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Abstract

This thesis deals with two application sectors where Machine Learning (ML) ap-
proaches have a central role. The first one is the maritime environment, where one
of the tasks is to create the Situational Awareness (SA) model, showing what is hap-
pening in the environment around a vehicle. The second sector focuses on peatland
classification to characterize and differentiate various peatland types.

The maritime study proposed in this thesis investigates the most relevant target pre-
dictors in the maritime environment, focusing on different Convolutional Neural Net-
work (CNN) architectures. Additionally, Transfer Learning (TL) is implemented to
determine if its use enhances object recognition performance. Subsequently, a mar-
itime dataset is developed. The dataset is precisely manually annotated and can be
used for two main computer vision tasks: object detection and tracking. The pur-
pose of the dataset is to provide a solid basis for the development of efficient ML-
based approaches for SA modeling in maritime environments. Article I evaluates
the performance of three state-of-the-art object detection algorithms using datasets
collected in the Finnish archipelago. Best method is Faster R-CNN with ResNet101
as feature extractor achieving the highest accuracy at 74.0%. Article II addresses the
limited availability of domain-specific datasets in maritime environments. For this
purpose a new dataset was tested with various detectors, revealing that Faster R-CNN
(35.18%) and EfficientDet (55.48%) achieved the highest average precision. Article
III explores the performance of Faster R-CNN, R-FCN, and SSD using different fea-
ture extractors, with Faster R-CNN achieving the highest mean average precision at
75.2%.

The objective of the remote sensing part of the thesis is to create and evaluate a
methodology that starts from a set of Geographic Information System (GIS) data in-
put and finishes with the output of a soil-type classification map, especially focusing
on pixel-wise soil-type classification. The proposed peatland methodologies sum-
marizes the accumulation of decay material. Peatland areas are mainly found where
vegetation decomposition exists. Peatland areas help to regulate the vegetation state
and water availability. Article IV proposes a CNN fusion approach for peatland site
type classification by integrating multi-source and multi-resolution data, achieving
an accuracy of approximately 32%. Article V investigates the performance of CNNs
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when trained with a high number of synthetic aperture radar (SAR) and visual bands
(51.06%) compared when trained with only the best bands (56.73%). Article VI
extends the methods used in Articles IV to different zones in Finland, achieving a
classification accuracy ranging from 26.9% to 33.6%.

KEYWORDS: Deep learning, object detection, satellites imagery, peatland classi-
fication, autonomus driving, sensor fusion, remote sensing.
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Tiivistelmä

Tämä työ käsittelee kahta sovellusaluetta, joissa kummassakin koneoppiminen on
keskeisessä asemassa. Ensimmäinen on merelliseen ympäristöön liittyvä aihe, jossa
yhtenä tehtävänä on luoda tilannetietoisuusmalli (SA -malli), joka esittää merenkulku-
aluksen ympärillä tapahtuvat kehityskulut ja ilmiöt. Toinen aihe keskittyy turve-
maiden luokitteluun, jossa tehtävänä on luonnehtia ja eritellä useita erilaisia turve-
maatyyppejä.

Tämän työn merenkulkuun liittyvä tutkimus tutkii mereliseen ympäristöön kaikkein
soveltuvimpia kohteentunnistukseen liittyviä ennustusmenetelmiä keskittyen lähinnä
erilaisiin konvoluutiohermoverkkojen (CNN) arkkitehtuureihin. Lisäksi toteutettiin
siirto-oppiminen sen selvittämiseksi, auttaako se kohteiden tunnistamisen suoritus-
tasoa. Näiden ohessa kehitettiin merenkulkuun liittyvä tietovaranto. Kyseinen data-
joukko on annotoitu käsin hyvin tarkasti ja sitä voidaaan käyttää kahteen tietokonäön
tehtävään: kohteiden tunnistamiseen ja seuraamiseen. Datajoukon tarkoituksena on
tarjota yhtenäinen pohja tehokkaille koneoppimiseen perustuville lähestymistavoille,
joilla luodaan SA -malleja meriympäristöä varten.

Artikkeli 1 arvioi kolmea tämänhetkistä huipputasoa edustavaa kohteentunnistusal-
goritmia käyttäen Suomen saaristoalueelta kerättyä datajoukkoa. Paras menetelmä on
Faster R-CNN, joka käyttää esiopetettua ResNet101 -verkkoa piirreirrotukseen saavut-
taen parhaimmillaan luokitustarkkuuden 74.0 %. Artikkeli II käsittelee sovellusalueko-
htaisten merellistä ympäristöä koskevien tietovarantojen rajallista määrää. Tästä syystä
uutta datajoukkoa kokeiltiin useilla kohteentunnistimilla, jolloin paljastui, että Faster
R-CNN (35.18%) ja EfficientDet (55.48%) saavuttivat parhaan keskimääräisen
luokittelutarkkuuden. Artikkeli III tutkii menetelmien Faster R-CNN, R-FCN, ja
SSD suorituskykyä käyttäen erilaisia piirreirrottimia. Tällöin Faster R-CNN saavutti
parhaan keskimääräisen luokittelutarkkuuden 72.5%.

Kaukokartoitusta koskevan osuuden tavoitteena on luoda menetelmäjoukko, joka
alkaa geografisen tietämysjärjestelmän (GIS) syötekanavista ja ja päättyy karttaan,
joka esittää maaperätyyppien luokittelua, joka keskittyy erityisesti pikselitason suo-
tyyppiluokkiin. Toinen tavoite on näiden menetelmäjoukkojen toiminnallisuuden
arviointi. Ehdotetut turvemaita koskevat menetelmät koostavat yhteen maatuvan
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aineksen kertymisen. Turvemaat löytyvät pääasiassa sieltä, missä kasvillisuuden
maatumista tapahtuu. Turvemaat auttavat säätelemään kasvillisuuden tilaa ja kasvil-
lisuuden vedensaantia. Artikkeli IV ehdottaa lähestymistapaa, jossa käytetään CNN
-fuusiota tavalla, jossa yhdistetään monilähteistä, monitarkkuuksista dataa. Tällöin
saavutetaan luokittelutarkkuus, joka on noin 32%. Artikkeli V tutkii CNN -menetelmiä,
jotka opetetaan hyvin suurella määrällä SAR- ja visuaalisen alueen satelliittilähtei-
den taajuusalueita (näin saavutetaan 51.06% luokittelutarkkuus), ja näitä verrataan
opettamiseen vain parhailla taajuusalueilla (56.73%). Artikkeli VI laajentaa artikke-
lissa IV käytetyt menetelmät eri alueille Suomea. Tällöin saavutetaan luokittelu-
tarkkuus, jonka vaihteluväli on 26.9 ... 33.6%.

KEYWORDS: koneoppiminen, kohteentunnistus, satelliittikuvantaminen, maaperän
luokittelu, autonominen ajo, anturifuusio, kaukokartoitus.
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1 Introduction

We live in a world dominated by data. Data is currently provided by numerous dif-
ferent types of devices, such as smart televisions, cookers, cameras, mobile phones,
and laptops. These devices collect data with minimal human intervention. Machine
Learning (ML) has a central role in Artificial Intelligence (AI). The ML methods are
designed to process large datasets, extract, and learn to recognize patterns in data to
provide accurate predictions or classifications [1].

The proper manipulation of the datasets produces information used for various pur-
poses, such as real time decision-making. The correct data handling methodologies
are key elements when building efficient ML applications. Thanks to low-cost in-
ternet access, information can be available everywhere, and the continuous process
of data collection makes the data practically an inexhaustible resource. However, in
some cases data access is limited due to privacy issues or rules. On the other hand,
open data has the idea of free usage without restrictions. Using data correctly helps
the user to predict future outcomes; therefore, people or machines are able to make
better decisions. In addition, it is crucial to ensure good quality of the data; working
with bad data tends to give wrong or inaccurate predictions or classifications.

AI applications, and especially ML rely on datasets [2], and due to the types of
the available data, ML provides two different main types of algorithms. If the dataset
comes with labels, supervised learning [3] assigns for each data point a label. If the
labels are not provided with the dataset, unsupervised learning [4], can undercover
patterns and structures from the data. ML systems perform well when they gain the
ability of generalizing from the training data and make accurate predictions from un-
seen data.

Real time decision making, especially in the maritime environment, is becoming
more and more vital. If the data provided to a ML system is reliable, the AI sys-
tem can make decisions more rapidly than humans. Real-time data may be used
to generate automated decisions and successively predict action, enhancing Situa-
tional Awareness (SA), which broadly refers to the understanding of the environment
around the system.
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In Remote Sensing (RS) [5], ML is used to fuse multi-spectral, multi-resolution,
spatial data [6]. Data are collected from different sources, and they include also the
time dimension. One of the common data type in RS is satellite data. Similarly,
planes and drones can be used for data generation.

For application purposes, the knowledge provided by the data is a valuable asset.
It enables ML to be smarter and build robust models that can be generalized with
unseen data. Generalization of the model [7] helps the process to make intelligent
decisions. Thanks to various abilities such as real-time decision-making and con-
tinuous improvement ML, without any doubts, ensures a positive impact on society.
This thesis contributes to the ML based data analysis in two sectors, maritime and
remote sensing.

1.1 Motivation and objectives of this research

This thesis focuses on two main topics. SA modelling in maritime environment
[8][9][10] and peatland classification [11][12][13] in RS. Predictive SA has the ob-
jective of predicting the movements of the recognized objects. This includes object
tracking approaches and classification of the observations. In SA, it is crucial to take
into consideration the influence of all external factors (weather and light conditions,
etc.) during building and evaluation of a predictive model.

Sensor or data fusion [14][15][16] is an essential technology in both applications
where it is necessary to combine data from different sources, in order to get informa-
tion from the environment. The data may come from different RS sources, such as
satellites, and aeroplanes or drones.

The research motivation for this thesis originates from the desire to enhance the
level of security in the maritime environment. The coastal zone of Finland has a
complicated structure with its bays, capes and islands. For this reason, a specialized
dataset, e.g. in maritime environment, helps autonomous vehicles to navigate in the
Turku archipelago in security, avoiding collisions with other vehicles and with the
geographic objects. Thanks to performance analysis of different detectors, it is pos-
sible to select which ones are better suited for autonomous navigation.

The land-cover in Finland has various types of fertility levels and soil types. For
instance, in those study areas, Keminmaa, Eastern Finland and Southern Ostroboth-
nia, which are the target pilot areas of this thesis, it was observed that Keminmaa
region has different fertility classes compared to other pilot regions, whereas East-
ern Finland has poor fertility soil types due to agricultural land development. The
Southern Ostrobothnia, instead, is full of abandoned agricultural fields. This already
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sets a lot of challenges for RS for soil-type classification tasks.

It is a proper practice to combine different RS data sources in order to understand
the varieties of the land types. Institutes such as LUKE1 and GTK2 periodically
collect data from various sources; it is therefore possible to consequently update the
peatland maps.

Maritime study objectives

The main objective of the maritime study proposed in this thesis is to investigate
which are the most relevant target predictors in the maritime environment. In the
present work we primarily focuses on different Convolutional Neural Network (CNN)
models (article I). In addition, transfer learning is studied as well in order to know if
its use enhances object recognition accuracy (article III). Subsequently, as a part of
this thesis, a maritime dataset is created (article II). The dataset is precisely manually
annotated and it can be used for two main computer vision task: object detection and
tracking. The objective of the dataset is to provide a solid basis for the development
of efficient machine learning based approaches for SA modelling in maritime envi-
ronments.

Remote sensing study objectives

Usually, the peatland areas are divided into undrained portions of the map, which
act as a region with poor water levels and drained, where the level of water is abun-
dant. In this study, the three pilot areas have between 35 and 39 different soil-type
classes (article VI). In particular, the study focuses on combining and normalization
of different remote sensing sources with different spatial dimensionalities. This leads
to a proposition of a CNN architecture for peatland classification (article IV). Fur-
thermore, article V explores the analysis of two input sources, namely SAR Sentinel-
1 and optical Sentinel-2 imagery, employing both early and late fusion techniques.
Notably, the article elucidates the disparity in performance between fusion strategies
utilizing all bands from Sentinel-1 and Sentinel-2 versus employing only the most
salient bands. For comparative purposes, the analysis also includes scenarios where
fusion is not performed.

1LUKE: https://www.luke.fi/en
2GTK: https://www.gtk.fi/en/
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1.2 Organization of the thesis
The thesis is organized into two separate parts. Part 1 consists in 6 chapters, and part
2 consists of the 6 original articles. Chapter 1 describes a brief introduction of the
thesis and the motivation of the thesis. Chapter 2 includes the theoretical background
of pattern recognition. Chapter 3 reports our maritime study, in particular, SA is
described. A literature review and a number of maritime dataset are described in this
section as well. In Chapter 4, RS application and a description of major satellite data
and specifications are given. The chapter also describes the role of CNNs in RS.
Chapter 5 gives a summary of included research publications, including the main
results and contributions. Chapter 6 outlines the conclusions of this thesis.
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2 Pattern recognition

The aim of Pattern Recognition (PR) is to identify patterns and regularities in the
data. The identification method varies depending on the application. Typical ap-
plications are related to image recognition, audio detection, and signal processing.
Patterns and regularities in the data are discovered by statistical analysis of the data
combined with ML approaches such as decision trees [17], nearest neighbors tech-
niques [18], or neural networks [19].

Pattern recognition shares many similarities with statistics, and they even share the
same objective: understanding the data. However, statistics is more about formal
inference. It creates hypothesis and tests it, and pattern recognition is focused on
data predictions. Statistical pattern recognition uses statistical techniques to learn
from observations [20]. These observations are used to create a general model used
to recognize unseen samples. The unseen patterns are classified by finding relation-
ships between the new sample and the ones previously observed. These relationships
are discovered without committing explicit rules. The role of statistics in statistical
pattern recognition is the identification of data regularities in an autonomous man-
ner, without direct human labour. Syntactic pattern recognition uses descriptors of
the pattern’s structure. Descriptors help to create a complex observation structure
from multiple simpler patterns. In addition, descriptors have the capacity to describe
aspects of the pattern, making the pattern unique. Syntactic pattern recognition is
conducted by setting grammar rules that describe the pattern to discover and rule
sets that avoid errors and encourage the generalization of the model [21]. Syntactic
patterns will be parsed by the model. A common approach is the decomposition of
the complex rules in a hierarchical structure.

PR often includes a process that assigns a label to each input value. The label is
the one that most probably corresponds to the given input. PR differs from pattern
matching (PM), where the algorithm assigns the label to the predicted pattern that
exactly matches the input pattern [22]. Pattern recognition algorithms can be trained
with labelled data, but they can also exploit features without labels, using unsuper-
vised learning algorithms [23].

Patterns can manifest as objects or events, distinguished by the nature of what they
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represent. An object refers to a tangible entity characterized by its specific shape,
form, and structure. PR techniques are commonly employed to identify and cate-
gorize such entities. On the other hand, an event denotes a specific occurrence or
happening within a defined time-frame, often involving interactions between multi-
ple objects over time. PR techniques are commonly used in multiples sectors such as,
detecting car accident, identification of suspicious activities in surveillance cameras.
Differences between objects and events are summarized in the Table 1.

Table 1. This table summarize the difference between objects and events in PR.

Feature Object Event
What is it Physical entity Occurrence or happening

Focus Shape, form, structure Interaction, change over time

Objects are various, such as a handwritten number, car, vessel, cat, and dog. More-
over, objects can belong also to specific disciplines, for example, in the medical field,
a pattern recognition problem can be the identification of cancer in the human body
[24]. In the food quality assessment discipline, a pattern recognition problem can
be the identification of traces of metal in the tea [25]. Some of the different types
of pattern recognition tasks are summarized in the Figure 1. PR is often integrated
with intelligent systems, such as in the case of autonomous vehicles or remote sens-
ing. Autonomous vehicle systems use cameras and possibly other sensors to sense
the external environment for detecting objects. In addition, pattern recognition may
be related to recognizing events, for example, in human gesture recognition [26]. In
some cases, the PR can be simplified by removing the not relevant parts of the current
pattern vector. For example, in objects classification, the background of the image is
commonly subtracted from the original image in order to better isolate the objects to
classify.

Deep learning (DL) can also be used to automatize the pattern recognition problem.
The main task of DL is object localization [27] and classification [28]. Currently, one
of the most used methods is Convolutional Neural Network (CNN) and its variants.
They are based on different types of convolution layers. For example, convolution
layers use complex filters to create a feature map of the sensed object. Feature map
shows the location and accuracy of the sensed input. Convolution layers automate
feature extraction and classification processes. This is especially beneficial in mar-
itime environments, where situational awareness can be determined by sensor fusion.
In this thesis, CNN sensor fusion is applied on remote sensing articles number IV, V,
and VI.
PR has multiple goals and objectives, such as objects classification and localization,
semantic segmentation, and event recognition. Let us assume that the current pattern
recognition task is related to image analysis. In object classification, the algorithm
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Figure 1. The figure shows some of the different types of pattern recognition tasks. Pattern
recognition is able to detect or recognize objects and events as well.

determines the class of an image. Object segmentation is the process where the
pixel boundaries of the object are determined to segment the object of interest out
of the image. In semantic segmentation, the algorithm predicts the category of each
image pixel, dividing the images into multiple classes of segments. Region-based
approaches study patterns in images, revealing regions of images containing specific
objects. Usually, these regions of importance are surrounded by bounding boxes.
In event recognition, complex algorithms investigate the identification of specific
sequences of actions, enabling the system to identify event patterns. In addition, the
identification algorithm often captures the temporal and spatial information of the
event. In real-time applications, event recognition is used in surveillance applications
to identify abnormal human behaviour. These tasks are summarized in the Table 2.

Table 2. Different pattern recognition tasks.

Tasks Solutions
Object classification The object is classified into a category
Object segmentation Partition of the image in multiple segments

Region based approach Object detection with a bounding box
Semantic segmentation Classification of each pixel to a class

Event recognition Recognition of events with spatial and temporal information

Pattern recognition systems are normally developed with the following steps: 1)
problem formulation, 2) data collection and annotation, 3) initial examination of the
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data (e.g. visualization), 4) feature extraction/selection (in classical PR), 5) model
building (e.g. based supervised or unsupervised approach), and 6) assessment of the
results. The steps are close to CRISP-DM (Cross-industry standard process for data
mining) [29] that can be used to guide the pattern recognition system development.
The steps of PR are summarized in the Figure 2.

Figure 2. Pattern recognition steps.

The problem formulation stage aims to understand which type of investigation should
be addressed in order to solve the problem. Usually, this stage is formulated by set-
ting research questions or setting the goals of the functionality of the application.
In this stage, problem characteristics are defined, as well as which approaches have
been adopted in similar study cases. It is noticeable that a problem statement should
always be clear and concise.

In the second step, the data collection and annotation, the data that is assumed to
solve the problem will be collected. The data can be found from public and already
existing datasets or it can be collected by yourself. Already made datasets have the
advantage that the labelling process, also known as data annotation, has already been
taken care of. However, if the problem to be solved is specific and requires dedicated
data collection, the annotation step for ground truth should be taken into considera-
tion. The dataset annotation is the process of assigning a specific value to a label in
each collected data point. In article II, a comprehensive data annotation process was
conducted. Depending on the type of pattern recognition application, labels can have
categorical or numeric values, but they may also contain bounding boxes given by
their coordinates. In some cases, the data needs further pre-processing steps. Points
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positioned far away from the mean line of all the data points usually produce large
errors and should be handled in a special way or eliminated. The authors of [30] sug-
gested the usage of clustering algorithms or minimum volume estimators to handle
the population of these so called outliers in the data. The authors also used the Ma-
halanhobis distance [31] to calculate if a data point has large enough distance from
other data to become an outlier.

Data normalization is used to transform data that come from different scale ranges
into a common range. In this way, the features are interconnected better discovering
of the information is easier when using standardized the values of the data. In articles
IV and VI, data normalization was employed to standardize the data obtained from
various inputs to a consistent range. This was particularly crucial for derived images
like Canopy Height Model (CHM, see section 4.2 for more details) and Digital Ele-
vation Model (DEM, see section 4.2 for more details), where the value range of these
inputs typically spans from 0 to 1, while other raster sources such as Sentinel-1 and
Sentinel-2 exhibit a value range between 0 and 255 (see Section 4.2).

The missing data handling is used in order to reduce the feature errors generated
by the training and evaluation of the model. A missing data point can be replaced
with the mean or the median of the existing values for this data point in the whole
data. The author of [32] describe a phenomenon called the picking value that should
be avoided because increasing the size of the feature vector can initially increment
the accuracy of the model, but it also raises the probability of the errors. The imple-
mentation of the missing raster data will be discussed in article IV, V, and VI.

The initial examination of the data includes commonly statistical measurements are
often calculated in this step, such as calculation of the data correlation, which tack-
les how all the variables in the dataset are related to each others. In addition, the
data distributions may be determined, showing how frequently different data points
appear in the dataset. Various different plots, such as box plots, scatter plots, and
heatmaps are commonly generated at this point because visual representations tend
to be more informative than bare numbers.

When the data is visualized, especially in the classical pattern recognition it is the
time to extract the features that are relevant for solving the problem. Feature ex-
traction has the purpose to recognise features from the data that are most suitable
in order to achieve the best accuracy. These data points identify the best possible
combination that is used to identify the various classes in the data; the data points
and the classes that have less relevance for the problem are discharged. These impor-
tant features can be also obtained by the transformation of the original dataset before
feature extraction.
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Table 3. Commonly used visualization techniques in statistical PR.

Type of plot
Scatter plot It shows the relationship between two continuous variables
Histogram It shows the distribution of a single variable
Box Plot It provides a summary of the dataset
Heatmap It shows the relation between multiples variables
Line Plot It visualizes the change over time of a single variable
Bar plot It is used to display categorical data

Radar chart It compares multiples variables with multiples category
Density plot It shows the probability density of a function

The data may be re-projected using dimensionality reduction techniques such as
Principal Component Analysis (PCA) [33]. PCA is a linear projection approach that
projects the original data along the direction of its maximum variance, thus having
the ability to preserve the variance of the data. PCA is often a valuable tool to reduce
the dimensionality of the data for further processing.

The model building step includes the determination of the model class to be trained
for the pattern recognition task. In some cases, a simple linear model may be suf-
ficient, but most probably, a non-linear model will outperform it. We should also
remember that sometimes the pattern recognition tasks may be related to clustering,
where the task is to group the data with statistical similarity together. The number
of groups in which the data population is separated is usually the number of classes
expected, or it can also be arbitrarily decided. If the data come with labels, a su-
pervised classification process is adopted. Moreover, in classification tasks, a totally
new input is given to the algorithm, and statistical distance is calculated between
each trained input point and the new point. The label of the point with a lesser statis-
tical distance is assigned to the tested point.

Model building is a crucial step, and picking the best model can be a difficult task
because each model reacts differently to the data and can produce different results. In
model building the generalization of the model aims to determine an optimal model
complexity for the task. With the intention of increasing the model generalization as
much as possible, ensemble approaches can be helpful [34]. The concept behind the
ensemble approach is the combination of multiple models, combining their diversity
and improving the performance. In bagging [35], multiple models are trained with
the same dataset or with a dataset that is sampled with genetic algorithms [36]. When
the training process is complete, in the case of regression, the average accuracy pro-
duced by each model is taken as the final result. In the case of classification, the
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Figure 3. The main steps of classical pattern recognition.

class with the majority of the votes is the predicted class. An example of ensemble
approaches is Random Forest [37], which creates multiple bagging decision trees to
improve the performance of the models. Another ensemble process is boosting [38],
which involves the weighting of samples of each iteration when determining the fi-
nal output. Another model building technique is the committee approach [39], where
multiple models are trained with the same data, and the committee determines the fi-
nal output, e.g. based on the mean of the outputs that are obtained by a majority vote.

In order to make an assessment of the performance of the model, the simplest way
to proceed is to divide the labelled data into an actual training and test set. There
are also more sophisticated approaches, such as N-fold (see Section 2.4). When the
training data has been applied into the model, the test data is used to check its per-
formance. The test set shows how the model performs with data that is not seen by
the model during the training phase. Articles IV, V, and VI utilize cross-validation to
dynamically create test sets, ensuring robust performance evaluation of the models.

Pattern recognition systems are often divided into the following two categories: 1)
classical ones and 2) deep learning based. Classical PR is described in more detail
in Section 2.1 and deep learning is Section 2.2. Also, other types of PR system cate-
gorizations exist, such as division to statistical and syntactic pattern recognition, see
above.

2.1 Classical PR
The classical pattern recognition (CPR) is based on the process shown in Figure
3. First, from the raw data suitable features are extracted. The goals of feature
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extractions are 1) to find the most informative data, 2) to remove the redundancy
of the data, and 3) to create classes that have small variations between the class
members. The classical pattern recognition approach is based on a set of predefined
features. Feature engineering is not a straightforward process, and it differs from
case to case.

2.1.1 Feature extraction

In CPR the extracted features are often based on the statistical or texture properties
of the input. In addition, especially in the case of image-based PR, the features may
be based on different spatial filters such as the wavelets [40].

The mean, variance, standard deviation, skewness, kurtosis, and median constitute
statistical features that are frequently employed in feature extraction. These features
provide information about the distribution type of the input data. A more sophisti-
cated approach to estimate the distribution is through histograms, wherein the selec-
tion of bin widths determines the number of features. Histograms convey valuable
insights into the spread of values and the range they encompass. In addition, PCA,
Independent Component Analysis (ICA) [41], and Fourier Transform [42] are more
sophisticated forms of feature extraction. PCA transforms the original inputs into
features, and it keeps only the feature along the direction of its maximum variance,
preserving the most important information of the input. The transformation reduces
the dimensionality of the data. Close to PCA, the ICA is used to compute a linear
transformation of the independent component. The created independent components
are statically independent. The primary distinctions between PCA and ICA lie in
their respective functions. PCA compresses information while extracting features
that exhibit the highest variance. In contrast, ICA focuses on disentangling infor-
mation into independent components, revealing how features can be perceived as
distinct entities. Fourier transform extracts features with the same frequency domain
representation. In feature extraction, patterns are grouped by their specific frequency
signature. Moreover, this approach may also be used in noise removal, removing
unwanted frequency components. In the field of medicine, the Fourier approach can
be used to analyse electroencephalogram (EEG) or electrocardiogram (ECG) to dis-
cover pattern frequency that can help Doctors formulate better diagnoses [43].

The statistical features, as those described above may be sufficient for simple ap-
plications, but often more sophisticated features are needed, e.g. texture features.
A texture refers to a pattern or regular shape repetition (of patterns) that appears in
an input image. Texture features are important in image processing and computer
vision applications. Texture features refer to the spatial arrangement and distribution
of patterns in an input image. The authors of [44] use texture features to subtract
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background from image input data. Within texture, it is possible to derive properties
such as a) the contrast that measures the intensity between neighbouring pixels, b)
the correlation between different portions of the images, c) how neighbouring pix-
els are similar, and c) the uncertainty of neighbouring pixels. Two popular texture
feature extraction methods are the Haralick texture features and the Local Binary
Pattern (LBP) [45].

The Grey-Level Co-occurrence Matrix (GLCM), also known as Haralick matrix,
[46], is used to quantify the texture by calculating the spatial relationship between
pixels in an input image. The GLCM reveals spatial relationships between image
pixels. To create the GLCM, the input image is first converted to grey-scale, as grey-
scale values effectively highlight pixel intensities. Two thresholds are established.
The first threshold determines which pixels with the same value (|pixel1 − pixel2| ≤
threshold) are considered neighbours. It is use to determine the maximal absolute
difference between two pixels in order to convert them as neighbors to each others.
The second threshold dictates the permissible direction of pixel connections. For ev-
ery pixel in the image, the neighboring pixels are identified at a specific distance and
angle, determined by the thresholds. This establishes a set of neighbouring pixels.
Subsequently, the co-occurrence matrix is computed by tallying the instances of sim-
ilar neighbouring pixel pairs from the preceding step. The feature generated by the
GLCM can describe the correlation between each image’s pixels, energy, entropy,
and homogeneity. In remote sensing, Haralick’s matrix can be used to determine the
type of soil from spectral imagery [46]. The GLCM has been successfully used in
several pattern recognition cases, such as breast cancer identification, [47], and in
image recognition [48]. From the GLCM one can computed the Run-Length Ma-
trix (RLM) [49], which summarises the number of consecutive pixels with the same
value (|pixel1 − pixel2| ≤ threshold) in one of the following directions: vertical,
horizontal and obliques. The same two thresholds used in the GLCM are also uti-
lized for this one. In the image converted to grey-scale, for each row and column,
the pixels with the same value and direction are counted.

While Harlick’s matrix describes global features, LPB is used to represent the lo-
cal texture of a grey-scale image. The conversion to a grey-scale image helps to
discover the intensity of each pixel of the input image. Usually, a threshold is de-
fined, and each pixel inside the circular range is compared within the central pixel.
The pixels inside the circular range are compared to the central pixel and marked by
a 1 in the case that the value of the pixel is greater than the central pixel, and by
0 bit otherwise. This process is called binary notation. The binary values are then
concatenated together and converted in decimal form. The converted values became
a local pattern of the central pixel. The same process will be repeated by keeping
each different image pixel as central pixel. The local binary pattern of an example
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image is shown in the Figure 4. LBP is used due to the computational simplicity
of the process. For example, the authors of [50] have used the algorithm to build a
robust face recognition algorithm. In [51] the local binary patterns are used to extract
features from RS imagery. Both article IV and article V of the present study utilize
Local Binary Patterns (LBP) obtained (CHM) and (DEM) rasters (refer to Section
4.2). These rasters offer information of the textures.

Figure 4. An example of the Local Binary Pattern transformation described above.

Textures can also be identified by analyzing the spatial and frequency characteris-
tics of the input data. To achieve this, tools like filters [52] and wavelets [40] are
invaluable. Filters, for instance, such as Gabor filters [52], serve to reveal distinctive
content in specific directions. These filters excel at capturing features with the same
orientations and scales. Gabor filters can even be employed as convolutional kernels
[53] to unveil features. As the number of filters applied to an image increases, so
does the potential for discovering a greater variety of features. On the other hand,
Gabor wavelets [40] are employed to simultaneously capture both frequency and
spatial information. Filters are especially effective at emphasizing specific patterns,
whereas wavelets excel in revealing the scale and orientation decomposition of an
image, capturing spatial frequency and information. The Figure 5 shows an example
of Gabor filter application. All feature extraction techniques described in this section
are summarized in the Table 4.

2.1.2 Feature selection

The goal of feature selection is to tackle the problem associated with the dimension-
ality of the data [32]. Feature selection is a process where the original feature space
is reduced for revealing a smaller number of relevant features. It helps to increase
the accuracy in the training and evaluation of models.
Feature selection can help to better understand the nature of the features. It tries
to simplify the training of the model by reducing the model complexity and hence,
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Figure 5. Utilization of Gabor filters. The left image presents the original input. In the right image,
Gabor filters are combined with the Canny edge detection algorithm. In this scenario, both
algorithms collaborate to amplify the edges and contours within the input image.

hopefully, increase the generalization ability of the model. Feature selection is a
combinatorial problem where the task is to select k optimal features out of n fea-
tures, where 𝑘 ≤ 𝑛. This leads total of Σ𝑛

𝑘=1

(︀
𝑛
𝑘

)︀
combinations.

Greedy forward selection approach is a feature selection algorithm where a subset
of features is selected from the original dataset. It starts with an empty features set
and during each iteration of the algorithm, a new feature is added. The added feature
is the one that produce best performance when combined with the already selected
features. A common performance metric is the model accuracy maximization. The
process is repeated until all the features in the original dataset have been selected or
when the model does not improve its performance. Article IV and VI uses SFS to
reduce the number of input dimensions. In order to find the most relevant features,
SFS train all the features one by one and it select the one that maximize the classi-
fication accuracy. During the next iteration, the algorithm re-train the selected input
from previous iteration with all remaining available inputs. The process is repeated
until the input with the best performance is selected. Figure 6 shows an example of
greedy forward selection conducted in these articles. In addition [54] uses the greedy
forward selection algorithm to select features from a Multi-frequency Single Aper-
ture Radar (SAR) Polarimetric dataset.

To address the combinatorial challenges posed by feature selection techniques, a
practical candidate solution could be offered. The Genetic Algorithms (GA) [36] use
the theoretical backbone of Darwin’s theory of natural selection. GA exploits ran-
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Table 4. Summary of feature extraction techniques.

Technique Description
PCA Pricipal Component analysis Dimensionality reduction technique
ICA Independent Component analysis Components are statistically independent
GLCM Grey-Level Co-occurrence Matrix Spatial relationships between pixels
RLM Run-Length Matrix Representation of consecutive pixels value
LPB Local Binary Pattern Comparison between neighboring pixels
Gabor kernels Gabor wavelets Comparison between pixels’ spatial frequency

dom search, data mutation and data combination to produce high-quality feature sets.
The high-quality features are collected by continuous modification of the feature set.
During each iteration of the algorithm, a set of parents is picked (the selection stage).
At this point, the data inside each pair of parents is associated together, producing
a set of new children (crossover stage). The children solution is randomly mutated
(mutation stage), and a fitness score of the new created candidate solution is calcu-
lated. If the new candidate solution of data produces acceptable accuracy, then the
algorithm makes it a new parent, and the process is repeated until the newly pro-
duced candidate solutions do not significantly increase the accuracy of the selected
features. These steps are summarized in Table 5. The feature selection techniques
analysed in this section are summarized in Table 6.

Figure 6. An example of feature selection. Remote Sensing data sources are analyzed to attain
the highest possible accuracy using a greedy forward selection algorithm. The image displays the
accuracies, obtained using Stratified K-Fold cross-validation, during each iteration of the algorithm.
The X-axis represents the number of rounds, while the Y-axis displays the corresponding accuracy.
In this specific case, the optimal combination is identified at round number 4. The resulting
selected features are then utilized for further analysis. The level of accuracy drops after iteration
number 4 because then adding a new feature to the feature set decreases the importance of the
whole set.
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In the opposite case, the greedy backward selection, the feature set is initialized with
all the features in the original dataset. In each iteration of the algorithm, the feature
that produces the worst performance in terms of accuracy or loss is removed, and the
process is repeated until performance improvement stops [55].

The forward and backward feature selection methods can also be used together. This
process involves recursive iterations of both forward and backward selections un-
til the optimal subset of features has been found. However, this approach is time-
consuming and not necessarily the most efficient procedure for feature selection. In
the study referenced by [56], the authors employed a forward-backward algorithm
to select features from a dataset containing around 500000 samples of Single Nu-
cleotide Polymorphisms (SNPs). Additionally, the computational complexity of the
greedy forward selection is lower than that of the backward version of the algorithm,
as mentioned in [57]. It is worth of mentioning that both forward and backward se-
lections do not guarantee the finding of an optimal feature set.

Feature selection can be conducted using permutations [58], [59]. The Permuta-
tion method is used to find all possible relationships between each feature. During
each iteration, the algorithm permutes the feature, and calculates the performance of
the model trained with all features. Permutation consists in a re-arrangement of the
feature dimension, in order to explore different combination, consequently enhanc-
ing the performance of the model. A feature is considered important when, after the
permutation, the accuracy of the model increases, vice-versa, a feature is considered
not important if, after the permutation, the accuracy of the model does not change
and it should be ignored. The permutation guarantees that all the relationships be-
tween features are exploited. It helps to eliminate hidden relationships in the original
features. In addition, the permutation of the features does not require any extra com-
putation. However, if the feature variables are correlated together, permutation can
output inaccurate results.

Table 5. The three main stage of a GA algorithm.

Stage of GA algorithm
Selection Selection of random data
Crossover Combination of two or more selected data
Mutation Application of random changes to the data

2.1.3 Some classical PR methods

While the main focus of the present thesis is the deep learning methods, we shortly
discuss some of the most popular CPR methods. This material acts as a background
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Table 6. Summary of feature selection techniques used in this present study.

Technique Description
Greedy forward selection Features are added one per time until the best combination is found
Greedy backward selection Features are removed one per time until the best combination is found
Greedy forward-backward selection A mixture of forward and backward selection techniques
Feature permutation The relationships between features are exploited
Genetic algorithm It permutes candidates solutions to find the optimal ones

to the design of deep learning methods which will be the main methods used in arti-
cle I to VI.

Classical pattern recognition offers unsupervised and supervised algorithms to con-
duct studies in classification or regression. An unsupervised learning algorithm in-
volves the analysis of the data without labels. Most of the unsupervised approaches
are based on clustering, where the data with similar characteristics are grouped to-
gether, and the data with dissimilar characteristics is ported in different clusters. One
of the most popular and classical clustering methods is K-means clustering [60]. In
this method, the algorithm begins with randomly initialized centroids, and in each
iteration, data points are assigned to the cluster with the closest centroid. The dis-
tance between data points and centroids is typically calculated using some metrics
like Euclidean distance. Additionally, the centroids are updated through the use of
means or medians. The process of cluster assignment and centroid updating contin-
ues until either the algorithm has iterated a predetermined number of times or the
cluster assignments does not change anymore.

The Self Organizing Maps (SOM) [61] algorithm, detects efficiently topographical
feature relations from the input. SOM is able to map high-dimensional inputs to a
normally 4 or 2 dimensional discrete lattice of units so that inputs that are close in
the feature space tend to be represented with nearby in the map space.

The Multilayer Perceptron (MLP), is a supervised pattern recognition neural net-
work. The model maps sets of input data into the proper output. It is a universal
approximator [62] due to it continuously approximates a wide range of functions.
These functions can exploit the linear or non linear relationship of the data (both
input and output), only if the number of given unit and the activation function are
correct [63]. A MLP differs from a simple Perceptron network because it is a com-
bination of multiple processing units. Perceptron networks are largely used in binary
classification. MLP can have multiple layers between its input and its output layers.
These layers are called hidden layers. There are not any rule about how many hidden
layers a MLP and the number of neurons in each layer should have. The hidden layer
has a minimum of one neuron or unit. A good practice is to test the MLP with differ-
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ent numbers of layers and neurons and evaluate the one with the best performance.
The neurons are stacked together in order to accumulate more knowledge and ac-
curacy. MLP can use several different activation functions, like Sigmoid, Softmax,
Relu, etc., weights are continuously updated layer by layer, and consequently, the
prediction accuracy rises. The data should always be normalized to make the data in
the same range.

The training of MLP is based on the back-propagation method which works directly
with weights updating momentum in a recursively manner. When a weight is up-
dated the error from this update is tested and the error is also computed backward. In
MLP each hidden-layer output is fed to the next hidden layer. The back-propagation
helps the algorithm to lower the prediction error. In the output layer of the MLP the
classification decision is prompted.

Self-Organizing Maps (SOM) differ from traditional pattern recognition algorithms
like K-means. In K-means, the nodes operate independently, whereas in SOM, the
nodes are closely interrelated [64].

In classical pattern recognition, one of the simplest supervised classification tech-
niques is the k-Nearest Neighbors (KNN) algorithm [65]. In KNN, ’k’ represents the
number of neighbours the algorithm considers when making predictions. This value
is a hyper-parameter that significantly impacts the final outcomes of the algorithm.
While ’k’ can be an arbitrary number, the goal is to adjust it to minimize prediction
errors. A special case of KNN is the nearest neighbour (NN), where only the closest
sample is determined. KNN supports various distance metrics, including Euclidean,
Manhattan, Minkowski, and Hamming distances [66]. This diversity enables the al-
gorithm to be adaptable to different data characteristics and problem domains. NN
is employed when dealing with non-linear features and there is a limited number of
data points in the training set.

Support Vector Machine (SVM) [67], [68], [69] is a supervised pattern recognition
algorithm that can be used for classification or regression tasks. The objective of
SVM is to find a boundary hyperplane that clearly separates data points. The number
of hyperlines is proportional to the number of classes that the SVM algorithm has to
separate. The classes are mapped into a space, and SVM calculates a division line
that maximizes the distance between each class. The data points on one side of the
line will represent one class, the member points on the other side of the line will
represent another class, etc.

Decision trees are a family of supervised pattern recognition algorithms. They can
learn the hierarchical structure of the input data. Each tree data structure consists
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of nodes and branches. Branches are directed connected from a higher level node
(parent) to a lower level node (child), and for each node there is exactly one parent.
Each tree has a special node called root which does not own a parents. A forest has
several root. Every node of the tree stores a feature, and each node defines a unique
decision path from the root node that the tree should follow. Decision trees learn by
a brute force approach. The algorithm studies and learns recursively each sample in
order to build the feature hierarchy. The feature hierarchy determines the importance
of each sample. This recursion occurs until all the data points are outside the leaves
of the tree.

An example of decision trees is Classification And Regression Trees (CART). The
CART can be used for classification and regression tasks. CART provides each node
of the tree with a predictor value and a target variable. The algorithm uses the Gini
impurity measure [70] to evaluate how much random data are classified wrongly
according to the true class distribution of the dataset. However, the Gini impurity
measure is not the only possible chaise to adopt for the CART decision tree e.g.
mean square error can be used as well.

When multiple random trees are combined, a Random Forest (RF) [71] is created.
RF uses bootstrap algorithms [72], such as bagging and boosting, to build the feature
hierarchy. Bagging uses sets of trees trained on randomly sampled data. By collect-
ing results from different trees, RF may improve the model’s performance for unseen
data. Boosting considers a random subset of features contained in every node of the
tree, reducing overfitting. In general, RF uses the outcome of multiple decision trees
to make predictions. Each decision tree has its classification output. The decision
layer of the random forest calculates how many times a class is predicted in each
decision tree. Finally, the class with more prediction is the final predicted class.

2.2 Deep Learning

Deep learning is inspired by biological learning [73]. Like classical machine learning
approaches, deep learning models can be supervised, or unsupervised or a mixture
of both.

The difference between classical machine learning and deep learning is in the fea-
ture generation and extraction. In deep learning, feature extraction and detection
are tackled directly into the network, and deep learning features are learned by pre-
senting the data to the model. However, this requires much more data than classical
machine learning in order to train and evaluate the model.

Object localization and classification are one of the most common deep learning
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operations. The architecture used is the Convolutional Neural Network (CNN). CNN
has shown a great level of accuracy in discovering features from images. These fea-
tures are used to classify and localize objects from images. Moreover, CNN can also
be used to segment images into regions. Figure 7 shows examples of CNN capabil-
ity. Images are not the only input that CNN can deal with. Audio classification, time
series analysis, and signal data analysis are other tasks that CNN can tackle.

Convolutional Neural Networks contribute to raising the level of accuracy in the
maritime environments field. Real-time classification and ship detection are essen-
tial components for modern autonomous ships. To guarantee reliable detection and
classification of objects, CNN [74], [75] RNN (outside the scope of this thesis) [76]
and cGAN (outside the scope of this thesis) [77] are beneficial to enhance the image
quality under various weather and lighting conditions. These methodologies can im-
prove the visual quality of images, but at the same time, some of the image features
are eventually lost, and the reliability of the deep learning model is reduced.

The anatomy of a CNN can be summarized as follows: there is an input layer and
an output layer, and in between, there are one or multiple hidden layers. Hidden lay-
ers are composed of a convolution layer and the convolution activator. In addition, a
convolution layer can be followed by a batch normalization layer and a pooling layer.
A batch normalization layer is used to normalize the data during each computation of
the layers CNN. The batch normalization layers increase the training and evaluation
speed. The task of the pooling layer is to combine features from a previous layer
with the new features from the new layer, Figure 8 The combination can occur using
the maximization technique, extracting the max candidate from the feature map, or
by averaging, and extracting the average of the feature sets.

At high level, a network comprises two main sections: the feature extraction block
and the classification section. In the feature extraction block, features are examined
and extracted through a sequence of layers, including convolutional layers, pooling
layers, and dropout layers. These layers collectively identify and capture important
patterns and characteristics within the input data. Moving to the classification sec-
tion, a flatten layer is employed to transform the output from the previous layers into
a one-dimensional vector. This vector is then passed through fully connected layers
that enable the network to learn complex relationships and correlations between the
features. Finally, the Softmax layer is used to determine the predicted class, provid-
ing probabilities for each class label based on the learned features and relationships.
These feature maps are followed by a decision layer that defines the output of the net-
work, which uses fully connected layers to make final decision about classification
or object localization. The fully connected layers should have a sufficient amount
of neurons to make the final decision. Traditionally, there are multiple ways how
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Figure 7. A classical CNN architecture used for classification purposes.

Figure 8. Operation of the Pooling layers which are used to reduce the dimensionality of the
feature. The feature reduction occurs with average pooling and max pooling.

a CNN can be applied to pattern recognition problems. These include 1) Selective
Search (SS), 2) Sliding Window approach, 3) Region Based approach, and 4) Se-
mantic Segmentation.

In the traditional Selective Search (SS) [78], the CNN searches and puts together pix-
els with the same features (such as colours, textures), and then constructs an initial
candidate region. This process is called the bottom-up approach. On the contrary, in
the top-down approach, the generated regions are attached together in order to gener-
ate an initial hierarchy of candidate regions. During each iteration of the algorithm,
the quality of the candidate region is evaluated, and a score is produced. If the score
achieves a certain grade of accuracy, the candidate region becomes a Region Of In-
terest (ROI). All ROIs are evaluated, followed by a creation of a hierarchy of ROIs
that are used for further prediction or classification. Moreover, the ROI can also be
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compared with the others ROI which are coming from pre-trained model in order to
gain more fine-grained prediction.

SS [79] can achieve excellent results, but it is computationally expensive to con-
duct. Sliding window [80] is another approach that CNN uses to extract ROIs. The
working principle of the sliding windows approach is to scan the whole input feature
using a window. During every window pass, a process similar to the selective search
is conducted. The windows became scored regions of interest. The ones with better
score assume the value of objects of interest. In order to achieve better performances
and fit objects of different dimensions, the input is re-scaled and windows of differ-
ent dimensions are applied. The sliding window approach assures that all the parts
of the input are covered.

In the region based approaches, traditionally, there are two types of CNN detec-
tors: two-stage detectors and one-stage detectors. In the first family of detectors,
the R-CNN [81] and the Faster R-CNN [82] use selective search to determine object
candidates as the first stage of detection. These regions of proposal are sent to the
second stage detectors, where a sub-layer classifies the proposed objects, and a sec-
ond one is responsible of collecting the bounding box coordinates from the proposed
region. The R-FCN [83] performs the detection with similarity to the R-CNN family
of network. It does not use two different layers for the final classification and bound-
ing box regression, but it uses a fully connected network architecture.

The Fast R-CNN uses traditional methods like SS to discover RPN. In Fast R-CNN
[84], the features are extracted by a pre-trained CNN. The Faster R-CNN addresses
computational inefficiencies of Fast R-CNN. It is faster because it shares the fea-
ture extraction and Region of Proposal Network (RPN) operations. These RPNs
are generated within shared convolutional layers. Sharing this process improves the
computational speed of the model. Articles I, II and III use states that Faster R-CNN
is a solid choice for object detection in maritime environment.

Moreover, in Faster R-CNN, the features are extracted directly from the input im-
age instead of each RPN. The introduction of the ROI pooling that creates fixed size
feature maps of consistent size. Both Fast R-CNN and Faster R-CNN share Fully
connected layers that exploit the ROIs and generate the object classification, and lo-
cation passed to a non-maximum-suppression [85] that removes duplicates of bound-
ing boxes. When Faster R-CNN identifies multiple overlapping bounding boxes for
a single object, it select the best detection while discarding the others.

Single Stage Detector (SSD) [86] uses a one stage detector to perform object detec-
tions and classification. SSD scores the region of interest directly, generating only a
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limited number of boxes. In the same time SSD classify the object. Since SSD uses
only one stage for detection or classification, it is faster compared to other two-stage
detector neural networks. Articles I, II, and III uses SSD to evaluate object detection
maritime environment.

EfficientDet [87] is a high-performance and inexpensive computational resource Neu-
ral Network. Its backbone EfficientNet, optimizes the model parameters in order to
get the best possible accuracy during the training and prediction phase. The models
inputs are scaled in width, depth, to achieve better performance in the feature ex-
tractions. Article II uses EfficientNet, and it achieves the best average precision with
large objects.

Semantic segmentation models [88] are based on auto-encoders. Semantic Segmen-
tation is used to give for each pixel of an image with a specific label. Therefore, it
classifies each pixel of the input image into provided classes. An example of seman-
tic segmentation can be found in Figure 9.

Auto-encoders [89] are unsupervised learning neural networks that efficiently learn
from un-labelled data. Auto-encoder can discover relationships with the data without
the usage of the labels. They are mainly formed by an encoder layer, of a deep learn-
ing algorithm where the data is reduced in a features map descriptor. Similar to the
Unet [90], described in the next paragraph, this reduction operation is executed by
blocks of the convolution layers and max-pooling layer. The feature map descriptor
is then transferred to a bottleneck layer in charge of understanding the context of the
feature descriptor. This layer preserves only all the crucial information. At this point,
the noise is filtered as well. Finally, the decoder layer scales up the filtered features,
incorporating all the information discovered by the previous layers. Auto-encoders
are used mostly in the de-noise operation or in image generators.

A popular semantic segmentation network is the Unet, which uses two connected
models, an encoder model and a decoder model [90]. It is useful in remote sensing
[91]. The Unet is composed of an encoder layer, typically structured with sets of
convolution layers and max-pooling layers. These layers aim to capture spatial in-
formation of the input image. At this stage, the input dimension is reduced as well.
After the encoder layer, a bottleneck composed of multiple convolutional layers cap-
tures high-level features from the image. The decoder layer uses sets of up-sample
layers and convolution layers to increase the spatial dimension of the features. At
this stage, the Unet refines the discovered features. A skip connection section of the
network is focused on rebuilding the fine-grained spatial details from the high-level
features discovered by the bottleneck. In the end, the output layer produces a seg-
mentation map of the input.
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Figure 9. Example of deep learning techniques. In the leftmost image, the CNN performs object
detection and localization. The program detects and localizes swimming pools in Madrid. In the
second image, there is a pixel-wise classification (semantic segmentation) of Keminmaa region. In
the third image, the CNN is in charge of classifying objects.

SegNet [92] is a Fully Convolutional Neural Network (FCN) architecture for seman-
tic segmentation. The FCN uses fewer parameters than a traditional convolution
layer. The FCN layers utilize a small kernel size to make the feature analysis. The
FCN is called fully connected because each input neuron is connected to the output
neuron. SegNet uses a similar approach to Unet. The network has an encoder model
followed by a decoder model. The task of the encoder model is to discover and map
features from the input image. During this process, the input is down-sampled so the
FCN layer can use the interconnected neurons and a small kernel to reduce feature
mapping uncertainty. Moreover, the decoder branch uses the feature discovered by
the encoder to map each pixel provided by the input. SegNet uses the advantage of
FCN combined with pooling layers to achieve a concise borderline between objects.
During the final pixel map with classes, the input is up-sampled. The up-sampling
process also uses the max-pooling layer to avoid over-computation [93].

Generative Adversarial Networks (GAN) [92] has been designed to operate in the
cases where it is plausible to de-noise the input data by an auto-encoder and com-
press the output. The method uses two networks, one against the other one, to create
similar input to the ones given. The first network takes random data as input and has
the task of generating data similar to the input. The second network works as a dis-
criminator. It takes as input the data generated by the first network and the real data.
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If the two inputs disagree, the first network generates more data, and the process is
repeated until the discriminator is not able to distinguish the difference between the
created data and the original one. During every iteration of the GAN the first network
improves the internal knowledge of what is expected to render. The process is called
adversarial training because on the first network tries to be better than the second one.

The knowledge provided by trained deep learning models can work also in different
domains due to the ability of the deep learning models to generalize. For example, a
network trained with a large dataset, such as Microsoft COCO or ImageNet, can be
used as a feature extractor for other networks. This process is called transfer learn-
ing, and it helps to achieve higher model performance than training a model from
zero.

In addition, transfer learning techniques can make possible to use the same model
in different domains. Within small datasets or small amounts of data, classical pat-
tern recognition achieves better performance than deep learning algorithms. In other
hand, transfer learning has several advantages. Transfer learning can also be used to
train models from similar domains, saving plenty of computation time and training
data. The process works also with domains that share similarities as well.

Another advantage is that transfer learning uses the generalization capabilities of
a previously trained model to solve a totally new problem. The general idea behind
transfer learning is that the knowledge gained in terms of the weights accumulated
during the training with an abundant amount of data will be transferred to another
model with a small amount of data. Further, transfer learning can be used as a feature
extractor, may be followed by feature selection, where the goal is to obtain a subset
of the original features. The process of creating a subset of the original feature is
important, especially when it is costly or difficult for the pattern recognition system
to extract some of the features by itself. In addition, transfer learning offers the pos-
sibility of training a model. Some layers of the pre-trained model can be trained in
order to get better accuracy. In some cases, layers in charge of feature extraction can
be set as non-trainable due to their already good capabilities to extract features.

Transfer learning can be applied in various areas of pattern recognition, such as nat-
ural language processing, computer vision, autonomous vehicles and the healthcare
sector [94]. For example, due to the scarce amount of large ship datasets, transfer
learning is one efficient way to address the data problem by using the knowledge
generated by a general purpose dataset in one specif maritime domain.
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2.3 Data augmentation

Both supervised, and unsupervised learning methodologies demand a substantial
amount of data. The objective behind data augmentation is to increase the amounts
of samples into the dataset through transformative techniques applied to the original
data. By using techniques such as random rotation, random flipping, and random
zoom, it is possible to enhance existing features. Random flipping and random rota-
tion are used in articles IV, V, and VI.

Random flipping can be conducted in the horizontal and or vertical axes. The flip-
ping mechanism consists of changing the side of the image content. Translation and
rotation techniques consist of changing the content of the image in different posi-
tions from the original ones. With rotation, the content of the image is rotated in a
particular random angle. Thanks to this operation, it is possible to see the content of
the image from different positions and angles. It can be very helpful to generalize
the deep learning model. For example, in the case of real-time object detection, it
is important to detect an object promptly in every possible position. The detection
becomes simpler if the same object is trained in different positions. With the scaling
algorithm, the features in the image are scaled with different amount in order to make
the content of the images bigger or smaller.

Adding noise to the image is another technique that helps the ML algorithm to im-
prove the generalization capabilities. An example technique is so called salt and
pepper, where the algorithm randomly adds white or black spots to the image. This
technique helps to reduce the blurriness of the image. Brightness and contrast ad-
justment are used to add or remove light effects from an image. Saturation is used to
add or remove the purity of the colours in an images. Colour augmentation changes
pixels’ colour. These data augmentation techniques are summarized in the Table 7.
The authors of [95] uses Generative Adversarial Network (GAN) to transfer weather
condition from one image to another; this helps to increase the amount of data. GAN
techniques are helpful in maritime environments because weather conditions vary
often.

2.4 Model building and performance evaluation

Machine learning provides different types of models that can be adopted to solve
different types of practical problems. Depending on the type of problem that the
model should tackle, linear or non-linear models are adopted. A non-linear model is
used when there is a non-linear relationship between the dependent and independent
variables. Machine learning model building includes determining the model class
and its hyper-parameters for training the model.
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Table 7. Some of data augmentation techniques. The techniques highlighted in bold are used in
articles IV, V, and VI.

Technique Description Type
Flipping Move the axes of the feature geometrical

Translation Move the position of the feature content geometrical
Scaling The feature’s content is produced in different scale geometrical

Rotation The feature are rotated in random angles geometrical
Salt and pepper Add noise to the feature noise

Brightness Add or remove brightness from feature noise
Contrast Add or remove contrast from feature noise

Color Change color space from the feature noise
Saturation Add or remove saturation from image noise

Figure 10. Components of the learning process.

A typical approach to solve a ML problem starts with the formulation of the research
question. The process typically starts with a training phase. Evaluation is used to
see how well the model is performing. Various candidate models are then commonly
employed to address the research question. When a suitable model has been iden-
tified, its performance is evaluated with unseen data, leading to the formulation of
the final hypothesis. These components of the learning process are summarized in
Figure 10.
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Learning algorithms

Supervised learning algorithms can extrapolate patterns from specific instances to
make predictions about future outcomes. Unsupervised learning, on the other hand,
focuses on identifying common characteristics within data groups without prior ex-
amples. Reinforcement learning takes inspiration from the idea of learning through
experience, where algorithms learn based on a reward system shaped by positive and
negative outcomes. These diverse learning paradigms are summarized in Table 8. It
should be noted that the scope of machine learning extends beyond the tasks of pat-
tern recognition. Explanatory modeling utilizes models to shed light on anomalies
or phenomena, while predictive modeling yields predictions from input samples.

In unsupervised learning, the labels are not provided to the algorithms. In this case,
the model is going to learn by itself. These kind of algorithm can interpret the data
and create a data hierarchy.

In reinforcement learning, a set of actions is presented to the model. Every action
has consequences; good actions will give a good reward to the model, and bad ones
will give bad reward. The algorithm learns from a good rewards.

Model training can be done by several different methods, including rote learning,
supervised or unsupervised learning and a mix of both. Rote learning [96] is a ma-
chine learning algorithm where each sample is memorized, and the algorithm will
predict the learning input if it matches exactly. If the predicted sample does not
match exactly the learned sample, the model will miss-classify the output. The algo-
rithm memorizes new features as they are, storing their characteristics. Due to their
nature, rote learning algorithms need plenty of space because every new feature en-
countered is stored. Algorithms of this class do not have generalization capabilities
due to the pattern matching [97]. In addition, the rote learning algorithms do not un-
derstand the relationships between features. In order to avoid misunderstanding the
relationships between the features, supervised and unsupervised learning algorithms
can build a feature relationship hierarchy.

Data types

The data types that the supervised and unsupervised models can handle are manifold.
Categorical data involves segmenting information into distinct categories, each sam-
ple is assigned a new label. Alternatively, continuous data assigns numerical values
to each sample, accommodating a wide range of possibilities. Data representation
extends to objects like digital fingerprints, retinal scans, or handwriting samples.
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Moreover, data can capture event registrations, from gesture recognition to the steer-
ing directions of vehicles. Even images can be augmented with data, e.g. specific
regions can hold labelled objects. In such cases, the label encapsulates pixel values,
guiding the model’s discovery process.

Table 8. Different types of learning.

Types of learning
Supervised Uses labels to train the network

Unsupervised Only the data is given
Semi-supervised Mix between labelled and un-labelled data
Reinforcement Feedback system

ML models have a common denominator. They normally work with large num-
bers of parameters. There are two main sets of parameters. The parameters of the
first type are continuously updated during training. They are typically weights in the
model. The second type of parameters is called hyper-parameters, that define the
trend of the model in terms of performance.

Hyper-parameter tuning is the search for ideal parameters to get an acceptable perfor-
mance grade. These parameters are not trainable. A set of hyper-parameters might
help a model to enhance the performance, but other settings of the hyper-parameters
(resulting in different models) can reduce performance. The set of the parameters
varies as well. For example, in the case of image classification conducted with CNN,
hyper-parameters fix the number of units of each convolution layer, the learning rate
and the optimizer momentum. In RF, the hyper-parameters are the number of leaves
or the estimator’s number. Hyper-parameter tuning can be executed manually, but
more efficient methods exist, such as grid search or random search algorithms [98].
These techniques operate akin to brute force algorithms, systematically testing vari-
ous combinations of hyper-parameters. The configuration that yields the best perfor-
mance emerges as the chosen one.

The parameters and hyper-parameters should always be chosen carefully. A poorly
conducted selection of parameters can result in overfitting, where the model performs
well with the training data but cannot produce accurate prediction with data that was
not previously seen during the performance evaluation phases. This phenomenon
happens when the model has too much complexity or too many of parameters. When
overfitting happens, the algorithm memorizes all the data without understanding the
characteristics that help the model generalization. On the contrary, underfitting oc-
curs when the model has a too small set of parameters, and it is impossible to capture
all the necessary information needed to understand the underlying hierarchy of the
data. A model suffering from underfitting produces poor results both in training and
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testing.

Performance evaluation

The evaluation stage estimates the performance of a model. Typically, this involves
dividing the dataset into a training set and a test set.The model learns from the train-
ing set and then evaluates and makes predictions on the test set. It is crucial to note
that the model does not learn from the test set during the training phase; the test set
is exclusively reserved for evaluation purposes. Estimating the model’s performance
can be conducted with a more specific methodology. There are two common method-
ologies for evaluating the model’s performance: cross-validation and bootstraping
[99]. The most common cross-validation techniques are k-fold, stratified k-fold, and
leave one out [99]. Bootstraping algorithms estimate the performance of a dataset
by re-sampling the data into subsets. For both cross-validation and bootstrap, the
process of randomize and re-sample the dataset help to judge the performance of the
model and it estimates how good the model performs.

K-fold cross-validation is used to re-sample the dataset in k sub-samples of equal
size. The data is randomized in each sub-sample and divided into a training set and
a test set. For each fold, the model is trained and evaluated (giving a scope for each
evaluation round), and at the end of the k iterations, the model is evaluated, calculat-
ing the average of the k scores.

Moreover, nested N-fold cross-validation can adjust the performance of machine
learning models and, at the same time, it can optimize the hyper-parameters of the
model. It comprises an outer N-fold cross-validation, which divides the dataset into
folds, training sets, and test sets. The task of the outer loop is to access the model’s
performance on a specific fold. At this point, for any iteration of the outer loop, an
inner loop with N-fold cross-validation has the purpose of tuning hyper-parameters.
The advantage of the nested cross-validation is robust estimation of the model ca-
pabilities by discovering the best trade-off between the model’s performance with
unseen data and the tuning of hyper-parameters.

In an unbalanced dataset, some of the classes have many data points, and others
have a few. In this case, a special K-fold is used. In the Stratified k-fold, each sub-
sample of data is produced, preserving the percentage of the class samples. Within
Stratified k-fold, classes are balanced, and each fold contains samples from all the
classes. The authors of [100] propose a statistical approach to select the best possible
value. They state that the choice of k parameter should generally keep a low dataset
variance. The k values are deducted using an algorithm called Complete KCV.
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When the choice of k in k-fold cross-validation doesn’t provide sufficient confidence
in model performance assessment, it is possible to resort to a more exhaustive tech-
nique. This involves setting k to the total number of samples in the dataset. This
approach, known as Leave-One-Out Cross-Validation (LOOCV), aims to thoroughly
validate the model’s performance by randomizing the dataset in such a way that each
sample takes a turn as the test set. Its strength is the ability to evaluate model per-
formance on every individual sample. This method is particularly beneficial when
dealing with a small dataset where obtaining meaningful results from other cross-
validation techniques might be challenging due to limited data availability.

Performance metrics

The output of cross-validation should be interpreted with further analysis. Common
metrics to evaluate the performance of predictive models include the Mean Absolute
Deviation (MAD) [101], Mean Absolute Error (MAE) [102], Mean Square Error
(MSE) [103], ROC [104], and Confusion matrix [105].

MAD calculates the absolute difference between the actual and predicted value, tak-
ing the average from it. The MAD values should low as possible, meaning that the
values of the predictions are close to the values of the actual data. MAE measures
the difference between the predicted and actual classes but for regression operation.
MSE is used in regression tasks to measure the prediction accuracy. The difference
between MAE and MSE is that MSE weights better the errors but it is more sensitive
to outliers.

Classification generates different types of outcomes to evaluate the performance of
the model. These performance metrics compare the predicted class and the actual
ground truth. They are summarized in the Table 9. Let us assume that the actual
value can be true and false, and the predicted value can be positive or negative.
A True Positive (TP) case is when the classifier predicts a true class with positive
ground truth. In True Negative (TN), the predicted class assumes a false value, and
the ground truth value is negative. A False Positive (FP) case belongs to the case
when the predicted class is true, and the ground truth value is negative. A False
Negative (FN) case occurs when the predicted value is false, and the ground truth is
positive.

ROC [106] is a plot that illustrates the performance of a solver for a binary classifica-
tion problem. However, it can also be used in multi-label classification as one class
versus the other classes. The ROC estimates how many times a prediction belongs
to the correct class. In binary classification, Sigmoid function gives a value between
zero and one where the number expresses how confident the model is for one class
or the other. A manually defined threshold determines if the prediction belongs to
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Table 9. Measures for evaluating the performance of a classifier.

Model evaluation metrics
Value Predicted value True value

True Positives TP true positive
True Negatives TN false negative
False Positives FP true negative
False Negatives FN false positive

the first or the second class. It works as a discriminator between the two classes.
Given different thresholds, the trade-off of the curve can be analysed. The ROC
curve may change its shape within the area inside it. The obtained area expresses
the performance of the classifier. Moreover, the Area Under the Curve (AUC) [107]
of ROC measures the separability. Separability measures how much the model is
able to distinguish between classes correctly. For example, in binary classification, it
tells the user how many time the model predicts class 0 when the real class is 0, and
contrary it tells how many times the model predicts class 1 when the real class was
1. In general, the higher the AUC curve runs, the better the model predicts.

It is possible to determine the accuracy of the model and its performance by the
means of hypothesis testing. In statistics, null significance of an hypothesis means
the hypothesis is without a significant effect or relationship with other hypotheses.
This hypothesis can generate so called Type I and Type II errors. These errors are
raised when the prediction of the data is incorrect. Type error I occurs when the null
hypothesis tested is correct. Moreover, it is possible to reduce the probability of Type
I errors. However, it may increase the probability of raising Type II errors when the
null hypothesis is false. The Type II error is also called false negative, and it occurs
when the assumption of the hypothesis is true, but in reality is false.

Confusion matrices are valuable methods for checking the performance of a clas-
sifier. It identifies how well the model performs classification in all classes. Binary
classification divides the predicted values based on their true label. In multi-label
classification, each row shows the true value of class instances. Each column shows
the predicted value. In each cell generated by the combination between rows and
columns, the confusion matrix displays the count of each combination between ac-
tual and predicted values. With confusion matrices, it is possible to derive other
performance indices of the classifier, such as precision, recall and F1 score. The
confusion matrix provides not only the accuracy of the model but also the frequency
of predictions divided by classes.

The precision Equation 1 is used to evaluate the ratio between the TP over predic-
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tions. A high precision score indicates that the model can make accurate precision
by minimizing FP.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

The recall or sensitivity Equation 2 evaluates the true positive predictions over all
the actual positive cases included in the dataset. The meaning of high recall value is
that the model can properly detect true positive cases.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

The specificity Equation 3 measures the ability of the model to correctly identify neg-
ative cases among all true negatives case, therefore, it is focused on the minimization
of the false positive cases.

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
(3)

The F1-score Equation 4 is the harmonic mean between precision and recall. The F1
score shows the balance between precision and recall.

𝐹1− 𝑆𝑐𝑜𝑟𝑒 = 2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(4)

In object localization, the Intersection Over Union (IOU), represented by equation
5, assesses the model’s accuracy in localizing objects within a given input. This
metric quantifies the model’s performance by computing the ratio of the intersec-
tion area between the actual labeled box (typically the manually generated ground
truth bounding box aiding the algorithm in object identification) and the model’s
predicted box, divided by the union area of these boxes. The IOU ranges between 0
and 1, where a value of 0 indicates no overlap, while a value of 1 signifies perfect
alignment between the boxes.

𝐼𝑂𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
(5)

Article I, II, and III uses Average Precision (AP) and Mean Average Precision (mAP)
to compare the performances between detectors.

Average Precision =
∑︁

𝑛

(𝑅𝑛 −𝑅𝑛−1)𝑃𝑛 (6)
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In (6), 𝑅𝑛 and 𝑃𝑛 are recall and precision at the n IOU threshold.

The average precision summarized in Equation 6 It measures the area under the
precision-recall curve. It differ from the F1-score (4) which measures the trade-off
between precision and recall across all level of thresholds.

Mean Average Precision =
1

|𝐶|

|𝐶|∑︁

𝑖=1

AP𝑖 (7)

The mAP Equation in 7 calculate the AP across all the classes i of the dataset.
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Vehicles in the maritime environment expect a significant level of safety during nav-
igation, docks operations and moor operation. The vessel’s crew can not eliminate
all the possible risks related to sea navigation. Therefore, modern vessels can count
on multiple sensors to augment the level of security and safety on board the ship and
around the vessel’s environment. AI can increase the level of security by constantly
reading and elaborating information about the environment around the vessel. Some
of the naval operations can be automatized as well, thanks to the reliability of AI.
In addition, while sensors can improve security in the maritime environment, each
sensor type has its advantages and disadvantages. One way to increase the usability
of the variable data is to adopt sensor fusion techniques [108]. The fusion techniques
can raise the understanding of the external environment in time and space, to make
proper Situational Awareness [109][110] (SA).

SA helps to increase the safety of high-risk industrial sectors and consequently to
reduce human errors. It implies knowing what is going on around the environment
and the implications of a change on it. SA is a concept that is around multiple
disciplines with elevated levels of volatility, complexity, and uncertainty, such as au-
tonomous vehicles, aviation, and maritime environments. Information technologies
and AI introduce powerful, intelligent systems to tackle the complexity of SA. To
exploit the environmental complexity, three stages of SA need to be handled. These
are 1) the perception of the environment, 2) the understanding of the situation and
3) the prediction of future outcomes. This thesis focuses on the perception of the
environment (article I, II), and the understanding of the situation (article III).

In the maritime environment, the Automatic Identification System (AIS) [111], allows
a ship to track the positions of other ships. AIS assists the ship crew in avoiding in-
cidents and also enables maritime survelliance. It keeps track of the position, speed,
and direction of the vessel, and is completely automated, and it does not rely on hu-
man interactions. In addition, the system can be interfaced with other vessel systems,
such as the radar, in order to increase the SA and safety of the ship.

This chapter considers the main concepts and parts of a maritime Situational Aware-
ness system. The first section contains the different technical solutions for getting
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perceptional information from the navigation environment, while the second section
considers the pattern recognition problem related to the understanding of the situa-
tion. Furthermore, the third section describes how predictive models work.

3.1 Perception of the environment
The perception of the environment is a challenging process in developing maritime
autonomous devices. There are many different perception sensors that can be used
in the maritime environment. Sensors such as RGB cameras, Forward-looking In-
frared (FLIR) cameras [112], radar [113], and Light Detection and Ranging (LiDAR)
[114] equipment are placed into the vessel in order to sense, track and detect objects
around the vessel. Article I and II utilize RGB camera streams for vessel data col-
lection, while articles IV and VI leverage LiDAR data to construct Canopy Height
Models (CHM) and Digital Elevation Models (DEM) rasters.

The main components of an automatic navigation system include commonly vi-
sual or camera sensors. The images that cameras provide are challenging due to
dynamic background, absence of static points and distance of objects [115]. In addi-
tion, weather conditions such as fog or rain can increase the difficulty of the visual
sensors to properly detect objects. Lighting conditions, geo-spatial location, motion
of sensors and the difficulty to distinguish between sky and sea make the automation
of the perception process challenging.

RGB cameras are widely used in autonomous vehicles with the purpose of capturing
information from the external environment. RGB cameras sense visible light spec-
trum (400-700nm) that is converted into electric signals. The combination of the
primary light spectrum colours renders images that replicate the human vision. RGB
cameras work properly if the viewer has a proper amount of light. However, the light
conditions differ from day to night. RGB camera specifications are summarized at
Table 10.

Table 10. Typical RGB camera specifications.

Resolution Frames per second Pros Cons
720 pixels Depends on Depends on

1080 pixels camera cheap lighting
2k (2040×1080) model good resolution visibility
4k (3840×2160)

Infrared (IR) cameras [116] use the infrared region of the light spectrum to cap-
ture images with scarce lighting. However, IR cameras are not useful when the light
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Table 11. Typical IR camera specifications.

Resolution Frames per second Pros Cons
160×120 9 to 60 fps vision in the dark weather consitions
320×240 no sun light req. low resolution
384×288 high price
640×480
1024×768

condition is equal to zero. The specification of the IR cameras are summarized in the
Table 11.
FLIR cameras increase the visible spectrum light between 1000nm and 14000nm.
FLIR cameras rely on the principle that the higher the temperature of an object is,
the more radiation will be emitted. Each pixel of the captured image is assigned
a distinct colour based on the intensity of the radiation that it emits, for creating a
temperature map of the object. In the maritime environment, FLIR cameras are used
because they can detect the differences in heat between the lower temperature of the
water and the heat generated by inside vessels’ machinery. FLIR cameras can detect
objects from wider distances because they need less light than their IR counterpart.
Moreover, FLIR cameras can see through the fog until a certain distance, improving
the quality of vision in the maritime environment. FLIR camera specifications are in
Table 12.

Table 12. Typical FLIR cameras specification.

Resolution Frames per second Pros Cons
320×240 from 9 to 1000 works in low light conditions high price
640×480 detects temperature’s of the objects weather dependence
640×512 limited resolution

In the maritime environment, radars are used to detect, track, and locate objects.
Radars send electromagnetic signals, and read back the echoes generated of the ob-
jects. Radars send an electromagnetic pulse in some direction. When the electromag-
netic pulse hits an object, a slice of the signal is reflected back. Radars can detect
objects within a greater distance than cameras. The working principle of radar is sim-
ple. The elapsed time between the sending and receiving of the signal is converted
into distance and direction. The electronic pulse that the radar uses is unaffected by
weather or light conditions. In the maritime environment, radar is effective when
visual navigation is restricted by fog or heavy rain. Radar helps to determine the
current ship position and the position and cruise of other vessels. They allow a safe
passage between obstacles. The pros and cons of Radar system are summarized in
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the Table 13.

Table 13. A summary of the advantages and disadvantages of Radar systems.

Advantages Disadvantages
ability to penetrate fog and cloud Long operative time

gives position of objects Multiples false reading
ability to penetrate insulators Difficulty to distinguish multiple objects
cover wide geographical area Does not show colors of objects

determine speed of objects Can not distinguish type of objects

Light Detection and Ranging (LiDAR), works with the same principles as radar,
which measures the distance to a target. It produces a 3D points cloud representa-
tion of the environment. However, instead of sending and receiving electromagnetic
pulses, it uses light. Light pulses are sent from the device. When the object is tra-
versed by the light, it produces light reflection and the receiver part of the LiDAR
transforms the time elapsed between the sending and the reflection of the object in
distance and speed. Typical LiDAR specifications are summarized in the Table 14.
LiDAR has multiples usages. It is widely used in autonomous vessels. It can cre-
ate a map of the ship’s surroundings, enhancing the security of port operation or
navigation in situations of scarce visibility and high maritime traffic as well.

In addition to the above sensors, vessels rely on Automatic Identification System
(AIS) that is used as a localization system. The AIS is a broadcast transponder, and
it is used to send the current vessel location, in GPS coordinates, current course and
the current vessel speed to a satellite. At the same time, the AIS system shows the
positions of all other vessels within a range. The transmission and retirement of the
vessel data are conducted at regular intervals in order to keep the system updated.
The system is helpful to avoid incidents and collisions. Together with radars, AIS is
used as real-time sensors to raise awareness in the maritime environment. AIS can
not be switched off, even when the vessel is at anchor.

Table 14. Typical LiDAR specifications.

Rage Range (m) Angle Points Pros Cons

Long 35-100m 90° 5M
All weather performance

High resolution
Accuracy

High costs

Mid 90-200m 45° 5M
Ultra 200-400m 22° 2M Limited field of view
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3.2 Understanding the situation

The understanding of the situation is a typical pattern recognition problem. When
multiple sensors are used to understand the situation, the SA model uses all the sen-
sors’ information together. This process is called sensor fusion.

Sensor fusion can achieve a great level of accuracy in feature extraction from dif-
ferent types of input data, and it can be conducted at the input level of the neural
network. In early fusion, [117] the input data from sensors is concatenated before
feeding it into ML or DL model. The advantage of early fusion is that the data is seen
as a unique stream, and less data processing is needed. This process may reduce the
amount of errors in comparison to the use of single sensors. However, with the early
fusion of data, it is difficult to find a common ground to relate each data point from
different sensors.

Middle fusion [118] combines the data from different sources at an intermediate stage
of processing after the initial feature extraction and before the final decision. This
methodology is flexible, allowing the fusion at different stages of the model. Middle
fusion allows a flexible process of feature extraction because it is able to isolate and
collect only the proper features from each sensor, removing the not consistent ones.
However, middle fusion can be heavy in computation because the process of extract-
ing and combining features from different sensors is hard.

In the late fusion [119], the data from each sensor is passed to the model indepen-
dently, and the results are fused in the final decision layer of the algorithm. The
technique is used when the data from different inputs has different dimensionality,
and it is difficult to find a common ground to keep the data in the same dimension.
The advantage of late fusion is that the data are handled independently until the de-
cision layer. Late fusion offers the advantage of flexibility because there is more
freedom in the choices of the algorithm used to extract features from each single
sensor. It also avoids the problems of combining fusion data together.

Digitalization and data collection have helped developers and researchers to develop
powerful deep-learning techniques for the maritime environment. When the data is
collected from sensors, and the perception stage is over, the understanding of the
situation phase takes place. The data provided by the sensors described in Section
3.1 is used to precept the external environment. Once the data has been collected,
a process called feature selection, see section 2.1.2 can be applied. Feature selec-
tion uses techniques such as greedy forward selection, greedy backwards forward
selection, or genetic algorithms to select the data with the most significance in terms
of accuracy. In fact, feature selection reduces the number of input variables, dis-
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charging the data that contributes to reducing the accuracy, and it helps to reduce the
computational cost of the model. Moreover, the collected data is used by DL or ML
algorithms to create an efficient and accurate object detection and classification. In
[120], a DL proposed to detect targeted objects (classification) using multiples dif-
ferent detectors. The approach selects the detector that produces best accuracy in the
classification process, and then provides the localization of the object [121] using
the same previously selected network [120]. Articles IV and VI use late fusion to
achieve the best possible performance in pixel-wise classification. Article V studies
different levels of fusion (late and early), comparing these methods with uni-modal
architectures.

3.3 Predictive SA model
Prediction of future outcomes needs to create a model that is able to predict what
would be SA after a certain time ahead. For example, the model should be able to
predict the vessel’s position against other vessels in 5, 7 or 10 minutes ahead of time.
The decision after the prediction process should be considered in different scenarios
as well. Articles I, II, and III employ Faster R-CNN, R-FCN, EfficientDet, and SSD
to investigate detection performance across varying object sizes. In other scenarios,
for example, the time series prediction task can be conducted by The Long Short Term
Memory network (LSTM) [122]. LSTM is very helpful in time series analysis due to
the ability to memorize information over a long time range. Special information gates
handle the information flow. In order to train the model, LSTM uses techniques such
as back-propagation. The back-propagation, described in Chapter 2, helps to update
the weights of the network over the time series. Linear regression, in particular
auto-regression, may be used to study time-series as well. The working principle of
auto-regression is that the model uses past values to predict future outcomes. Auto-
regression works well when the mean and the variance of the input data do not change
over time.

3.4 Existing maritime datasets
In maritime applications, large amounts of data are needed for the SA to solve the de-
tection problem with high accuracy. Due to the scarce amount of large ship datasets,
one efficient way to address the data problem is the usage of transfer learning. Trans-
fer learning [94] uses a trained network from a generalized dataset, MSCOCO [123],
PASCAL VOC [124] and ImageNet [125], in a specific target task such as ship de-
tection. In the maritime environment, there are some datasets that are valuable for
building ML and DL models for improving SA.

In article I, and II Faster R-CNN, R-FCN, EfficientDet, and SSD models are pre-
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Table 15. Types of general dataset with vessel annotations.

Dataset Annotations Vessels Type of images Categories

COCO 2500000 3146
RGB,

Gray-scale
8

ImageNet 1034908 1071
RGB,

Gray-scale,
CMYK

15

Open Image 16000000 1000 Various 8
Pascal VOC 27450 353 RGB 1

trained using the MSCOCO dataset, which offers a large amount of features, ren-
dering the process of feature generalization. Article III uses trained model with
PASCAL-VOC and MSCOCO thanks to their abilities to locate object with high
confidence score. Furthermore, in article III, the efficiency of employing various
feature extractors within the detectors is analyzed.

In a maritime environment, one of the crucial operations is data collection. High-
performance object detection and classification algorithms rely on large-scale and,
multi-scenario datasets [121]. MSCOCO, ImageNet, Open Image and Pascal VOC,
contain ship annotations:
The MSCOCO dataset contains RGB and gray-scale images. There are eight types
of vessels in the dataset: 1) fishing boat, 2) cargo ship, 3) sailboat, 4) speed boat, 5)
kayaks, 6) canoes, 7) raft, and 8) other types of watercraft. The ImageNet contains
images from different colour spaces, such as RGB, gray-scale, and CMYK (Cian,
Magenta, Yellow and Black). Vessels are inherited in two macro-categories: vessel
and watercraft. They are summarized as follow: amphibious vehicles, narges, ca-
noes, catamarans, cruise ship, fishing boat, gondolas, kayaks, lifeboat, motorboat,
sailboat, steamship, submarines, tankers, watercraft. The OpenImage dataset con-
tains various types of colour space images. Due to the continuous update to the
dataset, it is difficult to say exactly how many vessel categories the dataset contains.
It may include: cruise ship, kayak, lifeboat, motorboat, sailboat, speedboat, subma-
rine, watercraft. The Pascal VOC dataset contains only RGB images in one category
(boat).

In the maritime environment, there are few specialized datasets for ship detection.
They are summarized in Table 16. The Singapore maritime dataset [126] contains
17450 annotated ships divided into six categories. The images are recorded during
the day and night. The RGB images resolution is 1920x1080. The dataset also con-
tains NIR images. Images are captures inshore and offshore. The ship categories are:
1) cargo ship, 2) tankers, 3) container ship, 4) passenger ship, 5) ferries, 6) tugboat,
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7) pilot boat 8) pleasure boats.

The SeaShip dataset [127] consist of 31455 annotated RGB images with six different
types of ship. The image resolution is 1920x1080. The categories are 1) ore carrier
(5126 images), 2) bulk cargo carrier (5067 images), 3) general cargo ship (5342 im-
ages), 4) container ship (3657 images), 5) fishing boat (5652 images), 6) passenger
ship (3171) [127]. In addition the SeaShip dataset contains also 3440 images.

The MCShip [128] contains 14709 labelled images with six military ships (7953
images) and seven civilian ships (8942 images). The images are obtained using a
web crawler, and they have a minimal resolution of 500x500 pixels. In the military
types of annotations, the dataset contains: aircraft carrier (906 images), auxiliary
ship (926 images), landing ship (340 images), destroyer (4355 images), submarines
(1175 images), missile boat (251 images). The civilian ship category contains: con-
tainer ship (1208 images), fishing boat (1660 images), passenger ship (1219 images),
sailboat (2444 images), speedboat (1087 images), tugboat (611 images), support ship
(713 images).

The “ABOships—An Inshore and Offshore Maritime Vessel Detection Dataset with
Precise Annotations” [129] provides a maritime-specific dataset for inshore and off-
shore vessels. This dataset takes into consideration nine ship categories, and it is
also recorded in different weather conditions, such as light and heavy rain, fog, and
sun. The dataset contains 9880 images with a resolution of 1920x720 pixels. It
contains nine ship types and two objects. The ship categories are: boat, cargo ship,
cruise ship, ferry, military ship, misc boat, passenger ship, motorboat, and sailboat.
Moreover, there are annotations for other objects such as floater, sea-mark.

Table 16. List of maritime datasets.

Name Total images Annotations Ship types
Seaship dataset 31455 40077 6

Singapore Maritime dataset 17450 192980 6
MCShip dataset 14709 26529 13

Aboship 9880 41967 9

3.5 Existing Maritime SA system
Due to the development of new technologies in AI, the demand for the development
of autonomous ships increased. Intelligent computer vision system supports the au-
tomation of ship navigation. Autonomous navigation helps to improve the SA of the
vessel environment. In [130] the authors reported that 75 – 96 % of the collision is
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due to human errors.

ML algorithms, such as SVM, can prevent abnormal ship movements [131]. The
data provided by the boat AIS system can be used to predict the behaviour of each
vessel’s trajectories [132]. In addition, the speed signal and course signal from AIS
system are used as input for AI algorithms to predict ship movements. Bayesian anal-
ysis offers advantages in pattern recognition in the maritime environment. Bayesian
statistics handle incomplete data. It detects unusual activities in the AIS data [133].
In addition, the Bayesian analysis improves the accuracy of vessel tracking relaying
only on AIS data. A discrete level of accuracy in tracking vessels is obtained us-
ing Ornstein Uhlenbeck stochastic process [134] applied to AIS data. The Ornstein
Uhlenbec algorithm efficiently detects vessels in unusual course or speeds in heavy
traffic conditions. AI algorithms require plenty of computational power to produce
results with a reliable degree of accuracy. Tracking vessels is computationally expen-
sive, which can be saved by detecting objects. The motion of a vessel is constructed
over time, and it is not necessary to detect motion at each clock tick [135].

The authors of [115] state that horizon detection is one of the challenging tasks to do
to provide a reliable SA of the maritime environment. In [136] the authors perform
the horizon detection by using correlations between frames. To detect the horizon,
they use two images, one as the base image and a new one that is tested against it.
The correlation generates a peak, resulting in the separation between the sea and the
horizon. Horizon detection can also be achieved as the maximum statistical colour
distribution between a region classified as sea and the region classified as sky [137].
Hough transform [138] is effective in this task because it can detect a separation line
between the sea and the sky. Therefore, the sea portion of the frame is further ana-
lyzed to detect objects.

One technique that is used to detect objects is called background subtraction [139]
[140]. The background subtraction aims to detect background information from a
frame. It then subtracts the background from the frame. Background subtraction
techniques are challenging in maritime environments because the background is not
static. Moreover, objects such as foam waves can be detected as foreground objects.
The maritime background subtraction becomes more accurate when using FLIR cam-
eras. These types of cameras can read the temperature of the water, creating a uni-
form space in the frame [139]. There are multiple background subtraction algorithms
used in maritime environments; the authors of [140] illustrate the performance of 23
algorithms. The algorithms are divided into methods that use basic statistical dis-
tance techniques, Gaussian distribution, colours and texture, and machine learning
approaches. The results from [140] show that background subtraction is a demand-
ing task, and it is difficult to tackle in a maritime environment. The low accuracy is
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due to the presence of colour variations, waves, and the ghosting effect of the camera.

At the data level, traditional machine vision approaches use background subtractions
and foreground detection to extract features from a given input to detect objects. Ad-
aBoost [141], HAAR cascade [142], and SVM [143] use sliding windows to collect
visual descriptors of the image. These methods determine the basic characteristics
of the proposed object, such as colours and shapes. Moreover, due to the particular
continuous shape and orientation of vessels, the separation between ships and the
background is a tedious operation, resulting in a reduction in the accuracy of ship
detection because some background areas may be classified as a vessel.

Vessel localization and tracking are challenging problems due to the continuous
changing of the environment. Rapid movement of objects is another demanding
situation for real-time object detection and classification. Operations such as detec-
tion and classification must rely on multiple input sensors to achieve proper tracking
and classification of other objects.

The authors of [144] proposed a multi-sensor fusion approach coordinated by a
probabilistic data association method to tackle the inaccurate level of detection and
classification in maritime environments. The object region proposal is generated by
LiDAR, RGB camera, Infrared camera and radar. The data provided by each of the
above sensors is fused, and then a Convolutional Neural Network is used to classify
objects inside these regions proposed. In [144] the sensor fusion approach, in mar-
itime environments reached the accuracy of 96.6%.

The author of [145] studied the sensor fusion approach to increase the level of SA
in offshore working environments. The aim was to avoid dangerous situations dur-
ing offshore operations. The data were provided by the Offshore Simulator Centre
(OSC) and originated from different sources, such as audio, video, and biometric
data. However, the author presented only fused data for a visualization approach.
The study visualized in real-time the data provided by sensors. For all this data, a
predictive model should still be implemented. The model should predict the SA in
different ranges of time in a manner that would guarantee safety improvements.

In [146], a sensor fusion approach to identify and isolate dangerous zones during
the placement operation of offshore hardware. The system is installed into the op-
erational helmet of the operator, and it starts to vibrate, providing feedback when
a dangerous situation is very close to the worker. Fusing the various sensors from
different hardware installed offshore and creating a predictive model able to follow
the work activities should increase the level of security in this type of operation. The
authors of [147] provided a vessel detection pipeline using Faster-RCNN [148]. The
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pipeline is divided into three major steps. In the first one, the authors use a region
proposal layer to generate possible ship candidates using detectors such as LPB and
HOG [149]. In the second step, the proposed objects are classified, and in the end, the
pipeline verifies the detected region. The region evaluation is usually conducted by
SoftMax, placed in the final layer of the CNN. The activator produces a probability
distribution that minimizes the cross entropy between classes. However, the authors
of [147] state that SVM achieves better results in object classification. The authors
handled the vessel localization using HOG [149] instead of traditional bounding box
regression adopted by R-CNN [150] or Faster RCNN.

In the Transfer Learning for Maritime Vessel Detection using Deep Neural Networks
[151], the authors use transfer learning with Faster-RCNN, R-FCN, and SSD. The
model is pre-trained using the Microsoft COCO dataset as the base domain. The
transfer learning process is applied to a specific maritime domain dataset, the Sea-
Ship dataset, explained in section 3.4. The authors of [152] state that the maritime
environment needs to increase the level of efficiency in the classification and de-
tection of vessel. However, a traditional neural network approach can result in a
performance below the average due to the lack of specific data. Therefore, in order
to achieve the desired level of the efficiency, transfer learning should be adopted. It
is helpful to initialize all the parameters of a CNN and apply it to a smaller dataset.
The authors of the article number 2 used eight pre-trained models using the Ima-
geNet dataset. These models are: 1) VGG16 [153], 2) Xception [154], 3) Resnet50
[155] 4) DenseNet121 [156], 5) MobileNet [157], 6) EfficientNetB0 [158], 7) Incep-
tionResnet [159], and 8) Inception [160]. The best model i.e. the one that produced
the best accuracy, was the EfficientNetB0 with 94.88% accuracy.
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4 Satellite and Areal Imagery

DL and ML algorithms are powerful in remote sensing (RS) applications. They
have shown high performance in tasks such as land soil classification [161], land
cover classification [162], semantic segmentation [163] and vessel detection [164].
Remote sensing utilizes different satellites and areal measurement systems such as
Synthetic Aperture Radar (SAR), Airborne Laser Scanning (ALS), and optical satel-
lites.

Furthermore, peatland semantic segmentation, as highlighted in [165], plays a crucial
role in ecosystem understanding and finds widespread applications in agricultural
field planning and urban management. Article V of the present study suggests its
utility in land cover classification, as it assigns labels to individual pixels in images
based on predefined classes.

4.1 Remote Sensing

ML has an important role in RS data processing. Traditional ML algorithms, such as
SVM [166] and logistic regression [167], can classify different types of crops from
RS data. They show advantages and disadvantages in terms of accuracy depending
on the input data used. Therefore, fusing different satellite image sources is a solu-
tion to improve the land cover classification accuracy; early, middle, and late fusion
are applicable.

Early fusion is conducted at the input level of the network. It can directly con-
catenate raw data from different sources. Data concatenation in the input level of
the networks helps to use RS input with common spatial resolution. In middle fu-
sion, input sources are fused at the intermediate level of the network. This fusion
may be used when the different remote sensing sources have the same spatial resolu-
tion. Before the fusion process, each input’s information is extracted as a stand-alone
feature. Then, they are combined to obtain a more exhaustive representation of com-
bined features as a single entity. Before the decision layers, some convolutional
layers can analyse the detail of the obtained features. This fusion methodology is
adopted in article V. Article V conducts a comparison between early and late fusion
techniques in remote sensing. Additionally, it explores the differences between these

47



Luca Zelioli

fusion approaches using all available bands of each input, as well as fusion using
only the selected best bands.

In the late fusion, each of the inputs is treated as a single entity. The RS data is
combined at the final decision layer of the entire network. It helps to isolate the fea-
ture from each single input. Late fusion is used in the SFS process in article IV and
VI. Each of these fusion approaches, early, middle, and late, were already described
in Section 3.2.

The authors of [168] showed the difference in the performance in the three types of
fusion architectures of maritime vessel detection using colour and infrared cameras.
These fusion architectures gained more performance in accuracy than non-fused ar-
chitectures. In [169], the authors developed a sensor fusion for water and wet areas of
the ground classification, integrating SAR images, optical images, and LiDAR data.
In addition, they investigate the differences between the classification of individual
sets of inputs and the fusion of these three inputs. In soil type classification, errors
can occur due to the wind, especially in water and ice classification. Therefore, er-
rors can be mitigated with the usage of SAR sensors operating within the same angle.

CNN achieves an acceptable level of accuracy in many remote sensing applications
[170][171][172], as they can extract complex information from raster. Moreover,
CNN is also used in sensor fusion. It exploits features from different remote sensing
sources. The authors of [173] used a combination of SAR images and LiDAR data
to classify rural and urban areas. CNN and sensor fusion were combined. This en-
hanced the quality of the raster by transforming and combining low-resolution raster
which rendered the more efficient collection of relevant information. The fusion is
used to combine and fuse pixels from different sources, transforming the original in-
put into super-sampled high-resolution image [174]. CNN has been used to classify
crop types from different satellite sources, gaining better accuracy than Multi-Layer
Perception (MLP) [175].

4.2 Remote sensing data sources

In this section, only the most common RS data sources are reviewed, having also
contributed to this thesis. Satellites are built for different purposes, and they iden-
tify earth’s features from space, such as electromagnetic fields, radiation, weather
conditions, and maritime surveillance. Satellites have spectral, spatial, temporal, po-
larization and optical sensors [176]. These sensors can read and translate in human-
readable content the light emitted by the Earth. Spectral sensors are able to mea-
sure the reflected light from our planet. From their orbital position, spectral sensors
can detect the chemical composition of objects, revealing characteristics of materials
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such as the soil type composition.

The authors of [177] simplified the approach used to read the spectrum from the
spectral sensor. In particular, they used arrays of photo-detector sensors where each
sensor is in charge to read a particular wavelength range. Moreover, they used a
predictive model to rebuild the final spectral image. In their study spatial sensors
measure the size of the features. The resolution of the image refers to the size of the
area contained in one pixel provided by the satellite image.

The authors of [178] investigated the relationship between the size of images and
the information that it contains. The temporal sensors measure the elapsed time be-
tween the sensing acts of the satellites. In the [179], temporal analysis was used to
tackle the challenges that imply monitoring the changes in the Earth’s environment.

Polarization is defined as the skewness between the vibration direction relative to
the spreading direction of an electromagnetic wave [180]. It measures the wave vi-
bration in relation to the direction of the propagation of the light. Objects from the
Earth spread a polarized signal within some directions. Therefore these signals col-
lect information about this movement. The polarization sensors read the electromag-
netic radiations emitted by natural Earth resources such as snow, rocks, clouds and
oceans. The authors of [180] state that bidirectional polarization (polarization in two
directions) is caused by: 1) solar electromagnetic radiation that irradiates the Earth
and 2) electromagnetic radiation emitted by an object on Earth, and bi-directional
polarization can enhance the information provided by the polarization sensors.

Aperture Radar is a sensor from the optical sensor family that produces and sends
wave-light from space to a location. The SAR sensor calculates the quantity of en-
ergy that is reflected back from the Earth to the sensor. The resolution of the image
provided by SAR sensors is directly related to the length of the antenna in which
the SAR sensors are mounted. A particular optical sensor array is the Multispectral
Instrument (MSI) [181] that allows collecting data from different bands of the elec-
tromagnetic spectrum. Some of the most used bands are summarized in the Table
17.
Spectral sensors, spatial sensors, temporal sensors and polarization sensors are mounted
as sensor arrays into satellites. Sentinel-1 uses C-band SAR to detect features from
the Earth [182]. These bands are summarized in Table 17. The main purpose of
Sentinel-1 is the surveillance of the maritime environment, land, ice and forestry.
The SAR module has a spatial pixel resolution of 5 meters. The Sentinel-1 constel-

1ESA: https://sentinel.esa.int/web/sentinel/missions/sentinel-1/instrument-payload/resolution-
swath Accessed 26th November 2023.
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Table 17. Typical Sentinel 1 (SAR) bands with their applications. In this table, for each band
reported, a typical usage is described. source: Europen Space Agency (ESA).1

Band Frequency Wavelength Application
Ka 27–40 GHz 1.1–0.8 cm Airport surveillance
K 18–27 GHz 1.7–1.1 cm Water absorption
Ku 12–18 GHz 2.4–1.7 cm Satellite altimetry
X 8–12 GHz 3.8–2.4 cm High resolution monitoring
C 4–8 GHz 7.5–3.8 cm Ice, oceans and maritime navigation
S 2–4 GHz 15–7.5 cm Agriculture monitoring
L 1–2 GHz 30–15 cm Biomass and vegetation mapping
P 0.3–1 GHz 100–30 cm Biomass and vegetation mapping

lation orbits in the same direction as the sun, with a cycle length of 175 days. Their
operational mode is summarized in the Table 18. Articles IV, V, and VI use Sentinel-
1 rasters.

Sentinel-2 is a constellation of two satellites. They orbit in the same direction as
the sun. The aim of Sentinel-2 is land monitoring. In order to monitor the Earth, it
mounts an MSI system composed of 13 bands, where four bands have 10 m spatial
pixel resolution, six bands have 20 m spatial pixel resolution, and three bands have
60 m spatial pixel resolution. The MSI collects data row by row using the locomotion
of the satellite. The applications of Sentinel-2 bands are summarized in the Table 19.
Moreover, Sentinel-2 raster were used in article IV, V, and VI.

Table 18. Operational mode for Sentinel-1 satellites. Source: ESA.2

Operational mode for Sentinel-1
SM Stripmap mode 5m × 5m
IWS Interferometric Wide Swath 5m × 20m
EWS Extra Wide Swath 25m × 80m
WM Wave mode 20km × 20km - 20m × 5m

In order to capture as much information as possible, the Sentinel-2 bands are com-
bined together. Natural colour images are obtained by aggregating bands B4, B3,
and band B2. Combination of bands B8, B4, and B3 creates a map of the vegetation
status because band B8 is good for capturing the light reflected by the chlorophyll

2ESA: https://sentinel.esa.int/web/sentinel/missions/sentinel-1/instrument-payload Accessed 26th
of November 2023

3ESA: https://sentinel.esa.int/web/sentinel/missions/sentinel-2/instrument-payload/resolution-and-
swath Accessed 26th November 2023.
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Table 19. Bands and their typical usage for Sentinel-2. Each band can work as single feature

extractor. Combining multiples bands together, more features can be extracted. Source: ESA.3

Band Wavelength Application
B1 443 nm Coastal and Aerosol analysis
B2 490 nm Blue band
B3 560 nm Green band
B4 665 nm Red band
B5 705 nm Visible and Near Infrared (VNIR)
B6 740 nm Visible and Near Infrared (VNIR)
B7 783 nm Visible and Near Infrared (VNIR)
B8 842 nm Visible and Near Infrared (VNIR)
B8a 865 nm Visible and Near Infrared (VNIR)
B9 940 nm Short Wave Infrared (SWIR)
B10 1375 nm Short Wave Infrared (SWIR)
B11 1610 nm Short Wave Infrared (SWIR)
B12 2189 nm Short Wave Infrared (SWIR)

contained in the leafs of trees. The raster produced by combining the short wave
infrared bands (B12, B8A and B4) describe the vegetation density in green scale.
Bands B11, B8 and B2 are used to enhance the agriculture in the analysed areas. The
bands B12, B11 and B2 are used to find geological features, and coastal studies are
possible by combining B4, B3, and B1.

More complex imagery is possible by performing arithmetic operations for bands
[183]. The vegetation index is obtained by (B8 - B4) / (B8 + B4), where dense
colours show the good quality of the canopy. The moisture index is used to check the
humidity of the terrain and it is obtained by (B8A - B11) / (B8A + B11). The band
combinations are summarised in the Table 20.

Table 20. Typical band combinations Sentinel-2. Source ESA.4

Sentinel-2 MSI combination
RGB image B4 B3 and B2

Vegetation status B8 B4 and B3
Vegetation status B12 B8A and B4

Agriculture B11 B8 and B2
Geology B12 B11 and B2

Bathymetric B4 B3 and B1
Vegetation index (B8 - B4) / (B8 + B4)
Moisture index (B8A - B11) / (B8A + B11)
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The scope of the Radarsat satellites constellation (there are two twin satellites, Radarsat-
1 and Radarsat-2) is to provide scientific information about forestry, agriculture, wa-
ter and ice analysis. The main hardware that Radarsat uses is SAR sensors. It uses
a C-band described in Table 17 with a frequency of 5.3 GHz. Radarsat is able to
acquire images with single or dual polarization with different orientations, vertical
and horizontal. The pixel spatial resolution of the image is between a range of 5 and
20 m for high-resolution images. The medium-resolution images offer a spatial pixel
resolution between 20 and 500m.

Terrasar-X [184] is a German satellite that collects SAR images with very precise
geographical information. The scope of these satellites is the understanding of the
Earth’s surface. It mounts an X band 17 in order to collect data. It uses image acquisi-
tion techniques such as strip-map, spotlight and scanSAR. Spotlight applications are
mainly used in surveillance and intelligence applications. Moreover, the scanSAR is
used as a surveillance device in maritime environments. The data collected from the
twin satellites TerraSAR and TanDEM, imply the production of DEM images. The
pixel spatial resolution has a range between 1 m and 16 m5.

Since 1970, Landsat has been monitoring Earth’s resources and environment. Cur-
rently, Landsat constellations are composed of nine satellites. However, some satel-
lites, such as Landsat 7, have dismissed due to their extensive periods of utilization.
Currently, only Landsat 8 and 9 are operative. Landsat satellites are designed to mon-
itor the Earth’s environment for extensive periods of time. Nowadays, the Landsat
program has collected more than 4 million images, and this number is going to in-
crease because Landsat 9 has the capacity to record more than 1400 images per day 6.
The images are acquired by fluctuating sensors back and forth continuously. At the
end of fluctuation, sensors are calibrated in order to get the best possible information.

The Operational Land Imager 27 and the Thermal Infrared Sensor 28 are two in-
novative instruments that operate in Landsat 9. The Operating Land Imager 2, com-
posed of a modern set of telescopes and photo-sensitives detectors, is able to capture
high-resolution images with a range of 185km. The Thermal Infrared Sensor 2 is the

4ESA: https://www.eoportal.org/satellite-missions/copernicus-sentinel-2 Accessed 26th November
2023.

5ESA: https://earth.esa.int/eogateway/missions/terrasar-x-and-tandem-x#instruments-section Ac-
cessed 12th December 2023

6NASA: https://landsat.gsfc.nasa.gov/satellites/landsat-9/ Accessed 12th December 2023
7NASA: https://landsat.gsfc.nasa.gov/satellites/landsat-9/landsat-9-instruments/ Accessed 12th De-

cember 2023
8NASA: https://landsat.gsfc.nasa.gov/satellites/landsat-9/landsat-9-instruments/ Accessed 12th De-

cember 2023
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improved version of the one mounted on Landsat 8. The new version removes the
calibration problem of the previous version. It also mitigates artefacts produced by
the previous model when sensors are exposed to intense light [185]. The authors of
[185] state that calibration errors are reduced by 8%. Both Landsat 8 and 9 mount
11 bands. They are summarized in Table 21.

Table 21. Typical Landsat bands. Source: National Aerospace Agency (NASA).9

Typical Landsat 9 and 8 bands usage
Bands Wavelength (µm) Resolution Applications

1 0.433–0.453 30 m Dust and smoke
2 0.450–0.515 30 m Blue
3 0.525–0.600 30 m Green
4 0.630–0.680 30 m Red
5 0.845–0.885 30 m NIR
6 1.560–1.660 30 m SWIR
7 2.100–2.300 30 m SWIR
8 0.500–0.680 15 m Panchromatic band
9 1.360–1.390 30 m Brights band
10 10.6-11.2 100 m TIR
11 11.5-12.5 100 m TIR

The Landsat 9 bands cover various ranges of the light spectrum. In particular, Band
1 captures a particular range of blue and violet, and it is mainly used to collect dust
and smoke information. Moreover, it is used also to check the quality of the air and
water. Bands 2, 3, and 4 are used mainly to produce RGB images. Band number 5
is in charge of analysing the near-infrared wave-lights. It is also used to check the
vegetation status because the leaves of vegetation reflect the wave-lights back into
the sky. Bands 6 and 7 are combined to produce SWIR, which measures the level of
land’s moisture. The Band 8 is used to collect black-and-white images of the Earth.
The band produces accurate and sharp black-and-white images. Band 9 is unique in
its gender because it can capture a very tiny portion of the wave-lights, and it is used
to study clouds. The combined bands 10 and 11 produce the thermal infrared TIR
that measures the temperature of the air [186].

Satellites offer plenty of source information about the Earth from space. However,
satellites are not the only source of data for remote sensing. Areal photography
is conducted on the Earth and it produces RGB images, LiDAR cloud map points
and derivatives such as Digital Elevation Model (DEM) and Canopies High Model

9NASA: https://landsat.gsfc.nasa.gov/satellites/landsat-9/landsat-9-bands Accessed 26th November
2023.
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(CHM). LiDAR, analysed in Section 3.1, is able to measure the distance between the
sensor and the surface of the Earth. The quality of DEM and CHM is determined by
the number of points per minute that a LiDAR is able to emit. For more information,
see Table 14. DEM is derived by extracting from the LiDAR clouds the points with
the lowest ground level, and the CHM are derived from the upper points. In addition,
satellites such as TerraSAR-X and Radarsat-1 may produce DEM thanks to their in-
terferometric sensors. DEM shows how the physical surface appears, providing a
visual representation of the terrain elevation. The CHM, on the other hand, shows
the status of the vegetation, providing their elevation information.

National Forest Inventory [187] (NFI) is the result of previous works, and it can
be used as remote sensing data source. National Forest Inventory had a central role
in the articles IV, V and VI included in this thesis. The NFI, provides periodic in-
formation about forests that cover all Finland, including de-forested zones. The raw
data was obtained by collecting real in-site observations, and the NFI maps were cre-
ated predicting from these in-site observations.

In the RS sector, there are multiple different data sources, such as data provided
by micro and mini-satellites. However, the description of those is skipped because
they are out of the scope of the present thesis.
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5 Contribution of this thesis

In this section, the scientific contributions of our publications included in this the-
sis are reviewed. The publications are divided into two research topics. The first
research topic deals with the maritime environment, and the second one concerns
remote sensing. Three of these publications, articles I-III, deal with the the maritime
environment. Three articles IV, V, and VI are related to the remote sensing. For
each article, we provide a summary, description of methods and datasets, and the
contribution of the author of this thesis.

5.1 Article I: Comparing CNN-based object detectors
on two novel maritime datasets

Summary

This paper evaluates the performances of the three main CNN-based detection mod-
els including SSD, Fatser R-CNN, and R-FCN in the maritime environment. We
investigate the impact of different feature extractors and vessel size on the perfor-
mance of these models. In addition, the models are compared in terms of running
time and accuracy. They are trained on large-scale MS-COCO dataset as a general
dataset. The experiments are carried out using two real datasets which have been
collected in Finland.

Methods and data

We selected one-stage detector (SSD) and two stage detectors (Faster R-CNN and
R-FCN) for vessel detection. The detectors were used with different feature ex-
tractors. For instance, SSD was evaluated with MobileNet-v1 [188], MobileNet-v2
[189] and Inception-v2 [190]. Detectors Faster R-CNN and R-FCN were evaluated
using different feature extractors NasNet [191], ResNet50 [192], ResNet101 [193]
and Inception-resnet-v2 [193], see Chapter 2 for description of detection methods.
Two real marine datasets were obtained in Finland to represent different weather and
light conditions. The first dataset, (Dataset1), is a preliminary version of the dataset
that will be described in the article 2. It is composed of 4800 frames captured from
135 videos recorded from June to July 2018 between Turku and Ruissalo archipelago
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Table 22. Summary of the average precision (%) for Dataset1.

Object size Detector Feature extractor AP
Small objects Faster R-CNN NasNet 34.28

Medium objects Faster R-CNN ResNet101 55.65
Large Objects Faster R-CNN ResNet101 74.00

Al objects Faster R-CNN ResNet101 57.05

in South-West Finland. The frames have a resolution of 1920×720 pixels. To en-
hance the dependability of the article’s findings, 400 frames were chosen randomly
and then they were manually annotated. The total number of annotated vessels was
850. In addition, the frames included scenes with different lighting conditions and
weather varieties.

The second dataset, Dataset2, includes 1750 images from Turku archipelago. The
dataset contains vessels (passenger vessels, motorboats, sailboats, and docked ves-
sels) with different types of surrounding landscapes. The dataset contains RGB im-
ages and IR images. The size of the images is 1200×400 pixels. The total number
of annotated objects was 9137.

Results and contribution

To evaluate the performance based on different object sizes, we computed the Av-
erage Precision (AP), metric for small, medium, and large vessels in both datasets
see Table 22 and 23. In maritime, the object can be categorised based on the size
of bounding box that represents the distance between the object and camera. Small
objects are transformed into distant objects, medium objects become objects at a
moderate distance, and large objects are considered as close objects. For small ob-
jects the area is less than 322 pixels, medium objects where the area is in between
322 pixels and 962 pixels and large objects have an area greater than 962 pixels.
Area is measured as the number of pixels in each bounding box. For small vessels,
Faster R-CNN (NasNet as feature extractor) got the best accuracy in both datasets.
Faster R-CNN with ResNet101 can have high accuracy for medium (55.6%), large
(74.0%) and all objects (57.0%) compared to other methods. SSD (MobileNet-v1)
got the best accuracy for small objects in Dataset 2. For medium objects, Dataset
1 scored 55.6% with Faster R-CNN (ResNet101) and Dataset 2 scored 24.6% with
SSD (MobileNet-v2). For large objects, Dataset1 got the best score (74.0%) with
Faster R-CNN (ResNet101) and Dataset 2 (86.4%) with R-FCN (ResNet101).
To compare the proposed models in term of the running time, Faster R-CNN with
inception V2 is the fastest. However, its performance is lower than Faster R-CNN
with ResNet101. As a conclusion, this article contributes to investigating how the
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Table 23. Summary of the average precision (%) for Dataset2.

Object size Detector Feature extractor AP
Small objects SSD MobileNet-v1 16.43

Medium objects SSD MobileNet-v2 24.66
Large objects R-FCN ResNet101 86.46

All objects Faster R-CNN ResNet101 19.60

observed object distance affects the recognition and detection accuracy. Without the
usage of a specialized dataset, it is not possible to obtain high recognition rates.

Author’s contribution

The author of this thesis implemented the Python code in charge of preparing the
dataset and creating the annotations manually for Dataset1. Moreover, he also helped
in the evaluation process and in the interpretations of the results. He has also took
part in the process of writing the article, especially the related work section.

5.2 Article II: Aboships—an Inshore and Offshore Mar-
itime Vessel Detection Dataset with Precise Anno-
tations

Summary

Maritime vessel detection is crucial for autonomous maritime vehicles or maritime
surveillance. Satellites can provide real-time data for the maritime environment, but
their use is challenging because satellites can not provide valid information about the
visible portion of the vessel, occlusion, and scale variations of the vessels. To address
these problems, it is necessary to create a maritime dataset from waterborne images.
Waterborne images can be helpful in relevant tasks such as maritime surveillance,
monitoring of illegal fishing, and military operations.

In this article, a new maritime dataset, Aboships was created and evaluated by differ-
ent CNN-based detectors. The dataset is specialized for performing vessel detection
and classification. It contains 9880 images which are manually annotated into ves-
sel instances (including nine types of vessels), seamarks and miscellaneous floaters.
Totally, the Aboships dataset includes 41967 annotations.

Methods and data

In order to improve the annotation process and increase the consistency of the dataset
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labels, the authors use the Channel and Spatial Reliability Tracking (CSRT) [194][195]
as a common tracker algorithm. The CSRT algorithm tracks objects in videos or in
a series of frames. It uses a set of correlation filters derived from the target objects
to track the objects frame by frame. In addition, the correlation filters are updated
in each frame in order to estimate the changes in dimension or appearance of the
objects. In this article, if the CSRT tracker loses objects after a certain amount of
frames, these faulty frames are labelled again. For performing object detection and
classification, we evaluated four state-of-the-art CNNs which were used in article I
with the same feature extractors. Here, we also tested EfficientNet D1 [87]. In addi-
tion, the performance of all detectors was evaluated based on the object’s size.

The primary source of the dataset was a set of 135 videos recorded with a resolution
of 1,920 × 720 pixels. The camera was installed in a vessel and it recorded videos
for 13 days (26 June 2018–8 July 2018), between Turku and Ruissalo. The recorded
videos contain a variety of weather conditions. A LiDAR system was adopted as
well, with the primary purpose of calculating the distance between the vessel and all
the other objects around. When the LiDAR detects objects far away, or the detection
is out of range, the frames were removed from annotation.

Results and contribution

The chosen accuracy evaluation methods are the Intersection Over Union (IOU),
and AP, see Chapter 2. The average precision is calculated for objects of different
dimensions in the same way as in Article 1. The experimental results (Table 24)
show that Faster R-CNN with InceptionResNet V2 as a feature extractor got 35.18%
total AP for all objects. For small objects, Faster R-CNN with InceptionResNet
V2 also got the best performance. For medium objects, SSD with ResNet101 got
31.18% AP. EfficientDet achieved the maximum AP (55.48%) for large objects. The
first contribution of this article was the creation of a precise and open-source anno-
tated maritime dataset. The second contribution relies on the measurement of the
performance of four well-known state-of-the-art CNN methods with several feature
extractors.

Author’s contribution

The author of this thesis supervised and helped for creating the annotations. More-
over, the author wrote the Python code for the dataset evaluation algorithm and took
part at DL model development. All the article’s authors contributed to analyses of the
evaluation results. The author of this thesis actively contributed to the writing of the
article, specifically focusing on the creation of the tables. Particular attention was
dedicated to crafting the tables, detailing various object classes and vessel counts,
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Table 24. Summary of the average precision (%) for Aboships dataset.

Object size Detector Feature extractor AP
Small objects Faster R-CNN Inception ResNet V2 23.16

Medium objects SSD ResNet101 V1 FPN 31.18
Large Objects EfficientDet EfficientNet D1 55.48

All objects Faster R-CNN Inception ResNet V2 35.18

requiring meticulous care and precision.

5.3 Article III: Transfer Learning for Maritime Vessel de-
tection using Deep Neural Networks

Summary

The aim of this work was to study how transfer learning could improve the per-
formance of vessel detections in maritime environments. For this purpose, we use a
domain and none-domain dataset for pre-training. None-domains dataset is a generic
COCO dataset. The domain dataset is an open-source marine dataset such as Sea-
Ship (see section 3.4).

Object detection is a challenging operation in the maritime environment due to var-
ious weather conditions, lighting conditions, and vessel oscillations due to waves.
CNN model requires a large amount of data in order to achieve acceptable results in
terms of accuracy. In most cases, there is not sufficient data to train the models prop-
erly. The way to avoid the scarcity of the data problem is to use transfer learning.
Transfer learning has the ability to transfer the knowledge contained in the weights
of a network to another network. In this way, it is possible to use the power of deep
learning in multiple fields.

Methods and data

The same deep CNNs as in article II were selected for this article as well. They
respectively are Faster R-CNN, R-FCN and SSD. The Faster-RCNN is a two-stage
detector. The first stage acts as a Region Proposal Network. It determines the po-
tential regions of interest from the input, which go to the second stage. Here, a
Fast R-CNN network performs the double task of classifying the type of object and
producing bounding boxes. R-FCN, avoids two stage operation and operates only
with Convolutional layers. The results are generated directly from the feature maps,
which are all shared across the network without using the region of proposals. Then,
the feature maps are scored, and the ones with the best scores are used to classify the
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objects and to generate the bounding boxes. The third detector was the SSD. It is a
one-stage network where classification and bounding box creation occur in the same
stage. The production of bounding boxes and the classification of objects occur at the
same time in the same network. These three detectors were trained with the Tensor-
Flow Object detections API, which is an open-source framework for object detection.

The proposed CNNs were used in two different experiments to investigate the ef-
fects of transfer learning. In the first one, the initial weights were provided by the
COCO dataset, and then the model was re-trained with the Dataset 2 (see article I). In
the second experiment, the models were trained on the SeaShip which was described
in Chapter 3. SeaShip provided authentic, real-world vessel operation for inshore
and offshore ships.

Results and contribution

Each tested CNN detector produced the bounding boxes and then the correspond-
ing classes. The performance measures used to evaluate the bounding boxes were
IOU, AP, and Recall, see Chapter 2.

We calculated AP for all possible IOU thresholds and sizes of the objects (small,
medium, and large). The mean average Precision (mAP) was used to calculate the
accuracy over all classes. The Average Recall (AR) measures two times the area un-
der the Recall. AR was calculated with different numbers of objects. The full results
are reported in the Table 1, 2, and 3 of the article III. The results shows that the high-
est accuracy is achieved by the Faster R-CNN with ResNet101 as feature extractors,
with a mAP of 38.4% when the model was pretrained with COCO dataset. However,
we got 39.1 % when we used SeaShip for transfer learning from the same model. In
summary, the article contributes to evaluating transfer learning in the specific mar-
itime domain and a general dataset for vessel detection. Moreover, we evaluated the
performance of different CNN based detectors based on the different objects’ size.

Author’s contribution

The author of this thesis created the python code in charge to process the data ac-
cording the requirement of CNN models, took part in the DL model development
and conducted the experiments. The author also conducted the transfer learning pro-
cess, and evaluations of the results. He also participated in writing the article. In
addition, the author participated in writing the article, with a particular focus on the
literature review and Section 3, which delves into the state-of-the-art deep CNNs.
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5.4 Article IV: Multistream Convolutional Neural Net-
work Fusion for Pixel-wise Classification of Peat-
land

Summary

This article proposes a CNN in order to fuse multiple input sources with different
spatial resolutions for peatland site (location) type classification. The proposed fu-
sion architecture is of the late fusion type as three separate streams are concatenated
in it to generate the final pixel-wise classification. The data are acquired by opti-
cal and radar satellite remote sensing, airborne laser scanning data and multi-source
forest inventory GIS datasets. Based on our data sources, we are dealing with high-
dimensional class-imbalanced data for solving pixel-wise classification of peatlands.
To reduce the data dimension and find an optimal subset of inputs, we first applied
the sequential feature selection method. Then, we proposed a window-based pixel
classification approach based on the selected inputs. This approach can extract the
spatial information around each training sample in a defined window region and pro-
duce a pixel-wise classification map. Experiments were carried out for ecological
classification of peatlands in Finland.

Methods and data

We collected the data from four different remote sensing sources. (1) The Synthetic
Aperture Radar (SAR) data contains raster from Sentinel-1. In addition, two types
of Sentinel-1 rasters are used in this work: intensity images and coherences. The
coherence images are polarized, concatenating vertical and horizontal looks. The
two-way polarization reduces the noise from a single polarization. The Sentinel 1
images were acquired between May and September of 2017. TerraSAR-X raster is
used in the dataset as well. These rasters cover a period of time between May and
June. Radarsat-2 were acquired in 5 days from the beginning of May to August.

(2) The optical satellite images are from Sentinel-2. The images cover a period
of time between May and September, between 2018 and 2020. Both SAR data and
optical satellites share the same spatial pixel resolution (10 m). The spatial pixel res-
olution identifies how many meters a pixel of the raster is in the real world. For this
peculiarity, the sets of raster are integrated into the same input stream. SAR images
and optical satellites data are part of the first stream of the proposed CNN fusion
architecture.

(3) The open source Airbone Laser Scanning (ALS) data acquired with Light De-
tection And Ranging (LiDAR) was provided by the National Land Survey of Finland
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(NLS) from approximate flight altitudes of 1800–2500 m in varies of flight cam-
paigns conducted in 2008 – 2019. The ALS data is used to derive both the Digi-
tal Elevation Model (DEM) and the Canopy Height Model (CHM). Both DEM and
CHM are converted into a spatial pixel resolution of 2 m. The second input stream
of our CNN model consists of DEM and CHM.

(4) Multi-Source National Forest Inventory (MS-NFI) of Finland produces infor-
mation of forests in the form of thematic maps of forest variables, see Chapter 4 for
more details. The current resolution of the MS-NFI map grid is 16 m.

The study area is called Keminmaa which belongs to the Southern Aapa mire zone.
Experiments were carried out for two different versions of the datasets, identified as
version 1 (V1) and version 2 (V2). Dataset V1 has 2065 data points divided into
39 classes. In the dataset V2 dataset, the data points and site type information are
the same as in V1 but it was divided into drained and undrained datasets in order to
remove miss-classification between the pristine areas and the areas which have been
artificially drained for forestry.

As to methodology, the Greedy Forward Selection (GFS) algorithm conducts the pro-
cess of selecting the best possible combination of input data for the training phase
(input selection). Due to the highly imbalanced dataset used in this article, the GFS
uses a subset of features from the original feature set. The process starts with an
empty set of features. During each iteration of the algorithm, each unselected feature
is evaluated with stratified k-fold cross-validation (described in Chapter 2). The new
feature is validated against all the others already previously selected. The one that
achieved the highest performance gain will be included in the current feature selec-
tion. For both input selection and classification phases, we proposed a multi-stream
CNN fusion architecture (Figure 11). The architecture consists of three separate
streams according to the different spatial resolution of inputs. The leading idea of the
three-stream architecture is to preserve all possible information of the different res-
olution inputs, instead of interpolating the inputs to the same resolution while losing
potentially useful information. Each stream is comprised of two convolution layers,
two pooling layers, and one fully connected layers. This architecture was found as
a good compromise between the model complexity, number of training samples and
classes in our problem.

We also the used 5-fold Stratified Cross Validation (SCV) technique to divide the
dataset into training and validation datasets. SCV is one of the standard methods to
evaluate classifier’s generalization accuracy. Compared to the standard CV, SCV en-
sures that each fold of the dataset has the same distribution of the classes in each fold
to address the class imbalance problem. We also applied data augmentation to gen-
erate additional training data by random rotation, vertical and horizontal flips. Each
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Figure 11. The CNN architecture used in the Article 4.

Figure 12. Keminmaa final classification maps. (a) the Keminmaa predicted peatland obtained
with Dataset V1. (b) the Keminmaa peatland with undrained part of the peatland, and (c) the
undrained counterpart.
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pixel is classified based on the trained CNN model with the selected inputs. For this
task, we proposed a sliding window approach. that refers to a rectangle region with
a defined width and height that moves over the image. In fact, each pixel is labelled
one-by-one, with the same amount of surrounding pixels as a spatial pattern to help
to classify it. The pixel is always at the centre of the window. The classification starts
from the upper left pixel. Then the features of the whole window are extracted sep-
arately for each stream. After that the class predictions from each individual stream
are combined. This is done by first concatenating the features, using aggregation.
After classifying the upper left pixel, the window is moved into the next pixel. When
the window arrives at the last pixel in the first row, it moves down one pixel and
the same process starts again from the left most pixel. This process iterates until the
window has moved over all pixels.

Results and contribution

The overall classification accuracy is 32.4%, 33.6% and 31.8% for Keminmaa V1.
Keminmaa V2 (drained) and Keminmaa V2 (undrained) (33.6%). The results are
summarized on Table 25. The best accuracy is obtained for drained of Kemin-
maa V2. The resulting peatland maps are shown in Figure 12 for two versions of
dataset. The main contribution of this article is applying a CNN for peatland analysis
when combining three different types of inputs with multi-resolution. The proposed
methodology can overcome the problems in this application such as class imbalance,
computational and time complexities.

Table 25. The classification performance metrics for Keminmaa region.

Performance type Keminmaa V1 Keminmaa V2
(drained)

Keminmaa V2
(undrained)

Classification accuracy 32.4 33.6 31.8
Average user’s accuracy 25.8 15.1 16.2
Average producer’s accuracy 21.0 12.9 18.8
Kappa value 29.2 21.1 27.6

Author’s contribution

The author of this thesis took part to the methodology design of the entire project.
He was in charge of creating the Python code for methodologies. In particular, he
created the data pre-processing algorithm, the feature extraction algorithm, and the
window-based pixel-wise classification map. The feature extraction process and the
pixel-wise classification approach where implemented as parallel process in order to
speed up the entire process. In addition, he participated in the writing of the method-
ology Section.
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5.5 Article V: CNN-based Boreal Peatland Fertility Clas-
sification from Sentinel-1 and Sentinel-2 Imagery

Summary

This article is an extension of article IV treated in section 5.4 adding the following
contributions. 1) We use open-source satellite data such as Sentinel-1 (Sentinel-1)
and Sentinel-2 (Sentinel-2) because based on our previous results, they may pro-
vide sufficient information for peatland classification. The open-source satellite data
greatly adds chances for using the results in further studies and operational work
such as producing land cover maps periodically. 2) Unlike in article IV where peat-
land site types were reclassified into higher hierarchical level fertility classes, we
train the CNN directly to five class fertility level classes and two land-use classes
both on forestry drained and undrained lands. 3) We also investigate how the fu-
sion level effects the results when we combine these two input data. Early and late
fusion architectures are considered. We also compare the performance of the fu-
sion architectures to the uni-modal architecture which uses only one input data type
for the peatland fertility level classification. 4) Two scenarios are proposed for fus-
ing Sentinel-1 and Sentinel-2 data. The first scenario combines all features (bands)
of Sentinel-1 and Sentinel-2 images by using the two proposed architectures. The
second scenario combines only the best band of each raster dataset of Sentinel-1 (2
bands) and Sentinel-2 (10 bands) in two early and late fusion levels. The study area is
Keminmaa such as in article IV. The study area is divided into drained and undrained
subareas, which are analysed individually to reduce the classification error.

Methods and data

The data used in this article is composed of SAR and Optical images. The SAR
images contain two Sentinel-1 data: 1) Intensity images and 2) coherence images.
The intensity images from year 2017 were acquired one per month from May to
September. Intensity images refer to images built within a multi-look system and
re-projected, which are referred to with repeated overpass images (RO) in this work.
The coherence images are captured with the single-look methodology, and they ac-
quire the radar reflection. The first set of coherences (12 images) were captured
using the Sentinel-1A, and they are temporally consecutive pairs. The images were
acquired between May and September 2017. In addition, a set of other 12 images
is included as reference images. The total number of the coherence images was 24.
Sentinel-2 images are used as optical data and they are from May to September from
2018 to 2020. For Sentinel-2, all the 10/20m bands were used. We refer to them as
long-term baseline (LB) coherence images.
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Two CNN fusion architectures are proposed which combine the input from SAR im-
ages and Optical images. The first architecture (Figure 13) combines the two inputs
by stacking them one by one, before feeding them to the CNN (Early fusion). The
anatomy of the first CNN is as follow: after the input and the data-dimensionality
combination, a convolution layer followed by a max pooling layer is located. The
final classification uses a Fully Connected layer. The second architecture uses a late
fusion network (Figure 14), where each input has its own independent stream. The
output of each stream is concatenated to a fully connected layer and the type of land
is classified within a softmax activation function. Moreover, to study the variation
in the accuracy of the two architectures described above, results for uni-modal CNN
architecture are reported as well.

Figure 13. The early fusion architecture used in Article V.

Adam [196] algorithm is used to optimize the learning weights generated by each
iteration of the CNN. The categorical cross-entropy [197] is used to determine to
which class the sample belongs. To avoid overfitting of the model a dropout layer is
used. In addition, random rotation horizontal and vertical directions flips are imple-
mented to generate data augmentation. The accuracy of the model was determined
by the Stratified K-Fold cross-validation method. It ensures that all the classes of the
training sets are in each fold.
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Figure 14. The late fusion architecture used in Article V.

Results and contribution

The performance of the model was evaluated using four different data input. Each
of these included several different bands as told in section 4.2. In particular, 1) In-
tensity data included 3 bands, 2) Coherence RO included 2 bands, 3) Coherence LB
included 2 bands, and 3) Sentinel-2 included 10 bands. These bands cary different
amounts of information as seen in Table 26. The Table gives a summary of the re-
sults of the accuracy giving the best bands of each data input. Here VV stands for
Vertical look, and VH stands for horizontal look. In Sentinel-2 B2 represent the blue
band. To see which input data and band has more information on peatland level we
determined the performance of CNNs for each single bands. This was achieved by
training the best band of each input as a single entity and training the same data with
all bands.

The performance of the CNNs was evaluated using four different datasets 1) Intensity
data, 2) coherences RO are called VV, 3) coherences LB in Table 26 are called VH,
and Sentinel 2 all bands. These datasets were available for two different types of soils
grounds (drained, undrained). The best overall accuracy is obtained by the raster
coherence LB acquired on 20.07.2017 with 38.85%. In the not fused (uni-modal)
CNN architecture, Sentinel-2 got the best accuracy both for drained (38.95%) and
undrained (42.49%). Due to the fact that Sentinel-2 has more bands than Sentinel-1,
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Table 26. The classification accuracy from all the possible inputs.

Type of data Drained Undrained
Acquisition date Band Accuracy Acquisition date Band Accuracy

Intensity data 26.09.2017 VH 32.96 26.09.2017 VV 35.98
Coherences RO 20.07.2017 VH 37.81 30.09.2017 VV 35.12
Coherences LB 20.07.2017 VH 38.85 01.08.2017 VV 34.70
Sentinel2 18.07.2018 B2 38.85 18.07.2018 B3 42.49

the accuracy is better.

Table 26 presents the best input combinations selected from all possible sets. This
table highlights the raster with the highest accuracy from each input set. It includes
both the top-performing raster and its best band. This method helped to eliminate
inputs that did not yield high accuracy. Furthermore, Table summarizes the accuracy
achieved by the best input across all bands identified in the previous table. The
evaluation contains both uni-modal CNNs and multi-modal fusion CNNs.

Table 27 summarized the accuracy obtained by evaluating both uni-modal and multi-
modal CNNs using only the best bands obtained from Table 26. In the fused (multi-
modal) CNN architectures section, the highest accuracy was obtained from the late
fusion (both drained and undrained). These late fusion results mean that the two
inputs have different information that is combined on the classification layer. The
accuracy of best bands reaches 50.36% when the input is Sentinel-1 Intensity and
Sentinel-2. Comparing this result with the same input of uni-modal, the accuracy
rises by about 5%. The undrained accuracy is 56.73% when the inputs are coherence
(RO + LB) and Sentinel-2.

In the early fusion, the accuracy obtained with the best band is 51.66%, and the
same combination has the best-undrained accuracy with 49.64%. With all bands
together, the best-drained accuracy is for Sentinel-1 intensity and Sentinel-1 coher-
ence (42.43%). For the undrained Section, the accuracy arrives at 48.93% using
Sentinel-1 intensity + Sentinel-1 coherence (RO + LB) + Sentinel-2. The results are
summarized on Table 27 and Table 28.

Author’s contribution

The author of this thesis actively participated in the development of the method-
ologies’ of the publication. In addition, he was in charge of programming, which
was done using Python. The author was also involved in the discussion and the prac-
tical part of the CNN fusion design because it was a crucial aspect of the design
of the CNN. The author also participated in the brainstorming of research questions
and results discussions. In addition, he participated during the writing process of the
results and discussion Section and the experiment design Section.
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Table 27. The classification accuracy of the proposed fusion architectures with best bands.

Architecture Input Accuracy with best bands (%)
Drained Undrained

Uni-modal S1 intensity 35.66 31.91
Uni-modal S1 coherence (RO + LB) 44.48 32.14
Uni-modal Sentinel 2 47.88 45.95

Early fusion S1 intensity + Sentinel 2 47.05 43.26
Early fusion S1 intensity + S1 coherence (RO + LB) 47.23 45.39
Early fusion S1 coherence (RO + LB) + Sentinel 2 51.66 49.64
Early fusion S1 intensity + S1 coherence (RO + LB) + Sentinel 2 45.22 48.93
Late fusion S1 intensity + Sentinel 2 50.36 44.36
Late fusion S1 intensity + S1 coherence (RO + LB) 45.22 45.39
Late fusion S1 coherence (RO + LB) + Sentinel 2 49.44 56.73
Late fusion S1 intensity + S1 coherence (RO + LB) + Sentinel 2 45.58 43.26

Table 28. The classification accuracy of the proposed fusion architectures with all bands.

Architecture Input Accuracy with all bands (%)
Drained Undrained

Uni-modal S1 intensity 30.88 35.91
Uni-modal S1 coherence (RO + LB) 34.19 35.09
Uni-modal Sentinel 2 37.13 41.65

Early fusion S1 intensity + Sentinel 2 40.80 32.62
Early fusion S1 intensity + S1 coherence (RO + LB) 42.43 46.80
Early fusion S1 coherence (RO + LB) + Sentinel 2 46.69 46.09
Early fusion S1 intensity + S1 coherence (RO + LB) + Sentinel 2 37.13 47.51
Late fusion S1 intensity + Sentinel 2 33.08 32.62
Late fusion S1 intensity + S1 coherence (RO + LB) 43.17 41.13
Late fusion S1 coherence (RO + LB) + Sentinel 2 50.18 43.97
Late fusion S1 intensity + S1 coherence (RO + LB) + Sentinel 2 43.75 51.06

69



Luca Zelioli

5.6 Article VI: Peatland Pixel-level Classification via Mul-
tispectral, Multiresolution and Multisensor data us-
ing Convolutional Neural Network

Summary

This article proposed a CNN model for creating a high-resolution land cover seg-
mentation map based on multi-source geospatial datasets. The segmentation map
is obtained using a late CNN fusion architecture that combines different resources,
including optical and SAR satellite imagery, DEM, CHM, and NFI. The quality of
peatland classification is evaluated by the accuracy precision recall and F1-score.
The three study areas (Keminmaa, Southern Ostrobothnia, and Eastern Finland) dif-
fer in vegetation types and peatland vegetation. Keminmaa is dominated by fertile
site types. Easter Finland has plenty of poor nutrient types, and the Southern Os-
trobothnia is dominated by abandoned agricultural fields. In addition, for each region
the nutrient level, peatland, drained and undrained, are produced as well.
The peatland was derived into two different categories: drained and undrained. The
difference between the undrained portion and the drained portion of the peatland was
already described in the two previous articles IV and V.

Methods and data

The CNN architecture is the same as in Article 4 (Figure 15). A variety of Syn-
thetic Aperture Radar (SAR) images is adopted in the present work. In particular,
Keminmaa uses TerraSarX and Radarsat 2 images that were not available for the
other two pilots. All three pilots use rasters from Sentinel1. Moreover, the Sentinel1
vertical looks and the horizontal looks rasters are polarized in order to keep as much
information as possible. The Optical and SAR data are the first stream of our CNN.
The ALS data is used as an input of the second stream of CNN. The DEM and CHM
have 2 m and 1m spatial pixel resolutions, respectively.
In order to solve the problem of non-matching pixels in the raster, the CHM 1 m
was re-sampled to 2 m. These derivations are present in all three pilots. The third
stream of the proposed CNN uses NFI data as an input. The approaches used in this
article can be summarized into: input data preparation, input selection and pixel-wise
classification.
In the end, the nutrient peatland is derived, reducing the peatland map to their upper
hierarchy fertility level, OSAF (Organic site agricultural fields), AFOPS (Abandoned
agricultural fields), and Negative (mineral site).
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Figure 15. The CNN fusion architecture used in the Article VI.

Results and contribution

The classification metrics for different peatland site types are reported in Table 29.
For each region, the highest accuracy is obtained by the undrained portion of the peat-
land classification. The classification metrics obtained of fertility levels are summa-
rized in Table 30. The best total classification accuracy for undrained nutrient types
is obtained for Keminmaa (55%). For the drained dataset, the Southern Ostrobothnia
obtained the best accuracy (50.7%). Moreover, precision and F1-score have similar
results which differ from the other metrics.

Table 29. Metrics for peatland site type classification using a data fusion CNN Neural Network.

Keminmaa S. Ostrobothnia E. Finland
Undrained Drained Undrained Drained Undrained Drained

Accuracy 33.6 31.8 32.8 32.5 31.8 29.6
Precision 13.9 11.9 13.9 12.9 9.6 7.8

Recall 13.9 12.9 14.7 13.7 10.6 7.9
F1 score 10.2 15.5 13.1 12.1 6.2 6.6

The classification map in Figure 16 shows the peatland of the Ostrobothnia, Figure 17
and 18 show the peatland classification map for the Eastern Finland and Keminmaa,
respectively. We also created the confusion matrices based on site type and fertility
level classes.
One of the main contributions of the article is an efficient sliding window-based data
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Table 30. Metrics for fertility level classification using data fusion CNN.

Keminmaa S. Ostrobothnia E. Finland
Undrained Drained Undrained Drained Undrained Drained

Accuracy 55.0 48.1 52.8 50.7 47.2 36.6
Precision 44.2 40.3 39.0 43.3 32.7 28.7

Recall 35.3 42.3 39.2 45.7 35.3 21.1
F1 40.7 35.7 36.3 43.1 29.6 21.9

Figure 16. Southern Ostrobothnia Peatland. Drained and undrained section of the Peat are
combined. This map shows the level of Fertility Level for undrained part of the peatland and
drained ones.
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Figure 17. Eastern Finland Peatland. Drained and undrained section of the Peat are combined.

Figure 18. Keminmaa region peatland. Drained and undrained section of the Peat are combined.
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fusion CNN architecture able to deal with different spatial resolution data and few
number of labeled data. The article contributes to realising an efficient sensor fusion
CNN which combines different input remote sensing data. The late fusion helps to
avoid the problem of geo-referencing the pixel in the wrong place. This means that
every input of the CNN points to the same pixel when using rasters of different spa-
tial resolutions. The feature extraction helps to improve the training process before
creating the maps. The feature extraction keeps only the important features of input
dataset, removing the unimportant ones. Using a sliding windows approach, each
part of the prediction area is predicted based on the neighboring information in order
to reduce time and computing complexities.

Author’s contribution

The author of this thesis was in charge of the design of the methodologies of the
entire work. The design, evaluation and Python code have similarities with the pre-
vious Article 4. The Python code created has four main Sections. 1) Dataset creation;
2) Input selection; 3) Pixel-wise peatland classification for site type; 4) Derivation
of Peatland for fertility level. In this article, the Python code for the 3) was able to
produce undrained and drained peatland at the same time. In Article 4, for the same
operation, there are two separate runs needed. The author participated in the evalua-
tion of the results. He participates in writing the Section regarding the methodologies
of the article.
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6 Conclusion

6.1 Summary of the thesis

The introduction in Chapter 1 started by giving a brief introduction about the impor-
tance of the data and how information can be derived from it. It also discussed the
potential of AI to make predictions in maritime environments and in remote sensing.
The two case scenarios of this thesis were described as well.

In Chapter 2, a theoretical background of the theis was reviewed. The Chapter started
with a discussion about pattern recognition, which can be either classical or more
modern deep learning based. In the classical pattern recognition section, the process
of feature extraction, feature selection and classical pattern recognition approaches
were described. The main components of DL were reported in the chapter. The
DL section also examines some of the CNN detectors. The chapter concluded with
model building and performance evaluation. Classical pattern recognition is based
on the manual definition of features extracted from the data, and classification is
based on the acquired features set, whereas in DL, the process of feature extraction
is conducted automatically by the DL model. A description of the differences be-
tween supervised, unsupervised, and semi-supervised pattern recognition was given
as well. Chapter 2 dealt with the sensors fusion topic. Three disciplines of pattern
recognition were described: 1) Classical approach, 2) DL, and 3) Sensor fusion.

Chapter 3 covered topics related to the maritime environment. It started with the
Situational Awareness modelling (SA). The SA components are divided into percep-
tion of the environment, understanding of the situation, and predictive SA model.
The Chapter included a description of potential hardware devices used to perceive
the environment. Situational understanding deals with how the data provided by sen-
sors can be used to understand the external environment and how sensor fusion can
be used to improve performance in this stage. The predictive SA model section used
the scenarios of the previous step and tries to predict the future outcome to a certain
time ahead. The chapter continued with a maritime literature review, and by describ-
ing the maritime datasets used in this thesis.

Chapter 4 explored how artificial intelligence, especially machine learning, can be
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applied in remote sensing. The section also described principal remote sensing data
sources with their main properties. Satellites are not the only sources for remote
sensing. For instance, from Airborne Laser Scanning, DEM and CHM can be easily
derived, showing the digital elevation model of the land and the canopy high model,
respectively. The role of sensors and data fusion used to enhance the level of accu-
racy of a CNN architecture was described.

Chapter 5 presented the articles included in this thesis. For each article summary,
methods and data, results, contribution of the article and author’s contributions to the
work were included.

6.2 Discussion and outcome

AI-driven systems are becoming common tools in remote sensing and in maritime
environment. Pattern recognition identifies patterns and regularities in the data. The
data are initially analysed, and the features with high grades of importance are se-
lected. Supervised or unsupervised models may be used to produce results. The
results are evaluated. Data availability is increasing constantly. Powerful DL models
are adopted to recognise objects, locate objects or make a segmentation out of them.
The goal of pattern recognition, DL, is to generate a predictive model with a high
grade of generalisation.

Domain-specific datasets increase the performance of models in specific domains,
such as maritime environments. CNN models such as Faster-RCNN, RFCN, and
SSD have the advantage of being reliable in detecting objects in maritime environ-
ments, and they automate the feature extraction process. The performance of these
models can be further improved with transfer learning that transfers knowledge ac-
cumulated with a general-purpose dataset to a specific domain. Powerful CNN archi-
tectures can be trained with this data. Apart from transfer learning, in remote sensing,
fusing multiple input sources into a CNN architecture enhances the model’s predic-
tive capabilities. In remote sensing, sensor fusion architectures are implemented
to generate pixel-wise peatland classification which describes the characteristics of
the analysed region. The performance of the model can be evaluated using cross-
validation. The stratified K-Fold is a cross-validation algorithm that creates a ran-
domised training and validation dataset, Its use greatly improves the generalisation
of the model and prevents erroneous overfitting or underfitting.

To summarize the finding of this thesis in articles 1, 2, and 3 indicates that Faster-
RCNN is very reliable in object classification and localization in the maritime envi-
ronment. Especially in article number 3, transfer learning improved the prediction
performance. In a maritime environment, it is crucial to distinguish between objects’
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dimensions. The mAP (mean Average Precision) shows that the size of the objects
heavily affects the recognition. The dataset created in article number 2 increased
the performance in real-time maritime object detection in inshore and offshore en-
vironments. Faster RCNN was the best performing detector. However, for small or
far away objects, EfficientDet achieved better results. A maritime-specific domain
dataset with accurate manual annotations was created as well. The dataset contains
11 types of objects, and it was validated using the Channel and Spatial Reliability
Tracker (CSRT) [198] in order to maximize the dataset’s accuracy. The maritime
dataset was tested with different detectors and feature extractors. The average pre-
cision was calculated according to the dimension and distance of the detected objects.

Articles 4 and 5 proposed a DL architecture applied to heterogeneous multi-resolution
RS data. In RS, available data is high-dimensional and imbalanced. Feature selec-
tion is applied to avoid overfitting and to capture the relevant features. Articles 4 and
5 show that drawing a window around every data point, and this point is allocated
in the centre of the window, helps to avoid overfitting. Moreover, the adoption of
the Sequential Forward Selection (SFS) gradually includes inputs that maximize the
accuracy in the features array. Every iteration uses five folds of Stratified K-Fold to
generate random training and testing split. The task of each fold is to address the
imbalanced class problem. The late fused CNN architecture adopted in these articles
shows that the performance of the recognition increased for land cover classification.
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[45] Matti Pietikäinen. Local binary patterns. Scholarpedia, 5(3):9775, 2010.
[46] Robert M. Haralick, K. Shanmugam, and Its’Hak Dinstein. Textural features for image classifi-

cation. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6):610–621, 1973. doi:
10.1109/TSMC.1973.4309314.

[47] Dian Candra Rini Novitasari, Ahmad Lubab, Asri Sawiji, and Ahmad Hanif Asyhar. Application
of feature extraction for breast cancer using one order statistic, glcm, glrlm, and gldm. Advances
in Science, Technology and Engineering Systems Journal (ASTESJ), 4(4):115–120, 2019.

[48] Diah Ayu Larasati et al. Application of the k-nn method and glcm feature extraction in classifying
formalin fish images. Journal Of Research Computer Science, 1(1):1–13, 2021.

[49] Mary M Galloway. Texture analysis using gray level run lengths. Computer graphics and image
processing, 4(2):172–179, 1975.

[50] Timo Ahonen, Abdenour Hadid, and Matti Pietikäinen. Face recognition with local binary pat-
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[182] András Gulácsi and Ferenc Kovács. Sentinel-1-imagery-based high-resolution water cover de-
tection on wetlands, aided by google earth engine. Remote Sensing, 12(10):1614, 2020.

[183] Noel Gorelick, Matt Hancher, Mike Dixon, Simon Ilyushchenko, David Thau, and Rebecca
Moore. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote sensing
of Environment, 202:18–27, 2017.

[184] Stefan Buckreuss, Birgit Schättler, Thomas Fritz, Josef Mittermayer, Ralph Kahle, Edith Maurer,
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