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Abstract.

This study investigates the potential of artificial intelligence (AI) in automating form creation within
software development, focusing on the interpretation of functional specification documents for automated
form generation. The research addresses the inefficiencies in current form creation practices, particularly
for organizations with dynamic requirements and contract programmers facing resource constraints.

The study employs a multifaceted methodology, including a comprehensive literature review on the
historical progression of AI in software development and a technological feasibility study. The research
explores the capabilities of Large Language Models (LLMs) in formatting raw functional specifications
and generating synthetic form components.

Key findings reveal that while LLMs show promise in handling simple form components and small-scale
generation tasks, they struggle with complex relationships and full-form generation. The study evaluates
various fine-tuning techniques and their effectiveness across different models, highlighting the importance
of high-quality, task-specific training data.

Results indicate that while AI demonstrates potential in certain aspects of form creation, current models
fall short of producing production-ready code for complex forms. The research also uncovers unexpected
performance variations between model sizes and the effectiveness of language-specific models.

This study contributes to the growing body of knowledge on AI-assisted software development, offering
insights into the current capabilities and limitations of AI in form creation. It concludes by suggesting
future research directions and practical implications for both researchers and practitioners in the field.
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1 Introduction

The evolution of software development has been characterized by a continual search for

efficiency and effectiveness in various processes. Form creation, an essential aspect of software

development, traditionally involves repetitive and manual coding practices. Historically,

organizations with static form-creation processes have combated this inefficiency by developing

custom automation tools, while organizations and contact programmers with ever-changing

form-creation processes grapple with resource constraints that limit their ability to do the same.

The advent of artificial intelligence (AI) in coding, particularly with tools like ChatGPT, has

opened up new possibilities for automating routine tasks, including form creation. However, the

author acknowledges that using AI may not always be the fastest or best approach for

organizations with static form creation methods, as they can develop a traditional tool for form

creation once and use that continuously. This study sets the stage for exploring how AI can

revolutionize this aspect of software development.

1.1 Problem statement

Current practices in form creation can be inefficient, especially for companies with

ever-changing form creation methods who face unique challenges. These companies are in a

constant state of flux, which makes the development of dedicated form-creation automation tools

unfeasible. For contract programmers, the transient nature of their projects means that creating

new tools for each project is impractical. The potential of AI in automating form creation,

particularly through understanding and interpreting functional specifications, has not been fully

explored. This gap presents an opportunity to enhance efficiency, adaptability, and scalability in

software development processes.

1.2 Research objectives

The primary objectives of this research are to explore the potential of artificial intelligence

(AI) in automating the process of form creation and to evaluate the feasibility and

effectiveness of using AI to interpret functional specification documents for automated

form generation. This study aims to investigate how AI technologies can streamline the
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development of forms by reducing manual effort and increasing accuracy. By assessing the

capability of AI to understand and process functional specifications, the research seeks to

determine the practicality of deploying AI-driven solutions in real-world scenarios, ultimately

enhancing efficiency and productivity in form generation tasks.

1.3 Research Questions

1. How has artificial intelligence evolved over the years in the field of software

development?

2. How effective is artificial intelligence, particularly LLMs like ChatGPT, in automating

the process of form creation by interpreting and generating code from functional

specification documents?

These research questions are designed to cover both the historical evolution and the current

practical application of AI in software development. This dual focus ensures that the study

provides a comprehensive understanding of how AI has reached its current state and how

effectively it can be applied to specific tasks within the field. By addressing both broad and

specific aspects, the research can offer valuable insights for both academic inquiry and practical

implementation.

Research question 1 aims to provide a historical overview and contextual background for the

study. Understanding the evolution of AI in software development is crucial for several reasons:

● Historical Context: It allows the researcher to trace the advancements and milestones in

AI, highlighting how these have progressively contributed to current capabilities. This

historical perspective can help identify the technological trends and pivotal moments that

have shaped the field.

● Technological Progress: By examining the development of AI technologies over time,

the study can identify key innovations and breakthroughs that have shaped modern AI

applications. This can include understanding the transition from rule-based systems to

machine learning and then to advanced neural networks.

● Foundation for Current Capabilities: The historical perspective helps to understand the

foundation upon which current AI technologies, including those used for code generation,

are built. This can elucidate the factors that have enabled recent advancements, such as
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improvements in computational power, algorithmic developments, and the availability of

large datasets.

● Informing Future Directions: Insights into the evolution of AI can provide valuable

lessons and guide future research and development in AI-driven software tools. By

understanding the successes and challenges of the past, researchers and practitioners can

better navigate future innovations and avoid repeating past mistakes.

Research Question 2 targets the core of the study’s practical investigation, focusing on the

application and evaluation of modern AI technologies in the form creation process, this inquiry is

crucial for several reasons:

● Practical Application: Evaluating the effectiveness of AI in automating form creation

addresses a concrete and significant task within software development. This has direct

implications for improving efficiency and productivity in the field. By automating routine

and repetitive tasks, developers can focus on more complex and creative aspects of

software development.

● Evaluating AI Capabilities: Assessing how well AI can interpret and generate code

from functional specifications provides valuable insights into the current state of AI

technology. This evaluation can help determine the practical limits of AI, identifying

areas where it excels and where it may still fall short.

● Evaluating Real-World Impact: Assessing AI’s ability to interpret and generate code

from functional specifications provides insights into its real-world applicability. This

helps to determine whether AI can effectively replace or augment human effort in routine

tasks, leading to potential cost and time savings. By understanding the practical impact of

these technologies, organizations can make informed decisions about adopting AI tools.

● Guiding Future Development: The findings can inform developers and organizations

about the practicality of adopting AI tools for form creation. This guidance can help

direct investments and development efforts towards the most promising areas of AI

technology, ensuring that resources are used effectively to enhance software development

processes.
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1.3 Methodology

This study will employ a comprehensive methodological approach, commencing with a

Literature Review to explore the historical evolution of artificial intelligence (AI) in response to

the first research question. The literature review aims to elucidate the current landscape of AI

and inform decisions regarding its application in the form creation process. Following this,

Quantitative Analysis will be conducted to evaluate the feasibility and efficacy of using AI to

interpret functional specification documents for automated form generation, addressing the

second research question. The effectiveness of this methodological approach has been

demonstrated in prior studies evaluating large language models (LLMs), as evidenced by [1].

This approach aligns with standard practices in the evaluation of LLMs, as observed in [2], [3].

1.4 Contribution

This study holds significant implications for the field of software development. By exploring the

integration of AI in form creation, it aims to introduce a method that could potentially save time,

reduce costs, and increase adaptability for various stakeholders, particularly companies and

contract programmers with non-static form creation methods. The findings could pave the way

for more extensive use of AI in software engineering, leading to broader transformations in how

software is developed. Furthermore, the study could contribute valuable insights to the ongoing

discourse on the role of AI in automating and optimizing routine tasks in software development.

For the tech industry at large, the implications of this research include potential shifts in best

practices and the standardization of more efficient methodologies.
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2 History of AI

This chapter delves into the rich history of artificial intelligence (AI), tracing its development

from early conceptualizations to modern advancements. It covers the initial theoretical

foundations laid by classical philosophers, the seminal contributions of pioneers like Alan

Turing, the evolution from rule-based systems to neural networks, and the significant milestones

that have shaped the field. The chapter also discusses the different types of AI, highlighting their

capabilities and the ongoing challenges in achieving more advanced forms of intelligence.

2.1 Early Concepts and Theoretical Foundations (Rule-Based Systems)

“AI is defined as machine intelligence or intelligence demonstrated by machines, in contrast to

the natural intelligence displayed by humans” [4]. The seeds of AI can be traced back to classical

philosophers and their efforts to understand human thinking as a symbolic system, but its formal

inception is often attributed to the mid-20th century. In 1950, Alan Turing, often referred to as

the "father of computer science" [5], published a seminal paper titled "Computing Machinery and

Intelligence" [6]. In this paper, he proposed the idea of a machine that could simulate human

intelligence and introduced the famous Turing Test as a criterion for machine intelligence. This

period also saw the development of foundational concepts like the “Logical Theorist" [7],

recognized as the first AI program.

Logical Theorist was a rule-based AI system developed to prove mathematical theorems using a

set of rules representing logical relationships between different mathematical concepts. Logic

Theorist was a landmark achievement in AI, however, it was also limited by its reliance on

hand-coded rules which made it brittle and difficult to adapt to new problems. Rule-based

systems like Logic Theorist are effective for tasks that can be clearly defined by rules, but they

can be inflexible and difficult to maintain as new knowledge and requirements emerge. This is

because hand-coding rules is a time-consuming and error-prone process, and it can be

challenging to anticipate all possible scenarios that the system may encounter.
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2.2 Emergence of Neural Networks

Picture 1: Artificial neural network architecture [8]

While the early focus was on rule-based systems, a transformative shift occurred with the

exploration of artificial neural networks (ANN), inspired by the structure of the human brain.

This marked a paradigmatic evolution in the field of AI, steering away from deterministic

approaches toward more adaptive and dynamic systems. [9]

In 1957, Frank Rosenblatt introduced a groundbreaking concept known as "The Perceptron"

[10]. This simple yet revolutionary model simulated an artificial neuron capable of learning to

classify patterns. The Perceptron achieved this by adjusting its weights based on the input data it

received. This innovation laid the foundation for ANN development, opening doors to more

complex architectures that could learn and adapt autonomously.

The foundational concepts, exemplified by the “Logical Theorist" [7] , remained crucial during

this period. However, researchers began envisioning systems that could learn and adapt more

dynamically, mimicking the plasticity of the human brain. The Perceptron was a pivotal

milestone, showcasing the potential for machines to autonomously learn and improve their

performance over time.

This transition from rigid rule-based systems to the flexible learning capabilities of ANNs

marked a profound shift in AI's trajectory. While rule-based systems like the Logical Theorist

were effective for clearly defined tasks, they faced limitations in adaptability. The emergence of
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ANNs addressed these limitations, offering a more sophisticated approach to problem-solving by

enabling systems to learn and generalize from data.

This period of exploration in the late 1950s laid the groundwork for subsequent advancements in

ANN architectures, setting the stage for the dynamic and ever-evolving landscape of artificial

intelligence.

2.3 The Birth of AI Research and Early Challenges

The Dartmouth Conference in 1956, often cited as the birth of AI as a field [11], brought together

researchers who believed that machines could be made to simulate aspects of human intelligence.

However, the initial optimism of the 1960s faced a reality check in the 1970s and early 1980s, a

period known as the "AI winter," characterized by reduced funding and interest in AI research

due to unmet expectations [12].

2.4 The Revival and Rise of Machine Learning

The revival of AI in the late 1980s and early 1990s is attributed to the emergence of machine

learning (ML), a subfield of AI that is defined as the “study of algorithms that enable computer

systems to learn through experience”. ML shifted focus from rule-based algorithms like Logical

Theorist to learning-based algorithms like The Perceptron. ML algorithms build a model based

on sample data, known as "training data", to make predictions or decisions without being

explicitly programmed to do so.”[4]. Machine learning techniques can be broken down into 3

categories [13]:
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Picture 2: Supervised Learning [14]

Picture 3: Unsupervised Learning [14]

Picture 4: Reinforcement Learning [14]

● Supervised learning: This type of learning is where the machine is given labeled data,

and it learns to map inputs to outputs. For example, a machine learning model could be
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trained to classify images of cats and dogs by being shown a large number of images that

have already been labeled as either cats or dogs.

● Unsupervised learning: This type of learning is where the machine is given unlabeled

data, and it learns to identify patterns in the data. For example, a machine learning model

could be trained to cluster documents together based on their content without being given

any specific labels for the documents.

● Reinforcement learning: This type of learning is where the machine learns by

interacting with its environment and receiving rewards or punishments for its actions. For

example, a reinforcement learning model could be trained to play a game of chess by

being given feedback on its moves.

2.5 Deep Learning

Machine learning gave rise to a new field, “Deep learning” [15]. This subfield utilizes artificial

neural networks (ANNs), complex architectures composed of multiple layers of interconnected

nodes. To train these models, a process called “backpropagation” [16] is employed. This

algorithm adjusts the weights and connections between neurons to minimize the discrepancies

between the model's predictions and the actual data.

Over time, various deep learning models have emerged such as:

2.5.1. Perceptron (1957)

Picture 5: Single layer Perceptron [17]
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The Perceptron was the first artificial neuron, designed by Frank Rosenblatt in 1957 [10]. It was

a simple model with a single layer of neurons that used a threshold function to classify binary

data.

The Perceptron was able to learn to classify data by adjusting the weights of its connections.

However, it was limited in its ability to handle complex data, as it could only learn linear

decision boundaries.

The Perceptron's linear decision boundaries made it difficult to classify data that was not linearly

separable. This led to limitations in its applicability to real-world problems.

2.5.2. Multilayer Perceptron (MLP) (1962)

Picture 6: Multilayer Perceptron [17]

The Multilayer Perceptron (MLP) was an extension of the Perceptron that introduced multiple

layers of neurons [18]. This allowed MLPs to learn to classify data with more complex decision

boundaries. The MLP added more layers of neurons and used activation functions to introduce

non-linearity into the model. This allowed MLPs to learn more complex decision boundaries and

classify multi-class data. While MLPs were an improvement over Perceptrons, they still

struggled with complex data due to the vanishing gradient problem. This problem made it

difficult for MLPs to learn long-range dependencies in the data.
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2.5.3. Feed-forward Neural Networks (FNNs) (1970s)

Feed-forward Neural Networks (FNNs) emerged as a response to the limitations of Perceptrons

and MLPs. FNNs were designed to process data in a single pass, without any feedback loops or

recurrent connections. This allowed them to learn more complex patterns in data but still limited

their ability to capture temporal relationships. FNNs were characterized by their use of multiple

layers of artificial neurons, with each layer processing the output from the previous layer. They

were widely used for tasks such as image classification, speech recognition, and language

translation. FNNs differed from the Perceptron in their ability to learn more complex patterns in

data but were still limited in their ability to handle sequential data. [19]

2.5.4. Convolutional Neural Network (CNN) (1980s)

Picture 7: Convolutional Neural Network [20]

The Convolutional Neural Network (CNN) was specifically designed for image recognition

tasks. It used a specialized architecture that allowed it to extract features from images efficiently.

CNNs used convolutional layers and pooling layers to extract features from images. These layers

were designed to capture local patterns and reduce the dimensionality of the data.

While CNNs were very effective for image recognition, they were not well-suited for sequential

data, such as natural language. This is because CNNs were not designed to capture temporal

relationships in data.[21]
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2.5.5. Recurrent Neural Network (RNN) (1980s)

Picture 8: Recurrent and Feed-Forward Neural Networks [22]

The Recurrent Neural Network (RNN) was designed to process sequential data, such as natural

language. It used a feedback loop to allow it to retain information over time. RNNs used a

recurrent structure that allowed them to process sequences of data one element at a time. This

allowed them to capture temporal relationships in the data [23]. Before RNNs neural networks

used a Feed-forward architecture. RNNs were still affected by the vanishing and exploding

gradient problems [24], [25]. These problems made it difficult for RNNs to learn long-range

dependencies in the data.

2.5.6. Long Short-Term Memory (LSTM) (1997)

Picture 9: Long Short-Term Memory architecture [26]
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The Long Short-Term Memory (LSTM) network was developed to address the vanishing and

exploding gradient problems in RNNs. It uses an internal memory cell to store information over

time. LSTMs used gating mechanisms to control the flow of information through the network.

These gates allowed LSTMs to selectively remember or forget information over time [27].

LSTMs were more computationally expensive than RNNs due to their complex architecture.

This made them less suitable for training on large amounts of data.
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2.5.7. Transformer (2017)

Picture 10: Transformer architecture [28]

The Transformer was a new architecture for natural language processing that used an attention

mechanism to focus on specific parts of the input sequence when generating each output token.

The attention mechanism allowed the Transformer to capture long-range dependencies in the

input sequence without being affected by the vanishing and exploding gradient problems [28].
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The Transformer was more computationally expensive than RNNs and LSTMs due to the

complexity of its attention mechanism. This made it less suitable for training on small amounts

of data.

2.5.8. Next-Generation Neural Networks (2020s)

The next generation of neural networks, such as Graph Neural Networks (GNNs) [29], Vision

Transformers (ViTs) [30], Multimodal Transformers (MMTs) [31], and Bidirectional Encoder

Representations from Transformers (BERT) based models [32], have been developed to address

the limitations of previous architectures. GNNs are designed to process graph-structured data,

while ViTs and MMTs are designed to process visual and multimodal data, respectively.

BERT-based models, such as RoBERTa and DistilBERT, have been developed to improve upon

the performance of language models on a range of NLP tasks. These architectures use novel

techniques, such as graph attention, multimodal fusion, and masked language modeling, to

capture complex patterns in data. They have been shown to achieve state-of-the-art performance

on a range of tasks, including graph classification, image classification, multimodal language

translation, and question answering.

The mainstream adoption of AI for image and text generation further propelled the field into

prominence. Models such as the Transformer revolutionized how we generate realistic images

and coherent text. This adoption expanded AI's reach into creative domains, enabling

applications such as art generation, content creation, and even deepfake technology. With the

ability to produce convincing visual and textual content, AI's impact on various industries and

everyday life became even more pronounced, marking a significant shift in how we interact with

and perceive artificial intelligence.

2.6 Types of AI

In the realm of AI, understanding the different types of AI is crucial for grasping the breadth and

potential of the field. Narrow or Weak AI, the most commonly implemented form, is designed

for specific tasks such as language translation, code generation, or driving autonomous vehicles,

and does not possess consciousness or self-awareness. In contrast, General or Strong AI, which

remains largely theoretical, refers to AI systems capable of generalized human cognitive

abilities, implying the ability to reason, solve problems, and understand abstract concepts across
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diverse domains [6], [33], [34]. The most speculative and advanced concept is Artificial

Superintelligence (ASI), a form of AI that surpasses human intelligence in all aspects, including

creativity, general wisdom, and problem-solving [6]. While Narrow AI has seen significant

practical application, the development of General AI and ASI remains a combination of

theoretical research and aspirational goals, encompassing various ethical, technical, and

existential considerations [35], [36].
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3 AI in Software Development

In recent years, the application of artificial intelligence (AI) in software development has gained

significant attention and has been the focus of numerous research studies. One area of particular

interest is the use of pre-trained models (PTMs) in software engineering (SE) tasks. “Instead of

training a model from scratch with large amounts of data, human beings can learn to solve new

problems with very few samples” [37]. Machines can do the same using transfer-learning, a 2

phase learning framework, Pre-trained Models (PTMs) in the context of software development

are trained through a meticulous process that enables them to understand and manipulate code

effectively. This training process is crucial for preparing PTMs to handle a wide array of

software engineering tasks, leveraging vast amounts of code data to learn patterns, syntax,

semantics, and the intricacies of various programming languages.

3.1. Data Collection and Preprocessing

The first step in training PTMs for code understanding involves collecting a large dataset of

source code. This dataset typically includes code from open-source projects, software

repositories, and other coding platforms. The collected code spans multiple programming

languages and domains, providing a rich diversity that helps in building a robust model.

Once the data is collected, it undergoes preprocessing to standardize and clean it. This may

involve [38]:

● Removing redundant or non-informative parts of the code, such as comments and white

spaces.

● Normalizing variable names and other identifiers to reduce the variability across different

coding styles.

● Pre-tokenization

● Tokenizing the code into smaller units (tokens) that can be processed by the model.

3.2 Normalization

Normalization entails processes designed to standardize textual data [39]. This includes:
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● Removal of unnecessary whitespace: Ensuring that spacing in the text does not interfere

with tokenization.

● Case conversion: Typically to lowercase to maintain consistency across variants of the

same word (e.g., "Hello" vs. "hello").

● Accent removal: Stripping characters of diacritical marks to reduce the vocabulary size

and simplify text processing.

● Unicode normalization: Applying strategies like NFC (Normalization Form Canonical

Composition) or NFKC (Normalization Form Compatibility Composition) to ensure

consistent representation of characters in texts.

3.3 Pre-tokenization

Following normalization, pre-tokenization involves the segmentation of text into manageable

entities, typically words, before they undergo subword division [40]. This step often utilizes

simple strategies like splitting by whitespace and punctuation. For example, the pre-tokenization

in a BERT tokenizer focuses on white spaces and punctuation marks for splitting, while GPT-2

includes whitespace as a token (Ġ), preserving the spaces to aid in reconstructing the original

text during decoding.

Notably, different tokenizers may follow distinct rules [41]:

● BERT Tokenizer: Operates on white spaces and punctuation, standardizing spacing but

removing extra spaces.

● GPT-2 Tokenizer: Retains spacing information by using a special symbol, and does not

remove double spaces.

● T5 Tokenizer: Utilizes SentencePiece, which treats spaces as a special character (▁), and

does not split on punctuation. It adds a space token at the start by default and manages

spaces effectively between words.
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3.4 The transition from Pre-tokenization to Tokenization

Following the initial pre-tokenization steps where text is cleaned and segmented into preliminary

entities like words, the subsequent phase involves applying more refined tokenization

techniques. These strategies are crucial in breaking down the text into tokens that are not only

manageable but also meaningful for computational models to process effectively. Among the

prominent techniques employed are Sentencepiece Tokenization, Byte-Pair Encoding (BPE)

Tokenization, WordPiece Tokenization, and Unigram Tokenization, each tailored to optimize

different aspects of language modeling and vocabulary management. [42], [43], [44], [45]

3.4.1 SentencePiece

SentencePiece is a versatile tokenization tool designed primarily for use in neural machine

translation (NMT) systems, which often grapple with the challenge of open vocabulary

problems. Unlike traditional tokenization methods, SentencePiece offers a comprehensive

solution by providing a pre-tokenization-free framework that treats text as a raw sequence of

Unicode characters piece [43]. This novel approach allows for seamless application across

different languages, especially those without clear word delimiters like Chinese and

Japanese.[43]

SentencePiece provides [46]:

● Language-Independent Design: SentencePiece processes text as a sequence of raw

Unicode characters. This makes it universally applicable to any language, without

requiring language-specific rules or pre-tokenization (e.g., Moses tokenizer for

segmented languages).

● Integration of Established Subword Algorithms: SentencePiece supports the

implementation of both the byte-pair encoding (BPE) and the unigram language model as

core algorithms for token generation. These methods allow the tokenizer to optimize

vocabulary size effectively while handling linguistic variations within text.

● Subword Regularization Techniques: SentencePiece enhances the robustness and

generalization capabilities of models through subword regularization and BPE-dropout.

These techniques involve on-the-fly adjustment of subword segmentations during
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training, adding a stochastic element to token generation, which prevents models from

overfitting on particular tokenization patterns.

● Efficiency and Performance: The tool is designed to be both fast and lightweight. It can

process approximately 50k sentences per second with a memory footprint of only around

6MB, making it ideal for large-scale text processing in resource-limited environments.

● Fixed Vocabulary Size: SentencePiece is unique in its approach to fixing the vocabulary

size prior to model training. This contrasts with other subword tokenization methods that

typically adjust their vocabulary based on the number of merge operations performed.

SentencePiece defines a target vocabulary size (e.g., 8k, 16k, 32k tokens), enabling

precise control over the complexity and capacity of the NMT model.

● Consistent Tokenization and Detokenization: Using the same model file guarantees

consistency in the tokenization and detokenization processes. This feature ensures that

the original text can be accurately reconstructed from its tokenized form, fostering

reliable evaluation and deployment of trained models.

SentencePiece addresses a common issue in text tokenization where whitespace information

often gets lost. By converting whitespace into a visible character ("▁", U+2581), ensures that

spaces are treated as explicit tokens and preserves the original text structure. This approach

allows for reversible tokenization, where tokenized sequences can be perfectly converted back to

the original text.

Example:

Before: "Hello World."

After Tokenization: "[Hello] [▁Wor] [ld] [.]"

After Detokenization: "Hello World." (reconstructed accurately)

Directly from raw text, SentencePiece can generate sequences of vocabulary IDs, streamlining

the processing pipeline for NMT models by eliminating intermediate steps typically required by

other tokenization approaches. The design and operation of SentencePiece make it particularly

advantageous for neural machine translation applications, where consistent and flexible handling

of diverse linguistic inputs is crucial. By detaching the tokenization process from the constraints
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of predefined word boundaries and language-specific idiosyncrasies, SentencePiece empowers

developers to implement more effective and inclusive NMT solutions. Its ability to handle text as

purely Unicode sequences and to maintain reversible transformations stands out as a major

advancement over traditional tokenization methods, paving the way for more adaptable and

powerful language technology tools.

3.4.2 Byte-Pair Encoding (BPE) Tokenization

Byte-pair encoding originated as a data compression technique and has been adeptly repurposed

for NLP tasks. BPE iteratively merges the most frequent pairs of bytes or characters until a set

vocabulary size is reached. This method effectively handles unknown words by decomposing

them into recognizable subwords, thus enhancing the model's ability to generalize across varied

textual inputs. It is particularly beneficial when addressing large and complex vocabularies

within texts. [47]

The training process of BPE involves an initial examination of the text corpus, which, following

normalization and pre-tokenization, issues a basic vocabulary of unique symbols or characters.

For instance, let's consider the corpus contains words like "hug", "pug", "pun", "bun", and

"hugs". The foundational vocabulary derived would consist of single characters: ["b", "g", "h",

"n", "p", "s", "u"]. [48]

If a token or character that was absent in the training corpus appears during tokenization, it is

regarded as an unknown token ([UNK]). This often occurs with unique or less frequent

characters, such as emojis, which can cause challenges when analyzing certain texts.

An innovative aspect of BPE used in the GPT-2 and RoBERTa tokenizers is byte-level BPE.

Instead of interpreting words as sequences of Unicode characters, byte-level BPE considers them

sequences of bytes. This approach ensures every conceivable character is accounted for in the

base vocabulary, preventing them from being transformed into unknown tokens. The base

vocabulary in this method typically consists of 256 characters, corresponding to the byte values.

Post-base vocabulary setup, BPE learns new tokens by merging the most frequent pairs of

characters or existing tokens. Initially, frequent bi-character tokens are formed and as the process
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iterates, longer subwords emerge from these pairs. The algorithm focuses on identifying the most

frequent adjacent tokens ("pairs") within words, merging them to form a new token, which is

then included in the vocabulary.

Example Walkthrough:

Using the corpus example ["hug", "pug", "pun", "bun", "hugs"] with identified frequencies:

Initial tokenization by characters:

("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5)

Let's consider pair analysis:

The pair ("u", "g") appears most frequently (20 times in our corpus). Thus, the first merge rule

learned is ("u", "g") -> "ug".

This merging process continues, identifying and merging the next frequent pair. For instance, the

next could be ("u", "n"), which after merging would yield:

Vocabulary and corpus update: Vocabulary: ["b", "g", "h", "n", "p", "s", "u", "ug", "un"]

The iterative process is continued, progressively merging pairs until the desired vocabulary size

is achieved or all frequent pairs have been merged.

The actual tokenization of new inputs based on the established merge rules:

1. Normalization: Text is cleaned up, removing unwanted characters and inconsistencies.

2. Pre-tokenization: Text is split into words or other significant components.

3. Character Splitting: Words are further broken down into individual characters as per the

initial vocabulary.

4. Merge Rule Application: Sequentially apply the learned merge rules to the characters,

grouping them into the learned tokens.

Example Tokenization

Using the word "bug" with the trained merge rules:
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● Initial split into characters: ["b", "u", "g"]

● Applying a merge rule: ("u", "g") -> "ug"

● Final tokenization: ["b", "ug"]

This systematic tokenization process, grounded in basic characters and explicit merge rules,

allows BPE to be highly efficient and broadly applicable, especially in dealing with diverse and

extensive vocabularies. Byte-pair encoding thus serves as a robust method for addressing various

challenges in NLP, from handling unseen words to efficiently managing large text corpora.

3.4.3 WordPiece Tokenization

Building on the foundational ideas of tokenization, WordPiece further optimizes the process by

focusing not just on frequency but also on the likelihood of language models. Starting from basic

characters, WordPiece merges them into tokens based on their contribution to the overall

probability of the text structure, allowing for a nuanced understanding of word composition and

usage contexts. This technique is integral to the functioning of models like Google's BERT,

optimizing both the coverage of the vocabulary and the depth of semantic recognition.

Though Google has not open-sourced the exact implementation details of WordPiece, what's

understood about the algorithm is largely derived from the literature. The process can be

delineated as follows:

Initialization: Begins with a small vocabulary that includes special tokens used by the model

and a set of basic characters from the initial alphabet. For BERT, WordPiece utilizes a prefix

(like "##" for subsequent chunks of a word after the first character) to distinguish subsequent

characters within words. For example, the word "word" would be segmented as:

"w ##o ##r ##d"

Learning Merge Rules: Similar to BPE, WordPiece then learns to merge these characters and

subwords. However, unlike BPE’s frequency-based approach, WordPiece employs a scoring

system for pairs of tokens using the formula:

Score= freq_of_pair/(freq_of_first_element×freq_of_second_element)
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This scoring technique means that merges are favored not only based on raw frequency but also

adjusted against the prevalence of the individual tokens being merged. This criterion aims to

balance the coverage and cohesion of the vocabulary.

Example Scenario [49]:

Consider the tokens following initial segmentation and their frequencies:

("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

Splitting these into characters with manipulations for internal parts of words marked by prefixes:

("h" "##u" "##g", 10), ("p" "##u" "##g", 5), ("p" "##u" "##n", 12), ("b" "##u" "##n", 4), ("h"

"##u" "##g" "##s", 5)

The initial vocabulary would be: ["b", "h", "p", "##g", "##n", "##s", "##u"]. If for example, the

merge "##g" and "##s" has the highest score (not because of their individual frequency but due to

the lower occurrence of these pairs making their relative score higher), it becomes the first merge

to form "##gs".

High-frequency tokens ("##u", "##g"):

● Frequency of pair ("##u", "##g") = 20
● Frequency of "##u" = 31 (total appearances in pairs)
● Frequency of "##g" = 20

The score calculation would be: Score = 20/(31*20) = 20/620 = 1/31

All pairs containing "##u" have this score due to its high frequency in various tokens.

Lower-frequency tokens ("##g", "##s"):

Frequency of pair ("##g", "##s") = 5

Frequency of "##g" = 20

Frequency of "##s" = 5

The score for this pair would be: Score = 5/(20*5) = 5/100 = 1/20
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Since this score is higher than the score for pairs involving "##u," the merge between "##g" and

"##s" is prioritized. The effective scoring formula reduces the bias towards merging extremely

frequent sub-tokens, which might otherwise dominate the vocabulary, leading to less efficient

token utilization.

As merges continue, tokens like "hu", "hug", etc., may eventually be created based on the scoring

criterion, incorporating sequences that best describe common linguistic patterns while promoting

an efficient vocabulary.

The learning process involves repetitively merging according to the best score until the desired

vocabulary size is reached.

Once trained, WordPiece tokenizes new text inputs by:

● Normalizing and pre-tokenizing the text.

● Splitting into the smallest units based on the initial vocabulary.

● Recursively applying merge rules learned during training to form the tokens detected as

most meaningful for linguistic structures.

The example, "thug", would thus be tokenized potentially as ["t", "hug"], applying learned

sequences and considering what pieces are recognized under the trained vocabulary and rules.

WordPiece tokenization offers a sophisticated method of parsing text into subwords, where the

decision-making process critically balances the frequency of occurrence with the distributive

properties of sub-units. This method supports models in effectively dealing with diverse and

complex input texts, making intricate predictions about word structures and meanings, thereby

empowering deeper semantic understanding in tasks like translation, text summarization, and

contextual prediction in NLP applications.

3.4.4 Unigram Tokenization

Unigram Tokenization adopts a probabilistic approach to build its vocabulary. It starts with an

extensive set of potential subwords and uses a statistical method to gradually eliminate the least

probable tokens. This results in a compact and highly efficient vocabulary set that reflects the
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true usage patterns of the language being modeled. The Unigram model is especially effective for

languages with complex morphologies, as it naturally integrates morphological variants into its

token selection process. [50]

Unigram's training strategy begins with a significantly large vocabulary compiled from common

substrings in pre-tokenized words or using methods such as a high-threshold BPE. This initial

vocabulary is then streamlined through an iterative process of elimination based on token utility

for corpus representation:

● Loss Computation: Starting with a comprehensive vocabulary, the Unigram model

calculates the corpus encoding loss for the existing set of tokens. This loss quantifies how

effectively the vocabulary covers the corpus.

● Evaluating Tokens for Removal: For each token in the vocabulary, Unigram assesses

the potential increase in corpus loss if that token were removed. Tokens that minimally

increase the loss—indicating they are less crucial—are flagged for removal.

● Batch Token Removal: Rather than removing tokens one at a time, Unigram removes

them in batches. It typically eliminates the lowest (p%) contributors to corpus coverage,

where (p) is a tunable hyperparameter. This process continues until the vocabulary

shrinks to the desired size.

● Preservation of Base Characters: Essential characters are retained throughout to ensure

complete tokenizability of any corpus text.

Example of Initial Vocabulary and Token Ethication Process with a sample corpus used in earlier

segments such as [51]:

("hug",10),("pug",5),("pun",12),("bun",4),("hugs",5)

Unigram might begin with all strict substrings:

Initial Vocabulary=["h","u","g","hu","ug","p","pu","n","un","b","bu","s","hug","gs","ugs"]

Each substring's frequency is measured, and as part of the probabilistic model, the probability of

each substring is computed based on its frequency against the total frequency of all tokens.
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In Unigram, the likelihood of a sequence of tokens is calculated as the product of individual

probabilities, assuming token independence. This simplifies language modeling since each

token's probability is treated discretely from others. The resulting model prefers fewer, larger

tokens when tokenizing text due to probabilistic weighting, aligning with intuitive text

segmentation.

For instance, tokenization options for "pug" would be evaluated as follows:

"𝑝𝑢𝑔" → ["𝑝",  "𝑢",  "𝑔"] 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  (5/210 *   36/210 *  20/210) =  0. 000389

"𝑝𝑢𝑔" → ["𝑝𝑢",  "𝑔"] 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  (5/210 *  20/210) =  0. 0022676

The option with a higher probability ("pu", "g") would be chosen due to its higher composite

likelihood.

Unigram’s iterative removal of tokens involves recalculating loss each time a set of tokens is

proposed for deletion. This involves:

● Tokenizing the corpus using the current vocabulary.

● Calculating the negative log-likelihood of the corpus under the current tokenization.

● Proposing token removal that results in the smallest increase in the total corpus loss.

In practice, adjusting the vocabulary using loss calculations ensures that Unigram remains

sensitive to the nuances of language data it's trained on. This adaptive feature makes it suitable

for natural language tasks requiring an understanding of complex, variable morphological

structures often seen in highly inflective languages.

3.5 Mapping and Vectorization in NLP

After the text is tokenized, each token is mapped to a unique integer ID, which is essential since

machine learning models require numerical input rather than raw text. This mapping is

constructed during the tokenizer's training phase, where a vocabulary index is created. Within

this index, every distinct token is associated with a specific integer ID. For example, in English,

the tokens "the," "dog," and "runs" might be assigned IDs like 1, 1234, and 567, respectively. As

new texts are processed, each token is replaced by its corresponding integer ID according to the
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vocabulary index. For tokens not found in the vocabulary, known as out-of-vocabulary (OOV)

tokens, they are either omitted, substituted with a unique identifier for unknown tokens (typically

marked as <UNK>), or decomposed into smaller known sub-tokens.[52]

Once tokens are converted to sequences of these IDs, they must be transformed into a numerical

format that can capture both the linguistic characteristics and the semantic relationships of the

words. This transformation, known as vectorization, occurs in one of two ways depending on the

complexity of the natural language processing (NLP) model involved. In more sophisticated

models, token IDs are used to fetch vectors from a pre-trained embedding layer, which contains

densely packed floating-point numbers that represent tokens in a multidimensional space. These

vectors are structured so that tokens with similar meanings are positioned closely in the vector

space, allowing the model to effectively deduce context and semantics. Techniques like

Word2Vec, GloVe, or embedding layers found in transformer models such as BERT or GPT are

typically utilized to generate these semantically rich vectors. In simpler models, these token IDs

may be converted into one-hot encoded vectors. However, while one-hot encoding is

straightforward, it does not capture semantic relationships as it treats every token as equidistant

from every other token.

As this section follows pre-tokenization, it’s important to note how the foundational groundwork

of initial text segmentation and normalization significantly impacts the efficiency and

effectiveness of these advanced tokenization methods. Each tokenization strategy thereby builds

on the cleaned and segmented text provided by pre-tokenization to further refine the

interpretability and usefulness of the text for various NLP applications. These tokenization

methods not only facilitate a deeper understanding of language nuances but also enhance the

overall performance of machine-learning models in processing and generating human-like text.

3.6 Model Pre-training

After preprocessing, the next phase is the pre-training of the model. This stage is crucial and

involves teaching the model the basic structure and syntax of programming languages through

unsupervised learning techniques. Common pre-training tasks include:
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● Masked Language Modeling (MLM) [53]: Random tokens in the code are masked, and

the model is trained to predict the masked tokens based on their context. This task helps

the model learn the syntax and other contextual relationships within the code.

● Next Token Prediction [54]: The model predicts the next token in a sequence, helping it

understand the flow and common patterns in coding practices.

These tasks enable the model to develop an initial understanding of how code is structured and

functions, preparing it for more specialized tasks.

3.7 Fine-tuning for Specific Tasks

With a foundational knowledge base established during pre-training, the PTM is then fine-tuned

for specific software engineering tasks. This stage involves training the model on a smaller,

task-specific dataset under supervised learning conditions, where the model learns from

examples with known outcomes. The fine-tuning process adjusts the model's weights specifically

for tasks such as code completion, bug fixing, or code summarization, enhancing its performance

on these tasks. [55]

3.7.1 Parameter-Efficient Fine-Tuning (PEFT)

Parameter-Efficient Fine-Tuning (PEFT) is an approach used to adapt a pretrained model to a

new task while modifying only a small portion of the model's parameters. This technique is

particularly vital in scenarios where deploying large-scale models is computationally expensive

or where the environmental footprint of training such models needs to be minimized. PEFT

allows for retaining the general capabilities of a large pretrained model while customizing it

efficiently for specific tasks. [56]

For example, when considering the bigscience/T0_3B model, which has 3 billion parameters,

full fine-tuning demands a substantial 47.14GB of GPU memory and 2.96GB of CPU memory.

In sharp contrast, fine-tuning the same model using PEFT with the LoRA (Low-Rank

Adaptation) method requires only 14.4GB of GPU memory while maintaining the same CPU

memory usage. This represents a remarkable 70% reduction in GPU resource requirements,
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showcasing the significant efficiency gains offered by the PEFT-LoRA approach in optimizing

the utilization of computational resources.[57]

Despite this considerable reduction in resource usage, PEFT strategies like LoRA allow the

model to retain the massive prelearning from its original training. This is crucial because it

means there's no significant trade-off in performance capabilities; the model still performs

effectively across tasks by leveraging its base knowledge and making specific, efficient

adjustments. However “PEFT techniques are slower to converge than full tuning in

low/medium-resource scenarios” meaning that “for lower-resource datasets, if we prioritize

training speed and less on hardware constraints, full tuning is a better option”[58]. Several

strategies have been developed to implement PEFT, each focusing on altering a small subset of

the model’s parameters while keeping the majority frozen (unchanged). Here are some of the

fundamental techniques.

3.7.1.1 Adapter Layers

Concept:

Adapter Layers are small, trainable modules inserted between the pre-existing layers of a

pre-trained model. Each adapter typically consists of a down-projection (reducing

dimensionality), a non-linear activation function, and an up-projection (restoring

dimensionality).

Implementation:

Adapters are added to each layer of a Transformer model, for example, without modifying the

original weights of the model. Only the adapter weights are updated during training. This method

allows for task-specific learning without substantial changes to the overall network

architecture.[59]

Strengths:
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● Modularity: Easy to add or remove from existing models, allowing for flexibility in

model configuration.

● Next Token Prediction: Requires training only a small fraction of the total model

parameters, significantly reducing computational overhead.

● Next Token Prediction: Does not disturb the original pre-trained parameters, maintaining

the generalized capabilities learned during pretraining.

Weaknesses:

● Performance: While usually effective, the performance might not reach the same peak as

full model training, especially for tasks that are highly divergent from the pretraining

data.

3.7.1.2 Low-Rank Adaptation (LoRA)

Concept:

Low-rank adaptation (LoRA) involves modifying the weights of the pre-trained model using

updates that are constrained to have a low-rank structure. This method approximates the original

high dimensionality space using fewer parameters, capturing the most critical information

needed for the new task.

Implementation:

This technique typically involves adding a low-rank matrix to existing weights or fully replacing

original weights with low-rank approximations. During training, only these low-rank matrices

are updated, while the bulk of the original weights remain unchanged.[60]

Strengths:

● Efficiency in Large Models: Can be very effective in reducing the parameter count in

very large models.
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● Fine-grained Control: Offers more direct control over the model’s learned

representations, potentially leading to better performance on tasks closely related to the

pretraining domain.

Weaknesses:

● Complexity: Implementation and tuning can be more complex than simple adapters.

Determining the appropriate rank and integration method can require extensive

experimentation.

● Risk of Overfitting: With insufficient regularization, low-rank updates might overfit to

the fine-tuning data due to their capacity to adjust core aspects of the model more

comprehensively.

3.7.1.3 Prompt Tuning

Concept:

Prompt Tuning is a technique associated primarily with fine-tuning large language models,

especially those based on the Transformer architecture. It involves appending trainable tokens, or

"prompts", to the input sequence to guide the model toward desired outputs without altering the

underlying model weights. These prompts effectively act as tunable parameters that adjust the

context in which the model processes inputs, exploiting the model's existing knowledge to

generate task-specific responses.

Implementation:

Soft prompts, which are vectors of trainable parameters, are added to the input of the model.

These prompts are designed to interact with the model's embedding layer and influence the

activations throughout all subsequent layers. During fine-tuning, only the prompt parameters are

adjusted while the main model parameters remain fixed. This confines the learning process to the

tunable prompts.

Strengths:
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● Parameter Efficiency: Extremely efficient since it only requires tuning a small set of

parameters relative to the full model's parameter count.

● Versatility: Prompts can be designed to elicit specific behaviors from the model, enabling

customization for a wide range of tasks using the same pretrained model.

● Speed: Training is typically faster than full model fine-tuning since fewer parameters are

updated.

Weaknesses:

● Task Alignment: May not be as effective for tasks that are significantly different from

those the model was originally trained on, since the effectiveness of prompts relies

heavily on leveraging pre-existing model knowledge.

● Design Sensitivity: The design and initialization of prompts can be critical, and poor

prompt design might lead to suboptimal performance.

● Scalability of Prompt Length: Extending the prompt length increases parameter count and

can lead to more complex interactions that are harder to optimize.

3.7.1.4 Summary

Adapter Layers are well-suited for scenarios where the priority is to maintain the integrity of

the pretrained model and achieve good performance across a variety of tasks with minimal

intervention. They are particularly useful in multitasking settings where you might want to

switch between different adapters efficiently.

Low-Rank Adaptation might be preferable when working with extremely large models where

even modest proportions of parameter updates are impractical or where a more nuanced

adjustment of the model parameters is required, possibly for tasks very similar to the original

training data.

Prompt Tuning is particularly useful when dealing with large language models like GPT-3 or

BERT, where traditional fine-tuning might be computationally prohibitive. It leverages the deep

contextual understanding these models have to adapt to new tasks with minimal adjustments.
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This approach is ideal for tasks where the underlying model already possesses a significant

amount of relevant knowledge, and slight nudges provided by carefully designed prompts can

result in appropriately tailored responses.

3.7.2   What Happens Inside the Model During Fine-Tuning?

In the process of fine-tuning, the model's parameters (i.e., the weights and biases in various

layers) are strategically adjusted to minimize the loss function, which quantifies the difference

between the model’s predictions and the actual desired outcomes for the new task :

3.7.2.1 Parameter Adjustment:

During the fine-tuning phase, the model's parameters are meticulously adjusted to minimize a

loss function that's carefully chosen to mirror the objectives of the new task. This fine-tuned loss

function could vary from cross-entropy for code generation tasks to mean squared error for

regression tasks, depending on what the task requires. The primary method employed to update

the model parameters is gradient descent or its variants like stochastic gradient descent or Adam.

This method calculates the gradient of the loss function with respect to each model parameter,

offering a clear direction on how modifications to these parameters can decrease or increase the

loss. As part of the fine-tuning process, weight adjustments are made incrementally in the

direction that most effectively reduces the loss. This typically involves minor, progressive

changes to the parameters, aligned opposite to the gradient and scaled by a specific learning rate.

Through this iterative approach, the model's parameters are gently shifted towards values that

minimize loss. Consequently, the model's outputs become more closely aligned with the desired

outcomes of the new task, thereby substantially enhancing the model's performance in achieving

specific objectives.

3.7.2.2. Backpropagation:

Fine-tuning utilizes backpropagation, the standard method for training neural networks. In this

process, the error between the model’s predictions and the true outputs (loss) is calculated and
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then used to update the model weights. This error is propagated backward through the network

(hence "backpropagation"), from the last layer to the first, adjusting the weights to decrease the

error.

3.7.2.3. Learning Rate Adjustment:

Typically, a lower learning rate is used in fine-tuning than was used in the initial training of the

model. This prevents the weights from changing too drastically, preserving the useful features

the model has already learned from the large dataset while still allowing it to adapt to nuances of

the new, smaller dataset.

3.7.2.4. Feature Adaptation:

The first layers of neural networks (especially in contexts like vision with Convolutional Neural

Networks, or language with Transformers) learn general features that are widely applicable

across many tasks (e.g., edges in images, syntax in text). During fine-tuning, more emphasis is

often placed on adjusting the deeper layers because these layers are responsible for learning

task-specific features.

3.7.2.5. Avoiding Overfitting

Fine-tuning must be handled carefully to avoid overfitting, especially when the new dataset is

much smaller than the original training set. Overfitting occurs when a model learns the details

and noise in the training data to the extent that it negatively impacts the performance of the

model on new data. Techniques such as dropout, early stopping, or introducing regularization are

commonly used to mitigate this risk. [61]

3.7.3 Uses of Pretrained Models

In their paper, "Deep Learning Meets Software Engineering: A Survey on Pre-Trained Models of

Source Code", Changan Niu, Chuanyi Li, Bin Luo, and Vincent Ng provide a comprehensive

survey of the use of PTMs in SE tasks. [62]
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The authors identify and categorize 18 SE tasks to which PTMs have been applied. These tasks

include:

1. Code completion: PTMs can be used to predict the next token or symbol in a code

snippet based on the context, thereby assisting developers in completing their code more

efficiently.

2. Code search: PTMs can be used to search for relevant code snippets within a large

codebase, saving developers time and effort.

3. Code refactoring: PTMs can be used to automatically refactor code to improve its

readability, maintainability, and performance.

4. Code repair: PTMs can be used to automatically repair code bugs and errors, reducing

the time and effort required for manual debugging.

5. Code rewriting: PTMs can be used to rewrite code to improve its quality, readability,

and maintainability.

6. Code summarization: PTMs can be used to summarize long code snippets, providing

developers with a quick overview of the code's functionality.

7. Code generation: PTMs can be used to generate new code based on a set of inputs and

constraints, such as generating test cases or creating new functions.

8. Code comprehension: PTMs can be used to analyze and understand the meaning and

functionality of code, allowing developers to quickly grasp the essence of complex

codebases.

9. Code retrieval: PTMs can be used to retrieve relevant code snippets from a large

codebase, based on a given query or context.

10. Code clustering: PTMs can be used to cluster similar code snippets together, allowing

developers to identify common patterns and best practices.

11. Code classification: PTMs can be used to classify code into different categories, such as

functional or non-functional code, or code that follows best practices or not.

12. Code sentiment analysis: PTMs can be used to analyze the sentiment of code, such as

identifying code that is likely to be buggy or difficult to maintain.
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13. Code feature extraction: PTMs can be used to extract relevant features from code, such

as identifying the programming language, frameworks, or libraries used.

14. Code similarity analysis: PTMs can be used to compare and analyze the similarity

between different code snippets, allowing developers to identify duplicate code or code

that can be refactored.

15. Code evolution analysis: PTMs can be used to analyze the evolution of code over time,

allowing developers to identify changes in code quality, maintenance, and functionality.

16. Code review: PTMs can be used to assist in code review, such as identifying code that is

difficult to understand, has potential bugs, or does not follow best practices.

17. Code testing: PTMs can be used to assist in code testing, such as identifying potential

test cases, generating test data, or predicting test results.

18. Code debugging: PTMs can be used to assist in code debugging, such as identifying

potential bugs, predicting bug locations, or suggesting fixes.

For this paper, we will mostly focus on Code generation.

3.8 Evaluation Metrics for LLMs in Code Generation

When evaluating Large Language Models (LLMs) in code generation, several metrics are

traditionally used. Each metric has its strengths and limitations, and understanding these can help

in selecting the right tools for comprehensive evaluation.

3.8.1 BLEU (Bilingual Evaluation Understudy)

● Description: Originally designed for machine translation, BLEU measures how many

words and phrases in the generated output match a reference output, adjusted for

proportion and order.

● Limitations: BLEU is primarily effective in contexts where the exact wording is

important, such as translation. However, it may not be suitable for evaluating code

generation where syntactic variety and functional correctness can be more important than

exact text matches. BLEU also struggles with evaluating the quality of individual texts or
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outputs that deviate syntactically from the reference but are still correct or even optimal

in execution.[63]

3.8.2 character n-gram F-score (chrF)

ChrF is a metric used to evaluate the quality of machine translation. It calculates a score called

the F-score, which is a balanced measure of precision and recall. Precision is the number of

correct translations produced by the system divided by the total number of translations it

produces. Recall is the number of correct translations produced by the system divided by the

total number of correct translations in the reference set. chrF differs from other metrics like

BLEU in that it focuses on character n-grams instead of words. This means it evaluates the

similarity between translations based on sequences of characters rather than entire words. This

characteristic makes chrF less sensitive to the specific order of words in the translation, which

can be helpful in cases where word order might vary between languages or where the translation

is grammatically correct but the word order differs from the reference. [64]

While chrF can capture some syntactic nuances better than BLEU, it exhibits negative

correlations with syntactic complexity [63]. This suggests that as the complexity of the code

increases, chrF may fail to adequately capture similarities between the generated code and the

reference, particularly in syntactically rich languages.

3.8.3 Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

ROUGE is used primarily for evaluating automatic summarization and machine translation. It

measures the overlap of n-grams, word sequences, and word pairs between the generated text and

a set of reference texts. [65]

“A good ROUGE score does not imply good summary quality when readability and grammatical

accuracy are also taken into account”[66]. This indicates potential limitations in its applicability

to evaluating code, where logical structure and execution correctness are crucial.

3.8.4 Metric for Evaluation of Translation with Explicit Ordering

(METEOR)
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METEOR considers exact word matches, synonyms, and stemmed versions, providing a more

nuanced assessment than BLEU. [67]

While METEOR is designed to align more closely with human judgment by considering

synonyms and paraphrases, it might not fully capture the functional accuracy needed in code

generation.

3.8.5 Bidirectional Encoder Representations from Transformers

Score (BERTScore)

BERTScore leverages contextual embeddings from models like BERT to compare the semantic

similarity of words in the generated and reference texts. It is known for its robustness in

capturing deeper semantic and syntactic nuances. [68]

“BERTSCORE correlates highly with human evaluations” [68], suggesting its potential

suitability for tasks that require understanding complex syntactic structures or semantic content.

Given its sensitivity to syntactic and semantic richness, BERTScore could be particularly useful

in evaluating code generation where understanding the underlying logic and functionality is more

important than surface textual similarity.
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4 Case Study on Form Generation

4.1 Research methodology

Quantitative analysis is a crucial methodological approach used in the field of artificial

intelligence (AI) to assess various aspects of AI models, including large language models

(LLMs) like ChatGPT. This approach employs numerical data and statistical techniques to

quantify relationships, measure performance metrics, and draw conclusions based on empirical

evidence. Here’s a broader overview of how quantitative analysis is generally used in evaluating

LLMs in AI research:

● Performance Evaluation: Quantitative analysis is instrumental in evaluating the

performance of LLMs. Metrics such as accuracy, precision, recall, F1 score, perplexity,

and computational efficiency are quantitatively assessed to benchmark the capabilities of

LLMs in tasks like language generation, text completion, sentiment analysis, and more.

● Analysis of Training Data: Quantitative analysis plays a vital role in analyzing the

training data used to fine-tune LLMs. Statistical techniques are utilized to preprocess

data, identify patterns, detect biases, and ensure the quality and representativeness of the

datasets, which are crucial for the robustness and generalizability of AI models.

● Comparison and Benchmarking: Quantitative analysis facilitates comparative studies

and benchmarking of LLMs against existing models or baselines. Through rigorous

experimentation and statistical testing, researchers can objectively assess whether new

models outperform previous ones, establishing advancements in AI capabilities.

4.2 Background

From the initial idea to the final stage of form creation, the process generally commences when

stakeholders provide a set of requirements to a Project Manager. The Project Manager then

distills these requirements into a functional specifications document which is handed over to the

software development team. This team is tasked with turning these specifications into the

required forms. For smaller teams or contract programmers, these specifications often come

directly from the stakeholders themselves.
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To actualize these forms, the development team typically makes use of in-house form creation

tools which are designed to extract relevant information from the functional specification

documents and convert it into code. When such tools are not available, and if the demand

justifies it due to a large number of forms, the team might opt to develop a tool specifically for

translating these specifications into executable code. Conversely, if the quantity of forms is

minimal, the most practical approach might be for developers to manually code the

specifications.

For those developers or companies consistently working with the same types of forms, it

becomes logical to invest in crafting a custom tool that facilitates this conversion process from

specifications to code, ensuring predictable and reliable outcomes each time. However, for those

working on varied form creation projects—potentially using different frameworks or

programming languages—the creation of a distinct tool for each project may not be viable, thus

defaulting to manual methods as a more practical solution.

In scenarios where form creation demands fluctuate or span across diverse methodologies, AI

presents a particularly beneficial alternative. The identification of this challenge arose from

observing the inefficiencies and limitations of traditional methods, especially in dynamic

environments where manual coding or bespoke tool development may not be feasible or

cost-effective for every project.

The decision to explore AI as a solution stemmed from recognizing AI's potential to automate

and optimize the form creation process. AI, particularly in the form of large language models like

ChatGPT, offers capabilities in natural language understanding and code generation that can

interpret functional specifications and autonomously generate code. This approach promises

pragmatic implications such as:

● Adaptability: AI can adapt to varying forms and specifications, reducing the need for

bespoke tools for each project and enhancing flexibility in software development

workflows.

● Scalability: By automating form creation tasks, AI enables scalability, allowing

developers to handle larger volumes of form creation requests efficiently.
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● Efficiency: AI-driven automation minimizes manual effort and speeds up the

development cycle, potentially reducing time-to-market for software products.

● Consistency: AI models can ensure consistent outputs based on learned patterns and

specifications, improving reliability across different projects and teams.

Implementing AI in form creation aims to streamline development processes, optimize resource

allocation, and ultimately enhance productivity in software engineering. This pragmatic approach

targets not only technical feasibility but also addresses practical challenges faced by teams

managing diverse and fluctuating form creation requirements.

4.3 Technical Implementation

The Mahti compute nodes provided by the CSC – IT Center for Science [69] were used for the

training of the models. Specifically, two nodes equipped with four 40GB Nvidia A100 GPUs

each were employed. Although Mahti can support a maximum of six nodes, the training was

restricted to two nodes. This limitation arose because attempts to use more than two nodes

resulted in communication errors between the nodes, causing the multi-node training to fail.

Consequently, the largest models that could be trained were limited to 13B parameters.

This study employs the Hugging Face library in conjunction with DeepSpeed to fine-tune large

language models (LLMs). Huggingface provides a library of LLM development tools including

a place to store the models and datasets [70]. “DeepSpeed is a deep learning optimization

library”[71] developed to optimize the LLM training process. Deepspeed has 3 stages of memory

optimization. Developed by Microsoft, DeepSpeed addresses the memory and computational

challenges associated with scaling LLMs by introducing advanced memory optimization

techniques. It features three key stages of memory optimization:

1. Optimizer State Partitioning (Pos): This stage achieves a 4x memory reduction by

partitioning the optimizer state, while maintaining the same communication volume as

traditional data parallelism.
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2. Gradient Partitioning (Pos+g): Building on the previous stage, this step introduces

gradient partitioning, resulting in an 8x memory reduction with the same communication

volume as data parallelism.

3. Parameter Partitioning (Pos+g+p): The final stage incorporates parameter partitioning,

offering a linear memory reduction proportional to the degree of data parallelism (Nd).

For instance, partitioning across 64 GPUs (Nd = 64) yields a 64x memory reduction, with

only a modest 50% increase in communication volume.

DeepSpeed's Stage 3, which partitions models across multiple GPUs, was utilized to optimize

model training, making it feasible to handle the LLMs. See Appendix 1 for deepspeed

configuration details.

Picture 11: Deepspeed memory usage [72]

PEFT, specifically QLoRA was used to reduce graphics processing unit (GPU) memory

requirements as “LoRA performs on-par or better than fine-tuning in model quality”[60]. As

demonstrated by [73], "it is possible to finetune a quantized 4-bit model without any

performance degradation." This quantization technique significantly reduces memory

requirements by representing model parameters with 4 bits instead of the conventional 32 bits,

dramatically increasing the efficiency of our fine-tuning process without compromising model

performance. See Appendix 2 for configuration details.
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Picture 12: Full-Finetuning, LoRa and QLoRA [73]

Five Causal language models from the Hugging Face Hub were selected for fine-tuning on a

dataset containing custom form code. Causal language models are normally used for code

generation. The models utilized in this process are:

● m-a-p/OpenCodeInterpreter-DS-6.7B

● Artigenz/Artigenz-Coder-DS-6.7B

● deepseek-ai/deepseek-coder-6.7b-instruct

● Finnish-NLP/llama-7b-finnish-instruct-v0.2

● codellama/CodeLlama-7b-Instruct-hf

● codellama/CodeLlama-13b-Instruct-hf

Five of these models were chosen for their code generation capabilities, evaluated using the

EvalPlus, an evaluation method described in [74]. The remaining model from Finnish-NLP was

selected due to its training on a dataset containing Finnish, the native language of the dataset

used in this study.

This study utilized a total of eight datasets to fine-tune the models, capitalizing on both Finnish

and English languages through various transformations and synthetic data augmentations:
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1. Base Dataset in Finnish: Comprised of 52 items.

2. English Translation of Base Dataset: The original Finnish dataset was translated into

English using the DeepL Translation API, noted for its competitive performance against

Google Translate.[75], [76]

3. Synthetic Finnish Components: Using generative AI, 200 synthetic form components

were created and added to the original Finnish dataset.

4. Synthetic English Components: Similarly, 200 synthetic form components were

generated in English and added to the translated English dataset.

5. Extended Finnish-to-English-to-Finnish Dataset: The Finnish base dataset was

back-translated [77] to English and then back to Finnish using the DeepL API to enhance

language model training.

6. Extended English-to-Finnish-to-English Dataset: Similarly the English base dataset

underwent Back-Translation to Finnish and then back again to English to produce

synthetic data that's contextually similar.

7. Consolidated Finnish Dataset: This dataset combined the original Finnish dataset, the

synthetic Finnish components, and the Finnish dataset obtained from back-translation.

8. Consolidated English Dataset: This encompassed the English-translated base dataset,

synthetic English components, and the English dataset generated from back-translating.

Each of the datasets was formatted using the chat format

{"messages": [{"role": "system", "content": "You are now a form code

generation tool. Generate form code for the following."}, {"role": "user",

"content": "{ 'title': '', 'components': [ { 'type': '', 'values': [''],

'label': ''}, { 'type': '', 'value': '', 'label': '', 'condition': { '':

''}}] }"}, {"role": "assistant", "content": ""}]}

Code Snippet 1. initial dataset in chat format

{"messages": [{"role": "system", "content": "You are now a form code

component generator, I will give you components and I want you to generate

the code for them."}, {"role": "user", "content": "{"component": {"type":
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"", "values": [""], "label": ""}, "code": ""}"}, {"role": "assistant",

"content": ""}]}

Code Snippet 2. Component dataset in chat format

The examples in the dataset were tokenized using each of the models’ native sentencepiece

tokenizer. Each model was fine-tuned using these datasets with the intent of discovering which

dataset type performed the best. Post-fine-tuning, each model underwent testing on a separate

dataset to evaluate their performance. The evaluation metrics used were, ROUGE, METEOR,

chrF, and BERTScore [78], [79], [80]. Appendix 4 contains the evaluation code.
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5 Results

The results from Tables 1 to 9 reveal several key insights into the performance of various

language models for automated form generation. Base models, as shown in Table 1,

demonstrated varied performance, with CodeLlama-13b-Instruct-hf leading in most metrics.

Fine-tuning on different datasets, as illustrated in Tables 2-8, generally improved model

performance, although the extent of improvement varied. Notably, Dataset 3 (Finnish

Components) and Dataset 8 (Combined English) yielded particularly strong results across

models.

In terms of model-specific observations, CodeLlama models consistently performed well across

different datasets and configurations. The llama-7b-finnish-instruct-v0.2 model showed strong

performance, especially on Finnish datasets. In contrast, OpenCodeInterpreter-DS-6.7B and

Artigenz-Coder-DS-6.7B generally underperformed compared to other models.

The degree of improvement for finetuning varied across datasets, with some models showing

substantial gains while others experienced more modest improvements. This variability

highlights the importance of careful dataset selection in the fine-tuning process.

Interestingly, the results challenged some common assumptions about model size. Larger models

didn't always outperform smaller ones, suggesting that model size alone doesn't guarantee better

performance. This finding emphasizes the need to consider factors beyond just model size when

selecting the most appropriate model for a specific task.

The choice of dataset for fine-tuning emerged as a crucial factor influencing model performance.

Some datasets consistently yielded better results across models, indicating that the quality and

relevance of the training data play a significant role in model performance.

Performance variations across different evaluation metrics (ROUGE, METEOR, CHRF,

BERTScore) were observed, highlighting the importance of using multiple metrics for a

comprehensive evaluation of model performance. Each metric captures different aspects of the

generated output, providing a more holistic view of model capabilities.

The final ranking presented in Table 9 shows a mix of model sizes and fine-tuning approaches

among the top performers. This diversity suggests that multiple strategies can lead to competitive

results in automated form generation tasks. It underscores the complexity of model selection and

fine-tuning, emphasizing the need for careful consideration of model architecture, dataset

selection, and fine-tuning strategies to achieve optimal performance.
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These findings collectively underscore the nuanced nature of applying language models to

automated form generation. They highlight the importance of a multifaceted approach that

considers various factors including model architecture, dataset quality, language specificity, and

evaluation metrics to achieve the best possible results in this domain.

The scoring mechanism assigns 1 point to the model with the highest evaluation score in each

column. A model can accumulate a maximum of 4 points. Subsequently, the top-performing

models from each dataset are consolidated into a table for further analysis. Within this

aggregated table, scores are recalculated to identify the best-performing model.

The findings are presented as follows:

*The top scores for each evaluation metric (obtained by running eval using the test dataset as

both prediction and actual): Rouge: 0.425 Meteor: 0.268 Chrf: 100.000 BERTScore: 1.000

Table 1. Base models

Base models un-finetuned.

Model Rouge meteor chrf BERTScore Score

OpenCodeInterpreter-DS-6.7B 0.079 0.079 15.832 0.467 0

Artigenz-Coder-DS-6.7B 0.089 0.125 19.712 0.441 0

deepseek-coder-6.7b-instruct 0.067 0.100 18.497 0.469 0

llama-7b-finnish-instruct-v0.2 0.020 0.059 5.418 0.349 0

CodeLlama-7b-Instruct-hf 0.074 0.104 16.035 0.554 1

CodeLlama-13b-Instruct-hf 0.121 0.141 24.730 0.550 3

Table 2. Dataset 1

Finetuned on base Finnish Dataset 1.

Model Rouge meteor chrf BERTScore Score

OpenCodeInterpreter-DS-6.7B 0.055 0.063 17.051 0.412 0

Artigenz-Coder-DS-6.7B 0.091 0.110 19.073 0.455 0

deepseek-coder-6.7b-instruct 0.073 0.094 21.840 0.501 0
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Model Rouge meteor chrf BERTScore Score

llama-7b-finnish-instruct-v0.2 0.017 0.043 5.431 0.273 0

CodeLlama-7b-Instruct-hf 0.115 0.138 23.186 0.538 3

CodeLlama-13b-Instruct-hf 0.085 0.113 20.086 0.558 1

Table 3. Dataset 2

Finetuned on base English Dataset 2.

Model Rouge meteor chrf BERTScore Score

OpenCodeInterpreter-DS-6.7B 0.037 0.098 10.904 0.387 4

Artigenz-Coder-DS-6.7B 0.012 0.046 5.916 0.376 0

deepseek-coder-6.7b-instruct 0.015 0.046 4.647 0.491 0

llama-7b-finnish-instruct-v0.2 0.017 0.043 5.431 0.273 0

CodeLlama-7b-Instruct-hf 0.016 0.053 4.330 0.316 0

CodeLlama-13b-Instruct 0.018 0.042 7.052 0.255 0

Table 4. Dataset 3

Finetuned on Finnish Components Dataset 3.

Model Rouge meteor chrf BERTScore Score

OpenCodeInterpreter-DS-6.7B 0.060 0.044 6.224 0.343 0

Artigenz-Coder-DS-6.7B 0.044 0.155 8.247 0.329 0

deepseek-coder-6.7b-instruct 0.082 0.055 7.940 0.350 0

llama-7b-finnish-instruct-v0.2 0.084 0.209 19.016 0.656 1

CodeLlama-7b-Instruct-hf 0.098 0.214 19.847 0.594 3

CodeLlama-13b-Instruct-hf 0.040 0.084 5.934 0.300 0
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Table 5. Dataset 4

Finetuned on English Components Dataset 4.

Model Rouge meteor chrf BERTScore Score

OpenCodeInterpreter-DS-6.7B 0.061 0.080 9.810 0.273 1

Artigenz-Coder-DS-6.7B 0.058 0.054 4.738 0.315 0

deepseek-coder-6.7b-instruct 0.074 0.072 7.929 0.318 0

llama-7b-finnish-instruct-v0.2 0.015 0.068 9.023 0.303 0

CodeLlama-7b-Instruct-hf 0.055 0.110 11.081 0.465 1

CodeLlama-13b-Instruct-hf 0.045 0.121 9.537 0.543 2

Table 6. Dataset 5

Finetuned on Finnish Back-Translated Dataset 5.

Model Rouge meteor chrf BERTScore Score

OpenCodeInterpreter-DS-6.7B 0.019 0.051 3.507 0.278 0

Artigenz-Coder-DS-6.7B 0.019 0.062 8.767 0.192 0

deepseek-coder-6.7b-instruct 0.018 0.065 3.078 0.302 0

llama-7b-finnish-instruct-v0.2 0.082 0.140 17.111 0.624 4

CodeLlama-7b-Instruct-hf 0.054 0.089 7.970 0.421 0

CodeLlama-13b-Instruct-hf 0.037 0.078 3.703 0.389 0
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Table 7. Dataset 6

Finetuned on English Back-Translated Dataset 5.

Model Rouge meteor chrf BERTScore Score

OpenCodeInterpreter-DS-6.7B 0.012 0.029 2.210 0.307 0

Artigenz-Coder-DS-6.7B 0.023 0.045 2.579 0.261 0

deepseek-coder-6.7b-instruct 0.009 0.047 1.327 0.264 0

llama-7b-finnish-instruct-v0.2 0.080 0.139 19.016 0.623 4

CodeLlama-7b-Instruct-hf 0.033 0.072 8.337 0.392 0

CodeLlama-13b-Instruct-hf 0.029 0.061 5.131 0.288 0

Table 8. Dataset 7

Finetuned on combined Finnish Dataset 7.

Model Rouge meteor chrf BERTScore Score

OpenCodeInterpreter-DS-6.7B 0.050 0.066 6.180 0.278 0

Artigenz-Coder-DS-6.7B 0.061 0.141 9.582 0.287 0

deepseek-coder-6.7b-instruct 0.085 0.074 8.738 0.300 0

llama-7b-finnish-instruct-v0.2 0.079 0.118 17.282 0.562 2

CodeLlama-7b-Instruct-hf 0.096 0.173 13.538 0.490 2

CodeLlama-13b-Instruct-hf 0.045 0.131 6.370 0.291 0
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Table 9. Dataset 8

Finetuned on combined English Dataset 8.

Model Rouge meteor chrf BERTScore Score

OpenCodeInterpreter-DS-6.7B 0.045 0.046 4.732 0.299 0

Artigenz-Coder-DS-6.7B 0.056 0.152 10.861 0.283 0

deepseek-coder-6.7b-instruct 0.039 0.044 4.182 0.288 0

llama-7b-finnish-instruct-v0.2 0.116 0.131 23.342 0.620 2

CodeLlama-7b-Instruct-hf 0.041 0.078 5.140 0.479 0

CodeLlama-13b-Instruct-hf 0.144 0.172 14.816 0.525 2

Table 9. Top Models

Top models after Scoring.

Model Dataset Rouge meteor chrf BERTScore

CodeLlama-13b-Instruct-hf 0 0.121 0.141 24.730 0.550

CodeLlama-7b-Instruct-hf 1 0.115 0.138 23.186 0.538

OpenCodeInterpreter-DS-6.7B 2 0.037 0.098 10.904 0.387

CodeLlama-7b-Instruct-hf 3 0.098 0.214 19.847 0.594

CodeLlama-13b-Instruct-hf 4 0.045 0.121 9.537 0.543

llama-7b-finnish-instruct-v0.2 5 0.082 0.140 17.111 0.624

llama-7b-finnish-instruct-v0.2 6 0.080 0.139 19.016 0.623

llama-7b-finnish-instruct-v0.2 7 0.079 0.118 17.282 0.562

CodeLlama-7b-Instruct-hf 7 0.096 0.173 13.538 0.490

llama-7b-finnish-instruct-v0.2 8 0.116 0.131 23.342 0.620

CodeLlama-13b-Instruct-hf 8 0.144 0.172 14.816 0.525
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To rank the models each metric was normalized.

The formula for each metric:  𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑆𝑐𝑜𝑟𝑒 =  (𝑉𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛) / (𝑀𝑎𝑥 − 𝑀𝑖𝑛)

● Rouge: Min = 0.037, Max = 0.144
● Meteor: Min = 0.098, Max = 0.214
● CHRF: Min = 9.537, Max = 24.730
● BERTScore: Min = 0.387, Max = 0.624

Table 10. Top Models ranked

Top models after normalization

Model Dataset Normalized Score Rank

CodeLlama-7b-Instruct-hf 3 0.7806 1

llama-7b-finnish-instruct-v0.2 8 0.7288 2

CodeLlama-13b-Instruct-hf 0 0.7109 3

CodeLlama-13b-Instruct-hf 8 0.6418 4

CodeLlama-7b-Instruct-hf 1 0.6521 5

llama-7b-finnish-instruct-v0.2 6 0.5940 6

llama-7b-finnish-instruct-v0.2 5 0.5705 7

CodeLlama-7b-Instruct-hf 7 0.4741 8

llama-7b-finnish-instruct-v0.2 7 0.4532 9

CodeLlama-13b-Instruct-hf 4 0.2328 10

OpenCodeInterpreter-DS-6.7B 2 0.0225 11

The results presented in Table 9 reveal several noteworthy findings. As initially observed, the

Llama models demonstrated superior performance overall, with the CodeLlama-7b-Instruct-hf

model fine-tuned on dataset 3 (Synthetic Finnish Components) achieving the highest normalized

score of 0.7806 and ranking first among all models tested.

Interestingly, the top three positions are occupied by different model variants, highlighting the

importance of both model architecture and dataset selection in achieving optimal performance.
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The llama-7b-finnish-instruct-v0.2 model fine-tuned on dataset 8 secured the second position

with a score of 0.7288, while the CodeLlama-13b-Instruct-hf model without fine-tuning (dataset

0) ranked third with a score of 0.7109.

It's worth noting that the performance gap between the top-ranked models is relatively small,

suggesting that multiple approaches can yield competitive results. The CodeLlama models, in

particular, show strong performance across different configurations, occupying four of the top

five positions.

The Finnish-specific model (llama-7b-finnish-instruct-v0.2) performed consistently well across

different datasets, appearing multiple times in the top half of the rankings. This underscores the

value of language-specific models when working with non-English datasets.

Surprisingly, the larger CodeLlama-13b-Instruct-hf model did not consistently outperform its 7b

counterpart, indicating that model size alone does not guarantee superior performance in this

task.

At the lower end of the rankings, we find that the OpenCodeInterpreter-DS-6.7B model

significantly underperformed compared to the Llama variants, suggesting that it may not be

well-suited for this particular task or may require different fine-tuning approaches.

When qualitatively comparing the generated output to the expected results, a clear distinction

emerged between lower-scoring models and higher-scoring ones. The higher-scoring models

demonstrated a better grasp of the dataset structure, as reflected by their evaluation scores.

Despite this, the generated output still fell short of the desired standard, indicating the need for

further training with larger models known for handling complex patterns more effectively.

To address these shortcomings, models with substantially larger parameters—up to 70 billion

compared to the smallest fine-tuned models with 6.7 billion parameters—should be considered.
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The rationale for expecting better performance from these larger models includes several key

factors:

● Representation Capacity: Larger models with more parameters can capture more

intricate patterns and relationships within the data. This enhanced capacity allows for a

deeper understanding of complex language structures, subtleties, and nuances, resulting

in more accurate and contextually appropriate responses.

● Knowledge Encoding: Higher parameter models can store a more extensive amount of

information from the training data. This expanded "memory" enables the model to retain

and retrieve a broader range of facts, linguistic rules, and contextual cues, enhancing its

ability to generate relevant and informed outputs.

● Generalization Ability: Models with more parameters tend to generalize better across

different contexts and tasks. Exposure to a wider variety of examples and patterns during

training helps these models handle new and unseen inputs more effectively.

● Complex Task Handling: Higher parameter models are better equipped to tackle

complex and diverse tasks requiring deep understanding and multi-step reasoning. They

can manage tasks involving long-range dependencies, detailed explanations, and intricate

problem-solving, which smaller models might struggle with.

● Fine-tuning Precision: Larger models offer more fine-grained control over the learned

representations. During fine-tuning for specific tasks, these models can adjust their vast

number of parameters to achieve higher precision and tailor their outputs more closely to

the task requirements.

● Error Reduction: With more parameters, LLMs can distribute learning across many

parameters, reducing the risk of overfitting to specific data points or patterns. This

distribution helps mitigate errors and biases, leading to more robust and reliable

performance.

To verify these hypotheses, it is crucial to resolve the communication errors encountered during

multi-node training in the CSC environment. Fixing these issues will allow for the effective
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training of larger models, providing a more definitive assessment of their potential performance

improvements.
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6 Conclusion

This study has provided insights into the potential and current limitations of using AI,

specifically Large Language Models (LLMs), for automating form creation from functional

specification documents. By addressing the research questions, "How has artificial intelligence

evolved over the years in the field of software development?" and "How effective is artificial

intelligence, particularly LLMs like ChatGPT, in automating the process of form creation by

interpreting and generating code from functional specification documents?", the multi-stage

research process revealed both promising aspects and significant challenges in this application of

AI technology.

The initial phase of the study involved a comprehensive Literature Review to explore the

historical evolution of AI. This review highlighted significant advancements, from rule-based

systems to machine learning, and more recently to advanced neural networks like LLMs.

Understanding this progression provided a contextual backdrop for evaluating the current

capabilities of AI, particularly in automating software development tasks such as form creation.

In response to the second research question, the study employed Quantitative Analysis to assess

the feasibility and efficacy of using AI for interpreting functional specification documents to

enable automated form generation. The analysis demonstrated the following findings:

● Formatting Raw Functional Specifications: Initially, AI was employed to format raw

functional specifications into a structured format. While the models showed proficiency

with simple form components, they often struggled with complex relationships, such as

conditional field displays with associated help text. This highlights the challenges AI

faces in interpreting and reproducing intricate document structures and relationships.

● Generating Synthetic Form Components: The generation of synthetic form

components yielded promising results using prompt tuning, particularly for small

components. However, generating entire forms with custom components using prompt

tuning alone proved challenging. This limitation underscores the need for more advanced

techniques to handle larger, more complex form structures.
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● Fine-Tuning Models: Fine-tuning was explored to enhance the models' ability to capture

and reproduce custom syntax. Improvements were noted, especially with the

CodeLlama-7b-Instruct-hf model fine-tuned on the Synthetic Finnish Components

dataset. However, the inconsistent performance across different models raises questions

about the cost-effectiveness of fine-tuning in this context.

These findings offer insights for both researchers and practitioners in the field of AI-assisted

software development:

● For Researchers: This study underscores the need for further investigation into

optimizing LLMs for specific, complex tasks like form generation. Future research

should focus on developing more sophisticated techniques that can better handle the

intricacies of complex form structures and relationships.

● For Practitioners: The results suggest that while AI tools can be valuable aids in the

form creation process, particularly for simpler components, they are not yet ready to fully

automate the creation of complex, custom forms. A hybrid approach leveraging both AI

capabilities and human expertise may be the most effective strategy in the near term.

The success of language-specific models, as seen with the Finnish model's performance,

indicates a potential direction for developing more localized and specialized AI tools for

software development.

In conclusion, this study has illuminated both the potential and limitations of current AI

technologies in the domain of form generation. While the current state of LLMs shows promise

in certain aspects, it does not yet meet the standards required for fully automated,

production-ready form code generation, especially for complex forms. Future advancements may

come from a combination of more sophisticated models, refined fine-tuning and prompt-tuning

techniques, and a greater focus on task-specific and language-specific training data. As AI

technology continues to evolve, it holds the potential to significantly enhance and streamline the
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software development process, particularly in areas like form creation, even if it may not fully

automate these tasks in the immediate future.
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Appendices

Appendix 1: Deepspeed config

{

"comms_logger": {

"enabled": true,

"verbose": true,

"prof_all": true,

"debug": true

},

"zero_optimization": {

"stage": 3,

"offload_param": {

"device": "cpu",

"pin_memory": false

},

"offload_optimizer": {

"device": "cpu",

"pin_memory": false,

"fast_init": true

},

"stage3_gather_16bit_weights_on_model_save": true,

"allgather_partitions": false,

"overlap_comm": false,

"reduce_scatter": false,

"contiguous_gradients": false,

"round_robin_gradients": true,

"memory_efficient_linear": true

},

"optimizer": {

"type": "Adam",

"params": {

"lr": "auto",

"betas": [

0.9,

0.999

],

"eps": "auto",

"weight_decay": "auto",
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"torch_adam": false,

"adam_w_mode": false

}

},

"scheduler": {

"type": "WarmupDecayLR",

"params": {

"warmup_min_lr": "auto",

"warmup_max_lr": "auto",

"warmup_num_steps": "auto",

"total_num_steps": "auto"

}

},

"fp16": {

"enabled": "auto",

"auto_cast": true,

"loss_scale": 0,

"initial_scale_power": 16,

"loss_scale_window": 1000,

"hysteresis": 2,

"consecutive_hysteresis": false,

"min_loss_scale": 1

},

"bf16": {

"enabled": true

},

"activation_checkpointing": {

"partition_activations": true,

"cpu_checkpointing": true,

"contiguous_memory_optimization": true,

"number_checkpoints": 1,

"synchronize_checkpoint_boundary": false,

"profile": true

},

"train_micro_batch_size_per_gpu": "auto",

"gradient_accumulation_steps": "auto"

}
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Appendix 2: Model initialization

def model_init(model_name, deepspeed_config, train=True, quantization=True,

sparse_attention=True):

bnb_config = BitsAndBytesConfig(

load_in_4bit=True,

bnb_4bit_quant_type="nf4",

bnb_4bit_use_double_quant=True,

bnb_4bit_compute_dtype=torch.bfloat16,

bnb_4bit_quant_storage=torch.bfloat16

)

quantization_config = bnb_config if quantization else None

low_cpu_mem_usage = True if quantization else False

torch_dtype = torch.bfloat16 if quantization else torch.float32

attn_implementation = "flash_attention_2" if sparse_attention else None

model = AutoModelForCausalLM.from_pretrained(

model_name,

use_cache=False, # this is needed for gradient checkpointing

trust_remote_code=True,

quantization_config=quantization_config,

attn_implementation=attn_implementation,

# low_cpu_mem_usage=low_cpu_mem_usage,

torch_dtype=torch_dtype

)

if train==True:

model.train()

config = LoraConfig(

r=16,

lora_alpha=16,

target_modules=find_all_linear_target_modue_names(model),

# target_modules="all-linear",

lora_dropout=0.1, #prevent overfitting

bias="none",

task_type="CAUSAL_LM",

modules_to_save=["lm_head", "embed_tokens"] # This argument serves for

adding new tokens.

)

model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True)

model = get_peft_model(model, config)
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return model
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Appendix 3: Trainer code

dataset_size = len(dataset)

num_train_epochs = 10

batch_size_per_gpu = 1

gradient_accumulation_steps = 1

max_batch_size = batch_size_per_gpu * gradient_accumulation_steps #

https://www.deepspeed.ai/docs/config-json/

steps_per_epoch = math.ceil(dataset_size / max_batch_size)

max_steps = steps_per_epoch * num_train_epochs

warmup_steps = int(0.1* max_steps)

training_arguments = TrainingArguments(

gradient_checkpointing= True,

gradient_checkpointing_kwargs={'use_reentrant':True},

num_train_epochs=10,

max_steps = max_steps,

load_best_model_at_end = False,

save_total_limit = 2,

push_to_hub=True,

save_strategy = "steps",

evaluation_strategy = "steps",

logging_strategy = "steps",

logging_steps = 1,

save_steps = steps_per_epoch,

eval_steps = steps_per_epoch,

per_device_train_batch_size = batch_size_per_gpu,

per_device_eval_batch_size = batch_size_per_gpu,

gradient_accumulation_steps = gradient_accumulation_steps,

eval_accumulation_steps=1,

bf16= True,

warmup_steps = warmup_steps,

learning_rate = 0.001,

adam_epsilon = 0.000001,

weight_decay=0.01,

remove_unused_columns=True,

seed = 3407,

output_dir = output,

run_name=output,

deepspeed=deepspeed_config,

)
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#early stopping not used due to deepspeed stage3 weights

trainer = Trainer(

model = model,

args = training_arguments,

tokenizer = tokenizer,

train_dataset = dataset,

eval_dataset = dataset_eval,

compute_metrics = partial_compute_metrics,

preprocess_logits_for_metrics = preprocess_logits_for_metrics,

)
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Appendix 4: Eval function

def evaluate(predictions, reference, translation_model_name, file_name = ""):

model_name = "sentence-transformers/all-mpnet-base-v2"

model = SentenceTransformer(model_name)

rouge_metric = load('rouge')

meteor_metric = load('meteor')

chrf_metric = load('chrf')

length = min(len(predictions), len(reference))

similarities = []

for i in range(length):

actual_response = predictions[i]

expected_response = reference[i]

if (actual_response and expected_response):

generated = model.encode(actual_response)

expected = model.encode(expected_response)

similarity = np.dot(generated, expected) / (np.linalg.norm(generated) *

np.linalg.norm(expected))

similarities.append(similarity)

rouge_metric.add_batch(predictions=[actual_response],

references=[expected_response])

meteor_metric.add_batch(predictions=[actual_response],

references=[expected_response])

chrf_metric.add_batch(predictions=[actual_response],

references=[expected_response])

similarities = np.mean(similarities)

rouge_score = rouge_metric.compute()["rougeLsum"]

meteor_score = meteor_metric.compute()["meteor"]

chrf_score = chrf_metric.compute()["score"]

rogue_score_formatted = "{:.3f}".format(rouge_score)

meteor_score_formatted = "{:.3f}".format(meteor_score)

chrf_score_formatted = "{:.3f}".format(chrf_score)

similarities_formatted = "{:.3f}".format(similarities)
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scores = {

"scores": {

"rouge": rogue_score_formatted,

"meteor": meteor_score_formatted,

"chrf": chrf_score_formatted,

"BERTScore": similarities_formatted,

"model": translation_model_name,

"fileName": file_name

}

}

return scores
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