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The introduction of Human Digital Twin (HDT) technology marks a new era of
personalized healthcare, with unparalleled prospects for Remote Patient Monitor-
ing (RPM). This thesis presents a novel architecture for securing patient data and
enhancing personalized healthcare in RPM, addressing the critical need for robust
cybersecurity measures in RPM systems.
The proposed architecture seamlessly combines healthcare wearable devices with the
OPC Unified Architecture (OPC UA) protocol, ensuring secure and interoperable
communication. In the proposed architecture, a multi-layered security strategy is
implemented by using pseudonymization techniques that not only safeguard data
but also aid in preserving its utility for personalized treatment. This pseudonymized
data is then transferred to the cloud via Azure IoT Hub, creating a secure pipeline for
sensitive health information. The journey culminates in Azure Digital Twin, where
advanced analytics and predictive modeling open the doors for truly personalized
healthcare.
This design distinguishes itself by adhering to NIST SP 1800-30B criteria. The goal
is not only to construct a secure system but also to provide a framework that can
adapt to emerging threats. The efficacy of this technique is proved through thorough
testing, including a Chi-Square study that compares the proposed RPM to current
systems. Testing and statistics reveal the proposed design outperforms existing RPM
systems. This study proposes a robust, scalable, and standards-compliant solution to
one of healthcare’s most serious issues. It is more than simply an architecture. It is
also a road map for the future of secure, personalized remote patient care. To verify
the suggested system’s scalability and real-world performance, more investigation
and pilot testing are required.

Keywords : Security, Privacy, Remote Patient Monitoring, PHI, OPC-UA, Human
digital twin, azure IoT, Azure Digital twin, Cloud security, Pseudonymization,
Federated learning
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1 Introduction

Personalized medicine has revolutionized healthcare through technological advance-

ments. Among these developments, Human Digital Twin (HDT) technology has

emerged as a game-changing way to improve remote patient monitoring (RPM).

This thesis investigates the integration of HDT technology alongside OPC UA (OPC

Unified Architecture) with a strong architecture aimed at securing patient data and

enhancing the quality of personalized healthcare.

Remote patient monitoring (RPM) has gained significant traction in recent years,

driven by the need for efficient and effective healthcare delivery. Wearable devices

enable continuous vital sign monitoring, allowing timely interventions and reducing

hospital visits. A systemic review by Irina et al.[1] highlights that RPM has the

potential to improve the quality of care by providing more frequent communica-

tion, management, and follow-up, which may lead to better health outcomes for

patients with heart failure. However, digital health technologies raise data security

and privacy concerns. According to the National Cybersecurity Center of Excel-

lence (NCCoE), "the increasing use of telehealth and RPM systems has made them

attractive targets for cyberattacks, necessitating robust security measures" [2].

HIPAA mandates safeguarding electronic protected health information (ePHI)

to maintain patient trust and regulatory compliance. It requires administrative,

physical, and technical standards to be adopted to protect the confidentiality and

integrity of electronic PHI [3].
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HDT technology creates virtual patient representations, integrating wearable

device data, health records, and genomic information. This comprehensive view

enables accurate diagnosis, treatment, and health event prediction. The proposed

architecture combines HDT with OPC Unified Architecture protocol, ensuring se-

cure, interoperable device communication. This integration aligns with NIST SP

1800-30B guidelines [2] for a secure RPM ecosystem, mitigating data breach risks.

By leveraging HDT, healthcare providers can monitor individual health continu-

ously, identify issues early, and tailor interventions. This thesis aims to contribute to

next-generation patient care, presenting a framework addressing RPM security con-

cerns while enhancing architectural design in the context of personalized healthcare

delivery. The proposed architecture encompasses the overall structure, integration,

and high-level design principles required to securely transfer and process healthcare

wearable device data using OPC UA, Azure IoT Hub, and Azure Digital Twin. The

work aspires to shape a secure, effective future in healthcare delivery.

1.1 Problem Statement

The demand for remote patient monitoring (RPM) systems in modern healthcare is

growing for a variety of reasons, including an aging population, an increase in the

prevalence of chronic diseases, and a desire for personalized care. RPM allows doc-

tors to keep an eye on patients between clinic visits or in situations when in-person

care is not feasible. Patients with long-term health issues, including diabetes, heart

disease, and asthma, especially benefit from this ongoing monitoring. Additionally,

RPM is being utilized more frequently in hospital-at-home programs, which offer

in-home care for higher acuity diseases backed by ongoing biometric monitoring

and telemedicine visits. Ensuring patient safety in this configuration and providing

appropriate instruction on device operation are critical. Clinical misdiagnosis or a

failure to recognize when a patient needs care from a physician are potential dangers.
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However, traditional RPM systems face several challenges, including:

1. Privacy Concerns: Centralized data storage and processing raise signifi-

cant privacy concerns, as sensitive patient health data may be vulnerable to

unauthorized access or breaches.

2. Data Interoperability: Heterogeneity in data formats and communication

protocols across different healthcare devices and systems complicates data in-

tegration and interoperability, hindering seamless information exchange.

3. Real-time Decision-making: Timely and accurate decision-making is crit-

ical in healthcare, especially for identifying and addressing emergent health

issues. Delays in data transmission and processing can impede the ability to

provide timely interventions.

4. Scalability and Efficiency: As the volume and complexity of healthcare

data continue to grow, traditional centralized approaches may struggle to scale

efficiently, leading to performance bottlenecks and resource constraints.

1.2 Research Questions

1. What communication protocols and encryption techniques are suitable for se-

curing the transmission of data between the healthcare wearables/medical de-

vices and the Digital Twin in a Remote monitoring system?

2. How can OPC UA be leveraged to ensure secure communication between med-

ical devices and the cloud?

3. What are the advantages of the Human Digital Twin in Healthcare?

4. How does the proposed security architecture perform in terms of security ef-

fectiveness?
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1.3 Objectives

The thesis proposes an architecture to overcome the aforementioned difficulties by

creating a novel framework that makes use of Azure IoT Hub, Azure IoT Digital

Twin technology, OPC UA standards and protocols, and Digital Twin Definition

Language (DTDL) for RPM. The specific objectives are as follows:

1. Develop a secure and scalable architecture for RPM that integrates HDT tech-

nology for real-time monitoring, analysis, and prediction.

2. Evaluate the performance of the proposed architecture against existing RPM

systems using synthetic heart rate data.

3. Determine and deal with any challenges or constraints that may arise when

the suggested architecture is put into effect.

1.4 Thesis Structure

This thesis is structured into eight distinct chapters, each designed to provide a

comprehensive exploration of the proposed architecture for securing patient data

and enhancing personalized healthcare in remote patient monitoring (RPM) systems.

The first chapter is titled Introduction. The introduction chapter sets the stage for

the thesis by providing an overview of the research topic and its significance in

the context of healthcare. It highlights the growing importance of remote patient

monitoring and the critical need for secure and personalized healthcare solutions.

The chapter also presents the research objectives and outlines the structure of the

thesis.

Chapter 2 delves into the theoretical foundations and existing research relevant

to the proposed architecture. It explores the concepts of OPC UA, Human Digital

Twin (HDT) technology, various secure communication protocols, Azure Cloud, and
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their applications in healthcare. It also discussed various cyber attacks in health-

care. The literature review examines previous studies on remote patient monitoring,

data security, and personalized medicine, providing a solid basis for the research con-

ducted in this thesis.

The methodology chapter outlines the research approach and the various tech-

niques employed to develop and evaluate the proposed architecture. It describes

the proposed architecture and its various components. Chapter 4 focuses on the

practical implementation of the proposed architecture. It details the integration

of healthcare wearable devices with the OPC Unified Architecture (OPC UA) pro-

tocol, the implementation of pseudonymization techniques, and the data transfer

process to Azure IoT Hub and Azure Digital Twin. The chapter also addresses the

challenges encountered during the implementation phase and the strategies used to

overcome them.

The experimental evaluation chapter presents the results of the various tests

and analyses conducted to assess the effectiveness of the proposed architecture. It

includes the Chi-Square test comparing the security features and performance of

the proposed RPM system against existing solutions. The chapter also discusses

the use of synthetic data based on existing clinical heart rate data to validate the

architecture’s ability to enhance personalized monitoring and predictive analytics.

Chapter 6 critically analyzes the findings of the research and discusses their impli-

cations for the healthcare industry. It highlights its unique features and advantages.

The chapter also addresses the limitations of the research and the potential chal-

lenges associated with the implementation of the proposed architecture in real-world

settings.

The future work chapter outlines several key areas for further investigation that

can enhance the proposed architecture and expand its applications in healthcare.

It discusses the integration of advanced privacy-preserving techniques such as dif-
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ferential privacy and federated learning, as well as the implementation of artificial

intelligence to improve predictive analytics capabilities. This chapter emphasizes

the importance of ongoing research and collaboration in addressing the evolving

challenges in healthcare. The conclusion chapter summarizes the key findings of

the thesis and reiterates its contributions to the field of secure and personalized

healthcare in remote patient monitoring. It highlights the significance of the pro-

posed architecture in improving patient outcomes and reducing healthcare costs.

The chapter also emphasizes the need for continuous innovation and the potential

for future research to further enhance the effectiveness of remote patient monitoring

systems.

The research was done in mainly 3 stages as mentioned in Figure 1.1

Figure 1.1: Thesis Structure



2 Concepts and Literature Review

2.1 IoMT (Internet Of Medical Things)

Computer scientist Kevin Ashton coined the phrase "Internet of Things (IoT)" in

1999. Internet of Medical Things (IoMT) is a subset of IoT that focuses on the

healthcare industry. The Internet of Medical Things (IoMT) developed as the In-

ternet of Things (IoT) concept matured due to the interconnectedness of medical

devices, software, and healthcare systems. Through the use of technology like health-

care wearables, wearable health monitors, remote patient monitoring devices, and

smart medical equipment, IoMT promises to enhance patient outcomes, expedite

healthcare procedures, and promote individualized treatment.

The three main uses of IoMT are clinical efficiency, personal healthcare manage-

ment, and remote patient monitoring. IoMT devices make it possible to continuously

monitor patients’ health, giving real-time data that can result in quicker actions and

more accurate diagnoses. With the use of health tracking and feedback technolo-

gies, patients can take an active role in their healthcare experience. IoMT lowers

healthcare expenses by reducing readmissions and hospital stays. Large-scale data

generation results in tailored treatment regimens, predictive analytics for potential

health hazards, and better decision-making.

Through improved patient outcomes, disease prevention, patient engagement,

and access to healthcare services, IoMT plays a critical role in improving health-
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care. IoMT has revolutionized patient care, treatment monitoring, and healthcare

operations, which has had a huge impact on the industry. Proactive treatment, cost

reduction, emergency care, remote patient monitoring, and improved health tracking

have all benefited from it. IoMT has emerged as a key component of contemporary

healthcare, providing a plethora of applications that tackle pressing issues in the

field, particularly in times of crisis such as the COVID-19 outbreak.

According to Razdan et al., [4], the Internet of Medical Things (IoMTs) will rev-

olutionize present healthcare systems by allowing healthcare providers to link and

monitor every medical gadget remotely via the Internet. Figure 2.1 illustrates an

example of an Internet of Medical Things (IoMT) where patient vitals are gathered

using sensor devices and transmitted to the IoMT apps via the Internet, as cov-

ered in the article. The medical personnel and healthcare professionals receive the

information, and they respond to the patients who require it.

Remote patient monitoring (RPM) has advanced greatly as a result of the In-

ternet of Medical Things (IoMT), which uses linked devices to improve healthcare.

IoMT makes it possible for medical professionals to remotely collect real-time patient

data, facilitating ongoing observation and analysis outside of conventional hospital

settings. Through the use of this technology, patients’ problems can be better under-

stood in between appointments, resulting in more efficient and customized therapy.

Personalized healthcare, expedited hospital treatments, cost-effective medical solu-

tions, and enhanced patient comfort are all made possible by IoMT, according to

an article by Razdan et al. [4]. It further claims that IoMT entails the gathering

of patient vitals via sensor devices and the online sharing of this data with medical

professionals and staff. It goes on to say that the response from medical professionals

has improved due to patient monitoring systems.

Razdan et al. [4] discussed critical layers of IoMT and described the importance

of the cloud layer in IoMT, which enables systems for patient monitoring. He men-
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Figure 2.1: Information Flow in IoMT

tions that the cloud layer in the IoMT architecture acts as a central hub for data

storage, computation, connectivity, and security. It enables efficient data processing,

remote access to healthcare services, and scalability to accommodate the growing

needs of the healthcare ecosystem. Considering the importance of the cloud layer,

the present thesis work proposes an architecture focusing on the cloud layer.

2.2 Remote Patient Monitoring (RPM)

IoMT provides the underlying technological infrastructure and connectivity to en-

able remote patient monitoring and care delivery. Real-time patient data collection

and transmission to healthcare providers via a variety of medical equipment, sensors,

and communication systems is known as remote patient monitoring (RPM). This

makes it possible for medical personnel to remotely check on patients’ vital signs,

symptoms, and other pertinent data. RPM allows healthcare professionals to keep
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an eye on patients when they’re not in traditional clinical settings—such as at home

or in other remote places. Real-time or planned data collection and transmission of

patient information to healthcare practitioners is accomplished by RPM through the

use of a variety of IoMT devices, sensors, and digital communication tools. IoMT

devices are essential to RPM since they can monitor a patient’s health indicators

continuously or sporadically and securely send the data to platforms for healthcare

practitioners to monitor.

Activity trackers, blood pressure monitors, glucose monitors, and other medical

sensors are examples of personalized healthcare wearables that are used in this sys-

tem. These devices are linked to a central monitoring system. The patient data of

these devices is routinely gathered and then sent via secure communication channels

to healthcare providers. RPM helps identify changes in patient health status early

on, facilitating prompt intervention and treatment. RPM Reduces healthcare ex-

penses by reducing avoidable hospitalizations and the number of re-admissions. The

high-level RPM architecture mentioned in the NCCOE publication named - "SE-

CURING TELEHEALTH REMOTE PATIENT MONITORING ECOSYSTEM" [5]

is considered as a reference and displayed in Figure 2.2.

This thesis focuses on secure data transfer in RPM in addition to interoperability

and efficiency.

2.2.1 Use Cases of Remote Patient Monitoring

Remote patient monitoring has a wide range of use cases across various healthcare

settings. One of the critical use cases of RPM is in the care of diabetic individuals.

Diabetic patients track multiple metrics on a daily basis to lower long-term risks of

problems and to improve self-control of their diabetes. These parameters are easily

obtained using Remote Patient Monitoring, including blood pressure, blood glucose

level, insulin consumption, weight, food, exercise and physical activity, and so forth.
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Figure 2.2: RPM architecture by NCCOE
Source: NCCOE NIST [5]

As mentioned by Zulj et al.[6], approximately half of adult diabetics go undiagnosed.

Diabetes and its complications result in direct medical costs, lost productivity, and

pay loss, which have a significant negative financial impact on health systems and

national economies.

The following use case is to monitor heart health. Older persons require more

frequent health examinations, increasing the pressure on current medical systems.

In respected medical facilities, ECGs are often detected using stationary equipment.

Frequent hospital visits can put a strain on healthcare systems. Remote monitoring

of ECG signals can greatly assist in overcoming these obstacles. ECG monitor-

ing systems can use a non-intrusive sensor to detect ECG signals, and they can

use wireless transmission methods like Bluetooth or Zigbee to send the signal to a

smartphone [7].

An interesting survey was made by Daly et al. [8] regarding the worthiness of the

Remote Patient Monitoring System in view of Cancer patients. According to their

survey, there was an 85% net promoter score. The majority of patients concurred
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that the RPM was beneficial, improved their ability to control their COVID-19

symptoms, increased their sense of closeness to their medical team, and reduced

the need for Emergency visits. In their literature, a National Comprehensive Can-

cer Center’s COVID-19 RPM patients’ viewpoints and levels of satisfaction were

discussed. Hence, monitoring cancer patients is also one of the use cases.

In addition to the above-mentioned use cases, another application of RPM is

pregnancy care, which includes pre-natal and post-natal care. Pregnant women can

track fetal movements, blood pressure, and weight gain remotely, while healthcare

providers monitor maternal and fetal well-being and intervene if necessary.

The most critical care group is the elderly patient. Older adults often have

complex healthcare needs and may benefit from regular monitoring of vital signs,

mobility, and medication adherence. RPM enables caregivers to monitor the health

status of elderly patients remotely, detect changes in condition early, and coordi-

nate care more effectively. The latest statistical updates from the United Nations

mentioned that the elderly population is forecasted to be 2.1 billion in 2050 [9].

It is expected that more than 50% of the medical resources can be consumed by

elderly patients resulting in a scarcity of medical resources. RPM is looked upon as

the solution to manage this scarcity and provide on-time medical services to elderly

patients. Aging people tend to forget their own health problems and/or are unable

to visit the hospitals often. This will lead to numerous genuine restorative issues.

Hence, the remote patient monitoring system with a human digital twin can help

patients of such age overcome these challenges.

The proposed architecture considers these serious medical issues of elderly pa-

tients by integrating Azure IoT Hub with Azure Digital Twin to monitor the patients

and predict based on the Human Digital Twin of such patients. The older popula-

tion needs more care since their age-related physical changes, severe memory loss,

and increased risk of falling are all greater than in younger adults [10]. The elderly
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have greater needs for a wide range of medical services, particularly for family and

community healthcare, as Figure 2.3 illustrates.

Figure 2.3: Healthcare Needs of Elderly Patients [10]

It is very vital to make sure that the data of patients in all the mentioned use

cases are secure, whether the data is in motion or static. The attempt in the current

proposed architecture is to make sure that Data privacy and security are given

priority.

2.2.2 Security Threats in Remote Patient Monitoring

Numerous advantages of remote patient monitoring (RPM) for healthcare include

better patient care, easier access to services, and lower medical expenses. Never-



2.2 REMOTE PATIENT MONITORING (RPM) 14

theless, it also presents a number of security risks that must be resolved in order to

protect patient confidentiality and data integrity. The following are a few typical

security risks in remote patient monitoring:

1. Data Privacy Issues: Sensitive patient health information is transmitted

and stored during RPM. Unauthorized access to sensitive information may result in

identity theft, privacy violations, or other nefarious behaviour.

2. Unauthorized Access: To steal patient information, alter medical records,

or interfere with healthcare services, hackers may try to get unauthorized access to

remote monitoring systems.

3. Data Interception: There is a chance that hostile actors will intercept data

being transmitted between medical devices and monitoring systems. The integrity

and confidentiality of patient data may be jeopardized by this interception.

4. Device Tampering: It is possible to physically tamper with remote moni-

toring equipment, which might result in erroneous data gathering or altered device

performance. The integrity of the data and patient safety may be at risk due to this

tampering.

5. Malware and Ransomware: Healthcare systems, including remote mon-

itoring platforms, are susceptible to malware and ransomware attacks. Malicious

software can infect devices or networks, leading to data breaches, device malfunc-

tions, or system downtime.

6. Insider Threats: Workers or anybody with permission to access remote

monitoring systems may abuse their rights to see, alter, or reveal patient information

for nefarious or personal gain.

7. Denial-of-Service (DoS) Attacks: To interrupt services, attackers may

target remote monitoring systems. This could lead to patient care delays or jeopar-

dize the availability of vital healthcare resources.

8. Insecure Communication Techniques: Patient data in remote monitoring
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systems may be intercepted or accessed by unauthorized parties due to inadequate

encryption techniques or insecure communication routes.

9. Device Vulnerabilities: Attackers may use software or hardware flaws

in remote monitoring devices to take control of the equipment remotely or obtain

sensitive patient data.

10. Regulatory Compliance Issues: Failure to comply with healthcare regu-

lations and standards, such as the Health Insurance Portability and Accountability

Act (HIPAA), may result in legal consequences as well as reputational loss.

To moderate these security dangers, healthcare suppliers and organizations ought

to actualize strong cybersecurity measures, including encryption, access controls,

standard security evaluations, staff education, and compliance with administrative

necessities. Additionally, ongoing monitoring and proactive threat intelligence can

help identify and address emerging security risks in remote patient monitoring sys-

tems.

2.2.3 Healthcare Cybersecurity Incidents

The Vastaamo data breach is a pivotal incident in Finland’s cybersecurity history, in-

volving unauthorized access and theft of sensitive patient information from a private

psychotherapy service. The breach was publicly reported on October 21, 2020, but

the hacking took place in two stages between November 2018 and March 2019. Vas-

taamo was a private psychotherapy service provider in Finland that operated mul-

tiple therapy locations nationwide. Personal information of approximately 36,000

patients containing names, residences, email addresses, social security numbers, and

sensitive therapy session notes was accessed [11]. The incident prompted significant

concern and anxiety among victims, sparking a national debate about mental health

privacy and the value of data protection in healthcare. Many patients felt insecure

as a result of the disclosure of their confidential therapy records. Following the hack
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and the accompanying consequences, Vastaamo declared bankruptcy in February

2021 and moved its services to Verve. It served as a wake-up call for both private

and public healthcare providers to enhance their data protection practices to prevent

similar breaches in the future.

Another notable cyber attack in healthcare was Newfoundland and Labrador

Healthcare Cyberattack. On October 30, 2021, a ransomware attack by the Hive ran-

somware organization significantly damaged Newfoundland and Labrador’s hospital

IT infrastructure. The hack caused widespread IT disruptions, requiring health-

care providers to use pen-and-paper methods for patient administration. The hack

exposed personal and health information for the great majority of the province’s

inhabitants. By December 2021, most services had been restored, but the inquiry

into the attack was ongoing [12].

A ransomware attack struck Medibank in late 2022, resulting in the theft of

personal information from 9.7 million users, including sensitive medical records.

The attack was carried out by a Russian cyber outfit [13]. A cyber incident at HCA

Healthcare is also worth a mention. In July 2023, HCA Healthcare suffered a data

breach that affected more than 11 million patients. The breach was traced back

to a storage vulnerability in a third-party vendor, which exposed sensitive personal

information such as names and birth dates [14].

Over the last five years, healthcare has seen a significant increase in cyberattacks,

with an estimated 50% of healthcare organizations reporting at least one attack

annually. According to the U.S. Department of Health and Human Services, there

were over 1,500 reported healthcare data breaches affecting 500 or more individuals

from 2018 to 2023. An estimated 40 million patient records were compromised in

healthcare-related cyber incidents in the last five years. The average cost of a data

breach in healthcare is approximately $9.23 million, significantly higher than other

industries. Ransomware attacks in healthcare have increased by 150% from 2020 to
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2023, with many organizations reporting operational disruptions lasting weeks.

From January 2021 to March 2023, the European Union Agency for Cyber-

security (ENISA) reported 215 publicly reported cyber incidents in the EU, with

208 specifically targeting the health sector. Basic web application assaults, system

intrusions, and other failures accounted for 76% of cybersecurity breaches in the

healthcare sector. Internal threat actors were responsible for 39% of these breaches.

The COVID-19 epidemic resulted in a fivefold surge in cybercrime, as healthcare

firms struggled to adapt to new digital settings, frequently ignoring cybersecurity

safeguards [15].

Cybercrimes increased fivefold after the COVID-19 outbreak as healthcare busi-

nesses failed to adopt new digital environments and frequently neglected cyberse-

curity safeguards. The increasing frequency and severity of cyberattacks in the

healthcare sector underscore the urgent need for robust cybersecurity measures.

These breaches not only jeopardize patient privacy but also erode public trust in

healthcare providers. The potential ramifications of cyber threats become more ap-

parent as healthcare organizations depend more and more on digital technologies

for patient care and data management. Therefore, implementing comprehensive

cybersecurity strategies, including regular risk assessments, employee training, and

advanced threat detection systems, is essential to safeguard patient information and

ensure the continuity of care in an increasingly digital landscape.

2.3 Digital Twin in Healthcare

Michael Grieves then created the term "digital twin" (DT) in the context of product

lifecycle management in 2005. The DT was used by NASA in 2010 [16], and by John

Vickers [17] in 2012 as a virtual representation of a physical system.

A digital twin (DT) is a computerized model that accurately replicates a gen-

uine object. A physical entity has been equipped with several sensors related to
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important functional domains. These sensors generate data on many aspects of

the physical object’s functionality. After obtaining this information, the process-

ing system actively combines it into a digital copy. Once the appropriate data is

provided, the digital model can be used to run various simulations, investigate per-

formance concerns, and propose potential changes. Obtaining valuable data that can

be utilized to improve the original physical thing is the ultimate objective. Zheng

et al. [18] defines a Digital Twin as a collection of virtual data that completely

characterizes a possible or actual physical output from the microatomic level to the

macro-geometrical level. Moreover, the definition by Barricelli et al. [19] defines the

Digital Twin as a virtual model/representation that is linked to and continuously

synchronized with a physical entity, allowing monitoring, control, optimization, and

prediction of the physical twin’s status and behavior.

DT-based healthcare research centers have been formed with the ultimate goal

of improving patient care and tailoring wellness, disease preventive strategies, di-

agnosis, prognosis, and treatment. These centers aim to expand and improve the

scope of DT technology and applications [20]. In healthcare, a DT should be indi-

vidualized, interconnected, interactive, informative, and impactful (5Is) as scripted

by Katsoulakis et al. [20]. Digital twins greatly improve patient care by utilizing

advanced analytics and real-time data integration. They give medical specialists a

comprehensive understanding of the patient, enabling them to design individualized

treatment regimens. This method takes into account the unique traits of each pa-

tient as well as their medical background, genetics, and current physiological data.

Consequently, therapies and drugs are customized to the patient’s requirements,

improving treatment results and patient satisfaction [21].
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2.4 Human Digital Twin (HDT)

A human digital twin (HDT) is an online digital twin that is a virtual representation

of a real person in the real world. Three elements are integrated into one digital

representation of the patient (PT), virtual twin (VT), and medical records. While

Digital Twin focuses on the partial functions of human organs and/ or medical

devices, HDT focuses on the virtual twin of a complete human being. The simulated

data and additional pertinent information gathered from the patient via wearable

technology, sensors, and electronic health records serve as the foundation for the

framework that is presented in this work. No matter where the patient is, the HDT

allows for constant real-time monitoring of their vital signs, symptoms, and general

health state. The HDT can offer tailored suggestions for medication adherence,

lifestyle changes, therapy adjustments, and other interventions to enhance health

outcomes based on the unique facts and features of each patient. The HDT is

a technology that healthcare professionals can use for remote consultations. This

eliminates the need for in-person sessions and gives them the ability to evaluate the

patient’s condition, make decisions, and offer direction.

Typical elements of the Human Digital in Remote Patient Monitoring can be

represented as shown in Figure 2.4

Figure 2.4: Elements of Human Digital Twin

Barricelli et al.[22] highlight that HDTs are customized computer representations
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of people and are utilized in the medical field to track patients’ health and deliver

individualized therapy. Human-computer hybrid models, or HDTs, are customized

computer representations of people that let medical professionals and researchers

track their health and prescribe treatment plans. Conversely, DTs are virtual repre-

sentations of physical systems that are employed to maximize efficiency and initiate

self-healing and self-optimization processes. Whereas DTs are always linked and

synced with their physical twins, HDTs are not in constant communication with

them. In the medical and healthcare industries, HDTs are used to track patients’

health and deliver individualized care. DTs are used to forecast problems and opti-

mize performance in a variety of industries, including manufacturing and aviation.

2.5 OPC UA Standards

OPC UA (Open Platform Communications Unified Architecture) is a popular indus-

trial communication standard noted for its reliability, security, and compatibility.

OPC UA is also referred to as a standardized communication protocol that enables

interoperability and data exchange between various devices, machines, and soft-

ware applications. OPC UA provides a platform-independent, secure, and scalable

framework for communication, data modeling, and information integration. In the

context of the proposed architecture for remote patient monitoring (RPM), OPC

UA facilitates seamless communication between various components such as health-

care devices, edge servers, Digital Twins, and other systems. OPC UA has strong

security features like encryption, authentication, and access control, adhering to the

CIA (Confidentiality, Integrity, and Availability) triad. OPC UA supports scalable

communication architectures, allowing the RPM ecosystem to accommodate a large

number of devices, Digital Twins, and users.

OPC UA does not depend on just one programming language or operating system

(OS). It is based on Service-oriented (SOA) architecture and is robust in terms of
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safety. OPC UA Information Model can be explained through the layer diagram

shown in Figure 2.5

Figure 2.5: OPC Unified Architecture Overview.
Source: https://tinyurl.com/4swm6sjh

OPC UA adheres to international standards and industry best practices, making

it well-suited for healthcare applications subject to regulatory compliance, such as

HIPAA (Health Insurance Portability and Accountability Act) and GDPR (General

Data Protection Regulation). This compliance is crucial for safeguarding patient

privacy and data security in remote monitoring.

2.5.1 OPC UA Architecture

The OPC UA architecture outlines a tiered approach with distinct security obliga-

tions assigned to each layer [23]. The IEC 62541 defines the OPC Unified Architec-

ture or OPC UA. The Reference Architecture Model for Industries 4.0 recommends

this platform-independent, service-oriented design. The defining of security elements

for client-server communication was one of the main objectives of OPC UA [24]. It

is important to mention that maximum of the other protocols focus on the Network

layer, but the proposed model focuses on the Communication Layer. OPC UA offers

a high degree of fundamental security features, including app authentication, user
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authentication, confidentiality, integrity, and user authorization [24].

2.5.2 Security in OPC UA

Security in OPC UA is a critical aspect due to the sensitive nature of the data being

transmitted. The three fundamental security levels of OPC UA are application, com-

munication, and transport. A Defense-In-Depth strategy is achieved by each layer

supporting its unique security features [24]. It supports various authentication meth-

ods, including username/password authentication, X.509 certificates, and integrated

Windows authentication. Once authenticated, OPC UA allows administrators to de-

fine access control policies to regulate which users or client applications can access

specific resources within the system. OPC UA uses cryptographic techniques like

digital signatures and message digests to assure data integrity between clients and

servers. OPC UA encrypts data to provide confidentiality over insecure networks.

OPC UA provides secure communication channels through industry-standard pro-

tocols like TLS (Transport Layer Security) and DTLS (Datagram Transport Layer

Security).

Figure 2.6: Security in OPC UA.
Source: https://www.opc-router.com/what-is-opc-ua/
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2.5.3 Platform Independence and Interoperability in OPC

UA

OPC UA defines a set of standardized communication protocols, including TCP/IP,

HTTPS, and MQTT, which enable communication between OPC UA clients and

servers across diverse network infrastructures. These protocols ensure that OPC

UA-enabled devices and systems can communicate effectively, regardless of the un-

derlying network technology. OPC UA provides language-neutral APIs (Application

Programming Interfaces) and software development kits (SDKs) for implementing

OPC UA clients and servers in various programming languages, such as C/C++,

Java, .NET, Python, and JavaScript. These language-neutral APIs ensure that

developers can create OPC UA applications using their preferred programming lan-

guages and development environments. OPC UA supports web services-based com-

munication protocols, such as SOAP (Simple Object Access Protocol) and REST

(Representational State Transfer), which enable integration with web-based appli-

cations and services. This integration facilitates interoperability between OPC UA-

enabled industrial systems and web-based enterprise applications, IoT platforms,

and cloud services.
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Figure 2.7: Platform Independence and Interoperability in OPC UA.
Source: https://www.opc-router.com/what-is-opc-ua/

2.6 Azure IoT Hub

IoT apps and the devices they monitor can communicate back and forth using Azure

IoT Hub, a cloud-based service that serves as a central messaging hub. Azure IoT

Hub offers a scalable and reliable platform that easily interacts with medical devices

and data, which is a critical component in improving Remote Patient Monitoring

(RPM) systems. Cloud real-time data from a variety of healthcare wearables and

devices can be easily and securely ingested with Azure IoT Hub. This makes it pos-

sible for the Human Digital Twin to be updated continually with the patient’s most

recent health metrics, leading to more precise simulations and forecasts. Several

data formats can be ingested by Azure IoT Hub, which can then normalize the data

into a common format like FHIR (Fast Healthcare Interoperability Resources). The

Fast Healthcare Interoperability Resources, or FHIR, is an interoperability standard

for electronic health information exchange. Better analytics and insights are made

possible by ensuring that the Human Digital Twin receives consistent, interoperable

data from a variety of devices.
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With the capacity to manage millions of devices and events per second, Azure

IoT Hub is an incredibly dependable and scalable service. As a result, performance

is not affected, and the Human Digital Twin can grow along with the number of

patients and devices. End-to-end security is offered by Azure IoT Hub, which has

capabilities that include encryption and per-device authentication. This protects

private patient information entering the Human Digital Twin. Azure offers HIPAA

compliance for workloads related to healthcare as well.

Azure IoT offers a reliable platform that makes intelligent and safe IoT solutions

for the healthcare industry possible, thus improving patient outcomes. By providing

a wide range of IoT services and health-specific app templates, it shortens the time

to market for IoT solutions. Azure IoT, which is backed by multiple Azure Cloud

components, guarantees the security of patient data from the edge to the cloud.

Azure IoT Hub is a potent enabler for Human Digital Twins in remote patient

monitoring due to its capacity to safely ingest, process, and scale real-time data from

healthcare wearables. It helps medical practitioners to give patients better care by

enabling the digital twin to operate as an up-to-date and accurate representation of

their health.

IoT Hub enables medical devices to securely send telemetry data to the cloud

and receive commands or updates from the RPM application. It also offers cloud-

to-device and device-to-cloud messaging capabilities [25] [26]. Healthcare businesses

can create scalable, compliant, and secure remote patient monitoring (RPM) systems

that use Azure IoT Hub to identify health issues early and take appropriate action

to improve patient outcomes and lower costs [26].

2.7 Related Work

Several studies have explored secure architectures for RPM. The main focus of the

current research work is the Secure Remote Patient Monitoring System and safe,
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personalized healthcare.

In the context of RPM, Majumdar et al. [27] has vividly discussed the importance

and use of healthcare wearable sensors in Remote Patient Monitoring system. This

article strongly supports the fact that wearable sensors play a critical role in remote

health monitoring systems by providing continuous and non-invasive monitoring

of physiological signs and activities, allowing for early detection and diagnosis of

diseases, and improving the overall quality of healthcare for the elderly and those

with limited access to healthcare facilities. As mentioned by Nora et al. [28], RPM

enables continuous monitoring, diagnosis, prediction, and therapy. As a result, they

cut healthcare costs and allow patients to go about their daily lives while constantly

monitoring their vital signs.

Benedict [29] discussed the challenges of RPM related to managing the data

transfers and connecting them using appropriate communication protocols. Fer-

nandes et al. [30] proposed two different software frameworks IoT4Health and

Agents4Health to perform the Remote Patient monitoring activities. These frame-

works used Rest API to integrate IOT devices with the cloud. This article mainly

focused on the analysis of the requirements of the Remote Patient Monitoring sys-

tems. Miranada et al. [31] proposed a conceptual architecture with heterogeneous

networks for enabling Internet of Things (IoT) healthcare applications, using OPC

UA as the communication stack. However, it is unclear how well the architecture

can handle large-scale deployments and accommodate future growth and expansion

of healthcare systems.

Saranya et al. [27], highlights the use of digital twin technology in healthcare

can lead to benefits such as remote monitoring, group cooperation, analytical main-

tenance, transparency, future prediction, information sharing, big data analytics,

cost-effectiveness, and improved patient care. Okegbile et al. [32] highly stress on

the fact that HDT has the potential to revolutionize the existing healthcare system
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by enabling personalized healthcare services (PHS). This article identifies and dis-

cusses the key technologies required for the development of HDT. In the context of

personalized medicine, biomarkers are currently used in the provision of personal-

ized medical care. Precision medicine requires new biomarkers to improve care for

chronic illnesses like cardiovascular and neurodegenerative disorders. The rapidly

emerging discipline of personalized or precision medicine is transforming clinical

practice by focusing on the ’right patient - right treatment - right time’ principle

[33]. Biomarkers are integral to the advancement of personalized medicine, providing

critical insights that enable tailored treatment strategies, improve diagnostic accu-

racy, and facilitate the development of targeted therapies. Their role in monitoring

disease progression and treatment response further underscores their importance in

achieving more effective and individualized healthcare solutions. However, Human

Digital Twin (HDT) technology represents a significant advancement in personalized

medicine compared to traditional biomarkers. While biomarkers have played a cru-

cial role in understanding individual health profiles and guiding treatment decisions,

HDTs offer a more comprehensive and dynamic approach to patient care.

Malasinghe et al. [34] provided the results of the survey related to major security

challenges in RPM. These listed Data Confidentiality, Data Integrity, Data authen-

tication, Data freshness, secure device-to-device communication, secure encryption,

secure data storage, privacy protection and secure network communication between

the remote monitoring system and the healthcare professional. In the interesting

work by Boikanyo et al. [35], integration with existing healthcare systems is also

one of the challenge in implementing Remote Patient monitoring. Getting patients

and healthcare providers to accept and adopt RPM can be challenging. Greene et

all. [36] presented the remote monitoring for the fall detection of patient. As per

the paper, one of the main challenges in fall detection systems is finding the right

balance between specificity and sensitivity.
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As a solution to the challenges discussed in above mentioned scientific works, the

current thesis proposes a comprehensive architecture to overcome most of them.

2.7.1 Literature Selection criteria

Peer-reviewed journal articles, conference proceedings, and books released within

the previous ten years were all included. The search was conducted using schol-

arly resources such as Google Scholar, ScienceDirect, IEEE Xplore, and PubMed

Central. White papers and industry reports from respectable organizations were

also included. Keywords used to obtain the eligible articles are Secure protocols for

Remote Patient Monitoring, Azure for Remote Patient Monitoring, Human Digital

Twin for Secure Remote Patient Monitoring, and Integrate OPC UA with Azure

Human Digital Twin.

2.7.2 Literature Analysis & Comparison

In order to improve security and privacy and ultimately provide safer and more

individualized healthcare, the proposed research work is the first to investigate the

integration of data from OPC UA-compatible healthcare wearable devices through

Azure IoT Hub with Human Digital Twin in a Remote Patient Monitoring system.

This thesis mentions a comparative analysis of various articles and research papers

that are relevant to the topic of the study. By critically examining and synthesizing

the existing literature, this thesis aims to identify key themes, gaps, and areas for

further investigation. This review provides a solid foundation for the research and

helps situate the study within the broader context of the field. These articles are

drawn from reputable academic journals, conference proceedings, and other reliable

sources. The selected articles cover a range of perspectives and methodologies,

allowing for a comprehensive understanding of the topic.

Table 2.1 and Table 2.2 display the analysis of literature related to the research.
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Author(s) Focus Area Key Contributions Challenges/Issues
Addressed

Miranda et
al. [31]

OPC Unified Ar-
chitecture (OPC
UA) in health-
care systems

Proposed OPC UA for
integrating heterogeneous
healthcare systems; ad-
vantages of robustness,
flexibility, compliance with
Industry 4.0

Scalability, integra-
tion with existing
systems

Benedict
[29]

Communication
protocols and
security in RPM

Proposed OPC UA stan-
dard for secure data
communication and device
interoperability; addressed
data security issues

Data theft, hacking,
secure communication

Saranya et
al. [37]

Digital Twin
technology in
healthcare

Benefits of digital twin tech-
nology: remote monitor-
ing, transparency, predic-
tive maintenance

Unauthorized access
and manipulation of
health data

Okegbile et
al.[32]

Human Digital
Twin (HDT) in
healthcare

Emphasized personalized
healthcare services, key
technologies like Blockchain
and AI

Privacy, security con-
cerns, high latency in
blockchain systems

Table 2.1: Comparison of Literature implementing OPC UA and HDT individually

In comparison to the existing work, this thesis proposes an architecture that

combines the strengths of secure communication protocols, HDT technology, and

advanced data analytics to provide a comprehensive framework for securing patient

data and enhancing personalized healthcare in RPM systems.

To summarize, the literature study looks at the present status of research in

remote patient monitoring, data security, tailored medication, and the use of Hu-

man Digital Twin technologies in healthcare. It emphasizes the expanding role of

RPM in providing efficient and effective healthcare, particularly in chronic disease

management and patient-centered care. The analysis goes into the vital importance

of securing sensitive patient data in RPM systems in light of the growing danger

of cyberattacks on telehealth technologies. The idea of personalized medicine is

explored. Human Digital Twin technology is offered as a crucial approach to cus-
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Author(s) Focus Area Key Contributions Challenges/Issues
Addressed

Majumdar
et al. [27]

Healthcare
wearable sensors
in Remote Pa-
tient Monitoring
(RPM)

Discussed cost-effective and
real-time monitoring using
wearable sensors for phys-
iological signs; highlighted
role in early detection and
diagnosis, improving elderly
care

Integration of wear-
able sensors, future
use of Federated
Learning

Nora et al.
[28]

Importance of
RPM

Emphasized continuous
monitoring, diagnosis, pre-
diction, therapy; improved
quality of life; hospital pri-
oritization based on illness

-

Fernandes
et al. [30]

Software frame-
works for RPM

Proposed IoT4Health and
Agents4Health frameworks
using REST API for inte-
gration with cloud

Lack of focus on data
security and encryp-
tion

Malasinghe
et al. [34]

Security chal-
lenges in RPM

Categorized security chal-
lenges: data confidentiality,
integrity, authentication,
encryption, secure commu-
nication

-

Meingast
et al. [38]

Security con-
cerns in health
monitoring

Discussed data security, in-
tegrity, anonymity, regula-
tory compliance (HIPAA)

Privacy and security
in distributed sensor
networks

Boikanyo
et al. [35]

Integration and
acceptance of
RPM in health-
care systems

Highlighted challenges of
integration, reliable data
transmission, and monitor-
ing; emphasized the need
for RPM in smart health-
care

Acceptance and adop-
tion by patients and
providers

Greene et
al. [36]

Remote moni-
toring for fall
detection

Focused on fall detection
system challenges: balanc-
ing specificity and sensitiv-
ity

False negatives in fall
detection, data sensi-
tivity

Table 2.2: Comparison of Literatures

tomized healthcare, allowing for the production of virtual representations of patients

that incorporate a variety of data sources. The literature research also looks into the

use of secure communication protocols in healthcare systems, such as OPC Unified

Architecture (OPC UA). It examines how OPC UA can promote interoperable and

safe data sharing between medical devices and cloud platforms, which addresses the
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requirement for standardized methods of data security.



3 Methodology

This section outlines the methodology adopted for developing the state-of-the-art

framework and the components of the propose architecture for Next-Generation

Patient Care, leveraging Human Digital Twin technology for personalized health-

care and security in remote patient monitoring (RPM). The architecture integrates

healthcare wearable device data using OPC UA, employs pseudonymization for en-

hanced data security, and utilizes Azure IoT Hub and Azure Digital Twin for ad-

vanced analysis and prediction. The proposed architecture addresses key challenges

in RPM systems and sets new standards in patient care through innovative techno-

logical integration and robust security measures.

3.1 State-of-the-Art Framework

The proposed architecture consists of innovative integration of secure communica-

tion protocols, advanced data pseudonymization techniques, and cutting-edge digital

twin technology. It addresses key limitations of existing RPM systems by providing

robust security, scalability, and real-time predictive analytics, thus setting a new

benchmark for personalized healthcare solutions. The architecture diagram is pro-

posed as in Figure 3.1. The proposed RPM is referred to as "SecureHealth" in the

discussions throughout the thesis.
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Figure 3.1: Proposed Architecture - SecureHealth RPM

3.1.1 Research Design

The study uses a mixed-methodologies strategy that includes both quantitative and

qualitative methods. The quantitative component involves the comparison of the

proposed SecureHealth RPM with existing RPM systems using the Chi-Square test.

The qualitative component involves a detailed analysis of the proposed architecture’s

features and its alignment with state-of-the-art healthcare technology.

High-level architecture for the SecureHealth Remote Patient Monitoring repre-

sents the data flow from Healthcare Wearable Devices to OPC UA. These healthcare

devices include invasive as well as non-invasive. At the core of the SecureHealth

RPM is the OPC UA server, which serves as the gateway for data exchange between

medical devices and the cloud platform. Patient data is pseudonymized to protect

privacy while maintaining data utility for analysis and prediction. One of the com-
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ponents of SecureHealth RPM is, the custom OPC UA client application developed

using OPC UA client libraries and SDKs (Software Development Kits) to connect

to OPC UA servers and communicate with Azure IoT Hub.

Further, the data from Azure IoT Hub is mapped to Azure Digital Twin using

DTDL. When the value of property in the Human Digital Twin (HDT) changes, an

email notification is sent to the Healthcare Provider to take necessary action. Three

Azure IoT Hub devices are created to monitor the temperature, blood pressure, and

heart rate of the patient. Each device is encrypted and has its own client ID and

client secrets. Human Digital Twin has its own unique ID and credentials.

In the SecureHealth RPM System, the Prosys OPC UA server is considered to

integrate the healthcare wearable device data into Azure IoT Hub through the OPC

UA Client Application. This connectivity can be explained in Figure 3.2. Once

the OPC UA client application retrieves data from OPC UA servers, it can publish

the data to Azure IoT Hub for further processing and send to Azure Digital Twin.

The client application formats the data into telemetry messages compatible with

Azure IoT Hub’s messaging protocols and sends them to Azure IoT Hub endpoints

using the Azure IoT Hub SDK or client libraries. Telemetry messages may include

metadata, timestamps, and additional context information to enrich the data sent

to Azure IoT Hub. This cloud service acts as the central message hub, securely

receiving data from wearable devices through OPC UA. Azure IoT Hub ensures

reliable and scalable data ingestion, managing millions of device-to-cloud messages.

The pseudonymized data is transferred to Azure Digital Twin for advanced analysis

and prediction. Azure Digital Twin creates a virtual model of the physical entities,

enabling detailed monitoring and simulation of patient health states.
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Figure 3.2: OPC UA to Azure IoT Hub

3.2 Evaluation of SecureHealth RPM System

This section evaluates the proposed architecture in comparison to the existing RPM

systems as discussed in section 2.8.

In the proposed SecureHealth RPM system, by incorporating OPC UA, the in-

teroperability and security challenges identified by Benedict [29] and Miranda et

al.[31] are addressed. OPC UA provides a secure communication channel, reduc-

ing the risk of data breaches highlighted by Malasinghe et al.[34] and Meingast et

al.[38]. The pseudonymization technique significantly enhances privacy by remov-

ing personally identifiable information from the data, addressing concerns raised by

Saranya et al.[37] and Meingast et al.[38] regarding data privacy. OPC UA Stan-

dardization facilitates seamless integration of diverse wearable devices, addressing

challenges mentioned by Fernandes et al.[30] regarding device integration. Azure

IoT Hub efficiently handles data ingestion from wearable devices, addressing data

transfer challenges identified by Benedict and Boikanyo et al. [35]. Strong secu-

rity features including data encryption, access controls, and intrusion detection are

provided by Azure IoT Hub and Azure Digital Twin, which strengthen the overall

security posture. Azure Digital Twin enables advanced analytics, predictive mod-

eling, and personalized healthcare, going beyond the data collection and analysis
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focus of many reviewed works. By creating a virtual representation of a patient,

Azure Digital Twin can be used to develop personalized care plans, predict health

outcomes, and optimize treatment strategies, aligning with the potential of HDT

discussed by Okegbile et al.[32]. The human digital twin in the proposed architec-

ture provides a comprehensive digital representation of the patient, including their

physical, physiological, and behavioural characteristics. This holistic model enables

more accurate and personalized healthcare interventions, as the digital twin can

capture the nuances and complexities of an individual’s health status. The human-

digital twin allows for advanced predictive analytics and simulation capabilities,

enabling healthcare professionals to simulate different treatment scenarios and op-

timize personalized care plans. By leveraging the digital twin’s data and modelling

capabilities, the system can generate personalized predictions and recommendations

tailored to the individual patient’s needs and preferences.

In the SecureHealth RPM system, the integration of wearable device data and

the human digital twin enables continuous monitoring of the patient’s health status

and real-time adaptation of care plans. This allows for proactive interventions and

timely adjustments to treatment, improving patient outcomes and reducing the risk

of adverse events. The comprehensive patient data and predictive capabilities of

the human digital twin can support personalized preventive care strategies, helping

to identify and mitigate potential health risks before they manifest. This proactive

approach to healthcare can lead to improved patient outcomes, reduced healthcare

costs, and a more sustainable healthcare system.

SecureHealth directly addresses several shortcomings found in the reviewed lit-

erature. Combining OPC UA, pseudonymization, and Azure’s security features, it

provides a more robust security framework.
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3.3 Comparative Analysis of Communication Pro-

tocols

In the proposed SecureHealth RPM system for Next-Generation Patient Care, the

choice of the OPC Unified Architecture (OPC UA) as the communication protocol

is a strategic decision driven by several key factors that make OPC UA superior to

other available protocols. This section details the rationale behind selecting OPC

UA and its advantages in the context of integrating healthcare wearable device data,

ensuring secure data transfer, and enhancing interoperability and scalability. In the

context of the proposed architecture for Next-Generation Patient Care, it is essential

to understand why OPC UA is the optimal choice over other existing protocols such

as LoRa, Zigbee, Bluetooth Low Energy (BLE), and MQTT.

Table 3.1 compares some of the relevant protocols for healthcare with the OPC

UA considered in the proposed architecture.

Criteria OPC-
UA

LoRa Zigbee MQTT BLE

Security High Moderate Moderate High Moderate
Interoperability High Low Moderate High Moderate
Scalability High High Moderate High Low
Latency Low High Moderate Low Low
Reliability High Moderate Moderate High Moderate
Ease of Integra-
tion

Moderate Low Moderate High High

Cost High Low Low Low Low

Table 3.1: Comparison of Protocols

The time required to transmit data from a healthcare wearable device to a moni-

toring application depends on various factors, including the communication protocol

used, the distance between the device and the server, and the amount of data being

transmitted.

In the case of a remote patient monitoring system that implements the OPC
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UA protocol, the time required to transmit data can be relatively faster than other

protocols due to its efficient data transfer mechanisms and low latency. OPC UA is

a machine-to-machine communication protocol that outlines specifications for data

mapping, accessibility, security, and other characteristics, ensuring standardization

and compatibility of data from OPC-UA-enabled equipment.

On the other hand, a remote patient monitoring system that does not implement

OPC UA protocol may use other communication protocols such as Bluetooth, Wi-

Fi, Zigbee, or cellular networks for data transmission. The time required to transmit

data using these protocols can vary significantly.

For instance, Bluetooth is a short-range wireless communication technology that

can transmit data up to 10 meters. According to a study, Bluetooth Low Energy

(BLE) can transmit data at a rate of 1 Mbps, enabling fast data transfer between

devices [39]. However, the range of Bluetooth is limited, and it may not be suitable

for remote patient monitoring applications that require long-range communication.

BLE Offers encryption and authentication but may be susceptible to certain at-

tacks like man-in-the-middle attacks. Security primarily focuses on point-to-point

communication. Interoperability is restricted to BLE-compatible devices and lacks

standardized integration with broader systems. It is scalable for personal area net-

works but not ideal for large-scale systems. Flexibility is limited to short-range

applications.

Zigbee is another wireless communication technology that can transmit data over

longer distances than Bluetooth. According to a study, Zigbee can transmit data

at a rate of 250 kbps, enabling faster data transfer than Bluetooth [40]. However,

Zigbee’s data transfer rate is lower than OPC UA, and it may not be suitable for

applications that require high-speed data transfer. Zigbee provides basic security

measures but can be vulnerable to certain attacks. Security configurations can be

complex and less robust compared to OPC UA. It has limited interoperability with
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non-Zigbee devices, primarily used for simple, local networks.

Cellular networks are another option for remote patient monitoring applications

that require long-range communication. According to a study, cellular networks

can transmit data at a rate of 10 Mbps to 100 Mbps, enabling fast data transfer

between devices. However, cellular networks may have higher latency than other

communication protocols, leading to slower data transfer.

Therefore, the time required to transmit data from a healthcare wearable device

to a monitoring application depends on the communication protocol used, the dis-

tance between the device and the server, and the amount of data being transmitted.

OPC UA protocol can provide faster and more efficient data transfer than other

protocols, making it a suitable option for remote patient monitoring applications.

In the context of remote patient monitoring, LoRaWAN might not provide the

same degree of security features and standards as OPC UA with Azure IoT, despite

being appropriate for some IoT applications. OPC UA with Azure IoT’s strong

security framework, compliance with regulations, and seamless integration capabil-

ities make it a preferred choice for ensuring data security and privacy in healthcare

settings [41]. OPC UA with Azure IoT provides end-to-end encryption, robust de-

vice authentication, fine-grained access control, secure communication channels, and

identity management services, ensuring comprehensive security for remote patient

monitoring systems. On the other hand, LoRaWAN provides encryption at the net-

work layer, device authentication, and secure communication channels, making it

suitable for secure data transmission between remote devices and network servers in

low-power, long-range IoT deployments.

OPC UA is designed to facilitate seamless communication between heteroge-

neous systems. This is particularly crucial in healthcare environments where di-

verse devices and systems, ranging from wearable sensors to cloud-based analytical

platforms, need to interact seamlessly. Healthcare systems must be scalable to ac-
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commodate a growing number of devices and flexible to integrate new technologies.

OPC UA excels in both these aspects. It is adaptable to various network configura-

tions and can be deployed in both small-scale and large-scale environments. OPC

UA ensures high reliability in data communication, which is critical for real-time

patient monitoring systems. The protocol’s robustness against network failures and

its capability to provide reliable data transfer even in unstable network conditions

make it ideal for healthcare environments. OPC UA leverages X.509 certificates to

enhance security.

As an open standard, OPC UA is vendor-neutral, preventing vendor lock-in and

promoting a competitive market with diverse options for healthcare providers. The

extensive community and industry support for OPC UA ensures continuous im-

provements, updates, and comprehensive documentation, facilitating its adoption

and integration. With the rapid advancement of technology, it is crucial to select

protocols that are compatible with future developments. OPC UA is aligned with In-

dustry 4.0 principles, ensuring that it remains relevant as healthcare systems evolve

towards more automated and intelligent environments. Its design allows easy inte-

gration with emerging technologies such as IoT and AI, making it a forward-looking

choice.

This strategic choice supports the overarching goal of delivering next-generation

healthcare solutions that are both secure and scalable.

3.4 Security Features

This section describes the security features of each component in the proposed ar-

chitecture. OPC UA is crucial because the data being transmitted is confiden-

tial, frequently containing information about process control, industrial activities,

and equipment status. OPC UA supports secure communication channels using

industry-standard protocols such as Transport Layer Security (TLS) and Datagram
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Transport Layer Security (DTLS).These protocols protect the confidentiality, in-

tegrity, and authenticity of data sent between clients and servers by encrypting

communication channels and requiring mutual authentication between participants.

Pseudonymization is an extra security layer that complements the existing security

capabilities of OPC UA and Microsoft Azure. This is implemented to encrypt the

data transmitted from OPC UA server to the Azure IoT Hub. Additionally, each

IoT Hub Device is encrypted with configured security mechanisms. Security mecha-

nisms provided by Azure IoT Hub are Symmetric, X.509 Self Signed and X.509 CA

Signed.

3.4.1 Pseudonymization

In Article 4(5) of the GDPR, pseudonymization is defined as, "the processing of

personal data in such a manner that the personal data can no longer be attributed to

a specific data subject without the use of additional information, provided that such

additional information is kept separately and is subject to technical and organiza-

tional measures to ensure that the personal data are not attributed to an identified

or identifiable natural person" [42].

Pseudonymization and encryption are two methods of data protection. Still,

pseudonymization has particular advantages in the context of healthcare settings

because it replaces identifiable data with artificial identifiers or pseudonyms for per-

sonally identifiable information (PII), allows analysis and usefulness of data while

protecting individual privacy. In contrast, encryption renders data unreadable with-

out a decryption key, with limited capabilities restricting the use of that data for

research and personal care. Pseudonymization preserves the capacity to re-identify

people with the aid of supplementary data stored apart, such as a key or lookup table.

This reduces the possibility of illegal access or exposure while preserving the useful-

ness of the data for processing and analysis. Data that has been pseudonymized can
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be returned to its original form by adding details that enable the re-identification

of the individuals. This technique ensures that while the data remains relevant for

analysis, it is not easily traceable back to particular patients. The pseudonymiza-

tion process complies with data protection regulations such as GDPR, ensuring that

patient privacy is maintained throughout the data lifecycle. Without the associated

pseudonymization key, an attacker would not be able to directly identify people even

if they were to obtain pseudonymized material [43].

Pseudonymization is a vital privacy-enhancing strategy used in healthcare that

helps institutions maintain a balance between the necessity of data analysis and

sharing and the need to preserve patient privacy and adhere to legal obligations.

Healthcare businesses can protect patient privacy rights and maximize the value

of their data assets by pseudonymizing patient data. Patients’ confidence in the

security of their health information is increased, and compliance with data protection

laws, such as the Health Insurance Portability and Accountability Act (HIPAA) and

the General Data Protection Regulation (GDPR), is ensured.

Consider Alice, who has been diagnosed with a heart condition (CVD) and

experiences episodes of atrial fibrillation, which can elevate her risk of a stroke.

Pseudonymization in this case can be visualized in Figure 3.3.

Alice’s wearable device continuously tracks her heart rate and whether she is

moving. It can alert Alice if her resting heart rate drops below the Low threshold

or exceeds the High threshold.

Instead of sharing Alice’s exact heart rate figures and specifics, the wearable

device uses pseudonymization. This means that when it sends data, it transmits a

pseudonym for Alice along with the parameter range for her heart rate at rest. The

healthcare providers, such as her physician, caregivers, or midwives, will receive this

pseudonymized data. They will be able to identify which patient the pseudonym

refers to and understand the state of Alice’s heart rate at rest without directly
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Figure 3.3: Pseudonymization during monitoring of health data

accessing her personal information.

When an alert is triggered, indicating that Alice’s heart rate is outside the de-

fined safe range, the pseudonymized data is sent securely to her physician and any

designated caregivers or midwives. They receive a notification with the pseudonym

and the specific heart rate range (e.g., Low or High). Since they have access to the

pseudonymization key, they can identify Alice and provide the necessary support

promptly. This process ensures that Alice’s personal health data is kept confidential

during transmission, enhancing security and privacy while allowing her healthcare

team to respond effectively to her needs.

3.4.2 Azure Active Directory

The key security feature of Azure IoT Hub and Azure Digital Twin is the Azure Ac-

tive Directory (Azure AD) integration for authentication and identity management.

Each IoT Hub device has its own unique ID. The data ingestion from the OPC UA

client application is mapped to only authenticated Azure IoT Devices. Similarly,

the HUman Digital Twin created in Azure Digital Twin Explorer also has a unique

I,D which can be mapped with IoT Hub device data. Only authenticated and au-
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thorized devices are updated. Azure IoT Hub and Azure Digital Twin have built-in

threat detection capabilities to identify suspicious activities and potential security

breaches. There are continual backups and data replication to ensure data integrity

and availability in the event of hardware failures or disasters. Device-to-cloud and

cloud-to-device communication channels are encrypted to maintain the confidential-

ity and integrity of patient health data. Role-based access control (RBAC) allows

administrators to control access to IoT Hub resources and data streams. Azure IoT

Hub provides built-in monitoring and logging capabilities to track device connectiv-

ity, message ingestion, and system health.

3.4.3 Encryption of data at rest

Azure Digital Twins encrypts data as it is written in Microsoft data centers, both in

transit and at rest, and then decrypts it when needed. A Microsoft-managed encryp-

tion key is used to perform this encryption. This feature is known as Encryption

of data at rest. This feature helps to encrypt and decrypt data quickly. Encryp-

tion at rest provides protection to data that is stored i.e. at rest. A symmetric key

encryption is used in this process. The data is encrypted and decrypted using the

same key. However, if data is partitioned, then each partition has a unique key.

Attempts to physically access the hardware that stores the data and subsequently

compromise the data within are examples of attacks on data at rest. Encryption

at rest prevents the attacker from accessing unencrypted data by ensuring that the

data is encrypted while it is on disk. To read the data on a hard drive containing

encrypted data but missing the encryption keys, an attacker must first break the

encryption.
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Figure 3.4: Azure Data Encryption-at-Rest Components
Source: [44]

3.5 Threat Analysis

This section outlines the possible threats in existing RPM systems, out of which

one is the "IoT-based heart monitoring system" [45] and the second is the "A Real-

Time Heart Monitoring System for Remote Cardiac Patients Using Smartphones

and Wearable Sensors" [46]. The focus of the thesis is to analyze the existing RPM

system for heart monitoring and how the proposed architecture can address the

same.

Table 3.2 provides an overview of the possible data-related security threats to

both the IoT-based heart monitoring system and the real-time heart monitoring

system for remote cardiac patients, highlighting areas where each system may be

vulnerable.

In addition to data-related threats, there are multiple existing threats. This can

be listed in Table 3.3

Next section discusses about how SecureHealth can address most of the threats

identified in both of the existing RPM systems discussed in this section.
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Threat IoT-based Heart Monitor-
ing System

Real-time Heart Monitor-
ing System

Data
Interception

Interception of data during
transmission despite 128-bit
encryption

Interception of BLE transmis-
sions

Data Integrity Potential tampering of JSON
files during transmission

Potential lack of integrity
checks during storage on SD
card

Data Theft Theft of sensitive data through
unauthorized access

Theft of patient data from the
smartphone or during trans-
mission

Data Loss Loss of data due to transmis-
sion errors or device failures

Data loss due to failure of the
smartphone or SD card

Privacy Breach Unauthorized access to per-
sonal health information

Inadequate privacy measures
for data stored on the smart-
phone

Encryption
Weaknesses

Potential weaknesses in the
128-bit encryption implemen-
tation

Possible weaknesses in BLE
encryption mechanisms

Replay
Attacks

Replay of intercepted authen-
tication tokens

Replay of intercepted BLE
transmissions

Man-in-the-
Middle (MitM)
Attacks

MitM attacks during data
transmission between devices
and Firebase

MitM attacks during BLE
communication or between
smartphone and web portal

Table 3.2: Data Security Threats in existing RPM Systems

3.5.1 Addressing Threats in existing State-of-art

The proposed RPM architecture leverages a combination of security techniques,

including pseudonymization, OPC UA, Azure IoT Hub, and Azure Digital Twin, to

enhance the protection of patient data and enable personalized healthcare services.

These security features help address the key concerns of data privacy, integrity, and

access control in remote patient monitoring systems.

Addressing Threats in the IoT-based Heart Monitoring System [45]

Since the patient data in the proposed RPM architecture remains anonymous and

impossible to relate to specific people, adopting pseudonymization helps reduce the

dangers of unwanted access and data interception. Strong security features of OPC
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Threat IoT-based Heart Monitor-
ing System

Real-time Heart Monitor-
ing System

Unauthorized
Access

Compromise of Firebase au-
thentication tokens

Unauthorized access to patient
data stored on the smartphone

Device Imper-
sonation

Spoofing of device tokens Spoofing of BLE devices

Denial of Service
(DoS)

Flooding the system with in-
valid requests to disrupt ser-
vice

Overloading the BLE connec-
tion or web interface to disrupt
monitoring

Weak Authenti-
cation

Exploitation of weak or im-
properly implemented authen-
tication

Compromise of user ID and
password on the web interface

Malware Introduction of malware
through compromised devices
or connections

Infection of the smartphone or
web interface with malware

Insider Threats Malicious actions by autho-
rized users

Malicious actions by health-
care professionals with access
to the web portal

Configuration
Flaws

Misconfiguration of Firebase
security rules

Misconfiguration of web inter-
face or smartphone security
settings

Firmware Ex-
ploits

Exploitation of vulnerabilities
in the IoT device firmware

Exploitation of vulnerabili-
ties in the wearable sensor
firmware

Table 3.3: Security threats in existing RPM sytems

UA, like role-based access control and end-to-end encryption, guard against service

account vulnerabilities and token misuse in addition to preventing unwanted access

to wearable device data [47]. Azure IoT Hub’s security features, such as encryption

of messages and device authentication, offer an extra degree of security for data

transmission to the cloud, mitigating possible risks found in the IoT-based cardiac

monitoring system.

Addressing Threats in the Real-Time Heart Monitoring System [46]

The authentication and encryption features of OPC UA reduce the possibility of

BLE data interception and eavesdropping by securing data transmission between

wearables and the cloud [47]. Azure Digital Twin’s secure data storage and access
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control capabilities guarantee that patient data is shielded from unwanted access

even in the event that a web portal or smartphone is attacked. The possible weak-

nesses in the web portal access restrictions are addressed by integrating the RPM

architecture with Azure Active Directory for user authentication and permission. To

detect and stop data tampering during transmission and storage, the RPM architec-

ture can make use of data integrity checks, such as digital signatures or cryptographic

hashing [48].

3.5.2 Summary of Security Threats addressed by the Secure-

Health

This section discussed the security threats addressed by SecureHealth. The proposed

architecture ensures the confidentiality, integrity, and availability of patient data,

thereby enhancing the overall security and reliability of remote patient monitoring

systems.

• Ransomware: The research found that by combining OPC UA with Azure

IoT, healthcare organizations may establish secure communication channels,

deploy encryption methods, and apply access control mechanisms to prevent

ransomware attacks that could risk patient data. This is one of the important

factors examined when proposing SecureHealth.

• Insider Threats: The authentication and authorization features in OPC UA to

combat insider threats effectively. Azure IoT’s monitoring capabilities further

enhance the detection of suspicious activities, ensuring that only authorized

personnel can access critical healthcare systems and patient information.

• Denial of Service (DoS) Attacks: Azure’s scalable infrastructure can dynami-

cally allocate resources and distribute incoming traffic across multiple servers,
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mitigating the impact of DoS attacks by ensuring the availability and perfor-

mance of OPC UA services. OPC UA implementations can implement rate

limiting and request validation mechanisms to filter out malicious requests and

mitigate the impact of DoS attacks on healthcare systems.

• Man-in-the-Middle (MitM) Attacks: OPC UA employs Transport Layer Se-

curity (TLS), which encrypts communication channels between devices and

cloud servers. Azure’s secure communication channels further enhance protec-

tion against MitM attacks by providing a secure platform for data transmis-

sion. Data is shielded from unauthorized parties via encryption, even if it is

thwarted.

• Data Tampering: OPC UA ensures message integrity through digital signa-

tures, which detect any alterations to the data during transmission. Azure’s

data integrity verification mechanisms further enhance protection against data

tampering by ensuring that data remains unchanged while stored in the cloud.

Additionally, access controls and audit trails help track changes to patient

data, making it easier to detect and mitigate tampering attempts.

• Unsecured IoT Devices: The security challenges associated with healthcare

IoT devices emphasize the critical need for secure communication protocols

like OPC UA. By utilizing OPC UA with Azure IoT, organizations can ensure

that IoT devices communicate securely and only with authorized systems,

reducing the risk of unauthorized access and potential breaches

• Legacy Systems Vulnerabilities: The vulnerabilities identified in industrial con-

trol systems using OPC UA underscore the importance of bridging legacy

systems with modern IoT platforms securely. OPC UA’s ability to facili-

tate secure data transfer without compromising older systems’ integrity, when

combined with Azure IoT’s advanced security features, helps mitigate risks
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associated with legacy systems vulnerabilities.

• Secure Communication: OPC UA provides end-to-end encryption and authen-

tication mechanisms to ensure data confidentiality and integrity.

• Access Control: Azure IoT’s role-based access control combined with OPC

UA’s user authentication capabilities helps restrict unauthorized access to crit-

ical healthcare systems and patient data.



4 Framework Implementation

4.1 Data Collection and Preprocessing

Patient health data is the key data for proposed model of RPM. Required patient

data include name, age, heart rate and temperature. As part of this research work,

actual hardware devices are not connected.

4.1.1 Pseudonymization

Pseudonymization plays a crucial role in enhancing the privacy and security of pa-

tient data in the proposed SecureHealth RPM system. The pseudonyms are assigned

to patient data collected by healthcare devices and integrated into the OPC UA Sim-

ulation Server. This ensures that sensitive patient information is not directly linked

to identifiable individuals at the source. Pseudonymization can be implemented at

each layer of the architecture, but the present work contributes to the analysis of

implementation at the Data collection layer.

The specific data elements of the patient are identified within the available pa-

tient data that constitute personally identifiable information (PII). This includes

Name, Age, BloodPressure and Temperature. There are multiple mechanisms to

generate the pseudonyms. These techniques include the hashing process and/or salt

addition. In the code provided in this work, the SHA-256 hashing algorithm is ap-

plied to each PII element individually. Then, it is converted into the hexadecimal
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hash value.

4.2 Digital Twin Representation

Digital Twin representations of individual patients are created using DTDL, defining

the structure and metadata of each Digital Twin. These Digital Twins encapsulate

patient health data, historical information, and other relevant context, providing a

holistic view of patient health status.

4.2.1 Human Digital Twin Creation in Microsoft Azure

Azure Digital Twins are for modelling and managing digital twins. Azure Digital

Twin offers several benefits, including standardized modelling, interoperability, and

scalability. In SecureHealth RPM system, a specific language known as the Digital

Twin Definition Language (DTDL) is used to define DT.

4.3 Digital Twin Definition Language(DTDL)

DTDL provides a standardized way to describe the structure and behaviour of digital

twins, enabling interoperability, integration, and communication between different

IoT platforms, devices, and applications. DTDL provides a standardized language

and schema for defining the attributes and characteristics of digital twins, including

Human Digital Twins. This standardization ensures consistency and interoperability

across different implementations and platforms. DTDL allows for flexible modelling

of Human Digital Twins, enabling organizations to define custom properties, be-

haviours, and relationships that accurately represent individual users or groups of

users.

In the proposed architecture, Azure Digital Twin Explorer is used to create the

Human Digital Twin. Using DTDL within Azure Digital Twin Explorer helps main-
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tain consistency in data modelling and representation. Azure Digital Twin Explorer

integrates seamlessly with other Azure services and tools, such as Azure IoT Hub,

Azure IoT Central, Azure Stream Analytics, and Azure Machine Learning. Azure

Digital Twin Explorer supports role-based access control (RBAC) and Azure Active

Directory (Azure AD) integration, enabling the definition of fine-grained access poli-

cies and control access to Human Digital Twins based on user roles and permissions

[49]. This helps ensure that sensitive user data is protected and compliant with

privacy regulations.

4.3.1 DTDL Specification Implementation

Data is a key in the Digital Twin. DTDL is compatible with JSON. The version

of DTDL being used must be specified when developing a digital twin specification.

Since DTDL is built on top of JSON-LD, the version of DTDL being used is specified

via the JSON-LD context (the @context declaration). In the proposed architected

DTDL v3 is used to create the Azure Digital Twin for a patient. We need to define

the properties, telemetry, commands, and relationships of the human digital twin

using DTDL. This includes attributes such as temperature and blood pressure as

part of the current research work. All digital twins must have an identifier that is

a digital twin model identifier (DTMI). It is required to specify metadata such as

data types, units, and semantic meanings for each property. A simplified DTDL

model for a Human Digital Twin is considered as part of this research work. A

Digital Twin model’s attributes, which are specified in the contents portion of the

model interface, provide the majority of its information. A DTDL model interface

used for Azure Digital Twins mainly contains fields like Property, Relationship and

Component. Property describes the state as well as the synchronization of state

between different IOT devices. The properties are defined as shown in Figure 4.1.

They are the Name, Age, Heart Rate, and Temperature of a patient. This DTDL
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model represents the Human Digital Twin for an elderly patient who needs to be

monitored remotely.

Figure 4.1: DTDL Code for HDT

In this model: - ‘name‘ is a string property representing the name of the person.

- ‘age‘ is an integer property representing the age of the person. - ‘heartRate‘ is a

double property representing the heart rate of the person in beats per minute (bpm).
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- ‘temperature‘ is a double property representing the temperature of the person in

degrees Celsius (°C).

The above DTDL model is created in Notepad and saved as a .json file, and then

uploaded in the Azure Digital Twin Explorer, as shown in Figure 4.2.

Figure 4.2: Uploading DTDL Json Model

4.4 OPC UA Integration

For the testing of the proposed architecture, a C#.Net application is created to

integrate OPC UA (Open Platform Communications Unified Architecture) with

Azure IoT Hub. The data from the Prosys Simulation server is read through the

C# console application and transmitted to the Azure IoT Hub Device.

1. Install and configure an OPC UA server such as an OPC UA Simulation Server

or Prosys OPC UA Simulation Server.

2. Configure the server to expose the necessary data points (nodes) that are to
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be monitored or controlled. In the present work, the Heart rate, Temperature,

and Blood Pressure of the patient are considered to be monitored.

3. Login to the Azure Portal and create a new Azure IoT Hub instance.

4. Get the connection string for the IoT Hub.

5. Install the Prosys OPC UA .NET SDK via NuGet Package Manager in the

Visual Studio project.

6. Create a new .NET Console application in Visual Studio.

7. Use the Prosys OPC UA .NET SDK to implement OPC UA client function-

ality.

8. Establish a connection to the Prosys OPC UA Server using its endpoint URL.

9. Browse the server’s address space to discover available nodes and select the

nodes to monitor or control.

10. Implement logic to read data from OPC UA nodes and send it to Azure IoT

Hub.

11. Use the Azure IoT Hub SDK for .NET to send telemetry messages and receive

cloud-to-device commands.

12. In the .NET application, use the Azure IoT Hub connection string obtained

earlier to connect to Azure IoT Hub.

13. After reading the data from the OPC UA simulation server, apply the Pseudonymiza-

tion logic to this data so as to strongly encrypt the same.

14. Implement code to send pseudonymized data to Azure IoT Hub as telemetry

messages and to receive commands from Azure IoT Hub.
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15. Implement device authentication mechanisms provided by Azure IoT Hub by

using a unique Device ID.

16. Next, integrate this pseudonymized data from Azure IoT Hub to Azure Digital

Twins. Use the Azure IoT SDK to facilitate communication with the Azure

IoT Hub.
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4.5 Experimental Setup

The experimental setup includes Prosys OPC UA Simulation Server for data ex-

change and integration of Healthcare wearable devices, Visual Studio IDE for Data

Simulation and integration with Azure Cloud services, and Azure Portal Configura-

tion for data processing, security, and prototyping of the remote patient monitoring

system.

The first step is to install and configure the Prosys OPC UA server which is free soft-

ware available on request. Once the Prosys OPC UA Simulation server is installed,

the configuration displayed is in Figure 4.3.

Figure 4.3: Prosys OPC UA Simulation Server

As part of this research work, the temperature and Heart Rate of the patient are

monitored.

The node for Temperature is created in the Prosys OPC UA server as shown in

Figure 4.4
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Figure 4.4: Temperature

A summary of the complete steps for data flow in the SecureHealth RPM is

explained in the following section.

Step 1: Create Azure IoT Hub Instance. Figure 4.5 displays the Azure Dash-

board after creating the Azure IoT Hub.

Step 2: Create IoT Hub devices that we want to integrate with OPC UA. IoT

Hub devices are created to monitor the temperature, heart rate and blood pressure

of the healthcare devices data integrated with OPC UA. Figure 4.6 displays the

Azure Device Management dashboard.
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Figure 4.5: Azure IoT Hub Instance

Figure 4.6: IoT Hub Device

Step 3: Create Human Digital Twin in Azure Digital Twin Explorer. Model

Information can be seen in Figures 4.7 and 4.8
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Figure 4.7: HDT of Patient

Figure 4.8: HDT Model
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Step 4: Create OPC UA console application. Firstly add the Nuget Packages

required to build and execute the application mentioned in Figure 4.9.

Figure 4.9: Nuget Packages

Step 5: Configure the OPC UA client application to integrate with OPC UA

server as coded in Figure 4.10

Figure 4.10: OPC UA To Azure IoT Hub
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Step 6: Read the data from the OPC UA Simulation Server through OPC UA

client application. The CSharp code snippet for the same is in Figure 4.11.

Figure 4.11: Reading Data from OPC UA Simulation Server

Step 7: Now, After data is collected from OPC UA server, the pseudonymisation

logic is applied to the same. The logic applied to create pseudonyms of the code is

shared as shown in Figure 4.12

Figure 4.12: Patient Data Pseudonymization

Step 8: Pseudomnyized data is transmitted to Azure IoT Hub so as to apply

the various security policies in the future. Device authentication also takes place at
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this stage. The code snippet to integrate with Azure IoT Hub is explained in Figure

4.13

Figure 4.13: Pseudonymized Data integration with Azure IoT Hub

Step 9: Create Patient Telemetry Data class. Figure 4.14 contains the code

for the class. The Csharp console application is created to subscribe to telemetry

messages from the IoT Hub and update the properties of the Human Digital Twin

accordingly. The properties of the Human Digital Twin reflect the state of the

patient monitoring devices. Telemetry data structure PatientTelemetry needs to

match the format of the data published by the OPC UA server. This can be achieved

by creating Azure Functions, which are also tested.

Step 10: Ingest Data into Human Digital Twin from Azure IoT Hub. The

pseudonymized data is ingested into Azure Digital Twin created using DTDL. Figure

4.15 can be referred to understand the code for this functionality.

The data is read from OPC UA to update in the properties of HDT displayed

in Figure 4.16 in the final stage.
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Figure 4.14: Telemetry Data

Figure 4.15: Ingest Data to Azure Digital Twin

Step 11: Send Email notification to Healthcare provider

When the data of the HDT changes and the values are out of the prescribed

thresholds, an email notification is sent to the Healthcare Providers who in turn
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Figure 4.16: Properties of HDT

send notification to nearby caregivers to provide service to the patient.



5 Experimental Evaluation

In the evaluation by Santiago et al., [50], it is observed that OPC UA is capable of

handling time-sensitive networks for vital infrastructure and hard communication

in real time. Hence, it can be very well considered for real-time patient monitoring.

Analysis done by Cavalieri et al.[51] clearly depicts that OPC UA offers a secu-

rity paradigm with data integrity, encryption, and authentication features. OPC

UA is capable of utilizing many transport protocols, including SOAP Web Services

over HTTP and UA TCP. Additionally, it supports various encoding standards,

including UA Binary and XML/text [51]. These data exchange protocols enable

communication that is safe, dependable, and compatible.

5.1 Data Flow

It is critical to understand the dataflow sequence in the Remote Patient Monitoring

Model. Figure 5.1 displays the data flow in the proposed SecureHealth RPM system

that is compliant and in line with the data flow options mentioned by the NIST

publication related to Securing Telehealth Remote Patient Monitoring Ecosystem

[2] in Section 4.3.

In the proposed architecture referred to as SecureHealth, the C# console applica-

tion is created for testing and deployed on localhost IIS. Azure IoT Hub devices and

Azure Digital Twin are created on the Azure Web Portal. The Prosys Simulation

server is installed on the Windows OS and configured on a Virtual Box instance.
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Figure 5.1: Data Flow

5.2 Dataset Description

The collection of the values of sensors from healthcare wearables is a large variety

of data. Hence, the process of collecting data from healthcare wearables remote

monitoring sensor devices or similar technologies is considered to be out of the

scope of this thesis work. The data is collected from the various online medical

datasets and is assumed to be acquired correctly. Hence, the scope of this work is

to evaluate the cloud-based architecture integrating with OPC UA in the Remote

Patient Monitoring (RPM) System.

5.2.1 Dataset I

The first dataset considered for the thesis was downloaded from Kaggle [52]. Ivan

et al. [53] considered this dataset for their work to create the synthetic dataset

using a Generative Adversarial Network (GAN). The IoMT sensors retrieve the

data. For the course of three consecutive months, data is gathered daily. Oxygen,

body temperature, heart rate, heart rate master, weight, diastolic and systolic blood
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pressure, and many other parameters were included in this data. This data is used

in the current thesis work to test the proposed integration on the Cloud. This data

was taken as a reference to calculate the MRT(Maximum Response Time) to update

the health data of Human Digital Twin.

5.2.2 Dataset II - CVD

The considered dataset is downloaded from Kaggle [54]. This dataset was considered

by Chidozie et al. [55] in their research work to improve the prediction and manage-

ment of cardiovascular disease (CVD), a leading cause of mortality worldwide. This

data was collected from MIMIC-III [56] clinical database. Human biophysical pa-

rameters form the basis of this dataset under consideration, which are vital markers

for tracking and assisting patients with cardiovascular disease (CVD) and enabling

both short- and long-term risk assessment. These metrics, which include blood

pressure, oxygen saturation, heart rate, and respiration rate, are essential for de-

termining the risk of developing CVD and evaluating general health. The initiative

intends to improve early identification, intervention, and management techniques

for patients at risk of cardiovascular disease (CVD) by carefully analyzing and in-

terpreting these vital signs. This will help to improve patient outcomes and lower

rates of cardiovascular morbidity and death.

5.2.3 Dataset III -Sepsis

This dataset was considered from the work by Shimazui et al. [57]. The data col-

lected for their work consisted of both non-elderly and elderly patients. Patients who

are elderly have particular vital signs. The purpose of this study was to determine

whether elderly and non-elderly sepsis patients had different relationships between

vital signs and death. The patients were divided into two age groups: non-elderly

and elderly ( >75 or =75 or <75 years). The body temperature - BT, heart rate,
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systolic blood pressure, mean arterial pressure, and respiration rate were the vital

signs that the authors examined for correlations with 90-day in-hospital mortality.

5.3 Evaluation Metrics

5.3.1 Calculation of Maximum Response Time (MRT)

In this section, the result of the experimental setup of the proposed architecture is

discussed. MRT is referred to here as the time taken to update the values of temper-

ature and heart rate from OPC UA integrated health device data to Human Digital

Twin. In SecuerHealth, data from OPC UA integrated healthcare wearable devices

is transmitted from Azure IoT Hub to Azure Digital Twin. The goal of testing is to

calculate the latency of data transmission. The data taken into consideration is the

synthetic data generated based on Dataset I, which is mentioned in section 5.2.1.

Using this data, Healthcare Wearable Device Simulation is created in Prosys OPC

UA Simulation Server.

This testing is done using two different approaches. First, the OPC UA client

application receives data from the OPC UA Simulation Server. A CSharp applica-

tion was created to receive data from the OPC UA Client and send it to Azure IoT

Hub. Then, the data from the Azure IoT Hub device will be updated to the Azure

Digital Twin by mapping the device IDs and their properties. The CSharp code

setup is done in two systems for testing. The code is tested in the Visual Studio

Community version on Windows OS. The next test was done using Visual Studio

Code IDE on the Ubuntu OS. The time taken to update through an application on

the Azure portal varies from system to system. It should be noted that the first

time an application is launched, it takes longer to complete than the second time

or more since the first time the application is performed, it needs to create an IIS

certificate. In this case, the web application is deployed in the IIS localhost and it
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is integrated with the Azure IoT Hub Device connection string and further with the

Azure Digital Twin connection string. Another option to test is to create the Azure

Function App that can transmit the data from the Azure IoT Hub to Azure Digital

Twin.

Second, the health data values of the Human Digital Twin created in Azure

Digital Twin are updated in the Azure Digital Twin Explorer. The time taken to

update these HDT values is measured in both cases. Table 5.1 shows the data in

both cases.

Data Update MRT for C# con-
sole app

MRT for Azure Dig-
ital Twin Explorer

Single Property update 32 ms 3 ms
Multiple Property update 48 ms 5 ms

Table 5.1: MRT for single and multiple data update

The cost evaluation based on MRT for each component can be done as mentioned

in the work by Stefan et al. [58]. With the help of Azure Digital Twin, it is possible to

build an interactive, real-time representation of all the objects, people, and buildings

in actual surroundings.

5.3.2 Statistical Analysis for Privacy-Preserving and Data

Security

The proposed system in the thesis is compared to the current Remote Patient Moni-

toring (RPM) systems. A chi-square test is used to compare the security and privacy

policies of the two RPM systems that are being discussed in order to evaluate the

security features of existing RPM systems vs. the proposed SecureHealth RPM

system. Thus, data privacy and security are crucial elements. Chi-Square test has

been previously used in security analysis and anomaly-based detection [59]. Metrics

such as data encryption protocols, access controls, audit logging, secure data trans-

fer, and compliance with regulatory standards (e.g., HIPAA) are considered for the
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comparison.

5.4 Results and Analysis

In this section, statistical analysis of the two existing RPM systems and the proposed

SecureHealth RPM system is executed using the Chi-Square Test. The first work

considered is the framework for IoT based Heart rate monitoring [45] and the second

framework into consideration is A Real-Time Health Monitoring System for Remote

Cardiac Patients Using Smartphone and Wearable Sensors [46].

5.4.1 Comparison of Security Controls

Before the test is performed, the various security controls of all three systems must

be compared. Table 5.2 compares the security controls of the systems. Based on

the comparison, the proposed architecture appears to have a more comprehensive

and robust security approach compared to the IoT-based heart monitoring system

and the real-time heart monitoring system using smartphones and wearable sen-

sors. The proposed architecture incorporates advanced security features like data

encryption, secure data transfer, access controls, regulatory compliance, and data

privacy measures, which are not as prominently featured in the other two systems.

The IoT-based heart monitoring system and the real-time heart monitoring system

have more basic security controls, such as encryption during data transmission and

user authentication for access. However, they lack the depth and breadth of security

features present in the proposed architecture, particularly in areas like regulatory

compliance, audit logging, and cloud security.
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Security
Control

Proposed Architecture
(SecureHealth)

IoT-Based Heart
Monitoring System

Real-Time Heart
Monitoring System

Data En-
cryption

Wearable devices encrypt
data before transmission-
OPC UA encrypts data us-
ing strong algorithms like
AES

128-bit encryption ap-
plied as a token to
the JSON data during
transmission

Bluetooth Low En-
ergy (BLE) provides
encryption and
authentication mech-
anisms

Secure
Data
Transfer

Encrypted communication
protocols like TLS/SSL
used for data transfer- OPC
UA uses secure communi-
cation profiles

Zigbee protocol used
for secure data trans-
mission between de-
vices

Bluetooth Low En-
ergy (BLE) used for
secure data transmis-
sion between devices

Access
Controls

Role-based access controls
restrict access to authorized
users and applications-
Azure Active Directory
and RBAC used for access
control

Firebase authentica-
tion used to verify
the device token by
generating a custom
token with user data

Web interface requires
user ID and password
for data visibility

Regulatory
Compli-
ance

Wearable devices comply
with FDA, MDR, IMDRF
regulations- Azure cloud
services are compliant with
HIPAA, FedRAMP, SOC

Not mentioned Not mentioned

Data Pri-
vacy

Sensitive data fields are
replaced with pseudonyms
(pseudonymization)

Firebase Security
Rules

Web interface requires
user authentication,
suggesting some data
privacy measures

Audit Log-
ging

Device usage and data ac-
cess events are logged for
auditing- Azure IoT Hub
and Digital Twins provide
audit logs

Not mentioned Not mentioned

Cloud Se-
curity

Azure IoT Hub and Digital
Twins leverage Azure cloud
security features and com-
pliance certifications

Not mentioned Not mentioned

OPC UA
Security

OPC UA provides secure
communication profiles,
user authentication and
authorization

Not mentioned Not mentioned

Table 5.2: Comparison of Security Contols

5.4.2 Chi-Square Test for Security and Privacy Metrics

A statistical analysis using the Chi-square test can be performed to compare the

security and privacy controls of the two existing RPM systems with those of the
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SecureHealth RPM system.

The steps for performing this test can be summarized as:

• Formulating hypotheses specific to the security factors being compared.

• Choosing appropriate statistical tests. In the proposed work, the chi-square

test is considered.

• Collecting security-related data for both RPM systems.

• Calculating summary statistics and visualizing the data.

• Performing the hypothesis test and interpreting the results to determine if

there is a significant difference in security between the two systems.

5.4.3 Chi-Square Test Results

To compare the security and privacy controls of all three RPM systems, the met-

rics considered are Data Encryption, Access Controls, Secure Data Transfer, Data

Privacy, Regulatory Compliance, Cloud Security and Audit Logging.

Step 1: Formulate Hypothesis

• Null Hypothesis : There is no significant difference in data privacy and security

measures between the existing RPM system and the proposed RPM system.

• Alternative Hypothesis : There is a significant difference in data privacy and

security measures between the two systems.

Step 2: Prepare Data

Organize the data into a contingency table, also known as a cross-tabulation table

or frequency table. The frequency for the Contingency table is calculated based

on each security feature provided by the number of Components in the Framework.

Data Encryption feature is provided by OPC UA, Pseudonymization, Azure IoT and
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Azure DT. Hence, the value of frequency in the contingency table is 4. Similarly, the

frequency of other security controls is calculated in the system. Table 5.3 displays

the contingency table.

Security Control Proposed Archi-
tecture

IoT-Based Heart
Monitoring Sys-
tem

Real-Time Heart
Monitoring Sys-
tem

Total

Data Encryption 4 1 1 6
Access Control 4 1 1 6
Secure Data Transfer 4 1 1 6
Data Privacy 4 0 1 5
Regulatory Compli-
ance

4 0 0 4

Cloud Security 4 0 0 4
Audit Logging 4 0 0 4
Total 28 3 4 35

Table 5.3: Contigency Table

Step 3: Calculate expected frequency

Row totals : Sum of frequencies in each row.

Column totals : Sum of frequencies in each column.

Expected value = (Row total × Column total) / Grand total

For example, the expected value for the cell (Data Encryption, Proposed Architec-

ture) is: Expected value = (6 × 28) / 35 = 4.80

Step 4: Calculate the Chi-Square statistic

The chi-square statistic is calculated for each cell using the formula: ² = [(Ob-

served - Expected)² / Expected]

Total Chi-Square Value = [(Observed - Expected)² / Expected]

In this case, Chi-Square Value = 42

Step 5: Calculate the degree of freedom

Degrees of freedom (df) = (number of rows - 1) × (number of columns - 1) = (7

- 1) × (3 - 1) = 12

Step 6: Determine Critical Value
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Security Control Proposed
Architec-
ture

IoT-Based
Heart
Monitor-
ing System

Real-Time
Heart
Monitor-
ing System

Total

Data Encryption 4.80 0.51 0.69 6
Access Control 4.80 0.51 0.69 6
Secure Data
Transfer

4.80 0.51 0.69 6

Data Privacy 4.00 0.43 0.57 5
Regulatory
Compliance

3.20 0.34 0.46 4

Cloud Security 3.20 0.34 0.46 4
Audit Logging 3.20 0.34 0.46 4
Total 28 3 4 35

Table 5.4: Sum Total for Security Metric Data

To determine the critical value for the chi-square test, we need to consider the

significance level, usually denoted as alpha and the degrees of freedom ( df ).

Using a chi-square distribution table, the critical value for df = 12 and = 0.05

is 21.026.

Step 8: Evaluate and Interpret

Hence, the calculated chi-square value (42.00) is greater than the critical value

(21.03), leading to the rejection of the null hypothesis. This indicates a significant

difference in the frequencies of the security controls among the three systems.

In the same way, we can also perform the Chi-Square test for latency comparison

as well. But as the most accurate data about the latency for the existing remote

patient monitoring systems were not available, hence that scenario is not considered

in the current work.



6 Discussion

Based on the provided list of existing Remote Patient Monitoring (RPM) systems,

none of them explicitly mention the use of Azure IoT and OPC UA technologies in

combination. However, it’s important to note that specific technology implementa-

tions may not always be publicly disclosed or readily available in online materials.

While the listed RPM systems may not mention Azure IoT and OPC UA explic-

itly, some RPM solutions may use similar technologies under the hood for device

integration, data transmission, and cloud connectivity.

6.1 Previous Research and Approaches

Majumdar et al. [27] emphasized the critical role of wearable sensors in RPM

systems, highlighting their ability to provide continuous, non-invasive monitoring

of physiological signs. These sensors can measure electro-physiological signals such

as ECG, EEG, GSR, and EMG. However, the study points out the need for robust

data security measures, particularly when dealing with sensitive health data. Nora

et al. [23] discussed the benefits of RPM systems in reducing healthcare costs and

improving patient quality of life through continuous monitoring. Yet, the study

lacked detailed security implementations, which are crucial for protecting patient

data.

Benedict [29] addressed the challenges of data transfer and communication proto-

cols in RPM systems, proposing the integration of the OPC UA standard to resolve
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device interoperability issues and secure data communication. Similarly, Miranda

et al. [31] presented the OPC UA as a flexible and robust framework for integrat-

ing heterogeneous healthcare systems but did not extensively cover scalability and

compatibility with existing systems.

Fernandes et al. [30] and Saranya et al. [37] explored the use of IoT frameworks

and digital twin technology in healthcare, respectively. However, their work lacked

a comprehensive focus on security controls, particularly in the context of data en-

cryption and privacy protection. Okegbile et al. [32] highlighted the potential of

Human Digital Twin (HDT) technology in revolutionizing personalized healthcare

but identified challenges related to privacy and security concerns, as well as the need

for advanced learning techniques.

6.2 Benefits of the Proposed SecureHealth RPM

System

Building upon these studies, this thesis proposes a novel architecture for securing

patient data and enhancing personalized healthcare in RPM systems by integrating

healthcare wearable device data with the OPC UA standard and leveraging Azure

IoT Hub and Azure Digital Twin for advanced data analysis and prediction. The

proposed SecureHealth RPM system provides a comprehensive solution for remote

patient monitoring, addressing the security, privacy, and latency requirements of

healthcare providers and patients. By leveraging OPC UA and Azure Digital Twin,

the framework offers a scalable and interoperable platform for remote healthcare

delivery. Implementing pseudonymization of the patient data also enables a robust

security architecture.

Existing systems face challenges like data security, interoperability issues, and

latency in remote patient monitoring. OPC UA addresses these challenges by provid-
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ing built-in security features such as encryption and authentication, ensuring secure

communication between devices and the cloud. Azure IoT complements this with ro-

bust identity management and access control mechanisms, enhancing data security.

The convergence of OPC UA and Azure IoT bridges the gap between Operational

Technology (OT) and Information Technology (IT), enabling real-time monitoring

and predictive analytics in remote patient monitoring systems. OPC UA and Azure

IoT can help resolve challenges in remote patient monitoring systems by ensuring

secure data exchange, real-time analytics, and predictive maintenance capabilities.

By leveraging OPC UA-enabled devices feeding data to Azure IoT, industries can

implement predictive maintenance strategies, reducing downtime and enhancing op-

erational efficiency. The seamless integration of OPC UA with Azure IoT offers

transformative advancements in remote patient monitoring, empowering industries

to harness the full potential of IoT data securely and efficiently. Creating Human

Digital Twin using Digital Twin Definition Language provides the flexible and scal-

able feature to create the HDT for n number of patients and n number of data for

one or many patients. Additionally, implementing the logic of the pseudonymization

technique ensures data security.

The proposed SecureHealth RPM system that implements OPC UA, Azure IoT

and Azure Digital Twin can offer several benefits compared to existing RPM systems.

They are listed as following in brief:

1. Interoperability and Standardization: Regardless of the manufacturers or com-

munication interfaces of various healthcare equipment, OPC UA offers a com-

mon communication protocol for connecting them. This OPC UA interoper-

ability capability guarantees smooth data interchange within the RPM system

and makes device integration easier.OPC UA resolves the issue of device in-

teroperability and provides secure communication channels, as discussed by

Benedict [29] and Miranda et al. [31].
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2. Scalability and Flexibility: Large volumes of patient data may be managed

and processed with ease with Azure IoT’s scalable and adaptable cloud-based

infrastructure. The IoT Hub and database services provided by Azure enable

the RPM system to handle an increasing number of patients and devices while

preserving excellent performance and dependability.

3. Real-time Data Processing and Analytics: The real-time data processing ca-

pabilities of Azure IoT facilitate the analysis of patient data as it is received by

the RPM system, hence enabling prompt detection of abnormalities, trends,

and key occurrences. This makes proactive healthcare actions possible and en-

hances patient outcomes through the early detection and resolution of health

problems. Azure IoT facilitates real-time device and/or patient condition mon-

itoring. Additionally, it assists in determining the need for maintenance before

problems arise and boosts uptime while decreasing unscheduled downtime.

With rich visualizations and an all-encompassing view of a patient’s health

provided by OPC UA and Azure IoT, an RPM system enables doctors to pri-

oritize patients that require intense care while monitoring many patients on a

single RPM dashboard. For those with acute or chronic illnesses that pose a

significant risk, the prompt and instantaneous transfer of information can be

life-saving.

4. Enhanced Security and Compliance: Azure IoT provides robust security fea-

tures, including end-to-end encryption, identity management, and access con-

trol, to protect patient data from unauthorized access and cyber threats.

By leveraging Azure’s compliance certifications and built-in security controls,

RPM system can meet regulatory requirements such as HIPAA and GDPR,

ensuring patient privacy and data protection. The security features of OPC

UA, such as certificate-based authentication, also provide a secure foundation

for trusted healthcare IoT applications. The proposed architecture employs
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pseudonymization techniques. Data from wearable devices is encrypted to

prevent unauthorized access during transmission. Pseudonymization ensures

that personal identifiers are separated from the data, reducing the risk of pri-

vacy breaches. This approach builds upon the security measures suggested by

Majumdar et al. and Nora et al. [28].

5. Integration with Healthcare Ecosystem: The RPM system can take advan-

tage of extra features like predictive analytics, telemedicine, and electronic

health record (EHR) integration since Azure IoT interfaces easily with other

Azure services and outside healthcare apps. By offering a complete healthcare

solution, this connection improves the RPM system’s entire value proposition.

6. Cost-effectiveness and Time-to-market: Through the use of pre-built IoT ser-

vices and Azure’s pay-as-you-go pricing model, RPM solution can reduce up-

front infrastructure expenses and shorten time-to-market. Azure’s managed

services free up team members to concentrate on creating cutting-edge features

and enhancing patient care by lowering the operational burden of managing

infrastructure.

7. Comprehensive Digital Representation: Azure Digital Twin offers a thorough

digital depiction of patient data and medical equipment. With the help of this

depiction, healthcare providers and hospitals may get a comprehensive under-

standing of the whole RPM ecosystem and track patient health, device per-

formance, and environmental factors in real-time. Azure Digital Twin enables

contextual comprehension and connection of diverse data sources by modelling

the patient data as digital twins. Individual patient profiles are modelled to

construct the "Human Digital Twin" in Azure Digital Twin. This includes

digitally recording the vital signs, medical history, treatment plans, and de-

mographics of the patients. Patients’ health states can be remotely monitored
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by caregivers, who can also keep track of any changes in the patient’s condition

over time and act quickly if needed. Understanding the connections between

ambient variables, device telemetry, and patient health measures can help

hospitals and caregivers make better decisions and provide more individual-

ized treatment. RPM systems can use predictive analytics to foresee probable

health risks and anticipate device failures by utilizing past data saved in Azure

Digital Twin. The primary characteristic of HDT creation is the compatibility

and integration of Azure Digital Twin with third-party platforms, industry

standards, and other Azure services. A unified and interconnected health-

care environment is ensured by this interoperability, which permits smooth

data flow across medical equipment, electronic health record (EHR) systems,

telehealth platforms, and RPM apps.

Overall, the SecureHealth RPM system can provide several benefits, including

accelerating the implementation of innovative RPM solutions, providing a secure

foundation for trusted IoT applications, enabling smart healthcare concepts for pre-

dictive healthcare emergencies, and providing a holistic picture of a patient’s health

with rich visualizations. OPC UA, Azure IoT and Azure DT offer several advan-

tages, including interoperability, scalability, real-time analytics, enhanced security,

compliance, integration with the healthcare ecosystem, and cost-effectiveness. These

benefits can lead to improved patient outcomes, increased efficiency, and better

healthcare delivery compared to existing RPM systems.

6.3 Key Contributions of SecureHealth

The proposed SecureHealth RPM system offers a comprehensive approach to se-

curing patient data and delivering personalized remote patient monitoring. This

holistic solution addresses multiple challenges in the field of eHealth and remote
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healthcare, representing a significant advancement beyond existing research. The

proposed architecture makes several key scientific contributions, as listed in Table

6.1.

Key Contributions Explanation
Integration of Health-
care Devices with
OPC UA

OPC UA protocol enables seamless communication and inter-
operability between diverse healthcare devices, ensuring the
efficient collection and transmission of patient data in real-
time.

Pseudonymization of
Patient Data

We implement robust pseudonymization techniques to
anonymize sensitive patient data, protecting patient privacy
while facilitating data analysis and transmission to cloud-
based platforms.

Utilization of Azure
IoT Hub and Azure
Digital Twin

SecureHealth RPM system leverages the capabilities of Azure
IoT Hub and Azure Digital Twin to store, process, and an-
alyze pseudonymized patient data. This enables real-time
monitoring, predictive analytics, and proactive intervention
for caregivers and hospitals.

Enhanced Security
and Privacy Measures

Data security and privacy are prioritized throughout the Se-
cureHealth RPM system, implementing encryption, access
controls, and compliance mechanisms to safeguard patient in-
formation and comply with regulatory requirements.

Statistical Analysis
Results

Comparison and analysis using the Chi-Square test have pro-
vided compelling evidence of the enhanced security offered
by the SecureHealth RPM system compared to existing RPM
systems.

Addressing Regula-
tory Compliance

The architecture is designed to comply with stringent data
protection regulations, ensuring that patient data is handled
lawfully and ethically.

Future-ready Infras-
tructure

Lays the groundwork for future integration with artificial in-
telligence and machine learning technologies for more sophis-
ticated data analysis and predictions.

Table 6.1: Key Contributions

The integration of these security and personalization features within the Azure

IoT Hub and Azure Digital Twins ecosystem ensures that patient data is protected

while enabling the delivery of next-generation, data-driven healthcare solutions that

can improve patient outcomes.
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6.4 Security Compliance

Azure IoT Hub and Azure Digital Twin are both certified compliant with ISO/IEC

27001, an international standard for information security management systems (ISMS).

This certification demonstrates that Azure IoT Hub and Azure Digital Twin follow

best practices for managing security risks and protecting information assets. Azure

IoT Hub complies with ISOIEC 27018, a code of practice for protecting personally

identifiable information (PII) in public cloud services. This certification ensures

that Azure IoT Hub adheres to strict privacy controls and safeguards for customer

data. Both can be used in HIPAA-compliant healthcare applications and services

when configured appropriately. Azure provides a HIPAA Business Associate Agree-

ment (BAA) to customers who require HIPAA (Health Insurance Portability and

Accountability Act) compliance for their healthcare solutions. Azure IoT Hub sup-

ports GDPR compliance for customers processing the personal data of EU residents.

Data governance and compliance initiatives within a business may also neces-

sitate encryption at rest. Regulations from the government and business world,

like FedRAMP, PCI, and HIPAA, specify data security measures and encryption

specifications. Some of those standards demand encryption at rest as a necessary

precaution. Encryption at rest offers defence-in-depth protection in addition to

meeting legal and regulatory standards. A compliant platform for services, apps,

and data is offered by Microsoft Azure. In-depth data access control, audits, and

physical and facility security are also included.

6.4.1 NIST Compliance

The NIST SPECIAL PUBLICATION 1800-30B [2] focuses on "Securing Telehealth

Remote Patient Monitoring Ecosystem." This publication provides a comprehensive

guide that demonstrates a standards-based reference design to enhance the secu-

rity of remote patient monitoring systems in the healthcare sector. It outlines the
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approach, architecture, and security characteristics necessary to safeguard patient

data and ensure system integrity in telehealth environments. Overall, NIST SP

1800-30B provides detailed implementation guidance for securing RPM systems. It

includes recommendations for securing medical devices, implementing network se-

curity controls, encrypting data, and implementing access controls. In the proposed

architecture, secure communication channels are established between IoT devices,

OPC UA servers, and healthcare systems to prevent data breaches and unauthorized

access. Hence, it is in line with the secure communication requirements outlined in

NIST SP 1800-30B.

6.4.2 Security Controls and NIST Mapping

NIST SP 1800-30B [2] provides a holistic framework for addressing security chal-

lenges in RPM systems. By aligning with these guidelines, the proposed architecture

ensures that all critical aspects of security are considered, from asset management

to incident response. Aligning with this approach helps in prioritizing security mea-

sures based on the specific risks associated with remote patient monitoring, ensuring

efficient use of resources. By following these guidelines, the architecture incorpo-

rates best practices for securing RPM systems, benefiting from the collective exper-

tise of NIST and industry professionals. With a focus on data security and privacy,

aligning with NIST SP 1800-30B ensures robust protection of sensitive patient data

throughout its lifecycle in the RPM system. The guidelines provide a framework for

ongoing risk assessment, helping to identify and address new security challenges as

they emerge.

Based on the NIST SP 1800-30B guidelines and the proposed architecture for

securing patient data in remote patient monitoring (RPM), Table 6.2 provides an

analysis of how the architecture aligns with these guidelines:
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NIST-SP
1800-30B
Component

SecureHealth RPM System Alignment

Identify The architecture includes an inventory of healthcare wearable devices
and data flows, aligning with the asset management aspect of the Identify
function.

Protect The use of OPC UA for secure data transmission aligns with the data
security guidelines.
Pseudonymization of patient data before cloud transfer addresses the
information protection requirements. Azure IoT Hub’s security features
align with access control recommendations.

Detect - Continuous monitoring of data flows in Azure IoT Hub aligns with the
anomalies and events detection guidelines. Azure Digital Twin analytics
can be used for continuous security monitoring as recommended.

Respond The architecture should include an incident response plan for data
breaches and procedures for handling de-pseudonymization requests, as
per the response planning guidelines.

Recover Backup and restore procedures for Azure services, along with data re-
covery plans for OPC UA systems, align with the recovery planning rec-
ommendations.

Table 6.2: NIST SP 1800-30B Mapping

6.5 Challenges and Limitations

Although the proposed architecture incorporates state-of-the-art encryption tech-

niques and strict data pseudonymization protocols, the inherent risks associated

with cloud-based services cannot be entirely eliminated.

For the proposed SecureHealth RPM system, experimental setup is a bit compli-

cated process to integrate health data from OPC UA Simulation server with Azure

cloud components due to the need to create the OPC UA client application and

Azure Functions for data transmission. Proper care needs to be taken for health

data and HDT mapping for monitoring. Any error in the parameter mapping will

cause the incorrect display of the HDT data and result in incorrect prediction and

analysis. Although cloud technology may simplify the operation of the healthcare

sector, some medical experts or staff members may require a significant amount

of time to grasp the operations of its numerous resources. This can result in the

overuse of cloud resources and inaccurate analysis of patient records [60]. A few of



6.5 CHALLENGES AND LIMITATIONS 87

the limitations of the Cloud-based solution are displayed in Figure 6.1

Figure 6.1: Limitations of Cloud-based solutions

The suggested architecture incorporates several layers of security, such as encryp-

tion, pseudonymization, and cloud-based services. To guarantee that all security

measures work as intended, these layers must be monitored continuously, updated

on a regular basis, and workers trained. This complexity can lead to vulnerabili-

ties in security if not managed appropriately, as underlined by the requirement for

"ongoing training and awareness programs to mitigate security risks" [61].

When using cloud-based RPM to transport data stored in the cloud, it is pos-

sible to break local regulations. The dynamic nature of cloud computing makes it

extremely difficult to predict which precise server or storage device will be used,

exacerbating the transborder data flow issue. These transborder data flow limits

are a special case that we will address later [62].

Implementing OPC UA can be challenging, particularly for smaller healthcare

companies with minimal IT resources. Numerous healthcare institutions depend on

legacy hardware and software that might not be OPC UA compatible. Integrating

OPC UA into these systems can be complex and costly [63].
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One of the most difficult aspects of the HDT is that, while some factors may be

tracked to identify specific risks, other human features, such as thoughts, reactions,

and behavior, can be somewhat unpredictable because humans are more complicated

than manufacturing processes [64]. HDT technology is still maturing to provide the

prediction analysis for all human features including infections.

Past research has shown that even in the most secure environments, data breaches

remain a constant concern. Because of this, cybersecurity is a dynamic field that

requires constant attention to detail and adaptation.

Table 6.3 lists the various limitations of the proposed SecureHealth RPM and

possible mitigations.

Limitation/Challenge Mitigation Strategy
Cybersecurity Threats Implement multi-layered security measures.

Continuous monitoring and threat intelligence.
Employee cybersecurity training programs.

Data Handling Errors Staff training on data protection.
Implement access controls and data loss prevention
tools.
Use of automated data handling processes where possi-
ble.

Integration with Legacy
Systems

Gradual system upgrades and modernization.
Regular security patches for legacy systems.
Implement additional security layers for legacy systems.

Interoperability Challenges Adherence to Healthcare Data Standards.
Collaboration with device manufacturers for compatibil-
ity.
Regular testing of interoperability and data exchange.

Insider Threats Implement the principle of least privilege.
Regular access audits and monitoring.
Employee background checks
Data loss prevention (DLP) tools.

Table 6.3: Limitations and Mitigations

It is usually challenging and resource-intensive to integrate modern technologies

with legacy systems, necessitating large investments in training and upgrades. There

are still a number of healthcare wearables with proprietary data formats and commu-

nication interfaces, even though OPC UA provides a standardized communication
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protocol. This variability may make it more difficult for the suggested architecture

to integrate and share data seamlessly. Human error is more likely in high-pressure

settings and complex healthcare procedures when things go wrong, such as misplac-

ing gadgets that hold private data or transmitting data to the incorrect person.

Adoption of modern cloud services and comprehensive security measures, while

required, can result in higher operational costs. One of the most common challenges

in healthcare is juggling budgetary limits with the requirement for safe, high-quality

healthcare monitoring. Reliability and quality of data are critical components of

remote patient monitoring systems. Errors or faults in sensors can have a major

effect on clinical results.

Delivery of healthcare services may be hampered by cloud outages or disruptions

if the architecture depends entirely on a single cloud platform. Therefore, in order

to guarantee service continuation even in the event of an outage, it is crucial to build

cloud-based healthcare systems with redundancy and failover capabilities.



7 Future Work

Promising avenues for further research to enhance RPM capabilities were noted in

the thesis. There is a lot of promise in combining enhanced Human Digital Twin

functions, OPC UA, Azure cloud frameworks, edge computing, and federated learn-

ing. These developments can meet changing healthcare needs while ensuring data

security and further personalizing healthcare. Future study is suggested to include

integration with Azure AI and ML for Federated Learning deployment. Healthcare

providers can provide individualized, privacy-preserving, and data-driven care that

enhances patient outcomes while adhering to legal requirements and standards for

data security and privacy by combining federated learning with digital twin technol-

ogy and remote patient monitoring using the OPC UA standard. Federated learning

aggregates model updates from individual patient devices or edge servers to enable

ongoing model enhancement and modification. Over time, the prediction models

can adjust to changing patient situations, treatment responses, and advancements

in healthcare knowledge thanks to this iterative learning process. Federated learning

and Digital Twin technology assist healthcare providers in adhering to regulatory

requirements like HIPAA (Health Insurance Portability and Accountability Act)

and GDPR (General Data Protection Regulation) while guaranteeing patient data

privacy and security by decentralizing data processing and storage.



7.1 INTEGRATION OF ARTIFICIAL INTELLIGENCE (AI) 91

7.1 Integration of Artificial Intelligence (AI)

The potential to improve the functionality of remote patient monitoring systems

through the integration of artificial intelligence (AI) is promising. The enormous

volumes of data gathered from patient monitoring devices can be used by health-

care providers to get important insights by utilizing AI techniques like machine

learning and predictive analytics. Improved patient outcomes and increased opera-

tional efficiency can result from using this information to facilitate more proactive

and individualized healthcare actions.

7.1.1 Anomaly Detection and Alerting

Algorithms for anomaly detection driven by artificial intelligence (AI) can continu-

ously scan patient data streams for odd trends or departures from standard health

metrics. Automated warnings that trigger fast action and intervention can be de-

livered to caregivers and healthcare practitioners when anomalies are identified.

Proactive monitoring can help avoid medical emergencies and lower readmission

rates to hospitals.

7.1.2 Predictive Analytics for Early Intervention

Predictive analytics for early intervention is one possible use of AI in remote patient

monitoring. Artificial intelligence systems are able to recognize patterns and trends

that may point to possible health problems or decline by examining past patient

data. Proactive alerts and recommendations can then be sent to caregivers and

medical experts, enabling them to intervene early and avoid negative outcomes.
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7.1.3 Multi-modal Data Fusion and Anomaly Detection

Examine AI models that can combine data from several sources, such as wearable

sensors (smartwatches, activity trackers), electronic health records (EHR) data, and

real-time data from medical equipment (via OPC UA). AI may be able to identify

intricate anomalous patterns by reviewing this rich tapestry of data, which may be

overlooked when looking at individual data streams.

7.1.4 Regulatory Compliance

The FDA’s guidelines governing the use of AI in healthcare, the GDPR, HIPAA,

and other regulatory standards will all be taken into account when developing future

RPM systems. Throughout the data lifetime, this entails maintaining data security,

privacy, openness, and responsibility.

7.2 Piloting with Differential Privacy

Differential privacy provides a formal privacy guarantee by introducing randomness

(noise) into the data or the results of queries on the data. This ensures that the pres-

ence or absence of any single individual’s data in the dataset does not significantly

affect the output, thereby protecting individual privacy. It would be good practice

to introduce differential privacy mechanisms when performing data analysis or gen-

erating outputs from pseudonymized data. This ensures that even if an adversary

has some auxiliary information, they cannot confidently infer sensitive information

about any individual in the dataset.
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7.3 Integration of Federated Learning

Federated learning, in conjunction with AI, has great potential to advance remote

patient monitoring systems. Federated learning eliminates the need to centralize

sensitive patient data by enabling collaborative model training across dispersed data

sources, including medical facilities and patient devices. By using the combined

knowledge of several datasets, our method protects data security and privacy while

building more reliable and broadly applicable AI models.

7.3.1 Collaborative Model Training

By enabling the sharing of model updates amongst participating entities while main-

taining local storage and encryption of their source data, federated learning promotes

collaborative model training. Federated learning can help healthcare organizations

cooperatively train AI models using data from various patient populations in the

context of remote patient monitoring. This will improve model accuracy and gen-

eralization across various demographics and medical conditions.

7.3.2 Privacy-Preserving Data Sharing

One of the key advantages of federated learning is its privacy-preserving nature,

which ensures that sensitive patient data remains protected throughout the model

training process. By aggregating model updates instead of raw data, federated

learning minimizes the risk of data breaches and unauthorized access. This approach

fosters trust among healthcare stakeholders and encourages greater collaboration in

research and innovation.
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7.3.3 Customized Model Personalization

Federated learning enables customized model personalization for individual patients

based on their unique health profiles and treatment preferences. By leveraging

locally collected data from patient devices, AI models can adapt and tailor their

predictions and recommendations to better align with patient-specific needs and

preferences. This personalized approach enhances the effectiveness and relevance of

remote patient monitoring interventions.

Advanced AI models that can handle complicated medical data, such as time

series, imaging, and genomics data, will be necessary for future RPM systems. To

guarantee robustness and generalizability, these models must be trained on a variety

of datasets. This will be taken into consideration for future design and analysis of

the SecureHealth model.

It is expected that remote monitoring will become an increasingly important

component of healthcare. The use of RPM in addressing both acute and chronic

diseases will increase as care continues to shift out of hospitals and into more home

and community-based settings. The potential effects of these new technologies on

patient safety and healthcare operations need to be further investigated. Opportuni-

ties exist to comprehend how RPM might affect preserving patient safety, averting

unfavourable outcomes, and enhancing patient satisfaction. Finding the patients

and clinical scenarios most at risk of receiving unsafe telehealth care, as well as

identifying and promoting best practices to guarantee equitable access to safe tele-

health, are some recommendations made to better understand the effects of RPM on

patient safety. Other recommendations include measuring patient safety outcomes

systematically and reporting safety incidents more frequently.



8 Conclusion

The proposed framework for Next-Generation Patient Care harnesses Human Digi-

tal Twin technology to deliver personalized healthcare in remote patient monitoring

(RPM). This thesis has explored critical research questions surrounding the integra-

tion of Human Digital Twin (HDT) technology and secure communication protocols

within remote patient monitoring (RPM) systems. The findings provide valuable in-

sights into the effective transmission of sensitive health data, the advantages of HDT

in healthcare, and the overall performance of the proposed security architecture. By

including advanced security measures and harnessing cutting-edge technologies, this

framework has proved its ability to improve the landscape of remote healthcare

monitoring through thorough design, analysis, and testing. This framework makes

an important scientific addition to the field of eHealth and remote healthcare by

addressing the changing needs and challenges of remote patient monitoring and

personalized healthcare.

In the proposed thesis, OPC UA was chosen as the best communication protocol

due to its strong security features, which included encryption, authentication, and

authorization. Other protocols were investigated, including LoRa, Zigbee, MQTT,

BLE, and Wi-Fi, but OPC UA stood out due to its complete approach to data

security and compatibility. The use of 128-bit data encryption, pseudonymization for

data privacy, and token-based authentication guarantees that patient data is safely

transported between healthcare wearables, medical devices, and the Human Digital



CHAPTER 8. CONCLUSION 96

Twin. These safeguards prevent unauthorized access, data breaches, and maintain

data integrity during the transmission process. The investigation concludes that

the OPC Unified Architecture (OPC UA) protocol is ideal for safeguarding data

transmission in RPM systems. OPC UA provides a strong architecture for secure

communication, including authentication, encryption, and data integrity. These

protocols successfully reduce the risks associated with data breaches and illegal

access, which are crucial for patient confidentiality and security.

OPC UA, with its built-in security characteristics, can be used to establish secure

communication channels between medical equipment and cloud services. OPC UA

reduces the danger of cyberattacks by introducing secure authentication procedures

and encryption protocols that allow only authorized devices to connect with the

cloud. Complex data formats can also be handled by OPC UA, which facilitates

the smooth integration of different medical equipment and improves interoperability

while upholding strict security protocols. By utilizing these OPC UA capabilities,

it assures that communication between medical devices and the cloud is secure,

dependable, and in accordance with industry standards.

The incorporation of Human Digital Twin technology in healthcare has several

benefits, such as tailored monitoring, predictive analytics, and improved decision-

making capabilities. By developing a virtual representation of patients, health-

care providers can continuously watch health measurements and anticipate potential

health issues before they occur. This proactive strategy not only improves patient

outcomes, but it also maximizes resource use in healthcare systems. Furthermore,

HDT enables individualized treatment regimens based on individual patient data,

resulting in more effective treatments and higher patient satisfaction. By eliminat-

ing the need for recurrent hospital visits and facilitating prompt medical actions,

HDT enables ongoing remote monitoring of the health situations of patients. HDT

in RPM lowers healthcare expenditures by reducing hospitalizations and optimizing
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resource usage.

The integration of Azure Digital Twin Explorer within the proposed architec-

ture significantly enhances the capabilities of monitoring, analytics, prediction, and

decision-making. Azure Digital Twin Explorer functions as a dynamic interface, of-

fering a comprehensive platform for visualizing and interacting with Human Digital

Twin. Through this interface, real-time patient data monitoring becomes extremely

effective, allowing for timely interventions and ongoing care. The visual depiction

of patient data in the form of digital twins allows for a better understanding of

patient conditions and helps to discover trends and anomalies. Azure Digital Twin

offers the detection of potential health issues before they occur by evaluating pat-

terns in heart rate and temperature data. Such predictive analytics can proactively

notify medical personnel, improving patient care. Azure Digital Twin Explorer aids

decision-making with advanced modeling that replicates many situations and their

effects. These models can help healthcare providers make informed judgments about

treatment plans and actions, resulting in more individualized and accurate care for

each patient. Azure Digital Twin Explorer plays a crucial role in improving the

overall effectiveness of remote patient monitoring systems because of its ability to

provide real-time monitoring, sophisticated analytics, and predictive modeling.

The suggested security architecture significantly improves security effectiveness

when compared to existing RPM systems. The design successfully protects sensitive

patient data against unwanted access and breaches by implementing pseudonymiza-

tion. The Chi-Square test used in this study shows that the suggested design con-

siderably improves the security aspects of RPM systems by addressing weaknesses

reported in existing techniques. Furthermore, the architecture’s connection with

known cybersecurity standards, such as NIST recommendations, ensures a thor-

ough approach to risk management and regulatory compliance. The architecture

offers scalable deployment, allowing for an increasing number of devices and data
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volume without sacrificing performance. The system provides consistent and reliable

data transfer, which is critical for accurate real-time monitoring and analysis.

Future work will concentrate on improving the privacy and security of the pro-

posed architecture by including sophisticated techniques like federated learning and

differential privacy. Federated learning will enable decentralized data analysis, keep-

ing sensitive data on local devices while benefiting from global insights. Differential

privacy will provide an additional layer of data protection by adding noise into the

data, making it impossible to identify individual patients while retaining the data’s

utility for analysis and prediction. Future work aims to further enhance its capa-

bilities through the integration of advanced AI and machine learning, expansion

of wearable device compatibility, and optimization for large-scale deployments. By

continuously improving data privacy and security measures, refining the user experi-

ence, and ensuring regulatory compliance, the framework is well-positioned to meet

the evolving needs of the healthcare industry.

Overall, the proposed architecture offers a huge step forward in safe and person-

alized healthcare, utilizing cutting-edge technologies to improve patient outcomes

and strengthen data security in remote patient monitoring systems. This study em-

phasizes the necessity of secure communication protocols and the Human Digital

Twin in revolutionizing remote patient monitoring. By tackling fundamental secu-

rity concerns in healthcare, the suggested architecture improves data privacy while

simultaneously paving the path for more tailored and effective patient care in the

digital health landscape. By addressing current challenges and anticipating future

needs, it lays a solid foundation for the next generation of patient care, ultimately

improving the health and well-being of patients worldwide.
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