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The effective use of aptamers has been developed significantly in the recent past due to
their widespread applications in areas such as therapeutics, biosensors and
nanotechnological applications. Due to this increasing demand, researchers are
continuously engaged in modifying aptamers to ensure a strong and selective binding
with the targets. Apart from the general SELEX method, post-SELEX modifications have
become more efficient to develop aptamer libraries which can efficiently bind with the
target.

Out of the different types of aptamers which can be further modified, the “cocaine
binding aptamer” (MN4) can be identified as a prominent candidate. Even though MN4
was originally developed to bind with cocaine, it has a higher affinity towards the “off-
target” quinine. Therefore, quinine was used as the target ligand in this project. Previous
studies have reported several investigations on binding of different quinine derivatives to
the cocaine aptamer. However, there is no literature on screening for aptamer-aldehyde
combinations with improved binding affinity for quinine.

In this work, the effect of modifications at the binding site on the binding affinity
of MN4 was examined. By replacing any of the three pre-determined nucleotides of the
aptamer by benzylidene protected (2R,3S)-4-(methoxyamino)butane-1,2,3-triol
phosphoramidite (a MOANA residue), three different modified aptamers (T19, C20 and
A21) were synthesized. Further elaboration was carried out by reacting the aptamers with
selected mixtures of aldehydes, in the presence and absence of quinine. The reaction was
carried out at pH 5.5 and room temperature to promote reversible formation of respective
MOANA analogues. Further analysis by UHPLC/MS showed promising results for the
C20 scaffold with methyl-4-formylbenzoate and 3-nitrobenzaldehyde derivatives.
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1 Introduction

1.1 Aptamers

Aptamers are short sequences of DNA, RNA or synthetic nucleic acids which can bind
to specific target molecules. They can bind to a range of targets such as proteins,
carbohydrates, peptides, single cells or even tissues. They were first discovered in 1990
and often referred as “chemical antibodies” due to their similarity with antibodies in
binding affinity and specificity.!” However, compared to the antibodies, aptamers show
higher stability and lower immunogenicity towards a target ligand.® Also, the production
of aptamers is advantageous as it is more cost-effective and less time consuming.
Moreover, aptamers can be modified easily than antibodies, and the variation from batch
to batch is significantly lower in aptamers.* Considering all these advantages, aptamers

are being used in numerous applications such as therapeutics,’”® diagnostics,'® !

biosensors'?>1°

and many other pharmaceutical applications. The demand for the
applications of aptamers is increasing significantly over the recent years due to their
effectiveness.

The structure of the aptamer plays an important role when binding with the targets.
When aptamers bind to the target, their structure changes and folds into a 3D structure as
a response to the target. This formation of 3D structure enables the target specificity of
the aptamer. Therefore, the whole sequence of the aptamer would not be essential for
binding specificity as some regions of the aptamer do not possess binding sites. So, the
tertiary structure is more important in binding, than the whole sequence of the

aptamer. 16,17

1.2 Cocaine binding aptamer

Cocaine binding aptamer is a DNA aptamer consisting of three stems which originate
from a three-way junction. Out of the different types of aptamers, the cocaine binding
aptamer can be identified as a prominent candidate for numerous applications in
biosensing'® and drug delivery methods.!” It has been reported that the structure changing
mechanisms of cocaine aptamer are responsible for this variety of applications.?’ Since

the cocaine binding aptamer is a three-way junction aptamer, the three stems are



structured in different spatial formats by offering different structures such as MN19,
MN1 and MN4. When the stem to the left is shortened into three base pairs, the MN19
structure is formed. The MN1 and MN4 were almost similar in structures but MN1 has
two additional Watson-Crick base pairings than MN4. Out of these structures, the MN4
aptamer shows the least variation when it binds with the target ligand.?! Also, a previous
study on thermodynamic analysis of cocaine aptamers reported that the MN4 structure
has improved binding affinity towards the targets compared to the other structures.??

Figure 1 below shows the 2D structures of MN4, MN19 and MN1 aptamers.
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Figure 1. 2D illustrations of MN4, MN1 and MN19 structures of cocaine binding
aptamer. The dashes represent Watson-Crick base pairs, while the dots represent non

Watson-Crick base pairs.

1.2.1 Off-target binding of Cocaine aptamer

Aptamers are typically identified as specific towards a certain target molecule. However,
the cocaine binding aptamer tends to bind with other targets with a higher affinity than
the desired target, cocaine. One of the most notable off-targets is quinine. It has been

reported that quinine tends to bind with the cocaine aptamer more than 30 times stronger



than cocaine.?> 2’ Such affinity towards an off-target is unusual for an aptamer. However,
this behaviour can be taken as an advantage to investigate other possible ligands that

could bind with this aptamer.

Figure 2. Chemical structure of A) Cocaine, B) Quinine

1.3 Screening for aptamers

The selection of aptamers is performed by a process called “SELEX” (Systematic
Evolution of Ligands by Exponential enrichment) which was first reported in the 1990s.%®
The process starts by synthesizing a large diverse pool of oligonucleotides, typically 10'?
— 10'° different sequences. Then the library is incubated with the target molecule.
Sequences that bind to the target are separated from non-binders. Then the bound
sequences are amplified using PCR and the process is repeated for multiple rounds to

enrich the pool with high-affinity binders.
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Scheme 1. Schematic representation of SELEX

Scheme 1 shows the main steps of SELEX and how the procedure continues until a
satisfactory set of oligonucleotides is obtained for a given ligand.

The conventional SELEX procedure has been used extensively over the years and
provided outstanding results. For example, the applications in screening of thrombin
aptamers>’, small molecule aptamers and VEGF aptamers>® were noticeable in the recent
past. Therefore, SELEX has revolutionized the field of molecular recognition by enabling
the use of aptamers in a wide range of applications, from diagnostics to therapeutics and

beyond.

1.3.1 Drawbacks of conventional SELEX

Despite the success of the SELEX procedure, there are several drawbacks that can limit
its efficiency and applicability. For example, the SELEX procedure involves multiple
rounds of selection, binding, partitioning, and amplification, which can be time-
consuming. Typically, 8-15 rounds are necessary to achieve a high-affinity aptamer,
which can take several weeks to complete.! Apart from that, some targets such as
membrane proteins or complex biological structures, may be difficult to access during
SELEX. This limitation can result in the selection of aptamers with suboptimal binding
characteristics. Also, the amplification of redundant sequences leads to a library that
contains multiple copies of identical aptamers. This redundancy can reduce the overall
diversity of the aptamer pool.

Moreover, the degradation by nuclease enzymes is a serious drawback of the
aptamers screened by conventional SELEX.3? When it comes to live cells and
conventional selection methodologies, they consist of multiple enzymatic steps. So, it is
important to modify the aptamers to make them not susceptible for the enzymatic
degradation.

When considering drawbacks, it is worth to mention that only a few aptamer-
based medicines are in the clinical trials currently, while most of the designed medicines
are in the early stage of development.>®> So far, only one drug has been approved by FDA,

“Pegaptanib” in 2004, for the treatment of elderly macular disease.** Poor reproducibility,



low affinity and instability under required conditions have been identified as major
limitations of developing aptamer-based medicines via SELEX. Therefore, it is essential
to modify the aptamers in a suitable way to overcome the defects and to improve their
performance.

There are several approaches to optimize the performance of aptamers. Modified
SELEX methods such as IP-SELEX, Capture SELEX, Cell SELEX and CE-SELEX are
some of the modifications of conventional SELEX.? IP SELEX consists of an additional
step of immunoprecipitation (IP) to attract the targets in their native form. Usually, in in-
vitro methods, the actual 3D structure of the targets is distorted. Hence the affinity of the
aptamer is decreased under in-vitro conditions as the structure differs. But in this method,
due to the IP step, the number of aptamers which are having the chance of recognizing
the targets in usual physiological conditions can be increased. Consequently, the target
specificity of the aptamer is increased.

In capture SELEX, the immobilization of the target is not required. Instead,
oligonucleotide library is immobilized on a support. This method is developed to screen
the aptamers against small soluble molecules.

Cell-SELEX 1s mostly used to screen aptamers for cancer cell targets. Live cells
are used in the process and highly selective aptamers can be selected. Apart from that,
CE-SELEX includes a capillary electrophoresis step, where the separation of ions is based
on their electrophoretic mobility. This requires only a few rounds on selection to generate
highly selective aptamers.

These are advanced methods, and their application could be limited to the selected
procedure. However, general modifications which can be performed after the SELEX
methods are usually more convenient and can be applied in different trajectories. These

are called post-SELEX modifications.

1.4 Post-SELEX modifications

Any modification that is performed after the SELEX process is known as a post-SELEX
modification. While SELEX is effective in identifying aptamers that bind to a variety of
targets, the initial aptamers obtained from SELEX often require further modifications to

improve their stability, binding affinity, specificity, and overall functionality. Therefore,



well planned post-SELEX modifications can overcome the limitations in conventional
SELEX.

Depending on the method of modification, there are several categories of post-
SELEX modifications, which will be explained below in detail. These modifications are

widely applied practically in diagnostics, therapeutics and biotechnology.*¢

1.4.1 Chemical Modifications

Modifications can be introduced at different sites of the nucleotides. Basically, base
modification, sugar group modification and backbone modification can be done
according to the required optimization.*® The nucleobase modifications are carried out by
the replacement or alteration of an existing base of the nucleotide. For example, click
chemistry reactions*! and binding with C5 of the pyrimidine bases** are some of the
nucleobase modifications that have been examined extensively in past research. The
expected outcome of these modifications was increased binding affinity, specificity and

selectivity. Figure 3 below represents two possible chemical modifications.
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Figure 3. Chemical modifications performed as A) binding with C5 of pyrimidine base.

B) Click chemistry reactions.

When considering sugar modifications, methyl substitutions and NH>

substitutions for the 2" position of sugar group are widely used.*’ Apart from that, TNA



can be considered as another example for sugar modification, where five-carbon sugar
group is replaced by a four-carbon sugar group. Previous studies reported that TNA was
resistant to nuclear digestion which enhanced their thermal stability.** Figure 4 shows

some of the modifications performed for sugar group.
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Figure 4. Modifications performed on the sugar group. A) Replacement of OH at 2" by
NH: group. B) Replacement of OH at 2 by OCH3 group. C) TNA: A four-carbon sugar

group instead of five-carbon sugar.

LNAs are also a modification on sugar group where a connection is made between
2’oxygen atom and the C4 carbon of the sugar ring. In this way, the rigidity has been
enhanced by hindering the free movement of the atoms. Also, the LNA modification
increases the stability and resistance to nucleases.*

Backbone modifications are another chemical modification, of which the
preparation of phosphorothioate linkages provides an example. In this method,
substitution of a non-bridging oxygen in the phosphate backbone with sulfur improves
resistance to nuclease degradation. This approach is widely used in antisense

oligonucleotides.*

Moreover, peptide nucleic acid (PNA) is another backbone
modification, where the backbone that is linked by peptide bonds instead of
phosphodiester bonds. This modification decreases nuclease degradation of the aptamers
as reported.*’” However, neutrally charged backbone in PNAs significantly deviates the
binding properties of them compared to the conventional DNA/RNA aptamers. So due to
the possible deviations resulted to the neutrality due to the difficulties in in-vitro selection

process PNAs are not considered as a separate group of aptamers.



1.4.2. Truncation and optimization

Other than the chemical modifications, there are some alterations that can enhance the
specificity of the aptamers. One approach is to reduce the length of aptamers by removing
non-essential regions. Since the key binding sites still remain constant after truncation,
these modifications can improve the aptamer’s binding properties and reduce synthesis
costs.*® However, truncation does not always work as expected. Some works have
reported that removing nonspecific regions has not improved the binding affinity. Hence,
they emphasize that predicting the secondary structure and analyzing the binding
mechanisms prior to the truncation improves the affinity of the aptamer. This can be done

by molecular docking.*

1.4.3. Limitations of post-SELEX modifications

Even though post-SELEX modifications have shown superior achievements that cannot
be obtained by using only the conventional SELEX, there are certain limitations as well.
For example, manufacturing issues such as scale up limitations are also possible with the
modifications. Since the aptamer synthesis needs consistent quality control, it may be
difficult to adhere to the optimum levels of product quality after some modifications.

When performing modifications, the selected aptamers are subjected to a whole
new route of synthesis to obtain the desired modification. Any modification carried out
after the initial selection of aptamers will increase the cost and time of the synthesis. Also,
the complexity of the work is increased according to the degree of modifications that
needs to be followed in the synthesis.

Other than the cost issues, the most important drawback is the loss of specificity
and binding affinity after the alterations. For example, modifications to the nucleotide
sequence or backbone of aptamers can sometimes disrupt the three-dimensional structure
critical for binding to the target. This can lead to a reduction in binding affinity or
specificity. Moreover, finding the right balance of modifications that enhance stability
and functionality without assessing the binding properties can be difficult. Therefore,
selection of truncations, removal or addition of new groups needs to be examined

carefully.



Some modifications might introduce new points of instability. For example,
phosphorothioate linkages, while enhancing nuclease resistance, can sometimes make the
aptamer more prone to chemical degradation under physiological conditions. Apart from
that, introduction of new groups may kick off unintended reactions such as interaction
with intercellular proteins and cell surface.’® This will potentially lead to non-specific
binding and reduced overall effectiveness.

Biological incompatibility is another important concern. Alterations may cause a
change in pharmacokinetics of the aptamers, affecting the distribution, metabolism and
excretion of the compound and sometimes leading to adverse effects.

In general, while post-SELEX modifications play a vital role in expanding the
effective usage of aptamers, it should be noted that the possibility of drawbacks also
exists. So, in practise, a pre-assessment would be beneficial to avoid possible side

reactions that could occur when performing the modifications.

1.5 Dynamic Combinatorial Chemistry

1.5.1 General principles of DCC

Dynamic combinatorial chemistry (DCC) is an innovative approach in the field of
chemical synthesis and molecular discovery. DCC is based on the thermodynamic
equilibrium between the starting materials and products. There could be numerous
different compounds in the pool of starting materials and each of them continuously react
and interconvert through a reversible reaction. Basically, two different starting materials
with different functional groups will be needed to react with each other reversibly. For
example, aldehydes and amines can be reacted to form a dynamic combinatorial library
of imines (Schiff bases). The reversibility of the starting materials and products makes
DCC different form the conventional combinatorial chemistry. This can be addressed as
a self-assembly process which can respond to changing conditions of the system, such as
pH, temperature or other potential stimuli.”! However, these changes should not prevent
the DCC reaction or cause any side reactions.>

Scheme 2 below represents a schematic diagram of DCC. When the

characterization is performed after the equilibrium reaction, the desired combination



could be identified and then these combinations can be isolated and purified by suitable

methods.
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Scheme 2. Schematic representation of DCC.

When performing DCC, the dynamic libraries of interconverting components form
reversible bonds under thermodynamic control. The presence of a target molecule
stabilizes the best-binding compounds, shifting the equilibrium to favor their formation.
The isolation and further handling of any component in its pure form requires another set
of conditions that prevent any exchange reactions of the compound.®® Therefore, it is
important to not only consider the required conditions in the equilibrium but also for the

conditions of stable best binders.

1.5.2 Coupling reactions

There are numerous reactions that can be considered as examples for the coupling
reactions. Having different combinations of two functional groups of the starting
materials will give rise to different combinations of products. Scheme 3 below shows

some important coupling reactions used in DCC.

R-CH=N-R' + H,O
R-SH + R!-S-S-R?

A) R-CHO + R'-NH,
B) R-S-S-R! + R2-SH
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C) R-CH,-CO-R! + R2-CHO
D) R-CH(OH)-CH»-CO-R!

R-CH(OH)-CH,-CO-R!
R-CH,-CO-R! + R%-CHO

Scheme 3. Some of the important coupling reactions. A) Imine exchange. B) Disulfide

exchange. C) Aldol reaction. D) Retroaldol reaction.

1.5.3 Applications of DCC

The generation of DCC libraries can be achieved through covalent or non-covalent
binding of the components.>* The use of transition metal coordination is one example of
covalent binding which has been successfully employed.>® Addition-elimination reactions
at carbonyl groups such as imine exchange, transacetalization and aldol—retroaldol
reactions are some of the reactions applicable in DCC. By changing the electronic
properties of the carbonyl compound and the nucleophile, the reaction kinetics can be
changed in a predictable way.>* Also in these reversible mechanisms, the “freezing” of
exchange conditions is performed by an external factor such as pH, catalysts, quenching
reagents such as reduction/oxidation reagents or temperature.

In imine exchange reactions, the formation of imine is reversible. However, when
it is converted into a secondary amine, the reaction will be “frozen”. This is achieved by
introducing a reducing agent such as NaBH3CN. Acid-base quenching can be observed
in trans-acetalization reactions, where a suitable neutralizing agent stops the reversible
mechanism. For example, if the reaction is catalyzed by acid, then addition of a base will
stop the reaction. Moreover, for aldol and retroaldol reactions, the reaction can be frozen
by addition of acids to adjust the pH. This will freeze the aldol product by neutralizing
the base. In these ways, the binding composition will be stabilized, and the isolation of
the composition will be easy.

Even though most of the reported applications of DCC are in protein binding,>®
there are significant applications in nucleic acid chemistry as well. Specially, when DCC
is combined with SELEX, the dynamic diversity can increase the likelihood of identifying
high-affinity aptamers. On the other hand, a dynamic combinatorial library can be
introduced to the target molecule, as a pre-enrichment step before SELEX as shown in

scheme 4. This will lead the molecule to bind with relevant binders to some extent even

11



before SELEX. During the actual SELEX, further optimization can be done to the

aptamers.
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Scheme 4. Schematic diagram of combination of DCC with SELEX

1.6 1,3-Oxazinanes and their reactions

1,3-oxazinanes are six-membered ring compounds where a nitrogen and oxygen are at
positions 1 and 3.°7 Having several modifiable sites, they are significant in designing
pharmacological structures. There are several FDA approved drugs such as
Dirithromycin, Efavirenz and Dolutegravir which are 1,3-oxazinane derivatives.’® These
compounds have been studied significantly in recent years.

Recent works of our group have investigated the formation of nucleoside
analogues of 1,3-oxazinane, namely N-methoxy-1,3-oxazinane nucleic acids (MOANA)
which can be used in post-synthetic modification of oligonucleotides.”® By reacting
(2R,3S5)-4-(methoxyamino)butane-1,2,3-triol with different types of aldehydes, different
MOANA analogues were synthesized where the equilibrium depends on the pH and
temperature. To obtain the dynamic combinatorial library, the reaction must reach the
equilibrium and the best binders should be isolated by stopping the reaction. Altering the
pH towards neutrality and maintaining the temperature below room temperature will
“freeze” the reaction.

The reversible reaction mechanism of interconverting modified oligonucleotide

scaffolds into MOANA analogues can be used as a foundation in many other synthetic

12



pathways since numerous analogues can be synthesized by changing the aldehydes.
Scheme 5 illustrates the general reversible reaction mechanism between aptamer
scaffolds and the MOANA analogues under pH 5.5 in the presence of aldehydes. For
simplicity, only the modified center is represented in the scheme. However, these sections

are originally bound to the modified aptamers from elongated ends.

OCH3

Scheme 5. N-methoxy-1,3-oxazinane analogue (2) formation by the reversible reaction

of different aldehydes with modified aptamer scaffolds (1).

Moreover, incorporation of the MOANA phosphoramidite building block into hairpin
oligonucleotides was an interesting approach to investigate how compatible these
modifications are with a double-helical structure.®® Scheme 6 shows such modifications
at the hairpin oligonucleotide by introducing aldehyde derivatized scaffolds to synthesize
MOANA analogues. It was reported that the incorporation of 9-deazaadenine and uracil
aldehyde derivatives were efficient into the selected region of oligonucleotides which

confirms the suitability of the modification.
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Scheme 6. Incorporation of nucleoside analogues to hairpin oligonucleotides. X denotes
the modified site while R represents the rest of the aldehyde, except the aldehyde

functional group.

1.7 Purpose of the research project

The plan was to design a dynamic combinatorial method to screen for high-affinity
modified aptamers for quinine. The derivatization is performed by reacting the modified
aptamers (T19, C20 and A21) with a pool of selected aldehydes separately at a suitable
pH of 5.5 to the respective modified MOANA—DNA aptamer. The success depends on
how the selected aldehydes are bound with the aptamer scaffold and how the resulting
modified MOANA—DNA aptamers can bind to the target ligand. Other than that,
maintaining a constant pH and temperature are important in this project.

In this research project, the reversible reaction of modified aptamers and expected
nucleoside analogues was controlled by pH, where the N-methoxy-1,3-oxazinane
formation is preferred in pH 5.5. So, the reversible reaction will take place until it reaches
the equilibrium to result a DCL of various binding complexes. The selected set of
aldehydes demonstrated the role of suitable binding agents, with quinine as the target
molecule.

In this project, quinine is used as the target ligand, instead of cocaine. Out of
different structures of quinine, MN4 aptamer could be considered as a reasonable model
to determine the binding affinity with target ligands. Therefore, the base sequence of
MN4 is used, which consist of 36 nucleobases.

Binding of the introduced aldehydes is characterized by UHPLC-MS to identify
the effective modifications and a logical comparison is made between how these
modifications behave in the presence and absence of quinine. The aim was to identify the
scaffold—aldehyde combinations with the highest binding affinity for quinine. For a
quantitative analysis, the identified scaffolds are subjected to isothermal titration

calorimetry.
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2 Results and Discussion

2.1 Oligonucleotide Synthesis
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Scheme 7. Synthesis of T19 modified aptamer by the incorporation of benzylidene

protected (2R,3S)-4-(methoxyamino)butane-1,2,3-triol phosphoramidite building block
(a)

The sequence of MN4 aptamer was used as the preliminary sequence for the synthesis.
The bases at positions 19, 20 and 21 were replaced one at a time by the previously
synthesized 4-(benzoyloxy)benzylidene protected (2R,3S5)-4-(methoxyamino)butane-
1,2,3-triol phosphoramidite building block (MOANA residue). Hence, three different
oligonucleotides (ONs) were synthesized and named according to the replaced base and

its position. Figure 5 shows the 2D structure and Table 1 the base sequence of the three

different modified aptamers synthesized.
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Figure 5. 2D strictures of the modified aptamers. The green circle indicates the modified

site.

Table 1. Sequences of modified aptamers. X denotes the MOANA residue.

Aptamer Base sequence
MN4 5-GGCGACAAGGAAAATCCTTCAACGAAGTGGGTCGCC-3’
T19 5-GGCGACAAGGAAAATCCTXCAACGAAGTGGGTCGCC-3’
C20 5-GGCGACAAGGAAAATCCTTXAACGAAGTGGGTCGCC-3’
A21 5'-GGCGACAAGGAAAATCCTTCXACGAAGTGGGTCGCC-37

For all the three modified aptamers, the trityl response was monitored throughout the
synthesis. Even though the synthesis of other nucleotides showed a typical near
quantitative yield, a low response was observed at the modified sites for all the three
aptamers. At the modified sites, the responses for the relative coupling percentages were
90.3%, 90.9% and 91.2% for the aptamers T19, C20 and A21 respectively. This indicated
that the yields were relatively low for the modified aptamers. It was evident that the low
yield might not be sufficient for the ITC studies planned for the latter part of the project.
However, for a UPLC-MS analysis, the yields were adequate.

2.1.1 Purification of the modified aptamers

In the first attempt at purification of modified aptamer T19, a co-eluting peak was
observed along with the desired peak. Alteration of the solvent programme did not resolve
this issue and characterization through UHPLC-MS confirmed this co-eluting peak at
1802.9 m/z. Meanwhile, the intensity of the modified T19 peak had decreased drastically
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compared to the impurity peaks after several purifications. However, 'H-NMR and *'P-
NMR spectra of the modified phosphoramidite building block confirmed that the
compound was stable and not degraded. By considering all the details, it was decided to
resynthesize the T19 aptamer.

During the resynthesis, extra attention was given to the dryness of the
phosphoramidite. Accordingly, it was dried by coevaporation from toluene which had a
moisture content of 24.2 ppm (determined by Karl Fischer titration). The commercially
available amidites were dried under a vacuum over phosphorus pentoxide. The trityl
response at the modified site in the second synthesis was higher than in the previous
synthesis but still relatively low.

The LC-MS analysis of this resynthesized T19 aptamer still showed the co-eluting
peak along with the desired peak. Figure 6A shows the UHPLC spectrum of the crude
T19 which shows as a shoulder on the peak eluting at 2.71 min.

The issue of coeluting peaks was resolved by reacting T19 with a hydrophobic
aldehyde (cyclohexane carboxaldehyde) at pH 5.5. By this approach, an equilibrium was
established between aldehyde bound form (N-methoxy-1,3-oxazinane analogue) and
unbound form with T19 when changing the pH values. Then the desired peak could be
recovered in the aldehyde-bound form. Figure 6B shows the UHPLC profile of crude
aldehyde-bound T19 aptamer, with a new peak observed at 3.15 min.
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Figure 6. A) UHPLC profile of crude T19. B) UHPLC profile of T19 + cyclohexane

carboxaldehyde reaction at pH 5.5. H,0, 40 mM HFIP, 7 mM TEA: H,O, MeOH, 20 mM
HFIP, 3.5 mM TEA (9:1v/v)

Mass spectrometric analysis of the peak eluted at 2.71 min in UHPLC profile in figure

6A showed that there are two prominent peaks. One of the peaks represents the product

which formed by missing the modified building block form the sequence at 1802.94 m/z.

and the other peak was the modified T19 product at 1838.47 m/z in Figure 7.
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Figure 7. Mass spectrum of the peak eluting at 2.71 min.
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In the mass spectrum for the UHPLC profile given in figure 6B, a new peak was detected
at m/z = 1854 (pentaanion), This corresponds to the expected product of aldehyde-bound

form which is represented in Figure 8 below.
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Figure 8. Mass spectrum of the T19 + cyclohexane carboxaldehyde reaction mixture.

After three rounds of purification, the desired N-methoxy-1,3-oxazinane analogue was
isolated in a higher purity as shown in the UHPLC spectrum Figure 9 below. The peak at
3.04 min corresponds to the desired aldehyde-bound T19 and the peak at 2.57 min
represents the naked T19 with no aldehyde bound. The other peak found at 2.68 min was
assumed to be the 35mer product of the aptamer based on the calculated molecular weight
and m/z values.

Figure 10 shows the relevant mass spectrum for the given UHPLC profile in figure
9. The peaks observed at 2.57, 2.68 and 3.04 in UHPLC profile in figure 9 are
corresponded to the peaks at 1838.2 m/z, 1842.6 m/z and 1854.1 m/z in the figure 10
respectively. Detection of 1854 m/z at a considerable intensity confirmed the success of

this approach.
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Figure 10. UHPLC-MS spectrum of purified T19 + cyclohexane carboxaldehyde.

Similarly, the other two modified aptamers were also reacted with cyclohexane
carboxaldehyde before the purification by RP-HPLC. The UHPLC spectra of C20 and
A21 modified aptamers with aldehyde treatment were found to be satisfactory as the
aldehyde bound peak eluted separately. Hence this aldehyde binding was a good approach
to overcome the issue of co-eluting peaks. Figure 11 below clearly shows the desired
peaks of aldehyde derivatized C20 and A21 aptamers without co-elution at 3.09 minute
and 3.07 minute respectively.

After purification of all the three modified aptamers, the lyophilized samples were

each dissolved in 100 pl of milli-Q water and the concentrations were determined by UV
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spectrophotometry. The concentrations were 52.75 uM, 63.5 uM and 28.85 uM for T19,

C20 and A21 respectively.
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Figure 11. UHPLC spectrum of A) purified C20 + cyclohexane carboxaldehyde reaction
mixture, B) Purified A21 + cyclohexane carboxaldehyde H20, 40 mM HFIP, 7 mM TEA:
H>0O, MeOH, 20 mM HFIP, 3.5 mM TEA (9:1v/v)

2.2 Selection of aldehydes for the DCC experiments

The modified aptamer scaffolds were derivatized by various aldehydes to investigate the

impact on binding affinity with quinine. The selection of aldehydes was vital rather than

selecting them randomly. Therefore, the structure of the aldehydes (aromatic and aliphatic

nature) and the electronic distribution were considered when selecting the aldehydes, The

aldehydes used in this project are summarized below in Table 2.

Group 1 aldehydes included acetaldehyde derivatives of nucleobases and some

other heterocycles. Studies carried out on the incorporation of some nucleobase analogues

to some of the hairpin oligonucleotides demonstrated promising binding affinities with
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the selected oligonucleotides. Since the used nucleobase analogues in those studies are
similar to the chemical structure of the DNA nucleobases, it was logical to observe the
binding affinity of the four DNA nucleobases with the modified aptamer. However,
binding of these aldehydes was not efficient except for the adenine derivative.

Aldehydes in group 2 included a combination of aliphatic, aromatic and cyclic
aldehydes. When considering these aldehydes, an attention was given to the simple
chemical structure. It consists of simple structured aldehydes which are not sterically
crowded. Also, the reactivity and the polarity of these aldehydes were different from each
other. Having different functional groups at different positions of the aliphatic chain
changes the polarity of the molecules from one another. To examine the binding affinity
of an aromatic aldehyde, benzyloxypropionaldehyde was also introduced to the group.
All these variations were introduced to make the group more diversified, so it will be easy
to get clear conclusions on how the modified aptamer scaffolds tend to bind with these
different aldehydes.

The group 3 aldehydes were carefully selected benzaldehyde derivatives. Since
the electronic distribution around the molecule changes according to the attached group,
the Hammett constant values (o) of these aldehydes were considered. The aldehydes
which had similar ¢ values (-c or +c) were reacted at a time, based on the attached ED
groups or EW groups.

Benzaldehyde and 4-carboxybenzaldehyde are almost similar in ¢ values. So, it
was logical to test those two together. However, no prominent binding was observed with
these two aldehydes. Apart from that, 4-hydroxybenzaldehyde and 4-
methoxybenzaldehyde contain electron donating groups. The reactivity of the aldehyde
group is expected to be increased in these two aldehydes, hence the binding with the
modified aptamer was expected to be promising. Surprisingly, there was no binding
observed in either occasion. The final combination was methyl-4-formylbenzoate and 3-
nitrobenzaldehyde which have positive ¢ values. Due to the presence of electron
withdrawing groups, the reactivity could be lower than with the other aldehydes used.
Therefore, the DCC equilibrium reaction was expected to be slow in this combination.
However, most effective bindings were observed with these two aldehydes, despite the

low reactivity. Table 3 indicates the ¢ values of the aldehydes.
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Table 2. Selected aldehydes and the groups of them based on the selection.

Group Aldehyde
o
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Table 3. Hammett substituent constants (o) for the aldehydes in group 3

Aldehyde Hammett constant value (o)
4-carboxybenzaldehyde -0.05
Benzaldehyde 0
4-hydroxybenzaldehyde -0.38
4-methoxybenzaldehyde -0.28
methyl-4-formylbenzoate +0.39
3-nitrobenzaldehyde +0.55

2.3 Derivatization of modified aptamers with aldehydes
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Scheme 8. Derivatization of modified aptamer T19 with aldehydes at pH 5.5 and room
temperature to obtain N-methoxy-1,3-oxazinane analogues (3) in the presence of quinine.
The “R” group bound to the MOANA analogue represents the rest of the aldehyde, except
the aldehyde functional group.

Scheme 8 shows the formation of a MOANA analogue of the T19 aptamer. Similarly,
other two MOANA analogues of C20 and A21 aptamers were synthesized by the same
process mentioned above. Here the scheme represents the reaction in the presence of
quinine. However, another reaction was performed in the absence of quinine by keeping

all the other conditions and reagents unchanged.
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In the UHPLC-MS analysis of the reaction mixtures, intensities of the penta-anion
signals of the aptamer scaffolds and their various MOANA derivatives were compared.
The calculated values for the scaffold-aldehyde combinations were assessed to confirm
the product formation, both in the presence and the absence of quinine. Moreover, the
relative intensities of other products were also observed to compare the formation of such
products.

Out of the tested aptamer scaffolds, A21 had no considerable binding with any of
the aldehydes, in either presence or absence of quinine. The mass spectra of T19 and C20
aptamers with group 1 aldehyde mixtures indicated conjugation with adenine aldehyde in
both the presence and absence of quinine. It was observed that in the presence of quinine,
this conjugation was less favoured than in the absence thereof. Apart from adenine, there
was no conjugation observed in group 1 aldehydes with any of the modified aptamers.
None of the data interpreted a clear impact on the binding affinity for quinine with any of
the aldehydes in group 1.

Mass spectra of the aptamer scaffolds incubated in the group 2 aldehyde mixture
clearly indicated that the conjugations of the aldehydes were not successful in either the
presence or the absence of quinine. The unbound (naked) form of the aptamer was more
prominent than the conjugated form with any of the aldehydes in group 2. In other words,
the aldehydes in group 2 were more reluctant to bind with the aptamer scaffolds than the
group 1 aldehydes. Out of the 6 aldehydes in group 2, only benzyloxypropionaldehyde
showed significant conjugation with T19 and C20 in the absence of quinine. No
appreciable conjugation was observed with A21 regardless of the presence of quinine.

Consequently, when considering failures in group 1 and group 2, it can be
assumed that the binding affinity of quinine is much higher on the respective binding sites
than the aldehydes in group 1 and group 2. This may hinder the binding site before the
derivatization with aldehydes or else the binding of quinine may fold the aptamer into a
conformation where it is unfavourable to reach the aldehydes to react. Therefore, in the
presence of quinine, the reversible reaction is more favoured towards the left side.

In the 3" group of aldehydes, the Al and A2 subsets gave similar results as the
group 2 aldehydes, with little binding in either of the reaction mixtures. The naked

aptamer, formaldehyde and acetaldehyde derivatives were observed in higher intensities
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in both absence and presence of quinine. Therefore, these derivatizations were not useful
to examine the impact on the quinine binding affinity.

Out of all the aldehydes studied, methyl-4-formylbenzoate and 3-
nitrobenzaldehyde were the two aldehydes showing a significant response to the presence
of quinine. These two aldehydes conjugated well with C20, both in the presence and
absence of quinine. But it was observed that the conjugation with methyl-4-
formylbenzoate was considerably efficient. In figure 12, the pentaanion peak of m/z =
2238.56 indicates the methyl-4-formylbenzoate derivative while m/z = 2235.75 indicates
the 3-nitrobenzaldehyde derivative. The ratio of the two peaks is bit more higher than 2:1
which confirms the conjugation of methyl-4-formylbenzoate was more efficient in the
presence of quinine.
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Figure 12. Mass spectra of C20 with A3 aldehyde mixture in the presence of quinine.

In the absence of quinine, the conjugation of 3-nitrobenzaldehyde was significantly
increased while little change was observed with methyl-4-formylbenzoate, as shown in
Figure 13. Simultaneously, the intensity of the peak corresponding to the naked aptamer
dropped drastically. Now the intensities of the peaks of methyl-4-formylbenzoate at
2238.5 m/z and 3-nitrobenzaldehyde at 2235.7 m/z have a ratio of 1:1 which shows the
increased conjugation in the absence of quinine. Derivatization with methyl-4-

formylbenzoate did not limit the binding of quinine, hence it showed a proper binding in
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both absence and presence of quinine. Apart from that, the conjugation with 3-
nitrobenzaldehyde was more efficient in the absence of quinine. This observation
suggests that the quinine might hinder the binding region of aptamer. Consequently, out
of all the aldehydes tested, the conjugation of methyl-4-formylbenzoate and 3-
nitrobenzaldehyde were prominent as they showed a considerable reactivity difference in
the presence and absence of quinine. Therefore, these two scaffold-aldehyde

combinations can be further used in aptamer screening methods.
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Figure 13. Mass spectra of C20 with A3 aldehyde mixture in the absence of quinine.

An interesting result was observed with the group 3 aldehydes, when they reacted with
T19 in the presence of quinine. Instead of the expected naked aptamer peak of 2206.0
m/z, a peak at 2200.3 m/z was observed, as indicated in Figure 14. This was observed
most prominently for the T19 aptamer in the presence of quinine. It was assumed to be a
product of the N-O bond cleavage since the 2200.3 peak is a perfect match for the loss of
OCHj; group from T19. Since this was only observed in the presence of quinine, it is
interesting to study further the involvement of quinine and the how the position within

the aptamer drives this reaction forward.
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Figure 14. Mass spectra of T19 with A1 aldehyde mixture. A) in the presence of quinine.

B) in the absence of quinine.

2.4 Isothermal Titration Calorimetric studies

The initial plan of the project was to identify scaffold-aldehyde combinations with a high
binding affinity towards quinine by UHPLC-MS. The binding constants, enthalpy and
entropy would then be quantified by ITC. Based on the UHPLC-MS results, methyl-4-

28



formylbenzoate and 3-nitrobenzaldehyde were selected for the ITC analysis since they
showed a considerable difference of reactivity in the presence and absence of quinine
when they conjugate with C20. Prior to the analysis, two aldehydes were reacted
separately with the C20 aptamer in the same buffer as used for the DCC studies. The
reaction progress was monitored by UHPLC-MS until it reached equilibrium and then the
crude products were purified by RP-HPLC by using the same solvent system as before.
The purification must ensure that there are no other components which could bind with
quinine in the ITC studies.

In ITC studies, the aptamer concentration and the titrant concentration should be
selected carefully. It has been reported that the titrant concentration should be around 15-
20 times higher than the aptamer concentration. However, in this research project, the
limiting factor was the concentration of the aptamer, which was more than 3 times lower
than the sensitivity of the ITC instrument.

The concentration range of the modified aptamer in previous related studies has
been 10 — 20 uM. The specifications of the instrument available (MicroCal iTC200), on
the other hand, mentioned that the lowest concentration that can be used is 3 uM.
However, the concentrations of the aptamer-aldehyde conjugates of methyl-4-
formylbenzoate and 3-nitrobenzaldehyde were 0.83 uM and 0.96 uM respectively,
insufficient for a clear signal in ITC. Therefore, the ITC studies were not successful

during this project.

3 Experimental

3.1 General methods and materials

Commercially available solvents and reagents were used in the syntheses. Toluene was
dried over 4 A molecular sieves and the moisture content was checked by Karl Fischer
titration. The mass spectra were recorded by Waters ACQUITY RDa mass spectrometer.
Quantifications of the synthesized aptamers were performed by Shimadzu UV 1900 UV-
Vis spectrophotometer. Shimadzu VP HPLC system with LC-10AT pump and UV
detector was used for the purifications. 50 mM TEAA in milli-Q water and 50 mM TEAA
in ACN were used as the HPLC solvents.
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3.2 Synthesis of modified aptamers

Three modified aptamer scaffolds (T19, C20, and A21) were synthesized by
incorporating the previously synthesized>® 4-benzolyoxybenzylidene protected (2R,3S)-
4-(methoxyamino)butane-1,2,3-triol phosphoramidite building block into various
positions within the known cocaine aptamer MIN4. The name of the modified aptamer
was given according to the position of replaced nucleotide. Three aptamer scaffolds were
synthesized separately by replacing the phosphoramidite building block with the pre-
determined position by one at a time. Prior to each synthesis, appropriate amount of the
phosphoramidite was dissolved in 25 ml of dried toluene and evaporated to dryness. This
step was repeated three times to remove any residual moisture.

The commercially available amidites (dA, dT, dG and dC) and previously
synthesized phosphoramidite building block(a) were weighed and kept in a vacuum
desiccator over phosphorous pentoxide for a better dryness. Then they were dissolved
completely in appropriate volumes of acetonitrile and loaded on the synthesizer. The
AKTA oligopilot plus 10 DNA/RNA synthesizer was used to synthesize the modified
aptamers in 1.0 pmol scale by using conventional phosphoramidite strategy and 20 mg
of Ac-dc-CPG solid support was used inside the synthesis column for the synthesis.
Trityl responses were monitored, and they revealed that the couplings at the modified
sites for all the three modified aptamers were not efficient as expected. Because the
coupling efficiencies and the detritylated areas for these modified sites showed lower
values compared to the other couplings in the sequence. However, the final yields were
reasonably adequate to carry out the procedure further.

After the synthesis, the synthesis column was detached from the synthesizer and
the solid support transferred into a falcon tube. 2 ml of 25% aqueous NHj3 was added to
the tube and the resulting heterogeneous mixture allowed to incubate for 4 h at 55 °C.
After the NH3 treatment, the liquid layer was separated carefully and freeze-dried. The
freeze-dried sample was dissolved in 1 ml of milli-Q water and analyzed by Waters
ACQUITY RDa mass spectrometer, before being purified by RP-HPLC. The UHPLC-
MS results confirmed formation of the expected modified aptamers but also there were
prominent impurity peaks which were originated from the truncation of the aptamer and

from the product formed by modified nucleotide.
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During the purification by RP-HPLC, it was observed that the expected peak for the
modified aptamer co-eluted with another peak, which was difficult to separate from each
other. To facilitate separation, the modified aptamers were derivatized with a
hydrophobic aldehyde. To perform this reaction, a 0.1 M solution of cyclohexane
carboxaldehyde was first prepared in DMSO. 100 pl (10 pmol) of this solution was mixed
with 1 ml of modified aptamer solutions (T19, C20 and A21 separately). Then 25 pl of 2
M TEAA buffer (pH 5.5) was added to each of the above mixtures. The reaction mixtures
were incubated for 3 days and reaction progress was analyzed by UHPLC-MS by
injecting a sample of 1:100 dilution with milli-Q water. UHPLC-MS analysis showed
well separated desired peaks for all the 3 modified aptamers. The reaction mixtures were
neutralized with a drop of triethylamine prior to the purification of RP-HPLC.

Crude aptamer scaffolds were purified by Shimadzu RP-HPLC on a bioZen 2.6 pm oligo
LC column (150 x 4.6 mm). The eluting gradient was 5 - 25% of CAN in 50 mM aqueous
TEAA over 20 min and 25 - 5% over the next 5 min. The flow rate was kept at 0.6 ml/min
and the detection wavelength was 260 nm.

Several rounds of purification were performed for each modified aptamer, until an
acceptable purity was achieved. The collected fractions were characterized by UHPLC-
MS and the desired m/z peaks were detected. After the purification, the three modified
aptamer samples were freeze-dried and dissolved in 100 pl of milli-Q water.

The purified aptamers were quantified by UV spectrophotometer under 260 nm and the

concentrations were calculated by Oligo Calc online calculator.

3.3 Derivatization of modified aptamers with aldehydes

3.3.1 Preparation of aldehyde samples

5 mM solutions of each aldehyde in group 1 were prepared by dissolving them in DMSO
or in water, depending on the aldehyde solubility. A portion of 8 ul from each solution
was withdrawn and mixed with 100 mM cacodylate buffer (20 ml, pH 5.5) to prepare a 2
uM aldehyde mixture (G1). The same procedure was followed with the group 2 aldehydes
and the mixture named as G2. For group 3 aldehydes, 2 uM aldehyde mixtures (A1, A2
and A3) were prepared by mixing only two aldehydes at a time. Solution A1 was prepared
by mixing 5 mM 4-carboxybenzaldehyde (8 pl) and 5 mM benzaldehyde (8 pl) stock
solutions with 100 mM cacodylate buffer (20 ml). Similarly, A2 was prepared mixing 5
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mM 4-hydroxybenzaldehyde (8 pl) and 5 mM 4-methoxybenzaldehyde (8 pl) stock
solutions with 20 ml of 100 mM cacodylate buffer, while A3 was prepared by mixing 5
mM methyl-4-formylbenzoate (8 pl) and 5 mM 3-nitrobenzaldehyde (8 pl) stock
solutions with 20 ml of 100 mM cacodylate buffer.

3.3.2 Incubation with aldehydes at pH 5.5

Incubation was performed at pH 5.5 and room temperature. To assess the impact of
quinine, two sets of reaction mixtures were prepared — one with and one without quinine.
52.75 uM (1.89 pl, 100 pmol) T19 aptamer (52.75 uM) was mixed with 2 uM of either
GI1, G2, Al, A2 and A3 aldehyde mixture (100 pl, 200 pmol). 2 mM quinine sulphate
dihydrate (10 pl, 20 nmol) was added to each of these mixtures. Similarly, another set of
reaction mixtures were prepared in the absence of quinine. Both reaction mixtures were
allowed to reach equilibrium at room temperature and protected from light. The progress
of the reaction mixtures was monitored over 2 weeks by analyzing samples at regular
intervals by UHPLC-MS. Initially, the formation of the expected products was
determined and after two weeks the relative intensities of the starting materials and the
products were compared. If there is no significant change in the relative intensities of
product formation, it was concluded that the reaction has reached to the equilibrium. The
same procedure was carried out by reacting 63.5 uM C20 (1.57 pl, 100 pmol) and 28.85
uM A21 (3.46 pl, 100 pmol) separately with 2uM each of the aldehyde mixtures (100 pl,

200 pmol) in the presence and absence of quinine.

3.4 Isothermal Titration Calorimetric studies

3.4.1 Preparation and purification of modified aptamers

After identifying the best candidates by DCC, they were prepared in larger scale for ITC
analysis. 20 pl (1.27 nmol) of C20 and 5.5 pl of 100 mM cacodylate buffer were added
separately to 2.54 pl of 5 mM methyl-4-formylbenzoate and to 2.54 pl of 5 mM 3-
nitrobenzaldehyde to prepare 20 mM solutions. The reaction mixtures were allowed to
reach equilibrium and product formation was verified by UHPLC-MS. The mixtures were
purified by the same procedure as described in section 3.3. The purified samples were
analyzed by UHPLC-MS and confirmed the expected product in a reasonable purity.

Purified samples were freeze-dried overnight. After freeze drying, the residue was
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dissolved in 350 pl of buffer (pH 7.4, 20 mM TriseHCI, 140 mM NaCl, 5 mM KCIl). Then

aptamer concentration was determined by UV vis spectrometer.

3.4.2 ITC studies

The aldehyde-derivatized C20 aptamer sample which was dissolved in 350 pl of buffer
was used as the titrand. 18 pM quinine sulphate solution was prepared by dissolving an
appropriate amount in the same buffer. ITC was performed by iTC200 microcalorimeter.
Titration was carried out at 15 °C by placing the quinine as the titrant and the aptamer
samples in the sample cell. The initial injection was 0.1 ul and the standard binding
experiments consisted of 35 successive 1 pL injections at a spacing of 300 seconds

between each injection. The data was analyzed by Origin 7.0 software.

4 Summary and Conclusion

The syntheses of modified aptamer scaffolds T19, C20 and A21 were successful despite
the low-yielding. Derivatization of the aptamer scaffolds with a hydrophobic aldehyde
proved to be an efficient method to overcome the issue of co-elution with shorter side
products.

Out of the tested aldehydes, methyl-4-formylbenzoate and 3-nitrobenzaldehyde
showed an efficient binding in both the presence and absence of quinine for the modified
aptamer C20. Out of these two, the conjugation with methyl-4-formylbenzoate with the
aptamer scaffold C20 was considerably efficient in both the presence and absence of
quinine. With the other aldehydes, the formation of N-methoxy-1,3-oxazinane analogues
was more or less equal in the absence and presence of quinine which does not indicate an
impact on the binding affinity of quinine.

Even though some promising aptamer—aldehyde conjugates were identified by
UHPLC-MS, determination of their quinine binding constants by ITC was not successful
owing to insufficient amounts.

Indication of an unexpected peak at 2200 m/z for T19 with third group of
aldehydes in the presence of quinine was assumed to be a N-O bond cleavage as it was a
perfect match for a OCH3 loss. This can be considered as a quinine-induced bond

cleavage, since it appeared only in the presence of quinine.
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In conclusion, two scaffold-aldehyde combinations were identified which has
satisfactory level of affinity towards quinine. Methyl-4-formylbenzoate showed a better
conjugation in both the presence and absence of quinine, while the conjugation of 3-
nitrobenzaldehyde was more favored in the absence of quinine. Therefore, these two
modified aptamer-aldehyde combinations can be further used in aptamer screening

methods.
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6 Appendices

Appendix 1: Mass spectrum of purified T19 after the cyclohexane carbaldehyde

treatment.
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Appendix 2: Mass spectrum of purified C20 after the cyclohexane carbaldehyde

treatment.
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Appendix 3: Mass spectrum of purified A21 after the cyclohexane carbaldehyde

treatment.
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Appendix 4: Mass spectrum of T19 with G1 aldehyde set in the presence of quinine.
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Appendix 5: Mass spectrum of T19 with G1 aldehyde set in the absence of quinine.
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Appendix 6: Mass spectrum of C20 with G1 aldehyde set in the presence of quinine.
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Appendix 7: Mass spectrum of C20 with G1 aldehyde set in the absence of quinine.
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Appendix 8: Mass spectrum of A21 with G1 aldehyde set in the presence of quinine.
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Appendix 9: Mass spectrum of A21 with G1 aldehyde set in the absence of quinine.
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Appendix 10: Mass spectrum of T19 with G2 aldehyde set in the presence of quinine.

Intensity [Counts]
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Appendix 11: Mass spectrum of T19 with G2 aldehyde set in the absence of quinine.
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Appendix 12: Mass spectrum of C20 with G2 aldehyde set in the presence of quinine.
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Appendix 13: Mass spectrum of C20 with G2 aldehyde set in the absence of quinine.

Intensity [Counts]
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Appendix 14: Mass spectrum of A21 with G2 aldehyde set in the presence of quinine.
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Appendix 15: Mass spectrum of A21 with G2 aldehyde set in the absence of quinine.
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16000

14000

12000

10000

6000

4000

2000

8000

\
210076526 2198.1339?; 2202‘58592‘

220457424

[A2 1-5 H]s, 2204.74843

220436521 [
A\

2204.15620
A
2204.95747
/
220394720
\
2205.16652
2206.04385
i
~2207.15300
220736215
/
220896600
13
2200.14037
2203.73820 12200.34962
223375990
~2233.97031
[~2234.18073
2203.52022 222458158 2233.16378—

223456653 2243.80055 224601533
I

2190

2105 2200 2205 2710 2215 2220 225 2230 2235 2240 25 2250 2055
Observed mass [m/z]

Appendix 16: Mass spectrum of T19 with A1l aldehyde set in the presence of quinine.
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Appendix 17: Mass spectrum of T19 with Al aldehyde set in the absence of quinine.
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Appendix 18: Mass spectrum of C20 with A1 aldehyde set in the presence of quinine.

Intensity [Counts]
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Appendix 19: Mass spectrum of C20 with A1l aldehyde set in the absence of quinine.

Intensity [Counts]

Appendix 20: Mass spectrum of A21 with A1 aldehyde set in the presence of quinine.
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Appendix 21: Mass spectrum of A21 with A1l aldehyde set in the absence of quinine.
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Appendix 22: Mass spectrum of T19 with A2 aldehyde set in the presence of quinine.
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Appendix 23: Mass spectrum of T19 with A2 aldehyde set in the absence of quinine.
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Appendix 24: Mass spectrum of C20 with A2 aldehyde set in the presence of quinine.
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Appendix 25: Mass spectrum of C20 with A2 aldehyde set in the absence of quinine.
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Appendix 26: Mass spectrum of A21 with A2 aldehyde set in the presence of quinine.
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Appendix 27: Mass spectrum of A21 with A2 aldehyde set in the absence of quinine.
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Appendix 28: Mass spectrum of T19 with A3 aldehyde set in the presence of quinine.
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Appendix 29: Mass spectrum of T19 with A3 aldehyde set in the absence of quinine.

Appendix 30: Mass spectrum of C20 with A3
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Appendix 31: Mass spectrum of C20 with A3 aldehyde set in the absence of quinine.
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Appendix 32: Mass spectrum of A21 with A3 aldehyde set in the presence of quinine.
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Appendix 33: Mass spectrum of A21 with A3 aldehyde set in the absence of quinine.
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