
Collaborative user interface design of a
remote device control system

Master of Science (Tech) Thesis
University of Turku
Department of Computing
Software Engineering
2024
Miika Toivanen

Supervisors:
Seppo Helle (University of Turku)
Jouni Smed (University of Turku)

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

Miika Toivanen: Collaborative user interface design of a remote device control
system

Master of Science (Tech) Thesis, 51 p.
Software Engineering
2024

This thesis explores how the user interface of a remote device control system can be
re-designed and re-implemented in collaboration with the users of the current sys-
tem. First, a literature review is conducted to identify appropriate research methods
for involving users in the design and implementation process. This is followed by
exploring the evaluation methods that are used to collect numerical data about the
current and the new user interface. The chosen methods for user involvement were
focus groups and semi-structured interviews, and for evaluation methods System
Usability Score and time-on-task were selected. The tools used to conduct the re-
search are also introduced. The thesis then discussed the technical background and
introduces more technical tools that are used.

The re-design process is done in collaboration with the users by using the data
collected from the users as a foundation for the design. Figma prototypes are used
to facilitate iterative design refinement in order to validate assumptions. The thesis
then briefly discussed the implementation phase and the limitations related to it.

The current and the new user interface were compared against each other by using
the selected evaluation methods. The new user interface was successful in improving
both the SUS score and the time measured from time-on-task tasks. The average
measured SUS score increased by 65%, transitioning from a grade of D to a grade
of A+. Time spent on tasks was improved by 9%, although the change was smaller
than anticipated.

Keywords: user interface design, remote device control system, human-computer
interaction, UI, visual design, user-centered design

Contents

1 Introduction 1

2 Background 4

2.1 User-centered design . 4

2.2 Research methods . 5

2.2.1 Semi-structured interview . 6

2.2.2 Nielsen heuristics . 6

2.3 Evaluation methods . 9

2.4 Tools, guidelines and platforms . 11

3 Technical background 14

3.1 JavaScript . 14

3.2 TypeScript . 15

3.3 React . 16

3.4 Other tools . 17

4 Assessment of the current implementation 20

4.1 Remote device management system 20

4.2 Discovering current problems . 20

4.2.1 Interviews . 21

4.2.2 Usability issues . 22

i

4.3 Feature requests . 25

5 New implementation 28

5.1 Design process . 28

5.2 Prototyping . 31

5.3 Implementation . 33

5.4 Usability improvements . 34

6 Analysis 40

7 Conclusion 48

7.1 Answers to research questions . 49

7.2 Limitations and future research . 51

References 52

ii

List of Figures

4.1 Grades for the current implementation 23

4.2 Device listing with a device opened 24

4.3 Time-on-task task #3, completion times in seconds. 25

4.4 Device listing in mobile view . 26

5.1 Brand colors and fonts used in the project 29

5.2 Example wireframe of the login page 30

5.3 Example wireframe of the device listing 31

5.4 Example design of the device listing 32

5.5 Example of Figma prototyping . 33

5.6 Example of multiple skeletons indicating a loading state of the as-

sumed device list . 36

5.7 Example of a toast notification . 36

5.8 Example of color usage in the new implementation 37

5.9 Example of mobile responsiveness in the new implementation 38

5.10 Example of mobile responsiveness in the new implementation 39

6.1 Comparison of SUS score between the current and the new imple-

mentation . 42

6.2 Time-on-task distribution for the current implementation. Comple-

tion times in seconds. 44

iii

6.3 Time-on-task distribution for the new implementation. Completion

times in seconds. 46

iv

List of Tables

2.1 SUS score evaluation, modified from [8] 10

6.1 Weighted SUS score for both implementations 41

6.2 Completion times for the current implementation (seconds). Averages

are rounded to the nearest second. 45

6.3 Completion times for the new implementation (seconds). Averages

are rounded to the nearest second. 45

v

1 Introduction

User interfaces are an interesting topic as they define how humans can interact with

machines. A good user interface is pleasant to use, whereas a poorly designed or

implemented user interface can make simple tasks complicated and cause frustration.

Although we can easily distinguish a poor user interface when we use one, it is much

more difficult or near impossible to design and implement the most optimal one for

a given system.

The human-machine interaction is also interesting because humans are different.

Some users may also face limitations, including inability to use pointing devices such

as a mouse, or visual impairments. On top of that, people approach the same tasks

from multiple viewpoints and take different paths to complete them. This means

that the designers can not just design for themselves, but instead they have to design

for users. Therefore, in order to design a good, usable user interface, we need to

communicate with the users and find out how they see the system and what kind of

approaches they take to complete actions so those can be optimized.

The aim of this thesis is to design and implement a new user interface for an

existing remote device management system in collaboration with the users of the

system. The first initiative for the need of a new user interface came from the

users, as they requested new features and bug fixes on a regular basis. For instance,

the user interface did not provide enough feedback and as a result the users found

themselves confused if an action they initiated had actually done anything. As the

CHAPTER 1. INTRODUCTION 2

existing user interface was already aged, implementing new features and fixes for it

along with necessary updates and code changes was deemed to be as time-consuming

as designing and implementing a new user interface from scratch. Redesigning and

implementing the user interface from scratch also gives a bit more flexibility as there

are no existing constraints that could possibly make some design choices impossible.

The redesign and implementation was done in collaboration with six partici-

pants that use the system actively and have different profiles and varying lengths of

experience with the system.

The goal of this thesis is to answer the following research questions:

RQ 1: How can the user interface be improved in collaboration with

current users?

RQ 2: What are the metrics that can be used to assess the current and

the new implementation of the user interface?

RQ 3: How can the end result of the improvement process be validated

using the metrics chosen?

Chapter 2 introduces the fundamentals of user-centered design (UCD) and how it

is used in the process of re-designing the user interface. Following this, the chap-

ter showcases the research and evaluation methods that are applied in the thesis.

Finally, the chapter briefly explains the tools, guidelines and platforms utilized.

Chapter 3 explains the technical background of the thesis by introducing the

relevant technologies used, including JavaScript, TypeScript, React, Docker, Google

Cloud Platform (GCP), and GitHub.

Chapter 4 introduces the remote device management system and explains the

use case for it. The chapter then goes on to discover the usability problems associ-

ated with the current implementation. The chapter also discusses how focus group

CHAPTER 1. INTRODUCTION 3

and interviews were arranged and what kind of feature requests the participants

requested for.

Chapter 5 focuses on how the new user interface was designed and implemented,

and how the users were involved in the process.

Chapter 6 presents the key findings and results obtained from the Chapters 4

and 5, providing an in-depth analysis and discussions of the results. The chapter

also discusses the possible explanations for the results obtained.

Chapter 7 serves as the conclusion chapter, summarizing the key findings and

concepts presented throughout the previous chapters. In addition, the chapter an-

swers the research questions from Chapter 1.

2 Background

This chapter aims at answering RQ 1 by exploring user-centered design as well as

research and evaluation methods. It also introduces tools, guidelines and platforms

used.

2.1 User-centered design

User-centered design (UCD) is a design process that focuses primarily on the users

and their needs. Users are involved in the design process in each phase via different

research and design methods in order to create a product that suits their needs. [1]

In UCD, different research and generative methods such as surveys, interviews

and brainstorming are used to develop a deeper understanding of the user’s needs.

The process is iterative, as the design is evaluated against user needs until a satis-

factory level is achieved. [1]

If applied to full extent, the UCD process involves experts from various fields,

such as psychologists, ethnographers and software engineers. In this thesis, no other

experts were used. The primary reason for this is the project’s constraints in terms

of both resources and time.

In this thesis, the role of the users is to provide ideas and features requests

that they hope to see in the end product. Furthermore, users are expected to

communicate any problems found in the current implementation. As in this case

the users are not designers or programmers, it is up to the designer to make those

2.2 RESEARCH METHODS 5

ideas and requests viable and further improve them so they can be implemented as

well as provide solutions to the problems found.

2.2 Research methods

There are numerous different methods that researchers can choose from. The fol-

lowing research methods were chosen based on literature and their suitability for the

research process. Each chosen method can be applied to a small group of partici-

pants and require no immediate presence between the researcher and the participant,

which was crucial due to the nature of the project.

In the project, I took the roles of researcher, designer and coder. This allowed me

to target the research on the problematic areas, make design choices that supported

the actual coding process as well as made the iteration of the product design and

implementation faster.

All of the six participants are real users of the system with different roles and

experience levels. The participants consist of:

• 2 developers, who also use the system to perform maintenance tasks.

• 1 product owner.

• 3 system users, who use the system regularly for its intended purpose.

Participants that were not the typical users of the system, such as the product

owner and the developers, were selected in order to get feedback representing less

experienced and new users. By selecting only the typical users, the results could

have been different but less inclusive at the same time. Including more participants

with different profiles was not feasible at the time of the research due to the scope

of the project.

2.2 RESEARCH METHODS 6

2.2.1 Semi-structured interview

Semi-structured interview is an interview method that combines both predefined

questions and ad-hoc questions that give the interviewer the ability to explore emerg-

ing topics or issues. Semi-structured interviews can be used to gather opinions and

facts from the users, as well as give the users ability to raise new issues in scenarios

where the relevant issues have already been identified. The length of semi-structured

interviews can vary from several minutes to several hours. Whereas short interviews

might not provide enough data, too long interviews can reduce the number of qual-

ified participants willing to participate. [2]

The strengths of semi-structured interview include the ability to discover previ-

ously unknown issues, mechanism to redirect conversation back to the relevant topic

as well as the ability to address complex topics. Interviews can also be broadly com-

pared with other interviews as they share the same base set of questions. [2]

Although semi-structured interview has many strengths, semi-structured inter-

view can suffer from what is known as the ’interviewer effect’ where the background

of the interviewer might affect the answers. There is also a risk that the interviewer

might guide the participant to give a particular answer or put words into the partic-

ipant’s mouth. [2] As the risks associated with semi-structured interview techniques

were known before the actual interviews made it possible to avoid them as well.

2.2.2 Nielsen heuristics

One way to identify underlying design problems in user interfaces is to use Jakob

Nielsen’s 10 usability heuristics [3]. Nielsen’s heuristics are not specific guidelines,

but more of rules of thumb in evaluating the usability of a user interface design.

These heuristics are useful early in the design process as they require no user input

to identify problems and they can also be used in collaboration with user research

to better target certain areas during testing. [4] These heuristics were used as

2.2 RESEARCH METHODS 7

the foundation for the semi-structured interview questions later on in the thesis.

Nielsen’s 10 heuristics are:

1. Visibility of system status

Users should always be informed of the system status through feedback within

a reasonable amount of time. This increases trust in the product and helps

the user to determine the next steps.

2. Match between system and the real world

The design should use concepts that the users are familiar with, as well as

display information in natural and logical order. By doing so, the product

becomes easier to learn and feels more intuitive to use.

3. User control and freedom

The users should be able to quickly leave unwanted actions because people

make mistakes and it can be frustrating for the user to get stuck without a

clear exit.

4. Consistency and standards

The users should not have to think if different words or actions mean the same

thing. Platform and industry conventions should be followed. Consistency

lowers cognitive load when users move between using different products.

5. Error prevention

The design should prevent the users from making errors by eliminating error

prone conditions and presenting users with confirmation option. Slips caused

by inattention can be prevented with constraints and defaults, whereas mis-

takes can be prevented with warnings and undo support.

2.2 RESEARCH METHODS 8

6. Recognition rather than recall

Elements of the UI should be visible and the amount of information that

the users have to remember should be minimal. Doing so helps to lower the

cognitive load.

7. Flexibility and efficiency of use

More advanced users should be presented with shortcuts and customization

options. This helps to make the product suit both novice and advanced users.

8. Aesthetic and minimalist design

The UI should not contain irrelevant or rarely used information. Any extra

unit of information directly competes with the relevant units of information,

making them less visible.

9. Help users recognize, diagnose, and recover from errors

Error messages should be clear and suggest a solution for the error instead of

showing error codes for example. Visuals for the errors should promote their

visibility and recognition.

10. Help and documentation

If the system needs explanation, it should be focused on the user’s task and

easy to search. Concrete steps to take should be listed.

Focus groups

Focus groups are small groups of users that provide feedback about a certain topic.

Focus groups are limited in size, as no more than 12 participants should participate

in a single focus group session. In order to involve more users, multiple focus group

sessions can be held with different participants. In focus group sessions, the mod-

erator asks open-ended questions about the product in order to collect ideas about

2.3 EVALUATION METHODS 9

how the users use the product as well as what they expect the product to be capable

of doing. Therefore, focus groups can be a valuable tool when defining features for

existing and new products. The goal of focus groups is to provide multiple opinions

and viewpoints that can be used in the design process. [5]

2.3 Evaluation methods

Evaluation methods are methods that are used to collect numerical data in order

to compare two implementations of the user interface. Whereas the System Usabil-

ity Scale provides qualitative data that captures the users’ perception of usability,

Time-on-task provides quantitative data on users’ efficiency and performance on

certain tasks.

System Usability Scale

The System Usability Scale (SUS), developed by John Brooke in 1986, is a scale

that gives a general view of subjective assessments of usability. The SUS is typically

used before any discussion or debriefing, after the respondent has used the system

being evaluated. [6]

The System Usability Scale is made up of ten statements that alternate between

positive and negative statements. The respondent has to then indicate the degree

of agreement to each statement on a 5-point scale. The overall usability score can

be calculated by subtracting the user’s score from 5 for even-numbered questions

and subtracting 1 from the user’s score for odd-numbered questions. The adjusted

scores are then summed and the sum is multiplied by 2.5. SUS score is measured

from 0 to 100. [6]

Evaluating SUS score differs a bit from source to another, but a common con-

ception is that the average score for a system is 68. Scores above 68 are considered

to be above average, whereas scores below 68 are considered to be below average [7].

2.3 EVALUATION METHODS 10

Table 2.1: SUS score evaluation, modified from [8]

Grade SUS score Percentile range Adjective

A+ 84.1 - 100 96-100 Best imaginable

A 80.8 - 84.0 90-95 Excellent

A- 78.9 - 80.7 85-89

B+ 77.2 - 78.8 80-84

B 74.1 – 77.1 70 – 79

B- 72.6 – 74.0 65 – 69

C+ 71.1 – 72.5 60 – 64 Good

C 65.0 – 71.0 41 – 59

C- 62.7 – 64.9 35 – 40

D 51.7 – 62.6 15 – 34 OK

F <= 51.6 < 15

Instead of a linear progression, the SUS score follows a curved pattern. This

curved pattern can be expressed as a table with grades for score ranges [8] as shown

in Table 2.1.

It is also important to notice that the score of a single item is not meaningful on

its own [6], and therefore no conclusions can be drawn from the answers to a single

question.

Time-on-task

Time-on-task, otherwise known as task completion time, is a way to measure the

efficiency of a product. Time-on-task is relatively easy to measure, as it is the time

elapsed between the start and the end of a certain task. Typically, time a task takes

is measured in seconds or minutes. For products where the user repeatedly performs

2.4 TOOLS, GUIDELINES AND PLATFORMS 11

tasks, a lower time on task usually means a more efficient product, although this

might not be true for all products. [9] When measuring the time spent on a single

task, it is important that both the participant and the timekeeper know the con-

ditions when a specific task is completed to prevent a case where for example the

participants thinks they have completed the task and stop.

2.4 Tools, guidelines and platforms

This section showcases the primary tools used in both pre-design and design phases.

Tools related to the implementation phase are introduced in Chapter 3.

Figma

Figma is a cloud-based user interface design tool developed by Figma, Inc. and

released in 2015, that can be used to create designs as well as clickable prototypes.

Figma offers both free and paid plans. [10] Figma was used in this project to create

designs as well as prototypes that made it possible to iterate the design before any

actual code was written.

Figma also supports third-party plugins that make it possible to turn Figma

designs into code, but the quality and maintainability of the code these plugins

produce can not be verified and for that reason those plugins were not used.

There are multiple Figma alternatives available, most well-known being Adobe

XD. The reason for choosing Figma as the design tool was because of my experience

with the software and access to a paid subscription, which provides more features,

such as advanced prototyping.

Microsoft Teams

Microsoft Teams is an online communication software developed by Microsoft. Mi-

crosoft Teams offers a wide variety of features, including video meetings. It also

2.4 TOOLS, GUIDELINES AND PLATFORMS 12

supports other Microsoft applications, such as Microsoft Whiteboard, a collabora-

tive online whiteboard. Microsoft Teams offers both free and paid plans, although

the free plan is intended for non-business use only. [11]

Microsoft Teams was used in this project because the customer’s organization is

using mainly Teams and the features that Teams offers are sufficient for this project.

Other video meeting solutions, such as Google Meet would have most likely been

sufficient as well.

WCAG 2

Web Content Accessibility Guidelines (WCAG) 2 is a technical standard that defines

how websites and applications can be made accessible to users with disabilities. The

latest version of the standard is 2.2, published on October 5, 2023. [12] Although the

standard defines a lot of accessibility features, not all are relevant in this context.

As the user pool is fairly well known and the system will be in limited use instead of

being available to the public, some features, such as support for blind users can be

overlooked. However, if the system were to be adopted for use by a larger user pool,

these accessibility features and the need for them would need to be re-evaluated.

As WCAG is an open standard, there exists a large number of online tools that

can be used to verify that a web application follows the guidelines. One useful tool

that was used was a contrast checker by WebAIM [13] to verify that text stayed

readable in all cases, even when in dark mode. WebAIM also provides another tool

called WAVE (web accessibility evaluation tool) that was used to verify applicable

accessibility features.

Material Design

Material Design is an open-source design system created by Google and widely

adopted across Android, iOS and the web. Material design provides a comprehensive

2.4 TOOLS, GUIDELINES AND PLATFORMS 13

set of UI components, including buttons, menus, cards and more. Each component

has specific design guidelines and usage recommendations. [14] By utilizing an

already existing design system the system is already tested and the time needed for

design is significantly reduced.

3 Technical background

The technical aspects of the project help to clarify the project’s environment as well

as to justify design choices that were made. As a web application, the project is

limited by the functionality that modern web technologies offer.

In the same way as the current implementation, the new implementation was also

implemented as a web application instead of a more traditional desktop software that

requires to be installed on the end user’s machine. The main reasons for this were the

ease of use as well as the suitability of the web technologies available. The product

had to be easily distributed to a large number of users using both desktop and mobile

platforms and the implementation did not require large amounts of computational

power or access to native application programming interfaces (APIs). Therefore,

implementing the product as a web application was seen as the most viable option, as

it made the distribution of the product easy for both desktop and mobile platforms,

required no initial setup from the end users and made applying updates to the

application much easier. The following tools introduced are the tools that were used

in the thesis.

3.1 JavaScript

JavaScript is a single-threaded, dynamically typed, just-in-time compiled program-

ming language that supports first-class functions. It is best known for its use in

the web, but JavaScript is supported by non-browser environments as well, such as

3.2 TYPESCRIPT 15

Node.js. [15]

JavaScript is standardized as ECMAScript (ECMA262), and the first version

was adopted in June of 1997. [16]

As JavaScript is dynamically typed, variables in JavaScript can hold values of

any type. For example, in Listing 3.1 it is evident that the function hello() can

be called with a variable of any type. This can lead to a variety of problems if not

taken into consideration during coding.

1 const hello = (name) => {

2 return `Hello , ${name}!`

3 }

4 console.log(hello("Joe")) // Output "Hello , Joe!"

5 console.log(hello (123)) // Output "Hello , 123!"

Listing 3.1: Example JavaScript code

As of 2024, according to a study by W3Techs, 98.8% of websites globally use

JavaScript as a client-side programming language [17]. Stack Overflow’s survey

marks JavaScript as the most popular programming language for the eleventh year

in a row [18], reasoning the use of JavaScript.

3.2 TypeScript

TypeScript builds on top of JavaScript by adding types and type checking to im-

prove developer experience as well as to catch errors early on. TypeScript works

everywhere where JavaScript does, as TypeScript code is converted to JavaScript.

The example from Listing 3.1 can be re-implemented in TypeScript to show how

the typing system can prevent errors early on. It can be seen from Listing 3.2 that

assigning values with types other than string to the variable name raises an error.

1 const hello = (name: string): string => {

2 return `Hello , ${name}!`

3.3 REACT 16

3 }

4 console.log(hello("Joe")) // Output "Hello , Joe!"

5 console.log(hello (123)) // Error: Argument of type 'number ' is not

assignable to parameter of type 'string '.

Listing 3.2: Example TypeScript code

3.3 React

React is an open-source JavaScript library developed and maintained by Meta with

the help of voluntary contributors around the world. React can be used to build

user interfaces from components by combining both HTML and JavaScript (or Type-

Script) in a syntax known as JSX (if using TypeScript, TSX), [19] that is demon-

strated in the Listing 3.3, showcasing a basic React component that renders the

results of hello() in a HTML paragraph.

1 const HelloComponent = () => {

2 const hello = (name: string): string => {

3 return `Hello , ${name}!`

4 }

5 return (

6 <div >

7 <p>{hello("Joe")}</p>

8 </div >

9)

10 }

Listing 3.3: Example React component

React’s initial public release was in 2013, and has since seen 18 major versions, the

newest one being version 18.2.0 released in June of 2022. [20] According to the

2023 Stack Overflow’s survey, React was the most used web technology amongst

professional developers. [18] React’s widespread adoption has created an ecosystem

3.4 OTHER TOOLS 17

of open-source libraries that simplify the process of creating complex functionali-

ties within React applications. While features like internationalization (i18n) and

authentication can be complex to implement, these libraries significantly simplify

the process. As a drawback, these libraries limit transparency and potentially make

customization more difficult.

There are also frameworks for React, such as Next.js, that enhance the core

React library by providing features such as server-side rendering (SSR) and routing.

These frameworks come with the drawback of increased complexity and potential

bias, often making it difficult to switch from a framework to another without major

refactoring.

3.4 Other tools

Docker

Docker is a platform that enables applications to be separated from the infrastruc-

ture they run on. Docker allows applications to be packaged into containers, which

are loosely isolated environments that contain everything needed to run the applica-

tion. [21] By using a platform such as Docker, the application can be packaged and

deployed on almost any platform, as long as it supports Docker. As the deployment

is not tied to a certain provider it allows organizational changes, such as migrating

from one cloud platform to another, to take place.

Google Cloud Platform

Google Cloud Platform (GCP) is a collection of cloud computing services provided

by Google. [22] One of the services available, Compute Engine, allows the cre-

ation and management of virtual machines on the platform. These virtual machines

can then be scaled up and down based on requirements, ensuring performance and

cost-efficiency. There are other alternatives to GCP, such as Amazon Web Services

3.4 OTHER TOOLS 18

(AWS), Microsoft Azure or more traditional on-premise hosting. The reason for

selecting GCP was that the customer’s organization was already using it and the

other alternatives did not provide any advantages.

Git & GitHub

Git is an open-source distributed version control system developed by Linus Tor-

valds in 2005. Git works by recording changes known as commits to allow access to

prior versions of the source code. GitHub on the other hand is a developer platform

owned by Microsoft that utilizes Git. GitHub offers a variety of features, such as

hosting Git repositories, automated CI/CD (continuous integration / continuous de-

velopment) pipelines, container registries (packages) and so on. GitHub offers both

free and paid subscriptions. [23] By utilizing Git, code changes can be pushed to

the code repository hosted by GitHub. After certain conditions, such as code be-

ing pushed to a certain branch, an automated workflow will verify the code quality

and build the code into an application on the cloud. By utilizing this workflow,

code can be built and packaged into Docker images. GitHub hosts these images on

their servers, making it easy to deploy them on Docker running on the GCP virtual

machine. There exists alternatives for both Git and GitHub, although Git is the

most used version control system. GitHub has multiple alternatives, GitLab being

the most popular. These alternatives do not typically offer any advantages, and the

reasoning for choosing Git and GitHub was based on preference.

Material UI

Material UI is an open-source React component library, developed by a company

called MUI, that implements Google’s Material Design. The library consists of

prebuilt React components that can be used in production straight away and cus-

tomized easily. Material UI is based on Google’s Material Design 2 and support for

3.4 OTHER TOOLS 19

Material Design 3 is already planned. By utilizing Material UI, components such as

buttons and modals are already tested and ready to use. Material UI also provides

a theming system, allowing colors and fonts to be predefined in the code for later

use. [14]

4 Assessment of the current

implementation

This chapter focuses on explaining the remote device management system, goes

through the process of discovering current problems as well as discusses feature

requests.

4.1 Remote device management system

The current implementation in use is a remote device management system that

allows the users to control and manage different kinds of devices remotely. Devices

managed from the system are for example ticket vending kiosks and other devices

that require constant monitoring and remote management. The current system is

designed to support hundreds of devices, as well as user-specific access privileges

with designated roles and organizations.

4.2 Discovering current problems

The process of discovering the current usability issues of the remote device man-

agement system started with a focus group that had six participants in total. The

focus group was held online via Microsoft Teams, as there was great geographical

distance between the participants.

4.2 DISCOVERING CURRENT PROBLEMS 21

The focus group began by introduction to the topic which was to assess the

usability problems with the current implementation and ideas for the new imple-

mentation. The participants were instructed to think and write down what aspects

of the UI had usability issues, what parts of the UI did work and what features the

participants would hope to have in the future version of the application. This part of

the workshop utilized Microsoft Teams’ Whiteboard, which allowed the participants

to see what others were writing down in real-time. After the participants were done

writing notes, each note was discussed and the writer of the note had a chance to

elaborate the note further.

The focus group was successful in discovering usability issues related to the real-

time functionality of the application, as well as multiple issues related to the Nielsen

heuristics. One major issue that contradicted the Nielsen heuristics was that the

visibility of the system status was often insufficient. The user interface was also

considered to be complicated and the functionalities were placed illogically.

4.2.1 Interviews

After the focus group, I interviewed each participant personally in order to get a

better understanding of the usability problems with the current implementation as

well as map out missing features. The interviews were held as semi-structured,

and they included ten questions related to usability and design. The participants

were also asked to grade the current implementation on a scale 1–10 along with

a reasoning for the grade to gain a deeper understanding of the issues they were

experiencing.

The questions the participants were mostly asked in the semi-structured inter-

views were the following:

• Q1: What aspects of the UI catch your eye in the first place?

• Q2: Do you feel that the UI gives appropriate feedback?

4.2 DISCOVERING CURRENT PROBLEMS 22

• Q3: Does the UI have features that you never use?

• Q4: Do you feel like you can find all the relevant information easily in the UI?

• Q5: Do you feel that the language used in the UI is clear and uniform?

• Q6: Do you feel that the UI is modern? How do you feel about the placement

of the elements and the use of colors?

• Q7: Would you like to use the UI in other languages?

• Q8: Have you faced bugs or other defects that make the use of the UI difficult?

• Q9: Have you used the UI with a mobile device such as a phone or a tablet?

• Q10: Do you feel like the UI is missing features that it should absolutely have?

As typical for a semi-structured interview, some of the questions were not asked if

the participant had already answered them in a way or another, and some of the

answers led to more in-depth questions.

The interviews verified the initial problems which rose from the workshop. Par-

ticipants felt that the usability problems hindered the usability and user experience,

but did not make the current implementation inoperable. As Figure 4.1 suggests,

the grades given for the current implementation averaged a grade of 6.6 out of 10.

While the grade itself was not either bad or great, asking the participants to give a

grade with reasoning discovered even more aspects that hindered the usability.

During the interviews, participants highlighted issues impacting their work and

largely overlooked those not relevant to them. This highlights the importance of

diverse participants to uncover the widest range of issues.

4.2.2 Usability issues

One of the usability issues that was identified from the interviews was that managing

hundreds of devices from a list view was troublesome. Users expressed that they

4.2 DISCOVERING CURRENT PROBLEMS 23

Figure 4.1: Grades for the current implementation

needed a way to group devices as they saw fit and filter the device list view based

on those groups. Filtering devices only by device name was not sufficient enough,

as not all of the devices have a common naming convention.

Viewing a single device’s details was also considered to be troublesome as each

device in the list acted like an accordion as can be seen from Figure 4.2. Opening a

single device would shift the other devices on the list downwards such as they were

no longer visible on the screen. Depending on the device’s position on the list, the

user would often have to scroll downwards after opening a device to see any relevant

information about the device. In some cases, almost no information became visible

after opening a device. The UI did not also provide a way to open a single device

to its own browser tab and made comparing different devices troublesome.

Insufficient visibility of system status hindered the usability in many parts of

the UI. When performing actions, the users typically had to rely on prior experience

4.2 DISCOVERING CURRENT PROBLEMS 24

Figure 4.2: Device listing with a device opened

rather than recognition. For example, restarting a device did not provide any feed-

back for the user until the device came back online and updated its status. The lack

of visibility of the system status shows particularly well in the time-on-task results

seen in Figure 4.3 where the difference between fastest and slowest time was over

sevenfold.

In some scenarios the login screen did not provide any feedback to the user,

meaning that if the user inserted the wrong credentials, the UI would not respond

in any way.

Use of certain colors in varying ways made the purpose of the colors unclear for

the users. For example, the color yellow was used to indicate both destructive and

non-destructive actions. This clearly violates Nielsen’s heuristic of consistency and

standards, and can cause additional cognitive load and confusion especially for the

less experienced users.

The mobile usability and responsiveness of the application was moderate at best.

With different screen sizes, the elements of the UI switch places and often end up

4.3 FEATURE REQUESTS 25

Figure 4.3: Time-on-task task #3, completion times in seconds.

overflowing as can be seen from the Figure 4.4. The mobile view was also crowded

with too much information and actions being displayed within a relatively limited

screen space. Users suggested that the mobile version should focus more clearly in

making the needed data visible rather than allowing for complex operations, such

as data modification.

4.3 Feature requests

During the workshop and interviews the participants were asked to present feature

requests for the new UI. The scope of the requests was not limited, and the requests

that could not be fulfilled in the scope of this project could be selected for further

development or at least be documented.

The requests were categorized by implementability and by the impact on the

4.3 FEATURE REQUESTS 26

Figure 4.4: Device listing in mobile view

usability of the system, with as many features as possible chosen to be implemented

in this project rather than later on. Some of the requests that did not fit the scope

of the project were simply too large or required changes in other parts of the system,

such as in the backend or the networking layer.

One such feature request that was deemed to be too large for the scope of this

project was that the users would have wanted to monitor the device’s display in

real-time. In the current implementation the users can only take screenshots which

can in some situations be hard to interpret. For example, if the device is frozen a

screenshot does not communicate that to the user. Although real-time monitoring

would have been an useful feature, it would have required too many changes to other

parts of the system, such as the backend and the software running on the devices.

4.3 FEATURE REQUESTS 27

The list of feature requests did also contain a lot of requests that could be fulfilled

in the scope of the project. Users requested that the device list should update itself

automatically so that monitoring the devices would not require constant interaction

from the user. Users also wanted the ability to group devices to groups so that

managing different types of devices would be more straightforward. Device grouping

turned out to be one of the largest new features to be implemented in the new UI.

The current implementation did suffer from a high learning curve, as the users

had to know what each button actually did. One of the participants requested

that the new implementation should have tooltips and a dedicated help page to

assist more inexperienced users with the usage of the system. These features were

estimated to be fast and simple to implement but at the same time they were

estimated to provide a large increase in the usability of the system and therefore

they were given a high priority.

5 New implementation

Based on the data collected from the workshop and interviews discussed in Chapter

4, the new implementation of the user interface aimed to solve the usability prob-

lems, as well as improve the overall usability and implement features requested by

the participants. Due to the number of feature requests and their complexity, some

features requested could not be implemented in the scope of the project, but rather

had to be left for later development. The chapter goes through the design, proto-

typing and implementation phases and discussed how the usability issues discovered

earlier were solved.

5.1 Design process

The design process started by establishing basic elements of the new user interface at

first. A brand-specific graphical guideline (Figure 5.1) for the colors and typography

was already in place, although the color palette needed to be refined as it only

included five colors mainly in the shades of purple.

The graphic guidelines dictate that headlines should use Prompt SemiBold font

while body text should be in Nunito Sans font. Although fonts can make or break a

design, in this case the provided fonts were neutral and readable. For the font color

I decided to choose one of the brand colors, a deep dark purple, as many sources

suggest that using pure black on white can cause eyestrain and research has shown

that in some cases the difference in contrast can even cause myopia [24].

5.1 DESIGN PROCESS 29

Figure 5.1: Brand colors and fonts used in the project

Other than the graphical guidelines, there were no other constraints for the design

set by the customer. As the application is intended for professional use, I decided

to steer away from visual appeal and focus the design more on the usability aspect.

This decision was backed by the interviews, as many of the participants expressed

that the most important aspect of the UI is that it gets the work done efficiently

and concisely.

For the design language, I decided to loosely follow Google’s Material Design 2

[25]. This decision was based on the fact that there exists a highly-popular compo-

nent library for React, MUI [14], that implements Material Design 2. Choosing the

newer Material Design 3 as the design language was also feasible, but the imple-

mentation would have been much more time consuming as I would have needed to

implement each component in React. MUI not only speeds up the implementation,

5.1 DESIGN PROCESS 30

but it also has a multitude of accessibility features, such as keyboard-only usage,

already built in.

After establishing a solid foundation for the design, the first step was to design

wireframes that would be shown to the participants by using Figma. The goal

was to collect user feedback about the basic layout of the application before going

more deeply into other details. The participants were presented with a few different

options to choose from and the participants could also suggest improvements based

on the wireframes. For example, the participants were presented with a login screen

wireframe similar to the current implementation, as well as a different one seen in

Figure 5.2. Although the change was not major, the participants liked the idea of

seeing relevant notifications that could be of interest to the user logging in.

Figure 5.2: Example wireframe of the login page

For the view listing the devices the participants were shown multiple wireframes

to choose from, reassembling both wireframes that were identical to the current im-

plementation, as well as wireframes based on the data collected from the interviews.

5.2 PROTOTYPING 31

Figure 5.3 shows an example wireframe of the device listing that the participants

felt was able to utilize the available screen space more efficiently as well as display

more of the relevant information to the user. One major change was that the device

listing stays visible even when interacting with a particular device.

Figure 5.3: Example wireframe of the device listing

Based on the feedback received from the wireframes, more detailed designs were

made for the participants to further evaluate. For example, the wireframe from

Figure 5.3 was transformed into a more comprehensive design that displayed multiple

different features and their respective positions on the UI that can be seen on Figure

5.4.

5.2 Prototyping

The more detailed designs were also used to build a working Figma prototype that

mimicked how the user interface would function when actually implemented for the

5.2 PROTOTYPING 32

Figure 5.4: Example design of the device listing

browser environment. The prototype consisted of both desktop and mobile versions

of the UI and the prototype included basic functionality such as interacting with

different devices. For the participants, the user experience was almost browser-like,

although some of the elements visible were dummy elements. Under the hood, the

prototype consisted of multiple different Figma frames that were linked as a chain

with some transitions between the frames. This visualization of how the different

frames are linked together in Figma can be seen from Figure 5.5, where each blue

line represents a connection between two frames.

The prototype was easily shared to the participants via a link, and the partici-

pants could explore the prototype freely when they had the time. The participants

were provided with the link, simple instructions of how to use the prototype as well

as a request to give feedback when they had explored the prototype.

The prototyping phase was simple to conduct, as the prototype was fast to build

and it worked reliably. The feedback received for the prototype did provide some

5.3 IMPLEMENTATION 33

Figure 5.5: Example of Figma prototyping

minor improvement ideas, and more importantly no major usability issues were

discovered. The feedback however validated that the prototype was functional and

usable and moving on to the implementation phase was justified.

Prototyping presents itself as a valuable tool within the design process by en-

abling the creation of realistic representations of the end product, facilitating user

interaction and providing feedback before beginning of the coding phase. Prototyp-

ing can also help test features that depend on changes to other system components,

such as the backend, saving valuable time.

5.3 Implementation

Following the completion of the design and prototyping phases, the implementation

phase was proceeded to. Utilizing NextJS, a framework for React, made the project

5.4 USABILITY IMPROVEMENTS 34

setup process straightforward, handling both the initial configuration and related

integrations, such as the TypeScript integration. NextJS also has a lot of built-in

tooling, such as a compiler and a routing system, that simplify the implementation

process.

The backend for the system was already in place, but it required some changes

to support new features, such as the device groups. The backend was known to

cause at least some difficulties with the new user interface as the limitations of the

backend could not be solved just by re-implementing the user interface. Support for

device groups was the sole modification to the backend and everything else remained

unchanged.

The limitations of backend made the implementation of some features more diffi-

cult than anticipated at first. For example, a lot of related data needs to be fetched

from multiple endpoints, and the separation of responsibilities is at times frontend-

heavy.

5.4 Usability improvements

The four areas of usability issues discovered earlier in Chapter 4 were the following:

1. Managing large amounts of devices from a list view

2. Displaying device details

3. Insufficient visibility of the system status

4. Use of colors in misleading ways

5. Mobile usability and responsiveness

First of all, the management of a large number of devices was tried to be solved

by both refining the list view as well as implementing a new group feature, which

5.4 USABILITY IMPROVEMENTS 35

allows users to create both private groups only they can view as well as groups that

everyone in the organization can view and manage. Users can add both devices and

other groups as subgroups into a group, providing a versatile way of managing a

large amount of devices.

Individual devices in the list no longer act like accordions, but instead the view

is split in half horizontally, allowing both the device and the device list to remain

visible. The user interface remains more stable, as the layout shifts caused by the

accordions are no longer an issue.

The current implementation had a lot of issues in regards to the visibility of the

system status. As the system did not have many of the necessary visual indicators,

the users were left waiting for if something was going to happen. To solve the issue,

the new implementation introduced two types of visual cues for the user. First, a

skeleton was used in the parts of the UI that had not yet finished loading the data,

as shown in Figure 5.6. By replacing the data with an animated placeholder sized

the same as the assumed data, the user is given a cue that something is happening

and the system is not frozen. This leads to less frustration while waiting, as the

system can be perceived to be responding immediately. The skeletons are typically

animated with a pulsating effect to reinforce the user that the system is not frozen.

Accurate skeleton sizing is important, as it allows the users to anticipate specific

elements to load correctly and minimize layout changes for improved usability and

user experience.

The other improvement to increase the visibility of the system status was the use

of toast notifications. Toast notifications are notification boxes that appear on top

of the UI, typically in one of the corners. Toast notifications can change state as seen

in Figure 5.7, so when the user, for example, performs an action, the notification

first appears to inform the user that an action is being executed and after the action

is executed, the state changes to inform the user about the outcome of the action.

5.4 USABILITY IMPROVEMENTS 36

Figure 5.6: Example of multiple skeletons indicating a loading state of the assumed

device list

Toast notifications can contain text as well as other components, such as icons, to

clearly indicate the outcome to the user. The visibility of the notifications can also

be configured, for example, an error notification can remain on the screen until the

user interacts with it, whereas a success notification can disappear after a certain

time period.

Figure 5.7: Example of a toast notification

To solve the issue with colors, the new UI was designed with clear use cases for

5.4 USABILITY IMPROVEMENTS 37

different colors to prevent mismatch between the UI and the user’s mental model.

For example, the color red is reserved for errors and negative actions, whereas the

color yellow is used to indicate actions that are non-destructive but still require user

attention.

Figure 5.8: Example of color usage in the new implementation

Figure 5.8 demonstrates how color is used to indicate the severity of each action

for the users. In this example, taking a screenshot does not have any effect outside

the system or affect other users or devices. Buttons colored in yellow initiate actions

that can have effects for others as well, for example, restarting the device will cause

the device to become temporarily unavailable both in the field as well as in the

system. Powering off the device is colored red because in this case it will turn the

device off completely and require physical presence to turn the device back on. In

addition to indicating the severity of actions with color, some of the options were

hidden so that users have to take extra steps in order to reveal them.

Mobile usability was a major usability issue in the current implementation. Even

though the application is intended to be used primarily on desktop, there exists a

number of use cases for mobile as discovered earlier. In order to make the application

usable on both desktop and mobile environments, many parts of the UI had to work

differently based on the screen size.

5.4 USABILITY IMPROVEMENTS 38

Figure 5.9: Example of mobile responsiveness in the new implementation

For example, showing both the device list and the device itself side-by-side on a

mobile size screen was not feasible. Optimizing the screen space usage is possible

because the desktop and mobile versions differ from each other feature-wise. Fig-

ure 5.9 shows the new mobile-optimized device list view. Compared to the earlier

implementation, the elements of the UI no longer shift to wrong places and the ele-

ments are sized so that they can be more easily controlled by touch. The filters are

distinguished from the device list by whitespace, making them stand out and easier

to work with.

Instead of showing the device list and device details side-by-side when a device is

open, opening a device on mobile hides the device list and opens the device details in

5.4 USABILITY IMPROVEMENTS 39

full screen as seen in Figure 5.10. This way, the available screen space is optimized

to show only the necessary information, rather than attempting to cram everything

onto a limited screen.

Figure 5.10: Example of mobile responsiveness in the new implementation

The mobile version of the application is designed for on-the-field usage, primarily

to control a single device. Therefore, the design had to be simple without compro-

mising essential features. The mobile version works in the browser just like the

desktop version and the screen size of the device dictates which version the user is

served.

Overall, the UI on the mobile version was designed and implemented so that

the user is presented with only the necessary information and features. Scrolling

5.4 USABILITY IMPROVEMENTS 40

was limited to the y-axis to make the usage experience similar to other mobile

applications. Some of the features available on the desktop version, such as adding

a new device, are disabled on the mobile version, as they were deemed to be too

error-prone on a limited screen. Implementing only the features that will most likely

be used on the mobile version also saved time on design and implementation phases

and contributed towards the mobile UI being as clean and easy to use as possible.

6 Analysis

In order to validate the usability improvements of the new implementation, the par-

ticipants were asked to answer the System Usability Scale questionnaire twice, once

for both the current and the new implementation. Additionally, the participants

were asked to complete four tasks by using both implementations.

For the current implementation, the participants were asked to complete the

timed tasks and the SUS questionnaire was given to the participants as a link to be

filled at a convenient time. It was discovered later on that this caused extra work, as

participants usually forgot to fill out the questionnaire and multiple reminders had to

be sent out. Therefore when scheduling times for assessing the new implementation,

the time for filling the questionnaire was accounted for. It is worth noting that

answering the SUS questionnaire took participants less than five minutes.

The participants were asked to answer the ten statements of the System Us-

ability Scale for both of the implementations. The results for both the current

implementation and the new implementation are listed on Table 6.1.

It can be seen from Table 6.1 that the weighted SUS score for the current im-

plementation has a major variation between participants. For example, the highest

individual score was 95, meaning best imaginable usability, whereas the lowest score

was 25, indicating major usability issues. The difference between the highest and

the lowest score was 70 points. The lowest score deviated from the average with

31.7 points, whereas the highest score deviated from the average with 38.3 points.

CHAPTER 6. ANALYSIS 42

Table 6.1: Weighted SUS score for both implementations

Participant Current weighted score Grade New weighted score Grade

P1 72.5 C+ 85 A+

P2 55 D 95 A+

P3 95 A+ 97.5 A+

P4 35 F 100 A+

P5 25 F 90 A+

P6 57.5 D 95 A+

AVERAGE 56.7 D 93.75 A+

The reason for the variation was not evidently clear. One reason could be that

participants who have used the system for longer periods of time have familiarized

themselves with the system and overlook the most common usability issues. The

data also suggests that using System Usability Scale for assessing already existing

systems might cause variation, as SUS is mainly intended to assess systems that

users have limited experience with, although this was an acknowledged drawback.

The average SUS score for the current implementation was 56.7, meaning it is

11.3 points below the SUS average of 68. The score is in line with the data gathered

from the interviews indicating that there exists usability issues within the system.

The new implementation had much more uniform scoring between the partic-

ipants. Even the lowest score for the new implementation was 85, surpassing the

SUS average of 68, while the highest score was 100. The difference between the

highest and the lowest score was only 15 points. Deviations from the average were

8.75 points for the lowest and 6.25 for the highest score. All of the participants had

used the system approximately the same time before answering the questionnaire.

The average SUS score improved from 56.7 to 93.75, meaning an increase of

CHAPTER 6. ANALYSIS 43

Figure 6.1: Comparison of SUS score between the current and the new implemen-

tation

37.05 points or 65% respectively. When comparing against the SUS average of 68,

the current implementation was 11.3 points below, whereas the new implementation

was assessed to be 25.75 points above the average. These results indicate a major

increase in the perceived usability of the system when using the new implementa-

tion. The current implementation had an average SUS grade of D, whereas the new

implementation had an average grade of A+. The new implementation received A+

from all of the six participants, whereas the current implementation received only

one A+ grade and the others were C+ or worse.

It can be seen from Figure 6.1 that participants P2, P4 and P5 had the lowest

SUS score to begin with. Participants P2, P4 and P5 were in fact the 3 system users

mentioned earlier. These participants also use the system the most so it is logical

that usability issues hinder the usage experience of those who use the system a lot.

CHAPTER 6. ANALYSIS 44

Conversely, improvements to the system also increase the perceived usability most

amongst those participants.

Altogether the recorded SUS scores were uniform with the results gathered from

the interviews. The current implementation had a number of usability issues that

the new implementation aimed to solve, and the change was directly reflected in the

SUS score.

The participants also completed four timed tasks within the system in a con-

trolled environment. The task execution was monitored through Microsoft Teams

by both voice and screen share. The tasks the participants were asked to perform

were the following:

• Task 1: Check a given device’s last seen timestamp. The task ends when the

participant reads the timestamp out loud.

• Task 2: Download a given log file from a given device. The task ends when

the browser indicates a file is being downloaded.

• Task 3: Restart a given device. The task ends when the participant indicates

a restart is done.

• Task 4: Report the number of devices that belong to a given group. The task

ends when the participant reports the correct answer.

The tasks were timed on a timekeeping software, and the results were rounded

to the nearest second to account for any delay as the tasks were monitored through

Microsoft Teams.

Figure 6.2 shows the time-on-task results for the current implementation. From

this figure it is visible that the time each of the tasks took to complete by different

participants had major variation. To analyze the results more in-depth, the results

are displayed in Table 6.2

CHAPTER 6. ANALYSIS 45

Figure 6.2: Time-on-task distribution for the current implementation. Completion

times in seconds.

The time-on-task data for the new implementation shown in the Figure 6.3 shows

a more unified completion time distribution, although some tasks still had some

variation. It is worth mentioning here that the participants had a limited experience

with the new implementation.

For task 1, the average time actually increased by 5 seconds or 24%. In task

1 the users had to report the last seen timestamp for a device, and the data was

displayed in approximately the same place in both implementations. In hindsight,

the task description should have been more clear, as many of the participants first

proceeded to the device details searching for a field named ’last seen’ before actually

reporting the timestamp from the device listing.

When looking at the data, participant 5 (P5) stands out from the rest, as the

completion time for P5 is considerably slower (43 seconds) than for other partici-

CHAPTER 6. ANALYSIS 46

Table 6.2: Completion times for the current implementation (seconds). Averages

are rounded to the nearest second.

Participant Task 1 Task 2 Task 3 Task 4 TOTAL

P1 17 53 70 24 164

P2 24 27 14 13 78

P3 30 19 22 31 102

P4 16 22 9 12 59

P5 18 69 35 16 138

P6 19 45 19 20 103

AVERAGE 21 39 28 19 107

Table 6.3: Completion times for the new implementation (seconds). Averages are

rounded to the nearest second.

Participant Task 1 Task 2 Task 3 Task 4 TOTAL

P1 34 36 19 15 104

P2 26 24 17 22 89

P3 24 20 21 21 86

P4 15 16 13 27 71

P5 43 63 32 18 156

P6 11 28 17 20 76

AVERAGE 26 31 20 21 97

CHAPTER 6. ANALYSIS 47

Figure 6.3: Time-on-task distribution for the new implementation. Completion

times in seconds.

pants. If the P5 result were excluded when calculating the average for task 1, the

average would be 22 seconds, meaning only a 1 second increase, which could have

been explained by margin of error.

For task 2 on the other hand the average time improved by 8 seconds or 21%.

Although the task completion time did improve, a bigger improvement was expected

due to the fact that the current implementation lacked search functionality, whereas

the new implementation had it. It was observed though that not all of the users

actually used the search functionality, which might explain why there was only a

slight improvement.

In task 3, an improvement of 8 seconds or 29% was seen, with the average

decreasing to 20 seconds from 28 seconds. The reason for the improvement was

that the new implementation clearly indicated to the user that the given device

CHAPTER 6. ANALYSIS 48

was restarted. From the data it can be seen that the current implementation had

a slowest completion time of 70 seconds, whereas the new implementation had the

slowest completion time of only 32 seconds. This means that the slowest time was

improved by 38 seconds or 54%.

In task 4 a slight increase of 2 seconds or 11% was seen in the completion time.

The new implementation had the functionality to filter devices based on their group,

but as this was new functionality, it was observed that none of the users actually

took advantage of it.

For total task completion times, the average improved by 10 seconds or 9% as the

average completion time decreased from 107 seconds to 97 seconds. In the current

implementation, four of the participants had a total completion time exceeding 100

seconds, whereas in the new implementation only two of the participants exceeded

100 seconds.

As a whole, the results from the timed tasks were not as good as expected,

although they still indicate that the usability and the efficiency has increased as the

total completion time did improve. This indicates that the usability issues of the

current implementation were not as severe as the users initially suggested. One of

the reasons why the results did not improve more than 9% was that the tasks the

users typically perform in the system are quite simple, and as seen in the results the

tasks take on average less than a minute to complete. One possible option would

have been to artificially increase the task length by grouping multiple tasks into a

single task, but that was not seen as a valid option. The tasks that the participants

completed for this thesis are tasks that they perform on a regular basis when using

the system. Therefore, it can be concluded that the time-on-task does provide useful

results but the analysis can be difficult to conduct especially if the completion times

are short to begin with. As the sample size was relatively small, only consisting of

six participant, the results must be viewed as an overview and it is difficult to draw

CHAPTER 6. ANALYSIS 49

any statistical conclusions from the results.

7 Conclusion

Chapter 1 discussed the reasons why this thesis was conducted and why the topic

of user interface improvement in collaboration with users was chosen. Chapter also

contained the research questions that the thesis wanted to find answers for. Finally,

the structure of the thesis was presented.

Chapter 2 briefly introduced user-centered design (UCD) and both the research

and evaluation methods used in the thesis. Focus groups and semi-structured inter-

views were used to collect both qualitative and quantitative data from the partici-

pants and Nielsen heuristics were used as a foundation to discover usability issues

when conducting the focus group and interviews.

Finally, the chapter briefly introduced the tools, guidelines and platforms that

were used in various parts of the thesis. Figma was utilized as the main design

and prototyping tool, whereas Microsoft Teams was used to conduct interviews and

focus groups remotely.

In Chapter 3 the technical aspects related to the development of the new sys-

tem were explored. The use of JavaScript, its superset TypeScript, and React was

justified. TypeScript and React were used due to their popularity in modern web

development, as well as their support for third party libraries that simplify the imple-

mentation of complex functionalities. Chapter 3 also discussed the use of Docker, a

container application allowing the deployment of applications virtually on any plat-

form. Finally, the chapter explained how Google Cloud Platform, Git and GitHub

7.1 ANSWERS TO RESEARCH QUESTIONS 51

can be used together with Docker to deploy the application to the cloud.

In Chapter 4 the current implementation was introduced briefly and the re-

search was done to discover the usability issues with the implementation. The six

participants were interviewed one-by-one in semi-structured interviews where the

participants were asked 10 questions related to the user interface. Based on these

interviews, a list of usability issues that were to be solved was formed. The par-

ticipants were also given a possibility to provide feature requests for features they

would like to see in the new implementation.

Chapter 5 went through the design and implementation processes, as well as

discussed how the usability issues discovered in Chapter 4 were solved.

Chapter 6 consisted of analysis of the results gathered from Chapter 4 and Chap-

ter 5. Both the System Usability Scale and time-on-task results were compared

between implementations and the end results were presented. The chapter also

discussed possible reasons why the results were not in some parts as expected.

7.1 Answers to research questions

Three research questions were addressed in the thesis:

RQ 1: How can the user interface be improved in collaboration with

current users?

Research question 1 was answered in Chapter 2, in which the semi-structured

interviews and focus groups were used as means to improve the user interface in

collaboration with users. Chapter 4 discussed how these methods were used to

gather the data needed and also how some of the feature requests had to be left

out. Chapter 5 explored how the users can be involved in the actual design process

through the means of prototyping.

Focus groups and semi-structured interviews turned out to be successful methods

7.1 ANSWERS TO RESEARCH QUESTIONS 52

to involve users in the process. The methods required no special skills or preparation

from the participants, were able to be conducted remotely and provided useful data

for improving the user interface. Focus groups helped to discover usability issues,

whereas the interviews provided more in-depth descriptions of the issues experienced.

Prototyping provided the necessary feedback early-on in the design process. The

feedback helped save time, as wireframes were relatively quick to design and present

to the participants. This approach ensured that layouts and features that the par-

ticipants disliked or did not need were filtered out before too much time was used

to design them further.

RQ 2: What are the metrics that can be used to assess the current and

the new implementation of the user interface?

Metrics chosen to assess the current and new implementation were the System

Usability Scale (SUS) and time-on-task that both provide quantitative data that is

suitable for analysis. SUS provided data about the perceived usability of the system,

whereas the time-on-task provided data about how quickly different tasks can be

performed on the system. The tasks were relatively simple and quick to complete,

which proved to make the analysis more difficult.

RQ 3: How can the end result of the improvement process be validated

using the metrics chosen?

For research question 3 it can be concluded that the improvement was validated

by the chosen metrics. Improvements in the SUS score indicate that the perceived

usability has risen drastically whereas improved time-on-task scores suggest that the

efficiency of performing tasks has increased. Therefore it can be determined that the

system was more usable after the new user interface was implemented and brought

into operation. The perceived usability score measured by SUS improved by 65%,

whereas with time-on-task a total completion time improvement of 9% was seen.

7.2 LIMITATIONS AND FUTURE RESEARCH 53

7.2 Limitations and future research

While the results needed were collected, the project’s scope and participant pool were

limited. One of the issues that emerged during the interview phase was scheduling

interviews with the participants, which proved to be a time-consuming process. For

instance, finding a suitable time for an interview took weeks or months from the

initial contact. Other limitations existed due to limited resources, such as time,

which meant not all user requests could be fulfilled.

The small sample size of six participants presents an opportunity for future

research to explore whether increasing the participant pool size would yield different

results or introduce new challenges not present in this thesis.

As of now the research was conducted with the participants having limited ex-

perience with the new implementation. Possible future research could be done to

see if the results change over time when the users familiarize the new user interface.

References

[1] What is User Centered Design? — updated 2023 — interaction-design.org,

https : / / www . interaction - design . org / literature / topics / user -

centered-design, [Accessed 11-12-2023].

[2] C. Wilson, Interview Techniques for UX Practitioners. Elsevier, 2014. doi:

10.1016/c2012-0-06209-6. [Online]. Available: https://doi.org/10.

1016/c2012-0-06209-6.

[3] 10 Usability Heuristics for User Interface Design — nngroup.com, https:

//www.nngroup.com/articles/ten-usability-heuristics/, [Accessed

21-09-2023].

[4] Heuristic Evaluations: How to Conduct — nngroup.com, https : / / www .

nngroup.com/articles/how- to- conduct- a- heuristic- evaluation/,

[Accessed 21-09-2023].

[5] B. Still and K. Crane, Fundamentals of User-Centered Design. CRC Press,

Aug. 2017. doi: 10.4324/9781315200927. [Online]. Available: https://doi.

org/10.4324/9781315200927.

[6] J. Brooke, “Sus: A quick and dirty usability scale”, Usability Eval. Ind., vol. 189,

Nov. 1995.

https://www.interaction-design.org/literature/topics/user-centered-design
https://www.interaction-design.org/literature/topics/user-centered-design
https://doi.org/10.1016/c2012-0-06209-6
https://doi.org/10.1016/c2012-0-06209-6
https://doi.org/10.1016/c2012-0-06209-6
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/
https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/
https://doi.org/10.4324/9781315200927
https://doi.org/10.4324/9781315200927
https://doi.org/10.4324/9781315200927

REFERENCES 55

[7] A. S. for Public Affairs, System Usability Scale (SUS) | Usability.gov — us-

ability.gov, https://www.usability.gov/how-to-and-tools/methods/

system-usability-scale.html, [Accessed 27-11-2023].

[8] P. Jeff Sauro, 5 Ways to Interpret a SUS Score &x2013; MeasuringU — mea-

suringu.com, https://measuringu.com/interpret-sus-score/, [Accessed

01-06-2024].

[9] T. Tullis and B. Albert, Measuring the user experience: Collecting, analyzing,

and presenting usability metrics. Elsevier/Morgan Kaufmann, 2013.

[10] Figma: The Collaborative Interface Design Tool — figma.com, figma.com,

[Accessed 12-11-2023].

[11] Video Conferencing, Meetings, Calling | Microsoft Teams — microsoft.com,

https://www.microsoft.com/en- us/microsoft- teams/group- chat-

software, [Accessed 12-11-2023].

[12] W. W. A. I. (WAI), WCAG 2 Overview — w3.org, https://www.w3.org/

WAI/standards-guidelines/wcag/, [Accessed 28-11-2023].

[13] WebAIM: Contrast Checker — webaim.org, https://webaim.org/resources/

contrastchecker/, [Accessed 28-11-2023].

[14] MUI: The React component library you always wanted — mui.com, https:

//mui.com/, [Accessed 01-12-2023].

[15] JavaScript | MDN — developer.mozilla.org, https://developer.mozilla.

org/en-US/docs/Web/JavaScript, [Accessed 12-12-2023].

[16] ECMAScript 2023 Language Specification — 262.ecma-international.org, https:

//262.ecma-international.org/14.0/, [Accessed 12-02-2024].

[17] Usage Statistics of JavaScript as Client-side Programming Language on Web-

sites, January 2024 — w3techs.com, https://w3techs.com/technologies/

details/cp-javascript, [Accessed 14-01-2024].

https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://measuringu.com/interpret-sus-score/
figma.com
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://webaim.org/resources/contrastchecker/
https://webaim.org/resources/contrastchecker/
https://mui.com/
https://mui.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://262.ecma-international.org/14.0/
https://262.ecma-international.org/14.0/
https://w3techs.com/technologies/details/cp-javascript
https://w3techs.com/technologies/details/cp-javascript

REFERENCES 56

[18] Stack Overflow Developer Survey 2023 — survey.stackoverflow.co, https://

survey.stackoverflow.co/2023, [Accessed 21-09-2023].

[19] React — react.dev, https://react.dev/, [Accessed 11-12-2023].

[20] GitHub - facebook/react: The library for web and native user interfaces. —

github.com, https://github.com/facebook/react/, [Accessed 12-02-2024].

[21] Docker documentation, docs.docker.com, [Accessed 3-1-2024].

[22] Cloud Computing Services | Google Cloud — cloud.google.com, cloud.google.

com, [Accessed 13-12-2023].

[23] GitHub: Let’s build from here — github.com, https://github.com/, [Accessed

05-03-2024].

[24] A. C. Aleman, M. Wang, and F. Schaeffel, “Reading and myopia: Contrast

polarity matters”, Scientific Reports, vol. 8, no. 1, Jul. 2018, issn: 2045-2322.

doi: 10.1038/s41598-018-28904-x. [Online]. Available: http://dx.doi.

org/10.1038/s41598-018-28904-x.

[25] Material Design — m2.material.io, https://m2.material.io/, [Accessed

01-12-2023].

https://survey.stackoverflow.co/2023
https://survey.stackoverflow.co/2023
https://react.dev/
https://github.com/facebook/react/
docs.docker.com
cloud.google.com
cloud.google.com
https://github.com/
https://doi.org/10.1038/s41598-018-28904-x
http://dx.doi.org/10.1038/s41598-018-28904-x
http://dx.doi.org/10.1038/s41598-018-28904-x
https://m2.material.io/

