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Wearable devices are consumer worn devices that can be used to measure the body’s
physiological responses. Wearable devices are often non-invasive, for example worn
on the wrist or finger, and can be used to measure heart rate, steps, respiratory rate,
and several other parameters.
Respiratory tract infections are common diseases, and their severity can vary from
mild, like runny nose, to life-threatening pneumonia. In particular, the coronavirus
that spread as a pandemic in 2020, caused plenty of deaths and lots of grief to
society. The purpose of this thesis is to find out, if the data from wearable devices
can be used to detect a respiratory infection even before its symptom onset.
Three different anomaly detectors were applied to three publicly available datasets.
Resting heart rate, step count, heart rate variability and temperature were used as
parameters.
As a result, the impact of infection on the resting heart rate varied considerably
between individuals. In general, sensitivities of the detectors were low, around 20%.
In addition, different combinations of model parameters were tested to optimize the
results, and with possible overfitting, sensitivity increased up to 50%.
The possible explanation for the low sensitivity of the detectors is that physiological
alterations caused by infections are similar with other physiological reactions, for
example stress. With more complex models and using several measurable parameters
at the same time, it might be possible to identify respiratory infections more reliably
with wearable devices.
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Puettavat laitteet ovat laitteita, joita tavallinen kuluttaja voi käyttää fysiologis-
ten vasteiden mittaamiseen. Usein puettavat laitteet ovat ei-invasiivisia, esimerkiksi
ranteessa tai sormessa pidettäviä, ja niillä voi mitata sykettä, askeleita, hengitys-
taajuutta sekä useita muita muuttujia.
Hengitystieinfektiot ovat yleisiä sairauksia, ja niiden vakavuus voi vaihdella nuhasta
hengenvaaralliseen keuhkokuumeeseen. Erityisesti vuonna 2020 pandemiaksi levin-
nyt koronavirus aiheutti paljon kuolemantapauksia sekä yhteiskunnallisia haasteita.
Tämän diplomityön tarkoituksena on selvittää, voiko puettavista laitteista saadulla
datalla tunnistaa hengitystieinfektion jopa ennen sen oireiden alkua.
Työssä käytettiin kolmea julkisesti saatavilla ollutta tietoaineistoa (engl. dataset) ja
tunnistukseen käytettiin kolmea erilaista algoritmia. Parametreinä käytettiin lepo-
sykettä, askeleiden määrää, sykevälivaihtelua sekä ihon lämpötilaa. Havaittiin, että
ihmisten välillä on suuria eroja siinä, tapahtuuko leposykkeessä muutosta infektion
aikana. Yleisesti kaikkien algoritmien herkkyys oli matala, noin 20 %. Herkkyyden
nostamiseksi algoritmeille annettiin erilaisia parametrien yhdistelmiä, millä herk-
kyys saatiin mahdollisesti ylisovittaen nousemaan jopa 50 %:iin.
Algoritmien heikkoa herkkyyttä selittää se, että infektioiden aiheuttamat puettavil-
la laitteilla mitattavat fysiologiset muutokset voivat sekoittua muihin fysiologisiin
muutostiloihin, esimerkiksi stressiin. Monimutkaisemmilla tunnistimilla ja käyttäen
useampaa mitattavaa parametria saman aikaisesti, puettavilla laitteilla olisi mah-
dollista tunnistaa hengitystieinfektioita luotettavammin.

Asiasanat: puettava teknologia, hengitystieinfektio, COVID-19, poikkeavuuksien tun-
nistus
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1 Introduction

1.1 Wearables

Wearable devices (later wearables) can be defined as non-invasive, relatively cheap,

customizable devices designed to monitor users’ physiological parameters. Although

typically focusing on non-invasive technologies, some wearables are minimally inva-

sive like glucose sensors. For the purpose of this thesis, only non-invasive wearables

are considered.

Wearables come in various forms such as wristbands, rings, or even piece of

clothing offering users a convenient way to track parameters affecting their health

(See Figure 1.1). Wearables can be used to several purposes: monitoring basic

physiological parameters such as heart rate (HR), continuous tracking of sporadic

health events such as arrhythmias or sleep apnea, detecting activity levels and habits

or even pre-symptomatic infections, or more advanced prediction like mortality or

pulmonary disease getting worse [1].

Common parameters measured by wearables include HR, step count, energy

consumption and sleeping patterns. Additionally, more detailed metrics like heart

rate variability (HRV), respiratory rate (RR), dermal temperature, stress levels,

oxygen saturation (SpO2) and blood pressure [2] is measurable using wearables.

As wearables become more advanced and accessible, they are increasingly in-

tegrated into daily life, empowering individuals to actively manage and track their
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Figure 1.1: Wearable sensor types and measurable parameters.

health and possibly prevent complications of diseases. Many athletes (or individuals

interested in fitness) use wearables for recovery and exercise planning to optimize

the results [3]. Besides of individual’s own will to use wearable and track life, wear-

ables are also used in healthcare. For example, semi long-term cardio monitoring

can be used in the healthcare sector for irregular arrhythmia detection [4] or sleep

disorder definition.

Wearables mainly employ well known techniques like photopletysmography (PPG),

electrocardiography (ECG), accelerometers and gyroscopes. PPG uses light to mon-

itor changes in volume of blood in semi-superficial arteries. The light is transmitted

to the skin and the intensity of reflected light describes blood volume. From PPG

signal, HR and SpO2 can be gathered relatively accurately. In addition, RR, HRV are

commonly used parameters that can be extracted from PPG signal. [5]. Blood pres-

sure can also be calculated from PPG signal utilizing for example pulse transit time

or pulse wave velocity. However, these methods are not accurate enough for medical

purposes, so measuring blood pressure using PPG is not commonly standardized

method [6–8]. ECG measures the electrical activity of the heart. Traditionally ECG
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measurement has 12-leads (total of 10 electrodes) or 6-leads (with 3 limb electrodes)

which are placed to chest and limbs but especially wrist-worn wearables (e.g. smart

watches) utilizes 1-lead ECG with two limb electrodes. Heart rhythm associated

parameters like HR and HRV, and respiratory rate can be extracted from ECG sig-

nal. Accelerometers and gyroscopes are used to step count calculation, and along

with other signals, to energy consumption calculation and sleep tracking. Besides

standard fitness trackers, there are wearable devices for cardio health monitoring.

Those devices utilize ECG and seismocardiography (SCG), which is based on mea-

suring the movement of the chest caused by the heart beating. [9]. SCG provides

information about heart function and may help with cardiac event detection.

Although technologies of wearables have developed recently and wearables have

been generalized, many challenges still remain in wearables. Firstly, even though

wearables are cheap compared to hospital monitors, the newest and the best smart-

watches and smartrings can cost hundreds of euros [10]. Secondly, data quality is

a considerable problem among wearables. Accuracy of heart rate signal from PPG

can decrease up to 30% during an activity, like walking, compared to rest [11], and

accuracy improves when the device knows the current activity of the user [12]. In

addition to inaccuracy caused by movement, data quality and accuracy are affected

by tightness of the sensor and possible moisture, for example sweat, between skin

and the sensor [13].

Diverse scale of brands and measurement sites leads to diverse data processing

methods and algorithms, so data from two wearables can differ considerably [1] which

makes future research using commercial wearable more difficult. Development of

new, higher quality algorithms used in wearables is slow because the process requires

large amounts of labeled data.
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1.2 Infections

An infection denotes a state where a pathogen, such as a virus or bacteria, infil-

trates to a human body, replicates, and triggers an immune response. Infections can

cause different diseases or states like respiratory infections, such as common cold or

influenza. [14]. They can also induce more severe conditions like acquired immune

deficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV) and

can even trigger certain autoimmune disorders [15]. The most common viruses caus-

ing respiratory infections in humans are rhinoviruses, coronaviruses, and influenza

viruses [14, 16]. In addition, some bacteria, for example Streptococcus pneumoniae

and Mycoplasma pneumoniae, can cause respiratory infections but viruses are more

common cause of respiratory infections than bacteria [17].

On average an adult goes through 2-5 respiratory infections annually [14]. Symp-

toms of respiratory infection can vary from mild sneezing and sore throat to high

fever and severe cough [16]. In general, however, milder symptoms are more preva-

lent. Respiratory viruses that cause infections can spread via aerosols suspended

in the air, larger aerosol particles emitted directly from an infected person (e.g.,

through sneezing or coughing), or through contact with contaminated surfaces such

as the hands of infected individuals or commonly touched objects like handrails or

doorknobs [16]. Using a face mask can reduce the spread of aerosols. In addition,

good hand hygiene can prevent the transmission of viruses both from an infected

person to surfaces and from surfaces to unaffected individuals. [18, 19].

The emergence of SARS-CoV-2 (severe acute respiratory syndrome coronavirus

2) in 2019 precipitated in coronavirus disease (COVID-19) resulting to pandemic

disease. COVID-19 has caused over 7 million deaths worldwide [20]. The most

common symptoms of COVID-19 are cough, headache, fever, and fatigue, but also

tiredness and stomach problems are possible symptoms [21]. In the beginning of

the COVID-19 pandemic vaccine development started, and relatively quickly a few
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different vaccines were developed. COVID-19 vaccine prevents from viral spreading

and protects individuals from severe disease and deaths [22, 23]. COVID-19 median

incubation period is approximately 5 days, with 97.5% of infected individuals expe-

riencing symptoms within 11.5 days (if symptoms developed), indicating potential

infectivity before symptom onset [24].

Influenza, commonly known as flu or seasonal flu, is a viral disease caused by

influenza viruses. The most prevalent form of influenzas is seasonal influenza, which

varies from year to year, and occurs most commonly in the winter months, in North-

ern hemisphere from November to March. Annually, millions of people worldwide

have influenza, and hundreds of thousands of people die because of influenza in-

fection [25]. A vaccine against seasonal influenza is developed every year, which

effectively prevents the transmission, serious symptoms and deaths of influenza [26].

The symptoms of influenza are similar to those of COVID-19: from runny nose to

high fever, and usually last up to two weeks. The incubation period of influenza is

shorter than in COVID-19, typically around two days. [25].

Common cold is usually caused by viruses, mostly rhinoviruses. Symptoms typi-

cally include sore throat, nasal congestion and cough. A complication of the common

cold can be, for example, a sinusitis caused by a bacterium. The incubation time

for different viruses is heterogenic. For example, symptoms may start as early as 12

hours after rhinovirus exposure. The symptoms may worsen for 2-3 days, and on

average the common cold lasts about a week. [16].

During respiratory infections, the body undergoes physiological changes in re-

sponse to activation of the immune system and those changes can be measured,

for example via wearables. Elevated inflammatory biomarkers, such as C-reactive

protein, are associated with an increase in resting heart rate (RHR) [27], and even

slight deviations from normal body temperature can significantly elevate heart rate

[28]. More specifically, heart rate can increase seven beats per minute (bpm) for ev-
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ery degree celcius and even more in high fever. Respiratory rate also elevates while

body temperature increases. [29]. In addition, HRV have been reported to decrease

during COVID-19 infection [30].

1.3 Anomaly Detectors

One approach to observe abnormal heart rate is to use different anomaly detectors.

In the time series data, anomalies are patterns that deviate from normal behavioral

data and anomaly detection is an action to identify those patterns. The goal of

anomaly detection is to find the anomalous behavior of the unseen data based on

historical events. [31]. Anomalous region in wearable data could be just outlier

caused by improper device use or actual physiological outlier like an infection.

Isolation Forest is a simple and efficient anomaly detector based on binary tree

structures. In Isolation Forest detector flow, several binary isolation trees are ran-

domly created from the data. For every generated tree, distances between the root

of the tree and each node are calculated. The shorter the distance a point is from

the root of the tree, the more likely it is an anomaly. Deviating points in the data

are most likely those with the shortest distance number on average, i.e. in several

trees in the forest they are closest to the root. Ideally, the amount of anomalies in

the data is minimal and anomalies differentiate from the non-anomalous, normal,

data. [32–34].

Elliptic Envelope is an anomaly detector that utilizes normal distribution, also

known as Gaussian distribution, of the data for the detection meaning that the input

data must be normally distributed. Anomalies from Elliptic Envelope are located

to the tails of the univariate distribution or in multivariate case the edges or outside

of the shape. Using the properties of the Gaussian distributed input data, an ellipse

is fitted around the central mode using a robust covariance estimate of the data,

and the Mahalanobis distance derived from this estimate is then used to set the
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threshold for detecting outliers or anomalies. [34, 35].

Finite state machine (FSM) approaches anomaly detection via mathematical

modelling. In a given time point, the machine can be only in one of the defined

finite number states. In time series data, that means that the output of certain

time point is in an unambiguous state. The flow of an FSM begins with defining

an initial state. When an action occurs, such as receiving a new daily value, the

FSM transitions to a new state which is based on the current state and the action.

The process also allows the machine staying in the same state if the action does not

trigger a transition. [36].

There are also plenty of other techniques used for anomaly detection. Statis-

tical methods use z-score standardized data, and significance level of 0.01 or 0.05

is considered as anomalous. That kind of statistical approach is only suitable for

one-dimensional data. In addition, several machine learning algorithms are used for

anomaly detection. For example, supervised machine learning method k-Nearest

neighbours calculates distances between data points and those distances are used

for anomaly detection. [34]. Besides of k-Nearest neighbours, supervised machine

learning algorithms like Support Vector Machines and logistic regression. Algo-

rithms utilizing neural networks are unsupervised machine learning methods, and

they are also suitable for anomaly detection. [37].

In general, multiple challenges are related to anomaly detection. Firstly, espe-

cially for supervised machine learning based detectors, high amounts of labeled data

are needed to train the model sufficiently, and acquiring high-quality labeled data

is time-consuming. Secondly, the definition of normal or anomalous is not straight

forward. Threshold to determine if point suspected to be anomalous is for real

anomaly should be considered carefully. That often requires domain-specific knowl-

edge and can vary greatly between different contexts, making standardization of

the detector thresholds difficult. For example, in detecting infectious periods from
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data, threshold for suspicious physiological alterations must be carefully considered

so that most of real diseases are detected but all possible changes are not considered

as anomalies. Thirdly, generalization of the detector to other applications or fields

might not be feasible. Models trained on certain datasets may not perform well on

different datasets because data distributions vary depending on where the anomalies

come from. [31].

1.4 Related work

During and following the COVID-19 pandemic, multiple research groups have in-

vestigated the impact of respiratory infections on physiological responses, such as

RHR, overall daily heart rate, HRV, sleep duration, and step counts, all of which

can be measured through wearables [38–49]. Beyond COVID-19, the detection of

other potentially serious infections, including influenza-like illnesses, has also been

explored [48, 50, 51]. Because COVID-19 and influenza usually cause more severe

symptoms, they are easier to detect by wearables compared to common cold. On the

other hand, usually milder symptoms of common cold might be confused with nor-

mal physiological changes. The idea and concept of these kind of studies is presented

in Figure 1.2.

The most accurate methodology for detecting infections, optimally reflecting

real-world conditions and needs, involves gathering data from volunteers who wear

devices during their everyday activities and also report their sick days.

Several physiological parameters have been tested with COVID-19 or other illness

detection using wearables. The most used of them are RHR [40, 42, 44, 45, 47, 48],

HRV [43, 44, 46, 49], respiratory rate [43, 44, 46, 49], sleep [40, 42, 45, 48], and

step counts/ activity level [40, 42, 43, 45, 47, 48]. These parameters are preferred

because most wearables (like smartwatches) can measure them, and their patterns

may alter during an infection.
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Figure 1.2: Respiratory infection detection using wearables. For working
detectors, first longitudinal wearable data from large population is needed. That
data is then analyzed and anomaly detectors are developed, possibly using machine
learning. The models can be applied to individual level, and when anomalies are
detected the user gets alert in their phones.

Most studies have been done using common wearables in the market, including

Fitbit [45, 46, 48], Apple Watch [41], WHOOP [44], and Oura ring [43, 49]. In

previous reports, wearables have been used either individually or in combinations

[38, 47]. The number of participants and the ratio of healthy to positively tested in-

dividuals vary across studies, with participant numbers ranging from a minimum of

50 to several hundreds. Many of the studies have focused on only symptomatic par-

ticipants of whom some had positive COVID-19 test, enabling comparisons between

COVID-19 positive and negative cases.

Detection algorithms, which aim to identify anomalies or distinguish COVID-19

positive cases from negatives, utilize a range of machine learning methods. These

include gradient boosting [44, 47], convolutional neural network [46], logistic regres-

sion [47], random forest classifiers [38, 43, 47], k-Nearest Neighbor [47], support

vector machine [47], FSM [38] and Elliptic Envelope [45]. Some of these studies

used their own detection methods [41, 49].

Comparative analyzes between COVID-19 and other viral respiratory infections
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reveal interesting results. According to a study using WHOOP straps to monitor

respiratory rate, COVID-19 could not be distinguished from non-COVID-19 infec-

tions [44]. The elevation in resting heart rate (RHR) was noted to be less significant

among symptomatic people tested COVID-19 negative individuals when compared

to COVID-19 positive cases [47]. Furthermore, the symptom period of COVID-19

was significantly longer than that of non-COVID-19 flu [48]. Physical alterations

caused by COVID-19, including changes in RHR, HRV, RR and activity rate, could

be detected on average 2.75 days prior to the positive test, whereas symptom onset

was on average 1.98 days prior to positive test [43].

While respiratory rate appears to be relatively stable within individuals, intra-

individual changes are noticeable. This variability makes it hard to set a universal

threshold or detector, but creating one from individual data is still possible. [44].

Comparing changes in RR to changes in HR and HRV, respiratory rate had largest

alterations around symptom onset [46] making RR efficient parameter for detection

of COVID-19 and other respiratory infections.

RHR has been demonstrated to been elevated in respiratory infections [42, 45,

47]. However, the timing of RHR elevation varies across studies , ranging from

occurring "near symptom onset" [45], to a few days before and after symptom onset

[42], and even up to 13 days prior to symptom onset [47]. During COVID-19, RHR

has been reported to increase by an average of 1.65 beats per minute above baseline

[47].

Results on HRV changes during respiratory infection is not much studied. How-

ever, patterns in HRV have been detected to alter 7 days before and 7 days after

COVID-19 diagnosis compared to study baseline [43].

As described in Table 1.1, different detectors and methods to detect COVID-19

or other respiratory illnesses has been explored. For instance, using the Gradient

Boosting method and nocturnal respiratory rate, a study achieved a detection rate
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of 20% among positive individuals 2 days prior to symptom onset, rising up to

80% three days after symptom onset [44]. CuSum detector detected correctly 63%

COVID-19 positives before and around symptom onset [45] and and the specificity

and sensitivity of CuSum were 84% and 72%, respectively [38]. Random Forest Clas-

sifier for COVID-19 detection using Oura ring and HR, HRV, RR, temperature and

activity levels as parameters achieved 82% sensitivity and 63% specificity. Notably,

the model in a particular study performed best when incorporating all five param-

eters compared to excluding any individual parameter. [43]. Comparison between

sensitivities and specificities in studies employing machine learning is presented in

Figure 1.3. Overall specificities have been high in all studies but range of sensitivities

have been wider.

Figure 1.3: Comparison between sensitivity and specificity in different
studies. A [46] Sickness prediction done with Convolutional neural network. B [52]
COVID-19 detection done with Multivariate logistic regression with RHR. C [44]
Healthy versus infected day classification training results. D [53] Passive COVID-19
detection using gradient boosting. E [43] COVID-19 detection using machine learn-
ing. F [50] Average of influenza and rhinovirus detection done using random forest.

In addition to studies conducted under free-living conditions involving numerous

participants, some groups have pursued infection detection using wearables in con-

trolled environment. In those studies, virus has been inoculated, ensuring that the
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viral exposure time is strictly known (compared to ’natural’ infection).

In a study from year 2021 [50], 31 healthy participants were inoculated with H1N1

influenza virus, while 18 participants received rhinovirus inoculation. Utilizing Em-

patica E4 wristbands, heart rate, dermal temperature, electrodermal activity, and

movement data were collected for one day before and eleven days after H1N1 inocu-

lation, and four days before and five days post-inoculation for rhinovirus. Symptom

surveys, assessing both observable and non-observable symptoms, were administered

twice daily, with viral infection confirmed through daily laboratory, polymerase chain

reaction (PCR) testing. Predicting of the infection was done using Random Forest

Classifier.

In a similar study from 2023 [51], 20 healthy participants were inoculated with

H3N2 influenza virus. Bittium sensors were used to monitor single-lead ECG and

movement data, from where heart rate and intra-beat interval data were extracted.

Data was collected seven days prior and ten days after the inoculation. Participants

also completed symptom surveys twice a day, utilizing a four-step scale to evaluate

eight symptoms. Infection confirmation was achieved through twice-daily collection

of blood samples and nasal swabs for PCR analysis. Predicting infection on each

participant was done with semi-superivsed multivariable anomaly detection model.

Both of those controlled studies [50, 51] concluded that infection could be de-

tected prior to symptom onset using machine learning models. With random forest

classifier, H1N1 influenza was detected with 89% accuracy 36 hours after inocula-

tion, and rhinovirus was detected with 88% accuracy within same time period. The

random forest classifier was also able to accurately differ asymptomatic/non-infected

cases from H1N1 and rhinovirus cases (accuracies 83% and 92%, respectively).
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1.5 Research Motivation

Retrospective studies involving hundreds of participants have their limitations. Risks

include participants’ responsibility for data collection in free-living environments.

Ensuring proper device usage, and accurately completing subjective symptom ques-

tionnaires that risk type can be minimized. [43, 48]. When classification relies solely

on symptom questionnaires or self-administered tests, diseases may be misclassified

as asymptomatic despite biological responses occurring [49]. Additionally, when se-

lecting parameters, attention must be paid to whether changes are disease-induced

or influenced by other factors, such as psychological or behavioral changes in activity

levels during COVID-19 [40].

On the other hand, controlled viral exposure studies are valuable for defining

illness detection methods. However, limited number of participants in these studies

can restrict model validity, since there is big variance in physiological responses be-

tween individuals. Knowing the precise timing and dosage of viral exposure improves

predictive accuracy, as demonstrated in [50]. Furthermore, outcomes are influenced

by closely monitoring viral levels, employing structured symptom surveys, and con-

trolling data collection procedures.

Respiratory infection detection research is mainly done in the past couple of

years. Especially COVID-19 pandemic increased the number of studies in this field.

Many research groups have tried to identify COVID-19 from other non-COVID-

19 respiratory infections using wearable data, whereas some studies have detected

any respiratory infection. Also, there is a knowledge gap whether an infection is

detectable before or after its onset, raising the question, if the main goal is to detect

the onset or the existence of infection.

Most of the studies about detecting respiratory infections using wearables have

been pilot studies meaning that no further validation of data collection or detectors

has been yet done. Additionally, significant differences between results of different
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studies raise concerns about potential overfitting in some cases. In the future, mul-

ticenter studies and better validated and tested methods are crucial for more precise

and accurate results. Also, most of the studies focused on just infected participants

but data from healthy people would have given negative controls and more data

about normal deviations in parameters.

To stop viral spreading, it would be important to detect infectious diseases early.

There are sensitive PCR based laboratory tests and other laboratory tests to detect

COVID-19 and influenza but they are expensive and time-consuming. On the other

hand, there are at-home test kits available, but the their accuracy is lower [43, 45].

In addition, even home-tests are not performed if there are no symptoms or recent

exposure to the virus. Therefore, there is a need for accessible and affordable infec-

tion detectors. These detectors would allow early detection of respiratory infections,

enabling infected individuals to isolate and recover before their condition worsens.

While fever can be easily detected through temperature measurements, wearable

devices may provide additional tools to utilize this well known indicator.

Early identification of respiratory tract infections, even before the symptom on-

set, and isolating the infected person and starting to rest would produce societal

benefits. First, effective and accurate detection of infection using wearable devices

would contribute to individuals having sufficient information about their own health,

so that the disease can be treated either independently at home or in the context

of medical care, and the duration and severity of the disease could be reduced. In

addition, self-imposed isolation from other people has been found to reduce the

spread of viruses, especially COVID-19, in the population [54]. Thus, the burden of

medical treatment is also lightened, when there are fewer sick people and, thus, also

seriously ill ones.

The purpose of this thesis is to determine, if it is possible to detect respiratory

infections from wearable data. In this work, three publicly available high resolution
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datasets are used. Infections are detected using three earlier published detectors.

In addition, small pilot study with self-collected data was done to compare results

with previous studies.

The research questions of this thesis are:

Q1. Is it possible to detect respiratory infections from wearable data?

Q2. Is it possible to detect respiratory infection onset from wearable data?

Q3. How sensitive/specific existing detectors are?

Q4. Are previously published results reproducible?

Q5. How the same detectors work with our own pilot data?

Generative AI (ChatGPT 3.5 and 4o) has been used in this thesis for rephrasing,

spelling and with coding problems (for example figures).



2 Methods

2.1 Data description

Data 1 [45] The dataset consisted of 32 COVID-19 positive and 13 symptomatic

COVID-19 negative participants collected between February 2020 and June 2020.

COVID-19 negative participants had either influenza B, rhinovirus or some other

unknown infection. Five of the COVID-19 positives had also non-COVID-19 illness

in their data period. In the published dataset, there were also data from 73 healthy

participants. In this thesis, Data 1 ’positives’ (people who reported some disease)

and ’negatives’ (healthy individuals = did not report any disease) are handled sep-

arately. Main anomaly detection analysis was done only with infected individuals

(’positives’). The data was collected with Fitbit smartwatches. Heart rate was col-

lected at 15 second resolution, step values at 60 second resolution, and sleep data

as sleep stage intervals. In the published dataset, HR values over 200 bpm and

under 30 bpm were removed as well as data duplicates. Timestamps were given

as randomized date and time (YYYY-MM-DD HH:MM:SS). Symptom and diagno-

sis dates were given in supplementary Excel file for each participant. For subject

ID AA0HAI1, three different measurements were given. Two of those clearly over-

lapped, so they were combined and considered as one measurement.

Data 2 [38] The dataset consisted of total 2123 individuals, with 84 reporting

COVID-19 test date, and some of them reported also symptom onset date. Of those
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84 COVID-19 positive participants, 49 participants used Fitbit for wearable data

collection, and only the Fitbit users were considered for this thesis because then

those were comparable with Data 1 and data collected with other devices (Apple

watch) did not have high enough resolution. Sampling frequencies and resolutions

were not reported in the paper, but they were similar to Data 1, since Data 2 study

was extension of Data 1 study. In addition to COVID-19 infected individuals, there

were 2039 participants who did not report any symptoms or COVID-19 tests. The

lack of symptom data of these people led to the rejection of their data in this thesis.

Data 3 [49] The dataset consisted of 50 participants having fever (and other

COVID-19 symptoms). The data was collected using Oura ring. Dermal temper-

ature was collected at one minute resolution, RR at 30 second resolution, HR at

mean per 5 min inter-beat interval, HRV RMSSD (root mean square of successive

differences) per 5 minutes. RR, HR and HRV were from PPG signal sampled with

250 Hz. In the published dataset all the data was presented in a 1-min resolution

linear interpolation of the original data.

2.2 Data pre-processing

For all pre-processing, analysis, and detectors, Python version 3.10.9 was used. In

addition following versions of packages were used: Numpy 1.23.5, Pandas 1.5.3,

Scikit-learn 1.2.1 and SciPy 1.10.0.

For Data 1 data pre-processing, available code published in [39, 45] was used.

RHR was computed by first resampling heart rate and step data to one minute

resolution (original 5 second and 1 minute resolution, respectively). ’Resting’ was

determined as time where steps were 0 at least 12 consecutive minutes. Then NaN

values were dropped and rolling mean over 400 samples (400 minutes ≈ 6.5 hours)

was taken, and finally the data was resampled to one-hour resolution.
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For Data 2 pre-processing, before RHR computations, one additional step was

done. Step files were resampled to 1-minute resolution and all NaN values were

replaced with zeroes. Otherwise, data pre-processing steps were the same as with

Data 1.

Further, for daily variation reduction seasonal decompositioning was done. After

decomposition, measured parameters were z-score standardized. Seasonal corrected

and standardized data was used for statistical analyses. In detector performance

analyses, data were used as raw RHR or z-score standardized.

In Data 1 all sickness dates (symptoms, diagnoses, recoveries) in supplementary

data were checked. First, all dates not in the data period were dropped. Then, the

beginning of the disease was considered as the first symptom or diagnose day and

recovery was determined to be 7 days after beginning of the disease. The disease

onset could have occurred at the very beginning, in the middle, or near the end of the

data period. One participant did not have any sickness dates and three participants

had two sickness periods that were handled as separate sickness events.

For Data 2, symptom onset date was considered as disease onset if possible,

otherwise test date was taken for the disease onset.

For Data 3, there were originally no timestamps in the data, but, there was a

mention that the data is sampled with 1-minute resolution. For seasonal decom-

position, timestamps were needed so artificial timestamps starting at 2024-01-01

00:00:00 were created. Raw data was smoothed with rolling mean with 400 samples

as other datasets. RHR was computed by averaging 5 smallest values for each hour.

Dermal temperature, HRV and RR were composed to hour resolution by averaging

60 consecutive samples. After computing hourly values, same decomposition and

standardizations were done.

As described in the paper [49], the symptoms began 20 days prior to the end of

the data, or maximum of the 45 days from the beginning of the data. Using that
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information, disease onset was determined to be 20 days so 479 hours (samples)

before data ends.

For statistical analysis, pre-detection period was time period from three days

prior to disease onset to disease onset. Post-detection period was time period from

disease onset to six days after disease onset. For baseline, all time points where

the timestamp was earlier than 14 days before the disease onset and later than 21

days after the disease onset were selected. This was based on incubation time of the

respiratory viruses and sufficient recovery time, meaning there should not be any

incident of the same infection in the baseline period.

After data pre-processing, all three datasets were harmonized so that data were

resampled to one-hour resolution and RHR values were calculated. Additionally, all

disease onsets were collected.

Data 1 had 44 participants and on average 83.5 (standard deviation 25.0) days of

data each (See Table 2.1). On average, participant had 43.6 (19.7) days data before

disease onset and 39.9 (24.3) days data after disease onset. Mean number of days

of the baseline data was 47.5 (26.3). Data 2 had on average 162.8 days of data from

47 events. Mean of 100.6 (53.9) days before and 62.2 (63.9) days after the disease

onset. Mean length of baseline data was 127.4 (71.0) days. The structure of Data

3 was different, since all of the 50 events should have had same amount of data (20

days) after the disease onset. Average days of data per event was 61.6 (7.8) days

and of that 41.7 (7.8) days was before the disease onset. Length of baseline data was

on average 27.7 (7.8) days. In Data 1, three individuals had two different diseases

within the data period, and one did not have any disease within data period (but

somehow it was in positive dataset).
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Table 2.1: Data description. Mean days (standard deviation) of data per partici-
pant. n: number of participants. Prior: Time period before symptom onset Post:
Time period after symptom onset Total: Total length of data Baseline:time points
earlier than 14 days before the disease onset and later than 21 days after the disease
onset

n Prior Post Total Baseline
Data 1 44 43.6 (19.7) 39.9 (24.3) 83.5 (25.0) 47.4 (26.3)
Data 2 47 100.6 (53.9) 62.2 (63.9) 162.8 (73.2) 127.4 (71.0)
Data 3 50 41.7 (7.8) 19.9 (18e-13) 61.6 (7.8) 27.7 (7.8)

2.3 Own pilot dataset

Our own dataset consisted of wearable data from three individuals. Data were

collected with Oura rings, which were advised to be used as much as possible during

days and nights. Individuals were asked to report all days that they were sick,

especially symptom onset dates. All raw data was downloaded from Oura website.

Heart rate, sleep and daily activity data files were used.

RHR was calculated from night-time RHR and daytime RHR. Night-time RHR

was given in 5-minute resolution and night-time was calculated using Oura’s own

assesment of bedtime. Daytime RHR was as well collected with 5-minute resolution,

but only HR data with activity/status label ’rest’ was accepted for RHR. Notably,

daytime RHR was added to software about two months after the start of data

collection, so before that only night-time data was usable. Data from daytime and

night-time were then merged. For further data pre-processing, rolling mean of 80-

100 samples (approximately 7 hours, depending on how densely data were sampled,

number of samples depended on the total length of data) and finally the data was

resampled to determined resolution (5min/1h/6h/12h/1d/3d). After pre-processing,

our own data were harmonized to previously published datasets.
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2.4 Detectors

Statistical tests were used to find out changes between different data periods. Aver-

ages of every parameter in all time periods (baseline, pre-detection, post-detection)

for every participant/sickness event were computed. Comparisons were made visu-

ally using boxplots and statistically using t-tests, assuming the null-hypothesis that

the two groups were similar. P-values less than 0.05 were considered as statistically

significant.

RHRAD (Resting Heart Rate Anomaly Detection), a detector that uses Gaus-

sian density estimation for outlier detection, was implemented using EllipticEn-

velope from Sklearn package [55] using parameters random_state = 42 and sup-

port_fraction = 0.7. For contamination, default value 0.1 was first used for detector

performance evaluation, but later contamination was one of the parameters tested

in range 0.01 and 0.5. RHRAD identified outliers by detecting extreme points in the

dataset’s distribution. The detector calculated the distance of each observation from

the overall mean, considering both univariate and multivariate outliers. [45]. The

outliers were observed for one participant/event at the time. Anomaly score came

from detector’s desicion_function. More negative values mean more anomalous.

The function used threshold 0 for anomaly definition.

The second detector used was Isolation Forest. It utilized decision trees for un-

supervised anomaly detection, and was implemented using IsolationForest function

from sklearn package [55] with random_state = 0. For initial analyses contamina-

tion 0.05 was used but as in RHRAD, hyperparameter tuning was later on done.

[38].

The third detector was Night signal, originally published in [38], which was

based on FSM. Average RHR of the day (originally average RHR overnight) was

compared to median of average daily RHR values for all previous nights. Red alarm

(detected anomaly in this thesis) was raised, if average daily RHR was over the
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median + certain threshold (in the original paper for red alarms 4 bpm) for at least

two consecutive nights. Original publication had also yellow alarm with at least one

day where threshold value 3 bpm over median.

One-hour resolution RHR was given to Night signal as input. First it computed

daily mean and then missing days were filled with two next or prior day average.

Then median of average daily RHR values for all previous nights was computed.

Potential red alarms/anomalies were days where daily average exceeded the past

days median plus the threshold. For the actual anomaly detection, all potentials

were checked and if there was a potential alarm for at least two consecutive days,

an alarm was raised (= anomaly is detected).

For detector performance analysis, RHR data (no standardization or seasonal

correction) was input to RHRAD and Isolation Forest. For Figure 3.5 the results

were resampled from hourly-resolution to daily-resolution by taking (nan)mean of

all values of the day. Threshold for anomalous day was mean detector score below

0.

True positives were detected anomalies within infectious time period (for ex-

ample from 3 days prior to symptom onset to recovery day (7 days after onset)).

False negatives were time points detected not-anomalous in infectious time period.

False positives were detected anomalies outside the infectious time period and true

negatives correctly not-anomalous detected time points outside of infectious period.

True positive rates (TPR) and False positive rates (FPR) were computed for ROC

(Receiver operating characteristic) curves and AUC (Area under the curve) compu-

tations.

In addition to ROC curves and AUC values, detector performance was evaluated

using sensitivity, specificity and accuracy. Sensitivity describes the rate of success-

ful positive anomaly findings in the detection period, whereas specificity describes

successfully negative detected points. Accuracy describes correctly predicted values
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among all predictions. ROC represents detector’s performance graphically using

TPR and FPR with changing thresholds, and AUC describes the overall perfor-

mance of the detector by quantifying the area under the ROC curve.

For testing Night signal reproducibility with Data 2, the algorithm, along with

the detection window of -21 to 0 days relative to disease onset, was executed as

detailed in the original publication [38]. In that case true positives were defined as

participants who received at least one red alert in that detection window and false

negatives were the participants who was not alerted with red alert in that period.

For detector hyperparameter tuning for RHRAD and Isolation Forest, contam-

ination parameter (proportion of outliers in the dataset) values tested were 0.01,

0.05, 0.1, 0.2, 0.3, 0.4 & 0.5 to find out the best detector execution. In addition,

different data resolutions (for input data to detector) were tested: 1-minute, 1-hour,

6-hours, 12-hours, 1-day, 3-days. Also, several time periods/windows for infectious

period were tested: -3 to 0, -5 to 0, 0 to 3, 0 to 5, 0 to 10, -3 to 7 and -14 to 21 days

to symptom onset.

2.4.1 LAAD

Deep learning anomaly detector using Long Short-Term Memory Networks-based

autoencoder (LAAD) [39] used baseline RHR data for training. In contrast to the

original publication of the model, as an infection period days -3 to 6 related to

the disease onset was used instead of days -7 to 21. Days -20 to -10 were non-

infectious period and all days after the disease onset and infectious period were

recovery period. Baseline data was split to training data (95 %) and validation

data (5%). All data were z-score standardized using the properties of the training

data. The test data, consisting of all data not in training or validation, were further

divided to to normal (non-infectious period) and anomaly (infectious period). In

summary, baseline data was all data before 20 days of disease onset and it was used



2.4 DETECTORS 25

for training and validation. As ’non-infectious’ test data, days -20 to -10 was used

and as ’infectious’ test data days -3 to 6 around disease onset was used.

Next, the data was windowed to 8-sample batches (eight samples used for one

detection) and reshaped to tensor format. Then training data were augmented (total

size of augmented data was eight times the size of the baseline data) using seven

different techniques: scaling, rotations, permutation, magnitude-wrapping, time-

wrapping, window-wrapping and window-slicing. The actual autoencoder-decoder

system was based on Long-Short Term Memory (LSTM), and it’s purpose was to

find anomalies from RHR data given in time series. The model training was stopped

at the optimal point to prevent overfitting. Four LSTM layers were used in the final

anomaly detector: RepeatVector, TimeDense and 128 hidden neurons for both the

encoder and the decoder. Mean squared error was used as reconstruction error

calculation and ADAM algorithm was used for optimizing the learning process. The

model has been described in more detail previously [39]. LAAD performance was

evaluated through performance metrics: sensitivity, specificity, precision, recall and

accuracy.



3 Results

When daily averages were combined within all three datasets, it was possible to

review if the infection caused visible alteration in RHR. Overall, RHR raised just

before and peaked a few days after of the disease onset, when compared to the mean

RHR of the previous 30 days. Data 2 had less significant peak around illness showed

another peak at 25 days after disease onset, while the dispersion of the data was

large. Figure 3.1 shows RHR daily averages of each datasets with 95% confidence

intervals. It can also be noticed that deviation within the datas was huge, suggesting

that some had really deterministic peak around disease whereas some had more flat

RHR around the whole data period.

Figure 3.1: RHR change around disease onset. Daily average over the whole
datasets. Overall, in all three datasets, RHR seems to have peak around the disease
onset. The peak is just after day 0 but the raise starts before onset. Error bars
show the 95% confidence interval of the day.
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3.1 Statistical analyses

Two-tailed t-tests were used for feature comparisons between different time periods.

The smallest variations in all three datasets were in baseline distributions, while both

pre-detection and post-detection periods’ distributions were much wider. Figure 3.2

shows alterations in resting heart rate in all three datasets. In all three datasets,

change from baseline to post-detection period was statistically significant (p-value

< 0.05). Post-detection period RHR was higher than baseline RHR. Only in Data

3 the difference between pre-detection and post-detection periods was statistically

significant. All RHR comparison p-values are shown in Table 3.1.

Figure 3.2: Resting heart rate distributions across time periods. Differences
between distributions in different time periods. Baseline: time period before 14
days prior and 21 days after disease onset (symptom onset/diagnosis date). Pre:
Pre-detection time, days -3 to 0 from disease onset. Post: Post-detection time, days
0-6 respectively from disease onset. * p-value < 0.05.

Besides of RHR, Datas 1 & 2 had daily step counts. Variation during baseline

daily step count was small in Data 1 and Data 2 whereas pre- and post-detection

periods variation was larger. Especially Data 2 pre-detection step distribution was

wide. Statistically significant decrease was found in both of those datasets between

baseline and post-detection periods. In addition, there was a statistically significant

decrease in Data 2 from pre-detection period to post-detection period (see Figure

3.3A). P-values of baseline versus pre-detection period were not significant (see Table

3.1).

In addition to RHR, Data 3 included temperature and HRV data. Temperature
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Table 3.1: Time period feature comparisons. All baseline versus post-detection
comparisons were statistically significant. In Data 3, Temperature was the only
statistically significant parameter in all time period comparisons. There were no
significant changes between baseline and pre-detection times in any other parameter
than temperature. Bl: Baseline. Pre: Pre-detection time - 0-3 days prior to
the disease onset. Post: Post-detection time - 0-6 days after the disease onset.
Statistically significant (p < 0.05) values are bolded.

RHR Steps Temperature HRV
Bl vs Pre 0.152 0.515 - -

Data 1 Bl vs Post <0.05 0.001 - -
Pre vs Post 0.117 0.077 - -
Bl vs Pre 0.258 0.406 - -

Data 2 Bl vs Post <0.05 <0.05 - -
Pre vs Post 0.063 <0.05 - -
Bl vs Pre 0.081 - 0.008 0.406

Data 3 Bl vs Post <0.05 - <0.05 <0.05
Pre vs Pots <0.05 - 0.003 <0.05

was increased statistically significantly from baseline to pre-detection, baseline to

post-detection and pre-detection to post-detection (see Figure 3.3 B). HRV decreased

significantly from baseline and pre-detection to post-detection. However, no statis-

tically significant changes in HRV were found between baseline and pre-detection

time.

3.2 Anomaly detection

RHRAD and Isolation Forest used the properties of the entire data period to de-

tect anomalies. Figure 3.4 represents all detected RHRAD and Isolation Forest

anomalies for all three datasets. Plenty of false positives were detected for ev-

ery participant with both detectors. There were no significant differences between

RHRAD and Isolation Forest in the number of detections. False positives were de-

tected evenly through the whole data periods. Some individuals did not have any

correctly detected anomalies but only anomalies being outside of infection period.

For further analysis, it is worth to notice that some individuals have quite little
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Figure 3.3: Step, HRV and temperature distributions across time peri-
ods. Baseline: time period before 14 days prior and 21 days after disease onset
(symptom onset/diagnosis date). Pre: Pre-detection time, days -3 to 0 from disease
onset. Post: Post-detection time, days 0-6 respectively from disease onset. A. Data
1 & Data 2 Step distributions across time periods. Steps trend to decrease from
baseline in post-detection period. B. Data 3 Dermal temperature and HRV dis-
tributions across time periods. Temperature differed significantly in all three time
periods. HRV differed significantly from baseline to post-detection period and from
pre-detection period to post-detection period.

sensor data around reported infection time making anomalies impossible to detect

(see the length of red infection line in Fig 3.4).

RHRAD and Isolation Forest could have used high-resolution data, in this thesis

one-hour resolution, while Night signal required only one value per day for anomaly

detection. For visualization purposes, daily detections were made by averaging

RHRAD and Isolation Forest anomaly score and the day was alerted if average

score of the day was negative. Threshold for Night signal anomaly was at least two
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Figure 3.4: Infection periods and detected anomalies for all datasetes.
RHRAD and Isolation Forest used as detectors. Anomalies thresholded to daily level
with threshold 8 positive anomalies within a day to consider the day as positive.
Contamination values 0.1 and 0.05 for RHRAD and Isolation Forest respectively
were used as detector hyperparameter. Infections starts from symptom/disease on-
set and ends to recovery period which is 7 days or self-reported (Data 1). Data is
limited to 80 days around disease onset for both directions. The plot indicates, that
there were numerous false positives, and time period around infection did not differ
significantly from other time points.
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consecutive days RHR average over 4 bpm above the median of all past days.

Figure 3.5 shows one decent and one improper example of detector performance

for each dataset. In proper examples, the clear elevation in RHR around disease

onset (Fig 3.5 left column, decent examples) was detected by all three detectors

(RHRAD, Isolation Forest and Night signal). Example of successful detection is

shown Figure 3.5 left column. There was a fine cluster around infectious period in

each example participant but still few false positives appeared. Right column of

Figure 3.5 demonstrates that the infection was not detectable in every participant.

In Data 2, there were many false positives from all detectors but no clear cluster.

On the other hand, in Data 1 and Data 3, there were only few false positives but

the data showed no change during the infectious period.

For performance evaluation purposes, ROC curves and corresponding AUC val-

ues were computed for RHRAD and Isolation Forest detectors and for each three

datasets and all datasets combined. For detections, data were in one-hour resolution

and infectious window of days -3 to 7 from symptom onset was used. Overall, AUCs

were close to random guess (AUC = 0.5) in all cases. Highest AUC was by RHRAD

in Data 2 (AUC = 0.601) and lowest in Data 1 by RHRAD (AUC = 0.552). ROC

curves and AUC values are represented in the Figure 3.6. The performance of both

detectors were similar, either of them was not remarkably better than the other.

Using parameters used in previous studies (data resolution 1-hour, infectious win-

dow days -3 to 7 around symptom onset and contamination values 0.1 for RHRAD

and 0.05 for Isolation Forest) detector performance was not very effective. Sensitiv-

ities were low, from 0.098 (Data 3 Isolation Forest) to 0.248 (Data 3 Night signal)

and specificities high, from 0.902 (Data 2 Night signal) to 0.958 (Data 3 Isolation

Forest), and, in addition, accuracies were high (see Table 3.2).

Data from healthy individuals (individuals without any disease during the mea-

surement period) was used to analyze the amount of false positives. Specificity was
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Figure 3.5: Detector performance examples. Left column shows almost optimal
performance of all detectors in one subject from all datasets. Right column shows
inadequate performance of all detectors in one subject in all datasets. Disease onset
(symptom onset) is in day 0 and recovery is determined to be in day 7. For RHRAD
and Isolation Forest, a day is considered as positive if mean value of anomaly scores
is negative. Night signal threshold for alarm is two consecutive days RHR over 4
bpm over past median.

lower within healthy individuals compared to sick individuals, RHRAD 0.9 vs 0.910

and Isolation Forest 0.950 vs 0.955, respectively (see Table 3.3). However, accuracy

among healthy individuals was higher compared to sick individuals. Similarly, AUC

values were better using data from sick individuals compared to using all individ-

uals as one dataset, RHRAD AUC 0.552 for only sick individuals and 0.504 for

all population and Isolation Forest 0.562 for only sick individuals and 0.524 for all

population (Figure 3.7).

When testing the reproducibility of Night signal using Data 2, sensitivity of 0.77
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Figure 3.6: RHRAD and Isolation Forest ROC curves in all of the datasets.
AUC value of RHRAD and Isolation Forest detectors are showed in the legend. For
infectious period three days prior and 7 days post the symptom onset are considered.
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Figure 3.7: ROC-AUC comparisons between Data 1 positives and sick +
healthy. Adding healthy individuals to the analysis, AUC values drops since more
false positives. Results of both detectors are similar.

was achieved, consistent with the results reported in the original publication. This

is a significant difference compared to the sensitivity of 0.2 presented in Table 3.2,

where true positives and false negatives were defined differently than in the original

publication. Additionally, a third approach was tested in which the detection window

remained the same, from -3 to 7 days around disease onset, but true positives were

defined as in the original publication. Under these conditions, sensitivity of 0.58

was achieved.

To find out best possible parameters for detectors, different combinations were
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Table 3.2: Detector metrics. RHRAD and Isolation Forest sensitivity, specificity
and accuracy of all datasets. Parameters were computed from binary classification
using one-hour resolution data, disease window of days -3 to 7 around symptom
onset and contamination 0.1 for RHRAD and 0.05 for Isolation Forest.

Sensitivity Specificity Accuracy
R

H
R

A
D Data 1 0.175 0.910 0.825

Data 2 0.219 0.907 0.869
Data 3 0.182 0.916 0.796

All 0.192 0.909 0.841

Is
ol

at
io

n
Fo

re
st

Data 1 0.092 0.955 0.855
Data 2 0.123 0.954 0.908
Data 3 0.089 0.958 0.816

All 0.100 0.955 0.874

N
ig

ht
si

gn
al

Data 1 0.213 0.922 0.842
Data 2 0.204 0.902 0.865
Data 3 0.248 0.921 0.812

All 0.223 0.910 0.849

Table 3.3: Data 1 metrics. Data 1 detector performance metrics. Sick: Individ-
uals having at least one disease in data period (’official’ Data 1), n: 45. Health:
Individuals who did not experience any disease in data period, n: 73. All: sick +
health.

RHRAD Isolation Forest
Sick Health All Sick Health All

sensitivity 0.175 - 0.175 0.092 - 0.092
specificity 0.910 0.900 0.903 0.955 0.950 0.952
accuracy 0.825 0.900 0.869 0.855 0.950 0.911

tested and evaluated. Tested parameters were data resolution from 1 minute to

3 days, detection window (just pre-symptomatic, just post-symptomatic and over

symptom onset) and detector hyperparameter contamination. The three best and

worst parameter combinations evaluated based on AUC of each detector are shown

in Table 3.4. Regardless of the parameter combination tuning, AUC values were

low. The highest AUC with RHRAD was 0.624 with 3 day resolution, days 0-10

from symptom onset as detection window and 0.2 contamination level. The best

AUC with Isolation Forest was even lower, only 0.617 with following parameters: 3

day resolution, days 0-10 from symptom onset as detection window and 0.3 contam-

ination level. The weakest AUC of both detector was 0.504, being close to random
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Table 3.4: Detector performance ranked by AUC. The best values of each
column of both detectors are bolded.
Parameters AUC Sensitivity Specificity Accuracy

RHRAD
Resolution: 3d
Window: days 0-10 0.624 0.435 0.814 0.778
Contamination: 0.2

Resolution: 3d
Window: days 0-10 0.623 0.529 0.718 0.670
Contamination: 0.3

Resolution: 3d
Window: days 0-5 0.622 0.535 0.709 0.699
Contamination: 0.3

...

Resolution: 1h
Window: days -14-21 0.506 0.019 0.992 0.748
Contamination: 0.01

Resolution: 1h
Window: days -3-0 0.506 0.021 0.990 0.947
Contamination: 0.01

Resolution: 1h
Window: days -5-0 0.504 0.019 0.990 0.934
Contamination: 0.01

Isolation Forest
Resolution: 3d,
Window: days 0-10 0.617 0.517 0.7117 0.699

Contamination: 0.3

Resolution: 3d
Window: days 0-5 0.616 0.523 0.710 0.698
Contamination: 0.3

Resolution: 3d
Window: days 0-3 0.614 0.520 0.708 0.699

Contamination: 0.3
...

Resolution: 1h
Window: days -14-21 0.505 0.018 0.992 0.747
Contamination: 0.01

Resolution: 6h
Window: days -5-0 0.505 0.020 0.989 0.933
Contamination: 0.01

Resolution: 1h
Window: days -5-0 0.504 0.018 0.990 0.934
Contamination: 0.01
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guess. Overall, AUCs were better with lower-resolution (more averaged data and

fewer data points) data and worse with higher-resolution data. In terms of sensitiv-

ity, higher contamination values improved sensitivity by reducing the number of false

negatives. Conversely, lower contamination values increased specificity and accuracy

by reducing the number of false positives. Ranges of sensitivity and specificity were

large.

3.2.1 LAAD

Deep learning utilizing anomaly detector LAAD was used only with Data 1. LAAD

algorithm worked successfully for 31/44 participants within Data 1. The rest 13

participants had too little training data because the disease onset happened too

early (before day day 26 from the beginning of data collection) or some other is-

sue occurred. As with RHRAD, Isolation Forest, and Night signal, LAAD detector

performance deviated remarkably between subjects. Overall sensitivity, specificity

and accuracy were 0.331, 0.866 and 0.606, respectively. The same example individ-

uals for visual performance evaluation were used as with other detectors. Subject

ASFODQR highlighted a clear anomaly period around the disease onset (see top of

Figure 3.8). However, the anomalous period was much longer than determined -3

to 6 days around the disease onset. There were also few false positives along the

data time period, but those were not as remarkable as around infectious period.

LAAD was able to successfully detect all time points within the infectious period as

positives leading to 0 false negatives. Also, there were 22 false positives. Infectious

period in Subject A4E0D03 was not detectable using LAAD. LAAD found visually

(see bottom of Figure 3.8) three rises in the data but only one of those was in the

infection period. Resulting evaluation metrics for subject A4E0D03, there were 46

true positives, 10 false positives, 114 true negatives and 66 false negatives. The

example subjects from Data 1 performed very differently from each other. Both of
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them had false positives. The good example had no false negatives, whereas the

bad example had total of 66 hours of false negatives. The good example had high

sensitivity and moderate specificity and the bad example had low sensitivity and

high specificity (Figure 3.9).

Figure 3.8: LAAD execution with Data 1. Same example subjects as in Fig
3.5. Subject ASFODQR had clear anomaly peak around sickness whereas subject
A4E0D0E had three different high anomaly score areas but they were not related
strictly to disease onset (day 0). True positives (TP) and false negatives (FN) were
computed from the period between -3 and 6 days around the disease onset. True
negatives (TN) and False positives (FP) were computed from time period -20 to -10
days from disease onset. Training data was all data prior -20 days to disease onset.
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Figure 3.9: Data 1 LAAD metrics. LAAD execution comparison as metrics
between two example subjects.

3.3 Pilot study evaluation

Our own dataset was collected with Oura rings from three subjects. Two of them

collected data over half a year, each having one respiratory infection at the end of

the collection. The third subject collected data for three months, and experienced

five respiratory infections during that time. RHR and detected anomalies are shown

in Figure 3.10. For both subjects 1 and 2, but especially for subject 2, several false

positives were detected by all three detectors. Fewer anomalies in total were detected

for subject 3, and most of them were during the infectious period. Overall, with

parameters of 1-hour data resolution, days 0-5 after symptom onset for detection

window and 0.1 contamination, sensitivities were 0.215 and 0.213, specificities 0.908

and 0.908, accuracies 0.864 and 0.864 and AUC 0.561 and 0.560 for RHRAD and

Isolation Forest, respectively.

The same (hyper)parameter optimization tests used in previously published

datasets were applied also for our own pilot data. The best AUCs for detection were

found within a 0-3 day window after symptom onset, using a 3-day data resolution

and high contamination values, AUC 0.659 for both detectors. Figure 3.11 shows
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Figure 3.10: Pilot data. RHR in hourly resolution for each three subject. Sick-
ness windows in red spans, days 0-5 from symptom onset. For anomaly detectors
(RHRAD and Isolation Forest) 0.1 contamination was used.

the RHR data for each subject, with detections made using the ’best’ parameters.

In contrast, for RHRAD the worst AUCs were observed with a 3-day data resolu-
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tion when the detection window was either only before symptom onset or during

the days around symptom onset, AUC 0.487 with days -3 to 7 as detection window

and 0.1 contamination and AUC 0.446 with days -3 to 0 as detection window and

0.4 contamination level. For the Isolation Forest, the lowest AUCs were observed

with a 1-day resolution and a detection window up to 10 days after symptom onset,

AUC 0.471, or from days -3 to 0, using a 3-day data resolution, AUC 0.446 with 0.4

contamination level and AUC 0.445 with 0.3 contamination level. Similar to other

datasets, the sensitivity and specificity ranged widely. Table 3.5 presents the three

best and three worst parameter combinations by AUC for both detectors.
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Figure 3.11: Pilot data with ’optimal’ parameters. Data was averaged to three-
day resolution, detection window was days -3 to 3 days around symptom onset and
for detections, contamination level 0.5 was used. For subject 3 more true positives
were detected than false positives. For subjects 1 & 2, plenty of false positives
detected by both detectors but also true positives.
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Table 3.5: Pilot data Detector performance ranked by AUC. The best values
of each column of both detectors are bolded.
Parameters AUC Sensitivity Specificity Accuracy

RHRAD
Resolution: 3d
Window: days 0-3 0.659 0.800 0.517 0.531
Contamination: 0.5

Resolution: 3d
Window: days 0-3 0.656 0.700 0.612 0.616
Contamination: 0.4

Resolution: 3d
Window: days 0-3 0.655 0.500 0.811 0.796
Contamination: 0.4

...

Resolution: 3d
Window: days -3-7 0.487 0.28 0.693 0.645
Contamination: 0.1

Resolution: 3d
Window: days -5-0 0.476 0.357 0.593 0.578
Contamination: 0.4

Resolution: 3d
Window: days -3-0 0.446 0.300 0.592 0.578
Contamination: 0.4

Isolation Forest
Resolution: 3d,
Window: days 0-3 0.659 0.800 0.517 0.531
Contamination: 0.5

Resolution: 3d
Window: days 0-3 0.656 0.700 0.612 0.616
Contamination: 0.4

Resolution: 1d
Window: days 0-3 0.656 0.500 0.812 0.800
Contamination: 0.2

...

Resolution: 1d
Window: days 0-10 0.471 0.454 0.494 0.490
Contamination: 0.5

Resolution: 3d
Window: days -3-0 0.446 0.300 0.592 0.578
Contamination: 0.4

Resolution: 3d
Window: days -3-0 0.445 0.200 0.692 0.668
Contamination: 0.3



4 Discussion

The purpose of this thesis was to explore if COVID-19 or other respiratory illness is

detectable from user wearable data. Furthermore, the aim was to investigate whether

respiratory infection can be detected even before the symptom onset. Three public

datasets were found from previously published articles. Datasets 1 & 2 [38, 45] had

long-time free-living data from mainly COVID-19 positive individuals but also some

cases of influenzas and common colds (e.g. rhinovirus infection). Data 3 [49] was

from individuals who experienced COVID-19 related fever. Three different anomaly

detectors were used to find the sickness from RHR data: RHRAD [45], Isolation

Forest [38] and Night signal [38]. Furthermore, LAAD [39] was tested with Data 1

for further analysis. In addition, the same detectors were tested with pilot our own

Oura data to find out if the methods are applicable for other datasets also.

None of the previously published studies, whose data were used in this work, pre-

sented statistical comparisons of resting heart rate between different time periods.

However, in the original publication of Data 1 [45], step count and sleep duration

before and after the symptom onset were compared. In the statistical comparisons of

this thesis, temperature was the only parameter that could find differences between

baseline and pre-infection period. That may suggest that during the pre-infection

period, either no other physiological responses occurred or individual variation was

so significant that differences could not be detected without more complex models.

All other parameters (RHR, step counts and HRV) showed statistically significant
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difference between baseline period and post-detection period (days 0-6 after symp-

tom onset). Based on that, the detectors might be able to detect diseases decently

if the detection/infection window was days 0-6 after symptom onset and all other

days within -14 to 21 days around the symptom onset were discarded (to reduce

false positives caused by the disease).

Confidence intervals of daily RHR were large, indicating that not all individuals

experienced deterministic raise in RHR during an infection, and that makes detector

performance unreliable. However, for some individuals, anomalous periods were vis-

ibly present in the RHR data. This has also a notable effect on the performance of

detectors, since detectors work better for those individuals who had visible deviation

in their data compared to those individuals whom data was more flat. Addition-

ally, it is worth noting that in general the variances among individuals were more

prominent than the differences between detectors.

Major challenge of these type of self-annotated, free-living studies is the quality

of the data. They are influenced by the fact that the participants have measured

themselves with their own devices (i.e., they have used their own devices as they

normally would), which may not follow recommended measurement practices. In

Data 1 and Data 2, there were instances where individuals have missing periods (up

to tens of days), presenting challenges in the analysis. Additionally, the duration of

device wear throughout the day may vary, affecting the computation of RHR. In the

data processing, features were averaged multiple times, which results in a distortion

of the actual data. In addition, respiratory rate data was included in Data 3, but it

was corrupted in multiple subjects (started accumulating), which prevents the use

of respiratory rate in generalizing the findings of this study (see appendix Figure

A.1).

The overall sensitivity of any used detector and dataset was relatively low, from

8.9% to 24.8% (Tables 3.2 and 3.3). Sensitivity describes the number/ratio of cor-
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rectly detected anomalies within the infectious period. When anomaly detection is

done with one-hour resolution data, false negatives are understandably raised be-

cause it is unrealistic to have raised RHR for ten consecutive days days, even though

the person were severely ill. Or, on the other hand, if the whole disease window is

marked as anomalous by the detectors, rest of the data period (health) should have

very little deviation which would also be ambiguous.

Specificity gives information about false positives, i.e. how well healthy period

is detected to be not-anomalous. Specificities of the detectors in different datasets

were high, around 90%, meaning that number of false positives identified compared

to whole health data period was quite low. High specificities can be explained by

the prevalence of healthy period data, which increases the true negative rate. In

a long-term detection case like this, specificity typically decreases when sensitivity

is increased, as more data points would generally be classified as anomalous, in

which case the healthy interval values would also be detected as (false) positives.

This pattern was observed across various detector value combinations tested in this

thesis, but specificity stayed relatively high, over 70%.

In the initial analysis of detector performance, all anomalies were evaluated on

a daily basis. A day was considered anomalous if the average anomaly score was

negative or if more than eight hours within that day were classified as anomalous

in binary classification. This approach reduces the number of incorrectly classified

days, because there had to be several anomalous hours per day, so individual out-

liers did not cause anomalous classification of that day. Although compressing the

detector from hourly to daily resolution may not always be the most practical, there

are potential applications. For instance, a detector could signal if the previous day

was anomalous compared to past, and then suggest adjustments in activity levels or

closer monitoring of one’s health condition. However, determining sensitive enough

threshold is not easy and more research should be done.
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From the parameter combination test, the best parameters performed signifi-

cantly better compared to the weaker parameters. The best AUCs were achieved

using data averaged to 3-day resolution and high contamination values. Using those

parameters in real detection cases with small disease windows could lead to over-

fitting and unrealistic results. Using only low-resolution data, the disease is only

detected if data batches fits perfectly, and disease is long enough. This approach

also reduces false positives, because short anomalous periods are not shown, also

leading to higher AUC.

The detectors used in this study were relatively simple. With more complex

detectors, trends and infections could be detected more sensitively, but this would

require consideration of common pitfalls in machine learning, such as data leakage to

the model prematurely [56]. By taking care of good machine learning practice, with

slightly more complex methods utilizing machine learning might be able to detect

infections even before symptom onset, if the infection at all causes a physiological

response detectable by wearable devices before the onset of symptoms.

RHRAD is based on the Elliptic Envelope, which assumes that the input data is

normally distributed. However, when looking at data of each individual, only a few

showed Shapiro-Wilk test p-values below 0.05, indicating that their distributions

were approximately normal. It is doubtful why the original publication used a

detector that assumes normally distributed input data and at the same time the data

of a single individual is not normally distributed. This may affect the performance

of the detector by degrading it. On the other hand, the results of RHRAD were very

similar compared to Isolation Forest, whose operation does not require the data to

be normally distributed.

Isolation Forest is, at least theoretically, optimal for this kind of anomaly detec-

tion, especially because the ratio of disease periods to healthy periods is small.To

have effective Isolation Forest detector, anomalous regions need to deviate signifi-
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cantly from healthy data. This suggests that the main challenges in this kind of

anomaly detection are more due to the properties of the data and physiological

factors, rather than the detector, as the performance metrics for all detectors used

in this thesis were relatively similar. Additionally, it is important to consider how

Isolation Forest could be adapted to alert abnormalities in real time, as the goal is

to identify infections using wearable devices real time.

FSM based detector is somewhat useful for detecting sick or anomalous days

from time-period data in real time. However, there are some issues to consider

for optimizing the performance of Night signal algorithm. First, comparing single

averaged day value to median of all past data might not be the optimal. For example,

if a person is sick twice in a relatively short period, the overall median is increased

compared to healthy baseline median. For solution, some kind of sliding window

approach, for example four to six weeks of data, might be more optimal than the

whole past of the data, especially if the amount of data is high. Secondly, it is

arguable if using just one value per day (or night) is the best and the most useful

way to detect infections. Averaging daily data does not require high-resolution data,

making it practical and easy to implement. However, using more densely sampled

data, such as one value every six hours, would provide more detailed information

about a person’s health status and detect variations better. This approach would

require considering daily variations and potentially establishing new thresholds or

states to account for these changes.

Additionally, using more than one parameter, for example activity levels, respi-

ratory rate or HRV, in the detection algorithm could enhance model performance.

In one previous study [52] combining RHR, daily activity, and sleep AUC of 0.72

(95% CI 0.64 - 0.80) with sensitivity 0.36 (0.22-0.50) and specificity 0.95 (0.92-0.97)

was achieved using binary classification (not further specified). In comparison, us-

ing only daily RHR they got AUC 0.52 (0.41-0.64), sensitivity 0.39 (0.22-0.56) and
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specificity 0.80 (0.75-0.86). That would implicate that using model with multiple

parameters could improve AUC when detecting infections. However, in that study

only COVID-19 was targeted, and test data was only days 0-7 after the symptom

onset, i.e. there is no evidence of pre-symptomatic identification with both single

and multiple parameters.

With the most reasonable parameters, like hourly sampled data and infection

window days -3 to 7 around the symptom onset and relatively low contamination

value, AUC was low, but accuracy was still fairly high. It is probably due to heavily

imbalanced data; the amount of data within infectious periods had significantly less

data than healthy periods for almost all the participants analysed (see Table 2.1 for

baseline lengths in days compared to 3 - 10 days of disease period). Thus, looking

just the accuracy does not tell the truth about the used anomaly detectors. To

solve this problem and improve the performance of the detector, there are a few

things that could be tried. First, the data input to the detectors could be processed

differently. For example, using moving window instead of the whole data period

for detector. Secondly, algorithms (detectors) should be chosen to be suitable for

heavily imbalanced data. [57].

In this thesis, the achieved detector sensitivities were insufficient for reliably

identifying respiratory infections. As previously mentioned, increasing sensitivity

might reduce specificity, so a sufficient balance between the two values must be

achieved and evaluated. Sensitivity over 50 % would correctly identify half of the

time points during the disease, which could be sufficient with high-resolution data.

However, achieving higher sensitivity could increase amount of false positives. High

sensitivity is crucial to ensure the user can take necessary actions following the alert.

On the other hand, too many false positives, for example a few per week, might lead

to alarm fatigue. It is a phenomenon especially in the health care, where the user,

like nurse, ignore the alerts due to too many false alerts [58]. That can cause true
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positives to be missed, reducing the practical value of the detector. Therefore,

the development of the detectors must consider the frequency of predictions and the

thresholds for alerts. Practically, it is more beneficial for users to receive notifications

before symptoms appear, as they will likely notice illness once symptoms begin,

which makes the development process even harder.

About results in publications providing data. In the original publication of

Data 1 [45], RHRAD and similarly working HROSAD (heart rate over steps anomaly

detector) and RHR-diff, which detects anomalies from 28 day sliding window and

standardized residuals, were used for detection. It was shown that 88% of individuals

had elevation in RHR around the symptom date, if it was reported. Reported

elevation was usually noticed some days prior to the symptom onset. The report

highlighted two subjects in whom heart rate elevated clearly before the symptom

onset, other started raising 15 and the other four days before symptom onset. It

is unclear if the elevation 15 days before symptom onset was due to the infection

since the incubation time of COVID-19 is at maximum reported to be 14 days [24].

Difference between COVID-19 and non-COVID-19 participant was not remarkable.

Any sensitivity, specificity or other qualitative metrics is not stated. That raises

questions about their data quality and detector performance [45].

In the original report of Data 2 [38], more detailed results about detector per-

formance were published compared to Data 1 publication. In the study population,

80% of the infected participants received alerts (detected anomalies) either pre-

symptomatically or within asymptomatic COVID-19 infection, and sensitivity was

77% for Fitbit users. The Night signal sensitivity with Data 2 in this thesis was only

20%, which is considerably lower than in the original publication. The difference

can be explained by a different approach of defining true positives and false posi-

tives. In the original study, true positives were COVID-19 positive participants who

received a red alert from the Night signal algorithm within the detection window.
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The detection window was time period of 21 days before symptom onset or diagno-

sis date to the symptom onset or diagnosis date. False negatives were COVID-19

positive subjects who were not receiving any red alert within the same detection pe-

riod. For COVID-19 negative or untested participants, true negatives were defined

as green alerts correctly sent during non-COVID-19 periods, and false positives were

red alerts incorrectly sent during these non-COVID-19 periods. For COVID-19 neg-

ative and untested participants, the algorithms were tested to get further specificity

analysis. Both Night signal and online RHRAD achieved 87.7 % specificity, which is

lower than healthy individual specificity tested in this thesis results. Furthermore,

based on their analysis of Night signal, the amount of red alerts (anomalies) were

the highest around days -2 to 8 relative to the symptom onset, and the peak was on

day 3. This fact indicates, that the most significant RHR changes happen just after

symptom onset, not so much before that.

According to the analysis of the original study, the sensitivity of online RHRAD

with Fitbit data was 69% compared to findings in this thesis, offline RHRAD sensi-

tivity 21.9 % (using just their Fitbit data). In the article there was also speculation

of the cause of the false positives by online detectors: alcohol intake, mental stress,

holiday season and even large meals. However, the detectors alerted more anomalies

during the illness period compared to the normal period. [38].

The third data and report focused on monitoring COVID-19 related fever. It was

observed that wearables can effectively detect fever, showing a significant increase

in temperature from baseline to the symptom window. Using a single time-point

temperature measurement proved appropriate when accounting for inter-individual

variation and daily rhythms. The study established thresholds for day and night

values and reported that 94% of participants who experienced fever, measured also

fever-like days during the symptom window. Additionally, 58% of those who was

not reporting actual fever still had fever-like days in the symptom window. Partici-
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pants were categorized based on the presence of fever-like days during the detection

window, revealing a statistically significant difference in heart rate and heart rate

variability (HRV), although no difference was found in self-reported cases. The fo-

cus of the study on fever detection did not directly compare to our work. It is

important to note for the results of this thesis, that it was not known, which of the

12 participants did not actually report a fever. This might decrease the sensitivity,

despite 58% of the participants had fever-like moments. [49].

Physiological responses measured by wearable devices due to infection may not

necessarily differ from other physiological special events. Even though detector finds

an anomalous event from wearable data, the reason for that could be stress, high-

intensity training or measurement error instead of illness.

For example in Norwegian HUNT study it is shown that regular insomnia might

slightly elevate RHR levels [59]. In a short time-period exercising activates sympa-

thetic nerve system and increase RHR but in longer period regular exercising can

decrease RHR due improvement of physical performance [60]. Also, daily habits like

caffeine consumption might temporarily elevate RHR [60] whereas smoking changes

heart rate levels more permanently [61]. In addition, alcohol consumption decreases

HRV even with small doses, and might have changes to resting heart rate but RHR

alterations might not be as sensitive as HRV alterations [62]. There is a limited

number of high-quality studies investigating the factors elevating RHR or reducing

HRV. However, short-time cold exposure (like cold water swimming), sauna, travel-

ling, high-altitudes, certain times of year (such as holidays) might have an effect to

RHR or HRV.

In addition to self-regulated states / habits and respiratory infections, RHR

might be elevated by many other diseases and physiological conditions. About

physiological conditions, many cardiac diseases, for example arrhythmia, electrolyte

disturbance, and diabetic ketoacidosis may alter resting heart rate. In addition to
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diseases, many pharmaceuticals like anti-psychotic medicine might affect RHR. [60]

Utilizing location information and possible activity recognition, detection of in-

fections might be improved. Recognized activity and locations may tell the detector

whether the user has done something out of ordinary and physiological alterations

are caused by that rather than respiratory infection. To achieve automatic detection

of infection, more research and labeled data (with all possible extraordinary things

labeled) is needed.



5 Conclusions

In general, all AUC values and sensitivities were low for any dataset and detector,

meaning these methods are not yet suitable for detection of infections from wear-

able data. Sicknesses, especially COVID-19, can be to some extent detected after

the symptom onset at least for more severe cases. However, existing methods and

devices detect physiological alterations related to respiratory infections quite poorly

before the onset of symptoms. Results from this thesis are not straight forwardly

comparable to previously published results. However, metrics like sensitivity or

specificity were not published earlier using data and detector combinations used in

this thesis. For our own pilot data, the same methods and detectors worked similarly

than for previously published datasets.

In conclusion, with more advanced data and methods, respiratory infections

might be detectable even before symptom onset. Additionally, even if detection

becomes possible, false positives would still occur, and eliminating them would be

challenging. So, there is work to be done for the future.
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Appendix A Data 3 respiration rate

data quality

Surprisingly many subjects in Data 3 had problems with respiration rate data quality

(see Figure A.1). For some individuals, RR data started to accumulate at the

beginning and then normalizes, while for some others, RR might have been normal

at first and then started to increase or decrease abnormally. One subject (Subject

39) had strange period in the middle of the data period and in addition to RR, other

parameters had strange behaviour too. One other subject’s RR did not increasingly

or decreasingly accumulate but remains weirdly consistent for over 20 days. All these

issues could be due to the original data from the device being linearly interpolated to

minute-level accuracy, with some missing periods or other issues. Such data cannot

be reliably used for any analysis.



APPENDIX A. DATA 3 RESPIRATION RATE DATA QUALITY A-2

Figure A.1: Problems in Data 3 RR. Subjects 4 and 12 are examples of normal
behavior of RR data and all of others have remarkable problems.
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