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The Standard Model of particle physics describes the nature of fundamental physics,
and it is so far the most precise theory regarding this topic. All the particles pre-
dicted by this theory have been experimentally discovered, with the Higgs boson
being the latest in 2012. The Standard Model, however, cannot explain some of
the known phenomena, such as the dark matter or the asymmetry between matter
and antimatter, and therefore studies regarding extended versions of the Standard
Model are being conducted.

The European Organization for Nuclear Physics (CERN) operates the world’s lead-
ing particle physics laboratory. This thesis is conducted in the context of the Com-
pact Muon Solenoid (CMS) experiment, which is one of the four main experiments
in CERN’s Large Hadron Collider (LHC). The particle beams accelerated in the
LHC collide inside the CMS nearly 40 million times per second, meaning that the
amount of data these collisions produce would be impossible to save in its entirety.
This is why the CMS implements a trigger system, which is used to discard the
majority of the collision events, while still keeping the most interesting ones.

In this thesis, a new method for measuring the trigger efficiency using a gradient
boosting algorithm is presented. Trigger efficiency measures how well the trigger is
able to select the events it is supposed to select, and it is defined as the ratio between
the events the trigger accepted and all of the events it is supposed to accept. In
many ongoing analyses in the CMS, a combination of several trigger algorithms is
used, and this may cause complicated relationships between the variables, which the
efficiency can be dependent on. These dependencies are difficult to estimate using
traditional trigger efficiency measurement methods, so this new method targets these
cases, where the efficiency can depend on several partially correlated variables. This
method is developed using data and simulation samples from two ongoing analyses
in the CMS: a boosted Higgs boson pair production analysis, and a charged Higgs
boson search.
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Hiukkasfysiikan standardimalli kuvaa perusvuorovaikutusten ja alkeishiukkasten
luonnetta, ja se on toistaiseksi tarkin teoria kyseisestä aiheesta. Kaikki standardi-
mallin ennustamat hiukkaset on havaittu kokeellisesti, viimeisimpänä Higgsin bosoni
vuonna 2012. Standardimalli ei kuitenkaan kykene selittämään joitakin tunnettuja
ilmiöitä, kuten pimeää ainetta tai epätasapainoa aineen ja antiaineen välillä, ja tästä
syystä tutkitaan myös laajennettuja versioita standardimallista.

European Organization for Nuclear Physics (CERN) on maailman johtava hiukkas-
fysiikan tutkimuslaitos. Tämä tutkielma on toteutettu CMS-koeaseman (engl. Com-
pact Muon Solenoid) kontekstissa. CMS on yksi CERNin suuren hadronitörmäytti-
men (engl. Large Hadron Collider, LHC) pääkokeista. LHC-törmäyttimessä kiihdy-
tetyt hiukkaset törmäävät CMS-hiukkasilmaisimessa lähes 40 miljoonaa kertaa
sekunnissa johtaen siihen, että näiden törmäysten tuottama datamäärä olisi mah-
dotonta tallentaa kokonaisuudessaan. Tämän vuoksi CMS-koeasema hyödyntää lii-
paisujärjestelmää (engl. trigger system), jota käytetään hylkäämään suurin osa tör-
mäystapahtumista säilyttäen silti kaikista kiinnostavimmat tapahtumat.

Tässä tutkielmassa esitellään uusi tapa mitata liipaisutehokkuutta (engl. trigger
efficiency) käyttämällä gradienttitehostuspohjaista (engl. gradient boosting) algo-
ritmia. Liipaisutehokkuudella mitataan liipaisimen kykyä valita niitä törmäystapah-
tumia, joita sen on tarkoitus valita, ja liipaisutehokkuus määritellään liipaisimen va-
litsemien törmäystapahtumien ja kaikkien törmäystapahtumien suhteena. Monissa
CMS-koeaseman analyyseissä käytetään useiden liipaisinalgoritmien yhdistelmiä,
mikä voi aiheuttaa monimutkaisia suhteita muuttujien välillä, joista myös liipaisute-
hokkuus voi olla riippuvainen. Nämä riippuvuudet ovat vaikeita arvioida käyt-
täen perinteisiä liipaisutehokkuuden arviointimenetelmiä, joten tässä tutkielmassa
esitelty uusi menetelmä kohdistuu erityisesti näihin tilanteisiin, joissa liipaisute-
hokkuus voi riippua useista osittain keskenään korreloivista muuttujista. Tämä
menetelmä on kehitetty käyttäen dataa ja simulaatiota kahdesta eri CMS-kokeessa
käynnissä olevasta analyysistä: kahden korkean liikemäärän Higgsin bosonin tuotan-
non analyysistä, sekä sähköisesti varatun Higgsin bosonin etsinnästä.

Avainsanat: Gradienttitehostus, liipaisutehokkuus
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Introduction

The European Organization for Nuclear Research (CERN) is the world’s leading

organization in studying phenomena predicted by the Standard Model (SM) of par-

ticle physics, as well as searching phenomena beyond the SM. The SM describes the

fundamental particles and their interactions, but it does not include gravity. All

of the particles predicted by the SM have been observed, the latest one being the

Higgs boson discovered in 2012 [1–3]. However, the SM is known to be incomplete,

and studies regarding physics beyond the SM continue on many fronts.

CERN operates the world’s largest and most powerful particle accelerator, the

Large Hadron Collider (LHC). In the LHC, particle beams going in opposite direc-

tions are accelerated until they reach high energies, and then they are collided in

four crossing points. The LHC has four main experiments next to the points where

the particle beams collide, and this thesis project has been carried out in the context

of the Compact Muon Solenoid (CMS) experiment [4]. The CMS itself is a multi-

purpose apparatus, which is designed to study many different physics phenomena

observed at the LHC, including the Higgs boson [2]. The data and simulation sam-

ples used in this thesis are from two ongoing analyses at CMS: a boosted di-Higgs

analysis, which targets a pair of highly Lorentz-boosted Higgs bosons, and a charged

Higgs boson analysis, which searches for electrically charged Higgs bosons.

This thesis is focused on the CMS trigger system, which is a crucial component

in making sure the data from the most interesting particle collisions is saved and

thus is available for detailed analysis. The idea of this thesis is to develop an

algorithm to predict the trigger efficiency, which is a metric describing how well the

trigger performs. The algorithm aims to estimate the trigger efficiency as a function

of several variables at the same time, which is difficult to achieve using current

trigger efficiency estimation methods. The new method will be demonstrated in the

two example analyses, the boosted di-Higgs analysis and the charged Higgs boson
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analysis, to examine how well the method performs in analyses targeting different

processes. The results given by this new method will be compared to the results

given by traditional trigger efficiency measurement methods, and the systematic

uncertainties of the new method will also be estimated.
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1 Theoretical background

The theoretical background of this thesis is based on the Standard Model of particle

physics, which describes three of the four known fundamental forces, as well as

the known elementary particles in the universe. We will also introduce the Higgs

mechanism, which explains how some of the elementary particles acquire mass. We

will discuss the main concepts in these theories in the following sections. The focus

is on the boosted Higgs pair and the charged Higgs boson production and decay

processes, since we will use these analyses to demonstrate the new method presented

in this thesis.

1.1 The Standard Model

The SM describes three of the known fundamental forces: the electromagnetic,

weak, and strong interactions, not including gravity. The SM also presents the

elementary particles, some of them mediating these fundamental interactions, and

some of them being the building blocks of matter. The elementary particles in the

model are divided into three groups, which are quarks, leptons, and gauge bosons.

Besides these groups, there is also one scalar boson in the model, which is the Higgs

boson. [5] An overview of the model is given in Figure 1.

Quarks and leptons are fermions, meaning that they have a half integer spin.

This results in the fermions following the Pauli exclusion principle, which means

that two fermions cannot occupy the same quantum state at the same time [6].

All matter is made out of these quarks and leptons, and they can be categorized

into three generations depending on their properties. Each fermion has also an

antiparticle, which has the same mass and spin, but opposite electric charge.

Gauge bosons, also known as vector bosons, have a spin value of 1. They can

be described as force carriers, since they mediate the electromagnetic, weak and

strong interactions. Photons mediate the electromagnetic interactions, W and Z
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bosons mediate the weak interactions, and gluons mediate the strong interactions

[5]. Photons and gluons are massless, but W and Z bosons acquire mass via the

Higgs mechanism, which will be explained in Section 1.2.

The SM is a quantum field theory, which means that it describes the forces and

particles as excited states of quantum fields, which span across the whole universe.

Quantum electrodynamics describes the interactions that are mediated by photons,

and quantum chromodynamics (QCD), is a theory describing the strong interac-

tions, which bind quarks together to form hadrons with the interactions mediated

by gluons. [5]

The SM, however, is known to be incomplete, since it cannot explain several

observed phenomena, such as the origin of dark matter or the asymmetry between

matter and antimatter. This is why there are several broader theories, which attempt

to expand the SM by adding new terms to the Lagrangian equation describing the

fields and their interactions in the SM. These theories are known as beyond the

Standard Model (BSM) theories. There exist, for example, models which have two

Higgs doublets instead of only one (as in the SM). These models predict the existence

of five scalar bosons, two of which would be electrically charged [7]. The discovery

of a charged Higgs boson would be one way to find evidence of the existence of new

physics. There might also exist other, heavier particles predicted by these BSM

theories, which are not yet discovered. One way to find evidence of these particles

might be to study the rate of two Higgs bosons being produced at the same time,

and compare this production rate to the SM prediction, since this rate could be

modified by the presence of the new heavy particles in the process. To summarize,

there are several ways of searching for phenomena indicating physics beyond the

SM, and experiments for discovering new physics are continuing actively.
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Figure 1: The elementary particles of the Standard Model [8]. The particles are

divided into groups that are quarks, leptons, gauge bosons and scalar bosons. The

quarks and leptons are the constituents of matter, and the bosons are force carriers.

1.2 The Higgs Mechanism

The Higgs mechanism is crucial in explaining how the W and Z bosons have mass,

since without this theory all the gauge bosons would be considered massless. How-

ever, measurements show that the W and Z bosons do have mass, while photons and

gluons do not. Three independent research groups predicted the Higgs mechanism in

1964, and therefore the mechanism is also known as the Englert–Brout–Higgs–Gural-

nik–Hagen–Kibble mechanism. [9–11]

The Higgs mechanism introduces a field known as the Higgs field, which induces

a spontaneous symmetry breaking below a certain temperature. The symmetry

breaking subsequently initiates the Higgs mechanism, and the W and Z bosons gain
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mass by interacting with the Higgs field. The Higgs field is also able to generate

masses for all the fermions, but the mechanism is different than in the case of gauge

bosons.

The Higgs boson (H) is an excited state of the Higgs field, and after decades of

research a Higgs boson with a mass of approximately 125 GeV was detected in the

ATLAS and CMS experiments at the LHC in 2012 [1–3]. For this discovery Peter

Higgs and Francois Englert were awarded a Nobel Prize in 2013 [9–11]. The Higgs

boson has a spin value of zero and the discovered boson has no electric charge.

1.3 Higgs boson pair production

A Higgs boson is produced at the LHC mainly in two different ways: via gluon

fusion (ggF) or via vector boson fusion (VBF). Examples of the Feynman diagrams

of these production modes are presented in Figure 2. In gluon fusion, two gluons

from two protons in a bunch crossing interact with each other to produce a new

Higgs boson. In vector boson fusion, the quarks interacting with each other when

the protons collide radiate a vector boson, and these vector bosons then interact

with each other. The result is a new Higgs boson and two final-state quarks.

A Higgs boson pair (HH) can also be produced via these two production modes

by a phenomenon known as the Higgs boson self-interaction. This results in two

Higgs bosons being produced at the same time, and this process is called the Higgs

boson self-coupling. Examples of the Feynman diagrams depicting this self-coupling

in the ggF and VBF production modes are presented in Figure 3.

1.3.1 Higgs boson pair decay modes

We cannot observe the Higgs boson directly at the LHC, since the Higgs boson

decays rapidly into other particles. This is why we need to detect the Higgs pair

production through different decay modes. One largely studied decay mode is the
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(a) ggF (b) VBF

Figure 2: Example diagrams for two Higgs boson production modes: gluon fusion

(ggF) and vector boson fusion (VBF). [12]

(a) Self-coupling via ggF (b) Self-coupling via VBF

Figure 3: Example diagrams for two Higgs boson pair production modes: gluon

fusion (ggF) and vector boson fusion (VBF). [13]
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Higgs boson pair decay into a pair of bottom quarks and a pair of τ leptons, and

the data and simulation samples related to this decay are utilized in this thesis.

The dominant decay modes for the Higgs boson are the boson decaying into b

quark-antiquark pair, and the boson decaying into a W boson pair. The probability

of a decay mode is called a branching fraction. The branching fraction of the H → b̄b

decay mode is 58% [14], and the branching fraction of the H → WW decay is 21%.

The boson can also decay into two τ leptons with a branching fraction of 6.3% [15].

The combined branching fraction for the decay where one of the Higgs bosons in a

Higgs boson pair decays into a b quark-antiquark pair and the other into a τ lepton

pair is 7%, and this is the decay mode we will focus on in this thesis.

When the collisions produce quarks and gluons, it is not possible to observe the

quarks and gluons separately, since they become jets of hadrons, which then interact

with the detector. In the case when a Higgs boson has a low momentum, the bottom

quarks are separated into their own small-radius jets, but when the momentum is

high, the two b-quarks are Lorenz-boosted and form together one large-radius jet.

In this thesis, we use the data and simulation samples targeting this boosted state,

where we have high-momentum jets which have a large radius. In developing the

new machine learning method presented in this thesis, we will use a background

sample that simulated multijet production via QCD interactions, since this is the

dominant background process related to this analysis. We will also use simulated

signal samples related to the boosted Higgs pair production modes ggF and VBF.

Besides the simulated samples we will use data collected in the CMS experiment in

2018.

1.4 Charged Higgs boson production

The charged Higgs boson (H±) is a hypothetical particle predicted in the two-Higgs-

doublet models, and it can be either positively charged (H+) or negatively charged
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Figure 4: The light charged Higgs boson production.

(H−), with these two particles being antiparticles to each other [7]. The H± has

different possible mass values, which have an impact on how the H± can possibly

be produced. The charged Higgs boson can either be light, meaning that its mass

is smaller than the mass difference between a top and a bottom quark (mH± <

mt−mb), or it can be heavy, if its mass is larger than the top and bottom quark mass

difference (mH± > mt −mb). The light charged Higgs boson is mostly produced via

decays of top quarks (t → bH±), which is presented in Figure 4. The heavy charged

Higgs boson is mainly produced via tb → bH±, and this process can be understood

in two ways. We can represent the process through a four-flavour scheme or a five-

flavour scheme, and the order of calculations is different in these schemes. The

Figure 5a represents the four-flavour scheme, where the dominant production mode

is gg → tbH± and the secondary mode is qq′ → tbH±. In the five-flavour scheme,

the dominant production mode is gb → tH±, which is presented in Figure 5b. [16]

There is also an intermediate region for the charged Higgs boson, where its mass

is close to the top quark mass (mH± ∼ mt). In this case, both of the production

modes introduced earlier are contributing to the process and their interference needs

to be taken into account. [17]
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(a) Four-flavour scheme production

of the heavy charged Higgs boson.

(b) Five-flavour scheme production

of the heavy charged Higgs boson.

Figure 5: Heavy charged Higgs boson production modes. [18]
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Figure 6: Decay of the heavy charged Higgs boson into a final state with a hadronic

τ lepton.

1.4.1 Charged Higgs boson decay modes

The decay modes and the branching fractions of a charged Higgs boson again depend

on the mass of the boson. If the charged Higgs boson is heavy, H± → τ±ντ and

H± → tb can be among the dominant decay modes [16]. The Feynman diagram of

this heavy charged Higgs boson decay into the τν final state is presented in Figure

6. Different decay modes are also possible, such as the decay to µν and cs, but the

branching ratios for these decay modes are smaller than for the τ±ντ and tb.

For the light charged Higgs boson, the dominant decay mode depends on the cho-
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Figure 7: Decay of the light charged Higgs boson into a final state with a hadronic

τ lepton. [18]

sen two-Higgs doublet model and its parameters. In some scenarios, the H± → τ±ντ

decay is significantly the dominant decay mode, but in other scenarios decay modes

such as H± → cs and H± → τ±cb can also be significant [14]. The Feynman diagram

of the decay into the τν final state is presented in Figure 7.

Since the hadronic τ lepton is a heavy particle, it can decay further into hadrons.

In the charged Higgs boson analysis, the targeted hadronic decay modes are usually

either the τ decaying into one charged pion and one or two neutral pions (one-prong)

or three charged pions (three-prong) [16].

In this thesis, we will use simulation and data samples related to an ongoing

analysis used to search for the charged Higgs boson as another example case for

the new machine learning based trigger efficiency estimation method. We will use

simulated signal samples related to the mass values where the charged Higgs boson is

considered heavy. The background sample we use simulates the tt̄ production, since

this is the dominant background process for the hadronic final state [16]. Similar to

the boosted Higgs boson pair case, we will use data collected in the CMS experiment

in 2018 in this charged Higgs boson analysis.
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2 The CMS experiment

In this section, we will discuss the experimental setup at CERN, which is used

to measure particles and their interactions predicted by the SM and search for

phenomena beyond the SM. This section introduces the Large Hadron Collider, as

well as the Compact Muon Solenoid experiment, from which the data used in this

thesis are from. We will also use simulation samples based on this data.

2.1 Large Hadron Collider

The LHC is a 27-kilometer long circular particle accelerator located in the Geneva

region at the European Organization for Nuclear Research, CERN. The LHC is

located between 45 and 175 meters underground, in a tunnel that was originally built

for CERN’s Large Electron Positron collider [19]. The LHC project was approved

by the CERN Council in 1994, and the first particle collisions in the LHC happened

in 2008. The LHC is at the moment the largest and the most powerful particle

accelerator in the world.

The LHC consists of two circular beam pipes where the particle beams can be

accelerated in opposite directions, before they collide in four collision points. Before

the particle beams reach the beam pipes in the LHC, they are accelerated gradually

in several smaller linear and circular accelerators that are connected into the LHC.

Since the LHC has such a high circumference, the particle collisions in it can

reach very high energies. This is because the momentum of a charged particle in

a circular orbit is directly proportional to the radius of the orbit. Therefore, by

increasing the radius of the collider we can increase the highest possible momentum

the charged particles can reach. However, a higher momentum of a charged particle

also requires a stronger magnetic field to keep the particle on the circular path.

This is why the trajectory of the particle beams is controlled by superconducting

electromagnets, which ensure that the beams travel steadily in the circular beam
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pipes, and that the beams don’t fall apart in the process [19].

The energy that the collisions in the LHC reach currently is
√
s= 13.6 TeV,

where
√
s means the center-of-mass energy. In this thesis, we will use data from

proton-proton collisions at a center-of-mass energy of 13 TeV. The luminosity that

the LHC reached during the data taking run where the data used in this thesis was

acquired is around L ≈ 2 · 1034 cm−2s−1, where luminosity tells how many collisions

happen in the accelerator in a given amount of time. [19]

In the four collision points along the LHC ring there are four major experiments:

Compact Muon Solenoid (CMS) [4], A Toroidal LHC Apparatus (ATLAS) [20], A

Large Ion Collider Experiment (ALICE) [21] and LHC-beauty (LHCb) [22]. The

CMS and ATLAS can be called general-purpose detectors, since they can be used to

detect a broad range of physics phenomena, including the study of the Higgs boson

[1–3]. The ALICE and LHCb have more specific purposes: ALICE is designed

to study quork-gluon plasma, which can be produced by colliding heavy ions, and

LHCb specializes in questions concerning antimatter by studying the interactions of

the b hadrons.

Besides these experiments next to the collision points, the LHC has five more

experiments: LHCf (The Large Hadron Collider forward) [23], which simulates cos-

mic rays, TOTEM (Total cross section, Elastic scattering and diffraction dissociation

Measurement at the LHC) [24], which is used for precise measurements of the proton-

proton interaction cross-section, MoEDAL-MAPP (Monopole and Exotics Detector

at the LHC and MoEDAL Apparatus for Penetrating Particles) [25], which is used

to search the magnetic monopole, FASER (Forward Searching Experiment) [26],

which is used for searching light and extremely weakly interacting particles, and

SND@LHC (Scattering and Neutrino Detector at the LHC) [27], which is designed

to study neutrinos.
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2.2 Compact Muon Solenoid

The CMS is a general-purpose detector located at one of LHC’s four collision points

around a hundred meters underground [4]. Like mentioned earlier, the detector is

designed to observe a wide range of physics phenomena that can be produced at the

LHC. Inside the detector, the proton bunches each containing around 1011 protons

collide up to 40 million times in one second, and in each of these bunch crossings

we get around 40–60 proton-proton interactions. We refer to these bunch crossings

containing several proton-proton interactions as events.

The name of the detector comes from the fact that although the detector weights

14 000 tonnes, has a diameter of 15 meters and a length of 29 meters, the detector is

quite compact compared to other detectors with similar weight. The detector is also

designed to detect muons very accurately, and it uses a powerful solenoid magnet

to bend the tracks of the charged particles.

The CMS consists of several layers each designed to detect different particles. A

view of the layers of the detector is given in Figures 8 and 9. As seen from Figure 8,

the detector is cylindrical in shape, and it consists of several different components

used to measure the properties of particles produced in the collisions, as detailed

below. A slice of the detector and its different components are shown in Figure 9.

2.2.1 Tracking system

The purpose of the silicon-based tracking detectors located at the innermost part

of the CMS is to record the trajectories of the charged particles produced in the

collisions as accurately as possible. The tracking system can be used to reconstruct

the trajectories of muons, electrons and charged hadrons. The trajectories of the

charged particles are affected by the solenoidal magnet that bends their paths, which

makes it possible to measure the charge and the momentum of the particle. [4]

The tracker has to be made so that it disturbs the path of the particles as
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Figure 8: A view inside the CMS detector. The different parts of the detector, such

as the calorimeters, trackers and the muon chambers are labeled. [28]

little as possible, and so the tracker is constructed to measure the positions of the

particles so accurately that the trajectories can be reconstructed based on only a few

measurement points. The design of the tracker therefore requires high granularity,

and because there will be a large amount of particles produced in each collision,

the tracker has to have a fast response time to attribute the trajectories to the

right bunch crossing. Since the tracker system is located near the collision point in

the detector, the tracker also faces severe radiation damage caused by the intense

particle flux. [4]

All of these requirements mentioned previously have lead to the tracker being

made of entirely silicon components. The tracker consists of a pixel detector with

three barrel layers which have a radius of 4.4 cm and 10.2 cm, as well as a silicon

strip tracker with 10 barrel detection layers, which extend to a radius of 1.1 m. The

tracker also contains endcaps, which extend the tracking area on each side of the
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Figure 9: A slice of the CMS detector, illustrating the detector components where

different particles are detected. [29]

barrel up to |η| = 2.5. [4]

2.2.2 Calorimeters

The CMS contains two calorimeters: closer to the tracker is the electromagnetic

calorimeter (ECAL) and outside of that is the hadron calorimeter (HCAL). The

ECAL is used to measure the energy of electrons and photons, and the HCAL is used

to measure the energy of hadrons, as well as to enable indirect measurements of non-

interacting particles like neutrinos. The measurement of non-interacting particles

is possible since the HCAL is almost hermetic, which is why there isn’t any region

where the energy of the charged particles produced in the collisions is able to go

undetected. [4]

The ECAL is made of 61 200 lead tungstate (PbWO4) crystals, which are located

in the central barrel section. In both of the endcaps there are also 7324 crystals in

each of them. The lead tungstate crystals have a high density, a short radiation



18

length, which represents the energy loss of high-energy particles when they inter-

act electromagnetically with certain material, and a small Molière radius, which

describes the spread of a particle shower initiated by a high-energy particle travers-

ing a material. These properties result in the crystals having high granularity and

making them a compact calorimeter.

The HCAL sits between the ECAL and the solenoid magnet, and it consists of a

barrel (HB), endcap (HE) and forward (HF) regions. The HFs are positioned on both

ends of the CMS, and they receive the majority of energy produced in the particle

collisions. This is why the HFs are designed to withstand higher levels of radiation

than the other parts of the HCAL. Since the volume of the HCAL is restricted

by the solenoid, there is also an outer hadron calorimeter (HO), also known as a

tail catcher placed outside the solenoid to complement the barrel calorimeter. The

HCAL is mostly made out of brass.

The HCAL is designed to detect the position, energy and arrival time of the

particles, and it does this by using alternating layers of absorbent and scintillator

materials. When a particle passes through the calorimeter, the scintillator layers

produce a rapid light pulse, which is then collected by optical fibers and fed forward

into readout boxes. The measure of a particle’s total energy is then the amount of

photons in a given region summed over several layers of tiles.

2.2.3 Muon chambers

Muon detection is an important feature of the CMS experiment, as the name sug-

gests. Muon detection can be used to recognize signatures of several interesting

processes, since muons can be produced in various SM and BSM processes. For

example, the Higgs boson can decay into four muons. Muons are also produced at a

high rate at the LHC, and since they can be a signature of many interesting events

they are examined in multiple different analyses in the CMS. [4]
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The muon chambers are located at the outer part of the detector, since muons

can penetrate through the calorimeters without losing much of their energy. The

muon system is designed to do muon identification, momentum measurement and

triggering. These are performed using three types of gaseous particle detectors: drift

tubes (DTs), cathode strip chambers (CSCs) and resistive plate chambers (RPCs).

The muons can be detected by measuring the current flow produced by the ionization

of the gas when a particle enters in the detector.

The DTs are used in the barrel region, where the muon rate is low and the

magnetic field is uniform. A DT chamber consists of cells filled with a mixture of

argon and CO2 gas, as well as an anode wire in the middle and cathode surfaces on

the sides, which makes it possible for the ionization to produce the current flow.

In the two endcap regions where the muon rates are high and the magnetic field

is non-uniform, the CSCs are used to identify the muons. The CSCs are suitable

for this region, since they have a fast response time, fine segmentation and they

are radiation resistive. The cells of the CSCs consist of several anode wires in the

middle and cathodes at the top and bottom of the cell.

The RPCs act as a complementary system. The RPCs are located both at the

barrel region and in the endcaps, and they are especially important in the overlap

region between these parts. The RPCs are double-gap chambers which produce a

fast response with good time resolution, but less precise position resolution than the

DTs or CSCs.

The muon detectors and calorimeters are also used together to measure the miss-

ing transverse momentum (pmiss
T ), which is used to infer the presence of neutrinos or

other weakly interacting particles. Neutrinos interact so weakly with the detector

that they cannot be observed directly, so to look for neutrinos we will have to ob-

serve the momentum imbalance in the plane perpendicular to the beamline, which

is known as the transverse plane. The particle beams accelerated in the LHC have
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momentum only in their direction of movement at first. According to the conser-

vation of momentum, since there are no momenta in the transverse plane before

the collision, the momenta of the particles produced in the collision must also add

up to zero. When neutrinos or other weakly interacting particles are produced,

they escape the detector without interacting, causing an imbalance in the measured

transverse momentum. The missing transverse momentum needed to balance the

sum of the momenta in the transverse plane corresponds to the momenta of the

neutrinos or other weakly interacting particles, and this is referred to as missing

transverse momentum. Instead of all of the reconstructed particles we can also use

jets to calculate the missing transverse momentum, which is then referred to as

missing HT , where HT is the sum of jets.
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3 The CMS trigger system

In CMS, the particle beams collide every 25 ns, and every event in the collision

produces about 1 MB of data. In just one second, the beams collide up to 40 million

times. With this output rate, it would be completely impossible to store all the

events in the collisions, so we need a system that is able to reduce the amount of

events to save drastically, while still making sure we save the most important events.

To do this, we have a trigger system, which is designed to filter out events based

on pre-made criteria, and save only the events that fit the criteria in question. The

trigger system in CMS is designed to reduce the output rate in two steps: first the

Level-1 (L1) trigger reduces the output rate to around 100 kHz, and then the High

Level Trigger (HLT) reduces the rate even further to around 1 kHz [30].

3.1 Level-1 trigger

The L1 trigger system is physically situated in the service cavern, right next to the

experimental cavern where the detector resides, and it receives information directly

from the calorimeters and the muon detectors. The L1 trigger performs the first

online event selections, where "online" refers to the events being processed in real

time as the collisions are happening inside the detector. The system is completely

hardware-based. In practice, this means that the trigger system consists of proces-

sors which are largely based on Field Programmable Gate Arrays (FPGAs). The

L1 trigger has also a so called trigger menu, which consists of a large number of

different trigger algorithms designed to look for different kinds of physics events.

[31]

The L1 trigger system makes the decisions to whether accept or reject an event

in only around 4 microseconds, so the trigger is designed to look out for quite

simple signs that might indicate that there is something interesting or unusual in

the event in question. The L1 trigger is divided into three different trigger systems:
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calorimeter, muon and global triggers.

3.1.1 Calorimeter trigger

The calorimeter trigger receives information about the energy and quality of an

event from the ECAL and HCAL. The local energy deposits are known as trigger

primitives. The calorimeter trigger is two-layered, where the first layer is responsible

for the data pre-processing, which includes, for example, summing the transverse

energies of the trigger primitives and calculating the ECAL/HCAL energy ratio. The

data is then transmitted to the second layer, where the processor boards receive the

full information regarding each event calculated in the first layer. In the second

layer, the particle candidates are reconstructed based on the information received

from the first layer, and the energy sums, such as HT or pmiss
T are calculated. Finally,

the data from the second layer is forwarded into the de-multiplexing board, which

combines the partial vector sums calculated in the previous layer, and sends the

data to the global trigger. [31]

3.1.2 Muon trigger

The muon trigger receives information from the muon chamber: the DTs, the CSCs

and the RPCs. The muon trigger system consists of three different muon track

finders that correspond to different areas of the detector. In the barrel region, the

Barrel muon track finder takes input from the DTs and RPCs. The Endcap muon

track finder receives input from the CSC and RPC chambers in the endcap regions.

Besides these muon track finders there is also the Overlap muon track finder that

covers the region between the barrel and endcap muon track finder regions, and it

takes input from all the muon detection systems, which are the DTs, the CSCs and

the RPCs.
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3.1.3 Global trigger

The global trigger combines the information received from the muon and calorimeter

triggers, synchronizes the input data arriving at different times and makes the final

L1 trigger decision. The global trigger applies a threshold, or a combination of

thresholds, to accept and sort the events, and the decision is made by using logical

combinations from the calorimeter and muon triggers. The thresholds can be related,

for example, to the energy of the events. A combination of these thresholds is referred

to as a seed, and a combination of the seeds forms a trigger menu.

The decision made by the global trigger is transmitted to the Data Acquisition

system (DAQ), which can read out the data for offline storage. Offline analysis is

then performed on this stored data, where the data collected is processed to perform

event reconstruction. The information used by the HLT to make the trigger decisions

is received from the DAQ.

3.2 High Level Trigger

The HLT receives the full event information, including information from the tracker,

so it is able to make more precise decisions about which events to save. The de-

cision time for the HLT system is around 100 milliseconds, meaning that it takes

a significantly longer time to make the decisions compared to the L1 system. The

HLT is physically a CPU farm with tens of thousands of cores capable of processing

the events in parallel. The HLT reduces the output rate of 100 kHz down to around

1 kHz, which is an output rate that we can manage. [32]

The HLT is able to identify the physics objects and reconstruct the events by

using several layers of filtering. This also ensures that the system’s bandwidth is

not saturated with the large amount of data received in the HLT. To reconstruct the

events, the HLT also uses a streamlined version of an algorithm called Particle Flow

(PF), which combines information from all the subsystems to measure the properties
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of each particle in the event and creates a global description of the event [33].

Similarly to the Level-1 trigger, the HLT consists of a trigger menu with hundreds

of different trigger algorithms, which in this case are referred to as trigger paths. The

trigger paths also have different thresholds used to filter different kinds of events,

and in this case the thresholds are limited by the thresholds used at the L1 stage,

as well as by the total HLT output rate and the HLT timing.

The events that are accepted by the HLT are sent forward to the the CERN

Tier-0 computing centre, where they will be stored permanently.
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4 Trigger efficiency

Trigger efficiency is a metric used to measure how well the trigger in question is able

to select the events that it is supposed to select [34]. Trigger efficiency is essentially

defined as the number of events passing the trigger divided by the number of all

targeted events, which we can also denote as

E =
Npass

Nall

, (1)

where E is the trigger efficiency, Npass is the number of events that pass the reference

trigger and Nall is the number of all events of interest. However, since we don’t

know the number of all events because the events that don’t pass any triggers are

discarded, we have to use a different method to get a reliable estimate of the event

distribution across the whole sample. In this section, measuring trigger efficiency

using a traditional procedure called the reference trigger method is explained, as well

as the choice of a reference trigger, which we need to measure the trigger efficiency.

4.1 Reference trigger method

With simulated events, the efficiency calculation is straightforward, since we can

simulate events regardless of whether they would pass some trigger or not. This

means that we know the amount of all the events, and we’re able to calculate the

trigger efficiency as previously defined. On the contrary, with real data we don’t

have access to all the events, since the events that don’t pass any triggers are lost

permanently. To address this problem, we can utilize a reference trigger that selects

events independently of the trigger we’re interested in, which we call the signal

trigger. The purpose of the reference trigger is to obtain unbiased data that represent

the distribution of the events accurately, so we could get a reliable trigger efficiency

even if we don’t have access to all the events in the sample. With the reference

trigger, the trigger efficiency can now be defined as the ratio of the events passing
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both the reference and signal trigger to the events passing the reference trigger:

E =
Nsig&ref

Nref

, (2)

where Nsig&ref is the number of events passing the signal and the reference trigger,

and Nref is the number of events passing the reference trigger.

4.2 Choice of a reference trigger

In order to obtain the most accurate results, we have to choose a reference trig-

ger or a trigger combination that is able to provide us a representative and large

enough sample corresponding to the actual distribution of data. When choosing

the reference trigger, we have to also take into account the signal trigger and the

offline selections used in the analysis, which define the type of events the efficiency

measurements are used for. We can do the reference trigger selection with the help

of simulated samples.

In Figure 10a, the trigger efficiency is plotted as a function of the transverse

momentum pT of the large-radius jet with the highest transverse momentum in the

event (pT0). When we use a simulated sample we can calculate the efficiency in

two ways: by using all the events in the simulated sample ("true efficiency") as in

Equation 1, and by using a reference trigger ("measured efficiency") as in Equation

2.

From this example plot we can see that the efficiency increases steeply after the

value 400 GeV for the pT0, and this is called the turn-on region. The turn-on effect

happens because of the energy resolution of the jets reconstructed in the trigger

system. After a certain threshold the trigger will rapidly start selecting the events

which pass this threshold, but since the resolution is limited, it is not able to pick

all the events right after the threshold, so the efficiency will not immediately reach

a value close to 1. However, after the turn-on region the efficiency reaches a plateau

close to the value 1, which means that the trigger is able to steadily accept nearly
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(a) (b)

Figure 10: (a) Trigger efficiency as a function of the pT of the large-radius jet having

the highest pT in the event (pT0). The true efficiency is calculated by using all the

events in the simulated sample, and the measured efficiency by using a reference

trigger. (b) The distribution of events passing the signal trigger compared to the

distribution of all events as a function of pT0.

all the events in this pT range. For analysis purposes, often the values before the

turn-on region are not useful, so usually we focus on events close to the plateau.

This is because there is a large amount of events close to the plateau, since the

events which have larger pT values are more rare.

This effect can also be observed in Figure 10b, where the distribution of events

passing the signal trigger is compared to the distribution of all events in the sim-

ulated sample. As seen in the figure, most of the events in the sample fall in the

pT0 range between 400 GeV and 600 GeV, which corresponds to the curve near the

plateau in Figure 10a. As we can also observe in Figure 10b, the events which have

a low pT0 are largely not accepted by the signal trigger, but the higher the pT0 is, the

closer the distribution of events accepted by the signal trigger is to the distribution

of all events in the sample. This can be compared to the trigger efficiency plot in

Figure 10a, where in the low pT0 range the efficiency of the signal trigger is low,
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meaning that only a few events are selected, but in the high pT0 range almost every

event gets selected, meaning that the efficiency of the signal trigger is almost 1.

As also seen in Figure 10a, the trigger efficiencies measured using all the events

and the events passing the reference trigger agree quite well, which means that the

chosen reference trigger would be suitable to use when measuring trigger efficiencies

in data. The efficiencies have a slight difference regarding lower values, but since

the lower values aren’t important for analysis purposes, the mismatch between the

efficiencies isn’t concerning.
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5 Modelling trigger efficiencies with machine learn-

ing

In this section, we will go through the motivation behind developing a machine

learning method to estimate the trigger efficiencies. We will also discuss the theo-

retical background for the approach and introduce the machine learning architecture

chosen for this task, as well as present the performance metrics used to evaluate the

machine learning model.

5.1 The motivation and theoretical background behind the

method

For many analyses in the CMS, the trigger efficiency can be maximized by using

a combination of different trigger algorithms. However, this might lead into the

efficiency being dependent on several partially correlated variables, which makes

the trigger efficiency complicated to estimate using traditional methods. This effect

is known as the curse of dimensionality, which in principle means that when we

have data containing many variables, also known as high dimensional data, the data

points become sparsely distributed in the data space. This results in a difficulty

to obtain any reliable connections between the features of the data points. With

the help of modern machine learning methods, our goal is to model these complex

trigger efficiencies more reliably, with the algorithm able to consider the effects of

these partially correlated variables and model the efficiency simultaneously as a

function of these variables.

The idea behind the method is to consider the trigger itself as a binary classifier,

which classifies each event into either one that passes or one that fails the trigger

selection. Correspondingly, we should be able to train a binary classifier algorithm

with the goal of reproducing the trigger selections as accurately as possible, and as
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a function of several variables. We could then compare the results of the algorithm

to the results obtained with traditional methods.

The algorithm is trained by giving the model a set of offline-reconstructed vari-

ables as inputs, which are used to train the model to predict whether any given event

in the sample either passes or fails the trigger based on the properties of the input

variables. As output, the algorithm produces a weight between 0 and 1 for each

event, and these weights represent the probability of each event to pass the trigger.

To compare with the traditional methods, we can plot the trigger efficiencies by

binning the events in the same way the results obtained by the traditional methods

are binned, and taking the mean value of the weights of the events in the specific

bin. This way we can produce a plot of the efficiency predicted by the algorithm as

a function of a given variable of interest, which is comparable with the traditional

trigger efficiency plots.

If the method in question works well, we can use the weights it gives to the

events to estimate the performance of the triggers regardless of the accuracy of the

trigger emulation in the simulation samples, whereas currently the estimation of the

performance of triggers relies heavily on the simulation samples.

5.2 Gradient Boosting

Architecture of a machine learning model refers to the structure and components of

the model, which affect the way the model handles data, how the model is trained

and assessed, and how the predictions are made. There exist various possibilities for

the architecture of the model when designing a binary classifier algorithm. The ar-

chitectures we tried for this project included random forest [35], deep neural network

(DNN) [36], multilayer perceptron [37] and gradient boosting [38, 39] algorithms.

The algorithm that we chose was the gradient boosting algorithm, since it gave the

most accurate results out of the other architectures we tried, it is easy to tune, and
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it is quite fast to train. The gradient boosting algorithm we utilized is provided by

the Scikit-learn library [40].

Gradient boosting [38, 39], in some cases also known as gradient tree boosting

or boosted decision trees, represents an ensemble method containing multiple weak

learners, in this case decision trees. Decision trees are a type of supervised learning

algorithm, which have a tree-like structure. They have a root node, which branches

into internal nodes, and they branch into leaves, which represent all the possible

outcomes in the dataset. The decision trees choose a specific outcome by splitting

the data in these branches by their features, which then lead to specific leaf nodes

representing specific outcomes.

In gradient boosting, the model improves the weak learners by focusing on the

mistakes made in the previous iteration, which results in the weak learners evolving

into strong learners that are able to perform better than the weak learners would

on their own. The model does this by minimizing a loss function, which measures

the accuracy of the model’s predictions compared to the target values. This is done

by setting the target of each subsequent model based on the residual error of the

prediction. The process of gradient boosting is presented in detail next.

The gradient boosting algorithm can be notated as follows [39]:

Algorithm 1 Gradient Boosting

1: F0(x) = argminρ

∑︁N
i=1 L(yi, ρ)

2: for m = 1 to M do:

3: ỹi = −[∂L(yi,F (x))
∂F (xi)

]F (x)=Fm−1(x), i = 1, N

4: am = argmina,β
∑︁N

i=1[ỹi − βh(xi; a)]2

5: ρm = argminρ

∑︁N
i=1 L(yi, Fm−1(xi) + ρh(xi; am))

6: Fm(x) = Fm−1(x) + ρmh(x; am)

7: end for

In the previous algorithm, the L(yi, ρ) represents the loss function, which can be,
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for example, the squared error or the absolute error in the case of regression, and

the negative binomial log-likelihood for classification. The parameter yi represents

the target values, and the parameter ρ is a constant value that minimizes the loss

function for the whole dataset. The model starts by making an initial prediction,

which is usually the average of the target variable in the data for regression tasks, and

the most frequent class in the case of classification. This is represented in the first line

of Algorithm 1, where the F0(x) is the initial model, and the argminρ

∑︁N
i=1 L(yi, ρ)

indicates the minimization of the loss function by finding a value for ρ that minimizes

the total loss across the training samples. In the second line, the model is built with

M trees, and the next lines are looped for all the trees. In the third line, the model

calculates the pseudo-residuals ỹ from the initial prediction as the negative gradient

of the loss function, and the pseudo-residuals represent the errors made by the model

at this stage. The model then fits a weak learner h(x; a) multiplied by a scale factor

β on the pseudo-residuals in the fourth line. The parameter x signifies the input

feature vector, and a represents the parameters of the weak learner, for example the

tree’s structure and split locations. The result am represents the updated parameters

of the weak learner. The parameter ρm, signifying a learning rate, is optimized in the

next line. A learning rate, also known as a shrinkage, controls the impact each weak

learner has on the final decision, and it is a value between 0 and 1. Finally, the model

from the previous iteration Fm−1(x) and the weak learner h(x; am) multiplied by the

learning rate ρm are summed together to form an updated model Fm(x). This is

done in the sixth line. This process is then repeated through a number of iterations

until a predefined stopping criterion is met, and the final prediction is the sum of all

the predictions made by the weak learners. The stopping criterion that the Scikit-

learn library recommends for the gradient boosting classifier is the Friedman mean

squared error [41].

Gradient boosting models can reach high accuracies, and they are also very
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flexible regarding the format of the input data. Gradient boosting models can be

used in both classification and regression tasks. However, although gradient boosting

models can often reach very accurate results, they can also be prone to overfitting,

meaning that the model learns the noise and outliers of the training data excessively,

and it is not able to generalize into new, unseen data. This can happen especially

if we have a large number of trees or the trees have many nodes. However, risks

for overfitting can be significantly reduced, when using appropriate performance

metrics for the model. The risks can also be reduced when selecting subsets from

the original dataset for training, testing and validating the model, and making sure

that the model isn’t able to use the testing and validation samples in the training

phase to ensure that we get a good estimate of the model’s capability to generalize

into new, unseen data.

A large number of trees or nodes can also lead the model being computationally

expensive, since the method cannot be parallelized due to the iterative nature of the

algorithm. Another setback of gradient boosting, and especially complex gradient

boosting models is their limited interpretability, since we might have tens or hun-

dreds of decision trees in the model, and understanding the relationship between a

certain input and its corresponding output can be difficult, or even impossible. How-

ever, there exist several explainability methods, such as post-hoc methods, which

approximate complex models by creating more simpler surrogate models out of them

[42]. These methods can be used, for example, in instances where it is ethically im-

portant to understand the relationship between certain inputs and outputs. Another

explainability method is calculating the feature importance, which means that we

calculate how much impact each feature has on the final decision the model makes

[43]. These features can be ranked from the most important to the least important,

and the importance of each feature gives us insight of how the model makes its

decisions based on the different features. We will utilize this explainability method
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in this thesis.

Gradient boosting models offer several hyperparameters which can be tuned

in order to optimize the model performance. In our case, we tuned the number

of estimators, which determines the amount of decision trees the model has, the

learning rate, and the maximum depth of the tree, corresponding to the number

of nodes in each tree. In the optimized model for the boosted HH analysis, we

employed two hundred estimators, a learning rate of 0.25 and a maximum depth

of two. For the charged Higgs boson analysis, we used a model with two hundred

estimators, a learning rate of 0.75 and a maximum depth of two. The loss function

used in both models was a logistic loss function, which is the negative logarithm of

the likelihood function [44]. The logistic loss for a single sample with a true label

y ∈ {0,1} and a probability estimate p = Pr(y = 1) can be defined as

Llog(y, p) = −(ylog(p) + (1− y)log(1− p)).

5.3 Deep Neural Network

We will use another architecture besides the gradient boosting to study the system-

atic uncertainties related to this method. For this task we have chosen the deep

neural network architecture, which will be explained next.

Neural networks are artificial intelligence models inspired by biological neural

networks. In simple artificial neural networks (ANNs), there typically exists an

input layer, a hidden layer, and an output layer. These layers consist of nodes, or

neurons in this case, interconnected with each other. Each node carries a weight

and a threshold. If the output of a node exceeds its threshold value, it forwards the

data to the subsequent layer, and if the output is less than the threshold, no data is

transmitted to the next layer. In practice, the output of a node is calculated using

an activation function, which can be selected from several options. Some of the

most popular activation functions are the sigmoid function, the hyperbolic tangent
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(a) Sigmoid function (b) Tanh function (c) ReLU function

Figure 11: Activation functions for deep neural networks

(tanh) function and the rectified linear unit (ReLU) function. These are visualized

in Figure 11. The sigmoid function sets a value between 0 and 1 for the output, the

tanh function output ranges between -1 and 1, and the ReLU output is zero when

the input is negative and equal to the input value when the input is positive. [45]

Deep neural networks (DNNs) refer specifically to ANNs which contain multiple

hidden layers with different properties, for example a convolutional layer, which is

usually used in image detection tasks, or a dense layer, where neurons are connected

to every neuron in the preceding layer [36]. The activation functions for these layers

can also differ. The DNN we trained for the boosted HH analysis case contains

an input layer, two hidden layers and an output layer. All the layers are densely

connected, and the first one has 12 neurons, the second one 10, the third one 8 and

the output layer has one neuron, and the activation function for the first three layers

is the ReLU function and the last one the sigmoid function.

5.4 Performance metrics

To assess how well the machine learning model performs in a classification task,

there are several performance metrics. In our case, the performance metrics we will

use are the accuracy, receiver operating characteristic curve (ROC) and area under

the ROC curve (AUC), which will be explained next.

Accuracy is the most basic performance metric in use, and it can simply be
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Figure 12: Example of a ROC curve of a classifier algorithm, compared to a curve

of a model which makes completely random guesses.

defined as the fraction of correct predictions made by the model out of all predictions

it made. It is a performance metric which is easy to understand and interpret. It

can be formally denoted as:

Accuracy =
Number of correct predictions

Total number of predictions
.

However, since accuracy just measures the number of correct predictions versus the

total number of predictions, the accuracy can be very high in cases where some

classes are much more frequent than others. For example, if we have a sample

where 90% of the instances are 1 and 10% 0, the model will reach a 90% accuracy

even if it classifies all the 0 values wrong. This is why accuracy should never be used

as the only performance metric for a classifier model, especially when the dataset is

imbalanced. [45]

The receiver operating characteristic curve (ROC) is another metric for assessing

binary classifiers [46]. It plots the true positive rate (TPR) as a function of the false

positive rate (FPR) at different threshold values. An example of the ROC curve is

illustrated in Figure 12.
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The true positive rate, also known as recall, corresponds to the amount of positive

values the model is able to correctly classify as positive (true positives, TP) divided

by the sum of true positive values and the positive values incorrectly classified as

negative values, (false negatives, FN):

TPR =
TP

TP + FN

The false positive rate is correspondingly the amount of negative values the model

has incorrectly classified as positive (false positives, FP) divided by the sum of false

positives and the negative values the model was able to correctly classify as negative

(true negatives, TN):

FPR =
FP

FP + TN

The FPR is equal to 1-TNR, where TNR is the true negative rate, which is also

known as specificity. Thus, the ROC curve can also be understood as plotting the

recall versus 1-specificity.

There is a trade-off between the recall and false positive rate, since the curve

represents the true positive rate against the false positive rate at different threshold

values, where a lower threshold produces more instances classified as positive (a

higher TPR), but it might also classify more instances falsely as positive. A per-

fect model would have a ROC curve reaching into the top left corner of the plot,

corresponding to a 100% TPR and 0% FPR. [46]

The ROC can be easily presented as a single scalar value, when we calculate the

area under the curve (AUC). A perfect AUC score would then be 1, corresponding

to a 100% amount of correct predictions, and a completely random model would

have a 0.5 AUC score. The AUC can also be understood as the probability that the

classifier ranks a random positive instance higher than a random negative one. [46]



38

6 Developing the method

In this section, we will explain the development of the new trigger efficiency estima-

tion method using the boosted HH analysis and the charged Higgs boson analysis

as example cases to illustrate the method.

6.1 The variables and the signal triggers

We will present the variables used as inputs for the gradient boosting model in both

the boosted HH analysis and in the charged Higgs boson analysis. We will also

explain the signal triggers used for both of these analyses, the boosted HH analysis

having a combination of several trigger paths and the charged Higgs boson analysis

having one signal trigger.

6.1.1 Boosted HH analysis

In the boosted HH analysis case we have a total of 14 variables of interest, which

we use as inputs for the machine learning model. We will inspect the efficiency as

a function of these variables across all of the three simulated samples as well as the

data sample. The variables that we use are presented in Table I. The table includes

the names and explanations of these variables. We use several variables related to

the features of the large-radius jet having the highest transverse momentum in the

event and the large-radius jet having the second highest transverse momentum in

the event. We refer to these two large-radius jets as Jet0 and Jet1. The variables

we use in this thesis are also used in an ongoing boosted HH analysis in the CMS.

The distributions of all variables in all of the three simulation samples are pre-

sented in Figure 13. In the figure, the distribution of all events and the distribution

of events passing just the signal trigger are presented for all variables. We can note

from these distribution curves that the distributions are slightly more similar for the

QCD and VBF samples than for the QCD and ggF samples, which might affect the
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Table I: The names and explanations of the variables used in the boosted HH analysis

case.

Name Explanation

pT0 The pT of the large-radius jet having the highest pT in the event (Jet0)

pT1 The pT of the large-radius jet having the 2nd highest pT (Jet1)

m0 The mass of Jet0

m1 The mass of Jet1

mHH The invariant mass between Jet0 and Jet1

η0 The eta direction of Jet0

η1 The eta direction of Jet1

∆η The eta angle between Jet0 and Jet1

∆ϕ The phi angle between Jet0 and Jet1

HT Sum of all the jets in the event

HLR
T Sum of all the large-radius jets in the event

pmiss
T Missing transverse momentum

mHH + pmiss
T Invariant mass added to the missing transverse momentum

pmiss
T + pT0 + pT1 Sum of the missing transverse momentum and pT0 and pT0

way the model trained with the QCD sample is able to perform in these two signal

samples.

The distributions of events passing the reference trigger and the events passing

both the signal and reference trigger in the data sample are presented in Figure

14. From this figure we can observe that the event distributions across the different

variables are similar to the event distributions in the QCD sample, which is reason-

able since the background mostly consists of QCD multijet events and therefore this

simulation sample is supposed to resemble the distribution of events in actual data.

The trigger efficiency we want to measure as a function of all of these variables is
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Figure 13: The distribution of all events and events passing the signal trigger in

simulation samples QCD, ggF and VBF for all of the variables of interest in the

boosted HH analysis.
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Figure 14: The distribution of events passing the reference trigger and events passing

both the signal and reference trigger in the data sample for all of the variables of

interest in the boosted HH analysis.
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a combination of individual efficiencies of several HLT trigger paths. As mentioned

earlier, the total trigger efficiency can be improved when we use a combination of

different trigger algorithms, since this increases the number of events we are able to

use in the analysis. For the boosted HH case, we use a combination of trigger paths

targeting the events with high HT , jet pT , pmiss
T , mass and HLR

T values. The signal

triggers we use are

• HLT_AK8PFHT800_TrimMass50

• HLT_AK8PFJet400_TrimMass30

• HLT_AK8PFJet500

• HLT_PFJet500

• HLT_PFHT1050

• HLT_PFHT500_PFMET100_PFMHT100_IDTight

• HLT_PFHT700_PFMET85_PFMHT85_IDTight

• HLT_PFHT800_PFMET75_PFMHT75_IDTight

We will use an or-condition of all of these trigger paths to filter the events, which

means that we will target events that pass any of these trigger paths. The trigger

paths with the condition "AK8" use large-radius jets, i.e. jets with a radius of 0.8.

The first trigger path thus targets events with large-radius jets and with a HLR
T of

over 800 GeV, and at least one large-radius jet with mass of over 50 GeV. The second

trigger sets conditions for the pT value, and demands that the event must contain

at least one large-radius jet with a pT value of over 400 GeV and a mass value of

over 30 GeV. The third trigger just demands that the event contains a jet with a

pT value of over 500 GeV, and the fourth trigger that the event has an HT value of

over 1050 GeV.
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The last three trigger paths have conditions for the HT , pmiss
T and missing HT ,

which is the same as pmiss
T , but calculated using small-radius jets instead of individual

particles. The first trigger path demands an HT value of over 500 GeV, and pmiss
T

and missing HT values of over 100, the second an HT value of over 700 GeV, and

pmiss
T and missing HT over 85 GeV, and the last one demands an HT value of over

800 GeV and pmiss
T and missing HT of over 75 GeV. These triggers also require

tight identification criteria for the reconstructed jets in the event, as the "IDTight"

condition indicates.

6.1.2 Charged Higgs boson analysis

In the charged Higgs boson analysis we have 11 variables which we use as inputs

for our algorithm. The variable names and explanations are presented in Table II.

The distributions of all events and events passing the signal trigger as a function

of these variables in the simulated samples are again presented in Figure 15. From

these distributions we can observe that the TTbar and M200 samples have more

similar distributions across several variables than the TTbar and M1000 samples.

The distributions of events in the data sample for the charged Higgs boson case

are presented in Figure 16. Again, we can notice that the distributions are similar

to the distributions of the TTbar sample.

The signal trigger we use in this analysis is

HLT_MediumChargedIsoPFTau50_Trk30_eta2p1_1pr_MET100. The signal trig-

ger sets conditions for the τ leptons in the event, and demands that the event has at

least one τ lepton, which has a pT value of over 50 GeV ("Tau50"), and there can-

not be many charged hadrons near the τ lepton, as set by the "MediumChargedIso"

-condition. The trigger also sets conditions for the decay of the τ lepton, and de-

mands that it is a one-prong decay ("1pr") and the pT value of the charged pion,

which is the leading track in this case, must be at least 30 GeV ("Trk30"). Finally,
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Table II: The names and explanations of the variables used in the charged Higgs

boson analysis case.

Name Explanation

pT (τh) The pT of the hadronic τ lepton having the highest pT in the event (τh)

η(τh) The eta direction of τh

N(τh) Number of selected hadronic τ leptons in the event

pT (πτh) The pT of the leading track pion associated with the τh

Rτ The ratio between pT (πτh) and pT (τh)

p0T The pT of the jet having the highest pT in the event

p1T The pT of the jet having the 2nd highest pT in the event

p2T The pT of the jet having the 3rd highest pT in the event

N(jet) The number of selected jets in the event

mT Transverse mass of the τ and pmiss
T system

pmiss
T Missing transverse momentum

the trigger also demands that the τ lepton is found within η < 2.1 ("eta2p1") and

the pmiss
T is at least 100 GeV.

6.2 Developing the method using simulated samples

First, we develop the method using simulated samples. We use the simulated samples

to validate the method, since with them we are able to compare the results given

by this new method to the true trigger efficiency calculated using all the events in

the sample. The main goal of the method is to measure the trigger efficiencies in

data. For the boosted HH case, we have three simulated samples which we use:

QCD, which simulates the multijet production due to quantum chromodynamics as

the background sample, VBF, which simulates the process of vector boson fusion

as the signal sample and ggF, which simulates the gluon fusion as another signal
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Figure 15: The distribution of all events and events passing the signal trigger in

simulation samples TTbar, M200 and M1000 for all of the variables of interest in

the charged Higgs boson analysis.
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Figure 16: The distribution of events passing the reference trigger and events passing

both the signal and reference trigger in the data sample for all of the variables of

interest in the charged Higgs boson analysis.
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sample. We use both the background sample and the signal samples in developing

the method, since the data used in the actual boosted HH analysis consists of mostly

QCD processes, but there might also be a small portion of signal processes, which

the analysis aims to extract. With simulated samples, we are able to estimate the

efficiencies in the cases where we would have only QCD events, or only signal events

either produced via ggF or VBF. If we are able to confirm that the new method

performs well in all of these cases, we can conclude it to perform well in also the

case of the data being a mixture of all of these cases.

For the charged Higgs boson analysis case, we have a background sample TTbar,

which simulates the tt̄ production, and signal samples M200 and M1000, which both

simulate the production of a heavy charged Higgs boson. The M200 simulates the

case where the H+ mass is 200 GeV, and the M1000 simulates the case where the H+

mass is 1000 GeV. The idea is the same as explained for the boosted HH analysis,

since in this case we also validate the method using simulation samples for both the

background and signal processes to make sure the method would be able to perform

well in the analysis performed using data.

6.2.1 Choosing the reference trigger

As the first step, we have to select the right reference trigger with the help of

simulated samples, as explained in Section 4. We have to select a reference trigger

which gives good results in all of the three simulated samples and with all of the

variables we are using as inputs for the gradient boosting model. For the boosted

HH analysis case, we tried several triggers and trigger combinations to compare the

results with the true efficiency produced when taking into account all the events in

the simulated samples. The trigger which was chosen to be the reference trigger in

this case was HLT_AK8PFJet260, meaning that the reference trigger in question

targets events which have at least one large-radius jet with a transverse momentum
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of over 260 GeV.

Some examples of the trigger efficiencies in all of the HH samples are presented

in Figure 17. The trigger efficiency is presented as a function of pT0, HT and pmiss
T .

In the plots, the efficiency calculated using all the events in the simulated sample

("true efficiency") is compared to the efficiency measured using the reference trigger

("measured efficiency"). As seen in the plots, the efficiency from all the events and

the measured efficiency using the reference trigger match quite accurately across the

variables of interest.

As we can also see when we compare the trigger efficiencies between different

samples, the trigger efficiencies as a function of the variables of interest differ be-

tween the background and signal samples, and also between the two signal samples.

Therefore it is important to ensure that the reference trigger performs well across

all of these samples. From these plots we can see that the reference trigger is indeed

able to perform well in both the background and signal samples. The reference trig-

ger we choose in this stage of developing the method with simulated samples is later

used in the data sample, and the example trigger efficiency curves are presented also

for the data sample in Figure 17.

In the charged Higgs boson case, we have a combination of reference trigger

paths to maximize the amount of events we are able to use in the data sam-

ple, and to get a good correspondence between the efficiency calculated using all

the events and the efficiency calculated using these reference triggers in the simu-

lated samples. We will again use an or-condition of these triggers to acquire the

events. As reference triggers we will use triggers which target the HT values of

the event: HLT_PFHT180, HLT_PFHT250, HLT_PFHT350, HLT_PFHT370,

HLT_PFHT430, HLT_PFHT680, HLT_PFHT780, HLT_PFHT890 and

HLT_PFHT1050. Again, examples of the trigger efficiencies in the charged Higgs

boson analysis are presented in Figure 18. The trigger efficiency is presented as a
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Figure 17: Trigger efficiency as a function of pT0, HT and pmiss
T in the QCD, ggF,

VBF and data samples in the boosted HH analysis.
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function of p0T , pmiss
T and mT in the TTbar, M200, M1000 simulation samples and

in the data sample.

6.2.2 Training the algorithm

When we have chosen the reference trigger, we can start to train the gradient boost-

ing algorithm. For training the model, we use only the events which pass the refer-

ence trigger to simulate the situation with actual data, where we don’t have access

to all of the events.

The model is trained using only the background sample, which is the QCD sample

in the case of the boosted HH analysis. This also simulates the situation with actual

data. We resampled the original QCD sample to contain the same amount of events

as the data sample, which in this case corresponds to 18324 events. This is done to

make sure the model training process using the QCD sample is comparable with the

training process when we use the data sample. The events are chosen as a function

of the HT distribution of the data sample to ensure that the resulting QCD sample

represents the data sample well. We use 80% of the events in the sample to train

the model, and the model is tested with 10% and validated with the remaining 10%.

This means that in the training sample we have 14659 events, in the testing sample

1833 events, and in the validation sample 1832 events. The completed model is

used to the whole QCD sample as well as to the signal samples VBF and ggF, so

we can determine how well the model is able to generalize into different processes.

Since the VBF and ggF samples simulate processes where a Higgs boson pair can be

produced, it is important to make sure that the machine learning method is valid

when estimating the trigger efficiency in these processes as well.

Similarly, the TTbar sample is used to train the model in the charged Higgs

boson analysis case, and the model is used to the signal samples M200 and M1000

to test how well it is able to generalize into these processes. The distribution of
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Figure 18: Trigger efficiency as a function of pT0, pmiss
T and mT in the TTbar, M200,

M1000 and data samples in the charged Higgs boson analysis.
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events used for training, testing and validating is the same as in the boosted HH

case: 80% is used for training, 10% for testing and 10% for validating. In this case

we have in total 14431 events, and they are chosen from the original TTbar sample

as a function of the mT distribution of the data sample. In the training sample we

have 11544 events, in the testing sample 1444 events, and in the validation sample

1443 events.

6.3 Developing the method using data

After the model has been initially trained and tested with the simulated data, we

can proceed to training the model using actual data. The training, testing and

validation steps of the method are the same as with the simulated samples: in the

boosted HH analysis we have a data sample consisting of 18324 events passing the

reference trigger, and we train the model using a training set consisting of 80% of the

events, test with 10% and validate the results with the remaining 10%. The trigger

efficiency as a function of pT0, HT and pmiss
T for the boosted HH data sample is

presented in Figure 17, where it can be compared to the efficiencies in the simulated

samples.

In the charged Higgs boson analysis we have 14431 events passing the reference

trigger, and the training set is again 80% of the events, the testing set 10% of the

events and the validation set consists of 10% of the events. The trigger efficiency

as a function of p0T , pmiss
T and mT for the data sample in the charged Higgs boson

analysis is presented in Figure 18.

6.4 Aleatoric uncertainties

Aleatoric uncertainty, also known as statistical uncertainty refers to the uncertainty

that is caused by inherently random effects in the experiment. In our case, this

would refer to the limited training sample, meaning that the events chosen for the
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training sample are picked randomly, but the choice might affect the outcome of the

model. To estimate these aleatoric uncertainties emerging from the limited training

sample we will use a method called bootstrapping. Bootstrapping is a method

where we resample the original data set with replacement, meaning that the same

data point can be selected into multiple new samples. Each of these new samples

are used to train the model consequently, and we can then compare the predictions

each of these models produces for each data point by calculating the mean and the

standard deviation between the different predictions. [47] We can use these metrics

to estimate the aleatoric uncertainties related to this method, when we compare

the mean of the results obtained from all of these models to the traditional trigger

efficiency measurement methods, and the standard deviation corresponds to the

uncertainty.

In both the boosted HH analysis case and the charged Higgs boson analysis

case, the number of models trained with sub-samples from the original data was

20. Since the sub-samples are sampled from the original sample with replacement,

all the sub-samples have the same amount of events as the original sample. The

amount of sub-samples being 20 ensures that we get enough results to construct

a good estimate of the standard deviation and mean depending on the different

combinations of training data, but the bootstrapping isn’t too time-consuming in

this stage of developing the method.

6.5 Epistemic uncertainties

Besides the aleatoric uncertainties related to the limited training sample, we have to

take into account the epistemic uncertainties, which in principle mean uncertainties

that are caused by a lack of knowledge. In this method, this type of uncertainty is

related to the choice of the model architecture, meaning that we have to determine

whether the choice of which architecture to use in this method causes differences in
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the outcomes that are larger than the uncertainties defined with the bootstrapping

method. To test this, we will train another model using a DNN architecture pre-

sented in Section 5.3, and compare the results this model produces to the previous

results.
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7 Results

In this chapter, we will present the results for both example cases: the boosted HH

analysis case and the charged Higgs boson analysis case. We will include the results

for both cases obtained from both the model trained using the simulated background

sample and the model trained with the data sample. Curves containing the gradient

boosting predicted efficiencies and the aleatoric uncertainties are presented for both

analyses. The uncertainties related to the model architecture are studied only with

the boosted HH analysis case, since we can expect them to be similar in the charged

Higgs boson analysis case. We will also present results when analyzing the model’s

performance as a function of two variables simultaneously for both analyses. Lastly,

we will present the results which focus on the model’s performance using the metrics

presented in Section 5.4.

7.1 Boosted HH results

In this section, we will present the results obtained when developing the machine

learning method using simulation and data samples presented in Section 1.3.1 and

Section 6.2, related to the boosted HH analysis.

7.1.1 Trigger efficiency curves with aleatoric uncertainties

We will present the gradient boosting model predicted efficiencies as a function of

all of the variables of interest presented in Section 6.1.1. The results obtained from

the QCD sample are shown in Figure 19. The gradient boosting predicted efficien-

cies and their corresponding aleatoric uncertainties obtained with the bootstrapping

method are laid on top of the efficiencies calculated with the reference trigger method

as well as the true efficiencies. This is done to compare the gradient boosting pre-

dicted efficiencies to the efficiencies measured using a traditional reference trigger

method. As seen from the plots, the gradient boosting predicted efficiencies agree
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quite well with the efficiencies measured using the reference trigger method as well

as with the true efficiency in this sample. This is reasonable, since the model is

trained using the QCD sample, so it is able to recognize the efficiencies related to

this process well.

Next, we will present the results obtained from using the model trained with the

QCD sample to predict the trigger efficiency in the signal samples. It’s important

to see how well the gradient boosting model is able to generalize into processes that

it has not been trained with, and as explained before, the data used in the actual

boosted HH analysis targets these signal events. We start with the ggF sample. The

gradient boosting predicted trigger efficiencies and their aleatoric uncertainties as a

function of the variables of interest for the ggF sample are presented in Figure 20,

laid on top of the efficiencies obtained using the reference trigger method and the true

efficiencies. When we look at these results obtained with the ggF sample, it can be

seen that the model is able to predict the efficiencies in this sample reasonably well,

and the bootstrapping uncertainties cover the differences between the efficiencies

obtained with the reference trigger method, the true efficiencies and the gradient

boosting predicted efficiencies.

The results obtained using the QCD trained model in the VBF sample are pre-

sented in Figure 21. We can see here that the model is able to generalize also into

the vector boson fusion process simulated by the VBF sample, and the differences

between the efficiencies calculated using the traditional method, the true efficiencies

and the efficiencies from the gradient boosting method are covered by the uncer-

tainties obtained by bootstrapping.

Finally, we will use the method for the data sample. The efficiencies obtained

using the model trained with the data sample are presented in Figure 22. The gra-

dient boosting predicted efficiencies are now compared to the efficiencies measured

directly from data. From these results we can observe that the gradient boosting
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Figure 19: Trigger efficiency in the boosted HH analysis as a function of variables

of interest in the QCD sample, containing the true efficiencies, the reference trig-

ger measured efficiencies, the efficiencies predicted using the QCD trained gradient

boosting (GB) model, and the corresponding aleatoric uncertainties, which are the

standard deviations (STD) obtained with the bootstrapping method.
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Figure 20: Trigger efficiency in the boosted HH analysis as a function of variables

of interest in the ggF sample, containing the true efficiencies, the reference trig-

ger measured efficiencies, the efficiencies predicted using the QCD trained gradient

boosting (GB) model, and the corresponding aleatoric uncertainties, which are the

standard deviations (STD) obtained with the bootstrapping method.



59

Figure 21: Trigger efficiency in the boosted HH analysis as a function of variables

of interest in the VBF sample, containing the true efficiencies, the reference trig-

ger measured efficiencies, the efficiencies predicted using the QCD trained gradient

boosting (GB) model, and the corresponding aleatoric uncertainties, which are the

standard deviations (STD) obtained with the bootstrapping method.
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Figure 22: Trigger efficiency in the boosted HH analysis as a function of variables

of interest in the data sample, containing the reference trigger measured efficiencies,

the efficiencies predicted using the gradient boosting (GB) model trained with the

data sample, and the corresponding aleatoric uncertainties, which are the standard

deviations (STD) obtained with the bootstrapping method.
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predicted efficiencies agree well with the efficiencies measured from data, meaning

that the model is able to perform well in estimating the efficiencies in the data

sample, which is the primary objective of the new method.

7.1.2 Epistemic uncertainties

The results containing the uncertainties related to the model architecture are pre-

sented and compared to the aleatoric uncertainties. First, the trigger efficiencies as a

function of all of the variables of interest, containing the gradient boosting predicted

efficiencies and their uncertainties, as well as the deep neural network predicted ef-

ficiencies for the QCD sample are presented in Figure 23. As seen in the plots, the

DNN predicted efficiencies are compatible with the gradient boosting based predic-

tion, i.e. lie within the aleatoric uncertainties defined previously. We can see the

same effect in the plots containing the efficiencies measured in the data sample,

which are presented in Figure 24. We can conclude that the choice of a model archi-

tecture does not cause uncertainties larger than the aleatoric uncertainties related

to the limited training sample.

7.1.3 Trigger efficiency as a function of two variables simultaneously

To estimate the model’s performance across multiple variables simultaneously, we

can analyze the trigger efficiency as a function of one variable while varying another.

In the boosted HH analysis, this is done by choosing events in certain HT range and

plotting the trigger efficiency as a function of these events’ pT0, and vice versa. The

results from the data sample are presented in Figure 25, where there are three HT

ranges and the efficiency plotted as a function of pT0 in these ranges, as well as three

pT0 ranges and the efficiency plotted as a function of HT in these ranges. As we

can conclude from these results, the gradient boosting predicted efficiencies align well
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Figure 23: Trigger efficiency in the boosted HH analysis as a function of variables

of interest in the QCD sample, containing the true efficiencies, the measured effi-

ciencies, the efficiencies predicted using the QCD trained gradient boosting (GB)

model, the corresponding aleatoric uncertainties, which are the standard deviations

(STD) from the bootstrapping method, and the DNN predicted efficiencies.
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Figure 24: Trigger efficiency in the boosted HH analysis as a function of variables

of interest in the data sample, containing the measured efficiencies, the efficiencies

predicted using the gradient boosting (GB) model trained with data, the corre-

sponding aleatoric uncertainties, which are the standard deviations (STD) from the

bootstrapping method, and the DNN predicted efficiencies.
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Figure 25: The trigger efficiency as a function of pT0 in three different HT ranges

(top row), and the trigger efficiency as a function of HT in three different pT0 ranges

(bottom row) in the boosted HH data sample.

with the measured efficiencies also in this case of examining the trigger efficiency as

a function of several variables simultaneously.

7.1.4 Performance

The AUC score and accuracy for the model trained using the QCD sample and the

model trained using the data sample are presented in Table III. As seen in the table,

the accuracies are around 0.9 for both of the models, the accuracy of the model

trained using QCD reaching a value of 0.910 in the QCD sample and the model

trained using data having a slightly lower value of 0.896 in the data sample. The

AUC scores are excellent for both models, the AUC score of the model trained with

QCD being 0.959 and the AUC score trained with data being 0.958. The table

also includes accuracies and AUC scores for the QCD trained model applied to the

two signal samples ggF and VBF. The accuracy in the ggF sample is 0.854 and
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Figure 26: The ROC curves for the model trained using the QCD sample, applied

to the QCD, ggF and VBF samples.

the AUC score is 0.919. For the VBF sample, the accuracy is 0.928 and the AUC

score is 0.941. The model performs well in both of these samples, which means that

the model is able to generalize well into unseen processes. We can also notice that

the model is performing better with the VBF sample than with the ggF sample,

and this indicates that the VBF sample has more similar properties with the QCD

sample than the ggF has with the QCD sample, which we could also observe when

comparing the distributions of these variables in the simulation samples.

The ROC curves for the model trained using the QCD sample and applied to all

simulated samples are also illustrated in Figure 26, and for the model trained using

data in Figure 27. From the ROC curves we can also observe that both models

perform significantly better than a model which makes random guesses for all the

samples.

The feature importance ranking introduced in Section 5.2 for the model trained

using the QCD sample is presented in Figure 28. As seen in the figure, the pT0
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Table III: The accuracies and AUC scores in the boosted HH analysis for the model

trained using the simulated QCD sample applied to the QCD, ggF and VBF samples,

and the model trained with and applied to the data sample

Accuracy AUC score

Data 0.896 0.958

QCD 0.910 0.959

ggF 0.854 0.919

VBF 0.928 0.941

Figure 27: The ROC curve for the model trained using the data sample of the

boosted HH analysis.
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variable is clearly the most important feature that the model uses for making pre-

dictions. The importance value is calculated with respect to the importance values

of all other features, meaning that the importance values of all features will sum up

to 1. The importance value of the pT0 reaches over 0.6, meaning that compared for

example to the second most important feature HT with a feature importance value

of around 0.1, it is more than six times more important in making the decisions

than the HT . This is reasonable, since the trigger paths we use for this analysis

as the signal trigger combination largely target the large-radius pT values of the

event. The same phenomena is also observed for the model trained using the data

sample. In this case, the pT0 variable is also the most important feature, with its

importance being just around 0.6. The other variables which have some importance

in the decision making in both models are the HT , HLR
T , pmiss

T and pmiss
T +pT0+pT1,

which also make sense, since these are also variables targeted by the signal trigger

combination.

A large number of variables do not seem to contribute to the decision significantly,

and we tried also training the model using only the most important features pT0,

HT , HLR
T , pmiss

T and pmiss
T + pT0 + pT1 and leaving out the other features to see if

the model would perform as well with only these features. The results were similar

for the QCD sample, but for the ggF and VBF samples the model’s performance

decreased. Thus, it seems that features which have a lower feature importance still

have an effect in helping the model generalize better into unseen data.

7.2 Charged Higgs boson results

In this section, we will present the results obtained when developing the model using

simulation and data samples presented in Section 1.4.1 and Section 6.2, related to

the charged Higgs boson analysis. The variables used in this analysis are presented

in Section 6.1.2.
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Figure 28: Feature importance ranking plot for the model trained using the QCD

sample.

Figure 29: Feature importance ranking plot for the model trained using the data

sample of the boosted HH analysis.
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7.2.1 Trigger efficiency curves with aleatoric uncertainties

The trigger efficiency curves containing the gradient boosting predicted efficiencies,

the true efficiencies and the traditionally measured efficiencies as a function of the

variables of interest in the TTbar sample are presented in Figure 30. As in the

boosted HH analysis case, the method seems to work well when applied to this

background sample the model was also initially trained with.

The results for the TTbar trained model used in the M200 sample are presented

in Figure 31. As can be observed from the plots, the model seems to be able to

generalize into this process well. The signal process simulated in this M200 sample

is closer to the background process than the process simulated in the M1000 sample,

so it is reasonable that the model is able to generalize into this process.

The trigger efficiency plots comparing the gradient boosting predicted efficiencies

to the efficiencies measured using traditional methods for the M1000 sample are

presented in Figure 32. As seen in the plots, the model isn’t able to generalize into

this sample, and the efficiencies predicted by the model trained using the TTbar

sample have systematically lower values than the true efficiencies in this sample.

There are some qualities in the M1000 sample that improve the efficiency in a way

that the TTbar model doesn’t recognize, and this can be caused, for example, by the

training data not having enough events resembling the events in the M1000 sample.

Lastly, the results for the model trained using the data sample are presented in

Figure 33. The method seems to work well in the data sample also in this analysis

case, which is promising regarding the possibility of using this method in the charged

Higgs boson analysis as well, with the caveat that the efficiency estimate does not

generalize to signal scenarios with very heavy (TeV-scale) H+ masses.

The uncertainties in this analysis acquired using the bootstrapping method are

larger than the bootstrap uncertainties in the boosted HH analysis across all the

simulated samples and the data sample. Especially with higher pT values, there is a



70

Figure 30: Trigger efficiency in the charged Higgs boson analysis as a function

of variables of interest in the TTbar sample, containing the true efficiencies, the

reference trigger measured efficiencies, the efficiencies predicted using the TTbar

trained gradient boosting (GB) model, and the corresponding aleatoric uncertainties,

which are the standard deviations (STD) obtained with the bootstrapping method.
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Figure 31: Trigger efficiency in the charged Higgs boson analysis as a function

of variables of interest in the M200 sample, containing the true efficiencies, the

reference trigger measured efficiencies, the efficiencies predicted using the TTbar

trained gradient boosting (GB) model, and the corresponding aleatoric uncertainties,

which are the standard deviations (STD) obtained with the bootstrapping method.
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Figure 32: Trigger efficiency in the charged Higgs boson analysis as a function

of variables of interest in the M1000 sample, containing the true efficiencies, the

reference trigger measured efficiencies, the efficiencies predicted using the TTbar

trained gradient boosting (GB) model, and the corresponding aleatoric uncertainties,

which are the standard deviations (STD) obtained with the bootstrapping method.
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major difference in the predictions made by the models with different subsamples of

training data in the bootstrapping phase. This is probably because the samples do

not have many events with these high pT values, so depending on the events chosen

for the training subsamples there might be only a very low amount of events with

high pT values in certain subsamples.

7.2.2 Trigger efficiency as a function of two variables simultaneously

We can again investigate the model’s performance as a function of several vari-

ables simultaneously by varying one variable and plotting the trigger efficiency as a

function of another. In this charged Higgs boson analysis, we analyze the model’s

performance as a function of pT (τh) and pmiss
T , first by selecting events in certain

pmiss
T ranges and plotting the trigger efficiency as a function of pT (τh), and then

varying the pT (τh) and plotting the trigger efficiency as a function on pmiss
T . The re-

sults obtained from the data sample are presented in Figure 34, where we can again

notice that the gradient boosting predicted efficiencies are aligning with the mea-

sured efficiencies well. The model is thus performing well as a function of multiple

variables simultaneously.

7.2.3 Performance

The AUC score and accuracy for the model trained using the TTbar sample and the

model trained using the data sample are presented in Table IV. The model trained

using data has an accuracy of 0.928 and an AUC score of 0.859 when applied to

the data sample, and the model trained using the TTbar sample has an accuracy

of 0.911 and an AUC score of 0.920 when applied to the TTbar sample. The ROC

curve for the model trained and used in the TTbar sample is presented in Figure

35, and for the model trained and used in the data sample in Figure 36. From

these results we can conclude that the models perform well in these two samples,
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Figure 33: Trigger efficiency in the charged Higgs boson analysis as a function of

variables of interest in the data sample, containing the reference trigger measured

efficiencies, the efficiencies predicted using the gradient boosting (GB) model trained

with the data sample, and the corresponding aleatoric uncertainties, which are the

standard deviations (STD) obtained with the bootstrapping method.
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Figure 34: The trigger efficiency as a function of pT (τh) in three different pmiss
T ranges

(top row), and the trigger efficiency as a function of pmiss
T in three different pT (τh)

ranges (bottom row) in the charged Higgs boson data sample.

the model trained using the data sample having a slightly higher accuracy and the

model trained using the TTbar sample having a slightly higher AUC score out of

these two models.

The accuracies and AUC scores of the model trained with the TTbar sample

and applied to samples M200 and M1000 are also included in Table IV. The model

performs well in the M200 sample, as can be seen from the accuracy, which is 0.892,

and the AUC score, which is 0.874. However, as was already evident in the trigger

efficiency plots presented previously, the model isn’t able to perform well in the

M1000 sample. This can also be observed in the performance metric values for this

sample, since the model’s accuracy in this sample is 0.561 and the AUC score is

0.628. The model is thus performing only slightly better than a random classifier in

this sample. The ROC curves for the model applied to both of these signal samples

are also presented in Figure 35.
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Table IV: The accuracies and AUC scores in the charged Higgs boson analysis for

the model trained using the simulated TTbar sample applied to the TTbar, M200

and M1000 samples, and the model trained with and applied to the data sample

Accuracy AUC score

Data 0.928 0.859

TTbar 0.911 0.920

M200 0.892 0.874

M1000 0.561 0.628

Figure 35: The ROC curve for the model trained using the TTbar sample applied

to all simulated samples in the charged Higgs boson analysis.
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Figure 36: The ROC curve for the model trained using the data sample of the

charged Higgs boson analysis.

The feature importance ranking plot for the model trained using the TTbar

sample is presented in Figure 37. Compared to the boosted HH case, the importance

of each feature is slightly more balanced in this charged Higgs boson case. The most

important feature is the pmiss
T , which has an importance of over 0.4. This is again

quite reasonable, since one condition in the signal trigger targets the pmiss
T value.

The pT (πτh) and mT have an importance value of around 0.1, and p0T and pT (τh)

have an importance value of slightly less than 0.1. The signal trigger targets also

the pT (τh) and the pT (πτh), so it is understandable that these features contribute to

the model’s decisions. The N(jet) and N(τ) variables have the lowest importance

values out of all the variables.

In Figure 38, the feature importance ranking plot for the model trained using

the data sample is presented. The importance ranking and values are quite similar

than in the TTbar trained model, but in this case the mT variable has a larger

importance value than pT (πτh), and the pT (τh) has also a slightly larger importance

value than p0T .
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Figure 37: Feature importance ranking plot for the model trained using the TTbar

sample.

Figure 38: Feature importance ranking plot for the model trained using the data

sample of the charged Higgs boson analysis.
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8 Conclusion

In this thesis, a new method for estimating the trigger efficiency with the help of

a machine learning algorithm was developed. The goal of the new method was to

model the trigger efficiencies as a function of several variables simultaneously, since

this is difficult to perform using traditional methods. The method is based on a

gradient boosting algorithm, and the aleatoric uncertainties related to this method

were estimated using a bootstrapping method. The epistemic uncertainties related

to the model architecture were also studied by comparing the results given by a

deep neural network model to the bootstrapped gradient boosting model. This new

method was tested on two ongoing analyses: a boosted Higgs boson pair production

analysis and a search for charged Higgs bosons analysis. The model was tested

by using simulated samples and data in these both cases. Simulated samples were

used to validate the method, since we are able to compare the results given by

this new method to the true trigger efficiency calculated using all the events in the

sample. After validating the method with the simulated samples, the method was

then applied on a data sample, since the main goal of the method is to measure the

trigger efficiency in data.

In the boosted Higgs boson pair production analysis, the model was trained us-

ing a background sample that simulates multijet production via quantum chromo-

dynamics interactions, and the model was then used in the background sample and

two signal samples, which simulate the Higgs boson self-coupling via gluon fusion

and vector boson fusion. The new method seems to work well across all simulated

samples. The model was then trained and tested using the data sample, and it was

concluded that the method also works well in the data sample.

In the charged Higgs boson analysis case, the method seems to work well for

the background sample which simulates top quark pair production, and for the data

sample. It seems to also work well for the simulated sample that simulates the
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process where the mass of the charged Higgs boson is 200 GeV. However, in the

sample that simulates the process where the charged Higgs boson has a mass of

1000 GeV, there seems to be some qualities that improve the efficiency in a way that

the model is not able to recognize.

For the charged Higgs boson analysis case, the method would need improving

in the case of modelling the process where the charged Higgs boson has a mass of

1000 GeV. One possibility is to use a different kind of training data, which could

be, for example, a mixture of the samples simulating both the multijet production

via quantum chromodynamics interactions and the top quark pair production. This

could increase the events which have similar qualities than the events in the sample

that simulates the process where the mass of the charged Higgs boson is 1000 GeV.

However, this would only work when training the model with simulated samples.

We could also study the differences between the sample simulating the process of

1000 GeV charged Higgs boson and other samples, and possibly add new variables

to the gradient boosting model which might improve the performance. There is also

a possibility of trying a model architecture which is not presented in this thesis to

see if it would perform better in this case.

In conclusion, the method seems to be beneficial for the boosted Higgs boson

pair production analysis, since the model performs well across all signal samples and

in the data sample, where the model would be used in actual analysis. Testing of

this new method in the boosted Higgs boson pair production analysis conducted at

the CMS experiment is currently starting.
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