
Combining languages using
metaprogramming — PScript

University of Turku
Department of Computing

Master of Science Thesis
Computer science

July 2024
Lassi Haapala

The originality of this thesis has been checked in accordance with the University of Turku quality assurance
system using the Turnitin OriginalityCheck service



UNIVERSITY OF TURKU
Department of Computing

Lassi Haapala: Combining languages using metaprogramming — PScript

Master of Science Thesis, 76 p.
Computer science
July 2024

This thesis introduces a novel multistage preprocessor solution, PScript. PScript is
built to improve upon the existing server-to-client relationship between PHP and
JavaScript. These improvements are presented through standardised design goals
and code-level PScript implementations. The improvements are achieved through
the PScript preprocessor, which introduces a set of additional features into the ex-
isting multistage environment. These features include direct improvements such as
scoping of existing JavaScript code and hygienic variable transfers between PHP
and JavaScript. Additionally PScript provides a set of features based on the con-
cepts of metaprogramming and multistage languages, e.g., conditional compilation
and expression injection. Ultimately, the thesis argues that through these features
PScript is able to improve upon the PHP-JavaScript relationship both in usability,
efficiency and clarity.

Keywords: metaprogramming, multistage-language, preprocessor, PHP, JavaScript



Contents

1 Introduction 1

2 Background 4

2.1 PHP: Hypertext Preprocessor . . . . . . . . . . . . . . . . . . . . . . 4

2.2 JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 PHP & JavaScript: A Meta-level relationship . . . . . . . . . . . . . 7

3 Metaprogramming 10

3.1 Metaprogramming methodology . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Macro systems . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.3 Metaobject protocols . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.4 Aspect-oriented programming . . . . . . . . . . . . . . . . . . 16

3.1.5 Generative programming . . . . . . . . . . . . . . . . . . . . . 17

3.1.6 Multistage programming . . . . . . . . . . . . . . . . . . . . . 19

4 Multistage languages 21

4.1 Multistage Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Implementation types . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Problems & Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 PScript: Introduction 30

i



6 PScript: Design goals 33

6.1 Clarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.3 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.5 Improvements and fixes to smaller issues . . . . . . . . . . . . . . . . 41

6.6 Metaprogrammability . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 PScript: Implementation 45

7.1 Language Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.2 Language Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2.1 Scoping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2.2 Hygienic Variable Transfer . . . . . . . . . . . . . . . . . . . . 50

7.2.3 Variable Cross-References . . . . . . . . . . . . . . . . . . . . 52

7.2.4 Conditional compilation . . . . . . . . . . . . . . . . . . . . . 54

7.2.5 Expression Injection . . . . . . . . . . . . . . . . . . . . . . . 55

7.2.6 Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2.7 Templates & Specialization . . . . . . . . . . . . . . . . . . . 59

7.2.8 Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8 PScript: Demonstration 64

8.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.2 Environment and Prerequisites . . . . . . . . . . . . . . . . . . . . . . 65

8.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9 Discussion 71

10 Conclusion 76

References 77

ii



1 Introduction

Metaprogramming [1] refers to the development of software programs that are capa-

ble of treating other programs as data. Meta-level programs, referred to as metapro-

grams, have the ability modify an existing child-program programmatically. This

ability enables programs, such as high level language compilers [2] to optimise, ab-

stract and even generate completely new source code for a designated target pro-

gram.

Metaprogramming as an industry tool has developed into a commonly used but

often resented methodology. On the one hand, metaprogramming provides devel-

opers with both powerful and high level control over the compilation and execution

of a designated target program. On the other hand, the resulting source code is

often deemed unreadable or too volatile to be used in a standardised professional

environment.

Despite the resentment, metaprogramming has made its way into commonly used

tools throughout the industry. Tools such as code analyzers, linters and optimizers

are a core part of modern software development. All of said tools rely on the power

of metaprogramming to deliver efficiency, standardisation and code readability to

their respective environments.

This thesis delves deeper into the above duality of metaprogramming and in-

troduces a novel metaprogramming solution in the form of a language preprocessor

— PScript [2]. The presented preprocessor solution employs the power of metapro-



CHAPTER 1. INTRODUCTION 2

gramming in a secure manner. The end-product is designed to meet the industry

standards, while pushing for the inclusion of additional metaprogramming features.

The thesis hones in on the existing language relationship between PHP [3] and

JavaScript [4] and argues that the relationship can be enhanced by employing a novel

preprocessor solution. The argument is based on the existing metaprogrammability

of client-side JavaScript code from a server-side PHP host. Much like a designated

metaprogram the PHP host is able to analyze and modify any deployed client-side

JavaScript code but much like other metaprogramming solutions, this ability remains

underemployed.

Consequently, the thesis presents PScript, a metaprogramming solution that en-

hances the PHP-JavaScript relationship with additional security and convenience.

Concurrently, the thesis presents a novel language preprocessor, PScript, that au-

tomatizes the security and employment of metaprogramming within the existing

language relationship. The presented preprocessor solution is shown to improve the

metaprogrammability of the language relationship, through the introduction of a

novel pseudo runtime inside the PHP host.

The thesis demonstrates PScript’s usability through code-level examples pro-

duced through a standardized PHP host server and a Chromium based client browser.

Each example is designed to meet different industry standards in both usability, ef-

ficiency and security. Based on the above design goals, the thesis demonstrates

that PScript can be included in any standardized PHP project to deliver immediate

improvements.

Concurrently the thesis introduces the concept of multistage languages [5]. Mul-

tistage languages cover the relationship between multiple programming languages

by considering them as stages of one meta-level language. Through the introduc-

tion of a novel PScript runtime, the thesis demonstrates how the PHP-JavaScript

relationship can be considered as a singular multistage language. Furthermore, the



CHAPTER 1. INTRODUCTION 3

thesis demonstrates how the created multistage language can be used to introduce

a set of novel metaprogramming features into the PHP-JavaScript relationship. [1],

[2], [5]–[10]



2 Background

This thesis seeks to improve upon an existing meta-level relationship between PHP

[3] and JavaScript [4]. Both languages have been popularised throughout the years,

especially in web development. Together they dominate the majority of web based

applications and, therefore, share a common place in the modern web development

landscape.

PHP and JavaScript commonly interact in PHP-based web applications. PHP

acts as the server-side rendered scripting language that makes up the core of an

application, while JavaScript handles client-side interactions between the browser

and the PHP-based server interface. PHP is, therefore, responsible for providing

the client-side browser with pre-compiled JavaScript source code. The JavaScript

source code is, in turn, modifiable programmatically via the PHP runtime. The

modifications can occur during the deployment of the JavaScript payload, during

which the lexical source code is exposed to the PHP runtime. [3], [4]

2.1 PHP: Hypertext Preprocessor

PHP: Hypertext Preprocessor (PHP) [3] is an universal scripting language originally

developed for the purpose of simplifying web development. PHP, written in C,

was developed in 1994 as a Common Gateway Interface binary for the purpose of

simply tracking site visitations. After its original purpose was fulfilled, PHP was

open sourced and the language’s development was taken towards a general purpose



2.1 PHP: HYPERTEXT PREPROCESSOR 5

programming and scripting language. The version of PHP popular today took heavy

inspiration from C, PERL and similar languages of the time, in order to create an

effective toolkit and scripting language for web development.

Modern PHP is maintained by the PHP foundation [3] and the language has

become one of the most popular languages in web development. PHP, as the name

entails, is ultimately a scripting language with the ability to process and deliver

server-side generated HTML and JavaScript code. The modern PHP, however, has

grown to support the many paradigms expected of a modern general purpose pro-

gramming language. These include programming paradigms such as object oriented

programming, functional programming and metaprogramming.

The core PHP language has acknowledged and implemented prominent metapro-

gramming features that become key considerations when implementing a new so-

lution into the PHP environment. For instance, one of these metaprogramming

features is PHP’s ability to evaluate code dynamically during runtime. PHP’s eval

function can digest a string of PHP code. It then proceeds to evaluate this string

as PHP code, including syntax validation. The eval function therefore allows for

dynamic code generation via lexical manipulation of a source code string. The ex-

ecution of an eval function is also able to pass variables into a separate context

where the lexical statement of the new variable is evaluated.

Additionally PHP supports a host of interactive functions that allow for the

modification and observation of runtime objects. For instance the invoke, get,

and set functions belong to a set of magic functions that can interact with objects

during runtime. With the get function, object attributes can be analysed and

reflected against, allowing for dynamic meta-level behaviours during runtime. The

set magic function allows for the addition and generation of new object attributes

at runtime. The invoke function blurs the lines between objects and functions,

allowing objects to be called as if they were functions. [3], [11]



2.2 JAVASCRIPT 6

2.2 JavaScript

Originally developed in the late nineteens for the growing user-base of the newly

founded world-wide-web, JavaScript [4] remains one of the core languages of modern

web development. During the time of its creation JavaScript was meant to bring

interactive functionality to so far statically served web pages of the www-era. The

language was, therefore, designed to be an approachable piece of technology, with

the ability to bring the functionality of the web to the masses. JavaScript was

developed with a high-level language syntax that would enable interacting with the

web technologies of the time, i.e., HTML and CSS.

After its initial development, JavaScript has seen many changes, but the purpose

of the language has remained more or less the same. A great majority of modern

web applications employ client side JavaScript to allow for effective user interaction

inside a client-side browser. Together with the aforementioned standards of HTML

and CSS, JavaScript, therefore, enables the modern web to be interactive and user

friendly.

In the late nineteens JavaScript was far from being a standardised language.

During its popularisation JavaScript was brought to ECMA international [4] to

achieve a unified standard for the growing language. The developed ECMAScript

standard [4] would become the future standard and core of the JavaScript language.

Modern JavaScript continues to follow the standard while the standard itself has

evolved together with the language over the years.

The effective standardisation allowed JavaScript to branch out into new devel-

opments around the now solid core language. Modern web development frameworks

such as React rely on a form of JavaScript both for server and client side function-

ality. On top of this, JavaScript’s popularity has also been pushed by modern web

server solutions, such as the Node web-server. Node enables JavaScript to be used

as a fully functional server-side language.



2.3 PHP & JAVASCRIPT: A META-LEVEL RELATIONSHIP 7

Through the language’s evolution, modern JavaScript has, therefore, become a

fully fledged multi-paradigm language. Some of its features have evolved to support

native metaprogramming inside the JavaScript runtime. For instance, JavaScript

supports a metaprogramming concept it refers to as Proxies [12]. Proxies are run-

time callback handlers that hook into the native functionality of runtime JavaScript

objects. Through proxies JavaScript can, e.g., intercept a function call and dynam-

ically change its functionality based on the runtime environment and state of the

caller object.

Similarly, a JavaScript object can employ self reflection at runtime through the

native Reflect library [12]. Through reflection a language object can analyse and al-

ter its execution dynamically based on its own runtime state. Therefore, JavaScript

code can create dynamic behaviours based on the structure of the objects gener-

ated at runtime, effectively furthering the languages ability to be metaprogrammed.

[4], [12]

2.3 PHP & JavaScript: A Meta-level relationship

PHP and JavaScript share a meta-level relationship. The two languages execute in

separate environments, i.e., on the client and the server-side. PHP takes the role of

the server-side language that sources, generates and serves the client-side JavaScript.

[3], [4]

Regardless of the separate runtime environments, the two languages can still

interact through the meta-level relationship provided by their shared lexical envi-

ronment. A PHP source file can contain both PHP, JavaScript and other embed-

ded languages, namely HTML and CSS. The JavaScript inside a PHP source file

is separated into its own lexical scope, inside a <script> block. The PHP run-

time is, however, able to interact with the contents of this script block during the

server-side runtime. PHP is, therefore, given the ability to operate on the lexical



2.3 PHP & JAVASCRIPT: A META-LEVEL RELATIONSHIP 8

nature of JavaScript. This interaction can be considered as a meta-level relation-

ship, where PHP is able to affect the underlying generation and future execution of

the JavaScript code. [4], [11]

The meta-level relationship is further enhanced by the fact that PHP and JavaScript

operate in different runtime environments. The server-side execution and evaluation

of the PHP code provides a completely separate step for metaprogramming. During

the evaluation of PHP code the client side JavaScript can be analysed and modified

before the final code is staged for deployment. Therefore, through the meta-level

relationship an organic multistage language and compilation are born [5]. The first

evaluation happens during the interpretation of the PHP server-side code and the

second phase is executed on the client-side JavaScript browser.

The generated JavaScript block is executed normally on the client-side browser.

The execution is based on the standardised JavaScript syntax that PHP runtime

has to conform to during the modifications of the script blocks. PHP, however, does

not have a syntax-level understanding of the underlying JavaScript code, making

modifications dangerous. [3], [4]

Regardless, the multistage nature and metaprogrammability of the two languages

can be utilised in different ways. For instance, the separated runtime allows PHP

to pass static variables to the underlying JavaScript before it is deployed to the

client-side for execution. Similarly, conditional evaluation can be achieved through

wrapping a block of JavaScript inside a PHP if-clause. In this way PHP can deter-

mine, on a lexical level, which JavaScript code is sent for evaluation on the client-side

browser. [3], [4]

However, here stand the limits of this relationship. The lack of syntactical under-

standing makes variable exchange and other existing metaprogramming features un-

reliable at best. The metaprogramming itself is additionally only achieved through

string operations provided by the PHP language. The hacky nature of these opera-



2.3 PHP & JAVASCRIPT: A META-LEVEL RELATIONSHIP 9

tions makes the utilisation of the organic interoperability buggy and often unusable.

For instance PHP needs to utilise the echo and print statements in order to interact

and modify the JavaScript during runtime. Such actions cause side-effects and are

therefore commonly considered an anti-pattern in the PHP development community.

Similarly, more uncommon features of the relationship, such as PHP’s ability to de-

fine JavaScript variables and functions, often manifest themselves as a gimmicky

side-effect of the server to client side relationship, limiting their effective usability.

This thesis, therefore, argues that with additional improvements upon the ex-

isting meta-level relationship one can grow the relationship towards an effective

and safe metaprogramming interface. Only by building upon the organic metapro-

grammability between the languages, one can create natural, yet powerful metapro-

gramming features between the two languages. With sufficient security and relia-

bility through, e.g., custom syntax, the effectiveness of the relationship can also be

maximised while the downsides are minimised. The actions toward this enhancement

are further described in the following chapter.



3 Metaprogramming

Metaprogramming [6] can be defined as the development of software programs that

are capable of accessing and treating other programs as data. Such programs are

referred to as metaprograms. Metaprograms possess the ability to act as parent

programs that are capable of analysing and operating upon the lexical nature of a

child program. In more concrete terms, this ability enables a parent program to

interact and operate upon a child program’s source code.

The parent program is able to employ this ability in a plethora of different ways.

The parent can, for instance, generate new program code directly into the source

code of the child program. Furthermore, this generation can occur either by modi-

fying the existing source code of the child program or by inserting completely new

code into the child program’s source code. Other meta-level methodologies available

to the parent program include macro expansion, aspect oriented programming and

meta-level traits. Metaprogramming methodologies are further discussed in chapter

3.1.

The parent program’s ability to modify and interact with the child program

results in a meta relationship between the parent and the child program. In this

relationship the parent program is referred to as the metaprogram [1], as it pos-

sesses the ability to metaprogram the child. Often the child program is referred to

as the subject program [1], as it is subject to the meta-level changes orchestrated

by the parent of the meta-level relationship. With the above terms, metaprogram-



3.1 METAPROGRAMMING METHODOLOGY 11

ming can be defined as the programmability of a meta-level relationship between a

metaprogram and a subject program.

A metaprogram and the subject program it has control over can interact through

their relationship on many different levels. The meta-level relationship, therefore,

has the ability to alter and affect all stages of a metaprogram’s life cycle. [1], [6],

[10]

3.1 Metaprogramming methodology

Metaprogramming methodologies can be classified into different categories based on

the different metaprogramming features and methods employed in the meta-level

relationship between the meta and subject program. For instance, at the core of

metaprogramming lies the creation of macros [1], [13], which were first popularised

by their inclusion in the C-preprocessor and LISP language. Macros rely on the

generative aspects of metaprogramming, while enabling the dynamic creation of

additional source code. On the other hand, many high level modern languages like

Python support reflection, which allows the subject program to inspect and act upon

its own runtime structures.

The different metaprogramming methodology categories, therefore, target spe-

cialised problems within the field of software development. The problems can vary

from, e.g., automatic code generation to the separation of concerns. Based on the

goals of the metaprogramming system and the used methodologies, a metaprogram

can be split into the following six categories: macro systems (macros), reflection,

metaobject protocols, aspect-oriented programming, generative programming and

multistage programming. [1], [6], [13]



3.1 METAPROGRAMMING METHODOLOGY 12

3.1.1 Macro systems

Macro systems, or macros [13], are language level features that allow a developer to

generate additional code inside a subject program. The underlying idea is to expand

the subject code’s functionality at run-time, by allowing the developer to compile

meta-level structures onto the subject’s source code. These meta-level structures,

referred to as macros, are often embedded in the source code itself and employed

through an external compiler such as a preprocessor.

The generation of subject code through meta-level macro structures is referred to

as macro expansion [13]. In macro expansion the pre-defined macro code is expanded

into the underlying subject program’s source code. The expansion is done according

to the employed macro language. During macro expansion the subject language

is processed by a macro expander, which parses the high level macro structures

into the subject language, acting effectively like a compiler or a transpiler. The

process of macro expansion is iterative: the parsing is continued until all macro

level invocations and structures are mapped into valid subject-level syntax. After

the macro expansion is complete, the remaining subject language code is ready for

compilation and execution by the subject language compiler.

Macro systems can be split into two categories based on how the macro expansion

and macro level structures are employed. Lexical macros [13] are the first of the

two categories. These kind of macro systems were originally introduced with the

C-preprocessor. Lexical macros operate on a very basic lexical, i.e., textual level

inside the subject code. Lexical macros provide macro expansion by examining the

subject code as a sequence of tokens. The approach makes lexical macro expansion

language agnostic but dependent on an external macro processor; the C-language

and the C-preprocessor are a well known example. A macro processor executes

macro expansion by examining the subject language for macro tokens and then

transpiles them into syntactically correct subject language code. [13]



3.1 METAPROGRAMMING METHODOLOGY 13

Syntactic macros [13], the second category of macro systems, are aware of the

subject language’s syntax. This makes them language specific structures often em-

bedded into the subject language itself. For instance the Lisp language allows the

developer to treat any piece of subject code the same as any internal data structure.

This approach enables syntax aware macro expansion natively inside the subject

language itself. Syntactic macros, therefore, remove the reliance on an external lan-

guage processor, while requiring both subject and meta-level syntax knowledge from

the subject language compiler. [13]

Additionally, macro systems can execute macro expansion either in a procedural,

pattern based or hygienic manner [1]. All three define additional features any macro

systems can employ depending on their implementation. In procedural macro ex-

pansion, a macro system can generate subject code based on internal computations

of the language processor, which are based on macro invocations. Pattern based

macro expansion is purely based on the replacement of macro syntax according to

internal substitution mappings of the macro system. [1], [6]

Hygienic macro expansion is a solution to an inherent problem created by the na-

ture of macro expansion. When a macro system expands the macro syntax, variables

or other namespaces generated by the expansion can conflict with the underlying

subject code. The problem is referred to as variable capture. In order to solve

the variable capture problem, macro systems need to hygienically generate reserved

subject language names during the macro expansion process. In hygienic macro ex-

pansion, a macro system effectively renames reserved names generated by the macro

expansion. The renaming is done in a way that guarantees that it does not conflict

with the underlying subject code. Scheme was one of the first languages with a

hygienic macro system, after which hygienic macro expansion has become a stable

feature of any generative metaprogramming solutions. [1], [6], [13]



3.1 METAPROGRAMMING METHODOLOGY 14

3.1.2 Reflection

Reflection [1], [14] refers to a software system’s ability to reflect upon its own struc-

ture and act upon that structure. Effectively this allows a reflective metaprogram-

ming system to perform computations on its own behaviours during run-time. A

reflective metaprogramming system is able to adjust its internal behaviour based on

the dynamic requirements of its own execution. [1], [14]

The most basic form of reflection is the ability for introspective reflection [14]. A

system that supports introspective reflection is able to read its internal meta-level

structures during runtime. The ability to reflect upon the metaprogram’s own self-

representation allows the introspective system to change the course of subject code

execution, based on the state of these structures. For instance, an introspective

system can alter subject code execution depending on if a runtime object contains

a certain required attribute. [1], [14]

On the other hand, reflective systems can also have the ability to alter their

self-representation during runtime. This ability is referred to as intercession [14]

and it describes a reflective system’s ability to modify its internal structure during

the subject code’s execution. [1], [14]

Introspection and intercession are tightly tied together. A reflective system that

can employ both introspective and intercessive reflection can both observe and mod-

ify its own meta-level structures during runtime. These meta-level structures, such

as class attributes, remain otherwise inaccessible to regular subject code after initial

compilation. However, a fully reflective system can, e.g., dynamically generate a

class attribute if it determines it as missing. [1], [14]

A software system’s ability to reflect upon itself can further be described based

on the nature of the reflection itself. Structural reflection [14] allows the system

to act introspectively against the structure of the subject code. Structure in this

context represents the runtime structures defined by the subject code, e.g. classes,



3.1 METAPROGRAMMING METHODOLOGY 15

methods and the internal attributes of these objects.

Software structures, on the other hand, create certain behaviours during their

execution at runtime. Behavioural reflection [14] allows reflective systems to inter-

act with and hook into these behaviours during runtime. Behaviorally reflective

metaprogramming systems can, e.g., execute code during certain variable assign-

ments, object creations or method invocations. [1], [6], [14]

3.1.3 Metaobject protocols

Metaprogramming can be embedded in the creation of a programming language.

Such metaprogramming languages can expose powerful metaprogramming paradigms

to the underlying subject language. Metaobject protocols (MOPs) [1], [10], [15] are

an example of one such paradigm.

Metaobject protocols enable a metaprogram to interact with and alter the un-

derlying object system of the subject language. In order to achieve this, MOPs need

to employ meta-level APIs provided by the subject language itself. This approach

enables the metaprogram to affect the underlying object system at the level of the

subject language definition. Such access enables a metaprogram to implement fea-

tures such as reflection, presented in section 3.1.2, but also gives it the ability to

alter classes and object structures during runtime. [1], [15]

With meta object protocols a language can be considered to have meta-level class

definitions that all subject language structures inherit from. The meta-level classes

[10] are exposed to the metaprogram via the subject language’s API. By modifying

meta-classes and their behaviours, the metaprogram can modify all regular classes

of the subject language. Therefore, the regular subject classes can be considered

as instances of the meta-class, i.e., meta-objects. In this structure meta-classes are

responsible for the behaviour and structure of the underlying meta-objects, allowing

the metaprogram to populate the meta-objects with, e.g., new methods by modifying



3.1 METAPROGRAMMING METHODOLOGY 16

the meta-class. [6], [10]

The above approach is indicative of meta-class based MOP systems. Some of the

initial systems implementing the MOP methodology were Smalltalk and LISP, while

modern examples contain, e.g., the Python MOP system [1]. Other approaches to

MOPs include the metaobject-based MOP systems [1]. In the metaobject based

approach the generated metaobjects share a common subject class for structural

purposes, but their behaviours are defined by separate meta-level objects. [1], [6]

3.1.4 Aspect-oriented programming

Aspect-oriented programming (AOP) [1], [16] is a metaprogramming method that

seeks to deal with the complexity of software development. Software development

often deals with a large amount of concerns or features that increase the complexity

of the subject program. This complexity needs to be effectively managed and limited

where possible. AOP systems employ metaprogramming methodologies to limit the

complexity of the subject program by targeting especially so called crosscutting

concerns in the subject program. [1], [16]

Crosscutting concerns [16] refer to concerns that are common between different

features of a subject program. AOPs split these concerns into separate and modular

units referred to as aspects. The underlying idea is to insert these aspects into

specific points in the subject program, called join points [16], at meta-level. The

approach aims for allowing developers to express cross-cutting concerns in a modular

way. [1]

Each aspect contains the program logic of their given concern and identifying in-

formation. This information referred to as advice, will be inserted into join points in

the subject program based on predefined matching criteria. The process of connect-

ing the meta-level aspects with their matching pointcuts is referred to as weaving.

[16]



3.1 METAPROGRAMMING METHODOLOGY 17

Weaving is a separate process specific to the metaprogramming of AOPs. Weav-

ing is often accomplished with a separate compiler outside of the subject language.

Such a separate compiler is referred to as an aspect weaver and it is used with static

AOP, where the meta-language and subject language are separate. Dynamic AOP,

on the other hand, allows for more freedom in terms of aspect weaving as the weav-

ing occurs during runtime. Dynamic AOP has a larger overhead and is less efficient

than static AOP. [1], [16]

Seen from the lens of the subject language, AOPs effectively insert code defined

on a meta-level to certain points in the program’s execution. Each aspect can be

inserted either around, before or after a pointcut matching the criteria of the weaved

aspect. The code itself can contain anything from method and variable declarations

to code meant to be executed, e.g., before a certain function call. This feature makes

AOP an effective measure of delivering metaprogramming solutions to subject code.

However, AOP weaving often already relies on existing metaprogramming methods,

highlighting the convoluted nature of the topic. [6], [16]

Aspect oriented programming can be considered a form of meta-level reflection,

as discussed in 3.1.2. While reflection is an overarching solution targeted at meta-

level problems, AOP is an example of specialised metaprogramming. AOP enables

the management of crosscutting concerns with straightforward and safe results, while

knowingly sacrificing the expressiveness of other algorithmic methods. [1]

3.1.5 Generative programming

Generative programming [1], [16] refers to a programming paradigm that seeks to

enable automatic manufacturing of an end-product’s subject code. To achieve such

a goal the paradigm requires software systems to be organised in elementary and

reusable components. Organising the software in this manner enables the generation

of arbitrary yet often highly specific subject code with its own requirements of



3.1 METAPROGRAMMING METHODOLOGY 18

optimization and domain specificity. [1], [16]

Template systems [17], such as the C++ templates, are a common representa-

tive of generative metaprogramming. Template systems enable metaprogramming

through the creation of template structures, e.g., the skeletal structures of classes

and functions. Templates are then fulfilled through concrete parameters allowing

for subject code generations and generalisation. Templates create a strict, yet safe,

environment for the generation of source code, since they enforce subject code gen-

eration through well structured templates and in turn disallow the generation of

other free form subject code. [17]

AST transformations, on the other hand, allow for the generation of arbitrary

subject code. In AST transformations subject code is generated through injected

quasi-quotations that are evaluated into effective subject code [1], [6]. Subsequently,

systems that enable AST transformations also enable the meta-level system to tra-

verse the AST in order to enable further metaprogramming structures. Such AST

transformations can also present themselves in the form of code annotations. Code

annotations modify the compiler’s interpretation of the subject code, allowing for

the generation of compiler level changes to the evaluated source code. [1], [6]

In a similar manner some generative metaprogramming systems enable compile-

time reflection in order to achieve subject code generation [9], [16]. The main in-

centive of compile-time reflection is the reliance on existing code structures in order

to achieve static type safety inside the generated source code. For instance, dur-

ing compile-time reflection the metaprogramming system can alter the way generic

classes are compiled based on certain predicates, resulting in the conditional gen-

eration of differing subject code. Similarly some systems allow for the traversal

of the AST enabling compile time analysis of meta-level structures and therefore

conditional generation of subject code. [9], [16]

A more common approach to compiler level code generation is the employment



3.1 METAPROGRAMMING METHODOLOGY 19

of Class compositions [1]. Class compositions refer to meta-level structures that

enhance existing subject code classes through external code injection. Traits and

mix-ins are, therefore, a common form of generative metaprogramming. Traits are

type safe extensions to existing class structures that enable the insertion of arbitrary

functionality, e.g., in the form of additional class functions and variables. Traits

are evaluated during a class’s compilation, enabling further functionality without

affecting the type safety of the subject class. Traits, therefore, enable compiler level

code generation without the need to further access or traverse the AST. The logic

of traits can be further extended to feature-oriented programming, where traits, i.e.,

features are able to extend and create new classes inside subject code while retaining

type safety. [17], [18]

3.1.6 Multistage programming

Multistage programming [5], [7], [9] introduces the concept of program evaluation

levels. The underlying idea is to split a source program into different stages, each of

which are meant to deliver a version of the compiled subject program. Each stage

is evaluated separately based on the pre-defined staging annotations inside each of

the evaluation stages. Staging annotations [5] refer to the meta-level structures that

specify the order of evaluation between different program stages. The annotations

effectively enable the creation of delayed, future stages within a subject program.

[5], [9], [19]

Multistage programming enables metaprogramming through the means of partial

evaluation and program specialisation. Through the different stages of the source

program, a generic program can be specialised into a highly specific program using

parameterization [17]. In parameterization the source program is organised in a

generic fashion allowing for the explicit specialisation in future stages of the multi-

stage compilation process. The specialisation is, in turn, executed throughout the



3.1 METAPROGRAMMING METHODOLOGY 20

compilation of the separate program stages. On top of enabling specialisation this

approach also removes load from the runtime stages by moving program specialisa-

tion and functionality into the compilation of the metaprogram. [1], [17]

Partial evaluation [8] is another metaprogramming approach specific to mul-

tistage programs. In partial evaluation the source program contains specific areas,

such as quasi-quotes, that define the delayed stages inside the source program. When

the designated partial evaluation stage occurs, newly generated subject code can be

injected into the generated source stage. This evaluation can happen in the cur-

rent stage of the multistage cycle, making partial evaluation a tool similar to macro

expansion. The separation between the two methods remains in the technique of

definition. Whereas macro systems use meta-level syntax in order to define the

syntax of the macro expansion, the multistage programming approach uses it to

define the borders of the delayed stage, in which the compilation of the generated

multistage source code occurs. [1], [8]

Furthermore, multistage programming implementations can differ in their ap-

proach to the count and definition of the separate evaluation stages [1]. Many mul-

tistage approaches that implement the meta-level structures necessary to support

multi stage programming also support an infinite number of evaluation stages. Some

of these approaches limit the number of stages, for instance, to exactly two. Enforc-

ing limitations effectively limits the complexity of the multistage program, but with

the added cost of also limiting the employment of other meta-level benefits. [1], [9],

[19]



4 Multistage languages

Multistage languages [5], [8], [9] are ones that support the multistage programming

paradigm discussed in chapter 3.1.6. As a metaprogramming paradigm, multistage

programming provides an avenue for the meta-level manipulation of a language’s

source code. In a multistage language based approach, the subject language con-

sists of one or multiple individual language stages. Therefore, a multistage language

structure occurs when a parent program has the ability to create delayed child stages

and affect their compilation. In the context of multistage languages the parent pro-

gram, i.e., the metaprogram can be referred to as the metastage. Similarly, instead

of a singular subject program, a multistage language can have multiple subject

stages inside the meta-level relationship. Multistage programming can, therefore,

be further defined as the organisation of a metaprogram into multiples of meta- and

subject stages that all share a meta-level relationship. [7], [9], [19]

4.1 Multistage Methodology

The creation of a multistage language begins with the separation of stages. In stage

separation, i.e., staging, a source program is split into multiple stages according

to the principles of metaprogramming and multistage programming. The goal of

program staging is to reduce the cost of runtime load that is often associated with

other methods of metaprogramming and dynamic code generation. [5], [8]

In order to implement staging, a multistage language requires a functioning



4.1 MULTISTAGE METHODOLOGY 22

methodology for stage generation, evaluation and execution. Many modern lan-

guages support some features of metaprogramming but lack the core features re-

quired for the generation of a multistage language. For instance, in order to create

delayed subject stages a multistage language requires the ability to create a zone

of delayed execution inside the initial meta-level stage. Through delayed execution

multistage programming can then take hold and the language naturally constructs

itself into meta- and subject stages. Similarly, the delayed subject code requires a

method of dynamic evaluation and thereafter execution in order to become func-

tional. In order to implement the above functionalities, the language needs to first

support staging through native structures or implement them through a separate

multistage language generator. [5], [8], [9]

MetaOCaml [5], [8] is an early adopter of the multistage language approach. The

language implements the required features of a multistage language mainly through

native language syntax. In MetaOCaml a delayed execution can be constructed with

the Bracket syntax (.< subject-code >.). The brackets act as staging annotation,

marking the syntax inside them for later execution. [5], [8]

# Normal assignment -> int = 7
let a = 3+4;;
# Delayed assignment -> code = .<3+4>.
let a = .<3+4>.;;

Listing 4.1: MetaOCaml Quasi-quotations.

In the above code example 4.1 a variable definition is executed first in a regular

arithmetic fashion. Then the same operation is executed using the bracket syntax.

The commented results demonstrate how the simple arithmetic operation is executed

immediately while the bracket definition is stored as a code entity for later execution.

The same operation inside the bracket syntax is, therefore, delayed until a future

operation compiles the result of the delayed clause. Hence, this approach can be

used to create the required subject stages of the multistage language.



4.1 MULTISTAGE METHODOLOGY 23

In MetaOCaml the execution and evaluation of delayed operations occur through

the run syntax. The run syntax enables a stored or dynamically generated statement

to be evaluated and executed at an arbitrary stage of the multistage program. In

this context the execution can occur on any of the subject stages generated after

the initial meta-stage. [5], [8]

The metaprogramming capability of a multistage language can be further im-

proved by enabling nesting and just-in-time (JIT) compilation of the delayed state-

ments. In the context of multistage languages, nesting refers to the meta-stage’s

ability to store uncompiled code in subsequent layers. Just in time compilation, on

the other hand, refers to the program’s ability to compile a piece of subject code

dynamically when evoked upon. [5], [9]

In MetaOCaml these features are provided through the usage of an escape state-

ment (. staged-code). The escape statement effectively allows for the nesting of

existing delay fragments into a combined expression. When the expression is evalu-

ated it JIT compiles any references to included staged fragments, creating the final

statement. [5], [8]

# Delayed assignment
# int code = .<3+4>.
let a = .<3+4>.;;

# Nested assignment:
# code = . <(3+4) * (3+4) >.
let b = .<.~a * .~a >. ;;

# Executed operation
# int = 9
let c = .! b;;

Listing 4.2: MetaOCaml language features.

In the above example 4.2 the variable a is first initialised with a delayed state-

ment, containing an arithmetic operation. Statement b is thereafter initialised with

another delayed operation, however, the delayed stage now contains references to the

delayed operation a. As demonstrated by the comments, the nested statements are



4.1 MULTISTAGE METHODOLOGY 24

evaluated into the context of statement b, which remains as a delayed statement.

The value of b can thereafter be resolved using the run operator, as seen in the

assignment to the variable c. Once the delayed statement is evaluated through the

run operator the delayed operation is first compiled and then evaluated to produce

the final value.

In MetaOCaml multistage programming manifests in a pure form. It is, however,

not actively used. Terra, is an example of a modern implementation of a multistage

language. The language is designed as a system level language capable of efficient

low-level operations, e.g., memory management. Terra can be run as a standalone

language or, more notably, metaprogrammed by the Lua scripting language. The two

languages together create a multistage language, yet separately they don’t employ

the mechanics of multistage programming. Therefore, the multistage language and

subsequent meta-level relationship is built using existing functionalities on top of

the relationship the two languages share. [7], [19]

Terra [20] implements staging using a predefined meta-level keyword, terra. The

Lua compiler recognizes this keyword and delays the execution of the Terra stage.

The Terra stage will be later executed by the Terra runtime that also compiles the

code. The staging annotation is created through the foreign language interface of

Lua, enabling the relationship to be extended to a meta-level relationship. The

example below 4.3, sourced from [7], demonstrates how a Terra stage is defined

inside Lua code.

terra min(a: int , b: int) : int
if a < b then return a
else return b end

end

Listing 4.3: Terra code scoping.

Terra can also be used to demonstrate other multistage features present in

MetaOCaml. For instance, Terra enables functions defined inside the Terra stage to



4.1 MULTISTAGE METHODOLOGY 25

be natively called from Lua. The invocation happens similarly to Lua function calls,

except that the mix of Terra and Lua code is actively JIT compiled for the execu-

tion of the function. Therefore, any meta-level structures present in Lua code are

actively compiled during the function call providing a similar result to the MetaO-

Caml run function. Lua is also natively able to store Terra functions and stages

inside Lua variables achieving the combination and metaprogrammability that the

MetaOCaml escape statement provides. [7], [19], [21]

function ImageTemplate(PixelType)
struct ImageImplementation {

data : &PixelType ,
N : int

}

terra ImageImplementation:init(N: int): {}
self.data = [& PixelType ](std.malloc(N*N*sizeof(

PixelType)))
self.N = N

end

terra ImageImplementation:get(x: int , y: int) : PixelType
return self.data[x*self.N + y]

end

return ImageImplementation
end

Listing 4.4: Terra & Lua Example

The above example 4.4, reproduced from [7], presents how a Lua function can

be used to metaprogram a Terra implementation. Here the Lua function stores

a collection of Terra stages defined with the Terra syntax. The purpose of the

function is to dynamically create the required Terra structure type during the Lua

runtime. This, in turn, demonstrates how Lua is able to dynamically metaprogram

the structure of Terra code based on the Lua runtime PixelType input. [7], [19],

[20]



4.2 IMPLEMENTATION TYPES 26

4.2 Implementation types

Regardless of their core similarities, Terra and MetaOCaml represent different im-

plementations of the multistage language paradigm. Multistage languages can be

differentiated, for instance, based on their lexical environments and the implemen-

tation there of [1]. In the lexical context Terra takes advantage of the relationship

between two different languages where the meta-language, i.e., Lua, remains a sep-

arate entity from the subject language of Terra. As per definition presented in [1],

using separate languages inside the different stages of a multistage language makes

the approach heterogeneous. Therefore, Terra represents a heterogeneous multistage

language, where the meta- and subject stages are implemented with completely

separate languages. On the other hand, MetaOCaml implements staging of both

the meta- and subject stages inside the same language of MetaOCaml. Therefore

MetaOCaml can be referred to as an homogeneous multistage language. [1], [5], [7]

Similarly multistage languages can take different approaches to how the meta

and subject stages interact. For instance, both in Terra and MetaOCaml the subject

stage is contained in the same lexical environment, while the delayed execution is

produced through specially derived staging annotations. Therefore, both of the

example languages implement a homogeneous [1] approach to how the meta and

subject stages interact. [1], [5], [7]

Another possible approach to establishing interactions between the meta and

subject stage is the heterogeneous approach. The heterogeneous approach to the

interaction inside a multistage environment stores the meta-level and subsequent

subject-level stages in completely separate source files and even types thereof. The

heterogeneous approach is often a result of the natural relationship between lan-

guages and is therefore common in compilers and other heterogeneous multi stage

programs. The heterogeneous approach increases clarity, but can in turn increase

the complexity in the subject program’s logic. [1], [5], [9]



4.3 PROBLEMS & SOLUTIONS 27

Finally another noticeable difference between some multistage language imple-

mentations is their approach to the implementation of staging. MetaOCaml, for in-

stance, provides a structure to create staging inside the core language itself. Through

the methodology employed by MetaOCaml the number of stages can technically be

unlimited. This means the meta stage can be followed by practically an unlimited

amount of subject stages. On the other hand, Terra remains an example of a well

defined approach. In Terra, staging is a part of the meta-level relationship shared

between the Terra and Lua languages. Therefore, the numbers of stages remains

limited to two, first being the Lua based meta stage and the latter being the Terra

subject stage. [1], [7], [19]

4.3 Problems & Solutions

Multistage languages share a number of common issues due to their complex nature.

These issues consist of, e.g., managing the interactions between the different stages

and the combination of different language structures, which become especially crucial

to be managed when a multistage program is developed. [5], [8]

At the core of every multistage language is the generation of new subject code.

Code generation happens when a meta stage inserts generated source code dynami-

cally into a subsequent subject stage. Code generation, however, is only successful if

the generated code can be executed by the subject runtime. This becomes especially

troublesome with heterogeneous multistage programs as the meta stage is written

in a separate language when compared to the subject stage. Therefore, issues can

arise when the meta stage generates invalid subject code, effectively resulting in an

error in its execution. [5], [8], [9]

A common strategy in multistage code generation is to treat the subject code on

face value, i.e., as a lexical string representation. This approach can be effective when

the amount of generated code is small. However, scaling up a purely lexical approach



4.3 PROBLEMS & SOLUTIONS 28

quickly leads to issues with syntactical correctness, as especially in heterogeneous

environments the meta-stage has no way of validating the generated code. The issue

can be mitigated with strong typing that will ensure type-safety over the meta- to

subject language interface. Similarly different code injection methods, such as quasi

quotations, can be used to inject code more accurately into the subject stage. When

type safe code is injected locally into a well defined part of the subject stage, the

number of syntactical errors can be minimised. [5], [8]

The only way to fully mitigate the issues with code generation, however, consists

of giving the meta-stage the ability to validate the generated subject code. In order

to do such a validation, the meta stage requires an abstract syntax tree implementa-

tion of the subject language. An AST implementation basically evolves into a fully

functional foreign language interface, which in turn can evaluate and validate the

generated code before it is injected into the subject stage. [2], [5], [8]

Another issue relevant to multistage languages is the ability to transfer data

between the meta and subject stages. Once more, in homogeneous multistage lan-

guages the transfer of data tends to be more reliable. For instance, homogeneous

languages can more easily pass references or by default syntactically correct vari-

able definitions to subsequent subject stages. On the other hand, heterogeneous

languages, especially those consisting of separate run times, often lack the ability to

directly pass references between the stages. As a result the meta-stage needs to en-

sure that both the transformation of existing data formats, e.g., custom classes are

translated properly into the subject stages. This requirement is especially impor-

tant on strongly typed subject languages where custom object transfers can become

impossible without further connection between the two languages. [7], [8], [19]

A simple way of passing data between the meta- and subject stages is code

generation. Through code generation simple variable statements can be passed

by inserting a syntactically correct subject language statement into the underlying



4.3 PROBLEMS & SOLUTIONS 29

stage. Raw memory references on the other hand become possible when both of the

languages function on a low enough level to access and pass direct memory references

between the stages. [7], [8], [19]

While injecting new variables into subject stages, multistage languages also need

to deal with variable capture, similarly to macro based systems discussed in 3.1.1.

Variable capture occurs when an injected variable shares the same name with a

pre-existing subject stage variable. A name collision occurs, which, depending on

the subject language, can either result in an error or other unintended side-effects.

Therefore, multistage languages need to deal with the concept of hygiene, famil-

iar from the macro based approaches. For instance, variables can be hygienically

injected by dynamically renaming the injected variable. The process of renaming,

however, requires further management on the side of the meta stage, which now is

responsible for renaming each reference to the given variable. [5], [8], [9]

All of the above approaches culminate in one of the requirements of modern

development, i.e., error handling and parsing. Multistage languages struggle with

presenting errors in a concise manner, as the error can occur multiple stages deep

into the language stack. In an ideal situation errors could only occur on the meta-

stage, as debugging such errors remain similar to debugging a regular language.

This ideal, however, requires each meta stage to check their immediate subject

stages for errors in a recursive process. The approach is complex, but would result

in a relatively maintainable multistage language. The added complexity, however,

becomes harder to maintain when approaches of unlimited stages and heterogeneous

languages are considered. Such approaches require special handling for how error

stacks are generated and in turn presented in a maintainable and clear manner. [1],

[5], [8]



5 PScript: Introduction

As discussed in chapter 2, PHP [3] and JavaScript [4] share a meta-level relation-

ship. The relationship between the languages ultimately manifests as exploitative

side-effects that allow JavaScript to be manipulated by PHP. The purpose of this

thesis is to improve upon the existing relationship between the two languages by

transforming the relationship’s features from perhaps unintended side-effects to se-

cure features. To achieve this goal, a metaprogramming solution, referred to as

PScript, is developed.

PScript is built to tie the loose ends of the PHP-JavaScript relationship into

a new, more complete, multi-language solution. The multi-language solution is

built through a non-intrusive language processor functioning on top of the PHP

runtime. The PScript language processor implements the preprocessor [2] pattern

and, therefore, acts as an additional processing step before the PHP interpreter.

The PScript runtime is written as a PHP library using the native PHP version

8.2 [11]. The PScript runtime can therefore be enabled in any existing PHP project

using the native language imports. However, due to its reliance on PHP host,

PScript only creates a pseudo runtime inside the PHP host instead of a completely

separate preprocessor.

The preprocessing approach is especially apparent while including the PScript

runtime into an existing PHP project. For instance, each dynamic import inside

the PHP host can be ran through the PScript preprocessor on an individual ba-



CHAPTER 5. PSCRIPT: INTRODUCTION 31

sis. The end result of processed files are native PHP source files that can be

executed natively inside the PHP runtime. For clarity, PScript introduces a sep-

arate non-mandatory file format for unprocessed PScript source code. The files

are marked with a .pscript extension and can contain proprietary PScript syntax,

PHP, JavaScript and HTML. In addition, the PScript runtime can also be embedded

into any existing PHP file in order to manipulate existing PHP source code, as long

as the file is then imported through the preprocessor. [2]

As a preprocessor solution, PScript offers a defined set of syntax designed to

manipulate and extend the PHP-JavaScript relationship. Internally the language

relies on the PHP and JavaScript runtimes for error handling, interpretation and

execution of transpiled source code. This approach allows PScript to focus on pro-

viding a pre-designed set of improvements in the form of meta-level extensions and

novel syntax definitions. [2], [7]

PScript syntax and features are oriented towards improving the PHP-JavaScript

relationship. These improvements are primarily done through providing the existing

language environment with new syntax. The PScript runtime specifically provides

syntax for hygienically injecting PHP variables into JavaScript code, improving the

multi-language [5] environment through clearer scoping and for injecting PHP ex-

pressions into JavaScript code through quasi-quotations [22]. Each of the above

features share the combined goal of bridging the client-to-server interface between

PHP and JavaScript, while simultaneously improving upon it. [7], [10], [20]

PScript’s other major goal is to extend the metaprogrammability of the PHP-

JavaScript relationship. Metaprogrammability, in this context, refers to the number

of metaprogramming features present in the multi-language relationship. By de-

fault the PHP-JavaScript relationship supports metaprogramming as a side-effect

of the server-to-client interface discussed above. PScript builds upon this inter-

face by introducing new syntax capable of proving additional metaprogramming



CHAPTER 5. PSCRIPT: INTRODUCTION 32

features. These features include, e.g., multistage-programming [5] features such as

conditional compilation [9] and meta-level namespaces [7], [20], as well as macro

based approaches [13] such as specialized templates [17] and traits [18].

Example 5.1 demonstrates a traditional hello-world example using PScript. The

example represents a complete PScript file, where the client block contains PScript

enhanced JavaScript and the pscript block contains PScript enhanced PHP.

A complete list of PScript language features, syntax and their implementations

are introduced in chapter 7. Additionally, a real-world example using a PScript

based solution is demonstrated in chapter 8.

<?pscript
$print_clause = true;
$print_text = "Hello world!";

?>

client {
const print_text = $print_text;

if ($print_clause) {
console.log(print_text);

}
}

Listing 5.1: PScript: Hello world with conditional compilation.



6 PScript: Design goals

As described in chapter 5, PScript’s purpose is to build upon the relationship be-

tween the two languages of PHP [3] and JavaScript [4]. In order to achieve this goal,

PScript was designed as a functional language extension to PHP. Therefore, the de-

sign goals discussed in this chapter emphasise the ease of use and reliability inside

any existing PHP applications. The overall goal of the PScript extension remains

the utilisation and improvement of the existing meta-level relationship. Therefore,

the design goals also reflect the need for both optimization of existing features and

for the creation of new meta-level improvements. [1]

6.1 Clarity

PScript at its core is a multistage language [5], [8]. The multistage host consists

of the meta-stage PHP code and the subject stage JavaScript payload. Therefore,

the first design goal seeks to address the clarity of this relationship, when the added

complexity of the PScript runtime is introduced.

PHP and JavaScript are clearly separate languages, with completely separate

runtimes. Introducing an additional language and runtime into this ordeal could

significantly affect the clarity of the end product. Therefore, the decision of treating

PScript purely as an extension of PHP was made. Treating PScript as a language

extension both reduces the complexity of the solution while improving its clarity.

Regardless of the aforementioned precaution the line between the two languages



6.1 CLARITY 34

becomes increasingly blurred when PScript is introduced. In order to ensure clarity

inside a PHP source file, PScript syntax should remain clearly separated from both

of the existing run-times. Therefore, the preprocessor [2] pattern was chosen, as it

allows PScript files to be evaluated during the runtime of the server side PHP code.

Preprocessor in this context refers to PScript’s ability to execute inside the PHP

runtime process, translating the embedded PScript syntax into processed PHP files.

The clarity of a native language solution can only be achieved if PScript also fol-

lows existing PHP conventions. When implemented as a language extension, PScript

can remain as an active part of the PHP language by allowing, e.g., the creation of

new syntax and other novel language features. New features, in turn, remain key for

improving the reliability of the relationship between PHP and JavaScript. However,

creating a completely new syntax tree [2] inside the already crowded source file can

create additional issues for clarity. In order to avoid such a result, PScript syntax

should remain limited and clearly separated from any existing source syntax. The

separation enforces the lines between each step of the multistage program improv-

ing the clarity thereof [7]. At the same time, any newly created syntax definition

should coincide with that of native PHP in order to remain a natural part of PHP

development. This remains a requirement of clarity, while PScript is attached to

the PHP runtime and targets existing PHP based projects. [7], [20]

One can also consider the clarity of an interpreted PScript file. For instance

when PScript interacts with the PHP source on a meta-level, the produced PHP

source files can remain very obscure. Therefore, when the meta-level structures [1]

of PScript are expanded upon, the solution should ensure that the resulting PHP

and JavaScript code remain readable. Additionally, similar language processors often

minimise and lexically optimise the produced source code. In the case of PScript,

such approaches would significantly affect clarity as the processed PHP source code

would remain unreadable in the case it requires further debugging. [2], [8]



6.1 CLARITY 35

<?pscript
$print_clause = true;
$print_text = "Hello world!";

?>

client {
const print_clause = $print_clause;
const print_text = $print_text;

if (print_clause) {
console.log(print_text);

}
}

Listing 6.1: PScript: Clarity of runtime separation.

The example 6.1 demonstrates the separation PScript creates between each lan-

guage runtime. PScript enhanced PHP remains inside a <?pscript ?> code block

similar to the native PHP alternative, while the client keyword is used to define a

PScript runtime block. The PScript client block scoping follows the PHP standard

by using the { } bracket syntax, while the client keyword is used to remind the

user that the code inside the scope is meant specifically for client-side usage.

Example 6.2 shows the transpiled end-result of the original source code. Clarity is

maintained by not minimizing the resulting source code and maintaining the original

order of execution. Similarly, the transferred variables defined as print_clause and

print_text, are transpiled hygienically [13] into JavaScript while maintaining the

original naming of each variable. Each code block, in turn, is transformed into

native PHP-HTML format, but subsequently marked with unique PScript tags,

which refer to the order of transpilation. E.g. the first PScript block in the example

is transpiled into a HTML <script> block and tagged with the PScript identifier

id="pscript-block-0" .

<?php
$print_clause = true;
$print_text = "Hello world!";

?>

<script id="pscript -block -0">
const print_text_K7429691 = "Hello world!";
const print_clause_a667n925 = true;



6.2 USABILITY 36

const print_clause = print_clause_a667n925;
const print_text = print_text_K7429691;
if (print_clause) {

console.log(print_text);
}

</script >

Listing 6.2: PScript: Clarity of transpiled source code.

6.2 Usability

In order to act as an effective extension of PHP, the PScript preprocessor [2] needs to

feel familiar to any existing PHP developer. Usability remains especially important

when designing the format of new syntax definitions. Each definition should be

defined in a way that remains true to the lexical nature of PHP [11]. For instance,

the usage of {} parentheses in block scoping remains a staple of the PHP syntax.

Therefore, PScript syntax should also follow the this pattern among other PHP

syntax sugar.

Additionally, in order to maximise usability, any new syntax should also remain

minimal. By limiting the amount of unknown and unfamiliar syntax one can also

minimise the required on-boarding and knowledge needed for the usage of PScript.

At the same time, any new syntax should not be afraid to tackle the existing usability

issues of PHP. E.g., the definition of JavaScript stages inside HTML script blocks

remains a limiting factor for usability and clarity of existing PHP solution. [2]

Any file written in pure PHP [3], [11] should remain usable through the PScript

preprocessor. Backwards compatibility ensures usability inside existing PHP projects,

as developers can freely mix PScript files inside their existing PHP projects. On the

other hand, PScript code needs to also function inside the PHP lexical environment.

I.e., PScript code needs to remain easily importable into any existing PHP file and,

vice versa, existing PHP code needs to function inside PScript files.



6.2 USABILITY 37

PScript should also not differ unnecessarily from the PHP host. For instance,

creating PScript with a completely separate language would significantly reduce the

usability of the project. Requiring developers to learn a third language in order to

gain the benefits of the solution would create a block for usability. Another benefit

arises from the maintenance of the language. When PScript is written in native

PHP, any passive up-keep the language receives is most of the time extrapolated to

the project itself.

<?pscript
// Client block namespace definitions
$namespace1 = [];

// Client variable reference
$namespace1['hello_world '] = client hello1;

?>

// Client block scoping
client {

// Quasi quotation syntax
$[create_animal("dog")]

}

Listing 6.3: PScript syntax listing.

The above example 6.3 demonstrates the limited amount of new syntax intro-

duced by PScript. From the example one can observe how PScript first defines a

meta-level namespace [20] and then inserts a cross language variable reference [7]

using a mix of native PHP syntax and the PScript client keyword. Similarly, the

example presents the client block scoping syntax client {} present in all PScript

files, together with an additional example of the PScript quasi-quotation syntax $[]

[22]. The amount of new syntax is limited to the above three, allowing PScript to

be quickly introduced into an existing project.

Example 6.4 demonstrates PScript’s ability to import existing PHP implemen-

tations directly into a PScript file, maximising usability. In example 6.4 the file

user.php is imported into the PScript context allowing the existing PHP function

get_current_active_user to be used directly.



6.3 EFFICIENCY 38

<?pscript
require_once( ROOT_PATH . '/public/demo/user.php');
$user = get_current_active_user ();

?>

Listing 6.4: PScript: Usage of existing PHP code.

Example 6.5 demonstrates how PScript files are imported into the existing PHP

host. The PScript preprocessor runtime is first imported with the require state-

ment. This allows the runtime to be used at any point in the following PHP ex-

ecution. Using native PHP syntax sugar, the PScript preprocessor can also be in-

stantiated into the active namespace with the use statement. In order to maximize

usability, the PScript runtime can be chained with the native require statement

in a natural manner. In example 6.5 the demo.pscript file is imported using the

PScript runtime by chaining the two require statements together. As stated by the

code, first the file is imported and ran through the PScript runtime and thereafter

into the subsequent PHP runtime.

<?php
require_once(ROOT_PATH . "/processor/PScript.php");

use \PScript\PScript;

$pscript_file_path = "/public/demo/demo.pscript";

require_once(PScript :: require($pscript_file_path));
?>

Listing 6.5: PScript: Preprocessor runtime initialisation.

6.3 Efficiency

PScript should remain an efficient extension to the existing PHP host [3]. Efficiency

becomes a natural consideration when PScript extends already optimised language

processors with additional features and processing. These efficiency concerns can be

mitigated by, e.g., not requiring a separate compilation step for the usage of PScript.



6.3 EFFICIENCY 39

Instead, the preprocessor is made to run dynamically during the PHP runtime,

allowing PScript to benefit from any optimizations of the existing PHP interpreter.

The dynamic approach also optimises the preprocessor when it is integrated as a

part of an existing PHP based workflow.

The computational load produced by PScript’s pseudo runtime [2] remains in

the interpretation and transpilation of PScript syntax. Especially the continuous

interpretation of PScript files becomes redundant when the produced PHP files

rarely change in actual deployment. In order to mitigate this issue, sufficient caching

should be implemented. By employing efficient caching of the translated PScript

source files, one can significantly reduce the amount of runtime load required to parse

each PScript file. Therefore, each PScript file is interpreted only once whenever

changes appear inside the original source code. This creates an active cache system

that is aware of the state of the original PHP source code and their changes.

Another consideration of efficiency remains in the end result of PScript’s transpi-

lation process [2]. The PHP source code produced by PScript should remain in an

optimised format. As discussed above in chapter 6.1, the optimization of the gener-

ated source should not occur at the cost of readability. Instead the optimised source

can, for instance, remove duplicate variable definitions, unnecessary references and

other language constructs that are not needed in the subject program. [2], [3], [11]

The table 6.1 shows a set of measurements of the PScript runtime. Each measure-

ment was taken through a dockerized PHP-PScript container using the PHP version

8.2 and measured in microseconds. The measured code and its functionalities are

further presented in 8.

From the measurements one can see that, on average, PScript has an effect of

0,00066 seconds on the PHP runtime. When compared to the average of cached

PScript load, which effectively represents a native PHP load time, the increase is

around 37%. Therefore, while dynamically generating the PHP source on every run-



6.4 SECURITY 40

Table 6.1: PScript: Runtime transpilation efficiency measurements.
Dynamic transpilation Cached transpilation Difference
0.002378 0.001794 0.000584
0.002537 0.001938 0.000599
0.002403 0.001791 0.000612
0.002186 0.001546 0.000640
0.002946 0.002115 0.000831
0.001882 0.001652 0.000230
0.002520 0.001471 0.001049
0.003013 0.002166 0.000847
0.001828 0.001630 0.000197
0.002602 0.001558 0.001044

Averages 0.002430 0.001767 0.000664

time, the runtime load remains around third of the original load time. Furthermore,

under normal usage, the increased runtime load occurs only once, after which the

cached load times take effect.

6.4 Security

Security is key in any modern web-application. The application server exists as a

secure zone, protected often by extensive security features. One of the weak points

in this zone remains the required interaction between the secure server and the,

by nature, insecure client application. The existing relationship between JavaScript

and PHP remains at the edge of this security zone. As PScript is able to manipulate

both sides of the security zone at a meta-level, security should be a major goal of

the solution.

For instance, server side code is home to many secrets in the form of environment

variables and in some cases even regular variables. When PScript interacts with the

PHP source code, it needs to make sure that variables that are not meant for client

access are not transferred to JavaScript. Such features become especially important

when PScript interacts with authentication or API security features, as such features



6.5 IMPROVEMENTS AND FIXES TO SMALLER ISSUES 41

often trade information between the client and the server.

PScript, therefore, follows the general best practices in terms of application secu-

rity. The reliance on server-side PHP provides PScript with added security features

from the continuous up-keep of the host language. Regardless, the solution remains

conscious of existing security weaknesses in order to not replicate previous mistakes

or generate new attack vectors.

6.5 Improvements and fixes to smaller issues

The PHP-to-JavaScript relationship contains features that are usable in practice

but are unreliable. As PScript seeks to improve upon the pre-existing relationship

between the two languages, the language processor should try to address such prob-

lematic issues. The improvements on existing features should strive towards the

same design goals as presented above, ensuring consistency of the solution.

As described in chapter 5, PHP and JavaScript occupy the same lexical environ-

ment. However, their relationship currently relies on the usage of another language,

HTML. HTML provides the <script> blocks that all JavaScript code occupies. This

dependency is demonstrated in a simple hello_world example in example 6.6

<?php
$hello = "Hello world!";
echo $hello;

?>

<script id="hello -world -script">
const hello = "Hello world!"
console.log(hello);

</script >

Listing 6.6: Native PHP script block usage.

PScript allows existing HTML dependencies to be replaced with native PScript

syntax. PScript’s block scoping is securely generated into the HTML variant with

properly addressed variable definitions and other PScript features. At the same time



6.5 IMPROVEMENTS AND FIXES TO SMALLER ISSUES 42

PScript provides the developer with a more straightforward development experience

by removing the need to mix in HTML syntax. The PScript equivalent to example

6.6, demonstrated in 6.7, shows how the PScript runtime and subsequent block

scoping improves upon the HTML equivalent, in a manner that better matches the

syntax of the PHP host.

<?pscript
$hello = "Hello world!";
echo $hello;

?>

client {
console.log($hello);

}

Listing 6.7: PScript enhanced client block scoping and variable transfer.

Another existing feature which requires improvement is the variable transfer

between the two languages. Currently it remains as a side-effect of the relationship

as PHP can employ the echo clause to print stringified values into JavaScript code.

Technically this functionality can be used to export PHP values into JavaScript

variables. However, the relationship doesn’t allow for the usage of direct references

or the evaluations thereof.

The improvements PScript provides regarding cross language variable transfer

[7], [19], can be seen by comparing examples 6.7 and 6.8. In example 6.8 native

PHP is used to echo a string value directly into JavaScript. Example 6.7 shows

the same example using the PScript variable transfer mechanism. The example

demonstrates how variable transfer can be securely supported and even improved

by the PScript runtime generation process. Further examples regarding variable

transfer mechanisms can be seen in chapter 7.2.

<?php
$hello = "Hello world!";
echo $hello;

?>

<script id="hello -world -script">



6.5 IMPROVEMENTS AND FIXES TO SMALLER ISSUES 43

console.log(
<?php echo $hello; ?>

);
</script >

Listing 6.8: Native PHP string variable transfer.

Similarly the PHP’s role as the server side language can also be used to con-

ditionally deliver JavaScript code blocks. The usage of this mechanism, however,

remains clunky and the feature can’t be considered true conditional compilation.

Example 6.9 demonstrates native PHP based conditional delivery of a JavaScript

code block, using the echo statement. PScript improves upon the above approach by

removing the requirement for using PHP and HTML script blocks. Simultaneously

PScript implements true conditional compilation of JavaScript code through the

aforementioned PScript variable injection mechanism. Example 6.10 demonstrates

the improvements PScript provides in comparison to example 6.9. [5], [7], [19]

<?php
$hello = "Hello world!";
$say_hello = false;

?>

<script id="hello -world -script">
<?php if ($say_hello) {

echo "
const hello = '" . $hello . " ';
console.log(hello);

";
}

?>
</script >

Listing 6.9: Native PHP conditional code delivery.

<?php
$hello = "Hello world!";
$say_hello = false;

?>

client {
if ($say_hello) {

console.log($hello);
}

}



6.6 METAPROGRAMMABILITY 44

Listing 6.10: PScript conditional compilation.

As seen with the above sections, many of the native multistage operations in-

side the PHP-JavaScript relationships rely on PHP’s ability to echo string variables

into JavaScript code. PScript improves upon this approach by securing the genera-

tive operations [22] inside designated syntax definitions and a multistage language

processor [7], [8]. Therefore, instead of relying on the primitive string injection

features available to PHP, PScript employs language processing algorithms [2] sim-

ilar to how compilers operate upon existing source code. As a result, PScript can

support a wider range of generative features and metaprogramming methodologies.

Examples and operations of the PScript language processor are further examined in

chapter 7.1.

6.6 Metaprogrammability

Metaprogrammability [1], [6] remains at the core of the PHP-JavaScript relationship

and a major motivation behind this thesis. The proposed improvements on the

existing metaprogramming features, presented above in chapter 6.5, are a part of

this motivation. However, by introducing a separate language processor, PScript has

the ability to metaprogram both PHP and JavaScript. This ability can be employed

to create novel metaprogramming features between the two main languages. PScript

goal is to securely introduce metaprogramming features previously not supported

by the PHP-JavaScript relationship. These features vary from macro expansion

[13] to meta-level trait [18] systems. A complete list of features, examples and

implementation details of metaprogramming features can be seen in chapter 7.



7 PScript: Implementation

PScript is a heterogeneous multistage language [1], [5] enabled by a novel PHP based

preprocessor [2]. It is developed to interoperate with any existing PHP project,

and to improve upon the existing relationship between PHP and JavaScript. This

chapter introduces the implementation details of the PScript project. Each feature

of PScript is presented with code examples and, when applicable, reasoning as to

how each feature relates to the designated design goals. The goal is to provide an

in-depth look into the functionality of PScript, while presenting the key language

features it provides. [1], [2], [5]

7.1 Language Processor

The PScript preprocessor [2] remains at the core of each functionality. Compared

to a traditional compiler the PScript preprocessor functions on a meta-level [1],

[6]. Instead of compiling a language to executable machine code the preprocessor

translates meta-level language structures to generated subject code. Therefore, the

PScript preprocessor operates as a dynamic source-to-source transpiler. [1], [2]

The main goal of the preprocessor is to enable new features inside the PHP-

JavaScript relationship. In order to achieve this goal, the preprocessor needs to be

able to transpile variables and source code to and from both PHP and JavaScript.

In the scope of this thesis, we do not implement all the features this relationship

enables, but rather focus on the metaprogramming mechanism [1]. The goal of the



7.1 LANGUAGE PROCESSOR 46

implementation is a secure base language that can be easily extended with more

features that bridge PHP and JavaScript more tightly together. [7], [10], [15]

At a core level the implementation of the PScript preprocessor relies on PHP’s

ability to dynamically interpret code. As a starting point the preprocessor performs

a form of lexical analysis [2], transforming the selected source code file into a purely

lexical format. During the initial lexical analysis, code blocks containing purely PHP

or JavaScript are separated from the PScript source code. The preprocessor then

employs the PHP eval [11] function to interpret all native PHP into the processor’s

evaluation environment. Through the evaluation of existing PHP code, any pre-

defined server-side variables and imports can be used to transpile data between the

two languages. [2], [9], [13]

Example 7.1 shows an excerpt of the PScript language processor. This for-loop

iterates over an array of previously detected PHP clauses. The variables are first

categorized into objects, arrays and direct PScript references. The processing is then

executed accordingly until all of the active variables are imported into the current

evaluation environment, i.e., the PScript runtime. In the example this occurs with

the usage of the aforementioned eval statement.

foreach ($php_variable_clauses [0] as $full_clause) {
$variable_reference = $php_variable_clauses [1][

$clause_index ];
$array_attribute = $php_variable_clauses [2][ $clause_index]

?? null;
$object_attribute = $php_variable_clauses [3][ $clause_index

] ?? null;
$value = $php_variable_clauses [4][ $clause_index ];

$variable_name = str_replace('$', '', $variable_reference)
;

$object_reference = '';
if ($array_attribute) {

$object_reference = "['{ $array_attribute }']";
}
else if ($object_attribute) {

$object_reference = " ->{$array_attribute}";
}

if (str_contains($full_clause , ' client ')) {
$client_reference = trim(str_replace('client ', '',



7.1 LANGUAGE PROCESSOR 47

$value));
$parsed_script = str_replace($full_clause , "",

$parsed_script);

$full_clause = $variable_reference . $object_reference
.

' = PScriptVar :: reference ("' . $client_reference . '")
;';

}

// Evaluate variable to local scope
eval(self:: EVAL_NAMESPACE . $full_clause);

}

Listing 7.1: PScript: Preprocessor’s usage of the eval function.

Once the language sources are separated and the dynamic variables evaluated,

the preprocessor focuses on transpiling the novel PScript syntax. At the core of

the transpiling process remains analysis akin to a fully fledged compilation process.

First a semantic analysis [2] is executed in order to detect each PScript specific

keyword. The keywords are thereafter connected with their representing logic and

then expanded upon. The process effectively mimics a methodology similar to macro

expansion [13], as presented in chapter 3.1.1. The transpiling logic is then applied

to each of the two languages, creating a native PHP file.

Example 7.2 demonstrates a part of the semantic analysis executed during the

PScript runtime. The excerpt shows a piece of the PScript preprocessor tasked with

detecting inline expressions. The script first looks for the PScript syntax dedicated

to expression injections, i.e., the $[] syntax. Valid expressions are then validated

and saved inside the PScript context. The context is used for parsing and, in turn,

injecting the variable into its designated place inside a client block. [19], [20]

// Parse all inline PHP expression injections
$inline_expression_pattern = '/(\$\s*\[\s*) ([^]]+) (\s*\])/';
preg_match_all($inline_expression_pattern , $parsed_block ,

$inline_expressions);

foreach ($inline_expressions [2] ?? [] as $expression) {
$parsed_expression = trim($expression);

$tmp_variable_name = $this ->get_hygienic_name('tmp');
if (! str_ends_with($parsed_expression , ';')) {

$parsed_expression = $parsed_expression . ';';



7.1 LANGUAGE PROCESSOR 48

}

$this ->context ->set($tmp_variable_name , $parsed_expression
);

eval(self:: EVAL_NAMESPACE . "$" . $tmp_variable_name . " =
" . $parsed_expression);

$js_value = $this ->convert_variable($$tmp_variable_name);
$parsed_block = preg_replace(

$inline_expression_pattern ,
$js_value ,
$parsed_block ,
1

);
}

Listing 7.2: PScript preprocessor semantic analysis.

During the interpretation process, the preprocessor ignores intermediate code

generation [2] and semantic analysis of the PHP and JavaScript sources. This occurs

due to the preprocessor being able to externalise semantic analysis to the subsequent

language processors hosted by the two source languages. Effectively the preproces-

sor relies on the PHP and JavaScript interpreters to produce valid error messages

and syntax validation from the transpiled PScript source. Similarly the processor

lacks the need for separate intermediate language representations, as the PScript

preprocessor’s target language is native PHP. Therefore, the parsed subject code al-

ready represents, not intermediate, but rather the final language format, especially

when compared to, e.g., direct machine code compilation. [2], [7], [10]

Example 7.3 demonstrates a minimal PScript variable transfer. The PHP vari-

able welcome is transferred incorrectly through PScript as the variable not_welcome.

An error occurs that is reported by the PHP runtime. The runtime correctly ac-

knowledges the error to be a result of the variable not being present in the PScript

context.

<?pscript
$welcome = "Welcome to PScript!";

?>

client {
console.log($not_welcome);



7.2 LANGUAGE FEATURES 49

}
?>

Fatal error: Uncaught Exception: Variable 'not_welcome ' not
found in context in /var/www/pscript/processor/PScript.php
:316

Listing 7.3: PScript error demonstration.

7.2 Language Features

The major motivation behind PScript is the extension of the PHP-JavaScript metapro-

gramming relationship [1]. This chapter describes in-depth all the new features and

improvements provided by PScript. Each feature is accompanied by code examples,

which demonstrate the language’s features before and after the PScript transpilation

process. [1], [6], [10]

7.2.1 Scoping

Scoping refers to the issue of separating language sources inside a homogeneous

lexical environment [1], [7], [19]. A PHP file, for instance, combines the source

codes of both PHP, JavaScript and HTML. PScript improves upon the native PHP

lexical environment by implementing custom scoping for JavaScript code, instead of

relying on the HTML alternative.

<?php
// Demonstrative PHP block
$php_variable = "Hello world!";

?>

client {
// Demonstrative JavaScript block
console.log("Hello world JavaScript!");

}

Listing 7.4: PScript client scoping.

Example 7.4 demonstrates the syntax PScript provides for creating a client side



7.2 LANGUAGE FEATURES 50

JavaScript scope. As demonstrated by the example, PScript defines a JavaScript

scope with the client keyword. The syntax for the client-side scoping is designed

to resemble native PHP code instead of the native HTML alternative. Additionally

the scope is defined with the client keyword reminding the developer of the scope’s

eventual purpose.

<?php
// Demonstrative PHP block
$php_variable = "Hello world!";

?>

<script "id"="pscript -block -0">
// Demonstrative JavaScript block
console.log("Hello world JavaScript!");

</script >

Listing 7.5: PScript client scoping — transpiled.

Example 7.5 demonstrates the transpiled version of 7.4. One can notice that the

HTML <script> block is generated into the PHP source file. This is done in order

to provide cross-compatibility with the PHP interpreter.

7.2.2 Hygienic Variable Transfer

As described in chapter 6.5, PHP does not support complete variable transfer. The

PScript language processor mends this issue through enabling hygienic and dynamic

variable transfers [1], [7], [13] between PHP and JavaScript.

<?php
// PHP Variable definitions
$print_clause = true;
$print_text = "Hello world!";

?>

client {
// PScript variable transfer
const print_clause = $print_clause;
const print_text = $print_text;

if (print_clause) {
console.log(print_text);

}
}



7.2 LANGUAGE FEATURES 51

Listing 7.6: PScript Hygienic variable transfer.

Example 7.6 demonstrates a PHP-to-JavaScript variable transfer trough PScript.

PScript allows native PHP variables references to be used directly inside client blocks

using the native $variable-name reference syntax. PScript therefore enables PHP

variables to be freely mixed with native JavaScript variables and code.

<?php
// PHP Variable definitions
$print_clause = true;
$print_text = "Hello world!";

?>

<script "id"="pscript -block -0">
const print_text_k00M843G = "Hello world!";
const print_clause_tW1P08E0 = true;

// PScript variable transfer
const print_clause = print_clause_tW1P08E0;
const print_text = print_text_k00M843G;

if (print_clause) {
console.log(print_text);

}
</script >

Listing 7.7: PScript Hygienic variable transfer — transpiled

In example 7.7 one can see how PScript variables are eventually generated inside

the transpiled JavaScript code. PScript creates a hygienic constant variable at the

beginning of the JavaScript code block containing the transpiled PHP value. It

then replaces references to the original variable with references to the dynamically

generated one. Each value is transpiled separately depending on the contents of

the original PHP variable. During the automated transpilation process PScript can

ensure variable transfers with both type safety and type conversions. Additionally

PScript avoids name collisions by hygienically naming each of the generated constant

variables. The hygiene is added to the variable references by appending a randomised

string to the name of the generated constant variable.



7.2 LANGUAGE FEATURES 52

7.2.3 Variable Cross-References

Cross language variable references refer to a multistage programming feature where

subject stages can directly reference variables in subsequent language stages [5],

[7], [20]. In addition to allowing JavaScript to directly use PHP variables, PScript

enables PHP variables to contain direct references to JavaScript functions and vari-

ables.

<?pscript
$double_func_reference = client double;
$random_amount_reference = client random_amount_js;
$random_amount_php = rand(1, 10);

?>

client {
const random_amount_js = $random_amount_php;
function double(amount) {

return amount * 2;
}

}

client {
const value = $double_func_reference(

$random_amount_reference
);
console.log(value);

}

Listing 7.8: PScript Cross Language Variable References.

Example 7.8 demonstrates how references to JavaScript entities are passed to

PHP variables. The variable double_func_reference creates a reference to the

JavaScript function double by employing the PScript client keyword. In a similar

manner the random_amount_reference references the client variable random_amou-

nt_js. The value of variable random_amount_js, however, depends on the value of

the random_amount_php, the value of which is generated during the PHP runtime.

Therefore, the value to the reference is generated dynamically during the PHP run-

time and then transferred to the JavaScript variable. Example 7.8, therefore, also

demonstrates that PScript allows variables to cross both runtime and language bor-

ders. [20]



7.2 LANGUAGE FEATURES 53

<?php
$random_amount_php = rand(1, 10);

?>

<script "id"="pscript -block -0">
const random_amount_php_Ke14z74Z = 1;
const random_amount_js = random_amount_php_Ke14z74Z;

function double(amount) {
return amount * 2;

}
</script >

<script "id"="pscript -block -1">
const random_amount_reference_l9f988ND = random_amount_js;
const double_func_reference_e7484v35 = double;

const value = double_func_reference_e7484v35(
random_amount_reference_l9f988ND

);

console.log(value);
</script >

Listing 7.9: PScript Cross Language Variable References — transpiled.

Example 7.9 demonstrates the aftermath of the previously defined cross lan-

guage references. One can notice how the random_amount_php variable has now

been resolved and transferred to the JavaScript runtime, while the reference of

random_amount_js now refers to the aforementioned generated variable. The other

two variables random_amount_js and double_func_reference instead have now

resolved their references into the JavaScript environment. One can notice how the

hygienic reference variables combine with the cross language references allowing for

the generations of the value variable. The value variable contains the combined

value of both the JavaScript double function and the randomised value generated

during the PHP runtime. Additionally, one can notice that the PHP client refer-

ences are removed after they are resolved, allowing the PHP block to remain safe

for the native PHP interpreter.



7.2 LANGUAGE FEATURES 54

7.2.4 Conditional compilation

Conditional evaluation [5], [7] multistage programming strategy [10] for a language

stage to affect the compilation of the latter subject stages. In the case of PScript the

meta-level stage of PScript is able to provide the PHP runtime with a conditional

compilation mechanism. By splicing PHP variables into the JavaScript subject

stage, PScript can achieve conditional compilation in a secure and usable manner.

<?pscript

$hello_world1 = "Hello world 1!";
$hello_world2 = "Hello world 2!";

$show_hello1 = true;
$show_hello2 = false;

?>

client {
if ($show_hello1) {

console.log($hello_world1);
}

}

client {
if ($show_hello2) {

console.log($hello_world2);
}

}

Listing 7.10: PScript Conditional Evaluation.

Example 7.10, demonstrates how transferred PHP variables can be used for con-

ditional compilation inside the JavaScript subject stage. Here the PHP variables

named show_hello1-2 are used directly inside the JavaScript code through hygienic

variable transfer. The variable show_hello1 enables compilation while the variable

show_hello2 dynamically revokes it.

<?php
$hello_world1 = "Hello world 1!";
$hello_world2 = "Hello world 2!";

$show_hello1 = true;
$show_hello2 = false;
?>



7.2 LANGUAGE FEATURES 55

<script id="pscript -block -0">
const hello_world1_sm65S0Lw = "Hello world 1!";
const show_hello1_m242a801 = true;

if (show_hello1_m242a801) {
console.log(hello_world1_sm65S0Lw);

}
</script >

<script id="pscript -block -1">
const hello_world2_dMkYDQ2t = "Hello world 2!";
const show_hello2_beb3467Y = false;

if (show_hello2_beb3467Y) {
console.log(hello_world2_dMkYDQ2t);

}
</script >

Listing 7.11: PScript: Conditional Evaluation — transpiled.

Example 7.11 demonstrates the result of the conditional compilation. The trans-

ferred PHP variables are evaluated during the PScript runtime, leaving behind the

boolean statements contained within them. The JavaScript interpreter will interpret

the boolean statements and if-clauses as conditionally compiled code blocks. This

approach can also be extended to conditionally compile full code blocks or even to

conditionally change the value of variables on an individual basis. [7], [19]

7.2.5 Expression Injection

Expression injection is the next natural step-up from subject code variable injection

[7], [21]. PScript implements expression injection through a native quasi-quotation

[22] syntax. Quasi-quotations $[] allow for the evaluation of meta-level expression

directly inside a subject stage environment [22]. PScript’s quasi-quotation syntax

follows the styling of native PHP syntax by using the familiar $ and [] symbols for

the creation of the quasi-quotation scope.

<?pscript

$hello = "Hello ";
$world = "world!";

$print1 = false;



7.2 LANGUAGE FEATURES 56

$print2 = true;

?>

client {
const js_hello_world = $[$hello . $world ];
const js_hello_world2 = js_hello_world + " - 2";

if ($[$print1 && $print2 ]) {
console.log(js_hello_world);

}

if ($[$print1 || $print2 ]) {
console.log(js_hello_world2);

}
}

Listing 7.12: PScript Expression Injection.

Example 7.12 demonstrates the usage of PScript’s quasi-quotation methodology.

The variable js_hello_world contains the value of a PScript expression injection.

Inside the quasi-quotation PScript evaluates and then combines the values of two

separate PHP expression that are then injected into the aforementioned variable.

The latter quasi-quotations demonstrate how expression injection can also be used

directly inside native JavaScript syntax.

<?php

$hello = "Hello ";
$world = "world!";

$print1 = false;
$print2 = true;

?>

<script "id"="pscript -block -0">

const js_hello_world = "Hello world!";
const js_hello_world2 = js_hello_world + " - 2";

if (false) {
console.log(js_hello_world);

}

if (true) {
console.log(js_hello_world2);

}

</script >



7.2 LANGUAGE FEATURES 57

Listing 7.13: PScript Expression Injection — transpiled.

Example 7.13 demonstrates how the PScript quasi-quotations are evaluated during

the PScript runtime. In the transpiled result the variable js_hello_world2 evalu-

ates into "Hello world! 2". Similarly the boolean expressions injections inside

the if statements are now evaluated and provide conditional compilation inside the

JavaScript runtime.

7.2.6 Namespaces

Namespaces allow for the organization of variables into well defined sub scopes inside

the general namespace of the main program. On a meta-level, metaprogramming

solutions like PScript can provide dynamic namespaces through injecting meta-level

variables directly into the underlying subject stages [7], [20]. Dynamic namespaces,

in turn, allow for the avoidance of name collisions while providing safe namespaces

for transferring meta-level variables and references. [9], [21]

<?pscript
$namespace1 = [];
$namespace2 = [];

$namespace1['hello_world '] = client hello1;
$namespace2['hello_world '] = client hello2;

$namespace1['print'] = false;
$namespace2['print'] = true;

?>

client {
function hello1 () {

if ($namespace1['print']) {
console.log("Hello world 1!");

}
}

function hello2 () {
if ($namespace2['print']) {

console.log("Hello world 2!");
}

}
}



7.2 LANGUAGE FEATURES 58

client {
$namespace1['hello_world ']();

}

client {
$namespace2['hello_world ']();

}

Listing 7.14: PScript Dynamic Namespaces.

Example 7.14 demonstrates the usage of meta-level namespaces through PScript.

PScript provides the functionality through transferring native PHP associative ar-

rays into active client scopes. For instance in 7.14 the separate namespace1-2 vari-

ables are used to create two meta-level namespaces. The namespaces are employed

to store references to client functions and to meta-level PHP variables. The refer-

ences are then used from inside the subject level client scopes creating two separate

namespaces.

<?php
$namespace1 = [];
$namespace2 = [];

$namespace1['print'] = false;
$namespace2['print'] = true;

?>

<script id="pscript -block -0">
const namespace2_print_zx96X73E = true;
const namespace1_print_OJ10059N = false;

function hello1 () {
if (namespace1_print_OJ10059N) {

console.log("Hello world 1!");
}

}

function hello2 () {
if (namespace2_print_zx96X73E) {

console.log("Hello world 2!");
}

}
</script >

<script id="pscript -block -1">
const namespace1_hello_world_kb15r2V5 = hello1;
namespace1_hello_world_kb15r2V5 ();

</script >

<script id="pscript -block -2">
const namespace2_hello_world_IG82wb8H = hello2;



7.2 LANGUAGE FEATURES 59

namespace2_hello_world_IG82wb8H ();
</script >

Listing 7.15: PScript Dynamic Namespaces — transpiled.

Example 7.15 shows how the dynamic namespaces are transpiled into subject

level code. The references to each namespace-variable are first hygienically generated

into new variables and thereafter resolved locally inside the subject code blocks.

Effectively this creates a hygienic namespace inside the subject code while allowing

the meta-stage to group variables and references in a convenient manner.

7.2.7 Templates & Specialization

Templates [17] are a way for meta-level stages to generate subject level code dynami-

cally. Templates are especially useful in dynamically generating subject level objects

based on meta-level requirements. PScript provides template generation through

conditional compilation and through injecting client code blocks into subject-level

code.

Template functionality can also be used for the specialisation of subject-level

code [9], [17]. As meta-level code effectively controls what code is included inside a

generated subject class, meta-level structures can be used to specialise subject code.

PScript enables specialization through the injection and evaluation of meta-level

PHP variables inside generated templates.

<?pscript
function create_animal($animal_type) {

if ($animal_type == "cat") {
return client {

class Animal {
who_am_i () {

return "Cat";
}

say_hello () {
console.log("Meow");

}
}



7.2 LANGUAGE FEATURES 60

}
}
else if ($animal_type == "dog") {

return client {
class Animal {

who_am_i () {
return "Dog";

}

say_hello () {
console.log("Woof");

}
}

}
}

}
?>

client {
$[create_animal("dog")]

const animal = new Animal ();
console.log("Found a " + animal.who_am_i ());
animal.say_hello ();

}

Listing 7.16: PScript Template.

Example 7.16 demonstrates how the PScript methodologies of cross-language

references, client scoping and quasi-quotations [22] are used to provide meta-level

templating functionality. The function create_animal acts as a meta-level template

for generating different specialisations of the JavaScript class Animal. The provided

function parameter animal_type determines which of the two animal classes are

generated, i.e., a cat or a dog. In the quasi-quotation block one can notice that the

expression currently evaluates to the latter and generates a JavaScript class Animal,

with the dog specialisation.

<?php
function create_animal($animal_type) {

if ($animal_type == "cat") {
return PScriptBlock :: create("0");

}
else if ($animal_type == "dog") {

return PScriptBlock :: create("1");
}

}
?>



7.2 LANGUAGE FEATURES 61

<script id="pscript -block -0">
class Animal { who_am_i () { return "Dog"; } say_hello () {

console.log("Woof"); } }
const animal = new Animal ();
console.log("Found a " + animal.who_am_i ());
animal.say_hello ();

</script >

Listing 7.17: PScript Dynamic Template — transpiled.

Example 7.17 demonstrates how the specialised animal class is transpiled into

native JavaScript code. One can notice that the compiled class is injected into the

transpiled code block in the place of the meta-level quasi-quotation. The native

JavaScript code in turn demonstrates how the metaprogrammed Animal class can

be natively referenced inside the JavaScript runtime. For instance, the say_hello

function will now print out Woof due to the specialisation that occurred during the

meta-level PScript runtime.

7.2.8 Traits

Traits [18] enable the injection of predefined attributes into subject-level classes

based on meta-level keywords. Usually these keywords are embedded within a lan-

guage itself. In the multistage language created by PScript the keywords can be

provided by the meta-level PScript stage [1], [5]. PScript provides trait functional-

ity much in the same way as demonstrated previously with templating, i.e., PScript

injects generated subject level code directly into desired places inside the client scope

using the quasi-quotation feature [22].

<?pscript
function say_hello_trait () {

return client {
say_hello () {

console.log(
this.who_am_i () +
" says - " +
this.what_sound () +
"!"

);
}



7.2 LANGUAGE FEATURES 62

}
}

?>

client {
class Animal {

$[say_hello_trait ()]

who_am_i () {
return "Dog";

}

what_sound () {
return "Woof";

}
}

const animal = new Animal ();
animal.say_hello ();

}

Listing 7.18: PScript Traits.

Example 7.18 demonstrates how traits [18] are employed inside the PScript envi-

ronment. In this case the function say_hello_trait is used to define a client block

containing the desired attribute. Here the generated attribute say_hello enhances

the Animal class with a function attribute say_hello. The attribute itself simply

prints out the results of two separate variable attributes. The meta-level code does

not have access to these variables, instead the access is achieved through the PScript

preprocessor transpilation process.

<?php
function say_hello_trait () {

return PScriptBlock :: create("0");
}

?>

<script id="pscript -block -0">
class Animal {

say_hello () { console.log( this.who_am_i () + " says " +
this.what_sound () + "!" ); }

who_am_i () {
return "Dog";

}

what_sound () {
return "Woof";

}



7.2 LANGUAGE FEATURES 63

}

const animal = new Animal ();
animal.say_hello ();
</script >

Listing 7.19: PScript Traits — transpiled.

Example 7.19 demonstrates how PScript traits affect the transpiled subject code.

Here the quasi-quotation reference to the say_hello trait is replaced with the pre-

defined trait attribute. The generated attribute function now has access to the

other native attributes inside the subject class. Much like the template system, the

original PHP-PScript trait template is sanitized into a valid PHP reference.

The attribute provided by the meta-level trait could be made more general by

removing the references to specific class attributes. This would allow the trait to

function in specialization of any generic subject class. By overriding existing class

attributes or implementing interfaces, the PScript trait system could be extended

to cover functionality similar to that of aspects and aspect weaving.



8 PScript: Demonstration

Chapter 7 describes the plethora of improvements PScript introduces into the PHP-

JavaScript relationship. The demonstrations and examples were chosen to introduce

each feature in a simple context. This chapter demonstrates the use, and benefits,

of PScript in solving a real-world problem. All of the code required for this demon-

stration is available at the project’s Github page. [23]

8.1 Problem description

Google remains a major player in providing accurate user tracking and site usage

analytics to active web applications. Google’s tracking solutions were deemed to be

so effective that as of 2024 their usage in web applications were limited by regulation.

Modern web applications are now required to collect and store user consent for

using their data for marketing or analytics of any web application. Therefore, web

applications often collect these required consents with so-called ’Cookie banners’.

The banners, in turn, provide the user with controls for deciding on what tracking

the user consents to.

The problem this demonstration solves using PScript occurs on the server side:

asking user consent only when necessary. A returning or logged in customer will

already have given their consent when opening an arbitrary page on the web appli-

cation. Therefore, the web application should not ask for user consents continuously

when the user continues to explore the site.



8.3 IMPLEMENTATION 65

The problem is further complicated via the usage of the commonly used tracking

pixels [24] provided by Google and other third parties. Often these tracking pixels

contain code that needs to be run directly on the client side. However, in order to

correctly configure them from the start, one needs to pass the server-side consent

data onto the client-side tracking pixels. Furthermore, some pixels require more

complex configurations related to the user’s consents, as they can, e.g., operate

using anonymous data. [24]–[26] prerequisites

8.2 Environment and Prerequisites

The following demonstration is transpiled using the PHP [3] version 8.2 [11]. The

demonstration occurs inside a docker [27] container routed using a Nginx [28] web

server. As prerequisites, the demonstration will present two JavaScript classes

GoogleAnalytics and GoogleAds. These classes are meant to act as wrapper classes

for active pixel code provided by an actual Google service. In the case of this demon-

stration the classes are just dummy versions meant to log the different settings given

to them during the client side runtime. Additionally, the demonstration requires a

user entity that contains the saved user consents. In this demonstration the user

is always dynamically generated dummy user, but the data could also be fetched

directly from an active database. [24]–[26]

8.3 Implementation

Example 8.1 demonstrates the raw PScript source required to solve the described

problem. As mentioned in chapter 7, PScript can import external PHP files into the

scope of the PScript runtime. In the case of this demonstration, the require_once

statement imports the finale.php file, which contains the required prerequisite

classes and functions described above 8.2. After the required prerequisite functions



8.3 IMPLEMENTATION 66

are imported, the script sets up additional variables required for its functionality.

The variables contain demonstrative user ids required for the pixel code to function

and, more importantly, an array containing the fetched user consents.

After the script perquisites are set up, the script moves to define the actual func-

tionality. The PScript functions google_analytics_tracker and google_ads_tra

cker specialize the templates required for the google tracking pixels. Both of the

functions set up their respective trackers by initiating the wrapper object, defining

the client id and enabling the tracker.

However, the two functions act differently based on the defined user consents.

For instance, the google_ads_tracker is conditionally compiled based on the user’s

marketing consent. If the user gives consent for marketing based tracking, the

server-side PScript code, in turn, enables the tracker. Similarly the analytics tracker

respects the user’s decision on allowing their data to be used for analytics tracking.

However, the Google analytics pixel can additionally function in an anonymized

data mode that needs to be enabled separately on the client side. Therefore, the

google_analytics_tracker is conditionally generated in a different manner, using

the functionality provided by PScript. If the user revokes their analytics consent,

the client-side pixel code will be used to enable anonymization before the tracker is

enabled.

The user_consents_template function is used to specialize the client-side Conse-

ntManager class. The ConsentManager can be used to move the user’s consent in-

formation to the client side. PScript is, in turn, used to metaprogram the class

template, effectively filling it with the user consents fetched from the database.

This approach greatly improves efficiency of transferring data between the server

and client side, as otherwise such data transfer would have to happen using native

client-to-server API interfaces. Regarding security, the user’s consent data can be

considered insensitive as it only reflects against the user’s actions happening inside



8.3 IMPLEMENTATION 67

the client browser.

Finally the solution defines a client scope that brings all of the metaprogram-

ming functionalities together. In the final client block PScript’s expression in-

jection mechanism is used to import all of the specialized pixel trackers into the

client-side code. The block also demonstrates how the templated ConsentManager

class can be directly referenced in the client side code. The generated class now

contains the dynamically transferred consent values, which can be used to populate

the coinciding client side cookies.

<?pscript
require_once( ROOT_PATH . '/public/demo/finale.php');

$user = get_current_active_user ();

$google_ads_id = GOOGLE_ADS_ID;
$google_analytics_id = GOOGLE_ANALYTICS_ID;
$user_id = $user ->id;

$user_consents = [];
$user_consents['necessary '] = $user ->consents ->necessary;
$user_consents['analytics '] = $user ->consents ->analytics;
$user_consents['preferences '] = $user ->consents ->

preferences;
$user_consents['marketing '] = $user ->consents ->marketing;

function google_analytics_tracker($google_analytics_id ,
$user_consents) {
return client {

const google_analytics = new GoogleAnalytics ();
if (! $user_consents["analytics"]) {

google_analytics.anonymize ();
}
google_analytics.set_source_id(

$google_analytics_id);
google_analytics.enable ();

}
}

function google_ads_tracker($google_analytics_id ,
$user_consents) {
return client {

if ($user_consents["marketing"]) {
const google_ads = new GoogleAds ();
google_ads.set_id($google_ads_id);
google_ads.enable ();

}
}

}

function user_consents_template($user_consents) {



8.3 IMPLEMENTATION 68

return client {
class ConsentManager {

#user_consents = {
necessary: $user_consents["necessary"],
analytics: $user_consents["analytics"],
preferences: $user_consents["preferences"

],
marketing: $user_consents["marketing"]

};

get(consent) {
return this.#user_consents[consent ];

}

get_all () {
return this.#user_consents;

}
}

}
}

?>

client {
$[user_consents_template($user_consents);];
const consent_manager = new ConsentManager ();

$[google_analytics_tracker($google_analytics_id ,
$user_consents);];

$[google_ads_tracker($google_ads_id , $user_consents);];

for (const [key , value] of Object.entries(consent_manager.
get_all ())) {
const cookie = "consent_" + key + "=" + value;
document.cookie = cookie;
console.log(cookie);

}
}

Listing 8.1: PScript: Google Analytics Demo.

Example 8.2 shows the transpiled native PHP and JavaScript blocks. The

PScript functions have been replaced with native PHP references, only leaving

behind the blank function templates. The results of the functions have already

been transpiled into the main client block scope. For instance, the tracking pixel

code blocks are injected to their respective positions based on the meta-level quasi-

quotations. The metaprogrammed user consent variables now reference the hygienic

versions generated by the PScript runtime.

<?php



8.3 IMPLEMENTATION 69

require_once( ROOT_PATH . '/public/demo/finale.php');

$user = get_current_active_user ();

$google_ads_id = GOOGLE_ADS_ID;
$google_analytics_id = GOOGLE_ANALYTICS_ID;
$user_id = $user ->id;

$user_consents = [];
$user_consents['necessary '] = $user ->consents ->necessary;
$user_consents['analytics '] = $user ->consents ->analytics;
$user_consents['preferences '] = $user ->consents ->

preferences;
$user_consents['marketing '] = $user ->consents ->marketing;

function google_analytics_tracker($google_analytics_id ,
$user_consents) {
return PScriptBlock :: create("0");

}

function google_ads_tracker($google_analytics_id ,
$user_consents) {
return PScriptBlock :: create("1");

}

function user_consents_template($user_consents) {
return PScriptBlock :: create("2");

}
?>

<script id="pscript -block -0">
const google_ads_id_S30498M2 = "G-ADS -1234";
const user_consents_marketing_lr87yh6N = false;
const google_analytics_id_mV9C9j3n = "G-ANALYTICS -1234";
const user_consents_analytics_d48Qt760 = true;
const user_consents_marketing_S31xwHh8 = false;
const user_consents_preferences_s633H95H = true;
const user_consents_analytics_VY1ca9i6 = true;
const user_consents_necessary_n8k7A65O = true;

class ConsentManager { #user_consents = { necessary:
user_consents_necessary_n8k7A65O , analytics:
user_consents_analytics_VY1ca9i6 , preferences:
user_consents_preferences_s633H95H , marketing:
user_consents_marketing_S31xwHh8 }; get(consent) {
return this.# user_consents[consent ]; } get_all () {
return this.# user_consents; } } ;

const consent_manager = new ConsentManager ();

const google_analytics = new GoogleAnalytics ();
if (! user_consents_analytics_d48Qt760) {

google_analytics.anonymize ();
}
google_analytics.set_source_id(

google_analytics_id_mV9C9j3n);
google_analytics.enable ();

if (user_consents_marketing_lr87yh6N) {
const google_ads = new GoogleAds ();
google_ads.set_id(google_ads_id_S30498M2);



8.3 IMPLEMENTATION 70

google_ads.enable ();
}

for (const [key , value] of Object.entries(consent_manager.
get_all ())) {
const cookie = "consent_" + key + "=" + value;
document.cookie = cookie;
console.log(cookie);

}
</script >

Listing 8.2: PScript: Google Analytics Demo — Transpiled.



9 Discussion

Chapter 7 demonstrates the capabilities enabled by the PScript preprocessor. In

the aggregate the described features seek to enable the design goals described in

chapter 6. At its core the PScript language processor is made to extend the existing

relationship between PHP and JavaScript.

Before the relationship could be improved upon, it required a secure structure

on top of which to build the improvements. PScript provides this secure struc-

ture through expanding the existing relationship into a multistage language. The

multistage language itself consists of three separate runtimes: PScript, PHP and

JavaScript. The latter two rely on the existing language interpreters of PHP and

JavaScript, while the PScript runtime itself remains a pseudo-runtime inside the

PHP life-cycle. The PHP runtime provides PScript with passive up-keep and an

existing user-base. The PScript runtime is able to approach the existing PHP-

JavaScript life-cycle in an efficient manner while ensuring its usability in existing

and future solutions.

Expanding the existing relationship with an additional language step gives PScript

freedom to work around the two language environments. This freedom is mainly

provided through the means of the custom PScript language preprocessor. The pre-

processor moves the existing PHP and JavaScript runtimes into the role of subject

stages of the multistage language structure. I.e., the PScript runtime becomes the

initial meta-stage of the multistage relationship. By moving the PHP runtime into a



CHAPTER 9. DISCUSSION 72

subsequent subject stage, the PScript runtime is able to metaprogram the relation-

ship it shares with JavaScript. Hence, PScript is given the ability to metaprogram

both JavaScript and PHP, allowing it to improve upon the metaprogrammability

of the relationship itself. This approach allows the language processor to improve

upon the existing relationship according to all the predefined design goals.

One of these improvements was to deal with the poor usability of the relationship,

as discussed in chapter 6.2. Usability remains a key issue at the PHP JavaScript

relationship, so much so that the industry limits the usage of PHP’s existing language

features. Therefore, bringing improvements in the usability vertical is necessary for

enabling further use of the relationship.

The main ways PScript tackles the issue of poor usability is to make sure the

creation of a multistage language environment does not disturb the existing lan-

guage environments. For instance, the way the PScript runtime is invoked without

disturbing the existing PHP runtime became a key guideline in PScript’s design.

As demonstrated in chapter 6, PScript introduces a new syntax for invoking the

PScript runtime, i.e., the PScript::require() statement. The usage of the state-

ment PScript::require() well summarised PScript’s overall dedication to usability

inside existing projects. The statement itself remains native to the PHP runtime,

which is crucial for extending the user-base of the project. At the same time the

native appearance is meant to reduce the overall on-boarding required for adopt-

ing PScript in a project. Additionally, all novel syntax implementations provided

by PScript follow the same syntax styling as PHP itself. Therefore PScript syntax

should feel familiar to existing developers, while also remaining consistent inside

the PHP environment. A conscious decision was also made to reduce the amount

of new syntax, in order to limit the language processor’s impact on existing code

bases’ usability.

PScript’s efforts to improve the usability of the multistage-language can also be



CHAPTER 9. DISCUSSION 73

argued to positively affect the clarity of the solution. For instance, invoking the

PScript runtime always happens through the native PScript statement, making it

clear that the clause affects the PScript runtime. Additionally, PScript’s features

such as hygienic variable transfer also respect the notion of clarity. I.e., during a

cross language variable transfer all transferred variables maintain their respected

naming regardless of increased hygiene.

On the other hand, PScript has to deal with the increased complexity of a multi-

stage language, which is bound to affect both the clarity and usability of the solution.

PScript seeks to maintain clarity inside the multistage environment by making each

of the separate runtime borders as clear as possible. Instead of requiring the usage

of HTML syntax, PScript provides a clear replacement for generating JavaScript

scopes that both adheres to PHP syntax styling and provides a clear separation

between the client and server side languages.

Additionally, PScript addresses clarity of the language environment through the

usage of the client keyword. The client keyword remains a consistent reminder

for separating between the server and client runtimes, designed to remind the user

that the features and scopes created by PScript address the underlying client side

code of JavaScript. The reminder is key in increasing both the security and clarity

of the server to client side relationship. PScript also improves upon the safety of the

multi-language environment by first parsing, transpiling and then validating each

transferred variables. This validation guarantees that types are transpiled correctly.

The feature could be extended to support, e.g., the automated detection of sensitive

info.

PScript’s efficiency considerations also extend to maintaining the efficiency of the

PHP runtime. A key consideration is PScript’s ability to cache previously parsed

source files. Therefore, PScript’s load on an existing PHP runtime is minuscule at

best. Additionally, the PScript preprocessor’s ability to both cache and dynamically



CHAPTER 9. DISCUSSION 74

generate source files means that the solution remains usable even in an active build

pipeline.

PScript can also be argued to improve the efficiency of the PHP-JavaScript lan-

guage environment itself. For instance, PScript introduces new syntax for dealing

with existing problems, e.g., cross language variable references. In the same man-

ner, each feature described in chapter 7 is designed to enhance the existing relation-

ship, while also improving the efficiency thereof. For instance, instead of managing

JavaScript code through file inclusion, PScript provides a native way to condition-

ally compile JavaScript through variable and expression injections. Similarly, the

ability to transfer data between the server and client side code significantly improves

the efficiency of specialising client-side behaviours by using the server-side runtime.

Ultimately all of these improvements enhance the experience of both developers and

users of the multistage solution.

Finally PScript’s main goal is to improve the existing PHP-JavaScript relation-

ship, not just fix its current issues. PScript enables such improvements through

the plethora of novel metaprogramming features demonstrated in 7. At the core

of each feature is the novel language processor implementing a preprocessor based

compiler pattern. The PScript preprocessor enables new features, such as, template

specialization and dynamic code generation, previously not available to either PHP

or JavaScript. The key with each introduced feature is that they extend the existing

relationship making its usage feel both natural and secure. Therefore, the language

processor enables completely new approaches to dealing with existing issues inside

the multistage environment.

In this manner the PScript preprocessor not only improves upon the existing

relationship, but also enables features not present in the native languages. For

instance PScript enables PHP to store client side code and references inside native

variables. PScript extends these references to introduce novel metaprogramming



CHAPTER 9. DISCUSSION 75

methodologies, e.g., client code templates and specialisation thereof. As a result

PScript, is able to provide even the client-side JavaScript with considerable features,

such as the meta-level trait system.

All in all one can argue that all the features of PScript together improve the

PHP-JavaScript both through securing the existing language environments and pro-

viding novel features. In the scope of this thesis, PScript remains a proof of concept.

The multistage-language has many improvements that could be explored in future

research. These include, e.g., further securing the relationship through managing

sensitive server-side information through the PScript language processor. The secure

base of PScript also enables for improvements in introducing further metaprogram-

ming features. For instance, the introduction of dynamic macro systems is a possible

vertical for expanding the metaprogrammability of the solution.



10 Conclusion

JavaScript and PHP share a server to client relationship. The relationship provides

a vertical for metaprogramming between the two languages. This thesis argues that

this relationship remains incomplete, and introduces the concept of a new language

preprocessor PScript. The design of PScript was shown to improve the usability,

efficiency and security of the PHP-JavaScript relationship through novel language

features, such as dynamic namespaces and cross language variable transfers. On

top of this, the new metaprogramming features were shown to further enhance the

usability and clarity of the language relationship. Ultimately even at its current

prototype stage PScript improves the existing relationship both in theory and in

practice. PScript prototype is a secure base for a novel language processor, on

top of which further research can be built. PScript is an introduction into secure

metaprogramming and it can be employed to enhance the efficiency and security of

complex real-world programs.



References

[1] Y. Lilis and A. Savidis, “A survey of metaprogramming languages”, ACM

Comput. Surv., vol. 52, no. 6, Oct. 2019, issn: 0360-0300. doi: 10.1145/

3354584. [Online]. Available: https://doi.org/10.1145/3354584.

[2] V. A. Alfred, S. L. Monica, and D. U. Jeffrey, Compilers Principles, Techniques

& Tools. pearson Education, 2007.

[3] PHP: Hypertext Preprocessor — php.net, https://www.php.net/, [Accessed

16-03-2024].

[4] M. MozDevNet, Javascript language overview - JavaScript: Mdn. [Online].

Available: https://developer.mozilla.org/en-US/docs/Web/JavaScript/

Language_overview.

[5] W. Taha, “A gentle introduction to multi-stage programming”, in Domain-

Specific Program Generation: International Seminar, Dagstuhl Castle, Ger-

many, March 23-28, 2003. Revised Papers, Springer, 2004, pp. 30–50.

[6] R. Damaševičius and V. Štuikys, “Taxonomy of the fundamental concepts of

metaprogramming”, Information Technology and Control, vol. 37, no. 2, 2008.

[7] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and J. Vitek, “Terra: A multi-

stage language for high-performance computing”, in Proceedings of the 34th

ACM SIGPLAN conference on Programming language design and implemen-

tation, 2013, pp. 105–116.

https://doi.org/10.1145/3354584
https://doi.org/10.1145/3354584
https://doi.org/10.1145/3354584
https://www.php.net/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_overview
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_overview


REFERENCES 78

[8] C. Calcagno, W. Taha, L. Huang, and X. Leroy, “Implementing multi-stage

languages using asts, gensym, and reflection”, in International Conference on

Generative Programming and Component Engineering, Springer, 2003, pp. 57–

76.

[9] L. Tratt, “Compile-time meta-programming in converge.”, 82wqw, Tech. Rep.,

2002.

[10] J. de Oliveira Guimarães, “The Cyan language metaobject protocol”, 2023.

[11] PHP: Releases — php.net, https://www.php.net/releases/index.php,

[Accessed 06-07-2024].

[12] M. MozDevNet, Javascript language overview - JavaScript: Mdn. [Online].

Available: https://developer.mozilla.org/en-US/docs/Web/JavaScript/

Language_overview.

[13] E. Burmako, “Scala macros: Let our powers combine! on how rich syntax and

static types work with metaprogramming”, in Proceedings of the 4th Workshop

on Scala, 2013, pp. 1–10.

[14] G. Neverov and P. Roe, “Towards a fully-reflective meta-programming lan-

guage”, in Proceedings of the Twenty-eighth Australasian conference on Com-

puter Science-Volume 38, 2005, pp. 151–158.

[15] J. Guimarães, “Metaprogramming in Cyan”, Available at SSRN 4385794,

[16] S. Roychoudhury, J. Gray, H. Wu, J. Zhang, and Y. Lin, “A comparative

analysis of meta-programming and aspect-orientation”, in Proc. Of the 41st

Annual ACM SE Conference, Savannah, GA, 2003.

[17] Z. Porkoláb, “Functional programming with C++ template metaprograms”,

in Central European Functional Programming School, Springer, 2009, pp. 306–

353.

https://www.php.net/releases/index.php
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_overview
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_overview


REFERENCES 79

[18] J. Reppy and A. Turon, “A foundation for trait-based metaprogramming”,

in International workshop on foundations and developments of object-oriented

languages, 2006.

[19] Z. DeVito and P. Hanrahan, “The design of terra: Harnessing the best features

of high-level and low-level languages”, in 1st Summit on Advances in Pro-

gramming Languages (SNAPL 2015), Schloss-Dagstuhl-Leibniz Zentrum für

Informatik, 2015.

[20] Terra — terralang.org, https://terralang.org/, [Accessed 06-07-2024].

[21] Z. DeVito, D. Ritchie, M. Fisher, A. Aiken, and P. Hanrahan, “First-class

runtime generation of high-performance types using exotypes”, in Proceedings

of the 35th ACM SIGPLAN Conference on Programming Language Design

and Implementation, 2014, pp. 77–88.

[22] J. Wielemaker and M. Hendricks, “Why it’s nice to be quoted: Quasiquoting

for Prolog”, arXiv preprint arXiv:1308.3941, 2013.

[23] L. Haapala, GitHub - lphaap/php-script — github.com, https://github.com/

lphaap/php-script, [Accessed 06-07-2024].

[24] Google, About the Google tag - Google Ads Help — support.google.com, https:

//support.google.com/google-ads/answer/11994839, [Accessed 06-07-

2024].

[25] Google, Set up consent mode - Google Ads Help — support.google.com, https:

//support.google.com/google-ads/answer/14009635, [Accessed 06-07-

2024].

[26] Google, Unblock Google tags when using consent mode - Tag Manager Help

— support.google.com, https://support.google.com/tagmanager/answer/

12962079, [Accessed 06-07-2024].

[27] Home — docker.com, https://www.docker.com/, [Accessed 06-07-2024].

https://terralang.org/
https://github.com/lphaap/php-script
https://github.com/lphaap/php-script
https://support.google.com/google-ads/answer/11994839
https://support.google.com/google-ads/answer/11994839
https://support.google.com/google-ads/answer/14009635
https://support.google.com/google-ads/answer/14009635
https://support.google.com/tagmanager/answer/12962079
https://support.google.com/tagmanager/answer/12962079
https://www.docker.com/


REFERENCES 80

[28] Nginx — nginx.org, https://nginx.org/en/, [Accessed 06-07-2024].

https://nginx.org/en/

	Introduction
	Background
	PHP: Hypertext Preprocessor
	JavaScript
	PHP & JavaScript: A Meta-level relationship

	Metaprogramming
	Metaprogramming methodology
	Macro systems
	Reflection
	Metaobject protocols
	Aspect-oriented programming
	Generative programming
	Multistage programming


	Multistage languages
	Multistage Methodology
	Implementation types
	Problems & Solutions

	PScript: Introduction
	PScript: Design goals
	Clarity
	Usability
	Efficiency
	Security
	Improvements and fixes to smaller issues
	Metaprogrammability

	PScript: Implementation
	Language Processor
	Language Features
	Scoping
	Hygienic Variable Transfer
	Variable Cross-References
	Conditional compilation
	Expression Injection
	Namespaces
	Templates & Specialization
	Traits


	PScript: Demonstration
	Problem description
	Environment and Prerequisites
	Implementation

	Discussion
	Conclusion
	References

