSS measurements by interacting with the receiver. All receivers

output the final solution to the user, and some also allow users to access intermediate

measurements for different purposes [47]. Users might want to implement or research

alternatives and improvements for the positioning algorithm [48], identify specific

errors [49], or monitor the receiver’s performance [50]. Here are definitions of some

of the measurements of interest for this thesis:
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Pseudorange Measurements

They are the direct result of the signal processing happening in the receiver and the

basis for the positioning algorithms [51]. After the receiver locks and syncs with

the incoming code phase, it can compute the transmission time of the signal from

the satellite [16]. This information times the transmission speed gives the distance

the signal has traveled or, in other words, the distance between the satellite and the

receiver. The term "pseudo" comes from the synchronism errors between the satellite

and receiver clocks. This apparent range is affected by many factors affecting the

propagation of the signal in space [38]. For example, delays caused by crossing the

atmosphere or by the instruments in the devices, multipath appearing due to the

signal hitting other objects before the receiver, and noise appearing in the device

[52]. Pseudoranges commonly appear in meters.

It is also frequent to find pseudorange residuals available from the receiver

database. They have great use in integrity-checking statistical tests [53]. Pseu-

dorange residuals result after the receiver builds a model that predicts the behavior

of pseudorange measurements to estimate them and compares it against the actual

pseudorange measurements it gets [54].

Carrier-to-noise density ratio (C/N0)

Carrier-to-noise density ratio for a GNSS receiver represents a key parameter to

measure the quality of an incoming GNSS signal [55]. It measures the ratio between

the carrier power and the power of noise in a 1 Hz bandwidth. The fact that the ratio

appears as a density over a unit of bandwidth differentiates this measurement from

the signal-to-noise ratio and makes it ideal for comparisons due to the independence

from the receiver bandwidth [56].

Inside the receiver, this attribute helps to determine if the system can lock and

retrieve information from a specific satellite. A higher value indicates the receiver
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can successfully extract the navigation data from the signal [57]. On the contrary, a

lower value signals that the quality of the satellite signal does not allow for obtain-

ing helpful information [58]. The ratio is a verified source of GNSS signal quality

measure [38].

Dilution of Precision (DOP)

A receiver can relate the desired accuracy of position with the accuracy of pseudo-

range measurements by using Dilution of Precision metrics [16]. DOP provides an

indicator for the distribution of the satellites visible by the receiver. A low value in-

dicates a favorable configuration to receive optimal helpful signals, whereas a higher

value indicates the opposite. This indicator aims to warn the user of the uncertainty

of the final solutions and the confidence the system has in them [59].

Horizontal Dilution of Precision (HDOP) and Vertical Dilution of Precision

(VDOP) indicate the quality of satellite geometry in that respective axis. Position

Dilution of Precision (VDOP) combines the previous two metrics into one metric

that summarizes the 3-D uncertainty. Time Dilution of Precision (TDOP) focuses

on the uncertainty in the receiver’s clock. An additional Geometry Dilution of

Precision (GDOP) metric summarizes all other Dilution of Precision measures and

reflects the effect of satellites’ geometry on the final position solution [60].

Elevation and Azimuth

Receivers can obtain specific data about the satellites from the signals they acquire.

Elevation refers to the degrees of elevation between the satellite’s line of sight with

the receiver and the earth’s surface [61]. Azimuth measures the same interaction

but indicates the angle between the satellite and the receiver or which direction to

face to find the satellite [62].

GNSS Measurements can refer to individual satellites [63] or collective measure-



2.1 GNSS (GLOBAL NAVIGATION SATELLITE SYSTEM) 14

ments of visible satellites [64]. They can also depend on the specific position of the

receiver and give different values under the same environmental conditions [65].

2.1.3 GNSS Disruptions and Errors

The GNSS signals radio frequency (RF) nature makes them susceptible to phe-

nomena that affect their propagation [66]. Four main disruptions are responsible

for downgrading the GNSS receiver performance, they are ionospheric scintillation,

interference in the form of jamming and spoofing, signal blockage, and multipath

effect [38] and the following paragraph introduce them.

Ionospheric scintillation is a phenomenon that fades the signal due to the even-

tual irregularities in the ionospheric layer of the earth’s atmosphere. This disruption

has the effect of diminishing the receiver’s ability to track visible satellites for short

periods [67]. Interference in GNSS systems appears when undesired and desired RF

signals clash before reaching the receiver [68]. This interference can be uninten-

tional by signals from emissions outside the band or intentional by external signals

contaminating the respective band in which the GNSS receiver operates. The most

common types of interference are jamming and spoofing [69]. The consequences

of RF interference are navigation accuracy degradation and the complete loss of

receiver tracking [70]. The surrounding environment of a GNSS receiver also has

noticeable effects on its performance [71]. Signal blockage disrupts the quality and

quantity of signals a receiver can acquire. Signals that face objects during their

propagation can be absorbed and never reach the receiver or be reflected and suffer

significant attenuation, making them unusable in the device [72]. Advances in GNSS

technology allow signals to be functional even if they suffer some form of degrada-

tion, something critical in urban environments [73]. Another disruption caused by

the receiver’s context is multipath. Multipath refers to the multiple paths the signal

duplicates take before reaching the receiver when reflected or diffracted [74]. This
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deviation of the duplicate signals delivers a delayed signal (compared to the direct

signal) and influences the solution negatively [68].

The disruptions presented above are the most considerable contributors to errors

in the receiver and lower the solution accuracy. Additional errors can come from

erroneous data about the satellite coming in the signal or due to malfunctioning of

the satellite clock [16]. Corrections and auxiliary methods complement the GNSS

receiver performance to reduce the errors present in the system [75]. Measurement

errors are visible in the device by close monitoring of its values [76].

Carrier-to-noise density ratio (C/N0) disruption in urban environments

Carrier-to-noise density ratio (C/N0) value partly determines how well the receiver

tracks the signals, becoming a key parameter in analyzing the system’s performance

[77]. Loss of tracking results affects position accuracy [78]. In environments with

signal degradation due to foliage or blockage of natural signals from satellites, the

carrier-to-noise density variable helps represent the power lost in the transmission

[58]. Therefore, C/N0 also plays a relevant role in spoofing or interference detection

[79], [80].

2.2 Anomaly Detection

Anomaly detection refers to the problem of finding patterns in data that do not

conform to expected or normal behavior [81]. Anomalies appear as outliers, ex-

ceptions, surprises, peculiarities, and even novel observations. The importance of

detecting anomalies is the opportunity to identify events or information that require

special attention under a specific process or situation. Many analyses aim to look

for possible disruptions in the future or further investigations of past problems [82].

In these contexts, anomaly detection is a tool that allows them to focus their efforts

on particular interests that are different from what is usual.
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Many challenges arise when trying to detect anomalies. The first one is to find

an optimal representation of normality or a definition of what is not an anomaly

[83]. Sometimes, domain expertise alone is enough to bring this definition. In

other situations, the complexity of a process and the involvement of many factors

reduce the clarity and easiness of declaring what is ordinary behavior. Secondly, it

depends substantially on the process’ nature where the detection is or aims to happen

[84]. Processes can change continuously over time, modifying their normal behavior

and the range of values of their measurements. Some are more robust to support

unexpected events than others, where a simple deviation from what is usual does not

require special attention. On the contrary, other processes need constant monitoring

for slight changes in their critical observations [85]. Finally, anomalies might be

unknown to the analysts, and further steps are necessary to effectively target the

appropriate variables and systems that help to detect an abnormal situation [86].

Outlier detection and novelty detection are two terms that are closely related to

anomaly detection. They share some methods, techniques, and concepts to build so-

lutions. Outlier detection refers to problems containing samples in the data already

outside the pre-defined boundary of normality [87]. The main goal is to detect these

outside samples during the data processing and use the examples as the basis for fu-

ture detections. There is no general definition for what constitutes an outlier. It will

depend on the use case [88]. Novelty detection aims to detect samples outside the

original data boundaries without having information about them beforehand [89].

As observations arrive, the goal is to detect if these observations are novel when

comparing them to the existing measurements. Choosing a method for anomaly

detection depends on what approach is necessary and the context for our samples

[86].
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2.2.1 Anomaly Detection and Fault Detection

Technical processes often involve multiple systems working semi or fully automati-

cally. Usually, these systems have limited human supervision and need to operate

continuously for a long time. Different devices collect and share data from this pro-

cess to monitor and help to supervise them. The objective is to ensure the system

works optimally and without interruptions as much as possible or necessary. One

key component to meet this target is fault detection [90]. Measuring variables and

extracting features helps to identify unexpected or unwanted behavior. These de-

tections help to restore the desired state and reduce the consequences of the fault

in the system [91].

Much research has explored framing fault detection as an anomaly detection

problem [92]–[94]. The main idea is to treat faults as abnormal behavior of the

system’s measurements or values, considering that not every anomaly might be a

fault. One method in this approach is to use the samples acquired from sensors in the

system. These observations are indirect measurements of the system’s performance

[92]. A classical approach to treating these observations is to build the distribution

the data follows and later apply thresholds over the boundaries that limit normality

[95]. Many existing techniques aim to estimate the data distribution, with the most

notable difference being the assumptions they make over the possible distribution.

Some systems’ measurements or statistics follow assumptions very well, but others

require fewer constraints to estimate the distribution accurately [96]. Some steps

in the novelty detection process apply to every technique and are fundamental for

the applications’ success [97]. Primarily, feature extraction acts as an intermediary

between raw signals in the system and meaningful variables for the following analysis.

These features can be simple or complex, but they must carry relevant information

that helps to detect abnormal or faulty behavior [98]. The next step looks into these

features and starts asking questions that lead to concrete statements and decisions
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over which ones are interesting and necessary to follow closely. A crucial tool to

accomplish this goal is to visualize the features and how they change over some time

or specific events [99]. After deciding on the features, a method that characterizes

their distribution helps to know the probability of particular values and what we

can expect from the features under the normal state. Finally, the decision boundary

or threshold represents the classification of faulty samples as some measurements

separate from the expected behavior [100].

2.2.2 Anomaly Detection and GNSS

One of the most developed methods for outlier detection in GNSS Applications

is Reliability Testing [15]. It is essential to detect anomalies that can negatively

impact the navigation solution and exclude them from the system. Typical detec-

tion for integrity reliability uses statistical tests over the receiver’s observables to

verify compliance with the initial hypothesis [53]. For these tests, redundancy is

fundamental to verifying the consistency between the values inside a sample. RAIM

(Receiver Autonomous Integrity Monitoring) is the most known example of satellite

fault detection [101]. Initial RAIM methods handle single-failure scenarios using

least-squares methods. The approach consists of discarding the outlier (or failure)

in a group of measurements. Multiple tests are repeated to discard multiple outliers

(if they exist) [102]. More robust methods that handle more than a singular fault

due to the demand and usage increment exist nowadays. They can use weighting

strategies over the observations, like the Danish Method [103], or greedy and ex-

haustive searches to exclude faulty satellites [20]. Other solutions rely on machine

learning techniques to avoid handcrafted algorithms and rigid thresholds for outlier

detection and exclusion of defective measurements [104].
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2.2.3 Anomaly Detection Using Machine Learning

Machine Learning includes techniques and algorithms that adjust their parameters

according to the data they interact with [105]. These statistical algorithms learn

directly from the samples (inputs) they receive to output an adjusted algorithm

that will comply with the pre-defined requirements. The main advantage of these

methods is that they extract and identify patterns effectively in situations where

handmade rules are not enough to accomplish a specific goal [106].

Multiple application domains have benefited from machine learning techniques

[107]. These benefits are related to tasks where large amounts of information are

available for processing, situations where extracting features and patterns is almost

impossible for humans, and scenarios where adaptation is crucial and constant.

Machine Learning solutions rely heavily on the data they use to learn and ad-

just their parameters [108]. Collecting and inspecting this input data, known as a

dataset, is the first and probably the most crucial step toward building the system

[109]. Further steps depend on the specific method powering the solution, but some

are part of every machine learning workflow. A clear definition of the target or goal

for the algorithm is necessary to approach the problem correctly. Data preprocess-

ing helps to ensure raw data is ready and suitable for the next phase. The training

phase is the core part of the solution functionality. Training is giving the algorithm

the samples and waiting for it to adjust its parameters to reach a specific target

or run its complete process [105]. After training, the algorithm has learned what

it could from the data and has its method for accomplishing the pre-defined goal

[107].

The purpose for the algorithms to learn from data is not only to provide a

representation of them to explore it deeply but also to analyze new data coming from

the same distribution [110]. That is the reason for assessing the performance of the

training phase. The evaluation and testing phase aims to provide meaningful metrics
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that tell how close the training phase is to achieving the desired goal [111]. This

phase focuses on providing the recently trained algorithm with never-seen samples

and obtaining a result to check the solution’s performance. These steps result in a

model that can help validate assumptions, extract further insights, or analyze new

samples [109].

The specifics of the previous workflow depend on which type of machine learning

task describes the data and goal better. Supervised and Unsupervised learning are

two types of machine learning tasks with specific methods and algorithms to carry

out their functions [108]. The difference between the two is the access to previous

knowledge about the answer for the solution or goal of the initial dataset (train

dataset). Supervised tasks contain samples with features and responses for those

features [112]. The algorithm then optimizes to reach those responses, and the

evaluation uses new samples to corroborate how close the model response is to the

actual response. On the other hand, unsupervised learning refers to problems with

no response in the samples, and the main goal is to discover something of interest in

the data [108]. The main challenge when building unsupervised learning solutions

is to find a proper way to assess their performance [113].

Another task definition is semisupervised learning, and as the name suggests,

it applies the supervised approach to just a subset of the samples, given that only

those inputs have responses available [114]. In situations where a specific response is

dominant or is too expensive to get the responses for all the examples, semisupervised

learning strategies help to build working solutions [115].

Framing anomaly detection tasks using the machine learning framework helps

emphasize the data and the discoveries available in it [116]. Another advantage is

the adaptability for the proper identification of samples. Some solutions have access

to data containing examples of normality and abnormality and aim to build a model

that can generalize an automatic classification and explore the difference between
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them. Other cases only use samples of expected behavior as outliers are challenging

to capture [81].

Unsupervised learning methods can help to describe and build representations of

usual samples when performing anomaly detection [117]. The principal assumption

is that samples recorded under a working context contain little or zero anomalies,

and samples outside the representation should be anomalies and require further in-

spection and attention. Unsupervised methods are helpful when anomalies take new

or unexpected values constantly, and it is hard to obtain complete prior knowledge

of how they will look specifically in every situation [118].

2.3 One-Class Support Vector Machine (OC-SVM)

Support Vector Machines (SVMs) are a popular technique for solving machine learn-

ing problems. They work well for multiple applications and perform exceptionally

well in many fields [119]. The basic idea of SVMs is mapping the input data to a

high-dimensional feature space and choosing an optimal separating hyperplane as

the decision boundary [120]. In the initial implementations, they solve binary classi-

fication problems, building a decision boundary that separates positive and negative

samples [121]. Subsequent progress allows SVMs to tackle multi-class classification

problems and to define non-linear decision boundaries for complex patterns in the

data using different kernels [122].

One-class classification problems arise when only samples for one class exist in

the dataset, but samples for different labels can exist in the application environment

[123]. Usual approaches for classification in machine learning suffer from imbalanced

datasets [124]. Thus, in this scenario, it is better to utilize methods specifically

tailored to tackle challenges in this context. The goal is to distinguish objects from

the one class available from others belonging to other classes. One-class support

vector machines (OC-SVMs) exist to provide an alternative for solving these kinds
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of problems [125]. They rely on many concepts from SVMs but contain differences

that enable them to build decision boundaries on datasets with samples from a single

instance [126].

OC-SVM is a kernel-based method that maps the initial training data into a

feature space (similar to normal SVMs), finds a hyperplane with a maximum distance

from the origin, and separates a fraction of the training samples lying beyond it

[127]. Although this is the frequent approach to building OC-SVMs, other solutions

propose describing a hypersphere between the outliers and the positive class [128].

When using the first approach, the core parameter to solve the optimization

problem is ν. This parameter can take values greater than 0 to less or equal to 1

[121]. ν represents an upper bound on the fraction of outliers and a lower bound

on the fraction of support vectors [127]. This solution gives the unique hyperplane

with the maximum margin between the data and the origin, putting the hyperplane

closer to the origin than any point in the data [120]. The equation proposed to solve

the optimization problem in [129] is:

1
2
∥w∥2 + 1

νN

∑︁N
i=1 ζi − ρ

Subject to: ⟨w, ϕ(xi)⟩ ≥ ρ− ζi , i = 1, 2, ..., N , ζi ≥ 0

Where, as described in [130]:

• ζi are slack variables to model the separation errors.

• ϕ(xi) is the non-linear function to project into the high-dimensional space

• ρ is the distance from the hyperplane to the origin

• w is the normal vector of the hyperplane

OC-SVM models only require samples from the target class, and have the possi-

bility of using non-linear kernels for complex decision boundaries [130]. This make

them suitable for problems in anomaly detection [131]. The established approach is
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to collect training data corresponding to expected or usual behavior for the process

and to label as anomalies the samples that lie on the other side of the hyperplane

[132]. Beyond placing categories to the samples, OC-SVM also offers the distance

of the samples to the hyperplane in the feature space. This distance can represent a

score for further evaluation of how different samples are from the initial training data

[133]. By tuning the hyperparameter ν it is possible to control the proportion of

abnormal data in the training set and adapt the model to the specific requirement’s

detection [131].

2.4 Time Delay Embeddings

Time series data appears in many fields as measurements taken from a process

where time is a dimension to consider. Because of the cruciality of these processes,

detecting anomalies in the variables that defined them has been a relevant problem

to solve historically [134]. Depending on the context, these anomalies can be a single

or a group of measurements, indicating a long event or state change that deserves

further attention and comparisons pondering the environment at the sampling time

[135].

GNSS variables are usually acquired by sampling the measurements periodically.

Due to this, strategies from time series analysis helps to examine them and power

solutions that require that data for their goals. Although the time dimension is

included inherently in the measurements, sometimes it is necessary to focus only

on the magnitude of the values while still considering the extraction context [136].

Additionally, some techniques for anomaly detection in time series data require

modifications to apply their methods to the temporal samples [137]. Transformations

help to adequate the time series data for methods suitable for vectorized data [33].

One advantage of applying these transformations is leveraging the proven algorithms

for anomaly detection to solve problems with another type of data [138]. One-
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Class Support Vector Machines offer characteristics suitable for fault detection and

notable performance in different fields [139]. It is an option worth considering for

experimenting and building anomaly detection solutions.

Perkins et al. [33] describe a strategy to apply one-class support vector machines

for novelty detection in time series data. They suggest unfolding the time series data

into a new projection plane called the phase space using time delay embeddings is

the most direct method to adequate the data to train OC-SVM in anomaly detection

scenarios. The application of the delay embedding technique aims to reconstruct a

picture of the samples in the phase space [140]. It could also represent the dynamics

of a system in this new phase space by choosing the appropriate parameters [141].

Specifically, time delay embedding involves the augmentation of a scalar time series

into a higher dimension through the construction of a delay vector with a delay

lag τ and an embedding dimension m [142]. This method is similar to sampling

measurements using a sliding window, with the embedding dimension being the

number of measurements in the window and the delay tag the distance between

neighboring measurements in time. The operation can be stated in the following

way:

Given a time series X(t), with t = 1, 2, 3, ...N representing each time step, and

N the total number of time steps in the series, and an embedding dimension m,

and time delay τ. It can be unfolded for a sequence of vectors using a time delay

embedding process:

Xi(t) = [Xi(ti), Xi(ti + τ), Xi(ti + 2τ), ..., Xi(ti + (m− 1)τ)]

• (m− 1)τ refers to the window size.

• The difference between Xi(t) and Xi + 1(t) is called stride.

It is important to remark the authors in [33] emphasize using the phase space

only in its mathematical form and ignore other meanings used in different fields.
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Similarly, in this work, the technique is a helpful tool to eliminate the time dimension

and place the measurements in a new projected space where OC-SVMs help solve

the problem of novelty detection for fault detection. In this new phase space, usual

measurements should appear closer, and abnormal ones should lay in a separate

area.



3 Methodology and Implementation

The following chapter exposes the methods to build the solution for outdoor to

indoor detection using one-class support vector machines over GNSS data. Along

with this, the implementation details complement the ideas for a more concrete

description of the tasks. The main goal is to explore a system that can make the

transition detections accurately, adapt well to different environments, and reduce

the amount of prior knowledge necessary to deploy it. This section explains the

steps taken to reach a final working solution and the findings made along the way.

The methodology seeks to provide the techniques to understand what variables

(or variable) help to detect the transition using what is available in the receiver and

what strategies are suitable for building a system that can detect a transition from

an outdoor to an indoor environment without relying on hard thresholds for better

adaptation to different contexts.

3.1 Acquiring the GNSS receiver data

The work of this design and implementation proposes to use the data in the GNSS

receiver to detect when the system carrying the positioning device moves from out-

doors and gets closer to indoor environments. Naturally, the first step is to interact

with the receiver and acquire all the helpful data it provides to achieve the detection.

The GNSS receiver chosen to get the data and perform the experiments is the

ublox ZED-F9P module. This device is a high-precision multi-band GNSS module
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[143]. One advantage of using this receiver is the data availability it has. Beyond

the usual receiver data (for example, the position solution), it also allows the output

of raw measurements from different observables at specific signal processing stages.

Accessing the raw measurements is especially important to analyze variables that

can have extended behaviors in the transition phase, contrary to losing a particular

variable at the slightest disruption in the solution process. Variables without much

processing are of service for inspection even when they suffer from signal-degrading

environments and have much greater potential to indicate changes in the surrounding

context.

Prior knowledge (presented in Section 2.1) and research [36] help to make an

initial screening of the variables to explore. Although the selection at this stage

is broad, doing so is favorable for analyzing the behavior of multiple observables

related to the solution’s performance. The main criterion for selecting a variable for

the exploration phase is that it could be affected by the degradation of the incoming

satellite signal, whether physically or computationally. Following the signal process-

ing task in the receiver, observables closer to the input area are more explicit in their

behavior. Whereas those close to the output usually have gone through correction

and estimation processes that hide the abnormalities in the raw signal. This last

scenario does not discard every variable at the final stages. Some measurements are

specifically to keep track of the performance’s quality or geometry between the satel-

lites and the receiver, or they are error calculations of the solutions or intermediate

estimates.

Considering the requirements and the receiver’s data availability, the variables

used for exploring the detection, along with the manufacturer description [144], are

presented:

• Carrier to Noise Density Ratio: It is an indicator of signal strength. It

helps to determine if the receiver can lock on to the carrier signal from a
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satellite. Units in db/Hz.

• Pseudorange residuals: Refers to the difference between the observable

pseudorange and the one computed from the estimated solution. It aims to

calculate how close the estimation and the observation are. The data is in

meters.

• Doppler Measurement: It captures the movement between the antennas

on the satellite and the receiver. It also carries information about the rate at

which the range between the satellite and the receiver changes. The measure-

ments are either in meters/seconds or Hz.

• DOP Measurements: It is a value that indicates the quality of the geome-

try placement of the satellites, the receiver, and the clock offset. Horizontal,

vertical, position, and time dilutions of precision help quantify the quality of

the solution. The values are dimensionless.

• Elevation: A measurement of the vertical angle between the surface and the

satellite. Units in degrees.

• Azymuth: A measurement of the horizontal angle between the satellite and

the north. Units in degrees.

• Number of visible satellites: Amount of satellites interacting with the

receiver. Not all of them are useful for the solution. The value is dimensionless.

3.1.1 GNSS Data Acquisition Implementation

The ZED-F9P module has multiple communication ports to connect with a host

CPU. It provides UART, SPI, I2C, and USB interfaces [145]. All of them can

output different message protocols as interfaces for the data contained in the receiver.

Specifically, the receiver uses the National Marine Electronics Association (NMEA)
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protocol and u-blox Propetary Protocol (UBX) to build most of its messages and

interact with external devices. This implementation uses the USB interface and

relies on the UBX protocol to get most of the variables, with some exceptions from

the NMEA protocol.

By default, the module outputs general information through its USB port. Mod-

ifying the receiver’s configuration is necessary to get the defined measurements for

exploration. The modification requires modifying the config register in the device

and setting proper values to meet the requirements. The recommended and most

handy manner of changing the configuration register is to use the U-center tool

[146]. This GUI application allows for easy manual setting of values for each item

and load to the device. The configuration adopted in this implementation consists

of the following:

• Only enabling the USB as a communication port, putting off the rest.

• Change the measurement rate for a specific number of updates per second.

• Activate the output of the messages containing the measurements of interest,

allowing one message per epoch.

Once the receiver sends the desired data, the complementary part is to read and

parse the messages in the host CPU. For that, a Python script runs to interact with

the Serial port and saves the collected data in the system as a file. The core tool in

this script, and for reading the messages from the module, is the pyubx2 package.

pyubx2 is a Python library to parse messages for u-blox GPS/GNSS devices [147].

It allows effortless interaction with the information given by the device by parsing

it into their respective protocol types.
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3.2 Analyzing the GNSS variables

Although the receiver provides the necessary variables in its messages, most are

unsuitable for direct exploration. The messages only transmit one variable at a

time and do not describe the complete state of the receiver at a particular time.

Additionally, the device outputs full messages that include a variable of interest but

also other variables that are not required for the analysis. Due to this, the next step

is to analyze the variables by applying two tasks to the acquired data. The first task

is feature extraction, after which only the data of interest will be available for the

next part of processing and performing the explorative analysis. After the second

task, the objective is to define the variables for the model inferring the transition

detection.

The initial challenge when extracting the features is how the device delivers

consecutive messages. One sample of the measurements is the value of those mea-

surements at a given time. That sample assumes all the observations happened

simultaneously and represents the receiver’s state at that particular moment. The

state is complete when all the measurements taken together integrate the sample,

and when one is missing, it should be null. A measurement from another instant

should not be part of a previous or posterior sample, even if the samples miss the

value to preserve the integrity of the state. The device does not send all the mes-

sages with all the variables in one transfer. Instead, it sends consecutive messages

corresponding to a particular moment and waits until the next epoch to repeat the

delivery. Thus, after reading the file containing the extracted data, it is necessary to

build batches containing measurement groups for distinctive moments by leveraging

the messages’ cycle.

The batches of messages are filtered and prepared for the second challenge, which

is to evaluate the adequacy of the variables for transition detection using explorative

analysis. For this task, visual inspection of the measurements’ behavior is crucial.
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The idea is to recognize observables that react to the context environment change

by inspecting how the time series changes (or not) while conducting an outdoor to

an indoor transition. Once initial potential is recognized, statistical descriptors can

help find patterns or consistencies between different scenarios. Even though after

completing this task, there is no evaluation of how well the variable could work

to detect the transition, it is relevant to select those attributes with potential and

deserve closer inspection and continue the process.

3.2.1 Feature Extraction Implementation

The batches start with the ID of the first message, setting it as the mark for the

completion of the cycle. A new list saves all the following messages. If that list

already exists, it goes into another one before replacing it. After this process, we

ensure that all the messages in one batch contain all the measurements describing

the receiver’s state at a particular time.

The goal of feature extraction is to get the exact attributes for the analysis from

the messages in each batch. The starting point for achieving this objective is to

create a Satellite object for holding the values of interest. A crucial attribute of

the Satellite object is the satellite ID. The ID consists of the GNSS constellation

number together with the satellite number. This object, specifically the satellite ID,

helps keep track of existing satellites in the receiver messages.

The core feature extraction process starts by reading each batch of messages

(receiver’s state at a given time) alone. Then, for each batch, it goes through

every message inside it. Once inside the messages, it is possible to extract the

designated variables for analysis using the name they have in the manufacturer’s

documentation. A temporary list stores the variables in a specific order to later

build a Satellite object using these variables as parameters for its attributes. If the

satellite ID already exists in the general satellite storage, then only the new features
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from that message are passed to this satellite. Otherwise, a new satellite goes into

the general storage. Special attention is necessary for the collective attributes (they

describe group characteristics) as they are collected once and then redistributed to

every satellite in the batch. The process result is a list with many lists containing

the batches. These batch lists have the satellites the receiver got at that particular

time represented by their attributes. In terms of rows and columns, the rows are

satellites, and the columns are the values of the observables for each satellite.

3.2.2 Explorative Analysis Implementation

The analysis looks at the receiver’s state during the context transition through

the variables captured in the data. Because the attention is on the receiver as a

whole, the variables that describe individual satellite characteristics should help to

reflect an overall picture of the interaction between the receiver and all the satellites.

Summarizing the individual measurements also aims to have a value describing or

representing the observable from the receiver’s perspective. Reducing the number of

features is positive when modeling the detection as long as the values are meaning-

ful and carry prediction potential. Together with the summarization values, other

variables already describing the complete picture of the receiver in their specific field

are evaluated.

Statistical descriptors help to summarize the individual measurements. The

descriptors chosen to represent the receiver’s state better were the mean and the

standard deviation. The reasons behind this selection consider the statistical but

also the functional interpretation. The mean represents the average value across all

the satellites and will move towards where most values are. The sensitivity to sparse

values will not represent a problem as long as it is stable. In practical terms, if the

context transition causes a considerable change in the measurement’s magnitude,

the number of visible satellites, or both, the mean will capture and reflect that
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effect. In another way, the standard deviation will capture how dispersed the values

from a group of satellites are. The focus here is to inspect how much the variation in

the values changes after the transition. For example, we can explore if, with a large

number of visible satellites, we can observe a larger sparsity in outdoor environments

(receiving signals from poor and good satellite geometry) than in close-to indoor

environments with less visible satellites giving degrading signals.

The function running the data pre-processing receives the file with the tabular

measurement data and groups the measurements using the batch number. Then,

for each sub-group, it takes the columns from the individual satellite measurements

and computes the mean and the standard deviation. Finally, it merges these values

with the collective receiver measurements and produces a single row representing

the receiver state at that particular time.

Each batch is equivalent to a unit of time in the receiver’s performance. The

next step for the analysis is to plot each variable as a function of time in a scatter

graph. These plots allow for a deeper inspection of the performance of each variable

during the experiments. A visual examination helps to analyze the behavior of the

observables clearly when conducting an outdoor-to-indoor transition. The expec-

tation is to find changes that indicate the receiver has gone from one context to

another. It is important to remark that the exact detection might not be reachable

at this stage. Nonetheless, a clear or growing differentiation of the measurements

when exiting the preferred outdoor location will indicate the potential for automatic

transition detection. The analysis provides variables useful for further exploration

of the detection model and insights into the strategy for the complete functionality.
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3.3 Building the Transition Detection Model using

OC-SVM and Delay Embeddings

The work in this design and implementation aims to use a machine learning model

that gets the receiver’s state at a specific time as input and determines if the device

has transitioned from an outdoor to an indoor environment. The goal is to have a

system simple to build and deploy that can adapt effortlessly to new contexts by

relying on the data it captures. Using a one-class support vector machine model

helps to reach the goal as it learns the distribution even from small samples in the

training data. Pairing this model type with a projection of the input data in the

phase space using delay embeddings allows it to take advantage of its characteristics

for novelty detection to analyze time series data.

One of the perks of using data learning algorithms is their ability to generalize,

meaning that they handle samples that follow the same distribution from the train-

ing input even when they have not seen them before. Nonetheless, to achieve notable

generalization performance in contexts with high variation and sparsity in the data

encountered, it is necessary to feed large amounts of data to get the complete rep-

resentation of the expected distribution as closely as possible. This situation poses

a challenge when data collection and labeling become difficult and expensive, and

it is almost impossible to get most of the variety to ensure acceptable performance.

Multiple strategies have been implemented in research to collect training data for

detecting outdoor to indoor transitions using a GNSS receiver. However, the nature

of the GNSS technology poses many variables that change the context for the mea-

surements the model can receive from time to time. Due to this, this methodology

aims to provide an alternative focusing on this challenge by selecting an algorithm

that can perform well with a low number of training samples and does not require

labeling them.
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The procedure to assess and evaluate the model performance includes a previous

step to collect data from known environments. Using data from the two states the

model has to differentiate helps to analyze how well the model is doing and if the

strategy is working as expected. An ideal scenario will be a model that correctly

classifies the data from the usual or outdoor environments as the positive class and

data from a different context (closer to indoors) as the negative class. This step also

helps to discriminate variables to decide which observable is the best to utilize for

the detection.

The steps to find the suitable strategy to build the detection model start with

projecting the time series data of all the features into the phase space using delay

embeddings. After that, the data is in vector form and suitable for training the

one-class support vector machine models. The training will use each feature from

the data of known environments to judge which produces better results to differen-

tiate the different contexts. After analyzing the results, the implementation of the

complete training and detection strategy will begin using data from scenarios where

the device is performing a movement that involves transitioning from an outdoor

environment to an indoor one. At the end of these steps, a method will emerge to

provide a system that detects outdoor to indoor transitions using GNSS receivers’

measurements.

3.3.1 Projecting the time series into the phase space using

delay embeddings

The idea to project the time series data into a new plane, as mentioned in [33], is

to make it suitable for using one-class support vector machines. Instead of having

a continuous signal that keeps extending over time, a sliding window captures the

state of the signal (embedding), placing that representation in the phase space using

other dimensions. The data becomes a set of vectors that can serve as the model
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input.

The method utilized to perform the projection is time delay embedding. This

process consists of "delaying" the measurements of the time series to construct a

higher-dimensional vector from them. The sliding window samples some measure-

ments (embedding dimension) separated by a particular time between them (time

delay) and keeps repeating for all available data. As a result, each window becomes

a point in the phase space. In complex systems, the projection can have physical

interpretations. In the context of this work, the projection will help to place the

points over a plane to use a machine learning model and identify outliers.

Using the examples in other research [33], choosing time delay embeddings comes

from having a method to represent a normal state from the receiver’s measure-

ments. The intention is to reproduce the device’s state in a high-dimension plane

where samples containing typical values lay together, allowing the model to learn

its distribution straightforwardly. In contrast, samples from abnormal situations or

deviations from the normality should be far from the others in the new projected

plane. Concretely, for the use case of outdoor to indoor transition detection, the

embedding process should help to capture the state of outdoor measurements with

points staying close when sampled. Putting observations close to indoors or not in

outdoors away from the initial open-sky ones.

Applying time delay embedding is simple but requires special attention when

selecting the necessary parameters. Given a time series variable, one can extract

a set of vectors containing samples from the time series separated by a specific

time between them. The size of each vector in the set is called the embedding

dimension m. Another way to describe this parameter is to see it as the amount of

measurements inside the sliding window. The name embedding dimension refers to

the number of dimensions of each individual vector in the set. The name for the

separation between each sample in the vector is time delay τ. The separation refers
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to how much time is between each measurement and is constant in each vector.

Selecting adequate values for these two embedding parameters is crucial. Some

applications benefit from a particular choice to unfold the behavior or a whole rep-

resentation of a system using one observable. In this work, the purpose of the

representation is to portray the system’s state at a particular time and context.

Thus, the selection of the embedding parameters will surge considering the sam-

pling rate of the messages coming from the receiver and the speed to analyze and

deliver a response from the measurements. At the same time, the time it can take

the device to notice a change in the environment will be part of the considerations.

The initial approach is to use an embedding dimension large enough to capture one

second of measurements in a vector and a time delay equal to the sampling rate of

the receiver. The implementation of the time delay embedding consists of grouping

the desired measurements in an array and placing all these vectors into a bigger one.

A final aspect of the projection is visualizing the resulting embedding. For

lower dimensions, it is possible to plot it directly, and for higher dimensions, a

dimensionality reduction technique helps to watch the new set of vectors. A visual

inspection also adds insights and valuable information to understand the behavior

of the variable.

3.3.2 Training a one-class support vector machine model for

detecting outdoor to indoor transitions

Building the embeddings completes the data processing stage. The output of the

data processing is ready to supply the inputs for modeling a novelty detection model

that is useful for detecting the moment of the transition from outdoor environments

to indoor ones. This work intends that the system computes the boundaries for de-

tection from the data directly, relying less on prior knowledge or hardcoded thresh-

olds. Two core challenges appear to accomplish this goal. The first is to evaluate the
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suitability of the data-learning methods for the specific use case, and the second is to

integrate the model into a complete process that analyses data during a transition.

The first strategy is collecting data from known outdoor and close indoor loca-

tions to evaluate how well the model behaves in this specific application. Measure-

ments that reflect changes or differences between the two environments should help

the model create a functional decision boundary and discriminate the values from

different sources. This task will also help to study the limitations on the amount of

data for training and the impact of hyperparameters on the data at hand.

The second strategy consists of acquiring data from actual trajectories while

going from outdoor to close to indoor locations. The goal here is to study and

decide on the complementary factors necessary to obtain the detection. The result

is a series of steps to integrate modeling and detecting while considering all the data

phases. This strategy will reflect aspects complementary to the detection alone but

with a considerable impact on the final transition flag decision.

One key feature this thesis explores is to avoid the requirement of labels in

the data for training the model. One part of solving that problem is to use a

model like a one-class support vector machine, which only requires samples from

the known target. The other is building the strategy to prepare the model before

the receiver-carrying system needs to use it. The proposal to solve this second part is

to collect training data while the device is known to be in an outdoor environment.

This acquiring phase ideally would be after the receiver has fixed satellites and

can compute acceptable position solutions. The detector system will dedicate a

small amount of time to capture and process data in this scenario and prepare it

to train the model. After that time, it will use that data for training, resulting in

a model that has learned how the outdoor environment data behaves. The model

will start to make inferences on new samples to evaluate whether they fall inside or

outside the decision boundary for common (outdoor) measurements. Consecutive
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negative samples should appear so that false detections or short transitions do not

affect the final decision. Therefore, the method in this work can adapt to multiple

locations. Nonetheless, it also carries other challenges and details that depend on

precise scenarios. For example, the amount of data for training might not be a

fixed parameter, and some scenarios need longer times to capture how the outdoor

measurements behave.

Training and evaluation OC-SVM

The core of the detection system is the one-class support vector machine model.

The objective of using this tool is to detect different data from the training samples.

The algorithm projects the data into a feature space and finds a hyperplane that

acts as a decision boundary between the positive and negative samples. The core

elements to explore when training the model are the following:

• A kernel function that controls how the model behaves in the feature space.

The gamma hyperparameter defines how much a singular training sample in-

fluences the solution. A high gamma value puts the decision boundary much

closer to the support vectors, and a low value creates a more linear boundary.

• The parameter ν is particular to one-class SVMs. This value corresponds

to the fraction of new regular samples outside the boundary.

The decision of the metric to evaluate the performance of the preliminary stage

(using known environments) is to use accuracy. This metric will help to know how

many correct detections on the data outside of the training samples the model has

done correctly, given that the model only outputs one decision. A good performance

exists when the model can classify most of the samples from the negative samples

accordingly. Most of the effects of false detection are mitigated by waiting for

consecutive sustained detections and not only single events.
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OC-SVM Implementation

The package scikit-learn [148] provides the algorithm to build OC-SVM models. The

script creates an instance and fits it using the training data. Once the model fits

the samples, the same instance allows inference on new data. Positive labels go to

data inside the decision boundary, and negative ones go to new samples dissimilar

from the training data. For accuracy computation, the script grabs the number of

negative detections and divides it by the number of samples in the indoor known

environment.

Implementing the complete transition detection system

After working on the previous phases, putting them all together allows using the

model for transition detection while the device is working in a real-world scenario.

The intention is to provide the advantages of this approach without affecting the

operation of the device carrying the positioning system. The steps for the transition

detection system in outdoor to indoor trajectories are the following:

1. Collect raw data and process it to extract features that represent the receiver

state.

2. Apply delay embedding to the time series data to create a new set of vectors.

3. Train a one-class support vector machine with data from a short window after

the receiver confirms having fixed data.

4. After training, use the model with new data from the receiver.

5. Raise a flag after classifying consecutive samples as negative. The flag indicates

that the device is no longer in the outdoor environment and has moved to a

new one (closer to the indoor).



4 Experiments and Results

4.1 Hardware and Software

The equipment for the experiments consists mainly of the GNSS receiver and the

computer host to process the device’s messages. In addition, in the scenarios where

trajectories are collected, a visual-inertial tracking camera is also part of the equip-

ment to capture auxiliary data to corroborate the movement and location of the

device.

The GNSS receiver is the ZED-F9P-02B-00 shown in Fig. 4.1, manufactured

by u-blox [143]. The receiver is on Sparkfun’s GPS-RTK-SMA breakout board. It

provides an SMA connector to attach an antenna. The device connects to the host

computer using a USB cable.

(a) Front View (b) Angle View

Figure 4.1: Pictures of the GNSS Receiver: ZED-F9P-02B-00
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The visual-inertial tracking camera is the Intel RealSense T265 [149] shown in

Fig. 4.2. The onboard fish-eye cameras and the Inertial Measurement Unit power

the tool to provide position-tracking in almost any context. The second experiment

uses this functionality to get the device’s x and y coordinates to help verify the

trajectory of the GNSS receiver.

(a) Front View (b) Angle View

Figure 4.2: Pictures of the Visual-interial tracking camera Intel RealSense T265

The software tools run in the host computer, and none has special requirements

to run. The following is a detailed description of the tools and their usage:

• Customizing the GNSS receiver’s configuration and messages: u-blox’s u-

center [146]

• Inspecting the GNSS receiver’s performance: PyGPSClient [150]

• Capturing and parsing the GNSS’s receiver messages in the host computer:

pyubx2 [147]

• Data processing tasks: NumPy [151]

• Data visualization: Matplotlib [152]

• Statistical computations and modeling: SciPy [153], Scikit-learn [148]
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• Verifying delay embedding computations: GTDA (giotto-tda) [154]

• Extracting pose coordinates from the visual-inertial tracking camera: pyre-

alsense2 [155]

4.2 Locations

The places to conduct the experiments are suitable for following trajectories that

start in an open-sky location and end close to the entrance of a building. The most

important aspect is to simulate how the device will behave if an application or use

case were working on an outdoor location and started transitioning to indoor.

• Location 1: Starts at an open-sky area in the middle of some buildings. Trees

exist only on one side of the trajectory. At the end, reaches a roofed place in

front of the building’s entrance.

(a) Location 1 Starting Point

(b) Location 1 Finishing Point

(c) Location 1 Map

Figure 4.3: Pictures of Location 1. In (c) the starting point is the blue marker, and
the finishing point is the orange one.
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• Location 2: Starts in a parking lot without cars around it. Low height

buildings and tress are around the starting place. It encounters trees and a

building before reaching the entrance door.

(a) Location 2 Finishing Point

(b) Location 2 Starting Point

(c) Location 2 Map

Figure 4.4: Pictures of Location 2. In (c) the starting point is the blue marker, and
the finishing point is the orange one.

• Location 3: It starts at the edge of the sidewalk and approaches slowly to

the building entrance. Only low buildings surround the trajectory.
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(a) Location 3 Starting Point

(b) Location 3 Finishing Point

(c) Location 3 Map

Figure 4.5: Pictures of Location 3. In (c) the starting point is the blue marker, and
the finishing point is the orange one.

4.3 Experiment 1: Exploring the best feature and

the model performance for detecting the tran-

sition

This experiment consists of using Location 1, visible in Fig. 4.3, to capture data

from known environments. First, the receiver is in an open-sky location, repre-

senting the outdoor state. The data is collected containing messages with all the

features selected for inspection. In this scenario, no movement happens, and all the

measurements correspond to the identical location. Then, the receiver is in a place

close to the entrance of the building, representing the almost indoor state or final

stage in the transition phase. By doing this, we ensure having two sets of data from

known locations and it allows us to assess the model’s classification.

The first step in this experiment is to parse and extract the features from the
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messages. After that, a visualization of the features over time, like the graph in Fig.

4.6, helps to explore their behavior in the two different scenarios.

The features portray the two states of the receiver using its measurements. The

expectation is that variables suitable for outdoor to indoor transition detection will

look very different in these two states’ comparisons. Although there are many ways

in which the features can show the difference, the main outlook appears to be the

magnitude the values take. In the case of the carrier-to-noise density ratio, the

difference in the value for the two states becomes visible clearly, for both the mean

and the standard deviation of the visible satellites at that moment. In a lesser

amount, it is noticeable with pseudorange residuals and the number of satellites.

Variables, such as the DOPs, Elevation and Azymuth, are lost once the receiver gets

too close to the building. This indicates that these variables are not suitable for the

detection. Finally, the Doppler effect also shows difference in the measurements,

but this variable is sensitive to the receiver’s movement and this can cause false

detection for scenarios where the device is in motion.

The next step is projecting the most promising feature using delay embedding

to observe if the difference continues in the phase space, as seen in Fig. 4.7. This

step also helps to prepare the data for training the model. The strongest difference

between the locations is shown with C/N0. When projected in the phase space, the

observations are in separate places. This reaffirms the strong indication that this

variable can help to detect the transition.

The model trains with a partial amount of the outdoor state samples. The

reasons for this are: not fitting the model with too much data and simulating the

initial run of the device when it starts functioning in the open-sky area. The model

stops training after fitting all the selected outdoor data. The main limitation of

this approach is that if the values of the variable change considerably after some

time, even if the device is not moving, the captured distribution will not reflect the
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Figure 4.6: Measurements values over time for all the captured features from the
GNSS Receiver. In red the observations from the open-sky location. In blue the
ones from the close to indoor location.
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Figure 4.7: Projection of the C/N0 measurements in the phase space using delay
embedding. On the left each point represents the mean C/N0 value of all the visible
satellites at a given time. On the left each point represent the standard deviation
C/N0 value for the same satellites

receiver’s state properly in that environment.

By limiting the amount of training data, the strategy tries to reduce the time

that is necessary to have the system ready for usage and to avoid putting limitations

on the general system performance. Because the model learns at the moment the

device is in the field performing its overall task, the goal of not creating challenges

or interruptions that can affect the primary objective of the device is key for the

development of the algorithm.

The model hyperparameters for training are in shown in Table 4.1. The lower

value for ν represents the low percentage of measurements that correspond to outliers

or abnormal points in the training sample, and the high values of gamma were

selected to increase the influence of a single sample, given the known certainty of

the class to which the training samples do and don’t belong. Finally, the model uses

the RBF kernel function for its proven performance [156].

The evaluation of the resulting model using the hyperparameters in Table 4.1 is

shown in Table 4.2. This results reflect the classification of the remaining outdoor

data and the samples from the close indoor location. Correct classification is cate-

gorizing as negative the data from the close to indoor samples, and as positive the
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Hyperparameter C/N0 Mean C/N0 Std

ν 0.05 0.05
Kernel function RBF RBF
Gamma 0.4 1.8
Stopping tolerance 0.001 0.001

Table 4.1: Hyperparameters for training a One-Class SVM model on known outdoor
data

data from the outdoor samples. The accuracy is really low when using the C/N0

Mean values, even if the model uses more than half of the training samples. When

looking at the plot in Fig. 4.7, is understandable that this is the case, because many

observations from the close to indoor location are overlapping the ones from the out-

door scenario. An important aspect in this case are the measurements that are far

away from the rest. On the other hand, when using the C/N0 Standard Deviation

values, the model does better and with much less training samples. Again, this is

very noticeable in the graph comparing the projections, as seen in Fig. 4.7.

% of outdoor data for training Accuracy
C/N0 Mean 51 0.52
C/N0 Std 31 0.74

Table 4.2: Results for the One-Class SVM model trained on known outdoor data.
The inference was made on data outside of the training samples. Accuracy means
classifying correctly observations from an outdoor context as positive, and close to
indoor samples as negative.

4.4 Experiment 2: Model performance for detecting

the transition during a complete trajectory

This experiment uses the three locations shown in Fig. 4.2 and takes the receiver to

follow three trajectories in each place. The paths for each trajectory are visible in

Fig. 4.8. It builds upon the findings of the first experiment described Section 4.3.
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In addition to training a model, this experiment also provides a test of the system

that raises a flag when it detects the receiver has gone under an outdoor to indoor

transition.

(a) Location 1 Trajectory

(b) Location 2 Trajectory

(c) Location 3 Trajectory

Figure 4.8: Trajectories map for Experiment 2. The blue mark is the starting point,
the orange one is the ending. Map image generated with Folium [157] and Map data
copyrighted OpenStreetMap contributors and available from [158]

.
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First, the receiver’s data is collected while following each of the defined trajec-

tories. Only the carrier-to-noise density feature is fully extracted and stored. As an

initial step, both the mean and standard deviation value are examined to decide on

which one to use to better identify the transition. After plotting their behavior dur-

ing each trajectory displayed in Fig. 4.9, and carrying a visual inspection, the mean

computation of C/N0 provides a clearer picture of the signal degradation at the

end of the trajectories, where is when the device is transitioning and getting closer

to an indoor location. At the same time, the visual-inertial camera tracking saves

the coordinates to follow the movement as an external verifying tool. The camera

coordinates and the position from the receiver will help place the measurements in

a more precise location in the trajectory.

Next, using the samples, a further analysis process projects the features, trains

the model on an initial sample, and classifies the rest of the measurements to see

if they are inside or outside the decision boundary. The embedding process uses

a dimension of value 3, and time delay of 1. The selection corresponds to having

a sliding window context of 1 second (because the receiver sampling rate is 3 Hz),

and consecutive measurements being part of the same set. The plots in Fig. 4.10

show the C/N0 values mean of the visible messages in its time series, and delay

embedding form. The colors represent 10 seconds windows to easily see where the

measurements fall in the projection. Given that the original embedding contains 3

dimensions, this visualization uses Principal Component Analysis (PCA) to reduce

it to two and still obtain a good look of the behavior of the observations in the phase

space.

The training strategy consists of using a limited time window at the start of

the collection, in this case, 30 seconds. This selection is not fixed and can change

according to each use case. By inspecting visually the 10-second windows and their

behavior on the trajectories, the value of 30 seconds appeared enough to capture the
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Figure 4.9: Behaviour of the C/N0 Mean and Standard Deviation measurements in
each of the locations.
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Figure 4.10: Behaviour of the C/N0 Mean measurements in each of the locations.
On the right the time series representation. On the left the projection in the phase
space. Each color represent a 10 seconds-window measurements. Plots on the right
are the PCA projection of the delay embeddings.
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regular performance of the receiver in these scenarios and a good initial selection to

continue the experiments. The existing samples from after the initial 30 seconds are

only used for classification and not training. The training process is identical in the

three trajectories.

The training hyperparameters selected for this model are shown in Table 4.3.

This selection results from observing the performance of the parameters on a spe-

cific sample. The main focus is to create a boundary that covers most, if not all, of

the training samples, but still allowing some degree of flexibility for small variations

around them. The low value of ν indicates the model the almost non-existent prob-

ability of samples outside the defined positive class, and the relatively low gamma

value helps to provide a more reaching boundary on the extremes.

Hyperparameter Value
Kernel function RBF
Gamma 0.05
ν 0.01
Training samples (time) 30 seconds

Table 4.3: Hyperparameters for training a One-Class SVM model on a 30 second
sample during the transition trajectories in the selected locations

The training result is a model delimiting a decision boundary that determines

samples coming from an open-sky (outdoor) location, and those that don’t. The

model captures the distribution from the training samples and classifies as positive

measurements similar to those inside the boundary. Concretely, the model will

capture the distribution of the 30 second window samples and data that fall inside

of it in the phase space will be classified as positive, and those that fall outside as

negative. Fig. 4.11 shows the model results over the trajectories data represented by

the decision boundary plotted in the PCA projection of the delay embedded samples.

The resulting model function encloses most of the training samples and defines what

is considered to be a normal measurement, samples outside the boundary will be

considered negative, or in this case, observations from a close to indoor location.
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Figure 4.11: Training data and results using C/N0 Mean measurements with a OC-
SVM model. The observations in red are the training data, and in green the rest
of the data. The decision boundary corresponds to the distribution learned by the
model. Plots on the right are the PCA projection of the delay embeddings.
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An algorithm (1) that raises a flag at the transition moment works as the real-

case application system to evaluate the second experiment. The main blocks of the

algorithm are model training and inference. In addition, it checks if the values of the

carrier-to-noise density are higher or lower than the maximum value in the training

samples because the values of this observable get lower when approaching indoor

places. The algorithm counts the number of detections, and after a considerable

number of them, it raises the flag for the transition at a particular time.

Fig. 4.12 presents the results for the trajectories in location 2 and 3. For location

2 the signal degrades very soon even before the device gets close to the building. One

reason for this behavior are the surrounding obstacles around the device after going

forward a few meters. This signal behavior causes the transition flag to raise very

soon, and then to deactivate as the signal goes back to normal levels after continuing

advancing another few meters. When the device gets close to the building the signal

starts degrading again, and the flag raises to indicate the transition. It is noticeable

that the signal does not recover after approaching the indoor context.
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Figure 4.12: Results of the transition detection for Location 2 (left) and Location 3
(right). They show the last detection made by the algorithm using the blue dotted
line. The first flag activation is shown by the orange dotted line, and the moment
of the deactivation of the first flag is shown by the brown dotted line.
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Listing 1 Transition Detection Algorithm for an incoming stream of measurements
Require: NewMeasurement
Require: TrainingSamplesSize
Require: WindowSize
Require: DetectionSamplesSize
isModelReady = False
SamplesCount← 0
SamplesWindowSet← Queue[WindowSize]
TrainSet← []
OldState← 0
NegTransCount← 0
PosTransCount← 0
CurrentState← 0
while True do

SamplesWindowSet.appendleft(NewMeasurement)
if SamplesCount < TrainingSamplesSize then

TrainSet.append(NewMeasurement)
else

if isModelReady = False then
TrainSetEmbedded← embedTrainSet(TrainSet)
model← trainModel(TrainSetEmbedded)
isModelReady ← True

else
if NewMeasurement < max(TrainSet) then

detection← model.predict(SamplesWindowSet)
if detection > 0 then

NegTransCount← 0
PosTransCount← PosTransCount+ 1
if NegTransCount = DetectionSamplesSize then

CurrentState← 1
end if

else
NegTransCount← NegTransCount+ 1
if NegTransCount = DetectionSamplesSize then

CurrentState← 2
TransitionMark ← SamplesCount

end if
end if

end if
end if

end if
SamplesCount← SamplesCount+ 1

end while
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For location 3 the algorithm goes through a similar scenario. The signal gets

a sudden drop, followed by an upward trend after it. This behavior activates the

transition flag and deactivates it as soon as the signal goes to normal levels again.

Finally, when the signal drops again the transition flag switch on, and because the

signal keeps getting closer to the indoor environment it does not go up again.

The results indicate at which point the algorithm flags the transition happening.

For location 1, Fig. 4.13 (a) shows the moment when the transition flag activates

from the time series perspective. It is noticeable that the flag raises after the signals

starts degrading. In Fig. 4.13 (b) the same transition flag appears but as a green

mark. The trajectory is built from the GNSS receiver’s position solutions. Here,

the green mark is located very close to the building (which is the final destination),

correctly indicating that the transition is happening and the device is close to enter

an indoor environment.
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Figure 4.13: Results of the transition detection for Location 1. Trajectory map image
generated with Folium [157] and Map data copyrighted OpenStreetMap contributors
and available from [158]. (a) shows the moment at which the transition flag is
activated using the blue dotted line. (b) shows the trajectory map and places a
green mark at the moment the transition flag is activated. The blue mark is the
starting point and the orange the finishing one.



5 Conclusion

The motivation for this work was to provide a new solution for detecting environment

transitions in the seamless positioning problem. The main focus was on adapting

to different locations without extensive specific configurations and on exploiting the

advantages of machine learning while reducing the cost of collecting and labeling

data and the computational load for the devices. The research and development in

this work tackle the previous challenges by providing evidence for using an unsuper-

vised data learning method with GNSS measurements. As part of this development,

the evaluation of GNSS observables to find a suitable variable that can help to de-

tect the transition, such as the carrier-to-noise density ratio, and the usage of delay

embedding on this data to prepare samples for training one-class support vector

machines provide initial steps onto the exploration of this approach for more robust

and complete systems. The proposed algorithm gives acceptable results for detect-

ing the transition between outdoor to close to the indoor environment in Location

1’s trajectory. The substantial factor for this result is that the carrier-to-noise den-

sity ratio successfully captures the degradation of the signal while getting closer to a

building. Nonetheless, in Locations 2 and 3, the algorithm struggles to provide more

consistency in the detection, and the degradation suffers multiple local minima and

maximums that make it difficult to determine the transition as one specific moment.

Surrounding infrastructure or tall objects appearing after the initial capture of out-

door data are the probable cause of the degradation of the signal before reaching
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the building. A longer time capturing the outdoor data or adding supplementary

margin to extend the boundary could be solutions to help in these situations. These

results show the limitations, and the potential for using this method in cases where

systems need to change or turn on or off their positioning systems according to the

environment they are in, specially in scenarios where that detection is challenging

due to the difficulty on choosing the right threshold, not having the necessary data

to feed complex alternatives, or even those methods not being able to perform in a

unknown environments for their models.

5.1 Future Works

The complications the developed algorithm found during the last trajectories indi-

cate that a more robust approach is necessary to account for multiple transitions

during the whole task. In addition, improvements in the data capture elements

could also benefit the system as the selected measurement will portray better the

actual state of the situation, and a deeper exploration of strategies to select the

hyperparameters model could increase performance on specific scenarios. Although

this thesis focuses on using only one variable to perform the detection, further work

can explore integrating multiple variables and combinations of many models to vote

and have a more complete decision. The use and positive performance of delay

embeddings with GNSS measurements can also indicate the benefits of applying

Topological Data Analysis to tackle the problem of detecting transitions and GNSS

positioning challenges in general. Finally, a more detailed exploration of integrating

the transition detecting system into a complete system will help exploit the benefits

and focus on aiding the overall goal.
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