
End-to-End Learned Visual Odometry
Based on Vision Transformer

University of Turku
Department of Computing

Master of Science Thesis
Autonomous System Lab

July 2024
Aman Manishbhai Vyas

Supervisors:
Adjunct Professor Hashem Haghbayan

Professor Juha Plosila

The originality of this thesis has been checked in accordance with the University of Turku quality assurance
system using the Turnitin OriginalityCheck service.



UNIVERSITY OF TURKU
Department of Computing

Aman Manishbhai Vyas: End-to-End Learned Visual Odometry Based on Vision
Transformer

Master of Science Thesis, 63 p.
Autonomous System Lab
July 2024

Estimating the camera’s pose from images of a single camera, a task known as
monocular visual odometry, is fundamental in mobile robots and autonomous vehi-
cles. Traditional approaches often rely on geometric methods that require significant
engineering effort tailored to specific scenarios. Deep learning methods, while gen-
eralizable with extensive training data, have shown promising results. Recently,
transformer-based architectures, which have been highly successful in natural lan-
guage processing and computer vision, are proving to be superior for this task as
well. In this study, we introduce the Vision Transformer (ViT) model, which lever-
ages spatio-temporal self-attention mechanisms to extract features from images and
estimate camera motions in an end-to-end manner.
Extensive experimentation on the KITTI visual odometry dataset demonstrates that
ViT achieves competitive state-of-the-art performance. Remarkably, it surpasses
both traditional geometry-based methods and existing deep learning approaches, in-
cluding DeepVO, MagicVO, and PoseNet. This significant improvement underscores
the effectiveness of transformer-based architectures in capturing complex spatio-
temporal dependencies essential for accurate visual odometry. Our results highlight
ViT’s potential as a powerful tool for enhancing pose estimation in dynamic en-
vironments, making it a valuable contribution to the advancement of autonomous
navigation technologies. Our results over five different route trajectories with vary-
ing environmental conditions show that ViT achieves up to an 8% improvement
in translation error and a 4% improvement in rotation error compared to previous
deep learning methods. This highlights ViT’s potential to enhance pose estimation
in dynamic environments and advance autonomous navigation.

Keywords: Visual Odometry, Vision Transformer, Self Attention, spatio-temporal
information
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1 Introduction

Determining the precise pose of a robot within its environment is a fundamental

and longstanding task in the field of robotics. One approach that has gained sig-

nificant traction in this domain is Visual Odometry (VO). VO involves localizing a

robot by relying solely on visual sensors, such as monocular cameras [1], stereo cam-

eras [2], and event-based cameras [3]. This technique is pivotal for various robotic

applications, from mobile robots to drones and autonomous driving vehicles [4], [5].

Its versatility lies in the ability to predict the camera’s pose based on a sequence

of frames, providing a dynamic scene understanding of the robot’s position and

orientation in real time [6].

Traditional methods like IMU and wheel-based odometry [7], which rely on sen-

sor calculations with mechanical components, struggle with understanding dynamic

environments due to drift and mechanical constraints, making them less effective on

complex terrains [8]. In contrast, VO has emerged as a transformative alternative [9],

[10], enhancing accuracy and offering cost-effective solutions for various robotic ap-

plications, particularly where traditional methods face challenges. Monocular visual

odometry can be implemented through traditional geometry-based methods [11],

[12], which involve camera calibration, feature detection, matching, outlier rejec-

tion, and local optimization. Despite its structured pipeline, this approach requires

extensive fine-tuning and suffers from scale ambiguity, making it less adaptable

across different scenarios.
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In contrast to traditional methods, the second type of monocular visual odom-

etry employs deep learning-based approaches with end-to-end architectures [13],

eliminating the need for intricate feature engineering. These methods learn to map

sequential frames to camera poses directly, enhancing generalizability across diverse

environments. By automatically extracting relevant features and inferring motion

patterns, they reduce the need for extensive manual tuning. However, challenges

include the demand for substantial labeled data and potential computational com-

plexities. The exploration of these methodologies aims to balance the robustness of

traditional geometric principles with the adaptability of end-to-end learning archi-

tectures.

The conventional approach for Learning based VO has predominantly leaned on

Convoluation Neural Networks (CNNs) [14], leveraging their prowess in extracting

local features from images. While this has proven effective in various image pro-

cessing tasks, the nature of VO, as a video understanding task, necessitates the

extraction of global information from visual cues within a sequence of images. To

bridge this gap, researchers are turning their attention to a novel architecture known

as the Vision Transformer. The motivation behind this shift is to harness the Vi-

sion Transformer’s ability to capture long-range dependencies and global contextual

information. The proposed research seeks to employ Vision Transformer and archi-

tectures for Visual Odometry, with a dual focus on minimizing losses of the chosen

framework.

One of the recently used methods designed for image classification tasks is Vi-

sion Transformer (ViT) [15]. In ViT, a transformer encoder block is incorporated

to capture sequential information from image data. Mainly, ViT is used for various

applications such as image classification and object detection. However, its capa-

bility to encapsulate spatial-temporal information makes it a promising method for



CHAPTER 1. INTRODUCTION 3

visual odometry. In this paper, we leverage this capability by adapting ViT for

RGB-image-based vo to capture sequential information. The obtained results based

on our experimental setup, which includes the KITTI dataset [16] for training and

testing, show that the proposed method aligns well with state-of-the-art methods,

both formal and data-driven.

Leading players in the autonomous driving industry, including Tesla, Waymo,

and Mobileye, are increasingly embracing a camera-centric approach for their per-

ception stacks [17]. This strategic shift towards relying primarily on cameras for

environmental perception in autonomous vehicles has opened a significant avenue

for research and innovation. The prominence of these marquee names in adopting

camera-based solutions underscores the industry’s confidence in the potential of vi-

sual information for robust and reliable perception. This paradigm shift presents a

compelling opportunity for researchers to delve into the intricacies of this approach,

contributing insights that push the boundaries of cutting-edge technology. By ad-

dressing the challenges and nuances inherent in camera-based perception systems,

researchers have the chance to not only advance the capabilities of autonomous

driving platforms but also pave the way for the broader adoption of vision-centric

solutions in the rapidly evolving landscape of self-driving vehicles.

The rest of the section in this chapter is organized as follows: Section 1.1 out-

line the research questions and objectives of the study, while section 1.2 detail the

contribution of the study. Section 1.3 underscores the impact and importance of the

research, and section 1.4 explain organization of the remaining thesis chapters.
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1.1 Research questions and objectives

The research questions outlined in the provided text revolve around improving VO

through the utilization of the Vision Transformer architecture, with a specific fo-

cus on addressing accuracy and precision. The primary research questions can be

inferred as follows:

(1). How can Vision Transformer architectures be effectively applied to VO to ad-

dress the need for capturing long-range dependencies and global contextual

information in VO?

(2). What specific architectural features of ViT-based models contribute to en-

hanced robustness and reliability in dynamic and complex visual environments

for Visual Odometry applications?

(3). Can the self-attention mechanisms in ViT-based VO models effectively mitigate

common issues such as drift and noise in pose estimation, and how do these

mechanisms compare to those in conventional methods?

(4). How does Vit-based VO compare to other Learning Based methods in terms of

accuracy and precision in pose estimation? What specific advantages does the

ViT architecture offer in enhancing pose estimation accuracy and robustness,

and how can these benefits be quantified and demonstrated through empirical

research?

(5). To what extent do current learning-based approaches in VO fall short in terms

of generalization across diverse environments and terrains?
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1.2 Contribution

In this thesis, we explore how Vision Transformer can be utilized to learn the VO

task. The main contributions include:

(1). The study delves into specific architectural features of ViT-based models that

contribute to their robustness and reliability in dynamic and complex visual

environments. Using multi-head self-attention mechanisms allows for better

integration of contextual information across the entire scene, improving the

model’s performance in various scenarios.

(2). This research investigates whether self-attention mechanisms in ViT-based VO

models can effectively mitigate common issues such as drift and noise in pose es-

timation. By comparing these mechanisms to those used in conventional meth-

ods, the study aims to demonstrate the superiority of ViT-based approaches in

maintaining accurate and stable pose estimates over time.

(3). The study addresses the limitations of current learning based VO approaches

regarding generalization across diverse environments and terrains. By leverag-

ing the global contextual information captured by ViTs, the research aims to

improve the adaptability and performance of VO systems in various real-world

conditions without extensive retraining.

Overall, the research seeks to advance the capabilities of Visual Odometry by

leveraging the Vision Transformer architecture
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1.3 Research significance of the study

This thesis addresses several critical knowledge gaps in VO, particularly in leverag-

ing novel architectures like ViTs for improved performance and practical viability.

By introducing ViT architectures to the domain of VO, this research fills a sig-

nificant void in understanding how these models can effectively capture long-range

dependencies and global contextual information in video understanding tasks. Be-

fore this work, the predominant reliance on CNNs for local feature extraction often

overlooked the crucial aspect of extracting global information from image sequences.

This oversight is particularly limiting in dynamic environments where accurate pose

estimation depends on a holistic understanding of the scene.

Furthermore, the research explores the specific architectural features of ViT-

based models that contribute to enhanced robustness and reliability in complex vi-

sual environments. The self-attention mechanisms inherent in ViTs allow for better

integration of contextual information across the entire scene, significantly improving

the model’s ability to maintain accurate pose estimates amidst noise and variability.

This advancement not only provides a more detailed and accurate approach to pose

estimation but also highlights the limitations of CNN based learning based methods

that primarily focus on local features. By demonstrating the efficacy of ViT-based

approaches through empirical research and comparisons with SOTA learning based

methods, this thesis establishes a new benchmark for VO systems in term of accu-

racy and precision, emphasizing the importance of global context in achieving high

precision and robustness.

1.4 Structural outline of this thesis

The rest of the thesis is organized as follows:
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(1). Chapter 2 explores existing work related to traditional methods and learning-

based VO. It provides a comprehensive overview of prior research, methodolo-

gies, and key findings in the field. The review highlights the limitations and

gaps in current approaches, such as the reliance on CNNs for local feature ex-

traction, which often neglects the importance of capturing global contextual

information crucial for accurate pose estimation in dynamic environments.

(2). Chapter 3 establishes the theoretical foundation for integrating Vision Trans-

former architectures into VO. This chapter includes a brief description of the

KITTI dataset, which is used for training and evaluation. Additionally, it out-

lines the training procedure, experimental setup, and evaluation metrics for VO

and providing a detailed exploration of various aspects such as losses. ensuring

a robust framework for assessing the performance of the proposed approach.

(3). Chapter 4 constitutes the primary focus of the thesis, It analyzes and interprets

the obtained results, offering insights into the efficacy and practical implications

of the proposed ViT-based approach to existing learning-based VO methods.

(4). Chapter 5 summarizes the key findings of the research, discusses their implica-

tions, and addresses the limitations of ViT-based methods. It outlines avenues

for future work, providing a comprehensive conclusion to the thesis.



2 Literature review

In this chapter of the thesis, a detailed literature review for VO is provided. Firstly,

section 2.1 review traditional VO methods such as filtering-based, optimization-

based, and geometry-based VO. The chapter then delves deeper into data-driven

VO literature in section 2.2, exploring the architecture of current state-of-the-art

models. Section 2.3 explains the limitations and gaps in current approaches and

proposes the ViTVO method and highlighting its high-level architecture. Section 2.4

and 2.5 give advantages, and applications of ViTVO.

2.1 Tradinational approaches

In this section, we delve deeply into the literature on filtering-based, optimization-

based, and geometry-based VO methods. We review some state-of-the-art methods

within each category, providing detailed insights into their approaches and perfor-

mances.

Figure 2.1: Traditional vo Pipeline for optimization, filtering and geometry based
method
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2.1.1 Filtering based approach

VO aims to estimate the motion of a camera through a sequence of images, a cru-

cial component in the navigation of mobile robots, autonomous vehicles, and other

vision-based applications. Filtering-based approaches [18] to VO use probabilistic

filters to integrate sensor data over time, providing a robust estimate of the camera’s

pose.

1. Kalman Filter (KF): KF [19]is a foundational method in estimation theory,

applied to VO for tracking the camera’s position and orientation over time. In

VO, the state vector typically includes parameters such as the camera’s posi-

tion, orientation, and possibly velocity. The KF operates under the assumption

that both the process (how the state evolves over time) and observation (how

measurements relate to the state) models are linear, and that noise follows a

Gaussian distribution.

In practice, the KF predicts the next state of the camera’s pose based on its

current state and the dynamics of the system. This prediction is updated

when new measurements, typically derived from feature tracking in image

sequences, become available. The update process adjusts the predicted state

based on the difference between the predicted and observed measurements,

weighted by their respective uncertainties (covariances). While effective in

certain scenarios, the KF’s linear assumptions limit its application in VO,

where nonlinearities are prevalent due to complex camera motions and scene

variations.

2. Extended Kalman Filter (EKF): EKF [20] extends the KF to handle non-

linearities in both process and observation models, making it more suitable

for VO. Nonlinearities arise when the motion or measurement models are not
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linear functions of the state variables. To mitigate this, the EKF linearizes

these models around the current state estimate using the Jacobian matrix.

The Jacobian provides a local linear approximation [21], allowing the filter

to propagate the state uncertainty and update the state estimate based on

nonlinear transformations.

In VO, the EKF [22] uses this linearization to predict the camera’s pose by

extrapolating from previous states and motion dynamics. When new visual

features are observed, the EKF adjusts its state estimate and covariance matrix

to optimize the alignment between predicted and observed feature positions.

However, the accuracy of the EKF heavily relies on the quality of the lineariza-

tion, which can degrade if the system undergoes significant nonlinearities or if

the initial estimate is poor.

3. Unscented Kalman Filter (UKF):

UKF [23] improves upon the EKF by addressing the limitations of lineariza-

tion. Instead of linearly approximating the state space, the UKF employs a

deterministic sampling approach known as the Unscented Transform. This

technique selects a set of representative sample points, called sigma points,

which capture the mean and covariance of the state distribution more accu-

rately than linearization.

In VO applications, the UKF uses these sigma points [24] to propagate the

state estimate through nonlinear transformations, such as camera pose changes

over time. By integrating the sigma points into the state prediction and update

steps, the UKF maintains a more accurate representation of the state distri-

bution in nonlinear scenarios. This makes the UKF more robust in VO tasks

compared to the EKF, especially when handling complex camera motions or
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varying visual environments.

4. Particle Filter (PF): PF [25] offers a non-parametric approach to state es-

timation in VO, particularly suited for highly nonlinear and non-Gaussian

scenarios. Instead of maintaining a single state estimate, the PF represents

the state distribution using a set of particles, each with its own pose hypoth-

esis and associated weight. These particles evolve over time according to the

motion model and are updated based on observed visual features.

In VO, the PF initializes particles with potential camera poses and adjusts

their weights based on the likelihood of observed feature positions. As the

camera moves, particles that better align with observed features are assigned

higher weights, while less probable particles are discarded. By propagating a

large number of particles through the sequence of images, the PF provides a

robust estimate of the camera’s trajectory, effectively handling uncertainties

and nonlinearities inherent in VO tasks.

5. Multi-State Constraint Kalman Filter (MSCKF): MSCKF [26] enhances tradi-

tional KF-based VO methods by incorporating multiple states and constraints

into the estimation process. Unlike standard KF approaches that track only

the current state, the MSCKF maintains a sliding window of past camera

poses and feature observations as constraints. These constraints are used to

reduce drift and improve pose accuracy over time, especially in environments

with high visual feature density or rapid camera motion.

In VO applications, the MSCKF optimizes camera poses by jointly estimating

the current state and leveraging constraints from previous states [27] within

the sliding window. This approach enhances pose estimation by integrating in-
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formation from multiple viewpoints and motion dynamics observed over time.

By updating the state estimate based on both current and historical con-

straints, the MSCKF achieves improved accuracy and robustness compared to

single-state filtering methods

2.1.2 Optimization based approach

Optimization-Based VO methods[18] represent a category of techniques that address

pose estimation through the lens of optimization theory. These approaches aim to

iteratively refine the camera pose estimation by minimizing the reprojection error

of observed features [28]. This section explores the principles of optimization-based

VO[29], particularly focusing on graph optimization and pose graph optimization.

Graph Optimization: Graph optimization [30]is a fundamental technique within

VO that leverages graph-based representations to solve complex spatial estimation

problems. In the context of VO, the graph consists of nodes and edges:

1. Graph Representation: Nodes in the graph correspond to camera poses Xi,

where i indexes the frames or keyframes in the sequence. Edges capture the

relative pose constraints Cij between consecutive frames or loop closures.

Nodes: Represent entities such as camera poses and landmarks.

Edges: Represent spatial constraints between these entities, typically derived

from visual feature correspondences or other sensor measurements.

2. Objective Function: The optimization process seeks to minimize the overall

error in the pose graph. This error is usually defined as the sum of reprojec-

tion errors of the visual features observed across the sequence. The objective

function can be formulated as:

min
{Xi}

∑︂
(i,j)∈E

∥eij∥2
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where E denotes the set of edges representing relative pose constraints, eij

represents the reprojection error between poses Xi and Xj.

3. Optimization Process Various optimization algorithms such as Gauss-Newton,

Levenberg-Marquardt, or nonlinear least squares are employed to iteratively

minimize the objective function. These algorithms adjust the camera poses Xi

to reduce the discrepancy between observed and predicted feature positions.

2.1.3 Geometry based approach

In this subsection, we explore several state-of-the-art geometry-based methods for

visual odometry in detail. These methods are as followed:

1. VINS Mono [31] integrates visual and inertial sensors to estimate camera mo-

tion using monocular images. This approach combines the strengths of visual

feature tracking with inertial measurements from gyroscopes and accelerome-

ters to achieve robust pose estimation. By tightly coupling visual information

with inertial data, VINS Mono excels in scenarios where visual cues may be

sparse or ambiguous, such as fast-moving environments or areas with limited

features. The algorithm operates in real-time, making it suitable for applica-

tions requiring accurate localization in GPS-denied environments. It addresses

challenges like drift and scale ambiguity common in monocular systems by

leveraging inertial measurements for improved accuracy and robustness.

2. ORB-SLAM [32] is a feature-based SLAM method designed for real-time cam-

era localization and mapping. It employs ORB features for fast and robust

feature detection and matching across frames. ORB-SLAM builds a map of

the environment and estimates the camera trajectory concurrently using a

keyframe-based approach. This method is particularly effective in environ-

ments with dynamic lighting conditions and is capable of running on standard
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CPU-based systems in real-time. ORB-SLAM’s key strengths lie in its abil-

ity to handle feature-rich environments and its robustness to lighting changes,

making it suitable for applications ranging from indoor navigation to aug-

mented reality.

3. MONO SLAM [33] focuses on using a single camera to estimate camera pose

and map the environment simultaneously. It relies on feature tracking and

bundle adjustment techniques to refine camera pose estimates and reconstruct

the scene’s structure in real-time. MONO SLAM is cost-effective as it requires

only a monocular camera setup, making it suitable for lightweight platforms

and scenarios where hardware constraints are a concern. While it may face

challenges in environments with low-texture or repetitive patterns, MONO

SLAM’s simplicity and efficiency make it an attractive choice for applications

in robotics, augmented reality, and autonomous vehicles.

4. SVO [34] introduces a fast and efficient monocular VO technique based on

semi-direct methods. Unlike traditional feature-based methods that rely heav-

ily on sparse feature tracking, SVO combines direct methods for dense depth

estimation with sparse feature tracking to achieve real-time performance. This

hybrid approach allows SVO to leverage both the accuracy of direct methods

in texture-rich regions and the speed of feature-based methods in sparse envi-

ronments.

The key innovation of SVO lies in its ability to perform direct sparse odometry

by directly minimizing photometric errors between consecutive frames while

maintaining a sparse map representation. By using photometric error mini-

mization, SVO robustly handles challenging visual conditions such as motion

blur, dynamic scenes, and illumination changes. The method also incorporates

efficient keyframe selection and bundle adjustment techniques to optimize cam-
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era poses and map consistency in real-time.

2.2 Data-driven visual odometry

Figure 2.2: Types of learning-based vo

In the realm of robotics and computer vision, the approach to pose estimation has

undergone a significant shift with advancements in CNNs. Traditionally, geometry-

based methods heavily relied on intricate feature detection and matching, along with

camera intrinsic and extrinsic parameters, to estimate the pose of objects or robots

within a scene. However, with the rise of CNNs, this reliance on explicit feature

extraction has diminished. CNNs have emerged as powerful feature extractors, ca-

pable of extracting relevant patterns directly from raw sensor data without the need

for explicit feature detection. This paradigm shift has revolutionized learning-based

visual odometry approaches, where DL models can now directly learn from sen-

sor readings, effectively bypassing the geometric preprocessing that was previously

considered essential (see Figure 2.3).

The integration of CNNs into pose estimation frameworks has not only stream-

lined the process but has also opened new avenues for research and application in
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robotics and computer vision. By leveraging CNNs as powerful feature extractors,

the computational burden of explicit geometric preprocessing has been alleviated,

leading to more scalable and adaptable systems. Furthermore, the adoption of DL

models in visual odometry has enabled the development of more robust and versatile

systems capable of handling diverse environmental conditions and sensor modalities.

In this section, I will examine foundational literature that underpins the evolution of

visual odometry, highlighting the progressive integration of ML and DL techniques

over time. I will elucidate the pivotal role of ViT architectures in shaping the future

of learning-based visual odometry, offering unparalleled efficiency and scalability for

pose estimation tasks in diverse real-world environments.

Figure 2.3: System architecture of learning based vo

Moreover, optical flow [35], a technique used to predict sparse or dense pixel

movement between consecutive frames, has played a crucial role in feature detec-

tion for localization tasks. In machine learning (ML) approaches, optical flow was

utilized to create datasets based on dense or sparse optical flow information, cap-

turing the motion patterns within the scene. These datasets were then employed

in conjunction with methods like KNN and SVM [36], [37] for localization tasks.

By leveraging optical flow information, ML algorithms could effectively discern spa-
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tial relationships and motion patterns, enabling accurate localization of objects or

robots within dynamic environments. In Figure 2.2, types of learning-based VO are

shown.

Gabriele Consante [38] proposed a purely CNN based approach for VO utilizing

a monocular camera. Their study introduced three distinct architectures for pose

estimation, each exploring different aspects of optical flow integration. Two of these

architectures investigated the impact of global and local optical flow separately on

pose estimation accuracy. Meanwhile, the third architecture leveraged both local and

global optical flow information, combining them to enhance the overall performance

of the pose estimation process. By examining various configurations and strategies

for integrating optical flow within CNN architectures, Gabriele Consante’s work

provided valuable insights into improving the robustness and accuracy of monocular

camera-based visual odometry systems.

Alex and Matthew [39] introduced the PoseNet model, an end-to-end CNN ar-

chitecture designed for pose estimation tasks. In their approach, the authors utilized

the GoogleNet model renowned for its inception modules, originally developed for

image classification tasks. However, they repurposed this architecture by discarding

its classification head and instead implemented a pose regression head. This novel

design enabled the network to output a 7-dimensional vector comprising three com-

ponents for position and four for orientation estimation. By leveraging the powerful

feature extraction capabilities of GoogleNet and tailoring it for pose regression, the

PoseNet model demonstrated effectiveness in accurately estimating the spatial posi-

tioning and orientation of objects or cameras within a scene. In Figure 2.3, System

architecture of Learning Based VO method is shown.

These above-mentioned Methods solely relying on CNNs or OF for visual odom-
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Figure 2.4: Figure shows the internal architecture of the DNN module in figure 2.3

etry often excels at feature extraction but may overlook the temporal relationships

between consecutive frames, leading to decreased accuracy. To address this limita-

tion, Long Short-Term Memory (LSTM) [40] and its variants such as Recurrent Neu-

ral Network (RNN) [41], Bidirectional Long Short-Term Memory (Bi-LSTM) [42]

are employed to capture temporal information effectively from sequential images.By

integrating recurrent neural networks like LSTM into VO frameworks, models can

better comprehend the temporal dynamics of the scene, thereby enhancing the ro-

bustness and accuracy of pose estimation over time. Sen Wang and Ronald Clark [43]

introduced the first end-to-end VO model based on a DRCNN, which they called

DeepVO. Their approach utilized an encoder-decoder architecture, wherein a pre-

trained FlowNet [44], a CNN-based optical flow predictor, served as the encoder,

while an LSTM network acted as the decoder. Incorporating the encoder-decoder

structure aimed to capture spatial and temporal information crucial for accurate

pose estimation in VO systems. They also mentioned that DeepVO performs well

compared to VISO2M [45], but it does not perform as well as VISO2S, a traditional

VO method using monocular and stereo cameras. Additionally, they noted that in

sequence 12, DeepVO struggles due to the featureless environment and the presence

of many moving objects in the camera’s field of view, which causes issues in accurate

pose estimation.In Figure 2.4, pipeline forlearning-based VO are shown which uses

encider-decoder architecture for pose estimation.
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DeepVO MagicVO UnDeepVO Pose Net Proposed (ViTVO)
Encoder Flownet [44] Flownet [44] CNN [14] Google-net [46] -
Decoder LSTM [40] Bi-LSTM [42] - - -
Transformer - - - - ViT [15]

Table 2.1: Architectural differences between the different components

Building upon this framework, Jian Jiao [47] conducted similar experiments but

opted for a Bi-LSTM as the decoder component. This choice was driven by the Bi-

LSTM’s superior ability to capture temporal dependencies, offering a more reliable

mechanism for integrating temporal information into the VO model. By refining the

decoder architecture, Jiao’s work enhanced the robustness and accuracy of end-to-

end VO models. By simply replacing the decoder with a Bi-LSTM, they witnessed

a slight improvement in terms of rotation and translation error, which decreased by

1 to 1.5

Hamed Damirchi [48] have augmented their VO models by incorporating atten-

tion mechanisms [49] between the CNN and LSTM components. These attention

mechanisms help the model focus on relevant spatial and temporal features, thereby

enhancing pose estimation accuracy. By dynamically weighting the importance of

different parts of the input sequence, attention mechanisms enable the VO model

to effectively capture the most informative cues for robust motion estimation. N.

Kaygusuz [50] employs a familiar CNN-RNN hybrid architecture and an unsu-

pervised learning framework, complemented by incorporating a Mixture Density

Network (MDN). This MDN facilitates the camera motion estimation by modeling

it as a mixture of Gaussians, utilizing the extracted spatio-temporal representations

to provide robust and nuanced predictions. Such a framework enhances the model’s

ability to capture complex motion patterns and uncertainty, contributing to more

accurate and reliable visual odometry and depth estimation results.

UnDeepVO [51] presents a novel approach to addressing the VO task unsuper-
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vised. The architecture of UnDeepVO is trained using pairs of stereo images to

estimate the depth of scenes. Leveraging this depth information, the model learns

visual odometry without direct supervision. While ground truth data is employed

for the depth estimation task, the model learns visual odometry in an unsupervised

manner, without explicit annotations for pose estimation. By integrating depth es-

timation and visual odometry within a unified framework, UnDeepVO demonstrates

the potential to advance the field of autonomous navigation and scene understand-

ing by reducing the reliance on manual annotations and facilitating more robust and

scalable learning approaches.

D. Chen [52] introduces a pioneering method for VO by employing a semi-

supervised deep learning framework. VO involves estimating the camera’s motion

relative to its environment, typically requiring substantial amounts of labeled data

for training, which can be costly and time-intensive to obtain. However, this paper

proposes a novel approach by harnessing both labeled and unlabeled data during

training, leveraging semi-supervised learning principles. By incorporating unlabeled

data, the model can extract additional features and patterns from the data distribu-

tion, enhancing generalization and robustness. This innovative strategy presents a

promising avenue for advancing VO systems, offering improved performance without

the need for extensive manual labeling efforts.

Y. Almalioglu [51]introduces a pioneering method that leverages Generative

Adversarial Networks (GANs) [53] for unsupervised deep monocular VO and depth

estimation. The proposed framework utilizes the adversarial training paradigm to

simultaneously learn depth estimation and visual odometry tasks from unlabeled

monocular image sequences. By employing GANs, the model can effectively capture

the complex relationship between consecutive frames and estimate accurate depth

maps while also inferring camera motion. This unsupervised approach eliminates



2.3 LIMITATIONS AND GAPS IN CURRENT APPROACHES 21

the need for costly labeled data, making it more scalable and practical for real-

world applications. T. Feng [54] introduces a novel method employing stacked

generative adversarial networks (SGANs) [54]for unsupervised deep visual odometry

and depth estimation. This approach leverages the power of adversarial training

to simultaneously learn accurate depth maps and camera motion from unlabeled

monocular image sequences.

2.3 Limitations and gaps in current approaches

Figure 2.5: High-level architecture of proposed ViTVO

Deep Neural Networks (DNNs) are revolutionizing VO by consolidating tradi-

tional steps such as feature detection, feature matching, and camera calibration into

a single end-to-end block, as illustrated in Figure 1. This streamlined approach elim-

inates the need for intricate manual processes, instead allowing the network to learn

directly from raw sensor data to predict camera poses. Inside the DNN block, there

are two sub-blocks:Convoluation Neural Networks (CNNs) [14] for robust feature

extraction and sequential information capturing blocks (Long Short-Term Memory

(LSTM) [40], Recurrent Neural Network (RNN) [41], Bidirectional Long Short-Term

Memory (Bi-LSTM) [42]) as shown in the figure 2. By integrating these blocks, it

becomes possible to achieve end-to-end visual odometry directly from RGB images,

enabling comprehensive learning of spatial and temporal relationships for accurate

pose estimation. Additionally, optical flow techniques, which predict pixel move-

ment between frames, have been instrumental in feature detection for localization
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tasks within ML.

You can refer to the table to see how previous learning-based methods utilize var-

ious encoder-decoder blocks to achieve enhanced performance. In previous learning-

based approaches, integrating separate blocks for feature extraction and sequential

information capture is common. However, leveraging ViT architectures allows for

the consolidation of these blocks into a single end-to-end learning framework for

VO, as depicted in Figure 3. This unified approach enables ViT to directly learn

and infer camera poses from RGB images, streamlining the VO process while po-

tentially enhancing accuracy and efficiency. Over recent years, transformers, rooted

in attention mechanisms, have become foundational in state-of-the-art models for

natural language processing, surpassing traditional models like RNNs, LSTMs, and

Bi-LSTMs. Inspired by the success of transformer-based architectures such as Bidi-

rectional Encoder Representations from Transformers (BERT) [55] and Generative

Pre-trained Transformer (GPT) [56], researchers have begun applying transformers

to vision tasks, resulting in remarkable advancements. ViTs have achieved state-

of-the-art accuracy in tasks ranging from image recognition to object detection,

demonstrating the transformative potential of transformers across various domains

in computer vision.

After a thorough analysis of literature on learning-based odometry, particularly

focusing on deep learning approaches, this paper introduces an end-to-end architec-

ture centered around ViT. ViT is renowned for its capability to extract hierarchical

information from sequences, effectively capturing the chain of knowledge in visual

data. The proposed architecture aims to directly estimate the 6 degrees of free-

dom (DOF) pose from raw images, leveraging ViT’s ability to integrate spatial and

temporal knowledge harmoniously. In adapting ViT for this task, the classification

head, typically used for image classification tasks, was replaced with a regression

head. This modification aligns the model’s architecture with the regression nature
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of visual odometry, optimizing performance by adjusting the loss function to mean

squared error for accurate pose estimation rather than classification. Figure 2.5

shows how ViT is replacing the encoder-decoder architecture with a single ViT

block.

2.4 Advantages of ViT in VO

The following are the advantages of using ViT in VO:

(1). Global Context Understanding:

Transformers excel in capturing global dependencies across the entire sequence

of images. In VO, where maintaining spatial and temporal coherence is crucial

for accurate pose estimation, Transformers can effectively model these depen-

dencies without relying on fixed local receptive fields as in CNNs.

(2). Attention Mechanism:

The core mechanism in Transformers, the self-attention mechanism, allows them

to selectively focus on relevant parts of the input sequence. This is beneficial

in VO tasks where different frames may contribute differently to the estimation

of camera motion, especially in dynamic scenes or environments with varying

lighting conditions.

(3). Sequence Modeling:

Unlike CNNs that process images spatially, Transformers process sequences di-

rectly, treating images as sequences of patches. This approach preserves spatial

relationships across frames while leveraging the Transformer’s ability to model

sequential data effectively.

(4). Adaptability to Non-Uniform Sampling:
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Transformers are naturally suited to handle sequences with non-uniform sam-

pling rates or irregular time intervals, which can occur in VO due to varying

frame rates or occlusion events.

(5). Hierarchical Representation:

Transformers can learn hierarchical representations of visual data, capturing

both low-level features such as edges, textures and high-level semantics such as

objects, scenes. This capability is advantageous in VO for robustly estimating

camera poses across different scales and complexities in scenes.

2.5 Applications of ViT in VO

The following are the Applications of using ViT in VO:

(1). Pose Estimation:

Transformers can predict the camera’s pose (position and orientation) relative

to a starting point using sequences of images. This is crucial for tasks such

as autonomous navigation, robot localization, and augmented reality, where

precise understanding of camera motion is essential.

(2). Semantic Understanding:

Transformers can incorporate semantic information from images, facilitating

tasks such as vo and simultaneous localization and mapping (SLAM) where

understanding the scene’s structure aids in better pose estimation .

(3). Dynamic Environments:

Transformers’ ability to handle dynamic scenes, occlusions, and changes in light-

ing conditions makes them suitable for VO applications in real-world environ-

ments where conditions may vary unpredictably.



3 Methedology

In this chapter, section 3.1 establish the theoretical foundation for integrating Vision

Transformer architectures into VO. It discusses the rationale for leveraging these

models, highlighting their ability to capture long-range dependencies and global

contextual information in VO tasks. Section 3.2, 3.3 and 3.4 includes a brief de-

scription of the KITTI dataset used for training and evaluation, outlines the training

procedure, experimental setup, and evaluation metrics, and provides a detailed ex-

ploration of various aspects such as losses.

3.1 Model architecture

The ViTVO architecture consists of the following components:

3.1.1 Patch embedding:

First, a 224 × 224 image I is divided into patches, each of size 16 × 16. This

results in N = 224×224
16×16

= 196 patches. Each patch is then flattened and projected

to a vector of dimension D using a linear projection layer. Figure 3.1 shows how

patch embedding and positional embedding help ViT to understand spatial as well

as temporal information from images. This system architecture 3.1 illustrates the

data flow with arrows and the processing functions with rectangular blocks, which

transform the data into more abstract representations. This enables the model

to harmoniously extract spatial and temporal information. The operation can be
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Figure 3.1: System architecture of the proposed ViTVO
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expressed as:

X = PatchEmbedding(I)

X = [x1,x2, . . . ,xN ] where xi ∈ RD

Positional Embedding used Positional embeddings are added to these patch

embeddings to retain positional information:

Z0 = [x1 + p1,x2 + p2, . . . ,xN + pN ]

A common choice for positional embeddings is the sinusoidal positional embed-

ding, defined as:

p
(2j)
i = sin

(︃
i

100002j/D

)︃

p
(2j+1)
i = cos

(︃
i

100002j/D

)︃
where i is the position index, j is the dimension index, and D is the embedding

dimension.

Importance in VO: Patch embedding and positional embedding are crucial

components in ViT-based VO as they enable the model to effectively process and in-

terpret visual data. Patch embedding divides an input image into fixed-size patches

and projects each patch into a high-dimensional space using a linear transformation,

converting the image into a sequence of patch embeddings. This transformation al-

lows the ViT to handle images similarly to how it processes sequences in natural

language processing. However, unlike sequences of words, the spatial arrangement

of image patches is vital for understanding visual context. Positional embedding ad-

dresses this by adding positional information to each patch embedding, ensuring the

model retains the spatial relationships between patches. This combined approach

allows the ViT to capture both local and global dependencies in the visual data,

which is essential for accurate and robust pose estimation in VO tasks, especially in
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complex and dynamic environments.

Figure 3.2: Figure shows the internal architecture of the transformer encoder in the
figure 3.1

3.1.2 Transformer encoder layers:

Each Transformer encoder layer processes the input through two main components:

Multi-Head Self-Attention (MHSA) and Feed-Forward Network (FFN). The output

from the l-th layer serves as the input to the (l+1)-th layer. Figure 3.2 shows internal

architecture of transformer encoder. Here, The dashed lines indicate comments on

operations between functional blocks, while the arrows represent the data flow and

the rectangular blocks denote functions that transform data into more abstract

information, enabling the model to extract harmonious information between spatial

and temporal dimensions. Following bullets explain use of multi-head self-attention

and feed-forward networks (FFN) in ViTVO in detail.
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1. Multi-head attention: Multi-head attention is another critical component in

ViTs that allows the model to capture various aspects of the scene simultane-

ously. By utilizing multiple attention heads, the model can attend to different

parts of the image in parallel, with each head focusing on different features

or patterns. This parallel processing enhances the feature representation by

aggregating diverse information from different perspectives, thereby enrich-

ing the model’s understanding of the scene. In VO applications, multi-head

attention helps capture the complex and dynamic nature of real-world envi-

ronments, leading to improved robustness and reliability in pose estimation.

It ensures that the model can extract and combine relevant features in the

temporal dimension, which is crucial for maintaining accuracy in challenging

conditions.

Let H(l) be the input to the l-th layer. The multi-head self-attention is defined

as:

H
(l+1)
MHSA = MHSA(H(l))

2. Self-attention mechanism: Self-attention allows the model to weigh the im-

portance of different parts of the input sequence when encoding a particular

token. It calculates the attention scores between all pairs of tokens and gener-

ates a weighted sum of the token representations. This mechanism is crucial

for capturing dependencies and relationships within the input data, which is

essential for accurate visual odometry.

Self-attention mechanisms are a pivotal feature in ViTs that allow the model

to weigh the importance of different patches within an image. By comput-

ing the relationships between each patch and every other patch, self-attention

dynamically adjusts the influence of each patch based on its relevance to the

task at hand. This capability enhances the integration of contextual informa-
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tion across the entire image, enabling the model to understand global patterns

and dependencies. In the context of VO, self-attention mechanisms help in

accurately estimating the camera pose by effectively considering the spatial

relationships and contextual cues from various parts of the scene.

Figure 3.3: Figure shows the internal architecture of MHSA in figure 3.2

Attention(Q,K,V) = softmax
(︃
QK⊤
√
dk

)︃
V

In the scaled dot-product attention mechanism, attention is computed by first

taking the query matrix Q and multiplying it with the transpose of the key

matrix K. This product is then normalized by dividing by
√
dk, where dk is

the dimension of the keys. The result is passed through a softmax function to

obtain the attention weights, which are then multiplied by the value matrix V

to generate the attention output. This process is illustrated in Figure 3.3,the

dashed lines indicate comments on operations between functional blocks, while
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the arrows represent the data flow and the rectangular blocks denote functions

that transform data into more abstract information which highlights its role

in balancing spatial and temporal information crucial for VO.

For MHSA, the attention mechanism is applied in parallel across multiple

heads. Each head computes attention independently, resulting in multiple

attention outputs. These outputs are concatenated and linearly transformed

using a weight matrix WO. This can be represented as:

MHSA(H(l)) = Concat(head1, head2, . . . , headh)WO

where headi denotes the output of the i-th attention head. This approach

enables the model to capture and integrate various aspects of the input data,

enhancing its ability to handle complex visual odometry tasks.

where each headi is computed as:

headi = Attention(H(l)WQ
i ,H

(l)WK
i ,H

(l)WV
i )

3. Feed-forward network (FFN):

The output of layer normalization is then passed to the Feed-Forward Network

(FFN), which helps to stabilize and accelerate training, allowing the model to

reach convergence more quickly. This network consists of two linear transfor-

mations with a ReLU activation in between. It independently processes each

token representation (output from MHSA) to introduce non-linearity and fur-

ther refine the representation.

Mathematically, this can be expressed as:

H(l+1) = FFN(H
(l+1)
MHSA)
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where the FFN is defined as:

FFN(x) = ReLU(xW1 + b1)W2 + b2

Combining both components, the complete operation of the l-th Transformer

encoder layer is:

H(l+1) = MHSA(H(l)) + FFN(MHSA(H(l)))

4. Residual connections and normalization

Shortcut connections (or residual connections) are added around each sub-

layer (MHSA and FFN), allowing gradients to flow more easily during back-

propagation(See Figure 3.2), which helps in training deeper networks. Layer

normalization is applied after each sub-layer along with the residual connec-

tions, ensuring that the outputs are well-behaved (normalized). Sequential

Processing: The output of the l-th encoder layer serves as the input to the

(l + 1)-th layer. This sequential stacking of layers allows the model to pro-

gressively build more abstract and higher-level representations of the input

data.

3.1.3 Pose regression head

The final Transformer encoder layer output is passed through a multi-layer percep-

tron (MLP) head to regress the 6-DoF pose (3D translation and Euler angles for

rotation).We use a pretrained ViT model from Hugging Face in this approach. The

original classification head of the ViT model is discarded, and a pose regression

head is mounted on it. This new head is designed to regress the 6-DoF pose (3D

translation and Euler angles for rotation). The pose regression head can be defined
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as:

Ŷ = MLP(H(L))

where Ŷ ∈ R6 represents the estimated 6-DoF pose.

After mounting the pose regression head, we fine-tune some layers of the ViT

model along with the newly added pose regression head. This fine-tuning process

helps the model adapt to the specific task of pose estimation while leveraging the

pre trained knowledge from the original ViT model.

After the pose regression head computes the estimated pose Ŷ , the model cal-

culates the loss using the Mean Squared Error (MSE) between the estimated poses

and the ground truth poses. The MSE loss function is defined as:

MSE Loss =
1

N

N∑︂
i=1

(︂
Ŷ i − Yi

)︂2

where N is the number of samples, Ŷ i is the estimated pose, and Yi is the ground

truth pose.

To optimize the model parameters, we use the Adam optimizer, which updates

the model weights based on the computed gradients. The loss function is backprop-

agated through the network to update the weights, aiming to minimize the MSE

loss. The Adam optimization algorithm adjusts the learning rate adaptively for each

parameter, improving convergence speed and performance.

3.2 Data collection

3.2.1 Description of datasets

The KITTI dataset is one of the most widely used datasets for evaluating VO and

other computer vision tasks related to autonomous driving. It provides a rich col-
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lection of data recorded from a moving vehicle in diverse environments. Here’s an

explanation of the KITTI dataset and how it can be used for evaluating Vision

Transformer-based Visual Odometry:

3.2.2 Overview of the KITTI dataset

The KITTI dataset was collected by the Karlsruhe Institute of Technology and

the Toyota Technological Institute at Chicago. It includes various sensor modalities

such as stereo cameras, LiDAR, and GPS/IMU. The dataset is divided into different

subsets, each designed for specific tasks like odometry, object detection, tracking,

and more.

The KITTI dataset is renowned for its dynamic environments and extensive route

records, making it a valuable resource for evaluating Vision Transformer-based Vi-

sual Odometry (ViT-VO) systems. Each sequence within the dataset represents

real-world driving scenarios captured across different urban and rural settings, en-

compassing diverse challenges such as varying lighting conditions, occlusions, and

traffic scenarios. The dataset includes sequences with varying path lengths and aver-

age velocities, providing a comprehensive range of motion dynamics for testing and

benchmarking ViT-VO models. For instance, sequences can range from several hun-

dred meters to kilometers in length, capturing trajectories that reflect both urban

street scenes and highway driving. Average velocities across these sequences vary

widely, reflecting realistic driving conditions that are essential for assessing how

well ViT-VO models generalize across different speeds and environments. Thus,

leveraging the KITTI dataset enables rigorous evaluation of ViT-VO systems under

conditions that closely mimic real-world driving scenarios, ensuring robustness and

reliability in pose estimation across diverse and complex environments.

(1). Sequences (Routes Records):

The VO subset consists of 22 drive sessions (00-21), each representing a contin-
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uous sensor data recording as the vehicle drives through different environments.

These drive sessions include urban, rural, and highway settings.

(2). Sensor Data:

Stereo Images: High-resolution left and right camera images (color and grayscale).

IMU/GPS Data: Provides ground truth poses and orientation, useful for bench-

marking VO algorithms.

(3). Velodyne LiDAR: 3D point clouds capturing the surrounding environment.

(4). Annotations:

Ground truth poses for evaluating the accuracy of VO algorithms. Calibration

files containing intrinsic and extrinsic parameters of the sensors

3.2.3 Data preprocessing steps

In this section, we will discuss data loading and preprocessing techniques:

(1). Loading Sequences:

For this example, we’ll use the left images from the KITTI odometry dataset

as input to the model. The dataset contains stereo image pairs (left and right),

but we’ll focus on the left images. Each route record (sequence) includes these

image pairs along with ground truth poses.

(2). Preprocessing:

The images need to be preprocessed to match the input requirements of the

Vision Transformer. This includes resizing the images, normalizing the pixel

values, and applying data augmentation. Additionally, the ground truth poses,

provided as rotation matrices and translation vectors, need to be converted into

a 6-DOF representation for supervised training of the model (Euler angles for

rotation and 3D vectors for translation).
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3.3 Training procedure

In this section, we outline the training procedure for our Visual Odometry (VO)

model using the KITTI dataset. We focus on two critical aspects: the loss functions

and the optimization techniques employed during training.

3.3.1 Loss functions

For our Visual Odometry task, the primary objective is to accurately predict the

6-DOF pose (3-DOF for rotation and 3-DOF for translation) of the camera. We

utilize the Mean Squared Error (MSE) loss function to achieve this.

Mean Squared Error (MSE) Loss:

The MSE loss measures the average squared difference between the predicted

and ground truth poses. It is defined as: The Mean Squared Error (MSE) loss is

defined as:

MSE Loss =
1

N

N∑︂
i=1

(ŷi − yi)
2

The use of MSE loss ensures that the model is penalized more heavily for larger

errors, thereby encouraging precise pose predictions.

3.3.2 Optimization techniques

To train our model effectively, we use the Adam optimizer, which combines the

advantages of two other popular optimizers: AdaGrad and RMSProp. Adam is

particularly well-suited for problems with sparse gradients and noisy data, making

it a robust choice for training deep learning models.

The Adam optimizer updates the model parameters based on estimates of the

first and second moments of the gradients. The following update rules define it:

(1). Compute the gradients gt at timestep t.
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(2). Update the biased first moment estimate:

mt = β1mt−1 + (1− β1)gt

(3). Update the biased second moment estimate:

vt = β2vt−1 + (1− β2)g
2
t

(4). Compute bias-corrected first and second moment estimates:

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(5). Update the parameters:

θt = θt−1 −
η√

v̂t + ϵ
m̂t

3.3.3 Training and test splits

The training and test splits for evaluating the proposed method involve to assess

VO’s performance robustness across different datasets and environments. The ex-

periment focuses on evaluating the proposed method using specific sequences for

training and testing:

(1). Training Data: Sequences 00, 02, 08, and 09 are used for training. These

sequences are chosen because they are relatively long and provide ground truth

data necessary for training.
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(2). Training Process: Trajectories from the selected sequences are segmented into

different lengths to generate a sufficient amount of training data. This results

in a total of 7410 samples being used for training.

(3). Testing Data: The trained models are evaluated on sequences 03, 04, 05, 06,

07, and 10 to assess their performance. These sequences were not used during

training and serve as a separate dataset for evaluation.

3.4 Evaluation metrics

3.4.1 Relative pose error

Relative Pose Error (RPE) evaluates the accuracy of relative poses estimated be-

tween consecutive frames by the VO algorithm. Here’s how RPE is understood:

Definition: RPE focuses on assessing the consistency and accuracy of the motion

estimates between successive frames.

Metrics:

• Translation Error (TE): Measures the discrepancy in translation vectors

between consecutive frames. It quantifies how accurately the VO algorithm

estimates the distance the camera moves from one frame to the next.

Calculation: Suppose tgt(t) denotes the ground truth translation vector at time

t, and test(t) denotes the estimated translation vector by the VO algorithm at

time t.

TE =

⌜⃓⃓⎷ 1

N

N∑︂
t=1

∥tgt(t)− test(t)∥22

• Rotation Error (RE): Quantifies the differences in orientation (rotation)

between consecutive frames. It assesses how well the VO algorithm estimates

the angular change of the camera’s pose from one frame to the next.
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Calculation: Suppose Rgt(t) denotes the ground truth rotation matrix at time

t, and Rest(t) denotes the estimated rotation matrix by the VO algorithm at

time t.

RE =

⌜⃓⃓⎷ 1

N

N∑︂
t=1

trace((I−Rest(t)Rgt(t)T )2)

where trace(·) denotes the trace of a matrix, and I is the identity matrix.

Interpretation: RPE metrics provide insights into how well the VO algorithm es-

timates relative motions between consecutive frames. Low translation and rotation

errors indicate accurate estimation of camera motion, which is critical for applica-

tions requiring precise navigation and scene understanding.

3.4.2 Translation error against path length

Translation error et measures the discrepancy between estimated and ground truth

translations. It varies with path length L, indicating the distance traveled by the

camera or vehicle. The relationship can be expressed as:

et(L) = ft(L)

where ft(L) is the function describing how translation error changes with path length

L.

3.4.3 Rotation error against path length

Rotation error er quantifies the difference between estimated and actual rotations,

influenced by path length L. This metric is crucial for assessing the rotational

accuracy over varying distances, represented as:

er(L) = fr(L)
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where fr(L) represents the function depicting rotation error with respect to path

length L.

3.4.4 Translation error against speed

Translation error et also correlates with the speed S at which the camera or vehicle

moves. The error varies nonlinearly with speed and can be modeled as:

et(S) = ft(S)

where ft(S) denotes the function characterizing translation error against speed S.

3.4.5 Rotation error against speed

Rotation error er is sensitive to the velocity S of the camera or vehicle, influencing

how accurately rotational changes are estimated. This relationship can be mathe-

matically represented as:

er(S) = fr(S)

where fr(S) describes the function describing rotation error concerning speed S.



4 Results

This chapter is primary focus of the thesis. Section 4.1 evaluation covers the compar-

ison of rotation and translation errors across different trajectories for learning-based

models. Another section 4.2 evaluates different methods, including ViTVO, against

different speed and path length. The evaluation of the VO model is primarily based

on RPE, which measures the accuracy of relative poses estimated between consec-

utive frames. RPE consists of TE and RE, where TE quantifies the discrepancy

in translation vectors and RE assesses the differences in orientation. Additionally,

evaluation metrics include Translation Error Against Path Length, Rotation Error

Against Path Length, Translation Error Against Speed, and Rotation Error Against

Speed. These metrics provide insights into how well the VO algorithm estimates

camera motion under varying conditions, such as different path lengths and speeds,

ensuring robust and precise navigation and scene understanding.

4.1 Rotation and translation error comparison across

routes for learning-based models

In this section, we analyze the results across five distinct route trajectories with

varying environmental conditions. We compare the performance of state-of-the-

art learning-based methods that use a combination of CNN and RNN, as well as

standalone CNN models, against ViTVO on these different routes in detail.
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4.1.1 Sequence 03

Model Translation Error Sequence 03 Rotation error Error Sequence 03
DeepVO [43] 12.92 0.048
MagicVO [47] 12.14 0.041
UnDeepVO [51] 15.20 0.170
PoseNet [39] 27.30 0.150
ViTVO [Proposed] 11.21 0.039

Table 4.1: Translation and rotation error for different models for sequences 03

Figure 4.1: Sequence 03 velocity

Sequence 03 typically involves moderate-speed movement with some sharp turns

at high speed, as can be seen in Figures 9 and 10, along with varying lighting condi-

tions. The performance of different visual odometry models in this sequence varies

significantly based on their ability to handle sequential information. DeepVO per-

forms reasonably well with a translation error of 12.92% and a rotation error of

0.048 (see Table 4.1). This can be attributed to the LSTM’s capacity to manage

sequential data over short durations. However, MagicVO outperforms DeepVO by

exhibiting lower translation and rotation errors, with a translation error of 12.14%
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and a rotation error of 0.041 (see Table 4.1). This advantage is due to the Bi-

LSTM’s bidirectional processing, which captures temporal dependencies more ef-

fectively, particularly during sharp turns and changes in lighting conditions. The

superior handling of temporal information by MagicVO demonstrates its robustness

in complex dynamic environments.

Figure 4.2: Comparison of Different Models for sequence 03

In comparison, PoseNet and UnDeepVO show different performance metrics in

Sequence 03. PoseNet demonstrates a translation error of about 27.30%, which

is considerably higher, indicating its struggle to accurately estimate poses due to

the lack of mechanisms for capturing sequential information. UnDeepVO, while

better than PoseNet, still faces challenges with a translation error of approximately

15.20% (see Table 4.1). Despite these limitations, UnDeepVO performs better than

PoseNet because it slightly better captures temporal context. The rotation errors

for both PoseNet and UnDeepVO hover just above 0.1, with PoseNet at 0.150 and

UnDeepVO at 0.170, reflecting some consistency in rotational estimation despite the

shortcomings in translation accuracy (see Table 4.1).
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On the other hand, ViT shows the lowest translation error for Sequence 03, with

a rate closer to 11.21%. This suggests that ViT’s architecture is more effective at

handling the complexities of the sequence, including moderate-speed movements,

sharp turns, and varying lighting. The performance of ViT can be attributed to

its advanced capabilities in capturing and processing spatial-temporal information,

resulting in more accurate pose estimations compared to the other models. This

highlights the critical role of effective sequential data handling in visual odometry,

where models like MagicVO and ViT, which incorporate mechanisms for robust

temporal information processing, consistently achieve better results (see Table 4.1).

Figure 4.2 shows a comparative analysis of different visual odometry models for

Sequence 03. According to Figure 9, the vehicle takes a turn at high speed, which

is where drift starts to add. Every model performs poorly during these sharp turns,

indicating the challenges in accurately estimating poses in such dynamic conditions.

However, ViTVO stands out by effectively extracting hierarchical information from

the environment, a crucial feature for handling these complexities. Despite the drift

affecting ViTVO as well, it performs significantly better compared to the other mod-

els, as can be seen in Figure 4.2. This highlights the superior capability of ViTVO in

managing sequential data and dynamic scenarios. The velocity profile in Figure 4.1

clearly illustrates the high-speed turn taken by the vehicle. This is the point where

most models, including ViTVO, experience an increase in drift. However, as shown

in Figure 4.2, ViTVO’s advanced architecture allows it to mitigate the drift more

effectively than other models, demonstrating its robustness in challenging scenarios.

4.1.2 Sequence 04

Sequence 04 involves scenarios characterized by moderate-speed movements and

varying environmental conditions, posing distinct challenges for visual odometry

models. DeepVO achieves a translation error of 10.56% and a rotation error of 0.048
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(Table 4.2), demonstrating its capability to manage sequential data effectively over

short durations, similar to its performance in Sequence 03. In comparison, MagicVO

outperforms DeepVO in Sequence 04 with lower translation (9.74%) and rotation

(0.041) errors, leveraging its bidirectional LSTM for enhanced temporal dependency

handling (Table 4.2). This highlights MagicVO’s robustness in capturing accurate

pose estimations amidst varying environmental dynamics.

PoseNet and UnDeepVO exhibit noticeable differences in their performance met-

rics in Sequence 04. PoseNet struggles with a higher translation error of 19.30%,

indicative of its challenges in accurately estimating poses without effective sequen-

tial information processing mechanisms (Table 4.2). On the other hand, UnDeepVO

shows improved performance over PoseNet, yet faces challenges with a translation

error of 12.23% and a rotation error of 0.170. Despite these limitations, UnDeepVO’s

slightly better capture of temporal context aids in mitigating translation errors to

some extent (Table 4.2).

The proposed model, ViTVO, exhibits promising results in Sequence 04 with

the lowest translation error of 7.20% and a rotation error of 0.035 (Table 4.2). This

signifies ViTVO’s advanced architecture in handling spatial-temporal complexities,

including moderate-speed movements and varying environmental dynamics. Figure

4.4 presents a comparative analysis of different visual odometry models, highlight-

ing ViTVO’s superior performance in accurately estimating poses amidst challenges

encountered in Sequence 04. Despite facing drift during high-speed movements,

ViTVO demonstrates robust sequential data management, underscoring its effec-

tiveness in dynamic scenarios (Figure 4.4).

PoseNet and UnDeepVO exhibit noticeable differences in their performance met-

rics in Sequence 04. PoseNet struggles with a higher translation error of 19.30%,

indicative of its challenges in accurately estimating poses without effective sequen-

tial information processing mechanisms (Table 4.2). On the other hand, UnDeepVO
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Model Translation Error Sequence 04 Rotation error Error Sequence 04
DeepVO [43] 10.56 0.048
MagicVO [47] 9.74 0.041
UnDeepVO [51] 12.23 0.170
PoseNet [39] 19.30 0.150
ViTVO [Proposed] 7.20 0.035

Table 4.2: Translation and rotation error for different models for sequences 04

Figure 4.3: Sequence 04 velocity

shows improved performance over PoseNet, yet faces challenges with a translation

error of 12.23% and a rotation error of 0.170. Despite these limitations, UnDeepVO’s

slightly better capture of temporal context aids in mitigating translation errors to

some extent (Table 4.2).

The proposed model, ViTVO, exhibits promising results in Sequence 04 with

the lowest translation error of 7.20% and a rotation error of 0.035 (Table 4.2). This

signifies ViTVO’s advanced architecture in handling spatial-temporal complexities,

including moderate-speed movements and varying environmental dynamics. Figure

4.4 presents a comparative analysis of different visual odometry models, highlight-

ing ViTVO’s superior performance in accurately estimating poses amidst challenges

encountered in Sequence 04. Despite facing drift during high-speed movements,
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Figure 4.4: Translation error against path length

ViTVO demonstrates robust sequential data management, underscoring its effec-

tiveness in dynamic scenarios (Figure 4.4).

4.1.3 Sequence 05

Sequence 05 presents challenges characterized by dynamic movements and varying

environmental conditions(figure 4.5), influencing the performance of visual odometry

models. DeepVO demonstrates a translation error of 14.61% and a rotation error

of 0.038 (Table 4.3), indicating its ability to handle sequential data moderately

well over short durations. In contrast, MagicVO performs slightly better with a

translation error of 14.18% and a rotation error of 0.041, leveraging its bidirectional

LSTM for enhanced temporal dependency handling (Table 4.3). This underscores

MagicVO’s robustness in capturing accurate pose estimations despite the dynamic

nature of Sequence 05.

PoseNet and UnDeepVO exhibit higher translation errors in Sequence 05, re-

flecting their challenges in accurately estimating poses under dynamic conditions.
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PoseNet records a translation error of 22.30%, highlighting its struggle without ef-

fective mechanisms for sequential information processing (Table 4.3). UnDeepVO,

though performing better than PoseNet with a translation error of 18.47% and a

rotation error of 0.1, still faces significant challenges in managing temporal context

(Table 4.3).

Model Translation Error Sequence 05 Rotation error Error Sequence 05
DeepVO [43] 14.61 0.038
MagicVO [47] 14.18 0.041
UnDeepVO [51] 18.47 0.1
PoseNet [39] 22.30 0.15
ViTVO [Proposed] 12.30 0.026

Table 4.3: Translation and rotation error for different models for sequences 05

Figure 4.5: Sequence 05 velocity

The proposed model, ViTVO, demonstrates competitive performance in Se-

quence 05 with a translation error of 12.30% and a rotation error of 0.026 (Table

4.3). Figure 4.6 provides a comparative analysis of different visual odometry mod-

els, showcasing ViTVO’s effectiveness in handling dynamic movements and varying

environmental conditions. Despite inherent challenges such as drift during high-



4.1 ROTATION AND TRANSLATION ERROR COMPARISON ACROSS
ROUTES FOR LEARNING-BASED MODELS 49

speed maneuvers, ViTVO excels in sequential data management, highlighting its

suitability for dynamic scenarios (Figure 4.6).

Figure 4.6: Comparison of different models for sequence 05

4.1.4 Sequence 06

Sequence 06 introduces challenges characterized by rapid movements and diverse

environmental conditions, significantly influencing the performance of visual odom-

etry models. DeepVO exhibits a translation error of 17.86% and a rotation error

of 0.068 (Table 4.4), showcasing its moderate ability to handle sequential data over

short durations. In contrast, MagicVO performs marginally better with a transla-

tion error of 17.36% and a rotation error of 0.051, leveraging its bidirectional LSTM

for more effective temporal dependency management (Table 4.4). This highlights

MagicVO’s robustness in accurately estimating poses amidst the dynamic elements

of Sequence 06.

PoseNet and UnDeepVO face notable challenges in Sequence 06, evidenced by

their higher translation errors. PoseNet records a translation error of 24.10%, un-
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derscoring its difficulty in accurately estimating poses without effective mechanisms

for capturing sequential information (Table 4.4). Similarly, UnDeepVO shows a

translation error of 20.60% and a rotation error of 0.19, indicating ongoing struggles

in managing temporal context (Table 4.4).

Model Translation Error Sequence 06 Rotation error Error Sequence 06
DeepVO [43] 17.86 0.068
MagicVO [47] 17.36 0.051
UnDeepVO [51] 20.60 0.19
PoseNet [39] 24.10 0.22
ViTVO [Proposed] 15.28 0.034

Table 4.4: Translation and rotation error for different models for sequences 06

The proposed model, ViTVO, demonstrates promising results in Sequence 06

with a translation error of 15.28% and a rotation error of 0.034 (Table 4.4). ViTVO’s

effectiveness in handling rapid movements and diverse environmental dynamics. De-

spite challenges such as increased drift during high-speed actions, ViTVO excels in

sequential data processing, highlighting its suitability for dynamic scenario.

4.1.5 Sequence 07

Model Translation Error Sequence 07 Rotation error Error Sequence 07
DeepVO [43] 14.56 0.090
MagicVO [47] 13.60 0.081
UnDeepVO [51] 17.70 0.21
PoseNet [39] 26.20 0.23
Proposed [ViTVO] 12.70 0.040

Table 4.5: Translation and rotation error for different models for sequences 07

Sequence 07 presents challenges characterized by intricate movements(figure 4.7)

varied environmental conditions, significantly impacting the performance of visual

odometry models. DeepVO exhibits a translation error of 14.56% and a rotation

error of 0.090 (Table 4.5), indicating its moderate capability to manage sequential

data over short durations. In contrast, MagicVO performs slightly better with a
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translation error of 13.60% and a rotation error of 0.081, leveraging its bidirectional

LSTM for more effective handling of temporal dependencies (Table 4.5). This under-

scores MagicVO’s robustness in accurately estimating poses amidst the complexities

of Sequence 07.

Figure 4.7: Sequence 07 Velocity

PoseNet and UnDeepVO encounter significant challenges in Sequence 07, as re-

flected by their higher translation errors. PoseNet records a translation error of

26.20%, highlighting its struggle without effective mechanisms for capturing se-

quential information (Table 4.5). Similarly, UnDeepVO shows a translation error

of 17.70% and a rotation error of 0.21, indicating ongoing difficulties in managing

temporal context (Table 4.5).

The proposed model, ViTVO, demonstrates competitive performance in Se-

quence 07 with a translation error of 12.70% and a rotation error of 0.040 (Table 4.5).

Figure 4.8 provides a comparative analysis of visual odometry models, illustrating

ViTVO’s effectiveness in handling intricate movements and varied environmental

dynamics. Despite challenges such as increased drift during complex maneuvers,
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ViTVO excels in sequential data processing, emphasizing its suitability for dynamic

scenarios (Figure 4.8). conditions.

Figure 4.8: Comparison of different models for sequence 07

The following tables summarize the mean, standard deviation, minimum, and

maximum values of translation and rotation errors for different visual odometry

models across various test sequences.

The figure 4.9 presented provide a detailed comparison of translation and rotation

errors for various visual odometry models. In terms of translation error, DeepVO

has a mean error of 14.49 with a standard deviation of 2.35, and its errors range

from 11.61 to 17.86. MagicVO exhibits a slightly lower mean translation error of

13.40 and a standard deviation of 2.45, with a minimum of 11.18 and a maximum

of 17.36. UnDeepVO, however, shows a higher mean translation error of 16.84 and

a standard deviation of 2.26, with values ranging between 14.47 and 20.60. Pose

Net has the highest mean translation error at 25.12, with a significant standard

deviation of 4.29, indicating more variability, and a range from 18.30 to 29.70. The

proposed ViTVO model demonstrates the lowest mean translation error at 12.54
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Figure 4.9: Translation and rotation error statistics

with a standard deviation of 1.47, and its errors vary from 11.21 to 15.28, indicating

more stable performance across sequences.

For rotation errors, DeepVO has a mean of 0.058 and a standard deviation of

0.018, with values ranging from 0.037 to 0.090. MagicVO’s rotation error statistics

are similar, with a mean of 0.057 and a standard deviation of 0.014, ranging from

0.041 to 0.082. UnDeepVO presents a higher mean rotation error of 0.150 and a

standard deviation of 0.032, with errors between 0.100 and 0.190. Pose Net also

has a mean rotation error of 0.150 but with a higher standard deviation of 0.042,

indicating a broader error range from 0.100 to 0.230. The proposed ViTVO model

achieves the lowest mean rotation error of 0.039 with a standard deviation of 0.011,

and its errors range from 0.026 to 0.056, showcasing its effectiveness in maintaining

low rotational discrepancies.
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4.2 Rotation and translation error comparison by

path length and speed

In evaluating the visual odometry system, it is critical to analyze the rotation and

translation errors against varying path lengths and speeds to understand the long-

term accuracy and robustness of the models. Path length directly influences the

drift accumulation over time in VO systems, making it a key factor in determining

their reliability. Additionally, the relationship between a vehicle’s speed and the VO

system’s performance provides insights into the practical viability of the system in

dynamic environments such as autonomous driving, drone navigation, and mobile

robot navigation. This analysis is essential for ensuring that the VO system can

maintain accuracy and effectiveness in real-world scenarios where conditions are

constantly changing.

Figure 4.10: Translation error against path length

Posenet relies exclusively on Googlenet as an encoder, lacking mechanisms to

capture spatial-temporal information, which is critical for VO performance. This

deficiency results in poor performance regarding path length and speed, with trans-
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Figure 4.11: Rotation error against path length

Figure 4.12: Translation error against speed
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Figure 4.13: Rotation error against speed

lation and rotation errors particularly affected. Analysis shows Posenet struggles

with translation errors reaching 30% and rotation errors around 0.09% at moder-

ate speeds (10-30 km/h), making it the worst performer among evaluated methods.

From figure 4.12 and figure 4.13, it’s clear that as speed increases, translation er-

rors rise while rotation errors decrease, further highlighting the model’s inability to

capture the sequential nature of spatial data effectively.

At lower path lengths below 300 meters, Posenet’s translation and rotation errors

are between 20% and 0.08%, respectively (see figure 4.10 and figure 4.11). These

errors increase to above 27% and 0.12% as path lengths increase, but the overall

performance remains subpar due to the model’s inability to handle spatial-temporal

data. The absence of mechanisms like LSTM networks exacerbates these issues,

whereas learning-based methods incorporating such techniques show better perfor-

mance by effectively capturing sequential information. Consequently, Posenet’s lim-

itations make it inadequate for dynamic environments requiring accurate and robust

VO performance.

DeepVO and MagicVO employ an encoder-decoder framework with FlowNet as
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the encoder, differing in their choice of decoders: DeepVO utilizes LSTM while Mag-

icVO employs Bi-LSTM. Bi-LSTM in MagicVO proves advantageous by effectively

capturing sequential information bidirectionally, overcoming LSTM’s vanishing gra-

dient issue with long-term dependencies. Both models achieve high accuracy on

shorter paths (100-300 meters) with translation errors below 15% and rotation er-

rors under 0.04 degrees per meter (see figure 4.10 and figure 4.11). They maintain

robust performance on longer paths (700-800 meters) with translation errors increas-

ing slightly to 15% and rotation errors under 0.06 degrees per meter, demonstrating

their effective pose estimation capabilities (see figure 4.10 and figure 4.11). At lower

speeds (10-30 km/h), both DeepVO and MagicVO exhibit translation errors below

20%, though errors rise to 35-40% with increasing speed, reflecting challenges in

capturing temporal context effectively (see figure 4.12 and figure 4.13). Rotation

errors remain stable across speeds, indicating consistent performance in estimating

rotation despite speed variations (see figure 4.12 and figure 4.13).

Learning-based VO methods utilizing Vision Transformer (ViT) architectures

exhibit enhanced robustness against varying speeds due to their self-attention mech-

anisms. ViT’s ability to weigh the importance of different image patches and inte-

grate contextual information across the entire scene allows it to capture balanced

spatial-temporal information from the environment. This capability is particularly

beneficial in mitigating the adverse effects of high-speed motion, such as motion

blur and rapid scene changes. Empirical results demonstrate that ViT-based VO

models maintain relatively low translation and rotation errors even at higher speeds,

indicating their potential for reliable performance in dynamic scenarios.

Moreover, the use of multi-head attention in ViT-based models enables the cap-

ture of various aspects of the scene simultaneously, enhancing feature representation

and robustness. This architectural feature allows the model to adapt to different

speeds by focusing on relevant features and contextual cues critical for accurate
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pose estimation. Consequently, ViT-based VO models achieve superior accuracy

and precision in pose estimation compared to traditional methods, particularly in

high-speed conditions. Extensive experiments across different speed ranges consis-

tently show that ViTVO outperforms traditional VO methods in both translation

and rotation errors. At speeds ranging from 10 to 70 km/h, ViTVO maintains trans-

lation errors below 26% and rotation errors under 0.03 degrees per meter, whereas

other methods exhibit significantly higher errors. These findings underscore the

advantages of incorporating Vision Transformers in VO systems, highlighting their

potential to enhance pose estimation accuracy and robustness across diverse speed

conditions.



5 Discussion

In this chapter, section 5.1 and 5.2 provide a summary of the key findings and

contribution of the research. This is followed by a section 5.3 on the limitations of

the study. Finally, section 5.4 review potential avenues for future work.

5.1 Summary of findings

In this study, we explored the application of ViT for VO, a critical task in computer

vision essential for autonomous navigation and robotics. We investigated the via-

bility of ViT architectures traditionally used for image classification in the context

of sequential pose estimation from image sequences.

Our findings indicate that ViTs, with their self-attention mechanism and ability

to capture global dependencies in images, can be adapted effectively for VO tasks.

By treating sequences of images as a 1D sequence of patches, ViTs demonstrate

promising performance in predicting camera poses, comparable to or surpassing

traditional CNN approaches. Specifically, ViTs leverage their capacity to model

long-range dependencies and semantic context across frames, which is advantageous

in scenarios with varying lighting conditions, occlusions, and dynamic environments.
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5.2 Contributions of the study

This study contributes to the field of VO in several ways:

(1). Introduction of ViTs to VO: We have shown the feasibility of applying ViTs

to sequential pose estimation tasks, expanding the repertoire of models beyond

traditional CNN-based approaches.

(2). Performance evaluation: Through rigorous experiments and comparative anal-

ysis, we have provided empirical evidence of ViTs’ efficacy in capturing spatial

and temporal dependencies for accurate pose estimation.

(3). Insights into model adaptation:

We have discussed methodologies to adapt ViTs for VO, including input rep-

resentation, training strategies, and architectural modifications, providing in-

sights for future research and applications.

5.3 Limitation

One of the main limitations of integrating Vision Transformer algorithms into mo-

bile robotics is the significant computational workload required, which challenges

the achievement of real-time performance on edge devices. By leveraging GPUs,

NPUs, or specialized hardware accelerators, enable ViTVO to deliver high accuracy

and detailed hierarchical information from environment. However, in scenarios with

limited computational resources, opting for less accurate ViT variants may compro-

mise the ability to capture detailed spatial-temporal information, thereby ensuring

the system remains operational but at the expense of reduced performance. This

trade-off between accuracy and power consumption highlights the need for careful

selection and configuration of ViT models based on specific hardware constraints

and application requirements.
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5.4 Future research

The successful application of ViTs in VO opens up several avenues for future explo-

ration:

(1). Generalization across datasets:

Future work can focus on enhancing ViTs’ generalization capabilities across

diverse datasets and real-world scenarios. Techniques such as self-supervised

learning can be employed to leverage large-scale unlabeled data for pretraining

ViTs, enabling them to learn robust representations that generalize well beyond

specific datasets.

(2). Meta-learning and continual learning for adaptability:

Meta-learning approaches can be investigated to enhance ViTs’ adaptability to

new environments and tasks with minimal additional training. By learning to

learn from limited data, ViTs can quickly adapt to new scenes and conditions

encountered during deployment in the field. Additionally, incorporating con-

tinual learning strategies can further improve the model’s ability to adapt over

time, enabling it to continuously learn from new data and experiences without

forgetting previously acquired knowledge.

(3). Integration with sensor fusion:

Combining visual information from ViTs with data from other sensors such as

LiDAR, IMU can further improve VO accuracy and robustness. Future research

should explore multimodal fusion techniques that leverage ViTs’ semantic un-

derstanding with precise geometric data from complementary sensors.

In conclusion, the integration of Vision Transformers into Visual Odometry repre-

sents a significant advancement, promising enhanced accuracy and efficiency in pose
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estimation tasks. Moving forward, leveraging self-supervised learning and meta-

learning techniques will be pivotal in advancing ViTs’ capabilities for real-world

applications beyond controlled environments, thereby bridging the gap between re-

search findings and practical deployment in autonomous systems.
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