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ABSTRACT

Multi-robot systems are increasingly essential across a wide array of sectors, such as
industrial automation, transportation, and search and rescue. The key to these sys-
tems lies in the capabilities of agents to collaboratively perceive, comprehend, and
reason about their surroundings, thereby attaining advanced situational awareness.
Recent advances in artificial intelligence, especially in the field of deep learning
(DL), have increased the ability of multi-robot systems to effectively utilize and un-
derstand data produced by various sensors. Despite numerous efforts to integrate
multiple sensors, this area remains complex and challenging due to heterogeneous,
unstructured, and cluttered deployment environments. Furthermore, these operat-
ing scenarios vary considerably across different settings, including hospitals, private
residences, ports, and other contexts where privacy and security prevail.

This dissertation addresses these challenges by integrating multi-modal sensors
to enhance high-level robot perception across multiple agents while ensuring security
and privacy through Federated Learning (FL). FL, a privacy-preserving DL method,
distributes learning across isolated data silos, enabling secure knowledge sharing
among robots via model transfers instead of direct data exchanges.

The research begins by investigating the limitations of existing multi-modal
sensor datasets and employing diverse sensors, including LiDAR (spinning and
solid-state LiDARs), visual sensors, Inertial Measurement Units (IMUs), and Ultra-
Wideband (UWB), to create more comprehensive datasets. After benchmarking
current state-of-the-art SLAM and LiDAR odometry (LO) algorithms, the study
develops novel multi-robot relative localization approaches as a foundation for other
perception tasks. It then explores using LiDAR-generated images and solid-state
LiDAR to enhance UAV tracking and LO. Finally, the effectiveness of FL is
demonstrated through a case study on multi-robot visual obstacle avoidance (VOA),
transitioning from simulation to real-world scenarios. By incorporating LiDAR and
cameras in real-world applications, the research achieves lifelong learning on VOA
within the FL framework. This case study highlights FL’s practical applications and
advantages, suggesting its potential generalizability across a broad range of robotic
perception tasks.

KEYWORDS: Multi-modal sensors, LiDAR, Solid-state LiDAR, LiDAR as a cam-
era, UWB, FL, Odometry, relative localization, UAV tracking, obstacle avoidance

iv



TURUN YLIOPISTO
Faculty of Technology
Department of Computing
Information and Communication Technology
YU, XIANJIA: Federated Learning Enhanced Multi-Modal Sensing and
Perception in a Collaborative Multi-Robot System
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TIIVISTELMÄ

Monirobottijärjestelmät ovat yhä tärkeämpiä monilla eri aloilla, kuten teollisuuden
automaatiossa, kuljetuksessa ja etsintä- ja pelastustehtävissä. Näiden järjestelmien
yhtenä mahdollistajana on niiden kyky havaita, ymmärtää ja selittää ympäristöään
saavuttaen näin kehittyneen tilannetietoisuuden. Tilannetietoisuuden parantumisessa
merkittävänä tekijänä on ollut viime aikojen edistysaskeleet tekoälyssä, erityisesti
syväoppimisessa, jotka ovat lisänneet monirobottijärjestelmien kykyä hyödyntää er-
ilaisten sensorien tuottamaa dataa. Edistysaskeleista huolimatta tämä alue on
säilynyt monimutkaisena ja haastavana heterogeenisten ja jäsentymättömien
käyttöympäristöjen vuoksi. Lisäksi toimintaskenaariot vaihtelevat huomattavasti eri
ympäristöissä, kuten sairaaloissa, satamissa ja muissa yksityisyyttä ja turvallisuutta
korostavissa paikoissa.

Tämä väitöskirja käsittelee näitä haasteita integroimalla multimodaalisia sensor-
eita parantaakseen moni-robottijärjestelmien kyvykkyyttä havainnoida ympäristöä.
Samalla varmistetaan turvallisuus ja yksityisyys hyödyntämällä yhdistettyä op-
pimista. Tutkimus keskittyy aluksi tunnistamaan olemassa olevien monimodaalisten
sensoridata-aineistojen rajoituksia ja hyödyntämään erilaisia sensoreita, kuten
laserkeilausta, visuaalisia sensoreita, inertiamittausta ja ultralaajakaistaa luodakseen
kattavampia data-aineistoja. Sen jälkeen, kun tämän hetken parhaimmat algoritmit
samanaikaiseen paikannukseen ja kartoitukseen sekä laserkeilainpohjaiseen matkan
mittaamiseen on arvioitu, tutkimuksessa kehitetään uusia robottiparven jäsenten suh-
teelliseen paikantamiseen liittyviä lähestymistapoja muiden havainnointitehtävien
perustaksi. Seuraavaksi tutkitaan erilaisten laserkeilaimien tuottamien kuvien
käyttöä droonien seuraamisessa ja niiden kulkeman matkan arvioimisessa. Lopuksi
yhdistetyn oppimisen tehokkuutta testataan siirtämällä simulaatioympäristössä to-
teutettu monirobottien visuaalinen esteiden välttämistehtävä oikeilla roboteilla
suoritettavaksi. Testissä hyödynnettiin sekä laserkeilausta että kameroita, joiden
avulla saavutettiin pitkänajan oppiminen visuaalisten esteiden välttämisessä yhdis-
tetyn oppimisen ympäristössä. Käytännössä suoritettu testi korostaa yhdistetyn
oppimisen käytettävyyttä ja hyödyllisyyttä käytännön sovelluksissa antaen viit-
teitä sen mahdolliseen yleistettävyyteen laajalle joukolle robottien havaintotehtäviä.

ASIASANAT: Monimodaaliset sensorit, laserkeilaus, kamerat, ultralaajakaista,
satelliittipaikannus, yhdistetty oppiminen

v



Acknowledgements

The completion of this doctoral research has been a long and challenging journey,
especially after spending several years in industry before returning to academia. As
I write these words, I am filled with a deep sense of gratitude, and I wish to take this
opportunity to thank all those who have supported me throughout this journey.

First and foremost, I would like to express my sincere gratitude to my supervisor
and friend, Prof. Tomi Westerlund, for his invaluable guidance and support, both in
my academic endeavors and personal life over the past years. I have known Tomi
since my master’s studies, and he has always treated us with kindness, offering his
assistance and advice whenever possible. I am also deeply thankful to Prof. Zhuo
Zou for his insightful discussions and for arranging my visit to Fudan University,
Shanghai, China. Additionally, I extend my appreciation to Prof. Jukka Heikkonen
for the enriching conversations we shared during the early stages of my research.

I would like to express my deepest gratitude to my wife, Yuki Takahashi, for
her unwavering support in both my personal life and academic pursuits. Without
her encouragement, this doctoral degree would likely remain a mere figment of my
imagination. Although I am certain she may never read this thesis, I hope that my
daughter, Yori, will one day inform her mother that I expressed my heartfelt thanks in
these pages. Yori, now two years old and 3 month old, has been a source of immense
joy, even as she occasionally distracts her father while writing this acknowledgment.
Nonetheless, I must say ”Kiitos” to her. I am also and always deeply appreciative
of my parents, Changjin Yu and Shangying Zhu, and sister, Qingxiu Yu for their
unconditional support throughout my life. I hope that we will always remain a close-
knit family and that they continue to live healthy and happy lives.

Moreover, I would like to express my sincere gratitude to my irreplaceable friend,
Jorge, who inspired me to start this doctoral journey and provided tremendous sup-
port throughout. His intelligence, creativity, and boundless energy have been a con-
stant source of inspiration. At the beginning of my doctoral studies, Jorge, Qingqing,
and I spent countless hours together conducting experiments and teaching. These
memories are ones I will cherish and proudly share with others. I also extend my
deepest thanks to Qingqing. Our academic paths have been closely intertwined since
our master’s studies, sharing the same thesis supervisor, the same former employer,
and the same doctoral supervisor and lab. I am grateful for all the support you have
provided.

vi



I would also like to acknowledge my primary co-authors and friends, Sahar
Salimpour, Hasier, Iacopo Catalano, and Haizhou Zhang, for their invaluable as-
sistance and the many productive discussions we had. Without their collaboration,
I would not have made it this far. My gratitude also extends to my friends Salma
Salimi, Morón Paola Torrico, Jiaqiang Zhang, Farhad Keramat, Lei, Qianqian, and
all others who have supported me throughout this journey. I will always treasure the
time we spent together.

Furthermore, I would like to extend my thanks to Markku Noroaho from Kap-
tas Oy. We’ve had many insightful conversations over the past year, and his help
has been invaluable. I would also like to thank all my colleagues at Kaptas Oy for
their kindness and support. I wish them all the best and look forward to us working
together to make Kaptas even better in the future.

Lastly, I would like to express my appreciation to the pre-examiners for their
valuable feedback. I also wish to thank the staff at the University of Turku Graduate
School, the Finnish Foundation for Technology Promotion (TES), and the Nokia
Foundation. Their support has been instrumental in the completion of this thesis.

Thank you all. A doctoral degree is the highest academic degree an individual
can attain. However, the pursuit of knowledge and research is an ongoing journey,
akin to an endless game; we cannot stop at this checkpoint. Let us continue to en-
courage and support each other in our future endeavors.

September 18, 2024
Xianjia Yu

XIANJIA YU
Xianjia Yu holds a M.Eng in Electronics Engineering from
Fudan University, Shanghai, China, and a MSc in Infor-
mation and Communication Technology from the Univer-
sity of Turku, Finland, both obtained in 2018. Since Jan-
uary 2021, Xianjia has been a doctoral researcher at the
Turku Intelligent and Embedded Robotic System (TIERS)
Lab, Department of Computing, University of Turku, Fin-
land. Previously, he worked as a senior robotic algorithm
engineer in Shanghai, China. His research interests in-
clude robotics, multi-modal sensing and perception, ma-
chine learning, and computer vision.

vii



Table of Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Original Publications . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problem Statements . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Significance and Contribution . . . . . . . . . . . . . . . . . . 7
1.4 Structure of the Dissertation . . . . . . . . . . . . . . . . . . 10

2 Research Background . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Multi-Modal Sensors in Robotics . . . . . . . . . . . . . . . . 12

2.1.1 3D LiDARs . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 UWB in Robotics . . . . . . . . . . . . . . . . . . . . 16

2.2 UWB-based Multi-Robot Relative Localization . . . . . . . . 22
2.2.1 UWB for Cooperative Positioning . . . . . . . . . . . 22
2.2.2 UWB Ranging Error Mitigation . . . . . . . . . . . . 23
2.2.3 LSTM Networks in UWB Positioning System . . . . 23

2.3 LiDAR based UAV Tracking . . . . . . . . . . . . . . . . . . . 23
2.3.1 UAV Tracking with LiDARs . . . . . . . . . . . . . . . 23
2.3.2 Applications of UAV Tracking . . . . . . . . . . . . . 24

2.4 LiDAR as a Camera . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Federated Learning in Robotics . . . . . . . . . . . . . . . . 26

2.5.1 Introduction to Federated Learning . . . . . . . . . . 26
2.5.2 Federated Learning in Robotics . . . . . . . . . . . . 29

3 Multi-Modal Sensor Datasets . . . . . . . . . . . . . . . . . . . . 32
3.1 Multi-Modal LiDAR Dataset . . . . . . . . . . . . . . . . . . . 32

3.1.1 System Overview . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Data Collection Setup . . . . . . . . . . . . . . . . . 38

viii



TABLE OF CONTENTS

3.1.3 Dataset Evaluation and Benchmarking . . . . . . . . 45
3.2 UAV Tracking Dataset with Multi-Modal LiDARs . . . . . . . 51

3.2.1 Provided Ground Truth . . . . . . . . . . . . . . . . . 52
3.2.2 Configuration of Hardware and Software . . . . . . . 52
3.2.3 Dataset Evaluation . . . . . . . . . . . . . . . . . . . 59

3.3 UWB Relative Localization Dataset . . . . . . . . . . . . . . 61
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.1 Multi-Modal LiDAR Dataset for General Purposes . 62
3.4.2 Dataset for Specific Applications . . . . . . . . . . . 62

4 UWB Based Multi-Robot Relative Localization . . . . . . . . 64
4.1 Cooperative Localization Between UAVs and UGVs . . . . . 64

4.1.1 Problem Definition . . . . . . . . . . . . . . . . . . . 65
4.1.2 Experimental Setup . . . . . . . . . . . . . . . . . . . 66
4.1.3 Cooperative Localization Results . . . . . . . . . . . 67

4.2 Particle Filter Based Fusion Approach . . . . . . . . . . . . . 71
4.2.1 Methodological Overview . . . . . . . . . . . . . . . 73
4.2.2 System and Experimental Design . . . . . . . . . . . 78
4.2.3 Relative Localization Performance Evaluation . . . . 82

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 LiDAR as a Camera . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.1 General Purpose Vision Based DL Model Evaluation on Li-

DAR generated Images . . . . . . . . . . . . . . . . . . . . . 88
5.1.1 Model Evaluation Readiness . . . . . . . . . . . . . 88
5.1.2 Model Evaluation Results . . . . . . . . . . . . . . . 92

5.2 Assisting Point Cloud Registration by Extracting Keypoints
from LiDAR Generated Images . . . . . . . . . . . . . . . . . 96
5.2.1 Overview of Keypoint Detector and Descriptor . . . 97
5.2.2 Evaluation Metrics for Keypoint Detectors and De-

scriptors . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.3 Keypoint Extractor Evaluation . . . . . . . . . . . . . 101
5.2.4 Keypoints Assisted Point Cloud Registration . . . . 103
5.2.5 Hardware and Software Information . . . . . . . . . 106
5.2.6 Evaluation Results . . . . . . . . . . . . . . . . . . . 106

5.3 LiDAR Generated Images Enhanced UAV Tracking . . . . . 114
5.3.1 Initialization of UAV Position . . . . . . . . . . . . . . 115
5.3.2 Fusion of LiDAR Generated Images and Point Cloud 115
5.3.3 Evaluation Setup . . . . . . . . . . . . . . . . . . . . 117
5.3.4 UAV Tracking Result Evaluation . . . . . . . . . . . . 119

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

ix



Xianjia Yu

6 UAV Tracking with a Solid-State LiDAR . . . . . . . . . . . . . 124
6.1 UAV Tracking Based on Adaptive Scan Integration . . . . . 125

6.1.1 Methodological Overview . . . . . . . . . . . . . . . 127
6.1.2 Experimental Setup . . . . . . . . . . . . . . . . . . . 130
6.1.3 UAV Tracking Results . . . . . . . . . . . . . . . . . . 132

6.2 UAV Tracking Based on Dynamic Multi-Frequency Scan In-
tegration using Kalman Filter . . . . . . . . . . . . . . . . . . 137
6.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . 138
6.2.2 Experimental Results . . . . . . . . . . . . . . . . . . 142

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7 Federated Learning Enhanced Visual Obstacle Avoidance
in a Multi-Robot System . . . . . . . . . . . . . . . . . . . . . . . 150

7.1 Federated Learning for Visual Obstacle Avoidance . . . . . 152
7.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . 152
7.1.2 Experimental Results . . . . . . . . . . . . . . . . . . 154

7.2 Federated Learning Based Lifelong Learning for Visual Ob-
stacle Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . 158
7.2.2 Experimental Results . . . . . . . . . . . . . . . . . . 160

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.3.1 Federated Learning Enhanced Visual Obstacle

Avoidance . . . . . . . . . . . . . . . . . . . . . . . . 164
7.3.2 LiDAR Assisted Federated Lifelong Learning for Vi-

sual Obstacle Avoidance . . . . . . . . . . . . . . . . 165

8 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 166
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

List of References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

x



Abbreviations

AUC Area Under the ROC Curve
APE Absolute Pose Error
ATE Absolute Trajectory Error
BA Bundle Adjustment
CNN Convolutional Neural Network
CT-ICP Continuous-Time Iterative Closest Point
CTRV Constant Turn Rate and Velocity
DL Deep Learning
DLTs Distributed Ledger Technologies
DoF Degrees of Freedom
DRL Deep Reinforcement Learning
EKF Extended Kalman Filter
EMG Electromyography
FL Federated Learning
FoV Field of View
GICP Generalized Iterative Closest Point
GNSS Global Navigation Satellite System
GPS Global Positioning System
ICI Inverse Covariance Intersection
ICP Iterative Closest Point
IIoT Industrial Internet of Things
IMU Inertial Measurement Unit
IoT Internet of Things
KD-Tree K Dimension Tree
KF Kalman Filter
KITTI Karlsruhe Institute of Technology and Toyota Technological Institute
LiDAR Light Detection and Ranging
LO LiDAR Odometry
LOAM LiDAR Odometry and Mapping
LSTM Long Short-Term Memory
MAV Micro Aerial Vehicle
MOCAP Motion Capture
MSE Mean Square Error

xi



Xianjia Yu

MUI Multi-User Interference
NDT Normal Distributions Transform
NLP Natural Language Processing
NLOS Non Line of Sight
NNS Nearest-Neighbor Search
PCL Point Cloud Library
PF Particle Filter
PTP Precision Timestamp Protocol
ROI Region of Interest
RL Reinforcement learning
RMSE Root Mean Square Error
RTK Real-Time Kinematic Position
ROC Receiver Operating Characteristic
ROS Robot Operating System
RUGD Robot Unstructured Ground Driving
SfM Structure from Motion
Sim2Real Sim-to-Real
SLAM Simultaneous Localization and Mapping
SVM Support Vector Machine
TDoA Time of Arrival
ToF Time of Flight
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
VIO Visual Inertial Odometry
UWB Ultra-Wideband
VO Visual Odometry
VSLAM Visual Simultaneous Localization and Mapping

xii



List of Original Publications

This dissertation is based on the following original publications, which are referred
to in the text by their Roman numerals:

I Yu Xianjia, Jorge Peña Queralta, Jukka Heikkonen, Tomi Westerlund. Fed-
erated learning in robotic and autonomous systems. Procedia Computer
Science, 2021; 191: 135-142.

II Yu Xianjia, Li Qingqing, Jorge Peña Queralta, Jukka Heikkonen, Tomi
Westerlund. Applications of uwb networks and positioning to autonomous
robots and industrial systems. Mediterranean Conference on Embedded
Computing (MECO), 2021.

III Yu Xianjia, Li Qingqing, Jorge Peña Queralta, Jukka Heikkonen, Tomi
Westerlund. Cooperative UWB-Based Localization for Outdoors Position-
ing and Navigation of UAVs aided by Ground Robots. IEEE International
Conference on Autonomous Systems (ICAS). IEEE.

IV Xianjia Yu, Jorge Peña Queralta, Tomi Westerlund. Towards lifelong fed-
erated learning in autonomous mobile robots with continuous sim-to-real
transfer. Procedia Computer Science. 2022;210:86-93.

V Xianjia Yu, Jorge Pena Queralta, Tomi Westerlund. Federated learning for
vision-based obstacle avoidance in the internet of robotic things. Interna-
tional Conference on Fog and Mobile Edge Computing (FMEC), 2022.

VI Xianjia Yu, Sahar Salimpour, Jorge Peña Queralta, Tomi Westerlund.
General-Purpose Deep Learning Detection and Segmentation Models for
Images from a Lidar-Based Camera Sensor. Sensors, 23(6), p.2936.

VII Xianjia Yu, Haizhou Zhang, Sier Ha, Tomi Westerlund. LiDAR-Generated
Images Derived Keypoints Assisted Point Cloud Registration Scheme in
Odometry Estimation. Remote Sensing. 2023 Oct 23;15(20):5074.

VIII Li Qingqing, Yu Xianjia, Jorge Peña Queralta, Tomi Westerlund. Multi-
modal lidar dataset for benchmarking general-purpose localization and
mapping algorithms. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) 2022 (pp. 3837-3844). IEEE.

xiii



Xianjia Yu

IX Li Qingqing, Yu Xianjia, Jorge Peña Queralta, Tomi Westerlund. Adap-
tive lidar scan frame integration: Tracking known mavs in 3d point clouds.
IEEE International Conference on Advanced Robotics (ICAR), 2021.

X Ha Sier, Xianjia Yu, Iacopo Catalano, Jorge Pena Queralta, Zhuo Zou,
Tomi Westerlund. Uav tracking with lidar as a camera sensor in gnss-denied
environments. International Conference on Localization and GNSS (ICL-
GNSS), 2023.

XI Ha Sier, Li Qingqing, Yu Xianjia, Jorge Peña Queralta, Zhuo Zou, Tomi
Westerlund. A benchmark for multi-modal lidar slam with ground truth in
gnss-denied environments. Remote Sensing, 2023;15(13):3314.

XII Iacopo Catalano, Xianjia Yu, Jorge Peña Queralta. Towards robust uav
tracking in gnss-denied environments: a multi-lidar multi-uav dataset. IEEE
International Conference on Robotics and Biomimetics (ROBIO), 2023.

XIII Iacopo Catalano, Ha Sier, Xianjia Yu, Tomi Westerlund, Jorge Peña Quer-
alta. Uav tracking with solid-state lidars: dynamic multi-frequency scan
integration. International Conference on Advanced Robotics (ICAR), 2023.

The following related publications are not directly included in this thesis:

I Queralta Jorge Pena, Farhad Keramat, Salma Salimi, Lei Fu, Xianjia Yu,
and Tomi Westerlund. Blockchain and emerging distributed ledger tech-
nologies for decentralized multi-robot systems. Current Robotics Reports
4, no. 3 (2023): 43-54.

II Morón Paola Torrico, Sahar Salimpour, Lei Fu, Xianjia Yu, Jorge Peña
Queralta, and Tomi Westerlund. Benchmarking UWB-based infrastructure-
free positioning and multi-robot relative localization: dataset and character-
ization. IEEE Sensors Applications Symposium (SAS), 2023.

III Salimpour Sahar, Paola Torrico Morón, Xianjia Yu, Tomi Westerlund, and
Jorge Peña-Queralta. Exploiting redundancy for UWB anomaly detection
in infrastructure-free multi-robot relative localization. Frontiers in Robotics
and AI, 2023.

IV Zhang Jiaqiang, Farhad Keramat, Xianjia Yu, Daniel Montero Hernández,
Jorge Peña Queralta, and Tomi Westerlund. Distributed robotic systems in
the edge-cloud continuum with ros 2: A review on novel architectures and
technology readiness. International Conference on Fog and Mobile Edge
Computing (FMEC), 2022.

The original publications have been reproduced with the permission of the copyright
holders.

xiv



1 Introduction

In recent years, the integration of robotic technology has expanded beyond tradi-
tional manufacturing and industrial applications, penetrating a variety of sectors such
as research, search and rescue operations, healthcare, agriculture, and logistics, and
among others. This diversification in application areas underscores not only the ad-
vancements of robots but also highlights the growing dependency of various fields
on automated systems for efficiency, precision, and safety. The actual applications
of multiple agents in different scenarios require comprehensive understanding of the
surroundings which are typically sophisticated and harsh at times. A single sensor
modality cannot adequately address all scenarios due to either the complexity of the
environment or the inherent limitations of the sensor. Despite the recent progress
from related aspects including computation power, novel algorithms, Deep Learning
(DL) methods, and multi-modal sensors. This topic is challenging yet popular.

The advancements in multi-modal sensors have provided researchers with en-
hanced opportunities to develop more sophisticated algorithms, enabling robots to
perform tasks with increased efficiency and precision. Key sensors, including Light
Detection and Ranging (LiDAR), visual sensors, and Inertial Measurement Units
(IMU), are fundamental for perception tasks such as localization, mapping, and
tracking. Among these, LiDAR has become an essential component of many au-
tonomous systems, from state-of-the-art self-driving stacks [1] to aerial robots [2].
LiDAR odometry (LO), localization and mapping algorithms find applications in ar-
eas such as autonomous driving vehicles [3], Unmanned Aerial Vehicles (UAV) [4],
and forest survey [5]. Key factors motivating the adoption of LiDARs in such sys-
tems include their long-range, accurate detection ability in 3D and robust perfor-
mance in a variety of scenarios and environmental conditions. High-resolution multi-
beam spinning LiDARs have enabled high degrees of situational awareness in mobile
robotic solutions. However, the larger number of vertical channels in a mechanically
spinning LiDAR has meant until recently a cost too high for wide adoption in mobile
platforms. While costs have significantly reduced in recent years as the technology
matured, solid-state LiDARs capable of generating high-density point clouds have
emerged as an alternative. With a closer resemblance to visual sensors with limited
field of view (FoV) and dense scene scanning, solid-state LiDARs offer high per-
formance and relatively lower cost [6; 7]. These sensors also offer non-repetitive
scanning patterns allowing for higher resolution outputs than spinning LiDARs [8].
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(a) (b) (c) (d) (e)

Figure 1: The UAV point cloud data, obtained from solid-state LiDARs with varying
integration times at the distance around 10 m, is presented. The point clouds depicted
correspond to the UAV in Figure 1e during flight. Specifically, Figures 1a, 1b, 1c,
and 1d illustrate the point clouds generated with integration times of 0.03 s, 0.05 s,
0.1 s, and 0.2 s, respectively. The color of the points is the intensities projected using
a rainbow color palette.

However, the current body of research and existing datasets exhibit a notable
deficiency in data derived from solid-state LiDARs. Furthermore, the studies specif-
ically addressing solid-state LiDARs remain limited in scope. These LiDARs often
present limited FoV, due to the absence of mechanical rotation and the use of various
scanning modalities. Additionally, in contrast to spinning LiDARs, non-repetitive
scanning patterns have emerged across different products, alongside variations in
patterns even when they are repetitive. Figure 63a on page 126 shows the different
point cloud integration times in a non-repetitive solid-state LiDAR scanning device.
The restricted FoV, coupled with diverse scan patterns, introduces substantial differ-
ences for many standard LO, localization, mapping, and tracking algorithms. If ex-
isting algorithms can be adapted to better support these new types of LiDAR sensors,
solid-state LiDARs have the potential to significantly enhance perception pipelines,
including object detection and tracking, as well as scene understanding in various
scenarios. Figure 1 shows the point cloud of an UAV with different integration time
at the distance around 10 m. In comparison to the point cloud generated by a spin-
ning LiDAR for the same type of UAV, as depicted in Figure 59 on page 119, the
resulting point cloud exhibits significantly higher density. The detailed information
about this data sequence can be found in Figure 23 on page 58.

We see particular potential in tasks in unstructured environments where geomet-
ric features are often too few and sparse compared to urban structured environment.
While there are a large number of LiDAR datasets recorded with spinning LiDAR in
diverse environments, there is a lack of multi-modal datasets enabling further adop-
tion and understanding of different types of LiDARs and data processing algorithms.

As LiDARs measure the time of flight of a laser signal to objects in the envi-
ronment, they are not influenced by changes in light such as darkness and daylight.
Nowadays, apart from point cloud, LiDARs can obtain low-resolution images with
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(a) Outdoors (RGB) (b) Outdoors (LiDAR)

(c) Indoors (LiDAR) (d) Indoors (RGB)

Figure 2: Samples of images utilized in this work. The outdoors sample includes a
bicycle that is seen in both the RGB and LiDAR data, as well as several cars. In both
indoors and outdoors images, a person behind the sensors does appear in the 360°
LiDAR image but not in the RGB frame.

360° horizontal FoV by encoding either depth, reflectivity, or near-infrared light in
the image pixels referred to LiDAR as a camera. Compared to conventional images
from vision sensors, these images are more robust in harsh environments, including
varying light conditions, rain, and fog. A sample of the data used in this disserta-
tion is shown in Figure 2. Over the last decade, robotic perception algorithms have
significantly benefited from the rapid advances in DL. Indeed, a significant amount
of the autonomy stack of different commercial and research platforms relies on DL
for situational awareness, especially vision sensors. In several studies, LiDAR point
cloud data and image data from vision sensors have been used together in a variety
of computer vision tasks, such as 3D object detection [9; 10]. However, the potential
of general-purpose DL perception algorithms, specifically detection and segmenta-
tion neural networks, for processing image-like outputs of advanced LiDAR sensors
is not fully explored. Only recently, such potential has been identified [11], but the
existing literature lacks a more in-depth analysis of the potential of images captured
from LiDAR sensors. We refer the reader to existing dataset papers with this type
of data for a more in-depth characterization of the different types of images that the
Ouster LiDARs can generate [12].

In addition to LiDAR as the primary sensor for sensing and perception, UWB
technology, when fused with other sensors such as stereo cameras, has been em-
ployed for multi-robot relative localization. This integration lays the groundwork for

3



Xianjia Yu

other perception tasks explored in this dissertation. Since UWB ranging sensors offer
low-cost and centimeter-level out-of-the-box accuracy, they have gradually gained
attention in autonomous systems applications, including UWB-based state estima-
tion with and without fixed infrastructure, and UWB mesh sensor networks [13; 14].
This technology holds significant potential for relative state estimation in multi-robot
systems [15; 16], a crucial yet still challenging research topic in GNSS-degraded
environments and outdoors [17; 18]. Moreover, it can serve as the basis for collab-
orative tasks such as search and rescue, and terrain inspection [19], or extended to
transitions of multi-robot systems between indoor and outdoor scenarios [20].

As a computation-consuming and data-driven approach, DL in robotics faces
significant bottlenecks, particularly in scenarios involving low-cost robots and data-
sensitive environments. In such cases, the collaborative performance of tasks by
multiple robots and the sharing of knowledge, specifically DL models, becomes cru-
cial. However, the deployment environments for these robots often include privacy-
sensitive locations such as hospitals, private residences, and ports. With the expo-
nential increase in the number of connected devices within the Internet of Things
(IoT), the volume of generated and transmitted data has surged dramatically. The
inefficiency of processing all this data centrally in the cloud has led to the emergence
of new computing and networking paradigms in recent years [21]. Edge computing,
which processes data close to the sources, offers clear benefits in terms of latency
reduction and bandwidth savings [22]. Additionally, it enhances data privacy by en-
suring that raw data does not travel far [23]. Meanwhile, data is being integrated
into increasingly complex AI models, with DL becoming ubiquitous across multiple
fields and application domains.

There has also been a growing awareness of the risks and drawbacks associated
with sharing personal data over the internet. Federated Learning (FL) offers a so-
lution to the challenge of distributed computing at the edge while preserving data
privacy and leveraging DL solutions [24]. FL enables the distributed training of
complex models across isolated data sources from remote nodes. The local training
results, or updates to local models, are aggregated, for example, on a cloud server,
and a global generalized model is shared back to the nodes. This process occurs
without any raw data transmission [25].

FL provides a framework for more efficient learning in distributed autonomous
systems and multi-robot systems. It enables collaborative learning across heteroge-
neous cloud and edge nodes, encompassing a wide range of robotic and autonomous
systems. Figure 3 illustrates the conceptual framework of FL-enabled lifelong learn-
ing with sim-to-real (Sim2Real) transfer as proposed in this dissertation. Although
cloud robotics can enhance scalability, collaborative knowledge sharing, and the de-
velopment and operation of robotics and autonomous systems, challenges persist,
particularly in areas such as security and reliable connectivity.
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Figure 3: Conceptual illustration of federated lifelong learning with sim-to-real trans-
fer as a deep learning-based perception model is trained in both a simulation and real
robots, with potentially continuous updates.

1.1 Problem Statements
This thesis endeavors to investigate various challenges in the domain of robot per-
ception within the framework of multi-robot systems. These challenges include the
fusion strategy of sensors, the collaboration of multiple robots for the purpose of
robotic perception, and the development of an overall framework for the understand-
ing of situated environment across multiple robots while ensuring data privacy. These
challenges, from different aspects, are outlined as follows:

• Sensor Integration and Environmental Comprehension
How can diverse sensor technologies, such as LiDARs, visual sensors, UWB
and IMUs, be effectively leveraged and integrated to enable robots to accu-
rately perceive and navigate complex environments?

• Efficiency in Collaborative Robotics
How can the efficiency of collaborative robotic systems be optimized to ensure
synchronized task execution, seamless information exchange, and minimal op-
erational redundancies among multiple robots?

• Secure and Privacy-Preserving Knowledge Sharing
In the context of shared data environments, how can FL be effectively inte-
grated into robotic systems without affect the quality of robotic perception
tasks to enhance collaborative learning while ensuring data security and pri-
vacy?
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Figure 4: The conceptual diagram of this dissertation illustrates the integration of var-
ious robot platforms and sensors employed in the research under Federated Learning
framework for various perception tasks. All the robot platforms and sensors depicted
are those utilized in this dissertation.

The resolution of these itemized problems is essential for advancing the capabili-
ties of autonomous robotic systems, enabling them to operate with greater autonomy,
efficiency, and safety in a variety of settings.

1.2 Objectives
The research goals presented here involve not only practical engineering applications
but also theoretical research into the possibilities and limitations of multi-model sens-
ing and perception for a collaborative multi-robot system.

A conceptual overview is shown in Figure 4 while more detailed tasks and there
relations explained in Figure 5. It is worth noting the robot platforms, sensors, and
perception task are all involved in the real-world research in this thesis. Additionally,
the majority of the experiments conducted in this dissertation were performed with
real robots in real-world environments.

The study we propose effectively addresses:

• Design and development of a collaborative and distributed robot sensing
and perception framework
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The design and development of a framework for FL in a collaborative multi-
robot system. The framework should work for heterogeneous sensors and
robots in various scenarios. In particular, we will incorporate techniques from
the edge computing domain for long-term online FL at the edge.

• The exploration and fusion of multi-modal sensing technologies
The ability to accommodate not only visual sensors but also deal with multi-
modal sensor fusion including LiDARs, UWB, IMUs, and other sensors for
high level robot perception or situational awareness.

• The application of the framework mentioned above for DL-based multi-
modal perception in multi-robot systems
Towards this end, we will not only combine the state of the art in these two
fields but also focus our research efforts on the optimization of the knowledge-
sharing framework for single- and multi-robot systems. And, finally,

• Deployment in real-world robots
The development and deployment of techniques for securing communication
and providing efficient distributed computation toward real-robot deployments
of certain robotic perception applications.

Figure 5: Real world research tasks (light blue box) within different aspects (light
green box with dash lines) using various sensors (green box) covered in this disserta-
tion.

1.3 Significance and Contribution
To address the issues mentioned, this dissertation encompasses various research as-
pects, illustrated in Figure 5, in a comprehensive manner. Initially, we present a
multi-modal dataset collected and SLAM benchmarking for diverse purposes. Sub-
sequently, we conduct research studies on both the dataset and real-world deploy-
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ment scenarios. As a foundation for other robotic perception tasks, we first explore
UWB-based, low-cost relative localization approaches that integrate with other sen-
sors. Following this, we employ LiDAR as a camera and utilize solid-state LiDAR
for UAV tracking and localization. Finally, we demonstrate the application of FL
in visual obstacle avoidance, exemplifying the effectiveness of privacy-preserving
learning among multiple robots.

The primary contributions of this dissertation can be summarized as follows,
with detailed descriptions provided in the corresponding chapters and sections as
indicated:

1. Multi-modal sensor datasets accompanied by benchmarks of contemporary
state-of-the-art methodologies as a reference for the research community, as
well as our independent study. The datasets collected in this dissertation in-
clude multi-modal LiDAR dataset, LiDAR based UAV tracking dataset, and
UWB based multi-robot localization dataset. (in Chapter 3 on page 32)

(a) The multi-modal LiDAR dataset includes various types of LiDARs, such
as spinning LiDARs, solid-state LiDARs, and LiDAR cameras. The data
collection occurred in various scenarios, with ground truth provided for
all sequences. Benchmarks of state-of-the-art SLAM algorithms com-
pare odometry accuracy, memory usage, and computational resources.
(in Section 3.1 on page 32)

(b) The LiDAR UAV tracking dataset includes LiDAR data from different
types of UAVs using different types of LiDARs including a spinning Li-
DAR, two different solid-state LiDARs, and a RGB-D camera. (in Sec-
tion 3.2 on page 51)

(c) The UWB dataset is designed for infrastructure-free multi-robot relative
localization. This dataset includes data from four moving robots, each
equipped with a UWB transceiver. In addition to UWB sensor data,
the dataset provides odometry data and MOCAP data to serve as ground
truth. (in Section 3.3 on page 61)

2. UWB based infrastructure-free multi-robot relative localization. (in Chapter 4
on page 64)

(a) Evaluating how UWB-based relative localization can improve the posi-
tioning of UAVs when supported by ground robots comparing the accu-
racy of the GNSS, UWB, and VIO approach to localization with field
tests in an urban environment. (in Section 4.1 on page 64)

(b) A novel and computationally efficient particle filter-based relative local-
ization method fusing odometry, cooperative spatial detection informa-
tion from stereo cameras, and ranging measurements, effective even with
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only a single range input from UWB. The demonstration of a practical
multi-robot deployment utilizing ROS2 and Zenoh, a zero overhead net-
work protocol. The seamless integration of Zenoh addresses challenges
associated with data flooding in the network, ensuring efficient commu-
nication even with numerous robots. ( in Section 4.2 on page 71)

3. Leveraging LiDAR generated images (LiDAR as a camera) for diverse robotic
perception applications. (in Chapter 5 on page 87)

(a) The analysis of the performance of various DL-based visual perception
models on LiDAR-generated image data is conducted. We assess the
viability of applying object detection and instance segmentation models
to low-resolution, 360° images. ( in Section 5.1 on page 88)

(b) Keypoint detectors and descriptor based on LiDAR generated images for
the purpose of improving point cloud matching with LiDAR odometry.
This research investigates the effectiveness of existing keypoint detectors
and descriptors on LiDAR-generated images using various specialized
metrics for quantitative evaluation. Based on the above evaluation, this
work proposes a novel approach that leverages detected keypoints and
their neighbors to downsample and extract a reliable point cloud, aimed
at improving point cloud registration while reducing computational over-
head and minimizing deficiencies in valuable point acquisition. (in Sec-
tion 5.2 on page 96)

(c) A UAV tracking approach based on the integration of images and 3D
point clouds generated by a LiDAR. The UAV can be detected in Li-
DAR generated images instead of manually giving its initial position as
it is needed in other point-cloud-only approaches. (in Section 5.3 on
page 114)

4. Solid-state LiDAR based UAV tracking. (in Chapter 6 on page 124)
We introduce a novel adaptive LiDAR scan integration method to enhance ob-
ject recognition and tracking accuracy from 3D point clouds, specifically for
UAV tracking. This includes a multi-modal tracking system that processes
point clouds with varying integration times for improved accuracy and persis-
tent tracking. Additionally, the method features an algorithm that dynamically
adjusts the LiDAR frame integration time based on UAV speed and distance,
integrating consecutive scans in a sliding window manner. A dual tracking
approach employing a Kalman filter variant combines the two scan integration
frequencies into a single state estimation using inverse covariance intersection.
The tracking performance is evaluated using ground truth data from a motion
capture system.
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5. FL enhanced visual obstacle avoidance as an example showing how FL can
keep the efficiency of robotic perceptions while ensuring the data privacy. (in
Chapter 7 on page 150)

(a) A review to provide a comprehensive view of how FL can be leveraged to
raise the level of autonomy and degree of intelligence of robotic systems.

(b) The design, implementation, deployment, and evaluation of a vision-
based DL approach to obstacle avoidance in mobile robots within hetero-
geneous simulated and real scenarios, utilizing highly photorealistic and
physically accurate virtual environments to study sim-to-real (Sim2Real)
transfer. This includes investigating federated and continuous learning
within hybrid teams of simulated and real robotic agents. Two deep
obstacle avoidance neural networks were evaluated with synthetic and
real-world data, comparing FL-based knowledge sharing to centralized
training. Results indicate that FL methods outperform centralized data
aggregation methods, with validations conducted in both simulated and
real-world environments.

(c) We integrate LiDAR-based navigation for automated labelled data gath-
ering. We implemented an online FL-based visual obstacle avoidance
system both in a simulator and real-world environment. With such a sys-
tem, we can continuously collect data from obstacles and free paths and
train the model while the robots operate other tasks.

1.4 Structure of the Dissertation
This dissertation is organized as follows.

• Chapter 2 reviews the advancements in multi-modal sensors and their applica-
tions in robotics and autonomous systems. Additionally, this chapter explores
the integration of FL in these domains.

• Chapter 3 details the collection of the multi-modal dataset, highlighting its
novel aspects with benchmarks included.

• Chapter 4 focuses on UWB based infrastructure-free multi-robot relative lo-
calization, paving the way for the other perception tasks.

• Chapter 5 explores the possibility of applying computer vison DL models
within LiDAR as a camera technology and utilize this for the purpose of Li-
DAR odometry and UAV tracking.

• Chapter 6 introduces the novel UAV tracking algorithm leveraging the unique
feature of solid-state LiDARs by dynamic integration of LiDAR scans.
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Table 1: Sections Corresponding to the List of Original Publications

Chapter Section The number in List of Original Publication

Chapter 2
Section 2.1.2 II
Section 2.5 I
Section 3.1 VIII

Chapter 3 Section 3.2 XII
Section 3.3 -

Chapter 4
Section 4.1 III
Section 4.2 -
Section 5.1 VI

Chapter 5 Section 5.2 VII
Section 5.3 X

Chapter 6
Section 6.1 IX
Section 6.2 XIII
Section 7.1 V

Chapter 7
Section 7.2 IV

• Chapter 7 discusses the application of FL for visual obstacle avoidance in mul-
tiple robots, demonstrating FL as a framework for knowledge sharing among
robotic systems.

• Chapter 8 concludes the dissertation and outlines the future work.

The work presented here integrates multiple original publications, each con-
tributing to different aspects of the overarching research theme. These publications
are essential components of the thesis and are referenced throughout the document.
The chapters corresponding to these publications are presented in Table 1.
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2 Research Background

This chapter explores the fundamental aspects and recent development of multi-
modal sensor technologies and FL, which form the foundation of this dissertation. It
provides a critical analysis of existing related research, evaluating the progress in the
field while also identifying existing research gaps and opportunities.

Apart from benchmarking existing SLAM and LO technologies, this disserta-
tion also explores UWB-based multi-robot relative localization. We introduce the
role of UWB in the recent robotics field, focusing specifically on its application
in multi-robot localization. Following this, we discuss UAV tracking using LiDAR
technology and review the current state of research on the use of LiDAR as a camera.
Finally, we examine the application of FL in robotics.

2.1 Multi-Modal Sensors in Robotics
2.1.1 3D LiDARs

Recent Advancement of LiDARs

The advancement of LiDAR technology has revolutionized various industries by pro-
viding high-resolution, accurate, and real-time data about the environment. Initially
used in atmospheric studies, LiDAR has expanded its applications to autonomous ve-
hicles, topographic mapping, forestry, and urban planning. The latest developments
in LiDAR technology have led to significant improvements in range, resolution, and
data processing speed. Modern LiDAR systems can generate millions of data points
per second, offering detailed three-dimensional models of terrains and structures.
Integration with AI and ML algorithms has further enhanced the capabilities of Li-
DAR, enabling more efficient data analysis and decision-making processes. This
rapid evolution of LiDAR technology continues to open new frontiers in research,
environmental monitoring, and smart city development, making it an indispensable
tool in the advancement of science and industry.

High-resolution multi-beam spinning LiDARs have enabled high degrees of situ-
ational awareness in mobile robotic solutions. However, the larger number of vertical
channels in a mechanically spinning LiDAR has meant until recently a cost too high
for wide adoption in mobile platforms. While costs have significantly reduced in
recent years as the technology matured, solid-state LiDARs capable of generating
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high-density point clouds have emerged as an alternative. With a closer resemblance
to visual sensors with limited FoV and dense scene scanning, solid-state LiDARs
offer high performance and relatively lower cost [6; 7]. These sensors also offer non-
repetitive scanning patterns allowing for higher resolution outputs than spinning Li-
DARs [8]. Despite these benefits, their unique features challenge traditional LiDAR-
based odometry, localization and mapping methods owing to the limited FoV, the ir-
regular scanning patterns, the non-repetitive sensing and the need for different tech-
niques to overcome motion-induced distortions. If the existing algorithms can be
adapted to better support new types of LiDAR sensors, solid-state LiDAR have the
potential to significantly benefit perception pipelines including object detection and
tracking and scene understanding in different scenarios. We see particular potential
in tasks in unstructured environments where geometric features are often too few and
sparse compared to urban structured environment. While there are a large number of
LiDAR datasets recorded with spinning LiDAR in diverse environments, there is a
lack of multi-modal datasets enabling further adoption and understanding of different
types of LiDARs and data processing algorithms.

Existing Datasets

Datasets showcasing 3D LiDAR data and enabling benchmarking of approaches have
had a significant impact within the research efforts in robust LiDAR odometry, lo-
calization and mapping algorithms. They have been particularly impactful within
self-driving. One of the pioneers and perhaps the most significant dataset to date
is arguably the KITTI benchmark [26]. The KITTI dataset includes a 64-beam 3D
laser scanner, four gray-scale and color cameras, and a GPS/IMU navigation sys-
tem within a single data-gathering platform. The KITTI benchmark has become an
essential tool to evaluate the performance of algorithms in multiple tasks such as
odometry, SLAM, object detection, or tracking, among others, in both academia and
industry. Several similar datasets have also been published with a system composed
of multiple cameras and spinning LiDARs, providing images and the correspond-
ing point clouds in urban environment. Some relevant examples include the Oxford
Robocar dataset [27], nuScences [28], or the EU long-term dataset [29]. Multiple
spinning LiDARs are often employed in these data collecting platform, albeit mostly
sharing the same sensing modality or technology.

In addition to the myriad of datasets captured in urban road environments and
focused towards research in autonomous driving, the literature also showcases efforts
in off-road environments. For example, the NCLT dataset provides a large-scale
indoor and outdoor dataset with multi-modal sensors, including spinning LiDARs,
cameras and IMU attached on a wheeled robot [30]. In another work, a handheld
device comprised of one spinning LiDAR and depth camera was utilized to collect
data from urban outdoor and vegetated environments [31]. With a larger variety of

13



Xianjia Yu

environments. a multi-sensor SLAM benchmark has been presented in [32], with
data captured in both indoor and outdoor environments. In relation to these works,
we provide a wider variety of sensor data as well as more accurate ground truth in a
selection of sequences.

There is also a number of datasets available in unstructured environments. For
instance, the Robot Unstructured Ground Driving (RUGD) dataset captured from
a small, unmanned mobile robot traversing in unstructured environments has been
introduced in [33]. The RUGD dataset contains different terrain types focusing on
visual perception tasks like semantic segmentation. Several similar datasets in un-
structured environments have been presented for tasks such as scene depth predic-
tion [34], terrain roughness understanding [35], off-road pedestrian detection [36].
Compared to these datasets, we provide MOCAP-based ground truth in a forest en-
vironment, while also including a wider variety of sensors.

In general, the number of publicly available datasets with solid-state LiDAR data
is scarce. Among them, the PandaSet collects driving scenarios in urban environ-
ments with data from a forward-facing solid-state LiDAR and a 64-channels spin-
ning LiDAR [37]. Additionally, Lin et al. presented an outdoor and indoor dataset
with a solid-state LiDAR in college environment to test a novel LiDAR odometry
and mapping (LOAM) algorithm tailored to solid-state LiDAR sensors [6]. In the
presented dataset, we provide a significantly higher number of sensors as well as
ground truth both indoors and outdoors.

3D LiDAR SLAM

The primary types of 3D LiDAR SLAM algorithms today are LiDAR-only [38],
and loosely-coupled [39] or tightly-coupled [40] with IMU data. Tightly-coupled
approaches integrate the LiDAR and IMU data at an early stage, in opposition to
SLAM methods that loosely fuse the LiDAR and IMU outputs towards the end of
their respective processing pipelines.

In terms of LiDAR-only methods, an early work by Zhang et al. on LOAM intro-
duced a method that can achieve low-drift and low-computational complexity already
in 2014 [41]. Since then, there have been multiple variations of LOAM that enhance
its performance. By incorporating a ground point segmentation and a loop closure
module, LeGO-LOAM is more lightweight with the same accuracy but improved
computational expense and lower long-term drift [42]. However, LiDAR-only ap-
proaches are mainly limited by high susceptibility to featureless landscapes [43; 44].
By incorporating IMU data into the state estimation pipeline, SLAM systems natu-
rally become more precise and flexible.

In LIOM [40], the authors proposed a novel tightly-coupled approach with
LiDAR-IMU fusion based on graph optimization which outperformed the state-of-
the-art LiDAR-only and loosely coupled methods. Owing to the better performance
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of tightly-coupled approaches, subsequent studies have focused on this direc-
tion. Another practical tightly-coupled method is Fast-LIO [45], which provides
computational efficiency and robustness by fusing the feature points with IMU
data through an iterated extended Kalman filter. By extending FAST-LIO, FAST-
LIO2 [46] integrated a dynamic structure ikd-tree to the system that allows for the
incremental map update at every step, addressing computational scalability issues
while inheriting the tightly-coupled fusion framework from FAST-LIO. Among the
rest of the tightly-coupled frameworks, LIO-SAM [47] stands out by smoothing and
mapping, i.e. de-skews point clouds by IMU and sub-match at a local scale instead
of global scale.

The vast majority of these algorithms function well with spinning LiDARs.
Nonetheless, new approaches are in demand since new sensors such as solid-state
Livox LiDARs have emerged novel sensing modalities, smaller FoVs and irregular
samplings have emerged [48]. Multiple existing studies using enhanced SLAM
algorithms are being researched to fit these new LiDAR characteristics. Loam
livox [49] is a robust and real-time LOAM algorithm for these types of LiDARs.
LiLi-OM [50] is another tightly-coupled method that jointly minimizes the cost
derived from LiDAR and IMU measurements for both solid-state LiDARs and
conventional LiDARs.

It is worth mentioning that there are other studies addressing LiDAR odometry
and mapping by fusing not only IMU but also visual information or other ranging
data for more robust and accurate state estimation [51; 52].

SLAM with solid-state LiDAR

One of the key limitations of LiDAR technology preventing more widespread adop-
tion for localization and mapping in mobile robots is the high cost of the sensors,
specially compared to vision sensors. However, with lower-cost models becoming
available, mainly solid-state LiDARs, multiple research efforts have been directed
towards optimizing existing algorithms for the new sensing modalities and scanning
patterns.

A robust, real-time LOAM algorithm for solid-state LiDAR with small FoV and
irregular samplings has been presented in [6] to address several fundamental chal-
lenges arising from solid-state LiDARs. In another work, Lin et al. proposed a
decentralized framework for SLAM tasks with multiple solid-state LiDARs to in-
crease the FoV and improve overall system robustness [53]. Inspired by local Bundle
Adjustment (BA) techniques utilized in visual SLAM, a BA approach with an adap-
tive voxelization method to search feature correspondence and solve the problem of
sparse features points in three-dimensional LiDAR data was presented in [54]. More
recent works have also worked towards improving LiDAR-based SLAM system ro-
bustness, with tightly-coupled LiDAR-inertial odometry and mapping schemes for
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both solid-state and mechanical LiDARs presented in [7; 55]. Additionally, a camera
and solid-state LiDAR fusion SLAM framework have also been proposed in [56].

In summary, the current research in the adaptation and tuning of algorithms for
new LiDAR sensors lacks the support of a dataset for benchmarking and compar-
ing the different approaches. Moreover, the lack of a truly heterogeneous and multi-
modal dataset with various types of LiDAR sensors is preventing further comparisons
between the methods to advance towards general-purpose LiDAR-based SLAM al-
gorithms. To bridge these gaps, we focus on providing a dataset that can serve as an
initial benchmark for odometry, localization and mapping in diverse environments
and with different types of LiDAR sensors. We also hope that this dataset will fur-
ther motivate research in the fusion of LiDAR data from different types of sensors.

SLAM benchmarks

There are various multi-sensor datasets available online. We had a systematic com-
parison of the popular datasets in our prior work [48]. Among these datasets, not all
of them have an analytical benchmark of 3D LiDAR SLAM based on multi-modality
LiDARs. KITTI benchmark [26] is the most significant one with capabilities of eval-
uating several tasks including, for example, odometry, SLAM, object detection, and
tracking.

2.1.2 UWB in Robotics

Location data is essential in multiple types of autonomous systems, whether it is from
an operational perspective (i.e., to enable mobility) or from the point of view of data
gathering (i.e., for aggregating data from multiple and/or mobile sources). Specifi-
cally, within the robotics domain, accurate localization methods are instrumental for
autonomous robots operating in GNSS-denied environments [57]. At the same time,
with the rapid development and adoption of wireless technologies in the Industrial
IoT (IIoT), high-precision location services are in increasing need [58]. Ultimately,
simultaneous high-bandwidth wireless data transmission and localization (situated
communication) can accelerate the adoption and ubiquity of distributed autonomous
systems [59; 60].

Wireless ranging technologies have significant benefits as a localization system
solution owing to their higher degree of independence to environmental conditions
when compared to, e.g., visual sensors [61]. Among these, ultra-wideband (UWB)
wireless technology can provide significantly higher ranging accuracy than Wi-Fi or
Bluetooth, among other active radio solutions [62; 63]. Multipath resilience and time
resolution are additional advantages [64]. Moreover, state-of-the-art UWB-based
positioning systems can achieve, out-of-the-box, localization accuracy and stability
levels sufficient for the operation of complex autonomous robots such as micro-aerial
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UGV Transceivers

UAV Transceivers

UWB Ranging

UWB Anchors (fixed)

UWB Tags (mobile)

(a) Traditional positioning system based on fixed UWB anchors in known locations.

(b) Collaborative localization approach based on UWB ranging measurements

from multiple transceivers in different robots.

(c) UWB Wireless sensor networks can be used for adding location metadata in the IIoT.

UWB Nodes

UWB Gateway

(internet connectivity)

Mesh connectivity

Figure 6: Illustration of different use cases for UWB systems.
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vehicles [65], at a fraction of the price of more traditional solutions such as MOCAP
systems.

Figure 6 illustrates three example use-cases of UWB wireless technology. Po-
sitioning systems based on a series of fixed nodes in known locations (or anchors),
and ranging measurements between these and mobile nodes (or tags), can be used for
consistent, long-term localization of mobile robots [66]. Alternatively, applications
involving multi-robot systems can leverage the use of UWB transceivers onboard
different robots for full relative pose estimation [67], and to the level of swarm-wide
state estimation even with a single transceiver on each robot [19]. The third exam-
ple then shows a UWB mesh network enabling simultaneously a networking and
positioning solution in wireless sensor networks [60].

Recent surveys and reviews on UWB technology have focused on either the sig-
nal processing aspects [68], the design of UWB antennas [69; 70], the potential com-
munication modalities [71], or the comparison of UWB localization systems with
other technologies [64]. Within the robotics field, recent reviews have focused on
the different positioning modalities with little attention paid to the technology itself,
or the networking possibilities [61].

Accurate localization in the robotics field is still an open problem across multi-
ple deployment scenarios. Especially in GNSS-denied environments, owing to the
different accuracy, availability, area coverage, scalability, cost, and privacy require-
ments [72]. UWB systems are flexible and can operate in mixed indoor-outdoor
environments, enabling centimeter-level accuracy localization with either global or
relative positioning [73; 74]. In this section, we focus on describing how UWB
technology has been leveraged in different types of robotic systems and in various
application domains.

Accurate localization in the robotics field is still an open problem across multi-
ple deployment scenarios. Especially in GNSS-denied environments, owing to the
different accuracy, availability, area coverage, scalability, cost, and privacy require-
ments [72]. UWB systems are flexible and can operate in mixed indoor-outdoor
environments, enabling centimeter-level accuracy localization with either global or
relative positioning [73; 74]. In this section, we focus on describing how UWB
technology has been leveraged in different types of robotic systems and in various
application domains.

UWB in Mobile and Aerial Robots

Autonomous mobile robots are already a reality across multiple industries and do-
mains, from home cleaning to in-warehouse transportation and including rapidly
emerging autonomous last-mile delivery solutions. In controlled environments where
anchors can be installed, UWB systems can benefit autonomous operation aiding in
long-term autonomy, persistent localization, and pose initialization, among others.
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Moreover, it enhances well-established onboard odometry approaches (e.g., LiDAR-
or visual-based) for SLAM, with the external UWB positioning system reducing
the drift and accumulated error [75; 76]. Consider e.g. extreme cases and feature-
less environments such as tunnel-like environments, where LiDAR-based system
will suffer from degenerate geometry. Or similarly, vision sensors in low-light or
over-exposure conditions. In these scenarios, even ranging to a single fixed UWB
transceiver without full external position estimation can provide significant improve-
ments to the overall localization [77]. It is also worth mentioning that UWB posi-
tioning systems do not provide orientation when a single tag is installed on a mobile
robot. With multiple tags, the mean UWB ranging error can be of the same order of
magnitude as the size of the robot, thus excluding the possibility of directly calcu-
lating orientation from the position of several tags. In this direction, multiple works
in the literature been devoted to investigating different methods and their accuracy
to estimating orientation with multiple tags attached on single object [78; 79]. This
has also been a topic of study in cooperative relative localization systems involving
two or more robots [80; 81]. For example, a full 6-DoF pose estimator is presented
in [82], where UWB ranging data is fused with with additional sensors (e.g., IMU).

Unprecedented advantages in the field of aerial robotics have occurred over the
past decade. The first part of it was largely due to the possibilities of MOCAP
systems, with advances in VIO and LiDAR-based SLAM further pushing the fron-
tiers of the field [83]. UWB provides a competitive alternative to MOCAP systems
that is accurate and stable enough by itself whenever centimeter-level accuracy suf-
fices [65; 84; 85]. In any case, UWB ranging or localization is rarely used as a stan-
dalone system and is very often integrated with IMU data (and/or other sources of
odometry or location data) to add orientation estimation and improve the oveall accu-
racy [86]. From the perspective of aerial systems, part of the research to date has fo-
cused on investigating the properties of ground-to-air UWB-based ranging [87; 88].
This is an important aspect to consider, as most transceivers include antennas with
radiation patterns designed for largely two-dimensional spaces.

Much attention has also been put to integrating UWB within swarms of aerial
robots [19; 89; 90]. In aerial swarms, external UWB positioning systems supporting
multiple nodes are applicable. They can be considered as a competitive replacement,
in some scenarios, to GNSS-RTK systems, with simpler deployment and initializa-
tion. In any case, most research has shifted to relative estate estimation within the
swarm. Compared, e.g., to vision-based relative localization estimation, UWB sys-
tems are less dependent on environmental conditions and provide omnidirectional
mutual detection.
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Sensor Fusion in UWB-Based Systems

While UWB ranging enables accurate positioning, multipath interference, Non-
line-of-sight (NLOS) transmission degrade the positioning performance. Therefore,
UWB ranging data is often integrated and fused with different sensors and sources
of location, inertial or odometry data. These include raw IMU data [86], VIO
estimators [91], or LiDAR [76]. With single UWB transceivers only providing
positions in 2D or 3D spaces, full pose estimation requires fusion with at least
IMU. Multiple works have presented different approaches, e.g., with Extended
Kalman Filters (EKF), to complete the full pose state estimation [92; 93; 94]. In
outdoor environments, GNSS technology is at the core of positioning methods, with
unparalleled coverage and effortless integration. However, GNSS accuracy is easily
influenced by multipath interference in clustered environments and weak penetra-
tion. To achieve seamless positioning in hybrid outdoors-indoors environments, a
GPS/UWB/MARG collaborative positioning system is introduced in [18].

In general terms, the most significant trend at the moment is in integrating UWB
with visual sensors and, in particular, VIO estimators [95; 19; 96; 97]. In multi-
robot systems involving aerial robots, vision-based sensors have typically been used
for achieving relative localization and autonomous landing. In [91], a UWB-Vision
fusion method is presented for autonomous docking of UAVs on mobile platforms.
The authors designed a relative localization scheme by using distance measurements
from sequential ranging to UWB anchors and relative displacement measurements
from visual odometers. These two data streams were fed to a recursive least square
algorithm to estimate the relative position to the moving target. The final docking
was then done based mostly on fiducial markers using vision. From extensive indoor
and outdoor experiments show the integrated UWB vision approach can be achieved
from a distance up to 50m.

UWB in Swarm and Multi-Robot Systems

Collaborative multi-robot systems have been a recurrent research topics over the past
decades [98]. Applications range from surveillance [99] to dense scene construc-
tion [100], and including search and rescue [101], among many others. Accurate and
robust relative localization is one essential aspect in tasks such as cooperative manip-
ulation, collaborative sensing, exploration, and transportation applications. UWB-
based relative state estimation method in multi-robot systems can be divided into
centralized [67; 90] and decentralized [19; 96; 102] approaches. In UWB-based
decentralized relative state estimation systems, each robot performs relative state es-
timation individually and then exchanges such information with other robots. Com-
pared with a centralized system where all the relative position estimation is processed
on one device or based on an external system, decentralized systems have advantages
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including [19; 96]: (i) flexibility, i.e., only onboard sensors and computing power are
utilized, so no external off-board sensors or computing power is required; and (ii)
robustness, i.e., the system can handle the lack of detection results as well as mal-
functions of individual robots.

Another important consideration that is worth addressing here is signal inter-
ference in multi-robot UWB-based positioning systems. In the presence of multi-
ple robots, signals from UWB tags can suffer from multipath transmission being
reflected in other robots, in turn causing interference at the receiver. Multiple re-
search efforts have delved into investigating the impact of MUI (Multi-User Interfer-
ence) [103] and mitigating MUI using a coherent receiver in [104].

UWB in Human-Robot Interaction

Within another important research area in robotics, UWB systems have also been
employed for human-robot interaction. With the objective of accurately and pre-
cisely capturing and recognizing human motion, different systems have been focus-
ing, e.g., in in hand gestures and body movement [105], or processing electromyog-
raphy (EMG) signals [106]. In a human motion capture system, as has been previ-
ously introduced for robots, global positioning from fixed UWB anchors can also be
ported to mobile tags attached to the human body. Other sensors such as IMU can
then aggregate acceleration and orientation data [105; 107].

Trends and Open Research Questions

This section discusses the main research trends in terms of applicability of UWB
connectivity and ranging to autonomous systems, and the most important research
directions regarding the scalability and security of such systems.

Within the robotics field, there is a growing trend in integrating UWB rang-
ing and localization systems within well-established state estimation and autonomy
stacks [95]. In general, fixed UWB systems based on anchor nodes placed in known
locations are able to provide a competitive alternative to MOCAP systems or GNSS-
RTK systems. While anchor-based systems are indeed becoming increasingly ubiq-
uitous, we see the main research trends being directed towards relative estate estima-
tion in systems comprising multiple robots. Finally, there is also significant traction
in the area of exploiting UWB connectivity and not just its ranging capabilities, en-
abling situated communication in distributed autonomous systems.

From the perspective of scalability, there has been significant traction in recent
years building towards the design of methods for more scalable ranging. This is
increasing the number of UWB transceivers that can be located in a given area in
real-time. At a lower level, this is being done by increasing the concurrency or
transmissions and exploiting interference [108; 109]. At an application level, col-
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laborative localization approaches in distributed and multi-robot systems waive the
need for fixed anchors. At the same time, by fusing UWB data with other sensor
data, they enable higher accuracy and consistent positioning between UWB ranging
estimations [19; 100; 96; 95].

In terms of enhancing the security of UWB networks and positioning systems,
there is a clear need for systems that are both secure and scalable [110]. This is of
paramount importance for a technology that is being applied within safety-critical
industrial settings [111; 112; 113], or in autonomous robots requiring high-degrees
of reliability [65].

Within the IIoT, we see the most relevant research being directed towards the
design, development, and deployment of dependable wireless sensor networks in
harsh operational environments. These vary from underground mines to wireless
networking aboard spacecraft. Furthermore, UWB positioning systems are providing
a competitive solution for asset and personnel tracking, and they can be integrated
into different types of intelligent industrial systems ranging from autonomous robots
in logistic warehouses to complex machinery in production floors.

2.2 UWB-based Multi-Robot Relative Localization
2.2.1 UWB for Cooperative Positioning

The majority of UWB positioning systems are based on ranging between a mobile
node or transceiver and a set of fixed nodes in known locations, or anchors. This is the
case of commercial, out-of-the-box systems as well as most UWB-based localization
methods in the literature [65]. We are however more interested in infrastructure-free
relative localization methods where all UWB transceivers are potentially mounted on
mobile robots. This approach has the benefit of being more flexible from an ad-hoc
deployment perspective. In multi-robot systems, infrastructure-free localization can
also significantly facilitate the positioning transition for robots from indoor to out-
door scenarios. The authors in [114] adopted a Monte Carlo localization approach to
compute the relative localization between two aerial robots. This involved attaching
one UWB tag to a mobile robot and placing three UWB anchors on another robot in
a stationary position.

More conventional approaches include multilateration with least squares es-
timators [17] and different EKF approaches depending on the sensor data being
fused [52]. Alternatively, ML approaches, including LSTM networks, have also
been proposed [115]. Some of the state-of-the-art works fuse UWB with other
sensors and estimators (IMU, LO, or VIO) through sliding window optimization
methods [15; 19]. However, to the best of our knowledge, current methods achieving
high accuracy still require other estimators (e.g., LiDAR or visual odometry) or need
a higher number of ranges to be measured (either for each pair of robots or with a
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higher number of robots).

2.2.2 UWB Ranging Error Mitigation

Despite UWB ranges outperforming other wireless technologies, common measure-
ment errors such as multipath interference, electrical interference, and thermal noise
persist. Accurately addressing these errors in ranging measurements is crucial for
accurate state estimation. Several studies have adopted ML or deep neural network
methods to model these errors [116; 117; 118]. In [117], an algorithm combining ML
with the time resolution capabilities of UWB, along with adaptive physical settings
was proposed. This approach enables the automatic calibration of anchor positions,
effectively reducing ranging error.

Alternatively, Wang et al. [116] propose a semi-supervised support vector ma-
chine (SVM) to identify NLOS conditions and mitigate ranging errors by 10%. Fur-
thermore, Fontaine et al. [118] demonstrated in their work that autoencoders could
achieve a decent estimation accuracy.

2.2.3 LSTM Networks in UWB Positioning System

LSTM networks are particularly well suited for analyzing time-series data, making
them an ideal choice for processing UWB ranging measurements. While previous
studies have primarily focused on anchor-based UWB positioning systems, recent
research has explored the application of LSTM in various contexts.

Poulose et al. [115] directly applied LSTM to estimate user positions with an-
chors, achieving competitive accuracy compared to conventional trilateration meth-
ods in simulated environments. In another study by Wang et al. [119], LSTM was
employed to estimate fixed anchor-based UWB ranges using time of arrival (TDoA)
information, leveraging prior UWB measurements exclusively. Moreover, Kim et
al. [14] utilized LSTM to classify channel conditions based on the channel impulse
response of received UWB signals. This approach effectively mitigated position-
ing degradation stemming from NLOS situations, leading to improved localization
accuracy, particularly when coupled with EKF-based methods.

2.3 LiDAR based UAV Tracking
2.3.1 UAV Tracking with LiDARs

While LiDAR systems are often employed for detecting and tracking objects, they
pose unique challenges in detecting and tracking UAVs due to their small size, varied
shapes and materials, high speed, and unpredictable movements.

When deployed from a ground robot, a crucial parameter is relative localization
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between different devices. Li et al. [85] suggest a new approach for tracking UAVs
using LiDAR point clouds. They take into account the UAV speed and distance to
adjust the LiDAR frame integration time, which affects the density and size of the
point cloud to be processed.

By conducting a probabilistic analysis of detection and ensuring proper setup, as
shown in [120], it is possible to achieve detection using fewer LiDAR beams, while
performing continuous tracking only on a small number of hits. The limitations in the
3D LiDAR technology can be overcome by moving the sensor to increase the field
of view and improve the coverage ratio. Additionally, combining a segmentation
approach and a simple object model while leveraging temporal information in [121]
has been shown to reduce parametrization effort and generalize to different settings.

Another approach, departing from the typical sequence of track-after-detect, is
to leverage motion information by searching for minor 3D details in the 360∘ Li-
DAR scans of the scene. If these clues persist in consecutive scans, the probability
of detecting a UAV increases. Furthermore, analyzing the trajectory of the tracked
object enables the classification of UAVs and non-UAV objects by identifying typical
movement patterns [122; 123].

2.3.2 Applications of UAV Tracking

Recently, researchers have shown interest in tracking and detecting UAVs due to two
primary reasons: the rising demand for identifying and detecting foreign objects or
drones in areas with controlled airspace, like airports [124; 125], and the potential
for optimizing the utilization of UAVs as versatile mobile sensing platforms through
tracking and detection [101].

The ability to track UAVs from UGVs allows for miniaturization and greater
flexibility in multi-robot systems, reducing the need for high-accuracy onboard lo-
calization. This was demonstrated in the DARPA Subterranean challenge [126; 127],
where UAVs were dynamically deployed from UGVs in GNSS-denied environments.
Localization and collaborative sensing were key challenges, with reports indicating
that LiDAR-based tracking was useful in domains where VIO has limitations, such
as low-visibility situations [100; 128].

Similarly, tracking UAVs is crucial in the landing phase of the aerial system.
Different methods using a ground-based stereo camera [129] or having the UAV carry
an infrared camera to detect signals from the destination [130] have been proposed.
As these works employ cameras as their main sensory system, they can be easily
affected by background lighting conditions while in our approach we prefer a LiDAR
which is more resilient in these environmental conditions.
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2.4 LiDAR as a Camera

The literature on the processing of low-resolution LiDAR-based images is scarce.
In [131], Ouster’s CEO introduces the technology, showcasing the performance of
the car and road segmentation using a re-trained DL model with a video. The author
also comments on the potential for using this data as input to a pre-trained network
from DeTone et al.’s SuperPoint project for odometry estimations. However, in both
cases, the code is not available, and neither are quantitative results shown. Minimal
research has been carried out in this direction. In [11], Tsiourva et al. analyzed the
potential of the same Ouster LiDAR sensors that we study for saliency detection.
This work already demonstrates more consistent performance and data quality in ad-
verse environments (e.g., rainy weather). We further analyze DL-based perception
performance beyond essential computer vision preprocessing such as saliency de-
tection. A relevant recent work in the literature is [12], where the authors present a
novel dataset of LiDAR-generated images with the same LiDAR-as-a-camera sen-
sor that we use in this dissertation. The work in [12] shows the potential of these
images as they remain almost invariant across seasonal changes and environmental
conditions. For example, unpaved roads can be perceived in very similar ways in
summer weather, snow cover, or light rain. Therefore, there is a clear advantage
of these images over standard RGB or even infrared cameras, despite the limited
vertical resolution.

Within the realm of robotics, some studies over the years have delved into the
utilization of LiDAR-based images. But before exploring specific applications, it
is vital to know the process by which range images, signal images are generated
from point cloud, as detailed in [132; 133]. And it’s also essential to understand the
effectiveness of LiDAR-based images, through an extensive evaluation in the arti-
cle [134], showing that LiDAR-based images have remarkable resilience to seasonal
and environmental variations.

Perception emerges as the indisputable first step to use LiDAR within robotics.
Apart from the aforementioned application, in the research[135], Sier et al. explored
using LiDAR-as-a-camera sensors to track Unmanned Aerial Vehicles (UAVs) in
GNSS-denied environments, fusing LiDAR-generated images and point clouds for
real-time accuracy. The work [136] explores the potential of general-purpose deep
learning perception algorithms, specifically detection and segmentation neural net-
works, based on LiDAR-generated images. The study provides both a qualitative
and quantitative analysis of the performance of a variety of neural network architec-
tures, proving that the DL models built for visual camera images also offer significant
advantages when applied to LiDAR-generated images.

Delving deeper into subsequent applications, e.g., localization, research in [137],
explores the problem of localizing mobile robots and autonomous vehicles within a
large-scale outdoor environment map, by leveraging range images produced by 3D
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LiDAR.

2.5 Federated Learning in Robotics
2.5.1 Introduction to Federated Learning

With a staggering increase in the number of connected devices being deployed world-
wide within the IoT, the amount of data that is generated and transmitted has grown
at exponential rates. The inefficiency of processing all this data in a centralized man-
ner at the cloud has brought forward new computing and networking paradigms in
recent years [21]. Computing at the edge, closed to where the data sources are, has
evident benefits in terms of latency and bandwidth savings [22]. Another key advan-
tage is the inherent benefits to data privacy, as raw data does not travel too far [23].
At the same time, the data is being fed to increasingly complex AI models, with
DL in particular becoming pervasive across multiple fields and application domains.
Recent years have also brought an increasing awareness to the risks and drawbacks
of sharing personal data over the internet. The solution to distributed computing at
the edge while preserving privacy of data and leveraging DL solutions is federated
learning [24]. FL enables distributed training of complex models over isolated data
islands from remote nodes (data sources). The local training results (updates to local
models) are then aggregated, e.g. in a cloud server, and a global generalized model
is shared back to the nodes. All this with zero raw data transmission [25].

From the perspective of robotic and autonomous systems, which are becoming
increasingly ubiquitous, cloud solutions have enabled higher degrees of intelligence
by eliminating constraints of onboard computational and storage resources [138].
Cloud robotics and AI robotics are now an essential part of state-of-the-art robotic
systems. Furthermore, as mobile connectivity evolves, 5G and beyond networks are
set to further bring the integration of AI, robotics and distributed networking solu-
tions [139]. Applications of AI in robotics include, e.g., the deployment of DL for
natural language processing (NLP) [140], computer vision [141], or in navigation
and mapping [142]. In control, Reinforcement learning (RL) has been successfully
applied in complex games [143] and its relevance for dexterous manipulation ex-
tensively demonstrated [144]. Deep reinforcement learning (DRL) is particularly
relevant to autonomous robots [145].

FL provides a framework for more efficient learning in distributed autonomous
systems and multi-robot systems, enabling collaborative learning across heteroge-
neous cloud and edge nodes and a wide range of robotic and autonomous systems.
Even though cloud robotics can promote scalability, collaborative knowledge shar-
ing, and development operation of robotics and autonomous systems, challenges re-
main in, e.g., security or reliable connectivity.

Multiple reviews and survey papers in the literature [146; 147] have been devoted
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to studying design approaches, implementation details and application possibilities
of FL. Compared to current works focused on security and privacy [148], personal-
ized FL [149], or communication at the edge [150], the presented work aims to pro-
vide a comprehensive view of how FL can be leveraged to raise the level of autonomy
and degree of intelligence of robotic systems. We look at different application oppor-
tunities at the edge and within autonomous mobile robots. We provide an overview
of the most important concepts, and pay particular attention to synergies between
FL and distributed ledger technologies (DLTs), among which blockchain technology
has gained significant attention. A conceptual illustration of FL applications and
approaches to connectivity is shown in Figure 7.

Owing to the flourish of the Internet of things (IoT) in recent years, voluminous
amounts of data have been generated including sensitive and private data and a large
number of edge devices have been connected by networks. As an important part of
IoT, robotic and autonomous systems have been deployed in a largely growing num-
ber [151]. Cloud robotic and autonomous systems have made the limitation of on-
board resources such as computation and storage no longer exist via data sharing and
multi-robot cooperation through networks [138]. Thanks to the flexible provisioning
supported by 5G [139], cloud infrastructure as a service provides great convenience
for design small and decoupled components such as multi robots using off-the-shelf
tooling.

As a result of the increasing complexity, scalability, and diversity of robotic
and autonomous systems, robot learning has become a promising tool for coping
with these situations [152]. DL is increasingly implemented across robotic and
autonomous systems [153; 145]. Applications include the deployment of DL for
NLP [140], computer vision [141], navigation and mapping [142], or in control algo-
rithms. In the latter area, RL has been successfully applied in complex games [143]
and its relevance for dexterous manipulation extensively demonstrated [144]. DRL
is particularly relevant to autonomous robots [145]. DRL has been utilized in dif-
ferent robot fields such as search and rescue robots for exploring unknown cluttered
environments [154], robot control and manipulation [155], and navigation [156].

An increasingly large number of edge devices and computation resources has
made distributed learning, distributed DL in particular become a necessity of uti-
lizing computation platforms for model training process [157]. Distributed learning
made the robot learning across heterogeneous devices of cloud and edge robotic and
autonomous systems feasible in a relatively secure manner.

Even though cloud robotics can promote the scalability, collaborative knowledge
sharing, and development operation of robotics and autonomous systems, it is still
facing challenges from security, connectivity, and work distribution ability. FL, as a
novel and promising framework for robot learning, involves the local models train-
ing process over isolated data islands from remote devices and aggregates the local
models in the cloud server to be a global generalized model without data transmis-
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(c) Robust learning with variable environments and experiences

Federated Learning – Example Application Areas

Federated Learning – Different approaches to connectivity topology

(b) Collaborative autonomous systems sharing data(a) Privacy-preserving data sharing in health AI

(e) Decentralized mesh networking(d) Centralized cloud-based synchronization

(f) Blockchain-based connectivity and consensus

Figure 7: Conceptual illustration showing potential application areas and connectiv-
ity topologies in federated learning systems.
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sion [25]. It is regarded as a secure and privacy-preserving method for robot learning
which significantly meets the demands of current cloud and edge-based robotic and
autonomous systems. In particular, with the blossoming of communication technolo-
gies such as 5g and 6g, FL integrated with 6g will be more potential for large-scale
implementation of data-driven machine learning in our daily life [25]. Furthermore,
in terms of security and privacy, FL has proved to be efficient in some data-sensitive
scenarios including covid-19 related x-ray image data [158; 159; 160].

2.5.2 Federated Learning in Robotics

The adoption and development of FL frameworks have been directly or indirectly
influenced by other technological and paradigm trends in robotics and autonomous
systems. Since the invention of FL, there are a number of works on optimization of
FL itself. Different research directions include increasing the adaptiveness, enhanc-
ing the privacy-preserving properties, or building towards more efficient collabora-
tion for distributed robot learning, among others. In this section, we briefly introduce
the different identifiable research directions (can be seen in Figure 8) from the litera-
ture, and the concepts that underpin the popularity of FL in robotics and autonomous
systems.

Figure 8: Applications of Federated Learning in Robotic and Autonomous Systems

Cloud Robotics and Automation

Cloud robotics is a field of robotics that capitalizes on cloud technologies. The cloud
infrastructure can provide robots and autonomous systems with extensive resources
and potential benefits including big data, cloud computing, collective robot learning,
and human learning [138]. Under cloud infrastructures, robotic systems have access
to more collaborative approaches to autonomy, faster processing of deep learning
models, and more powerful computational capabilities in general. A collection of
robots in different areas or states can cooperate in a variety of tasks such as disaster
management identifying several critical challenges [161] and manufacturing environ-
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ment [162]. There are a number of examples and implementations of cloud robotics
platforms such as AWS RobotMaker [163] from Amazon, Dex-Net [164] from UC
Berkeley Automation Lab, and Google cloud robotics [165].

Distributed Deep Learning

With the increasing amount of data and complexity of DL models, the pro-
cess of training models becomes inherently costly, computation-intensive, and
time-consuming. Distributed DL was proposed to utilize the multiple pro-
cessors to accelerate DL training process by parallel the computation and the
data [166; 157; 167]. There is a significant amount of work in the literature
dedicated to distributed DL in the pursuit of closer collaboration between cloud and
edge computing [168; 169; 170]. This balance between the two paradigms is set to
become increasingly pervasive with a well-established IoT era. Immediate concerns
that raise with the deployment of distributed DL across cloud and edge is the
security of data and privacy of users. In consequence, multiple research directions
have emerged to make distributed learning processes more scalable, secure and
privacy-preserving through [171; 172; 173; 174; 175]. Additionally, other research
efforts are directed towards utilizing distributed DL for processing and learning from
sensitive data such as health data [176], video surveillance data [177] and medical
data from multiple private or public institutions [178].

Privacy and Security in Deep Learning and Federated Learning

With the wider adoption of DL over the past decade, issues regarding data security
and privacy of data sources became increasingly studied. Some of the main types
of security-related issues in DL appear with evasion attacks during model inference
and poisoning attack during model training [179]. Adversarial attacks to the algo-
rithms, and model reconstruction attacks are other examples. Multiple solutions have
been proposed to deal with these and other attack vectors, including differential pri-
vacy, homomorphic encryption, data anonymization, pseudonymization, algorithm
encryption, or hardware security implementations, among others [180]. Despite the
efforts, new attack vectors have appeared such as re-identification attacks (identi-
fication of individual data sources despite data anonymization techniques based on
other information in the datasets), dataset reconstruction attacks, or tracing attacks
(also referred to as membership inference, though which the inclusion of a specific
individual in a dataset is inferred). While FL itself offers privacy-preserving at-
tributes, the security robustness depends largely on the implementation and deploy-
ment methodologies. A recent survey on the topic [148] presents a comprehensive
study on the current security and privacy concerning aspects with the conclusion
that fewer privacy-specific threats than security-specific ones exist. Among these
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are, e.g., communication bottlenecks, poisoning, and backdoor attacks, especially
inference-based ones.

Recent Trends in Federated Learning

Federated learning has arguably raised the possibilities for collaborative learning
across multiple independent agents. In this section, we give an overview of works
that have focused towards improving specific aspects of FL.

With a focus on scalability, a high-level designed FL system based on Tensor-
Flow has been developed that draws significant conclusions on existing challenges
and future research directions [146]. From the perspective of system security, a
Byzantine-robust FL proposed in [181] shows different approaches to secure FL sys-
tems and make them more robust against local model poisoning attacks. A similar
approach in [182], instead considers a solution to detect the malicious model up-
dates in every round of training process before aggregating the locals models in the
centralized cloud server. Owing to a wide range of approaches relying on a the cen-
tralized cloud server for aggregation of local model updates, FL frameworks may fail
if a malicious aggregation server takes over the central FL node. To cope with this
problem, dispersed FL [183] has been proposed, where a global model is yielded in
either a centralized or distributed manner through the aggregation of sub-global mod-
els, which are iteratively computed based on different groups similar to traditional
FL approaches.

Machine learning itself can also play a role in improving the performance of FL
systems. In [184], deep reinforcement learning is used to select the optimized edge
nodes and the learned model parameters are integrated into a blockchain-based FL
scheme for enhanced security and reliability. Furthermore, combining with other
privacy-preserving machine learning methods such as differential privacy [185] and
modern cryptography techniques such as homomorphic encryption [186], FL can
achieve high level privacy-preserving and secure capabilities.

It is also worth meaning at this point that FL solutions are specialized in aggregat-
ing local models to a global model for knowledge sharing. Nonetheless, in terms of
the characterization of heterogeneous data collected across large-scale deployments
of edge devices, it is often essential to the application to make the models discrimi-
native in each device. In this direction, personalized FL was proposed to tackle the
aforementioned problem by further performing a series of learning steps locally after
receiving the global model from the cloud server, based mostly on locally available
data for which the model needs to be tailored [187; 188].
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3 Multi-Modal Sensor Datasets

3.1 Multi-Modal LiDAR Dataset
One of the main limitations of existing datasets that we aim to overcome is the lack
of availability of data from solid-state LiDARs. These LiDARs often present limited
FoV, owing to the lack of mechanical rotation, and different scanning modalities.
In addition, compared to spinning LiDARs, non-repetitive patterns have emerged in
different products, as well as different patterns even when they are repetitive. The
limited FoV together with the different scan patterns pose significant differences for
many of the standard LiDAR odometry, localization and mapping algorithms. As a
result, we believe that more data is necessary to advance research towards general-
purpose and sensor-agnostic LiDAR data processing algorithms. To bridge this gap,
we present this novel multi-LiDAR dataset with spinning LiDARs of three different
resolutions, two solid-state LiDARs with different FoVs and scan pattern, and a small
LiDAR-camera.

There are a number of datasets available that are relevant to this work, mostly
gathered within the autonomous driving community. In Table 2, we compare the
most relevant related datasets from the literature with ours. In the rest of this section,
we address the key differences between the proposed dataset and existing ones.

The main contributions of this work and the presented dataset are the following:

1. A dataset with data from 5 different LiDAR sensors and one LiDAR camera
in a variety of environments.
To the best of our knowledge, this dataset is the most diverse dataset in terms of
LiDAR sensors for these environments. It includes spinning LiDARs with 16
channels (Velodyne VLP-16), 64 channels (Ouster OS1-64), and 128 channels
(Ouster OS1-128), each with varying vertical FoVs. Additionally, the dataset
comprises two different solid-state LiDARs (Livox Horizon and Livox Avia),
each with distinct scanning patterns and FoVs. Furthermore, a LiDAR cam-
era (RealSense L515) is included, providing RGB images and LiDAR-aided
depth images. The dataset is completed by low-resolution images with depth,
near-infrared, and laser reflectivity data from the Ouster sensors. These are
illustrated in Figure 9a.

2. Ground truth data is provided for all sequences.
The ground truth are provided with different ways including MOCAP-based
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Table 2: Comparison of related datasets with ours.

Dataset Year Environment Ground Truth LiDARs Other

KITTI [26] 2013 Urban road RTK GPS/INS 3D-Velodyne HDL-64E @10 Hz 4× cameras , accel/gyro

NCLT [30] 2017
Urban Indoor

Outdoor GPS/INS
3D-Velodyne HDL-64E@10 Hz

2× 2D-Hokuyo @10/40 Hz camera

Oxford RobotCar [27] 2017 Urban Road GPS/INS
2× 2D-SICK @50 Hz
3D-SICK @12.5Hz 4 Camera; accel/gyro

RUGB Dataset [33] 2019
Unstructured

outdoor - 3D-Velodyne HDL-32E @10 Hz GPS&IMU ; 3× cameras

nuScences [28] 2020 Urban Road - 3D-32-Beams Lidar @20 Hz
6x Camera (RGB);GPS&IMU;

5x Radar@13Hz

Newer Colleage [31] 2020
Urban outdoor

Vegetated 6DOF ICP 3D-Ouster-64 @10 Hz D435i (Infrared); accel/gyro

PandaSet [37] 2021 Urban road -
3D-Hesai-Pandar64 @10 Hz
3D solid-state lidar@10 Hz 6x Cameras. GNSS&IMU

M2DGR [32] 2022 Urban In/Outdoors
Laser 3D tracker
RTK GPS/INS 3D VLP-32C @10 Hz 3 Cameras. GNSS&IMU

Our Dataset 2022

Urban indoor
Urban road

Forest
6DOF MoCAP

SLAM

3x 3D-Spinning lidar(16,64,128) @10 Hz
2x 3D-Solid-State-lidar @10 Hz

LiDAR-Camera @30 Hz
2x accel/gyro @200 Hz
2x accel/gyro @100 Hz

ground truth in both indoors and outdoors environments (This is, to the best of
our knowledge, the first LiDAR dataset to provide such accurate ground truth
in forest environments in addition to indoor areas, albeit the limited trajectory
length (see samples in Figure 9b)), GNSS/RTK in outdoors, and a ground truth
trajectory generation method for environments where MOCAP or GNSS/RTK
are unavailable.

3. Benchmarking of multiple state-of-the-art filter-based and optimization-based
SLAM methods on our proposed dataset in terms of the accuracy of odometry,
memory and computing resource consumption. The results indicate the limi-
tations of current SLAM algorithms and potential future research directions.

3.1.1 System Overview

Sensory Devices

Our data collection platform is shown in Figure 9a, and details of sensors are listed in
Table 3. Owing to the variety of environments where the platform has been used, it
has been mounted on different types of mobile platforms. In road-like environments
and large indoor halls, a Clearpath Husky mobile robot has been used. In forests out-
doors with snow, it has been handheld. In small indoor spaces, it has been mounted
on a mobile wheeled platform, manually pushed.

In order to increase the usability of the dataset for benchmarking general-purpose
algorithms, pitch and roll rotations have been applied in different configurations
when handheld, in addition to standard horizontal settings where only the yaw angles
varies if the surface where it is moving is horizontal.

Approaches for Providing Ground Truth

Generating accurate ground truth data in complex environments is a challenging task,
as has been identified in multiple existing datasets. Many vehicular benchmarks uti-
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(a) Front view of the multi-modal data acquisition system. Next to each sensor, we show the
individual coordinate frames.

(b) Samples of map data form different dataset sequences. From left to right and top to down,
we display maps generated from a forest, an urban area, an open road, and a large indoor hall,
respectively.

Figure 9: Multi-modal LiDAR data acquisition platform and samples from maps
obtained in the different environments included in the dataset.
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Table 3: Sensor specification for the presented dataset. Angular resolution is config-
urable in the OS1-64 (varying the vertical FoV). Livox LiDARs have a non-repetitive
scan pattern that delivers higher angular resolution with longer integration times.
Range is based on manufacturer information, with values corresponding to 80% Lam-
bertian reflectivity and 100 klx sunlight, except for the L515 LiDAR camera.

IMU Type Channels FoV Angular Resolution Range Freq. Points

Velodyne VLP-16 N/A spinning 16 360°×30° V:2.0°, H:0.4° 100 m 10 Hz 300,000 pts/s
Ouster OS1-64 ICM-20948 spinning 64 360°×45° V:0.7°, H:0.18° 120 m 10 Hz 1,310,720 pts/s
Ouster OS0-128 ICM-20948 spinning 128 360°×90° V:0.7°, H:0.18° 50 m 10 Hz 2,621,440 pts/s
Livox Horizon BOSCH BMI088 solid-state N/A 81.7°×25.1° N/A 260 m 10 Hz 240,000 pts/s
Livox Avia BOSCH BMI088 solid-state N/A 70.4°×77.2° N/A 450 m 10 Hz 240,000 pts/s
RealSense L515 N/A LiDAR camera N/A 70°×55° N/A 9 m 30 Hz -

Figure 10: Estimated trajectories. Top row: Indoor01, Indoor02, Indoor03, Forest02.
Bottom row: Forest01, Road02, Indoor04, Indoor05.

lize the pose generated from GNSS/INS fusion method as ground truth. However,
multi-path effect can affect the accuracy of the pose estimated by GNSS sensors in
forest and urban environments. For indoor environments, GNSS signals are unavail-
able.

MOCAP systems have been widely adopted in indoor environments owing to
their ability to provide millimeter-level accuracy in positioning data. However, the
utilization of MOCAP systems is limited mainly by the range of the cameras, usually
in the 10 to 20 m range. The need for relatively complex setup of the system has also
prevented the adoption of such systems for outdoors environments, and specially in
unstructured environment such as forests.

To meet the demands of reliable ground-truth data for diverse environments,
the presented dataset includes MOCAP-based ground-truth data in both a subset of
indoor and forest environments. This enables millimeter level pose estimation as
ground truth for odometry algorithms in both structured and unstructured environ-
ments, which can aid in researching low-drift odometry algorithms, accurate feature
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tracking, and reduction of motion-induced distortions in the data. For open space, we
provide the ground truth data from GNSS/RTK. For large-scale environment, where
the MOCAP system is unavailable, we also provide location information as a ref-
erence from SLAM methods [55]. In these settings, the higher-resolution LiDAR
OS0-128 can be used as a baseline for the other sensors. We evaluate the SLAM
algorithms in diverse environments, with a sample of environments shown in Fig-
ure 10. From the different SLAM methods further characterized in the next section,
those that use data from the OS0 sensor showcase the most robust performance in a
series of sampled sequences.

(a) NDT localization with ground truth map. External view and In-
ternal view when the current laser scan (orange) is aligned with the
Ground truth map (blue).

(b) Ground truth map for one of the indoor sequences generated based
on the proposed approach (SLAM-assisted ICP-based prior map).
This enables benchmarking of LiDAR odometry and mapping algo-
rithms in larger environments where a motion capture system or sim-
ilar is not available, with significantly higher accuracy (< 2 𝑐𝑚) than
GNSS/RTK solutions.

Figure 11: SLAM-Assisted Ground Truth Map
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SLAM-assisted Ground Truth Map

MOCAP and GNSS/RTK have been used in most of the cases for ground truth. How-
ever, to provide accurate ground truth for large-scale indoor and outdoor environ-
ments, where the MOCAP system is unavailable or GNSS/RTK positioning result
becomes unreliable due to the multi-path effect, we propose a SLAM-assisted solid-
state LiDAR-based ground map generation framework.

Inspired by the prior map generation methods in [31], where a survey-grade 3D
imaging laser scanner Leica BLK360 scanner is utilized to obtain static point clouds
of the target environment, we employed a low-cost solid-state LiDAR Livox Avia
and high resolution spinning LiDAR to collect undistorted point clouds from envi-
ronments. According to the Livox Avia datasheet, the range accuracy of the Avia
sensor is 2 cm with a maximum detection range of 480 m. Due to the non-repetitive
scanning pattern, the environment coverage of the point cloud within the FoV in-
creases with time. Therefore, we integrated multiple frames when the platform is
stationary to get more detailed undistorted environmental sampling. Each integrated
point cloud contains more than 240,000 points. The Livox built-in IMU is used to de-
tect the stationary state of the platform when the acceleration values are smaller than
0.01 𝑚/𝑠2 along all axes. After gathering multiple undistorted point cloud submaps
from the target environment, the next step is to match and merge all submap into a
global map by ICP. As the ICP process requires a good initial guess, we employ a
high resolution spinning LiDAR OS0 with a 360° horizontal FoV to provide raw po-
sition by performing real-time SLAM algorithms. This process is outlined in Algo-
rithm 1. A dense and high-definition ground truth map can be obtained by denoising
the map generated by the algorithm described above to remove noise. Figure 11b
shows ground truth map of sequence indoor08 generated based on Algorithm 1

Let 𝒫𝑠𝑘 be the point cloud produced by the spinning LiDAR, 𝒫𝑑𝑘 be the point
cloud generated by solid-state LiDAR, and ℐ𝑘 be the IMU data from built-in IMU.
Our previous work has shown high resolution spinning LiDAR has the most robust
performance in diverse environments. Therefore, LeGo-LOAM [42] is performed
with a high resolution spinning LiDAR (OS0-128) and outputs the estimated pose
for each submap.

The cached data 𝒮𝑐𝑎𝑐ℎ𝑒 stores submaps and the related poses. Let 𝒫𝑖 be the point
cloud and related pose p𝑖 in 𝒮𝑐𝑎𝑐ℎ𝑒[𝑖]. The submap 𝒫𝑖 will be first transformed to map
coordinate as 𝒫𝑚

𝑖 based on estimated pose p𝑖; then GICP methods are employed on
𝒫𝑚
𝑖 to minimize the Euclidean distance between closest points against point cloud

ℳ𝑎𝑝 iteratively; 𝒫𝑚
𝑖 will be transformed by the transformation matrix generated

from GICP process, then merged to the map ℳ𝑎𝑝. The result map ℳ𝑎𝑝 is treated as
ground truth map. Figure 9b provides a visual display of several ground truth maps,
which have been acquired through the aforementioned procedural steps.

After the ground truth map generated, we employ normal NDT method in [189]
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Algorithm 1: SLAM-assisted ICP-based prior map generation for ground
truth data.

Input:
Spinning LiDAR pointcloud: 𝒫𝑠𝑘

Solid-state LiDAR pointcloud: 𝒫𝑑𝑘

IMU data: ℐ𝑘
Output:

Platform state: p𝑘

Prior map:ℳ𝑎𝑝

1 while new 𝒫𝑠𝑘 do
2 p𝑘 ← 𝑆𝐿𝐴𝑀(𝒫𝑠𝑘);

// Cached still clouds and raw pose
3 𝒮𝑐𝑎𝑐ℎ𝑒 = {};
// Cached still cloud

4 𝒫𝑐𝑎𝑐ℎ𝑒 = [];

5 while new 𝒫𝑑𝑘 do
6 if ℐ𝑘.𝑉𝑎𝑛𝑔𝑢𝑙𝑎𝑟 < 𝑡ℎ𝑎, p𝑘.𝑉𝑙𝑖𝑛𝑒𝑎𝑟 < 𝑡ℎ𝑣 then
7 𝑠 = 𝑇𝑟𝑢𝑒;
8 𝒫𝑚 = 𝒫𝑚 + 𝒫𝑑𝑘;
9 else

10 𝑠 = 𝐹𝑎𝑙𝑠𝑒;
11 𝒫𝑐𝑎𝑐ℎ𝑒.𝑐𝑙𝑒𝑎𝑟();
12 𝒮𝑐𝑎𝑐ℎ𝑒 ← (𝒫𝑚, p𝑘);

13 while 𝒮𝑐𝑎𝑐ℎ𝑒.𝑠𝑖𝑧𝑒() > 0 do
14 ℳ𝑎𝑝 ← 𝐼𝐶𝑃 (𝒮𝑐𝑎𝑐ℎ𝑒, p𝑘,ℳ𝑎𝑝);
15 𝒮𝑐𝑎𝑐ℎ𝑒.𝑐𝑙𝑒𝑎𝑟();

to match the real-time point cloud data from spinning LiDAR against the high reso-
lution map as the Figure 11a shows to get the platform position in ground truth map.
The matching result from the NDT localizer is treated as the ground truth.

3.1.2 Data Collection Setup

Data Collection Platform

The data collection platform contains various LiDAR sensors with different charac-
teristics, from traditional spinning LiDARs with different resolutions to novel low-
cost solid-state LiDAR featured with non-repetition scanning patterns. There are
three spinning LiDARs: a 16-channel Velodyne LiDAR (VLP-16), a 64-channel
Ouster LiDAR (OS1), and a 128-channel Ouster LiDAR (OS0). The OS0 and OS1
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Figure 12: Our data collecting platform, top view (left) and front view (right)

sensors were mounted left and right sides, where the OS1 is turned 45° clockwise,
and the OS0 is turned 45° counter clockwise. The Velodyne LiDAR is at the top-
most position. The data collecting platform can be seen in Figure 9a. Additionally,
please refer to the top view of Figure 12 for the detailed distances, positions and
orientations.

Regarding the physical configuration, the Livox Horizon and Avia LiDARs were
installed in the center of the frame facing forward. The L515 camera was attached to
the front left of the platform. On the sides, the OS0 and OS1 sensors were mounted
at a bit higher level, where the OS1 is turned 45° clockwise, and the OS0 is turned
45° anticlockwise. The Velodyne LiDAR is at the top-most position with the x-axis
facing forward as well. The Optitrack marker set for the MOCAP-based and the
antenna for GNSS/RTK ground truth are both fixed on the top of the aluminum stick
to maximize its visibility and detection range.

To ensure a low-latency and high-speed transmission of all data, the LiDARs
are connected to a Gigabit Ethernet router and a computer onboard the platform
featuring an Intel i7-10750h processor, 64 GB of DDR4 RAM memory and 1 TB
SSD storage. The Optitrack system is also physically connected via Ethernet to the
onboard computer on a separate interface to the LiDARs. Finally, the RealSense
L515 camera is connected using a USB 3.0 port.

Calibration and Synchronization

The extrinsic parameters of the LiDARs are calculated based on optimization meth-
ods similar to those presented in [190]. We calculate the extrinsic parameters in an
indoor office environment, while the sensor platform was stationary. The coordinate
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Figure 13: Top view of point cloud data generated for the calibration process with
multiple LiDARs. The red and green point clouds represent data obtained from the
Livox Horizon and Avia, respectively. The pruple, yellow, blue and black clouds are
from the VLP-16, OS1, OS0 and L515 sensors, respectively.

system of the Horizon LiDAR sensor is treated as the reference frame during the cal-
ibration process. Ten consecutive frames of point cloud data are integrated from the
solid-state LiDARs to accumulate a higher degree of detail from the environment.

The point cloud data from each different LiDAR is then transformed to the ref-
erence frame based on manual measurements of a set of features in the environment.
Then, a GICP method is employed to optimize the relative transformation between
the reference frame and LiDARs iteratively [191]. For reference, in Figure 13, we
show sample sensor data from one of the indoor environments after calibration.

The ROS package 𝑙𝑖𝑣𝑜𝑥 𝑐𝑎𝑚𝑒𝑟𝑎 𝐿𝑖𝐷𝐴𝑅 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 was utilized to calibrate
the extrinsic parameter between the Horizon sensor and the L515 LiDAR camera.
The intrinsic parameters of LiDARs and the LiDAR camera are given based on fac-
tory settings and manufacturer information. A specific rosbag containing raw data
recorded in stationary settings at the room shown in Figure 13 is provided for end-
user re-calibration and potential application of different methods.

We synchronized all LiDAR sensors in Ethernet mode via the software-based
precise timestamp protocol (PTP) [192]. And we compared the orientation estima-
tion between the sensor’s built IMUs, and SLAM results with LiDARs and concluded
that the latency of our system is below 5 ms.

Software Information

Our software system is based entirely on ROS Melodic under Ubuntu 18.04. The set
of ROS drivers and the publishing frequency of the different sensors is shown visu-

40



Multi-Modal Sensor Datasets

Master

OptiTrack Driver

Avia Driver

Velodyne Driver

L515 Driver

Horizon Driver
OS0 Driver OS1 Driver

rosbag

10 Hz

10 Hz

10 Hz

120 Hz

30 Hz

10 Hz

10 Hz

Figure 14: ROS drivers and data gathering frequency for the different LiDAR sensors
used in our platform.

ally in Figure 14. Owing to the lack of hardware signals to synchronize the sensor
data, as in other datasets in the literature [29], we approach the minimization of the
data synchronization problem by running all the sensor drivers, data recording pro-
grams locally on a high performance computer. This, together with the networking
equipment, aid in reducing the latency of data transmission at the hardware and soft-
ware level (timestamped at the ROS drivers). In order to support a potentially wider
use of the data, the dataset also includes the time stamp from built-in internal oscil-
lators for both Livox and Ouster LiDARs, and for both point cloud and IMU data,
in addition to the timestamp included in the header of all ROS messages. We have
also compared the angular velocities of IMUs together with data from the MOCAP
system to conclude that the latency of our system is less than 10 ms.

Data Sequences and Format

The different subsets of out dataset are divided into three categories based on the
environment: forest, indoor, urban outdoor. Table 4 lists all the sequences in our
dataset. Three sequences are provided for the forest environment. The forest data is
collected at a forest in Turku, Finland (60∘28′14.3”𝑁22∘19′54.8”𝐸). The sequences
Forest01 and Forest02 are collected in winter time with snow-covered ground. For-
est01 includes a square-shaped trajectory, while in Forest02 the system is moved in
a straight trajectory. Both of these sets include MOCAP data. A larger-scale forest
recording is also provided in the Forest03 sequence, with Horizon and VLP-16 Li-
DARs mounted on a smaller handheld device. These sequences can support research
in areas from tree-counting to tree stem diameter estimation. The vast difference in
environment structure from urban settings to forest settings can also support LiDAR-
based general-purpose odometry, localization, and mapping algorithms.
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Figure 15: Our dataset was captured by a rich suite of sensors. Subsets of the data
from the Indoor04 sequence are visualized here. The leftmost column shows the Li-
DAR data from Avia and Horizon; the second column shows the LiDAR data from
OS1 and OS0; the third column shows the data from the VLP-16 and depth image
from L515. The rightmost column shows the RGB image from L515 and range im-
ages from 0S1 and OS0.

The indoor environment then adds another dimension to the dataset with five data
sequences. The data is collected in rooms and open halls of ICT-City in Turku, Fin-
land. Three sequences are collected in a large experiment room where data from the
MOCAP system is available. From these, Indoor03 contains faster rotations and sud-
den movements, while positioning the sensors closer to objects in front and around.
In consequence, most of the solid-state LiDAR view is blocked by objects or walls,
presenting a significantly more challenging situation for odometry estimation algo-
rithms based primarily on scan matching methods. The data in Indoor01 is recorded
while maintaining a longer distance (≈ 50 𝑐𝑚) with objects and following a square-
shaped trajectory with a reduced number of rotations. The Indoor02 sequence then
features a circular trajectory with more rotation but again maintaining an even larger
distance to objects than in Indoor03. Sequences Indoor04 and Indoor05 correspond
to recordings in a large hall and long corridor environment, respectively.

Finally, two sequences of open-road environment around the ICT-City building
in Turku, Finland, are also included in this dataset. The length of Road01 is over
50 m, while the traversed length of the trajectory in Road02 is about 500 m.

The data is collected in ROS and saved with the rosbag format, which has become
a standard in the robotics research community. Sampled data frames from a subset
of the sensors is shown in Figure 15. The detailed data format for each type included
in the dataset is listed as follow:

1. Point cloud from spinning LiDARs from the three spinning LiDARs, namely
VLP-16, OS0-128 and OS1-64. The sensor message type from spinning Li-
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DARs is recorded as 𝑠𝑒𝑛𝑠𝑜𝑟 𝑚𝑠𝑔𝑠 :: 𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑. Each point in the point
cloud holds four values (𝑥, 𝑦, 𝑧, 𝐼), where 𝑥, 𝑦, 𝑧 represent the local Cartesian
coordinates, and 𝐼 is the laser reflectance of the point measured.

2. Point cloud from solid-state LiDAR from the two solid-state Li-
DARs, namely Avia and Horizon. The message type of these solid-
state LiDARs in the rosbags is Livox’s custom data format named
𝑙𝑖𝑣𝑜𝑥 𝑟𝑜𝑠 𝑑𝑟𝑖𝑣𝑒𝑟/𝐶𝑢𝑠𝑡𝑜𝑚𝑀𝑠𝑔. The customized message keeps the
first point’s timestamp of each frame as the base time and then provides an
offset time relative to the base time for each point. This is needed as the
non-repetitive pattern does not allowed for a posteriori estimation, unlike
the spinning LiDARs, in which we can estimate the time difference between
points based on the settings of the mechanical parts. With this information,
the de-skew process can then be conducted on the data to compensate for the
distortion in the point cloud data caused by the sensor’s egomotion [6]. We
have maintained this message type that contains time information for each
point for algorithms that include in the processing flow the de-skew of point
cloud data and other related research. However, standard ROS messages
simplify the visualization of the point cloud with tools such as Rviz, and
provide a format that many other LiDAR processing algorithms relying on
standard ROS messages use [7]. Therefore, we provide format conversion
tools to transform the Livox custom message data to the ROS standard
message type 𝑠𝑒𝑛𝑠𝑜𝑟 𝑚𝑠𝑔𝑠 :: 𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑. Each point is then converted
to a new one that holds five values (𝑥, 𝑦, 𝑧, 𝐼, 𝐶), where 𝑥, 𝑦, 𝑧 is the local
Cartesian coordinate set, 𝐼 is the intensity of the point, and where the integer
part of 𝐶 represents the line number and the decimal part the point timestamp.

3. Images from LiDAR camera. The RealSense L515 LiDAR camera is config-
ured to publish RGB images with a size of 1920×1080, and depth images with
a size of 1024×768. The message type is 𝑠𝑒𝑛𝑠𝑜𝑟 𝑚𝑠𝑔𝑠 :: 𝐼𝑚𝑎𝑔𝑒 at frequency
10 Hz. The depth estimations are aided by the built-in LiDAR sensor.

4. Images from high-resolution spinning LiDAR. The two high resolution Li-
DAR from Ouster, OS0-128 and OS1-64, can output fixed-resolution range
images, near-infrared images captured by the laser sensor, and signal images.
In these, each pixel represents the distance from the sensor origin to the point,
the strength of the light captured, and the object’s reflectivity, respectively.
The images are published at frequency of 10 Hz. The image data is spatially
correlated, with 16 bits per pixel and a linear photo response. The message
type in the rosbags is the standard 𝑠𝑒𝑛𝑠𝑜𝑟 𝑚𝑠𝑔𝑠/𝐼𝑚𝑎𝑔𝑒.

5. Inertial data from spinning and solid-state LiDARs. There are in total four
built-in 6-axis IMU sensors with 3-axis gyroscope and a 3-axis accelerometer,
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one in each of the Ouster and Livox LiDARs. They publish data at a frequency
of 100 Hz in the former and 200 Hz in the latter. The data type of IMU data in
the rosbags is again ROS’ standard 𝑠𝑒𝑛𝑠𝑜𝑟 𝑚𝑠𝑔𝑠 :: 𝐼𝑚𝑢.

6. Ground truth data. The ground truth data from the MOCAP system is in-
cluded in rosbags as 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 𝑚𝑠𝑔𝑠 :: 𝑃𝑜𝑠𝑒𝑆𝑡𝑎𝑚𝑝𝑒𝑑 messages. They are
obtained from the computer driving the set of OptiTrack cameras through a
VRPN connection.

In this study, we evaluated popular 3D LiDAR SLAM algorithms in multiple data
sequences of various scenarios, including indoor, outdoor, and forest environments.
The indoor data is collected from the office, corridor, and halls of ICT-City, Turku,
Finland. The forest data is gathered at a forest in (6028′14.3”𝑁, 2219′54.8”𝐸),
Turku, Finland. Conversely, the road dataset was assembled from data collected
at an open-air skating park, also situated in Turku, Finland. Further specifications
pertaining to the dataset are comprehensively elaborated in Table 4.

Table 4: List of data sequences in our dataset (𝑉 : Velodyne VLP-16, 𝐻: Livox
Horizon, 𝐴: Livox Avia, 𝑂0: Ouster OS0, 𝑂1: Ouster OS1, 𝐿: RealSense L515, 𝑇 :
RealSense T265)

Sequence Description Ground Truth Sensors

Forest01 Forest(Winter,Square) MOCAP 𝑉 ,𝐻 ,𝐴,𝑂0,𝑂1

Forest02 Forest(Winter,Straight) MOCAP 𝑉 ,𝐻 ,𝐴,𝑂0,𝑂1

Forest03 Forest (long path) SLAM 𝑉 ,𝐻
Road01 Open road(short) SLAM 𝑉 ,𝐻 ,𝐴,𝑂0,𝑂1

Road02 Open road(long) SLAM 𝑉 ,𝐻 ,𝐴,𝑂0,𝑂1

Road03 Open road GNSS/RTK 𝑉 ,𝐻 ,𝐴,𝑂0,𝑂1,𝐿,𝑇
Indoor01 Office room(easy) MOCAP 𝑉 ,𝐻 ,𝐴,𝑂0,𝑂1

Indoor02 Office room(middle) MOCAP 𝑉 ,𝐻 ,𝐴,𝑂0,𝑂1

Indoor03 Office room(hard) MOCAP 𝑉 ,𝐻 ,𝐴,𝑂0,𝑂1

Indoor04 Large Hall SLAM 𝑉 ,𝐻 ,𝐴,𝑂0,𝑂1

Indoor05 Long Corridor SLAM 𝑉 ,𝐻 ,𝐴,𝑂0,𝑂1

Indoor06 Lab space (easy) MOCAP 𝑉 ,𝐻 ,𝐴,𝑂0,𝑂1,𝐿,𝑇
Indoor07 Lab space (hard) MOCAP 𝑉 ,𝐻 ,𝐴,𝑂0,𝑂1,𝐿,𝑇
Indoor08 Classroom space SLAM+ICP 𝑉 ,𝐻 ,𝐴,𝑂0,𝑂1,𝐿,𝑇
Indoor09 Corridor (short) SLAM+ICP 𝑉 ,𝐻 ,𝐴,𝑂0,𝑂1,𝐿,𝑇
Indoor10 Corridor (long) SLAM+ICP 𝑉 ,𝐻 ,𝐴,𝑂0,𝑂1,𝐿,𝑇
Indoor11 Hall (large) SLAM+ICP 𝑉 ,𝐻 ,𝐴,𝑂0,𝑂1,𝐿,𝑇
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3.1.3 Dataset Evaluation and Benchmarking

SLAM-Assisted Ground Truth Evaluation

The evaluation of the accuracy of the proposed ground truth prior map method is
challenging for some scenes in the dataset, as both GNSS and MOCAP systems
are not available in indoor environments such as long corridors. To evaluate the
generated ground truth, we adhere to the methodological approach described in the
referenced study [31]. Figure 16 (a),(b),(c) shows the standard deviations of the
ground truth generated by the proposed method during the first 10 seconds when the
device is stationary from sequence Indoors09. The standard deviations along the 𝑋 ,
𝑌 , and 𝑍 axes are 2.2 cm, 4.1 cm, and 2.5 cm, respectively, or about 4.8 cm overall.
However, evaluating localization performance when the device is in motion is more
difficult. To better understand the order of magnitude of the accuracy, we compare
the NDT-based ground truth 𝑍 values with the MOCAP-based ground truth 𝑍 values
in the sequence Indoor06 environment. The results in Figure 16 (d) show that the
maximum difference does not exceed 5 cm.

LiDAR Odometry Benchmarking

Different types of SLAM algorithms are selected and tested in our experiment.
LiDAR-only algorithms LeGo-LOAM (LEGO) 1 and Livox-Mapping (LVXM) 2 are
applied on data from the VLP-16 and Horizon separately; Tightly-coupled iterated
extended Kalman filter-based methods, FAST-LIO (FLIO) 3 [55], are applied on
both spinning LiDAR and solid-state LiDAR with built-in IMUs; A tightly coupled
LiDAR inertial SLAM system based on sliding window optimization, LiLi-OM 4 [7]
is tested with OS1 and Horizon. Furthermore, a tightly coupled method featuring
sliding window optimization developed for Horizon LiDAR, LIO-LIVOX (LIOL)5

has also been tested on Horizon LiDAR data. When IMU is required, we use the
Avia’s IMU for Velodyne LiDAR results.

We provide a quantitative analysis of the odometry error based on the ground
truth in Table 5. To compare the trajectories in the same coordinate, we treat the
coordinate of OS0 as a reference coordinate and transformed all trajectories gener-
ated by selected SLAM methods to reference coordinate. The Absolute Pose Error
(APE) [193] is employed as the core evaluation metric. We calculated the error of

1https://github.com/RobustFieldAutonomyLab/LeGO-LOAM
2https://github.com/Livox-SDK/livox mapping
3https://github.com/hku-mars/FAST LIO
4https://github.com/KIT-ISAS/lili-om
5https://github.com/Livox-SDK/LIO-Livox
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Figure 16: (a) (b) (c): Ground truth position values for the first 10 seconds of
the dataset when the device was stationary. Red lines show the mean values over
this period of time. (d): Comparison of NDT-based ground-truth z-values (blue) to
MOCAP-based z-values (red) over the course of 60 seconds of the dataset while the
device was in motion.

each trajectory with the open-source EVO toolset 6.
From the result, we can conclude that FAST LIO with high resolution spinning

LiDAR OS0 and OS1 has the most robust performance that can complete all the
trajectories on different sequences with promising accuracy. Especially for sequence
Indoor09 showcasing a long corridor, all other methods failed and Fast LIO with
high resolution LiDAR remain effective.

Solid-state LiDAR-based SLAM systems such as LIOL Hori perform as well or
even better in outdoor environments than rotating LiDARs with appropriate algo-
rithms, but perform significantly more poorly in the indoor environments. For the
open road sequences Road03, all SLAM methods perform well, and the trajecto-

6https://github.com/MichaelGrupp/evo.git
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Table 5: Absolute Pose Error (APE) (𝜇/𝜎) in cm of the selected methods (N/A when
odometry estimations diverge). Best results in bold.

Sequence FLIO OS0 FLIO OS1 FLIO Velo FLIO Avia FLIO Hori LLOM Hori LLOMR OS1 LIOL Hori LVXM Hori LEGO Velo

Indoor06 0.015 / 0.006 0.032 / 0.011 N/A 0.205 / 0.093 0.895 / 0.447 N/A 0.882 / 0.326 N/A N/A 0.312 / 0.048

Indoor07 0.022 / 0.007 0.025 / 0.013 0.072 / 0.031 N/A N/A N/A N/A N/A N/A 0.301/0.081

Indoor08 0.048 / 0.030 0.042 / 0.018 0.093 / 0.043 N/A N/A N/A N/A N/A N/A 0.361 / 0.100

Indoor09 0.188 / 0.099 N/A 0.472 / 0.220 N/A N/A N/A N/A N/A N/A N/A

Indoor10 0.197 / 0.072 0.189 / 0.074 0.698 / 0.474 0.968 / 0.685 0.322 / 0.172 1.122 / 0.404 1.713 / 0.300 0.641 / 0.469 N/A 0.930 / 0.901

Indoor11 0.584 / 0.080 0.105 / 0.041 0.911 / 0.565 0.196 / 0.098 0.854 / 0.916 0.1.097 / 0.0.45 1.509 / 0.379 N/A N/A N/A

Road03 0.123 / 0.032 0.095 / 0.037 1.001 / 0.512 0.211 / 0.033 0.351 / 0.043 0.603 / 0.195 N/A 0.103 / 0.058 0.706 / 0.396 0.2464 / 0.063

Forest01 0.138 / 0.054 0.146 / 0.087 N/A 0.142 / 0.074 0.125 / 0.062 0.116 / 0.053 0.218 / 0.110 0.054 / 0.033 0.083 / 0.041 0.064 / 0.032

Forest02 0.127 / 0.065 0.121 / 0.069 N/A 0.211 / 0.077 0.348 / 0.077 0.612 / 0.198 N/A 0.125 / 0.073 0.727 / 0.414 0.275 / 0.077

ries are completed without major disruptions. For the indoor sequence Indoor06,
Avia-based and Horizon-based FLIO are able to reconstruct the sensor trajectory but
significant drift accumulates. In all of these sequences, all the methods applied to
spinning LiDARs perform satisfactorily. This result can be expected as they have
full view of the environment, which has a clear geometry. For the sequence In-
door10 showcasing a long corridor, almost all methods can reconstruct the complete
trajectory again. The best performance comes from OS0-FLIO and OS1-FLIO with
correct alignment between the first and last positions. We hypothesize that this occurs
because OS0 has more channels than OS1, leading to lower accumulated cumulative
angular drift.

In addition to the quantitative trajectory analysis, we visualize trajectories gener-
ated by selected methods in 3 representative environments in Figure 17. Within this
illustration, Figure 17a signifies the trajectory within an indoor setting, Figure 17b
depicts the trajectory within an open road environment, and Figure 17c demonstrates
the trajectory within a forest environment. Full reconstructed paths are available in
the dataset repository.

Runtime Evaluation

We conducted this experiment on 4 different platforms. The first platform (1) was a
Lenovo Legion Y7000P with 16 GB RAM, a 6-core Intel i5-9300H (2.40 GHz) and
an Nvidia GTX 1660Ti (1536 CUDA cores, 6 GB VRAM). The second (2) platform
was the Jetson Xavier AGX, a popular computing platform for mobile robots, which
has an 8-core ARMv8.2 64-bit CPU (2.25 GHz), 16 GB RAM and 512-core Volta
GPU. From its 7 power modes, we chose MAX and 30 W (6 core only) modes.
The third (3) platform was the Nvidia Xavier NX which is a common embedded
computing platform with a 6-core ARM v8.2 64-bit CPU, 8 GB RAM, and 384-core
Volta GPU with 48 Tensor cores. We chose the 15 W power mode (all 6 cores) for
the NX. The fourth (4) platform was the UP Xtreme board featuring an 8-core Intel
i7-8665UE (1.70 GHz) and 16 GB RAM.

These platforms all run ROS Melodic on Ubuntu 18.04. The CPU and mem-
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(a) trajectory comparison of se-
quence Indoor10

(b) trajectory comparison of se-
quence Road03

(c) trajectory comparison of se-
quence Forest01

Figure 17: Demos of trajectories generated by multiple 3D LiDAR SLAM based on
data from indoor, road, and wild environments

ory utilization is measured with a ROS resource monitor tool 7. Additionally, for
minimizing the difference of the operating environment, we unified the dependen-
cies used in each SLAM system into same version, and each hyperparameter in the
SLAM system is configured with the default values. The results are shown in Table 6.

The memory utilization of each selected SLAM approach among the two proces-
sor architectures platforms is roughly equivalent. However, the CPU utilization of the
same SLAM algorithm running on Intel processors is generally higher than the other
algorithms, and also the highest publishing frequency is obtained. LeGO LOAM has
the lowest CPU utilization but its accuracy is towards the low end (see Table 6), and
has a very low pose publishing frequency. Fast-LIO performs well, especially on em-

7https://github.com/alspitz/cpu monitor
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Table 6: Average run-time resource (CPU/RAM) utilization and performance (pose
calculation speed) comparison of selected SLAM methods across multiple platforms.
The data is played at 15 times the real speed for the pose publishing frequency. CPU
utilization of 100% equals one full processor core.

( CPU utilization (%), RAM utilization (MB), Pose publication rate (Hz) )

Intel PC AGX MAX AGX 30 W UP Xtreme NX 15 W

FLIO OS0 (79.4, 384.5, 74.0) (40.9, 385.3, 13.6) (55.1, 398.8, 13.2) (90.9, 401.8, 47.3) (53.7, 371.1, 14.3)

FLIO OS1 (73.7, 437.4, 67.5) (54.5, 397.5, 21.2) (73.9, 409.2, 15.4) (125.9, 416.2, 58.0) (73.3, 360.4, 14.2)

FLIO Velo (69.9, 385.2, 98.6) (44.4, 369.7, 29.1) (58.3, 367.6, 21.4) (110.5, 380.5, 89.6) (57, 331.5, 19.5)

FLIO Avia (65.0, 423.8, 98.3) (40.8, 391.5, 32.3) (47.4, 413.4, 24.5) (113.2, 401.2, 90.7) (51.2, 344.8, 21.9)

FLIO Hori (65.7, 423.8, 103.7) (37.6, 408.4, 34.7) (50.5, 387.9, 26.8) (109.7, 422.8, 91.0) (47.5, 370.7, 23.4)

LLOM Hori (126.2, 461.6, 14.5) (128.5, 545.4, 9.1) (168.5, 658.5, 1.5) (130.1, 461.1, 12.8) (N / A)

LLOMR OS1 (112.3, 281.5, 25.8) (70.8, 282.3, 9.6) (107.1, 272.2, 6.5) (109.0, 253.5, 13.6) (N / A)

LIOL Hori (186.1, 508.7, 19.1) (247.2, 590.3, 9.6) (188.1, 846.0, 4.1) (298.2, 571.8, 14.0) (239.0, 750.5, 4.54)

LVXM Hori (135.4, 713.7, 14.7) (162.3, 619.0, 10.5) (185.86, 555.81, 5.0) (189.6, 610.4, 7.9) (198.0, 456.7, 5.5)

LEGO Velo (28.7, 455.4, 9.8) (42.4, 227.8, 7.0) (62.8, 233.4, 3.5) (39.7, 256.6, 9.1) (36.9, 331.4, 3.7)

bedded computing platforms, with good accuracy, low resource utilization, and high
pose publishing frequency. In contrast, LIO LIVOX has the highest CPU utiliza-
tion due to the computational complexity of the frame-to-model registration method
applied to estimate the pose.

A final takeaway is in the generalization of the studied methods. Many state-of-
the-art methods are only applicable to a single LiDAR modality. In addition, those
that have higher flexibility (e.g., FLIO) still lack the ability to support a point cloud
resulting from the fusion of both types of LiDARs.

Mapping Quality Evaluation

We qualitatively compare the mapping result generated from different LiDARs in
indoor environments as shown in Figure 18.

From Figure 18, we can observe that the LIOL method applied to solid-state
LiDAR presents the most detailed and clear map. It is worth noting that these
maps have been generated with the default configuration of the methods and with-
out changing parameters such as the map update frequency. This result matches the
quantitative results obtained with the same sensors and algorithms in the forest.

As shown in Figure 18, Horizon-based LIOL has the best mapping ability, but
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Figure 18: Qualitative comparison of the mapping quality. The first row from left
to right shows RGB full view image, full view Horizon-based LIOL and close view
RGB image. The second row from left to right shows OS0, OS1, Velodyne, Avia and
Horizon-based FLIO. The bottom row from left to right shows the Horizon-based
LIOL, Horizon, OS1-based LLOM and LLOMR, Velodyne’s LeGo-LOAM maps
and Horizon-based LVXM, respectively.

if the environment (such as sequence indoors 06-09) is complex, LIOL will fail to
map due to drift. In addition, OS0 and OS1-Based FLIO also have good mapping
ability, thanks to the wide FOV and excellent resolution of OS0 and OS1. Compared
to OS0 and OS1, Velodyne has poorer mapping ability due to its larger resolution,
and it has almost failed to reconstruct the letter B sign in Figure 18. LVMX, LLOM,
and LLOMR focus on calculating the mobile platform’s pose estimation rather than
point cloud mapping ability, so the point cloud maps they reconstructed are relatively
poor.
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3.2 UAV Tracking Dataset with Multi-Modal LiDARs
The integration of UAVs into multi-robot systems underscores the critical im-
portance of inter-robot tracking for both relative and global state estimation
methods [194; 195]. Tracking UAVs from an UGV within these multi-robot config-
urations enhances miniaturization and flexibility while reducing the dependency on
high-accuracy onboard localization systems [127; 126]. The UGV frequently serves
as a base station, providing essential data to support UAV operations in areas with
limited GNSS availability.

One of our primary objectives is to address the paucity of data from solid-state
LiDARs. These advanced sensors, a recent innovation in long-range scanning tech-
nology, generate high-density point clouds, making them particularly well-suited
for tracking objects in three-dimensional space, including UAVs [7]. Their non-
repetitive scan patterns enable the production of dense point clouds with adjustable
frequencies and variable FoV coverage. Recognizing the necessity for more data to
advance research in the development of general-purpose, sensor-agnostic LiDAR
data processing algorithms, we have initiated efforts to bridge this gap. Conse-
quently, we introduce our novel multi-LiDAR UAV tracking dataset, which includes
a spinning LiDAR, two solid-state LiDARs with distinct FoV and scan patterns, and
an RGB-D camera combination. This dataset is designed to facilitate advancements
in UAV tracking and support the development of robust algorithms capable of pro-
cessing a diverse range of LiDAR data.

The main contributions of this work and the presented dataset are the following:

1. A dataset with data from 3 different LiDAR sensors and an RGB-D camera
in both indoor and outdoor environments. To our knowledge, this presents the
first diverse dataset in terms of LiDAR sensors specifically for UAV tracking.
The dataset features a spinning LiDARs with 64 channels (Ouster OS1-64) ,
two different solid-state LiDARs with different scanning patterns and FoVs
(Livox Mid-360 and Avia), and an RGB-D camera (RealSense D435). Due
to the shorter range of the point cloud generated by the RGB-D camera com-
pared to the LiDAR sensors, only RGB images were extracted from it. The
dataset is further enriched with low-resolution images containing depth, near-
infrared, and laser reflectivity data from the Ouster sensor. These components
are illustrated in Figure 19.

2. The dataset includes sequences with MOCAP ground truth in both indoor and
outdoor environments. The indoor trajectories exhibit more intricate patterns
than the outdoors, while the outdoor sequences were deliberately selected to
simulate potential docking and infrastructure inspection scenarios [196], with
an emphasis on their proximity to a building.

3. Based on the presented dataset, we provide a baseline comparison with re-
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Optitrack PrimeX 22 Camera

Holybro X500

Autel 
Evo II

Tello

Figure 19: Illustration of the hardware used in the experiments. At the bottom, the
tracking sensors including Ouster OS1-64, Livox Mid-360, Livox Avia and Intel Re-
alSense D435.

cent LiDAR-based UAV tracking algorithms, benchmarking the performance
with different sensors, UAVs of different sizes (from MAVs to more standard
commercial platforms), and algorithms.

3.2.1 Provided Ground Truth

Accurately generating ground truth data in complex environments is a challenging
task, as evidenced by various existing datasets. In indoor settings, MOCAP sys-
tems have been widely adopted due to their ability to provide positioning data with
millimeter-level accuracy. However, for outdoor datasets near buildings, obtaining a
reliable GNSS signal is often not feasible.

To address the need for reliable ground truth data across diverse environments,
our dataset uniquely includes MOCAP-based ground truth data for both indoor and
outdoor scenarios. This inclusion ensures comprehensive coverage and facilitates
robust evaluation in various real-world conditions.

3.2.2 Configuration of Hardware and Software

Hardware Information

The primary objective of our sensor system is to gather data from a diverse range
of LiDAR sensors, each offering distinct characteristics. These sensors include two
innovative, low-cost solid-state LiDARs and a 3D spinning LiDAR, complemented
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Figure 20: Data collecting platform, top view (left) and front view (right)

by an integrated RGB-D camera.
Specifically, our data collecting platform consists of a 64-channel Ouster spin-

ning LiDAR (OS1), two Livox solid state LiDAR sensors: Mid-360, featuring a
nearly 360° FoV, and Avia, with an almost-circular FoV. The setup is completed
with an Intel RealSense D435 RGB-D camera. The top and front views depicted in
Figure 20 provide a comprehensive understanding of the distances, positions, and
orientations of these sensors.

The LiDARs are linked to a Gigabit Ethernet router, as well as to an onboard
computer on the platform. This computer is equipped with an Intel i7-10750h pro-
cessor, 16 GB of DDR4 RAM memory, and 1 TB SSD storage. To maintain a distinct
connection from the LiDARs, the Optitrack system is physically attached to the same
computer via a separate Ethernet interface. Furthermore, the RealSense D435 cam-
era is connected to a USB 3.2 port for seamless integration and operation.

Software Information

Our software system is exclusively built upon ROS Noetic, operating on Ubuntu
20.04. The ROS drivers and the publishing frequency of the various sensors are il-
lustrated in Figure 21. To address the absence of hardware signals for sensor data
synchronization, as noted in other datasets in the literature [29], we adopt an ap-
proach aimed at minimizing the data synchronization challenge. This involves run-
ning all sensor drivers and data recording programs locally on a high-performance
computer. By doing so, and in conjunction with the networking equipment, we ef-
fectively reduce data transmission latency at both the hardware and software levels.
Timestamps are applied at the ROS drivers to ensure synchronization. Additionally,
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Figure 21: ROS drivers and data gathering frequency for the different LiDAR sensors
used in our platform.

we maintain timestamp consistency across all sensors by utilizing the PTP, which is
specifically designed for high-precision time synchronization within local networks.

Sensor Calibration

The extrinsic parameters for the LiDAR sensors were determined using optimization
methods similar to those presented in Jeong et al. [190]. The calibration process
was conducted in an indoor office environment with the sensor platform stationary.
During calibration, the coordinate system of the Ouster LiDAR sensor was desig-
nated as the reference frame. To enhance the level of detail in the environment, ten
consecutive frames of point cloud data were integrated from the solid-state LiDARs.

To align the point cloud data from each LiDAR to the reference frame, we man-
ually measured a set of features in the environment. Subsequently, we employed the
GICP method to iteratively optimize the relative transformation between the refer-
ence frame and the other LiDARs [191]. This iterative optimization process ensures
accurate and precise calibration, thereby enhancing the overall performance of the
LiDAR-based system.

Similarly, the extrinsic parameters between the Ouster sensor and the Intel Re-
alSense D435 camera were determined using the depth cloud produced by the latter.
Additionally, we provide supplementary stationary data for extrinsic, if a custom cal-
ibration is preferred. The intrinsic parameters of the sensors are provided based on
factory settings and manufacturer information.
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Dataset Sequences and Format

Our dataset is organized into three distinct categories based on the environment and
trajectory structure: structured indoor, unstructured indoor, and unstructured out-
door. Each category captures specific movement patterns and characteristics, as fol-
lows:

(i) Structured Indoor: This subset (HolybroStdn) comprises simple trajectories
represented by predefined, systematic patterns, including a circle, a cube, a
spiral, and an up and down movement. These structured trajectories are in-
tentionally included to provide standardized, reproducible, and easily inter-
pretable movement patterns. By employing these basic trajectories, ablation
studies can be performed on isolated and specific aspects of different meth-
ods. This naturally allows for evaluating scenarios where different elements
are decoupled. The structured indoor trajectories act as a reference point for
understanding how well a method performs under well-defined and controlled
conditions.

(ii) Unstructured: In this subset, trajectories exhibit a more irregular nature, sim-
ulating movements that occur both indoors and outdoors without strict adher-
ence to predefined patterns. These trajectories aim to capture the spontaneous
and less structured nature of real-world flight scenarios, where a UAV’s move-
ments can vary significantly based on the environment and other influencing
factors.

A comprehensive list of sequences in each category is shown in Table 7.
Figure 22 displays a subset of the dataset, represented in three dimensions to

enhance the understanding of spatial distances in each direction. Complete visual-
izations of all recorded trajectories are available on the project’s GitHub page.

The data collection for the indoor and outdoor trajectories was conducted in dis-
tinct locations to capture a diverse range of environments. The indoor data was gath-
ered in the open area of our lab, providing a controlled and confined setting for UAV
movements. On the other hand, the outdoor data was acquired in an open area adja-
cent to the building, offering a more estensive space for capturing trajectories with
greater distances and varied environmental conditions. While the indoor trajecto-
ries exhibit both greater complexity and, in some, regularity, the outdoor trajectories
emphasize their proximity to the building, simulating potential docking scenarios.

We qualitatively assessed the complexity of each trajectory accommodating
for different UAV capabilities, classifying the trajectories into three levels: easy,
medium, and difficult. This categorization is based on the size and speed of the
UAV used during data collection. Specifically, we utilized three different UAVs -
the Holybro, Autel II, and Tello. As expected, larger UAVs tended to result in easier
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Table 7: List of data sequences in our dataset recorded indoor and outdoor

Sequence Description Ground Truth Difficulty

HolybroStnd01 Structured(Up/Down) MOCAP Easy
HolybroStnd02 Structured(Square) MOCAP Easy
HolybroStnd03 Structured(Circle) MOCAP Easy
HolybroStnd04 Structured(Spiral) MOCAP Easy

Holybro01 Unstructured, Indoor MOCAP Easy
Holybro02 Unstructured, Indoor MOCAP Easy
Holybro03 Unstructured, Indoor MOCAP Easy
Holybro04 Unstructured, Indoor MOCAP Medium
Holybro05 Unstructured, Indoor MOCAP Medium

HolybroOut01 Unstructured, Outdoor MOCAP Medium
HolybroOut02 Unstructured, Outdoor MOCAP Medium

Autel01 Unstructured, Indoor MOCAP Easy
Autel02 Unstructured, Indoor MOCAP Easy
Autel03 Unstructured, Indoor MOCAP Easy
Autel04 Unstructured, Indoor MOCAP Medium
Autel05 Unstructured, Indoor MOCAP Hard

AutelOut01 Unstructured, Outdoor MOCAP Hard
AutelOut02 Unstructured, Outdoor MOCAP Hard

Tello01 Unstructured, Indoor MOCAP Medium
Tello02 Unstructured, Indoor MOCAP Medium
Tello03 Unstructured, Indoor MOCAP Hard
Tello04 Unstructured, Indoor MOCAP Hard
Tello05 Unstructured, Indoor MOCAP Hard

TelloOut01 Unstructured, Outdoor MOCAP Hard
TelloOut02 Unstructured, Outdoor MOCAP Hard
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Figure 22: Sample of recorded trajectories. Top row: HolybroStnd01, Holy-
broStnd02, HolybroStnd03, HolybroStnd04. Bottom row: Holybro03, Autel02, Au-
tel05, Tello04.

trajectories, while faster speeds led to higher levels of difficulty. The difficulty levels
are chosen with the aim of enabling researchers to evaluate their methods across a
spectrum of challenges, ranging from simple to more intricate flight paths, following
similar standards in previous datasets [197].

To introduce additional challenges, we designed the fourth indoor track for each
UAV as a circular path around an obstacle and the fifth indoor track as a loop between
two obstacles. These obstacle tracks were specifically included to test the UAVs’
maneuvering abilities in constrained spaces, further diversifying the difficulty levels
and encouraging the evaluation of methods under more intricate flight conditions.

In our dataset, the indoor trajectories typically span approximately 16 m, whereas
the outdoor trajectories cover larger distances, extending up to 30 m. This contrast
in distances allows researchers to analyze trajectory characteristics in diverse spatial
contexts, emphasizing the importance of robust analysis techniques that can adapt to
varying scales and complexities.

Data collection within the ROS environment makes use of the rosbag format,
which has emerged as a standard within the robotics research community. Figure 23
showcases sampled data frames from a subset of the sensors. Detailed data formats
for each type of data included in the dataset are as follows:

(i) Point cloud data from spinning LiDAR (OS1-64) is recorded as
sensor msgs::PointCloud. Each point in the point cloud contains four values
(𝑥, 𝑦, 𝑧, 𝐼), representing local Cartesian coordinates (𝑥, 𝑦, 𝑧), and the mea-
sured laser reflectance (𝐼).

(ii) Point cloud data from solid-state LiDARs, Avia, and Mid-360, employs
Livox’s custom data format named livox ros driver/CustomMsg in the ros-
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Figure 23: Subsets of data from the Holybro01 sequence. The left column shows
the LiDAR point cloud from the Avia and the OS-1 as the right column displays the
point cloud from the Mid-360 as well as the RGB image from the D435 and the signal
image from the OS-1.

bags. This custom message includes a base time and an offset time relative to
the base time for each point. This approach compensates for the non-repetitive
pattern inherent to solid-state LiDARs and allows for de-skewing of the point
cloud data, addressing distortions caused by the sensor’s egomotion. We have
retained this message type for algorithms involving point cloud deskewing
and related research. However, to facilitate visualization in tools like Rviz
and compatibility with standard LiDAR processing algorithms relying on ROS
messages, we provide format conversion tools to transform the Livox custom
message data to the standard ROS message type, sensor msgs::PointCloud.
The converted points now hold five values (𝑥, 𝑦, 𝑧, 𝐼, 𝐶), where 𝑥, 𝑦, 𝑧 repre-
sent local Cartesian coordinates, 𝐼 is the intensity of the point, and 𝐶 incorpo-
rates the line (integer part) and point timestamp (decimal part).

(iii) Images from RGB camera. The RealSense D435 camera publishes RGB
images at 1920×1080 resolution and a 30 Hz frequency. The message type is
𝑠𝑒𝑛𝑠𝑜𝑟 𝑚𝑠𝑔𝑠 :: 𝐼𝑚𝑎𝑔𝑒.

(iv) Images from the high-resolution spinning LiDAR (OS1-64) consist of
fixed-resolution range images, near-infrared images captured by the laser
sensor, and signal images. Each pixel in these images represents the distance
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Table 8: Position error (RMSE) for the dynamic scan tracking 𝐼EKF and 𝐼KF (N/A
when the error diverges because the estimated trajectory is incomplete. Unit: meter)

Method HolybroStnd01 HolybroStnd02 HolybroStnd03 HolybroStnd04 Holybro01 Holybro02 Autel02 Autel03 Tello01 Tello02

𝐼EKF
Avia 0.0431 0.037 0.0425 0.0526 0.0592 0.0649 0.0984 0.183 0.125 0.1182

𝐼KF
Avia 0.0415 0.0272 0.0389 0.042 0.1155 N/A 0.112 0.0395 N/A 0.1321

𝐼EKF
Mid-360 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

𝐼KF
Mid-360 0.1042 N/A N/A N/A 0.0673 N/A N/A N/A N/A N/A

from the sensor origin to the point, the captured light’s strength, and the
object’s reflectivity, respectively. These images are published at a frequency
of 10 Hz and have 16 bits per pixel with a linear photo response. The standard
ROS message type, sensor msgs/Image, is used for these image data.

(v) Inertial data is available from both spinning and solid-state LiDARs, featur-
ing three built-in 6-axis IMU sensors with a 3-axis gyroscope and a 3-axis
accelerometer. The IMU data is published at a frequency of 100 Hz for the
spinning LiDAR and 200 Hz for the solid-state LiDAR. The standard ROS
message type, sensor msgs::Imu, is employed for IMU data in the rosbags.

(vi) Ground truth data is derived from the MOCAP system and is included in the
rosbags as geometry msgs::PoseStamped messages. These data are obtained
from the computer connected to the OptiTrack cameras via a VRPN connec-
tion, providing precise ground truth information.

3.2.3 Dataset Evaluation

This section covers the characterization of the different tracking approaches for the
dataset sequences.

Evaluation Metrics

First, to quantify the disparity between the different LiDAR sensors and the external
position system estimates, we computed the error by taking the difference between
the position estimates obtained from both systems for two distinct positions and ori-
entations of the target. This analysis revealed a Root Mean Squared Error (RMSE)
of 0.0143 m.

To quantitatively evaluate the tracking performance, we employed the RMSE
metric, and the summarized outcomes are presented in Table 8. Additionally, we
provide an overall assessment of each method’s performance based on the percentage
of successfully estimated trajectories, as shown in Table 9.
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Table 9: Percentage of successfully estimated trajectories for the dynamic scan track-
ing 𝐼EKF and 𝐼KF on the selected data subset (N/A when the method was not designed
for that type of LiDAR)

LiDAR 𝐼EKF 𝐼KF

Livox Avia 100% 80%
Livox Mid-360 0% 20%

Ouster N/A N/A

Experimental Evaluation

As part of our dataset, we provide an evaluation of current UAV tracking methods on
several sequences. The objective is to compare the performance of different methods
to provide a baseline for future research. Throughout this section, we discuss the
best methods for different types of LiDAR sensors and environments.

From our analysis, one of the key findings is the pressing need for methods that
can enhance UAV tracking with sparse LiDAR data, regardless of the scanning pat-
tern.

Regarding the dynamic tracking method [198] (𝐼EKF and 𝐼KF), initially designed
for the Livox Horizon LiDAR, we observed that it exhibits strong generalization
capabilities and performs effectively on the Livox Avia.

Among the tested methods, we observed that tracking using the dense solid-
state Livox Avia LiDAR yields superior results compared to the sparser Mid-360.
Specifically, the 𝐼EKF method successfully estimated 100% of the selected trajecto-
ries, while the 𝐼KF method achieved better results on more standard patterns, such as
HolybroStdn. However, it’s worth noting that the dynamic tracking method, being
designed for dense solid-state LiDARs, exhibited poor performance on the Mid-360,
regardless of the trajectory type and UAV used.

In summary, our evaluation highlights the need for improved UAV tracking meth-
ods, especially for sparse LiDAR data, and demonstrates the varying performance of
different methods based on the type of LiDAR sensor and scanning environment.
These findings lay the groundwork for future research and development in UAV
tracking techniques.
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3.3 UWB Relative Localization Dataset
This section aims to provide a dataset for calculating relative localization using mov-
ing UWB transceivers mounted on top of each robot (in the center). The dataset
collected is derived from the work discussed in Section 4.2. To our knowledge, this
is the first dataset with only one UWB transceiver on each robot. In the dataset, we
have the the data from UWB and also robot odometery.

Each Turtlebot, as illustrated in Figure 34 (b) on page 79 is equipped with a UWB
transceiver. In total, four robots are employed, each following different movement
patterns as depicted in Figure 34 (a) on page 79. The ground truth positions of the
robots are provided by a MOCAP system.

The UWB ranges are recorded as a format of sensor msgs/Range while the
odometry data is in nav msgs/Odometry.
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3.4 Summary

3.4.1 Multi-Modal LiDAR Dataset for General Purposes

First, we have presented a novel dataset collected with a multi-modal LiDAR sensor
system in diverse environments including indoor, outdoor, and forest. The dataset
includes data from LiDARs of different types (spinning and solid-state), resolution
(16, 64 and 128 channels for spinning LiDARs) and scan patterns (for two different
solid-state LiDARs), in addition to a LiDAR camera.This opens the door to future re-
search in general-purpose algorithms, as our analysis shows that different algorithms
clearly perform better in one or another type of LiDAR, if they are able to process
the data at all. There is therefore a significant gap to be filled in more robust LiDAR
odometry, localization and mapping algorithms.

After the date collection, we systematically evaluate multiple open source SLAM
algorithms in terms of LiDAR Odometry, and power consumption. The experiments
have covered different data sequences across 4 computing platforms. Including
the Nvidia Jetson Xavier platform provides further references for the application
of various SLAM algorithms on computationally resource-constrained devices such
as drones.

3.4.2 Dataset for Specific Applications

UAV Tracking

The aforementioned multi-modal LiDAR dataset is designed for general purposes.
In addition, we have developed datasets tailored to specific applications.

We introduce a novel dataset collected using a multi-LiDAR sensor system, cov-
ering both indoor and outdoor environments. The dataset includes a variety of Li-
DAR types with differing resolutions and scan patterns, as well as an RGB camera.
It also features UAVs of varying sizes, typical of urban areas. This diverse range of
sensors and UAVs offers a unique opportunity for future research on general-purpose
algorithms, as our analysis reveals significant performance variations among differ-
ent algorithms depending on the type of LiDAR used. Consequently, there is a sub-
stantial opportunity to develop more robust LiDAR-based UAV tracking algorithms.

To facilitate algorithm analysis, we have included ground truth data for both
indoor and outdoor settings. The dataset’s distinctive characteristics, encompassing a
wide array of data and environmental conditions, set it apart from existing literature.
This paper aims to establish a solid foundation for benchmarking and conducting
quantitative comparisons between current and future LiDAR-based UAV tracking
algorithms. This dataset holds promise for advancing the field of UAV tracking,
opening new avenues for cutting-edge research and development.
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UWB Based Infrastructure Free Relative Localization

Apart from UAV tracking, we provide a dataset for calculating relative localization
based on moving UWB transeivers mounted on top of each robot. It is worth noting
that in this dataset, there is one UWB transeiver mounted on a each robot. In total,
four robots moves in different patterns included in the dataset with ground truth
position giving by a MOCAP system.

63



4 UWB Based Multi-Robot Relative
Localization

4.1 Cooperative Localization Between UAVs and
UGVs

Multiple industrial use cases benefit from the deployment of UAVs [199]. When
accurate localization is needed, GNSS/RTK is the de-facto standard for gathering
aerial data with UAVs [200]. For example, high-accuracy photogrammetry [201],
civil infrastructure monitoring [202], or in urban environments where GNSS signals
suffer more degradation [200]. As UAVs become ubiquitous across different domains
and application areas [203], having access to more flexible and lower-cost solutions
to precise UAV navigation can aid in accelerating adoption and widespread use. In
this paper, we consider the problem of UAV navigation through relative localization
to a companion UGV. We consider a ground robot as a more flexible platform from
the point of view of deployment, but in simulations, we also consider localization
based on fixed beacons in the environment, closer to how GNSS/RTK systems are
deployed.

Within the different approaches that can be used for cooperative relative local-
ization, from visual sensors [204] to cooperative SLAM [205], wireless ranging
technologies offer high performance with low system complexity [65]. In partic-
ular, ultra-wideband (UWB) wireless ranging offers unparalleled localization per-
formance within the different radio technologies in unlicensed bands [61]. Other
benefits of UWB include resilience to multipath, high time resolution, and low inter-
ference with other radio technologies [206].

The system that we analyze in this chapter consists of a UGV equipped with four
UWB transceivers and a UAV equipped with two transceivers. The UAV transceivers
act as initiators, taking turns in sending signals to each of the UGV transceivers.
When these respond, the time of flight of the signal is calculated and the distance
between each pair of transceivers is calculated. This process is illustrated in Fig-
ure 24. The main contribution of this part is thus on evaluating how UWB-based
relative localization can improve the positioning of UAVs when supported by ground
robots. We simulate different trajectories to evaluate the performance of the system
and compare the accuracy of the GNSS, UWB, and VIO approach to localization
with field tests in an urban environment. In the simulations, we consider different
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UAV Transceivers (initiators)

UWB Ranging

UGV Transceivers (responders)

Figure 24: Cooperative localization approach based on UWB ranging measurements
from multiple transceivers in different robots

configurations of transceivers in the ground to compare the localization and naviga-
tion performance.

4.1.1 Problem Definition

We consider the problem of relative localization between a UAV and a UGV based
on UWB ranging between transceivers installed onboard both robots. The objective
is to leverage this relative localization to improve the accuracy of the UAV navigation
outdoors. We are especially interested in improving the navigation performance in
urban areas where the accuracy of GNSS sensors is degraded due to the signal being
reflected at or occluded by nearby buildings.

Let us denote by 𝐼 = {𝐼𝑖}𝑖=0,...,𝑁−1 the set of 𝑁 transceivers onboard the UAV.
These will act as initiators, i.e., will actively transmit messages to initiate ranging
measurements between them and the responder transceivers on the ground. We de-
note the latter ones by the set 𝑅 = {𝑅𝑖}𝑖=0,...,𝑀−1. An initial approach, which we
implement, is to iteratively range between each initiator and the set of responders. If
the number of nodes increases significantly, more scalable approaches can be used
where, for example, a single initiator message is answered by several or all respon-
ders with different delays [108].

We model the UWB ranges between an initiator 𝑖 and a responder 𝑗 with

z𝑈𝑊𝐵
(𝑖,𝑗) = ‖p𝑖(𝑡)− q𝑗(𝑡)‖+𝒩 (0, 𝜎𝑈𝑊𝐵) (1)
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where p𝑖 and q𝑗 represent the positions of the initiator and responder transceivers,
respectively. Based on the ranges, different approaches to localization include, e.g.,
multilateration or a least squares estimator (LE). We implement the latter, and hence
the position of each tag can be calculated based on the known anchor positions by

p𝑖 = argmin
p∈R3

𝑀∑︁
𝑗=0

(︁
z𝑈𝑊𝐵
(𝑖,𝑗) − ‖p − q𝑗‖

)︁2
(2)

Alternatively, assuming that the position of initiators in the UAV ({p𝑖}) is given
based on the UAV’s position and orientation (p and 𝜃, respectively) by a set of rigid
body transformations 𝑓𝑖, i.e., p𝑖 = 𝑓𝑖 (p, 𝜃), then the estimator can be used to obtain
the full pose of the UAV directly with

p, 𝜃 = argmin
p∈R3

𝜃∈(−𝜋,𝜋]

𝑁∑︁
𝑖=0

𝑀∑︁
𝑗=0

(︁
z𝑈𝑊𝐵
(𝑖,𝑗) − ‖𝑓𝑖 (p, 𝜃)− q𝑗‖

)︁2
(3)

4.1.2 Experimental Setup

This section describes the simulation settings and robotic platforms utilized in the
field experiments.

Simulation Environment

The first tests are carried out in a simulation environment using ROS and Gazebo.
We simulate the UWB ranging with a standard deviation of the Gaussian noise set to
𝜎𝑈𝑊𝐵 = 10 𝑐𝑚. This is a conservative value based on the literature [65]. We simu-
late a single transceiver on the UAV and four transceivers on the ground. The latter
ones are set are variable distances simulating deployment in small UGVs (0.6 sepa-
ration), large UGVs (1.2 m separation) and different settings based, e.g., on tripods
(with separations at 3 m, 4 m, 12 m and 16 m).

In the simulation experiments, we perform two types of flights. First, a vertical
flight where the UAV is set to follow a straight vertical line up to an altitude of
30 m. Second, a flight following a square pattern with a fixed size of 8 by 8 m but
at different altitudes (5 m, 10 m and 20 m). For each of these flights, we evaluate
the UWB positioning performance with flights based on ground truth positioning.
Then, we perform the flight using the UWB position estimation as control input and
evaluate how well the UAV follows the predefined trajectory (we refer to this as
navigation error).
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Algorithm 2: Ground truth extraction

Input:
3D lidar point cloud: 𝒫
Last known MAV state: p𝑘−1

𝑀𝐴𝑉 , ṗ𝑘−1
𝑀𝐴𝑉

Output:
MAV state: {p𝑘

𝑀𝐴𝑉 , ṗ𝑘
𝑀𝐴𝑉 }

1 while new 𝒫𝑘 do

2

Generate KD Tree: 𝑘𝑑𝑡𝑟𝑒𝑒← 𝒫;
MAV pos estimation: p̂𝑘

𝑀𝐴𝑉 ← p𝑘−1
𝑀𝐴𝑉 +

ṗ𝑘−1
𝑀𝐴𝑉
𝐼

;

MAV points: 𝒫𝑘
𝑀𝐴𝑉 = 𝐾𝑁𝑁(𝑘𝑑𝑡𝑟𝑒𝑒, p̂𝑘

𝑀𝐴𝑉 );

MAV state estimation: p𝑘
𝑀𝐴𝑉 = 1

|𝒫𝑘
𝑀𝐴𝑉

|

∑︀
𝑝∈𝒫𝑘

𝑀𝐴𝑉
𝑝;

Multi-Robot System

The multi-robot system employed consists of a single ground robot and a UAV. The
ground robot is a ClearPath Husky outdoor platform equipped with four UWB re-
sponder transceivers for cooperative positioning and a Livox Avia LiDAR utilized
to obtain ground truth. Owing to the lack of a reference system such as a GNSS-
RTK receiver, we extract the UAV position from the LiDAR’s point cloud and utilize
this as a reference. The point cloud is automatically processed following the steps
described in Algorithm 2, and manually validated. We refer the reader to [85] for
further details on this method. Based on indoor testing with a reference anchor-
based UWB system, we have evaluated the ground truth accuracy to be in the order
of 10 cm. The UGV and the custom UAV are shown in Figure 25. The UAV is
equipped with two UWB transceivers and an Intel RealSense T265 that performs
VIO estimation.

Real-World Settings

The UAV runs the PX4 autopilot firmware, which is unable to obtain a stable GNSS
lock in the test location. The field experiments are carried out in Turku, Finland
(precise location is 60.4557389° N, 22.2843384° E), between a short line of trees
and a large building that presumably blocks and reflects GNSS signals. This loca-
tion is chosen as an example of an urban location where GNSS receivers operate in
suboptimal mode.

4.1.3 Cooperative Localization Results

In this sections, we study the performance of the UWB-based cooperative localiza-
tion system both in simulation and field experiments.
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UWB 
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Livox Horizon 3D Lidar

GNSS Receiver

Realsense T265 VIO Module

Husky UGV platform

Custom UAV platform

Figure 25: UAV and companion ground robot utilized in the experiments.

Simulation Results

The positioning and navigation errors for vertical flights are shown in Figure 27. We
observe that the positioning error consistently decreases as the anchors become more
separated. For the small UGV setting, the error goes over 1 m almost 20% of the
time, being highly unstable. It is worth noticing that the navigation error becomes
relatively stable with the large UGV anchor distribution (1.2 m separation). Naviga-
tion errors are in general lower than their positioning counterparts as the control of
the drone is less affected by individual ranging errors, and these tend to average to
zero as time passes. It is also worth noticing that the altitude error is significantly
lower in all cases when compared to the planar 𝑥𝑦 error.

Figure 26 then shows the results of flights following a square pattern. We can see
that if UWB systems based on fixed anchors separated more than 10 m are utilized,
then the navigation error can be consistently maintained below 10 cm. In the case
of relying on small or large UGVs, the error is in the tens of centimeters, providing
a competitive alternative to GNSS/RTK systems with higher deployment flexibility
and lower system complexity.

Real-world results

Results from outdoors experiments with real robots are reported in Figure 28 and Fig-
ure 29. The former shows a partial extract from the trajectory in 3D, where we can
observe that the UWB error is significantly smaller even when the altitude reaches
30 m. In the latter plot we can see that the overall error more than 5 min flight time.
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(a) Positioning 𝑥𝑦 error.
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(c) Navigation 𝑥𝑦 error.

Figure 26: Positioning and navigation errors over a flight following a squared shape
of 8 by 8 m, at three different altitudes (5, 10 and 20 m). The altitude is set to a
constant so only the XY error is calculated for the UWB-based navigation. The
legend has been omitted due to limited space, with the colors representing, from left
to right in each group, anchors separated by 0.6 m, 1.2 m, 3 m, 4 m, 12 m and 16 m.
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(a) Positioning error based on different an-
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down navigation during a vertical flight.
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chor distribution settings when doing up and
down navigation during a vertical flight.

Figure 27: Positioning and navigation errors over a vertical flight to an altitude of
30 m. The navigation error includes only the planar distance to the vertical line the
drone is set to follow.
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Figure 28: Partial trajectory of the UAV during the outdoors experiment. VIO is not
included because it becomes unusable once the UAV reaches 8 m of altitude.

The cooperative UWB approach particularly outperforms both VIO and GNSS esti-
mations in terms of vertical accuracy. In terms of planar 𝑥𝑦 error, VIO is more ac-
curate but only during the first few seconds of flight, before it rapidly loses accuracy
and diverges when the UAV altitude increases. In any case, the cooperative UWB-
based localization provides consistent accuracy throughout the flight and therefore
has potential for better collection of aerial data through autonomous flights.
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Figure 29: Planar and vertical errors of the different methods during the outdoors
flight. The VIO has low error but was only valid for the first few seconds of flight.

4.2 Particle Filter Based Fusion Approach
Since UWB ranging sensors offer low-cost and centimeter-level out-of-the-box ac-
curacy, they have gradually gained attention in autonomous systems applications,
including UWB-based state estimation with and without fixed infrastructure, and
UWB mesh sensor networks [13; 14]. This technology holds significant potential for
relative state estimation in multi-robot systems [15; 16], a crucial yet still challenging
research topic in GNSS-degraded environments and outdoors [17; 18]. Moreover, it
can serve as the basis for collaborative tasks such as search and rescue, and terrain
inspection [19], or extended to transitions of multi-robot systems between indoor and
outdoor scenarios [20].

State estimation based on the fusion of UWB and other sensors or estimators,
such as LO [42] and VIO [207], has been the subject of numerous research ef-
forts [15; 19; 52]. LO and VIO, which focus on ego-state estimation, are among
the most popular and reliable state estimation techniques. However, porting these
approaches to multi-robot systems is often either computationally expensive or com-
plex to achieve in realistic scenarios [208; 209]. Either independently or as part of
collaborative SLAM processes, multi-robot localization methods often use environ-
ment features to adjust for potential drift or error in the relative state estimation [210],
or the optimization of map matching or pose graphs [211].

In our approach, we aim to provide a flexible and cost-effective relative multi-
robot localization method. Instead of using additional sensors or optimizing raw
sensor data matching, we leverage simultaneously detected objects in the environ-
ment as measurements without the need for fixed, known landmarks. We refer to this
method as cooperative spatial detections, where the 3D pose of the detected objects
is identified with respect to each robot’s sensor.
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UWB Range Spatial Detections Particles

Figure 30: Conceptual diagram of the proposed particle filter-based multi-robot rela-
tive localization fusing UWB ranges, robot odometry, and cooperative spatial detec-
tions.

It is essential to underline the clear departure of our method from VIO based
approaches [15]. Unlike VIO, which relies heavily and continuously on visual input
for estimating the robot’s pose, our approach minimizes reliance on visual data for
localization. Instead, we leverage the camera solely for cooperative spatial detec-
tions, wherein simultaneous recognition of objects by multiple robots yields relative
positional information.

We, therefore, propose a particle filter (PF) based optimization approach to cal-
culate the relative position among robots. As opposed to traditional methods such
as the Extended Kalman Filter (EKF) that may converge to local minima without
ensuring global optimality, PF provides a more robust solution to the inherent non-
Gaussian optimization challenge. Figure 30 shows a conceptual illustration of the
working mechanism and sensing modalities.

Owing to various sources of UWB ranging error, multiple studies have shown the
importance of mitigating the UWB ranging error as part of the workflow of UWB
data processing [212]. To achieve this, we use a Long Short-Term Memory (LSTM)
network to calibrate the UWB range data prior to the PF deployment. In contrast
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to previous studies, we evaluate multiple types of LSTM networks, considering not
only UWB measurements but also robot orientation.

Another key element concerning existing works in infrastructure-free UWB-
based relative positioning is that we assume that only a single UWB transceiver is
available for each robot. However, the same methods can be applied with multiple
transceivers per robot. This is, to the best of our knowledge, the first infrastructure-
free UWB localization system that is generalizable to an arbitrary number of nodes
and robots, and that integrates odometry and cooperative spatial detections. We adopt
a shared two-dimensional yaw-orientation reference for all robots, where the orienta-
tion is not computed relatively between robot pairs but rather with respect to a unified
global reference frame. Consequently, at the beginning of the experiment, all robots
are initialized with identical orientations.

In summary, the main contributions of this work are the following:

i) a novel and computationally efficient particle filter-based relative localization
method fusing odometry and ranging measurements, effective even with only
a single range input from UWB;

ii) the addition of an LSTM network for reducing individual range errors cali-
brated for individual pairs of UWB transceivers (all moving), taking not only
the UWB measurements but also the orientation of the robot as input;

iii) the integration of cooperative spatial detections to further increase the accuracy
of the relative state estimation;

iv) the demonstration of a practical multi-robot deployment utilizing ROS2 and
Zenoh. The seamless integration of Zenoh addresses challenges associated
with data flooding in the network, ensuring efficient communication even with
numerous robots.

4.2.1 Methodological Overview

The relative positioning framework is conceptually depicted in Figure 30 and the
workflow is represented in Figure 31. We use the following notation for the remain-
der of this part: we consider a group of𝑁 robots, or agents, each represented by a po-
sition vector p𝑖(𝑡) ∈ R3 within a shared reference frame, where 𝑖 ∈ 𝒱 = {1, . . . , 𝑁}.
These agents can measure their relative distances to a subset of the other agents
bidirectionally, meaning they can simultaneously calculate a common ranging esti-
mation. Although each robot’s position is defined in three-dimensional space, for
the purpose of collaborative localization and without loss of generality, we assume
that the position of each agent can be represented in a two-dimensional plane as
p𝑖(𝑡) ∈ R2.

We model UWB range measurements with Gaussian noise as follows:
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Figure 31: Pipeline (from left to right) of the particle filter-based multi-robot relative
position system. 𝑑𝑑𝑒𝑡𝑡ℎ is the threshold determining if detections from different robots
correspond to the same object.

z𝑈𝑊𝐵
(𝑖,𝑗),𝑖,𝑗∈𝒱 = ‖p𝑖(𝑡)− p𝑗(𝑡)‖+𝒩 (0, 𝜎𝑈𝑊𝐵) (4)

Odometry estimations for each robot are modeled as:

(5)z𝑜𝑑𝑜𝑚𝑖, 𝑖 ∈𝒱 =

[︂
R𝑖(𝑡− 𝛿𝑡)R̂𝑖(𝑡) ‖p𝑖(𝑡)− p𝑖(𝑡− 𝛿𝑡)‖

0 1

]︂
+𝒩 (0, 𝜎𝑜𝑑𝑜𝑚)

where 𝛿𝑡 is the output frequency of the Turtlebot’s odometry, R𝑖(𝑡) is the orien-
tation matrix for agent 𝑖 and R̂𝑖(𝑡) the relative egomotion estimation in the interval
(𝑡− 𝛿𝑡, 𝑡].

Cooperative Spatial Information

Finally, when more than one robot detects the same objects simultaneously as shown
in Figure 32, we also include in the PF estimation the cooperative spatial detection
measurements modeled as:

(6)
z𝑑𝑒𝑡(𝑖,𝑗), ∈𝒱 = rp𝑖,𝑗 +𝒩 (0, 𝜎𝑑𝑒𝑡)

where
rp𝑖,𝑗 =

(︁
p𝑜𝑏𝑗𝑙𝑖 (𝑡) + p𝑖(𝑡)

)︁
−
(︁

p𝑜𝑏𝑗𝑙𝑗 (𝑡) + p𝑗(𝑡)
)︁

Here, p𝑜𝑏𝑗𝑙𝑖 and p𝑜𝑏𝑗𝑙𝑗 represent the position of the simultaneously identified ob-
ject relative to the reference frame of the robot in position p𝑖 and p𝑗 , respectively.
The vector rp𝑖,𝑗 ∈ R2 represents the difference between the two estimates of the po-
sition of the object made by the robot at position p𝑖 and p𝑗 , respectively, with respect
to the common reference frame. In other words, it represents the relative position of
the object with respect to the robot at position p𝑖(𝑡) as observed from the perspective
of the robot at position p𝑗(𝑡). To ensure that detections correspond to the same ob-
ject, we use a distance threshold if ‖rp𝑖,𝑗‖ < 𝑑𝑑𝑒𝑡𝑡ℎ (set to 15 𝑐𝑚 in our experiments
based on the accuracy of the depth camera).
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Spatial Detections

𝑝𝑜𝑏𝑗𝑙𝑖

𝑝𝑜𝑏𝑗𝑙𝑗

r𝑝𝑖 ,𝑗

Figure 32: Cooperative spatial detection, where p𝑜𝑏𝑗𝑙𝑖 and p𝑜𝑏𝑗𝑙𝑗 represent the posi-
tion of the simultaneously identified object relative to the reference frame of the robot
in position p𝑖 and p𝑗 , respectively. The vector rp𝑖,𝑗 ∈ R2 represents the difference
between the two estimates of the position of the object made by the robot at position
p𝑖 and p𝑗 , respectively, with respect to the common reference frame.

LSTM network for UWB ranging error estimation

In this study, we applied three primary LSTM variants, namely stacked LSTM, bidi-
rectional LSTM, and convLSTM. Each variant was designed and trained individually
for each UWB pair utilized in the experiments. Figure 33 shows the customized layer
information of these LSTM neural networks.

The inputs to these networks comprise the UWB range, denoted as z𝑈𝑊𝐵
(𝑖,𝑗) be-

tween UWB pairs, and the orientations of the robots, 𝜃𝑜𝑑𝑜𝑚𝑖 and 𝜃𝑜𝑑𝑜𝑚𝑗 , at the UWB
installation ends. To estimate the current UWB ranging error, the LSTM takes a se-
quence of 𝑛 𝑠𝑡𝑒𝑝𝑠 data frames [ z𝑈𝑊𝐵

(𝑖,𝑗) , 𝜃𝑜𝑑𝑜𝑚𝑖 , 𝜃𝑜𝑑𝑜𝑚𝑗 ] preceding the current time as
the input. The dense layer at the end of the LSTM network generates a single UWB
ranging error as the output.

The individual LSTM networks are trained using data from a separate experiment
that involved deploying the same robots within the same controlled environment and
using the Optitrack ground truth system. The training data involved robots moving in
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(a) (b) (c)

Figure 33: The layer details of customized LSTM neural network variants applied in
this study with Figure 33a to 33c illustrating the implementation of stacked LSTM,
bidirectional LSTM, and convLSTM, respectively.

circular trajectories, while the LSTM’s predictions used in the state estimation were
generated for different robot movement patterns as shown in Figure 34. Therefore,
we expect the networks to be able to model antenna delays and predict potential
errors based on the relative orientation of the antennas. This limits the generalization
of the results, but we separate in time the training data from the final experiments
reported in this dissertation.

Measurement-Adaptive Particle Filter

The Particle Filter (PF) implementation is outlined in Algorithm 3. The filter primar-
ily consists of three key steps: sampling from UWB ranging estimations s𝑘 (line 2),
reweighting based on spatial detections (line 7), and resampling based on the updated
weight of each particle (line 11).
a) Initialization: Each particle encapsulates a stack of 2D states of all robots, repre-
sented as s𝑘 = [𝑥0, 𝑦0, 𝑥1, 𝑦1, ..., 𝑥𝑁 , 𝑦𝑁 ], 𝑘 ∈ 𝑀 . We initialize the states of the 𝑀
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Algorithm 3: Multi-robot relative state estimation.
Input: U𝑟; S𝑑; O;
Output: S𝑘 = [𝑥0, 𝑦0, 𝑥1, 𝑦1, ..., 𝑥𝑁 , 𝑦𝑁 ]

1 if U𝑟 not empty then
2 Initialize M particles s𝑘 from uniform distribution or
3 sample from𝒩 (S̃𝑘|S𝑘−1 + O𝑘, 𝜎𝑂)
4 for s𝑘 in M samples do
5 𝜔𝑘 = 𝜔𝑘−1𝒩 (U𝑟 − dist(s𝑘))
6 if ‖S𝑑 − S𝑑,𝑘‖2 ≤ 𝜀 then
7 𝜔𝑗

𝑘 = 𝜔𝑘𝒩 (S𝑑 − S𝑑,𝑗 , 𝜎)
8 end
9 end

10 Resampling s𝑘 based on 𝜔𝑘

11 S𝑘 =
∑︀𝑀

𝑖=1 𝜔𝑘s𝑘
12 end

particle samples (line 2) by drawing from a uniform distribution, leveraging a priori
knowledge of the approximate area size where robots are deployed:

𝑃 (𝑡 = 0) ∼ 𝒰 ((𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) , (𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥)) (7)

along with associated weights:

𝑤𝑘(𝑡 = 0) =
1

𝑀
,𝑘 ∈ 0, . . . ,𝑀 (8)

b) Prediction: The state of each particle at time 𝑡 is predicted based on a Gaussian
distribution and odometry data (line 3):

𝒩 (S̃𝑘|S𝑘−1 + O𝑘, 𝜎𝑂) (9)

with 𝑆(𝑡) ∈ R2𝑁 and z𝑜𝑑𝑜𝑚(𝑡) = [z𝑜𝑑𝑜𝑚𝑖 (𝑡)], while 𝜎𝑂 is derived from the
odometry covariance matrix of all robots, 𝜎𝑂𝑖

, 𝑖 = 1, . . . , 𝑁 .
c) Update (Correction): In this step, the particle filter updates its estimation based
on available information, specifically UWB and spatial detection data. When both
types of information are present (line 6), the input sample z(𝑡) is modified to include
both inter-robot ranges z𝑈𝑊𝐵(𝑡) and spatial detections z𝑑𝑒𝑡(𝑡), forming a combined
observation vector: z(𝑡) = 𝑠𝑡𝑎𝑐𝑘[z𝑈𝑊𝐵(𝑡), z𝑑𝑒𝑡(𝑡)].

To refine the estimation in case of spatial detections, The weights of these new
samples are determined by multiplying the parent weight with a normal distribu-
tion, which accounts for the difference between the parent particle’s spatial detection
and the observed detection (line 7). Conversely, particles that do not closely match
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the observed spatial detection are downweighted based on the UWB measurements
alone.

In essence, this process aims to maximize the probability of the distribution by
aligning the expected measurements with the actual measurements.
d) Resampling: In every iteration, we randomly re-initialize the particle states by
sampling the inverse weight distribution. In our experiments, the resampling propor-
tion is set to 1%.
e) Estimation: Finally, we estimate the states based on the weighted average of the
𝑀 particles. The estimated state 𝑆(𝑡) is given by:

𝑆(𝑡) =

𝑀∑︁
𝑖=1

𝑤𝑘(𝑡) · 𝑆𝑘(𝑡) (10)

During our experiments, we compared this mean state calculation with an alter-
native state given simply by the particle with maximum likelihood but we observed
more robust overall performance and convergence with the weighted sum.

4.2.2 System and Experimental Design

Multi-Robot Relative Localization System Design

In our experiments, we employed five Turtlebot 4 Lite robots, denoted as
𝒯 ℬ𝑖, 𝑖∈{0,1,2,3,4}. These mobile robot platforms served for data collection and
real-world navigation, utilizing our proposed UWB-based relative state estimation
method. To enhance their capabilities, we customized the Turtlebot4 platform,
integrating a Qorvo DWM1001 UWB transceiver and an OAK-D stereo camera,
which replaced the default OAK-D Lite as shown in Figure 34 (b).

For all our computations, we used a Jetson Nano computer, to which the OAK-
D camera is also connected, while the Turtlebot4 ROS 2 drivers run on the existing
Raspberry 4.

During the experiments, the UWB transceivers were programmed to iteratively
measure the time of flight (ToF) between pairs of robots, providing the necessary
ranging measurements. The OAK-D stereo cameras provide poses of the detected
objects relative to the cameras as the odometry measurements are given directly by
the Turthebot4 ROS 2 drivers.

The experimental site, as depicted in Figure 34 (a) comprised an arena of ap-
proximately 8𝑚 × 9𝑚 × 5𝑚, equipped with an OptiTrack motion capture system
(MOCAP) providing the ground truth to verify the estimated relative states of each
robot. Within this area, we positioned a static robot 𝒯 ℬ4 and four moving robots
𝒯 ℬ𝑖, 𝑖∈{0,1,2,3}. The static robot serves to align references with the ground truth,
while the other four followed specific paths - a triangle, an 𝑋 , a circle, and a rectan-
gle - as shown in Figure 34 (a). We assumed a common orientation frame among the
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9 m

8 m

UWB
Front

OAK-D

Back

Nano

RPi 4B

(a) (b)

Figure 34: Experimental site and platforms. Subfigure (a) shows the motion capture
(MOCAP) arena and the moving patterns of four Turtlebot4 robots. Subfigure (b)
shows the customized Turtlebot4 platform mounted with a single UWB transceiver,
an OAK-D stereo camera, and a Jetson Nano.

robots, facilitated by a compass, enabling single-range relative state estimation. Im-
portantly, no fixed anchor nodes were used, and the static robot’s position remained
unknown and assumed mobile a priori.

Finally, to enable cooperative spatial detections, we utilized a pre-trained
YOLOv4 network. This network effectively detected several objects, including
bottles, chairs, and cups, which were placed arbitrarily both inside and outside the
experimental site, serving as references.

Multi-robot relative localization system implementation

The system was developed using ROS 2 as the communication framework for the
robots. ROS 2 employs topics as the primary means of communication, and the
Turtlebot4 is originally compatible with ROS 2, offering a robust ecosystem. How-
ever, when operating in a multi-robot system, challenges arise in differentiating the
robots for communication purposes. One approach is to use namespaces to distin-
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Figure 35: System Implementation with ROS 2 and Zenoh

guish them, but this necessitates significant modifications to the Turtlebot4’s soft-
ware, including the ROS 2 navigation stack. Striking a balance between efficient
communication and maintaining the robots’ originality poses a considerable chal-
lenge.

We adopted a solution that combines ROS 2 with Zenoh, while maintaining DDS
as the internal middleware for each individual robot. Figure 35 provides a visual
representation of this approach, which involves the robots, the Zenoh Router, and
the localization and control engine. This engine can reside on various devices like a
computer, Raspberry Pi, or Jetson Nano within the robots. In our implementation, we
used a laptop for this purpose, but we demonstrate that the computational resources
of any embedded computer are sufficient for the task.

We utilized Zenoh clients with different 𝑍𝐸𝑁𝑂𝐻 𝑆𝐶𝑂𝑃𝐸 for each robot, while
preserving the common DDS domain ID and topic names. This approach required
no alterations to the robot settings (common DDS domain ID and topic names across
robots). A Zenoh router was hosted to facilitate message discovery and transfer
through the Zenoh DDS bridge1, enabling seamless communication with the local-
ization and control engine. Ground truth data from the MOCAP system was also
received by the engine.

1https://github.com/eclipse-zenoh/zenoh-plugin-dds
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To maintain consistency and simplicity in the communication process, each
scope was mapped to a distinct domain ID at the controller end. The DDS domain
bridge merged these scopes with topic namespacing2. Notably, the topic names
remained unchanged on the receiving end (i.e., the engine), allowing for streamlined
localization and control procedures. For instance, within the robots, the odometry
topic was referred to as ∖𝑜𝑑𝑜𝑚. However, in the Zenoh communication network, it
became ∖tb{𝑖}∖𝑜𝑑𝑜𝑚 (where ∖tb{𝑖} is the Zenoh scope). In the localization engine,
the topic names were ∖𝑜𝑑𝑜𝑚 with different domain IDs, or again ∖tb{𝑖}∖𝑜𝑑𝑜𝑚 with
the common domain ID (with ∖tb{𝑖} now serving as a ROS topic namespace).

Regarding the specific implementations, our PF localization is based on the
Python pfilter library3, tailored to suit our program’s needs. For LSTM-based UWB
ranging error estimation, we built customized LSTM models using TensorFlow
Keras, performing both training and real-world inference, as illustrated in Figure 33.

Evaluation on multiple mobile computing platforms

Given the multitude of prevalent computing platforms in contemporary multi-robot
systems, presenting a performance evaluation of the proposed approach is valuable
as a reference for further research in the field. To this end, we conducted memory
consumption and CPU utilization evaluations on several platforms, including an Intel
computer (i9-11900H), an NVIDIA Jetson Nano, and a Raspberry Pi 4 B integrated
with Turtlebot4. The Intel computer boasts 32 GB of DDR4 RAM, while the Jetson
Nano and Raspberry Pi 4 B feature 4 GB RAM. Notably, we executed the PF code
without LSTM for UWB ranging error correction, as GPU support is essential for
LSTM operations.

In our experiments, the Jetson Nano is needed for both spatial detections and
LSTM deployment. However, the majority of the computation regarding spatial de-
tection (both the YOLO detector and the depth data fusion) is done onboard the
OAK-D camera on the robot and does not need a GPU in the companion computer.

Navigation based on proposed relative state estimation

To validate the relative state estimated by the proposed approach, we estimate both
positioning and navigation errors in a real-world navigation task. For positioning
error, the robots follow trajectories using the MOCAP data as feedback to the con-
troller. In the autonomous navigation part, we set one robot to perform a navigation
task in the shape of a rectangle using the aforementioned relative position method
for controller feedback.

2https://github.com/ros2/domain_bridge
3https://github.com/johnhw/pfilter
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Table 10: Comparison of the LSTM variants on the estimation of UWB ranging error.

Stacked LSTM Bidirectional LSTM ConvLSTM

Computation Time (𝑠) 0.0413 0.0381 0.0702
MSE (𝑚2) 0.0109 0.008 0.0075

PF U PF UL PF ULV
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Figure 36: Absolute Positioning Error (APE) for the two-robot, single-range posi-
tioning experiment.

4.2.3 Relative Localization Performance Evaluation

UWB ranging error modeling

Table. 10 provides a comparison of Mean Square Error (MSE) and computation time
across various LSTM variants, such as stacked LSTM (SL), bidirectional LSTM
(BL), and convLSTM (CL). These results indicate that all estimation processes can
operate at frequencies exceeding 10𝐻𝑧 while delivering notably reduced MSE val-
ues. Both SL and BL variants can achieve real-time processing rates surpassing
20𝐻𝑧. In light of these findings, we opted to utilize the stacked LSTM (SL) archi-
tecture for the subsequent experiments.

Relative State Estimation based on a Single UWB range

We assessed the proposed relative state estimation approach using a single UWB
range measurement, focusing on Absolute Positioning Error (APE) and ground truth
trajectory analysis. In our results, we identify three variants: PF U, PF UL, and
PF ULV, representing the particle filter with only UWB ranges, stacked LSTM cor-
rected UWB ranges, and both corrected UWB ranges with dynamic cooperative spa-
tial detections, respectively.

For experiments involving a single UWB range measurement between two
robots, multilateration methods are unable to compute the relative position. Conse-
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Figure 37: Trajectories of the state estimation with a single UWB range.

quently, we exclusively analyze the APE values and trajectories of PF U, PF UL,
and PF ULV in this context.

As depicted in Figure 36, leveraging LSTM correction improves the proposed
PF by mitigating UWB ranging errors. Furthermore, integrating cooperative spatial
detection enhances performance. These observations are visually depicted in Fig-
ure 37.

Relative state estimation for multiple UWB ranges

Figure 38 shows the APE values of the four approaches with Multi denoting mul-
tilateration applied to robots moving in four distinct patterns. Our proposed PF
approach significantly outperforms multilateration. Additionally, incorporating the
LSTM network and integrating cooperative spatial detection generally improves the
performance of the proposed PF in most cases. For visual representation, Figure 39
illustrates the trajectories of the relative localization approaches.

Resource utilization

Table. 11 reveals that our methods yield low CPU usage (roughly 20%) on Intel
PC, Nano, and Raspberry Pi, with memory usage under 500M across all devices.
Notably, the program computes relative states among robots, not just individual ones.
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Figure 38: Absolute Positioning Error (APE) values of the four relative localization
methods with four robots moving in four distinct patterns.

Table 11: CPU utilization of the different methods.

Intel PC (i9-11900H) Jetson Nano 4GB Raspberry Pi 4B 4GB
( CPU (%), RAM (MB))

Multilateration (2.9, 390) (21.3, 99) (22.4, 66)
Our Approach (2.8, 69) (23.2, 442) (23.2, 83)

Navigation performance

In real-world navigation performance assessment, we compute the median and stan-
dard deviation of the APE and Absolute Trajectory Error (ATE). The APE quanti-
fies positioning error, while the ATE assesses the robot’s ability to track a prefined
path using the proposed approach. Specifically, the APE for positioning error is
0.1094𝑚/0.10125𝑚, and the ATE value is approximately 0.0872𝑚/0.1011𝑚. The
detailed results are shown in Figure 40a. Figure 40b shows the trajectories.

4.3 Summary
In this work about the UWB based infrastructure free multi-robot relative localiza-
tion, we have presented an analysis on how UWB-based relative localization between
a UAV and a companion ground robot can improve the accuracy of autonomous
flights outdoors. In particular, we have simulated different scenarios to assess the
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Figure 39: Trajectories of robots moving in distinct patterns with different relative
state estimation approaches.

accuracy of the UWB-based relative positioning method. We have then validated
this with robots in outdoor experiments, in an urban area where GNSS receivers do
not perform optimally. Our analysis includes VIO estimation, which is more accu-
rate at first but loses the reference when the UAV starts gaining altitude, presumably
due to the lack of reference points. In summary, we can conclude that UWB-based
positioning systems can provide an alternative to RTK-GNSS when the accuracy of
standalone GNSS is not enough for gathering aerial data. Moreover, we have proved
that even when the transceivers are placed near each other in the ground, mounted on
a mobile platform, the accuracy is enough to enable autonomous flight.

Then, we introduce a particle-filter-based approach for relative multi-robot local-
ization, integrating inter-robot UWB ranges, robot odometry, and cooperative spatial
detections. Unlike conventional methods such as multilateration, our method can
estimate relative positions even with just a single UWB range measurement. We em-
ploy LSTM networks trained for each UWB pair to predict ranging errors, ensuring
accuracy, reliability, and real-time performance. The application of LSTM to every
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Figure 40: Figure 40a shows Absolute Trajectory Error (ATE) and Absolute Pose
Error (APE) for the real-time Turtlebot4 navigation. Figure 40b shows the trajectory
of it

UWB-ranging measurement before inputting them into the particle filter enhances
accuracy and real-time processing.

Furthermore, in contrast to VIO-based approaches, our method utilizes a camera
only for cooperative spatial detections, integrating them when available. Specifi-
cally, when two or more robots detect identical external objects, our particle filter
dynamically incorporates the extracted spatial information between them as inputs.
Experimental results demonstrate that our approach surpasses multilateration for rel-
ative state estimation.

Our findings indicate that LSTM error estimation and cooperative spatial infor-
mation enhance performance compared to using solely UWB measurements. Finally,
we evaluate our approach using ROS 2 and Zenoh on various mobile computing plat-
forms, revealing low CPU usage and memory consumption.
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As we discussed in the previous chapter, LiDAR point cloud data nowadays features
not only 360° three-dimensional high spatial resolution data but also low-resolution
images with 360° FoV obtained with LiDAR sensors by encoding either depth, re-
flectivity, or near-infrared light in the image pixels. A sample of the data used in
this work is shown in Figure 15 on page 42. Since LiDARs measure the Time of
Flight (ToF) of a laser signal to objects in the environment, they are not influenced
by changes in light such as darkness and daylight.

Albeit the higher cost of LiDAR at the moment, compared with passive visual
sensors, LiDARs are inherently more robust to adverse weather conditions and low-
visibility environments. They are also a standard part of most of today’s self-driving
autonomy stacks. Therefore, it comes at no extra cost to leverage their vision-like
capabilities in addition to processing the three-dimensional point cloud data.

This work explores the possibilities of applying conventional computer vision
technologies on the LiDAR generated images (LiDAR as a camera) by giving a
comprehensive analysis on general purposes of DL models, enhancing LO and UAV
tracking by fusing LiDAR generated images and point cloud.

In the section, we mainly use the images generated by Ouster LiDAR. The Ouster
LiDAR system generates four distinct types of images: ambient, signal, reflectivity,
and range images [213]. Each pixel in these images corresponds to a different type
of measurement. In range images, each pixel denotes the distance from the sensor
origin to a specific point. Signal images display the intensity of light returned to the
sensor from a given point. Ambient images capture the intensity of sunlight collected
for each point. Reflectivity images represent the reflectivity of the surface or object
detected by the sensor.

1. The analysis of the performance of a variety of DL-based visual perception
models in LiDAR generated image data. We assess the viability of apply-
ing object detection and instance segmentation models to low-resolution, 360°
images from two different Ouster LiDARs with different FoVs and range. On
the object detection side, we utilize both one-stage detectors (YOLOv5 and
YOLOx) and two-stage detectors (Faster R-CNN and Mask R-CNN). For se-
mantic instance segmentation, we study the performance of HRNet, PointRend
and Mask R-CNN. (in Section 5.1 on page 88)

87



Xianjia Yu

2. Keypoint detectors and descriptor based on LiDAR generated images to im-
prove point cloud matching with LiDAR odometry. (in Section 5.2 on page 96)

(a) We investigate the efficacy of the existing keypoint detectors and descrip-
tors on LiDAR-generated images with multiple specialized metrics pro-
viding a quantitative evaluation.

(b) We conduct an extensive study of the optimal resolution and interpolation
approaches for enhancing the low-resolution LiDAR-generated data to
extract key points more effectively.

(c) We propose a novel approach by leverages the detected key points and
their neighbors to extract a reliable point cloud (downsampling) for the
purpose of point cloud registration with reduced computational overhead
and fewer deficiencies in valuable point acquisition.

3. A UAV tracking approach based on the integration of images and 3D point
clouds generated by an Ouster LiDAR sensor. The diagram of the approach
we follow is illustrated in Figure 56 on page 114. The UAV can be detected
in signal images instead of manually giving its initial position as it is needed
in other point-cloud-only approaches. The detection also yields an approxi-
mate region of interest (ROI) in the point cloud, which will be expanded if no
detection occurs. This approach reduces computation overhead by avoiding
the need for an overall point cloud search. UAV identification is achieved by
clustering points within the ROI, followed by continuous position estimation
using the Kalman Filter (KF). (in Section 5.3 on page 114)

5.1 General Purpose Vision Based DL Model Evalua-
tion on LiDAR generated Images

This part of the work focuses on the analysis of the performance of a variety of
DL-based visual perception models on LiDAR camera data.

5.1.1 Model Evaluation Readiness

This section covers the hardware and methods utilized in our study. We describe the
sensors utilized for data acquisition as well as the different DL model architectures.

Hardware

In the experiment, we use the dataset collected from the Section 3.1 as a preliminary
analysis. Subsequently, we acquire more data for specific categories, such as cars,
bikes, and persons, required for this study The equipment for data acquisition con-
sists of two spinning LiDARs, the Ouster OS1-64 and the Ouster OS0-128. Table 3
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shows the key specifications of these LiDARs, including the resolution of the im-
ages that they generate. It is worth noting that the vertical resolution of the images
matches the number of channels in the LiDAR.

Figure 41 depicts the data collection platform that can be mounted on different
mobile platforms. The two LiDARs are installed on the sides, while an Intel Re-
alSense L515 LiDAR camera captures RGB images.

Ouster OS0-128 Ouster OS1-64

RealSense L515
NVIDIA Xavier AGX

Figure 41: Equipment utilized for data acquisition.

We gathered data in various settings, including indoors and outdoors, day and
night. For this initial assessment of the performance of DL models on images gen-
erated by the LiDAR sensors, we concentrate on a selection of object categories.
These categories have been chosen based on the typical needs of autonomous sys-
tems as well as on objects that appear more often in the collected data. Outdoors,
we analyze the detection of cars, bicycles and persons. Indoors, persons and chairs.
Table 12 shows the number of object instances in the collected data. Samples of the
data generated by the sensors are shown in Figure 2 on page 3. In these examples,
the resolution of a LiDAR-generated image is 2048× 128 with 360∘ FoV of a scene
around while an RGB image of L515 is 1920× 1080. In our experiment, we utilize
signal images due to their superior clarity.

Table 12: Instances of the different objects in the analyzed dataset

Indoors Outdoors
Person Chair Person Car Bike

Instances 43 42 103 37 14

While we do not study invariability of object detection or segmentation of the
same class of objects across different environments (e.g., indoors and outdoors) or
environmental conditions (e.g., day or night), we can assume, based on the works in
the literature [12], that the data characteristics do not change significantly. Indeed,
one of the key benefits of LiDAR-generated images is that they are not affected by
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(a) Original ouster-128 signal images

(b) Ouster-128 signal images after preprocessing

Figure 42: Ouster signal images before and after preprocessing

environmental conditions. Therefore, a person is detected in an almost invariant
manner both indoors and outdoors, as long as it is at the same distance and relative
position to the sensor. The same applies to daylight or nighttime LiDAR-generated
images.

Data Preprocessing

One of the main drawbacks of LiDAR-generated images (signal images) is the low
vertical resolution, which is only up to 128 pixels in the highest-performance sen-
sors. Our early experiments showed low performance of the different detection and
segmentation models due to the high distortion in the untraditional image ratio. To
address this issue with data preprocessing, we performed two main steps: denoising
and interpolation using the OpenCV libraries with Python. We considered differ-
ent denoising and interpolation approaches and repeatedly ran object detection and
segmentation on a set of test images. In our experiments, we applied a box filter to
denoise the images and linear interpolation methods to properly resize the images to
the dimension of 1000×300. Figure 42 shows the original signal image in Figure 42a
and the one after the preprocessing in Figure 42b.

Object Detection Approaches

Over the last decade, deep neural network models have achieved significant advances
in computer vision, especially object detection. Object detection, which includes
both object recognition and localization, is generally divided into two types: one-
stage and two-stage detectors [214]. In this study, some of the most commonly used
models from both frameworks are utilized for object detection.
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Two-Stage Object Detection
A two-stage detector divided the detection process into region proposal and clas-

sification phases. At the region proposal phase, several object candidates are pro-
posed as ROI, classified and localized in the second phase. Object localization and
detection are typically more accurate in models with a two-stage architecture than in
others. Two popular two-stage detectors were used in this study: FasterR-CNN [215]
and MaskR-CNN [216]. These models are implemented based on Pytorch, and
ResNet-50 is used as the pre-trained backbone for object detection.

One-Stage Object Detection
In contrast to two-stage models, one-stage detectors utilize a single feed-forward

fully-convolutional network for object feature extraction, bounding-box regression,
and classification. In the one-stage approach, feature maps are detected and classified
simultaneously. In addition to their excellent accuracy, the one-stage detector models
are popular in real-time applications due to their high detection speed. One of the
first widely adopted one-stage detectors in the deep learning field was YOLO, which
was introduced in [217]. Two variations of the YOLO model were applied in this
study: YOLOx [218] and YOLOv5 [219]. In the YOLOx toolset, there are different
types of networks, including the YOLOx-s, YOLOx-m, YOLOx-l, and YOLOx-x
models. We use the YOLOx-m model in this dissertation due to its high detection
speed and performance.

Image Segmentation Approaches

Object segmentation is the process of assigning each pixel value of an image to a
specific class and is generally divided into two main types (at the time of this anal-
ysis): semantic segmentation and instance segmentation. The semantic segmenta-
tion method considers objects that belong to the same class as a single group [220],
while the instance segmentation method combines semantic segmentation and ob-
ject detection approaches and identifies multiple objects of a single class as distinct
instances [221].

For semantic segmentation, HRNet + OCR + SegFix (High-Resolution Network)
which placed 1st in the Cityscapes competition at ECCV 2020, is used [222]. HRNet
+ OCR + SegFix is the integration of HRNet, OCR, and SegFix to provide a powerful
tool for precise localization of text or objects in images that require high-resolution
feature extraction. HRNet is a DL architecture designed for high-resolution im-
ages that capture fine-grained details and global context through a parallel multi-
resolution pyramid structure. OCR is an optical character recognition technology
that allows computers to recognize and interpret a text in images. SegFix is a post-
processing technique for image segmentation that corrects errors by using context
from neighboring pixels.

Additionally, Pointrend [223] and Mask R-CNN, both with ResNet-50 as their
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Faster R-CNN Mask R-CNN YOLOv5 YOLOx

Indoors Person 0.837 0.837 0.924 0.953
Chair 0.357 0.333 0.398 0.515

Person 0.524 0.485 0.630 0.633
Car 0.865 0.811 0.893 0.866Outdoors
Bike 0.357 0.643 0.143 0.571

Table 13: Proportion of objects successfully detected by each of the models studied
in this work. This metric does not include false negatives or false positives.

Faster R-CNN Mask R-CNN YOLOv5 YOLOx
Precision Recall Precision Recall Precision Recall Precision Recall

In Person 0.72 0.837 0.95 0.905 0.976 0.930 1.0 0.953
Chair 1.0 0.115 0.57 0.826 1.0 0.115 1.0 0.315

Person 0.912 0.505 0.957 0.464 0.872 0.854 0.969 0.653
Car 0.943 0.688 0.712 0.627 0.919 0.829 0.825 0.618Out
Bike 0.357 1.00 0.643 1.00 0.143 1.00 0.571 1.00

Table 14: Detection accuracy of multiple representative object detection networks in
various scenarios

backbone, are employed, for the instance segmentation. Particularly, PointRend is a
cutting-edge technique for instance segmentation, which predicts point-wise predic-
tions for each pixel in an image and selectively refines them based on context using
a context-adaptive CNN. This selective refinement approach achieves state-of-the-
art results with fewer computational resources than traditional instance segmentation
techniques. PointRend is flexible and easily integrated into existing pipelines, mak-
ing it a popular technique in computer vision. It has demonstrated impressive results
on various datasets.

5.1.2 Model Evaluation Results

Through this section, we cover the results of applying the different object detection
and instance segmentation models to the data gathered in the different environments.
We collected and manually annotated the LiDAR-generated signal images. We used
RGB images from a separate camera and the LiDAR point cloud data to validate the
annotations through visual observation.

Detection Results

The first part of the analysis delves into the performance of the different objectors.
Table 13 shows the proportion of objects successfully detected by Faster R-CNN,
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Mask R-CNN, YOLOv5, and YOLOx. Among them, YOLOx has a higher propor-
tion of detected objects indoors and outdoors. It is worth noting that all four models
were able to detect over 80% persons indoors and over 80% of cars outdoors. In
general, the performance of all the models is good enough to consider the adoption
of this type of object detection in systems where the LiDARs are already present. For
more specific metrics, in Table 14, we show the precision and recall of the detectors.
YOLOx has the most robust overall performance of the four different tested models.

Some other categories, including stop signs, handbags, and fire hydrants, are
considered in our initial evaluation. However, they are not listed in Table 13 and
Table 14 as we have focused on better analyzing a specific subset. In general, we
have observed that both YOLOv5 and YOLOx can achieve comparable accuracy in
these other classes as well.

(a) YOLOx detections in an outdoor scene

(b) YOLOv5 detections in an outdoor scene

(c) YOLOx detections in an indoor scene

(d) FasterR-CNN detections in an outdoor scene

(e) MaskR-CNN detections in an outdoor scene

Figure 43: Detection examples in indoor and outdoor scenarios
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In Figure 43, we show a sample of detection examples from YOLOv5 in Fig-
ure 43b, YOLOx in Figure 43a, Figure 43c, FasterR-CNN in Figure 43d, and Mask
R-CNN in Figure 43e for both indoor and outdoor scenes.

In our experiments, single-stage object detectors outperform two-stage methods.
The literature in the area points to the better overall performance of two-stage mod-
els. However, for the data studied in this dissertation, this does not hold. In any case,
the limited amount of data for our tests is not enough to conclude that single-stage
detectors are always better for LiDAR-generated data.

Segmentation Results

Regarding the performance of instance segmentation models, we show in Figure 44
shows examples of HRNet semantic segmentation in both indoor and outdoor scenes
included. In Figure 45, we also show examples of instance segmentation results with
PointRend and Mask R-CNN. In this case, the analysis is qualitative, and further
results are available in the project’s repository1. Nonetheless, our tests show good
performance for the most typical object classes based on analyzing a broad series of
images.

(a) HRNet: indoor example.

(b) HRNet: outdoor example.

Figure 44: Indoor and outdoor semantic segmentation examples based on HRNet.

1https://github.com/TIERS/lidar-as-a-camera
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Real-time performance evaluation

We evaluated the real-time performance of multiple representatives from the above
approaches including YOLOv5, Faster R-CNN from detection tasks, and PointRend
from the segmentation tasks. The computing platform utilized is an Nvidia GeForce
RTX 3080 GPU with 16GB GDDR6 VRAM. YOLOv5 with YOLOv5s model has
an average inference frequency of 24 HZ. Faster R-CNN with ResNet50 FPN model
averages to 15 HZ. Additionally, the PointRend with ResNet50 as the backbone av-
erages 15 HZ.

(a) PointRend

(b) Mask R-CNN

Figure 45: Indoor and outdoor instance segmentation examples based on PointRend
and Mask R-CNN
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5.2 Assisting Point Cloud Registration by Extracting
Keypoints from LiDAR Generated Images

LiDAR Odometry (LO), as a fundamental component in robotics has significantly
drawn our attention. Point cloud matching or registration constitutes the key com-
ponent in LO. There are multiple algorithms can facilitate this process. Since its
inception approximately three decades ago, the Iterative Closest Point (ICP) algo-
rithm, as introduced by Besl and McKay [224], has spawned numerous variants.
These include notable adaptations such as voxelized Generalized ICP (GICP) [225],
CT-ICP [226], and KISS-ICP [227]. Among these ICP iterations, KISS-ICP, denot-
ing “keep it small and simple”, distinguishes itself by providing a point-to-point ICP
approach characterized by robustness and accuracy in pose estimation. Furthermore,
the Normal Distributions Transform (NDT) [189] represents another prominent point
cloud registration technique frequently employed in LO research.

Extensive research efforts have focused on the integration of diverse sensors, in-
cluding IMUs, to bolster LO performance. However, in scenarios where LiDAR data
lacks geometric distinctness or even contains misleading information, the process of
point cloud registration continues to present challenges in achieving precise estima-
tions and even causing drift in certain cases (Figure 46a).

(a) Raw point cloud with point cloud matching approach (KISS-ICP)

(b) Our proposed LiDAR-generated keypoint extraction-based approach

Figure 46: Samples of LiDAR odometry results run in our experiment
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LiDAR generated images as we mentioned, are low-resolution but possibly
panoramic and exhibit heightened resilience and robustness in challenging environ-
ments, such as those characterized by fog and rain, compared to conventional camera
images. Additionally, these images can potentially provide crucial information for
point cloud registration when there is a deficiency of geometric data or the raw point
cloud lacks useful information so as to avoid drift (Figure 46b from our proposed
approach).

Keypoint detectors and descriptors have found extensive utility across diverse
domains within visual tasks such as place recognition, scene reconstruction, VO,
VSLAM, and VIO. Nevertheless, there remains a lack of investigation into the
performance of extant keypoint detectors and descriptors when applied to LiDAR-
generated imagery. Contemporary methodologies for VO or VIO rely significantly
on the operability of visual sensors, necessitating knowledge of camera intrinsics to
facilitate Structure from Motion (SfM) – a requisite not met by LiDAR-generated
images. This poses the difficulty of extracting key points from LiDAR-generated
images in a certain way to further apply in the odometry estimation.

To address these challenges, this work investigates the efficacy of the exist-
ing keypoint detectors and descriptors on LiDAR-generated images with multiple
specialized metrics providing a quantitative evaluation. We conduct an extensive
study of the optimal resolution and interpolation approaches for enhancing the low-
resolution LiDAR-generated data to extract key points more effectively. Addition-
ally, we propose a novel approach by leverages the detected key points and their
neighbors to extract a reliable point cloud (downsampling) for the purpose of point
cloud registration with reduced computational overhead and fewer deficiencies in
valuable point acquisition. As the latest ICP approach, KISS-ICP is the designated
methodology for the point cloud registration we adopted in this study.

5.2.1 Overview of Keypoint Detector and Descriptor

In recent years, there have been multiple widely applied detectors and descriptors in
the field of computer vision. As illustrated in Table 15, we’ve captured the essential
characteristics of different detectors and descriptors.

Harris detector [228] can be seen as an enhanced version of Moravec’s corner
detector [229] [230]. It’s used to identify corners in an image, which are the re-
gions with large intensity variations in multiple directions. The Shi-Tomasi Corner
Detector [231], is an improvement upon the Harris Detector with a slight modifica-
tion in the corner response function that makes it more robust and reliable in certain
scenarios. The Features from Accelerated Segment Test (FAST) [232] algorithm op-
erates by examining a circle of pixels surrounding a candidate pixel and testing for a
contiguous segment of pixels that are either significantly brighter or darker than the
central pixel.

97



Xianjia Yu

Table 15: Keypoint detectors and descriptors

Method Detector Descriptor Description

Harris ✓
Corner detection method focusing on local
image variations.

Shi-Tomasi ✓
Variation of Harris with modification in
the response function to be more robust.

FAST ✓
Efficient corner detection for real-time ap-
plications.

FREAK ✓
Robust to transformations, based on hu-
man retina’s structure.

BRIEF ✓
Efficient short binary descriptor for key
points.

SIFT ✓ ✓
Invariant to scale, orientation, and partial
illumination changes.

SURF ✓ ✓
Addresses the computational complexity
of SIFT while maintaining robustness.

BRISK ✓ ✓
Faster binary descriptor method, efficient
compared to SIFT/SURF.

ORB ✓ ✓
Combines FAST detection and BRIEF de-
scriptor, commonly used now.

AKAZE ✓ ✓
Builds on KAZE but faster, good for wide
baseline stereo correspondence.

Superpoint ✓ ✓
A state-of-the-art AI approach that ex-
hibits superior performance when applied
to traditional camera images.

For descriptor-only algorithms, Binary Robust Independent Elementary Features
(BRIEF) [233] utilizes a set of binary tests on pairs of pixels within a patch surround-
ing one key point. Fast Retina Keypoint (FREAK) [234] is inspired by the human
visual system, which constructs a retinal sampling pattern that is more densely sam-
pled towards the center and sparser towards the periphery. Then it compares pairs of
pixels within this pattern to generate a robust binary descriptor.

With respect to the combined detector-descriptor algorithms, the Scale-Invariant
Feature Transform (SIFT) [235; 236] detects key points by identifying local extrema
in the Difference of Gaussian scale-space pyramid, then computes a gradient-based
descriptor for each keypoint. Speeded-Up Robust Features (SURF) [237] is designed
to address the computational complexity of SIFT while maintaining robustness to
various transformations. Binary Robust Invariant Scalable Keypoints (BRISK) [238]
uses a scale-space FAST [232] detector to identify key points and computes binary
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descriptors based on a sampling pattern of concentric circles. Oriented FAST and
Rotated BRIEF (ORB) [239] extends the FAST detector with a multi-scale pyra-
mid and computes a rotation-invariant version of the BRIEF [233] descriptor, aim-
ing to provide a fast and robust alternative to SIFT and SURF. Accelerated-KAZE
(AKAZE) [240] employs a Fast Explicit Diffusion scheme to accelerate the detection
process and computes a Modified Local Difference Binary (M-LDB) descriptor [241]
for robust matching.

The emergence of DL techniques, particularly CNN, has revolutionized com-
puter vision, over the last decade. SuperPoint [242] detector employs a fully CNN
to predict a set of keypoint heatmaps, where each heatmap corresponds to an interest
point’s probability at a given pixel location. Then, the descriptor part generates a
dense descriptor map for the input image by predicting a descriptor vector at each
pixel location.

To sum up, while numerous detector and descriptor algorithms have gained pop-
ularity, it is imperative to note that they have primarily been designed for traditional
camera images, not LiDAR-based images. Consequently, it’s of paramount impor-
tance for this study to identify the algorithms that maintain efficacy for LiDAR-based
images.

Table 16: Metrics for evaluating keypoint detectors and descriptors

Metrics Description

Number of Keypoints
A high number of key points can always lead to more
detailed image analysis and better performance in sub-
sequent tasks like object recognition.

Computational Efficiency

Computational efficiency remains paramount in any
computer vision algorithm. We gauge this efficiency by
timing the complete detection, description, and match-
ing process.

Robustness of Detector
An effective detector should recognize identical key
points under varying conditions such as scale, rotation,
and Gaussian noise interference.

Match Ratio

The ratio of successfully matched points to the total
number of detected points, offers insights into the al-
gorithm’s capability in identifying and relating unique
keypoints.

Match Score
A homography matrix is estimated from two point sets,
to distinguish spurious matches, then the algorithm pre-
cision is quantified by the inlier ratio.

Distinctiveness
Distinctiveness entails that the key points isolated by a
detection algorithm should exhibit sufficient uniqueness
for differentiation among various key points.
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5.2.2 Evaluation Metrics for Keypoint Detectors and Descriptors

The efficacy of detector and descriptor algorithms is typically assessed through some
specific evaluation metrics. It is worth noting we are interested in the metrics which
do not require ground truth data labelling in this study. As illustrated in Table 16,
the first three metrics, Number of Keypoints, Computational Efficiency, and Robust-
ness of Detector are straightforward to comprehend and implement, and also widely
adopted in numerous studies [243; 237; 244]. For instance, the Robustness of the
Detector [245] is implemented by contrasting key points before and after the trans-
formations like scaling, rotation, and Gaussian noise interference.

When assessing the precision of the entire algorithmic procedure, which is pri-
oritized by the majority of tasks, the prevalent metrics often necessitate benchmark
datasets, such as KITTI [246], HPatches [247]. These datasets either provide the
transformation matrix between images or directly contain the key point ground truth.
For example, in Mukherjee et al.’s study [248], one crucial metric: Precision, is de-
fined as correct matches/all detected matches, where correct matches are ascertained
through the geometric verification based on a known camera position provided by
dataset [249]. Similarly, in this recent work [250], the evaluation tasks including
“keypoint verification”, “image matching”, and “keypoint retrieval”, all rely on the
homography matrix between images in the benchmark dataset [247].

Nevertheless, given that research predicated on LiDAR images is at a nascent
stage, there exists no benchmark dataset in the field of LiDAR-based images. And
the effort required for data labeling [251; 252] to produce such a dataset is consider-
able and challenging. To bridge this gap, we select multiple key evaluation metrics:
Match ratio, Match score, and Distinctiveness, as shown in Table 16 from previous
studies. Match Ratio [248] is quantitatively defined as number of matches/number
of key points. A high Match Ratio can suggest that the algorithm is adept at identi-
fying and correlating distinct features; While the exact homography matrix between
images remains unknown when lacking benchmark datasets, it can be approximated
using mathematical methodologies from two point sets. This computed homogra-
phy can subsequently be utilized to find correct matches. And number of estimated
correct matches/number of matches is denoted as Match Score in our work; And
Distinctiveness is computed as follows: For every image, the k-nearest neighbors
algorithm, with k=2, is employed to identify the two best matches [235]. If the de-
scriptor distance of the primary match is notably lower than that of the secondary
match, it demonstrates the algorithm’s competence in recognizing and describing
highly distinctive key points. Consequently, this defines the metric: Distinctiveness.
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5.2.3 Keypoint Extractor Evaluation

Utilized Data

For the evaluation of keypoint detectors and descriptors and our proposed approach,
we utilized the collected dataset for multi-modal LiDAR sensing in Chapter 3. The
dataset consists of various LiDARs and among them, Ouster LiDAR provides not
only point cloud but also its generated images. The Ouster LiDAR applied in the
dataset is OS0-128 with its detailed specifications shown in Table 3.The images gen-
erated by Ouster OS0-128 shown in Figure 2 include signal images, reflectivity, am-
bient, and range images with its expansive 360∘ × 90∘ FoV as we mentioned in the
previous sections.

As indicated by the findings of our previous research, signal images have ex-
hibited superior performance in the execution of conventional DL tasks within the
domain of computer vision [136]. In light of this, for the first two parts of our exper-
iment, we opt to employ signal images from the indoor 01 square scene provided by
the dataset, which is a scene that spans 114 seconds and comprises 1146 images.

Optimal Preprocessing Configuration Searching for Signal Images

LiDAR-generated images at hand are typically panoramic but low-resolution. More-
over, these images often exhibit a substantial degree of noise. This prompts a con-
cern of utilizing the original images for facilitating the functionality evaluation of
the keypoint detector and descriptor algorithms. And our preliminary experiments
have evinced unsatisfactory performance across an array of detectors and descriptors
when employing the unaltered original LiDAR-generated images. To identify the
optimal resolution and interpolation methodology for augmenting image resolution,
an extensive comparative experiment was conducted.

In this part, we implement an array of interpolation techniques on the original
images, employing an extensive spectrum of image resolution combinations. The
interpolation methodologies encompass bicubic interpolation (CUBIC), Lanczos in-
terpolation over 8×8 neighborhood (LANCZOS4), resampling using pixel area rela-
tion (AREA), nearest neighbor interpolation (NEAREST), and bilinear interpolation
(LINEAR). The primary procedure of the preprocessing is displayed in Algorithm 4.

More specifically, we iterate a range of image dimensions and interpolation meth-
ods in conjunction with the suite of detector and descriptor algorithms designated for
evaluation. Each iteration involves a rigorous evaluation of a comprehensive metrics
set detailed in Table 16. Following a quantitative analysis, we compute mean values
for these metrics. This extensive assessment aims to identify the optimal preprocess-
ing configuration that offers a balanced performance for different keypoint detectors
and descriptors.
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Algorithm 4: Preprocessing configuration evaluation
Input:
𝑁 number of signal images: {𝑆𝑖}, 𝑖 ∼ 𝑁 ;
Interpolation methods:
𝐼𝐴 = {𝐶𝑈𝐵𝐼𝐶,𝐿𝐴𝑁𝐶𝑍𝑂𝑆4, 𝐴𝑅𝐸𝐴,𝑁𝐸𝐴𝑅𝐸𝑆𝑇,𝐿𝐼𝑁𝐸𝐴𝑅};
Targeted Width: 𝑇𝑊 = {𝑚𝑖𝑛 : 512;𝑚𝑎𝑥 : 4096; 𝑠𝑡𝑒𝑝 : 128};
Targeted Height: 𝑇𝐻 = {𝑚𝑖𝑛 : 32;𝑚𝑎𝑥 : 256; 𝑠𝑡𝑒𝑝 : 32};

1 Detectors and descriptors:
2 𝐷𝐸𝑇 =
{𝑆𝑈𝑅𝐹, 𝑆𝐼𝐹𝑇, 𝑆𝐻𝐼𝑇𝑂𝑀𝐴𝑆𝐼,𝐻𝐴𝑅𝑅𝐼𝑆,𝐵𝑅𝐼𝑆𝐾,𝐹𝐴𝑆𝑇,𝐴𝐾𝐴𝑍𝐸,𝑂𝑅𝐵};

3 𝐷𝐸𝑆 = {𝐹𝑅𝐸𝐴𝐾,𝑆𝐼𝐹𝑇,𝐵𝑅𝐼𝑆𝐾, 𝑆𝑈𝑅𝐹,𝐵𝑅𝐼𝐸𝐹,𝐴𝐾𝐴𝑍𝐸,𝑂𝑅𝐵};
Output: Metrics

4 foreach interplation approach in 𝐼𝐴 do
5 foreach𝑤𝑖𝑑𝑡ℎ in 𝑇𝑊 do
6 foreach ℎ𝑒𝑖𝑔ℎ𝑡 in 𝑇𝐻 do
7 foreach 𝑑𝑒𝑡 in 𝐷𝐸𝑇 and 𝑑𝑒𝑠 in 𝐷𝐸𝑆 do
8 foreach 𝑆𝑖 do
9 Calculate the value of aforementioned metrics;

10 Save the calculated value;

11 Analyze the metric values.

Keypoint Detectors and Descriptors for LiDAR-Generated Images

The evaluation workflow of detector-descriptor algorithms typically comprises three
stages including feature extraction, keypoint description, and keypoint matching be-
tween successive image frames. In this section, the specific procedures for executing
these stages in our experimental setup will be elaborated upon.

Designated Keypoint Detector and Descriptor
An extensive array of keypoint detectors and descriptors, as detailed in Table 15 from
Section 5.2.1, were investigated. The employed keypoint detectors include SHITO-
MASI, HARRIS, FAST, BRISK, SIFT, SURF, AKAZE, and ORB. Additionally, we
integrated Superpoint, a DL-based keypoint detector, into our methodology. The key-
point descriptors implemented in our experiment are BRISK, SIFT, SURF, BRIEF,
FREAK, AKAZE, ORB.

Key Points Matching between Images
Keypoint matching, the final stage of the detector-descriptor workflow, focuses on
correlating key points between two images, which is essential for establishing spatial
relationships and forming a coherent scene understanding. The smaller the distance
of the descriptors between two points, the more likely it is that they are the same
point or object between two images. In our implementation, we employ a technique
termed “brute-force match with cross check”, which means for a given descriptor 𝒟𝐴
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in image 𝐴 and another descriptor 𝒟𝐵 in image 𝐵, a valid correspondence requires
that both descriptors recognize each other as their closest descriptors.

Selected Evaluation Metrics

As explained in Section 5.2.2, we have opted not to rely on ground truth-based eval-
uation methodologies due to the lack of benchmark datasets and the substantial labor
involved in data labeling. Instead, we combined some specially-designed metrics
that are independent of ground truth, together with several intuitive metrics, to form
the complete indicators listed in Table 16. To our best understanding, this represents
the most extensive set of evaluation metrics currently available in the absence of a
benchmark dataset.

Evaluation Process

The flowchart shown in Algorithm 5 below provides an outline of the steps carried
out by the program. Two nested loops are employed to iterate over different detector-
descriptor pairs. For each image, the algorithm detects and describes its keypoints.
If more than one image has been processed, keypoints from the current image are
matched to the previous one. And metrics are placed in corresponding positions to
assess the algorithm’s performance.

5.2.4 Keypoints Assisted Point Cloud Registration

Selected Data

The selected data for the evaluation from the dataset mentioned in Section 5.2.3
includes indoor and outdoor environments. The outdoor environment are from the
normal road, denoted as Open road, and a forest, denoted as Forest. The indoor data
include a hall in a building, denoted as Hall (large), and two rooms, denoted as Lab
space (hard), and Lab space (easy).

Point Cloud Matching Approach

We applied KISS-ICP2 as our point cloud matching approach. It provides also the
odometry information, affording us the means to assess the efficacy of our point
cloud downsampling approach through an examination of a positioning error, namely
translation error and rotation error. To generalize our proposed approach, we tested
an NDT-based simple SLAM program3 as well.

2https://github.com/PRBonn/kiss-icp.git
3https://github.com/Kin-Zhang/simple_ndt_slam.git
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Algorithm 5: Overall evaluation pipeline of keypoint detectors and de-
scriptors

Input:
𝑁 number of signal images: {𝒮𝑖}, 𝑖 ∼ 𝑁 ;
𝐷𝐸𝑇 =
{𝑆𝑈𝑅𝐹, 𝑆𝐼𝐹𝑇, 𝑆𝐻𝐼𝑇𝑂𝑀𝐴𝑆𝐼,𝐻𝐴𝑅𝑅𝐼𝑆,𝐵𝑅𝐼𝑆𝐾,𝐹𝐴𝑆𝑇,𝐴𝐾𝐴𝑍𝐸,𝑂𝑅𝐵};
𝐷𝐸𝑆 = {𝐹𝑅𝐸𝐴𝐾,𝑆𝐼𝐹𝑇,𝐵𝑅𝐼𝑆𝐾, 𝑆𝑈𝑅𝐹,𝐵𝑅𝐼𝐸𝐹,𝐴𝐾𝐴𝑍𝐸,𝑂𝑅𝐵};
Output: Metrics: Number of keypoints, Robustness of Detector, Computational Efficiency,

Match Ratio, Match Score, Distinctiveness

1 foreach𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 ∈ 𝐷𝐸𝑇 do
2 foreach𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 ∈ 𝐷𝐸𝑆 do
3 foreach 𝒮𝑖 do
4 𝒮𝑖 ←− 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠

(︀
𝒮𝑖

)︀
;

5 𝒦𝒫𝑖,𝒟𝑖 ←− 𝑑𝑒𝑡𝑒𝑐𝑡 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝𝑢𝑡𝑒
(︀
𝒮𝑖, 𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟,𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟

)︀
;

6 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑛 : 𝒯 𝑖
1 ;

7 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐾𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠 : 𝒩 𝑖
𝑘𝑝;

8 Apply different transformations to image 𝑆𝑖, then calculate robustness: ℛ𝑖
𝑟𝑜𝑡,

ℛ𝑖
𝑠𝑐𝑎𝑙𝑒,ℛ𝑖

𝑏𝑙𝑢𝑟;
9 if 𝑖 > 1 then

10 𝒱𝑖
𝑚𝑎𝑡𝑐ℎ ←−𝑀𝑎𝑡𝑐ℎ

(︀
𝐷𝑖, 𝐷𝑖−1,

)︀
;

11 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 : 𝒯 𝑖
2 ;

12 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 : 𝒯 𝑖
1 + 𝒯 𝑖

2 ;

13 if 𝒩 𝑖
𝑚𝑎𝑡𝑐ℎ > 0 then

14 𝑀𝑎𝑡𝑐ℎ 𝑅𝑎𝑡𝑖𝑜 = 𝒩 𝑖
𝑚𝑎𝑡𝑐ℎ/𝒩 𝑖

𝑘𝑝;
15 𝒦𝒫𝑖

𝑅𝑒𝑓 ←− 𝑓𝑖𝑛𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠
(︀
𝒦𝒫𝑖,𝒱𝑖

𝑚𝑎𝑡𝑐ℎ

)︀
;

16 𝒦𝒫𝑖
𝑆𝑜𝑢𝑟𝑐𝑒 ←− 𝑓𝑖𝑛𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠

(︀
𝒦𝒫𝑖−1,𝒱𝑖

𝑚𝑎𝑡𝑐ℎ

)︀
;

17 ℋ𝑖
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 ℎ𝑜𝑚𝑜 ←−
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ℎ𝑜𝑚𝑜 𝑚𝑎𝑡𝑟𝑖𝑥

(︀
𝒦𝒫𝑖

𝑆𝑜𝑢𝑟𝑐𝑒,𝒦𝒫𝑖
𝑅𝑒𝑓

)︀
;

18 foreach 𝒫𝑅𝑒𝑓 ∈ 𝒦𝒫 𝑖
𝑅𝑒𝑓 , 𝒫𝑆𝑜𝑢𝑟𝑐𝑒 ∈ 𝒦𝒫 𝑖

𝑆𝑜𝑢𝑟𝑐𝑒 do
19 if ‖𝒫𝑆𝑜𝑢𝑟𝑐𝑒 − 𝒫𝑅𝑒𝑓 * ℋ𝑖

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 ℎ𝑜𝑚𝑜‖< 3 then
20 𝒩 𝑖

𝑔𝑜𝑜𝑑 𝑚𝑎𝑡𝑐ℎ = +1;

21 𝑀𝑎𝑡𝑐ℎ 𝑆𝑐𝑜𝑟𝑒 = 𝒩 𝑖
𝑔𝑜𝑜𝑑 𝑚𝑎𝑡𝑐ℎ/𝒩 𝑖

𝑚𝑎𝑡𝑐ℎ;

22 else
23 𝑀𝑎𝑡𝑐ℎ 𝑅𝑎𝑡𝑖𝑜 = 0;
24 𝑀𝑎𝑡𝑐ℎ 𝑆𝑐𝑜𝑟𝑒 = 0;

25 𝒱𝑖
𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑚𝑎𝑡𝑐ℎ,𝒱𝑖

𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑚𝑎𝑡𝑐ℎ ←− 𝐾𝑛𝑛𝑀𝑎𝑡𝑐ℎ
(︀
𝐷𝑖, 𝐷𝑖−1, 𝑘 = 2

)︀
;

26 foreach𝑀𝑎𝑡𝑐ℎ1 ∈ 𝒱 𝑖𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑚𝑎𝑡𝑐ℎ,
𝑀𝑎𝑡𝑐ℎ2 ∈ 𝒱 𝑖𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑚𝑎𝑡𝑐ℎ do

27 if𝐷𝑖𝑠𝑐𝑡𝑎𝑛𝑐𝑒𝑚𝑎𝑡𝑐ℎ1/𝐷𝑖𝑠𝑐𝑡𝑎𝑛𝑐𝑒𝑚𝑎𝑡𝑐ℎ2 < 0.8 then
28 𝒩 𝑖

𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑡𝑐ℎ = +1;

29 𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 𝒩 𝑖
𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑡𝑐ℎ/𝒩 𝑖

𝑘𝑝;

30 Analyze the metric values.
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Figure 47: The process of the proposed LiDAR-generated images assisted point cloud
registration

Proposed Method for Point Cloud Downsampling

Following the preprocessing of LiDAR-generated images outlined in Section 5.2.3,
we derive optimal configurations for the keypoint detectors and descriptors. Utiliz-
ing these configurations as a foundation, we establish the workflow of our proposed
methodology, illustrated in Figure 47. Within this process, we conduct distinct pre-
processing procedures for both the range and signal images, employing them indi-
vidually for keypoint detection and descriptor extraction. Subsequently, we combine
the key points obtained from both images and search the 𝐾 nearest points to each
of these key points. We systematically varied 𝐾 from 3 to 7, adhering to a maxi-
mum threshold of 7 to align with our primary objective of downsampling the point
cloud. Consequently, we find the corresponding point cloud of the key points and
their neighbors within the raw point cloud, thereby downsampling a point cloud.

In our analysis, we examined not only the positional error but also the rotational
error, computational resource utilization, downsampling-induced alterations in point
cloud density, and the publishing rate of LO.
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5.2.5 Hardware and Software Information

Our experiments are run on the ROS Noetic on the Ubuntu 20.04 system. The plat-
form is equipped with an i7 8-core 1.6 GHz CPU and an Nvidia GeForce MX150
graphics card. Primarily, we used libraries like OpenCV and PCL. Note, that we have
used some non-free copyright-protected algorithms from OpenCV, such as SURF,
just for research.

The assessment of keypoint-based point cloud downsampling was conducted on
a Lenovo Legion notebook equipped with the following specifications: 16 GB RAM,
a 6-core Intel i5-9300H processor (2.40 GHz), and an Nvidia GTX 1660Ti graphics
card (boasting 1536 CUDA cores and 6 GB VRAM). Within this study, our primary
focus was on the evaluation of the two open-source algorithms delineated in subsec-
tion 5.2.4, namely, KISS-ICP and Simple-NDT-SLAM. It is imperative to highlight
that a consistent voxel size of 0.2 m was employed for both algorithms. Our project is
primarily written in C++ (including the DL approach, Superpoint), publicly available
in GitHub4.

5.2.6 Evaluation Results

Through this section, we first cover the final results of our exploration of the pre-
processing workflow of LiDAR-based images. Subsequently, an in-depth analysis
of keypoint detectors and descriptors for LiDAR-based images is conducted. Then,
a detailed quantitative assessment of the performance of LO facilitated by LiDAR-
generated image keypoints is presented.

Results of preprocessing methods for LiDAR-generated image

Table 17: Evaluation metrics under different interpolation approaches.

Interpolation Robustness of (rotation, scaling, noise) Distinctiveness Matching Score

AREA (0.81,0.106,0.574) 0.309 0.415
CUBIC (0.82,0.121,0.569) 0.292 0.408

LANCZOS4 (0.819,0.127,0.559) 0.286 0.405
NEAREST (0.818,0.128,0.573) 0.275 0.401
LINEAR (0.815,0.1,0.583) 0.314 0.415

As elucidated in Section 5.2.2, Distinctiveness and Match Score are considered
as paramount measures for the overall accuracy of the entire algorithm pipeline. Con-
sequently, in scenarios where different sizes and interpolation methods show peak
performance on different metrics, these two metrics are our primary concern. Based
on such an criteria, the size 1024×64 demonstrated better performance across all

4https://github.com/TIERS/ws-lidar-as-camera-odom
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dectectors and descriptors methods. Then in Table 17, our evaluation also revealed
that the linear interpolation method yielded the optimal results among the various
interpolation techniques.

Table 18: Evaluation metrics under different resized resolutions.

Size Robustness of (rotation, scaling, noise) Distinctiveness Matching Score

512×32 (0.856,0.157,0.551) 0.267 0.366
896×128 (0.827,0.156,0.591) 0.37 0.515
896×256 (0.843,0.146,0.663) 0.309 0.486
1024×64 (0.809,0.124,0.54) 0.427 0.53

1024×128 (0.832,0.147,0.584) 0.372 0.504
1024×256 (0.851,0.134,0.659) 0.32 0.483
1280×64 (0.798,0.116,0.527) 0.41 0.5

1280×128 (0.823,0.138,0.575) 0.353 0.479
1280×256 (0.849,0.127,0.652) 0.301 0.464
1920×128 (0.808,0.124,0.553) 0.321 0.436
1920×256 (0.844,0.114,0.644) 0.274 0.43
2048×128 (0.799,0.129,0.544) 0.309 0.425
2048×256 (0.837,0.119,0.633) 0.263 0.421
2560×128 (0.802,0.111,0.547) 0.294 0.4
2560×256 (0.842,0.106,0.644) 0.249 0.401
4096×128 (0.799,0.087,0.557) 0.257 0.339

The findings in Table 18, also suggest that there is a clear advantage in prop-
erly reducing the size of an image as opposed to enlarging it. Additionally, in the
process of image downscaling, one pixel often corresponds to several pixels in orig-
inal image. So overly downscaled images might lead to substantial deviations in
the detected key points when re-projected to their original poistions, suggesting that
extreme image size reductions should be avoided.

(a) Detect key points in an enlarged image.

(b) Detect key points in a downscaled image.

Figure 48: Keypoint detected in the resized signal images
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Figure 49: Number of key points

And here is a more intuitive result to show that how reducing the size of a image
is far better than enlarging it. In Figure 48a and Figure 48b, Superpoint detectors
identify keypoints as green dots. The enlarged image Figure 48a displays many
disorganized points. Conversely, the downscaled image Figure 48a, reveals distinct
keypoints, such as room corners and the points where various planes of objects meet.
Note that we resized the two images for paper readability, originally, their sizes var-
ied.
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Figure 50: Computational efficiency
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(b) Scaling
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(c) Noise Interference

Figure 51: Robustness of the detector

Results of Keypoint Detectors and Descriptors For LiDAR Image

In Figure 49, which is a metric that only related to detectors, FAST and BRISK
algorithms detected the highest number of keypoints, but there were significant fluc-
tuations in the counts. Comparatively, AKAZE, ORB, and Superpoint identified a
reduced number of keypoints, but the consistency was not stable.

Figure 50 depicts the Computational Efficiency, where the majority of the al-
gorithms operate in less than 50 ms. After CUDA enabled, SuperPoint runs sig-
nificantly faster with minimal variance. Among all algorithms, BRISK is the most
time-consuming, just using BRISK solely as a descriptor with other detectors will
hinder the overall efficiency.
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Figure 52: Match ratio

Figure 51 shows the Robustness of Detector. Superpoint consistently demon-
strates robust performance across various transformations. Among conventional de-
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tectors, AKAZE has proven effective, especially in handling rotated transformations
and noise interference. And most detectors, exhibit marked poor performance un-
der scale invariance. The horizontal textures inherent in LiDAR-based images might
explain such weakness: when the images are enlarged, these textures can be erro-
neously detected as keypoints.

As emphasized in Section 5.2.2, a multitude of keypoint detections and rapid
matches could be useless if their accuracy is not guaranteed. Therefore, Match Ra-
tio, Match Score, and Dinctiveness, which pertain to algorithmic accuracy, can be
regarded as the most pivotal indicators across various application perspectives. Fig-
ure 52, Figure 53, and Figure 54 present the results of these three metrics, indi-
cating that Superpoint, when augmented with CUDA, is the most effective solution.
Moreover, among traditional algorithms, AKAZE demonstrates top-tier performance
across the majority of evaluated metrics, making it a commendable choice.
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Figure 53: Match score
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Results of LiDAR-generated Image Keypoints Assisted LO

Downsampled Point Cloud
In Figure 55, we demonstrate the sample result of the downsampled point cloud
in Figure 55a compared with the raw point cloud in Figure 55b. Notably, in the
downsampled point cloud in Figure 55a, the red points are extracted based on signal
images and the green ones are from range images. We draw the key points from both
images to the signal image shown in the lower part of Figure 55a. The disparity be-
tween the points extracted based on these two types of images shows the significance
of different LiDAR-generated images. Additionally, in the preliminary evaluation of
LO, we found the accuracy of LO is lower if we only integrated the signal images in-
stead of both modalities. This encourages us to utilize both signal and range images
in the latter part.

(a) The upper part presents the downsampled point cloud from our lidar-based method,
while the bottom illustrates key point distribution in the signal image: red from the signal
image and green from the distance image.

(b) Raw point cloud and signal image.

Figure 55: Samples of point cloud data
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Table 19: Performance evaluation of LO (KISS-ICP) with raw point cloud and our
downsampled point cloud, ‘Sig’ and ‘Rng’ represent the size of neighboring point
areas for the signal and range images, respectively, denoted as Sig Rng.

Open road Forest Lab space (hard) Lab space (easy) Hall (large)Neighbor Size
(Sig Rng) (Translation error (mean/rmse)(m), rotation error(deg))

4 4 N / A (0.079/0.090, 6.58) (0.052/0.062, 1.44) (0.027/0.031, 0.99) (1.111/1.274, 3.37)
4 5 N / A (0.086/0.096, 7.22) (0.043/0.051, 1.51) (0.031/0.035, 1.05) (0.724/0.819, 2.95)
4 7 (0.817/0.952, 2.33) (0.082/0.102, 7.78) (0.039/0.046, 1.46) (0.028/0.033, 0.98) (0.583/0.660, 2.88)
5 4 (1.724/2.038, 2.10) (0.085/0.100, 6.81) (0.059/0.070, 1.71) (0.025/0.028, 0.98) (1.065/1.242, 2.73)
5 5 (2.176/2.410, 1.76) (0.108/0.203, 6.96) (0.037/0.043, 1.35) (0.028/0.032, 0.97) (0.707/0.801, 2.66)
5 7 (1.298/1.443, 2.71) (0.076/0.084, 6.11) (0.064/0.075, 1.54) (0.025/0.028, 0.94) (0.676/0.746, 3.67)
7 4 (1.696/1.888, 2.31) (0.082/0.094, 6.98) (0.074/0.085, 1.64) (0.027/0.032, 0.99) (0.806/0.917, 3.68)
7 5 (1.784/2.006, 2.30) (0.080/0.102, 7.72) (0.033/0.047, 1.59) (0.025/0.028, 0.97) (0.698/0.803, 3.11)

Raw PC N / A (0.057/0.073, 8.91) N / A (0.020/0.022, 0.62 N / A )

LO-based Evaluation
In our experiment, various numbers of neighbor points are utilized, ranging from 3
to 7 for each type of LiDAR-generated image. We selected part of them to show the
result here based on the principle that more accurate but less amount points. As we
found in the previous section, the Superpoint has reliable key points detected, so we
utilize this DL method to extract key points in our proposed approach while KISS-
ICP is the point cloud registration and LO method. Table 19 shows the performance
of LO based on different sizes of neighbor point sizes in both indoor (Lab space,
Hall) and outdoor (Open road and Forest) environments.

As shown in Table 19, in the scenarios of Open road, Lab space (hard), and
Hall(Large), the LO from KISS-ICP applying raw point cloud can not work properly
with large drift which the error can not be calculated. Meanwhile, our proposed
approach works all the time. Additionally, even when applying raw point cloud to
KISS-ICP works, our approach can achieve comparable translation state estimation
while more robust in the rotation state estimation across most of the situations.

Table 20: The number of points left after downsampling with varied neighbor size,
‘Sig’ and ‘Rng’ represent the size of neighboring point areas for the signal and range
images, respectively, denoted as Sig Rng.

Open road Forest Lab space (hard) Lab space (easy) Hall (large)Neighbor Size
(Sig Rng) Number of points(pts)

4 4 2650 7787 6435 6360 4742
4 5 3206 7812 6416 6302 4792
4 7 4784 11447 9518 9392 7094
5 4 3182 7843 6409 6333 4776
5 5 3183 7568 6446 6292 4783
5 7 4763 11519 9513 9386 7066
7 4 4760 11631 9445 9356 7070
7 5 4756 11627 9469 9378 7078

Raw PC 131072 131072 131072 131072 131072
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In outdoor settings, a neighbor size 4 7 (4×4 for signal images and 7×7 for range
images) exhibits notable efficacy in both translation and rotation state estimation.
Conversely, in indoor environments, a neighbor size 5 5 (5×5 for signal images and
5 × 5 for range images) demonstrates commendable performance in the estimation
of translation and rotation states, in addition to exhibiting efficient downsampling
capabilities, as delineated in Table 20.

Based on the above result, we apply the neighbor size 4 7 for outdoor settings and
the neighbor size 5 5 for indoor settings to further extend the performance evaluation
by including the conventional keypoint detector approach and another point cloud
matching approach, NDT. It is worth noting that the purpose of applying NDT here
is not to compare with KISS-ICP but to show the generalization of our proposed
approach among other point cloud registration methods.

Table 21: Evaluation of LO based on conventional and DL keypoint detectors with
KISS-ICP

KISS-ICP
Outdoor Indoor

XXXXXXXXXXXXXXXX

Evaluation
Indicators

Approaches

AKAZE Superpoint Raw PC AKAZE Superpoint Raw PC

Translation Error (m) 0.096/0.107 0.082/0.102 N / A 0.092/0.099 0.037/0.043 N / A
Rotation error (deg) 4.27 7.78 N / A 1.22 1.71 N / A
CPU (%) 263.16 457.59 544.61 82.57 425.93 572.50
Mem (MB) 247.62 308.67 165.73 198.27 232.85 84.37
Avg Pts 4849 11447 131072 1176 6446 131072
Odom Rate (Hz) 10.0 4.0 2.95 10.0 7.6 2.82

The result in Table 21 and Table 22 proves that the conventional keypoint ex-
tractor can achieve comparable LO translation estimation and more accurate rotation
estimation to Superpoint. This performance is obtained with much less CPU and
memory utilization, and fewer cloud points, but higher odometry publishing rates.
Similar results are achieved by NDT based approach which validates the above result
in a certain way. Notably, the memory consumption using KISS-ICP with raw point
cloud in Table 21 is lower than others. As our observation indicates, the primary
reason behind this is the drift, resulting in few points for the point cloud registration.

Table 22: Evaluation of LO based on conventional and DL keypoint detectors with
NDT

NDT
Outdoor Indoor

XXXXXXXXXXXXXXXX

Evaluation
Indicators

Approaches

AKAZE Superpoint Raw PC AKAZE Superpoint Raw PC

Translation Error (m) 0.115/0.126 0.090/0.098 N / A 0.102/0.114 0.054/0.071 N / A
Rotation error (deg) 4.84 5.66 N / A 1.15 1.31 N / A
CPU (%) 100.39 325.69 571.12 82.20 338.54 581.30
Mem (MB) 285.06 548.16 705.43 253.95 290.34 645.21
Avg Pts 4849 11447 131072 1176 6446 131072
Odom Rate (Hz) 10.0 4.6 3.34 10 8.21 1.20
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5.3 LiDAR Generated Images Enhanced UAV Tracking
LiDAR-as-camera approach can augment conventional LiDAR-based methods for
object detection and tracking, as the algorithms for the latter are more computation-
ally intensive and less mature than vision sensors. Despite the low vertical resolution
and lack of color, the key motivation for considering such an approach is simply to
do more with already existing data and without additional sensors.

We are interested in studying the potential of these sensors for tracking UAVs,
fusing both LiDAR point cloud data and signal images. Given that the images gen-
erated by the LiDAR as a camera sensors have low resolution and the farther objects
have less points (see for example in Figure 59), we are particularly interested in
short-range tracking of UAVs, which finds potential applications in UAV docking, or
collaboration, among others. The deployment of UAVs requires accurate localiza-
tion, especially where GNSS signals are degraded or not available [200].

ROI Search

Track Initialize

YOLOv5

UAV Position and 
Trajectory Tracking Kalman Filter

Signal Image Point Cloud

No Yes

Pointcloud 
ProcessingDBSCAN

Ground removal

Figure 56: Diagram of proposed UAV tracking system based on the image and point
cloud generated by an Ouster LiDAR.

In this dissertation, we propose a UAV tracking approach based on the integration
of images and 3D point clouds generated by an Ouster LiDAR sensor. The diagram
of the approach we follow is illustrated in Figure 56. The UAV can be detected in
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signal images instead of manually giving its initial position as it is needed in other
point-cloud-only approaches. The detection also yields an approximate region of
interest (ROI) in the point cloud, which will be expanded if no detection occurs.
This approach reduces computation overhead by avoiding the need for an overall
point cloud search. UAV identification is achieved by clustering points within the
ROI, followed by continuous position estimation using the Kalman Filter (KF).

Figure 57: Example of a signal image (top) and its corresponding point cloud with
background removed (bottom).

5.3.1 Initialization of UAV Position

Figure 57 shows the signal image and point cloud data of a UAV at its initial position.
Notably, when the UAV approaches the Ouster LiDAR, the signal image of the UAV
appears clearer. To detect the position of the UAV in the signal image and obtain
the ROI in the image, the state-of-the-art object detection algorithm YOLOV5 is
utilized. Given that the Ouster LiDAR signal image and the point cloud data are
spatially linked, the corresponding point cloud ROI can be extracted. Subsequently,
by employing ground removal and point cloud clustering techniques, the UAV point
cloud can be extracted and, as such, the initial position of the UAV can be estimated.

5.3.2 Fusion of LiDAR Generated Images and Point Cloud

Our goal for fusing the signal image and point cloud data is to acquire an accurate
ROI. Initially, we perform image detection on each signal image to identify the UAV.
This allows us to obtain a more precise ROI. Additionally, we can use the UAV’s
initial position from the previous step as a reference to extract the UAV point cloud
from the environment based on the number of UAV point clouds and their distance.
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However, if YOLOv5 fails to detect the UAV, we select the ROI predicted by the FK
and separate the UAV point cloud from it. This process is explicated in Algorithm 6.

Algorithm 6: UAV tracking fusing signal images and point clouds
Input:

Raw pointcloud: 𝒫𝑡
𝑟𝑎𝑤

Signal image: 𝒮𝑡

Target UAV point cloud: 𝒫𝑡−1
𝑈𝐴𝑉

Output:
Drone pose: P𝑡

𝑈𝐴𝑉 ;

1 Function object extraction(𝒫𝑡
𝑟𝑎𝑤, 𝒫𝑡−1

𝑈𝐴𝑉 , ℛ𝒪ℐ𝑡𝑌 𝑂𝐿𝑂):
2 if ℛ𝒪ℐ𝑡𝑌 𝑂𝐿𝑂 then
3 𝒫𝑡

𝑟𝑜𝑖 = 𝒫𝑡
𝑟𝑎𝑤 (ℛ𝒪ℐ𝑡𝑌 𝑂𝐿𝑂);

4 else
5 ℛ𝒪ℐ𝑡 ←− 𝐾𝐹

(︀
𝑔𝑒𝑡 𝑐𝑒𝑛𝑡𝑒𝑟

(︀
𝒫𝑡−1

𝑈𝐴𝑉

)︀)︀
;

6 𝒫𝑡 ←− 𝑔𝑟𝑜𝑢𝑛𝑑 𝑟𝑒𝑚𝑜𝑣𝑎𝑙
(︀
𝒫𝑡

𝑅𝑂𝐼

)︀
;

7 𝒫𝑡
𝑖 ←− 𝐷𝐵𝑆𝐶𝐴𝑁

(︀
𝒫𝑡

)︀
, 𝑖 ∈ (0, 𝑅);

8 foreach 𝒫 ∈ 𝒫𝑡
𝑖 do

9 if Min (num(𝒫 ) - num(𝒫𝑡−1
𝑈𝐴𝑉 ) ) then

10 if Min (dis(𝒫) - dis(𝒫𝑡−1
𝑈𝐴𝑉 )) then

11 𝑓𝑙𝑎𝑔 = 1 ;
12 𝒫𝑡

𝑢𝑎𝑣 ←− 𝒫 ;

13 else
14 𝑓𝑙𝑎𝑔 = 0;

15 else
16 𝑓𝑙𝑎𝑔 = 0;

17 return 𝒫𝑡
𝑢𝑎𝑣 , flag ;

18 foreach new 𝒮𝑡 do
19 ℛ𝒪ℐ𝑡𝑌 𝑂𝐿𝑂 ←− 𝑌 𝑂𝐿𝑂𝑣5

(︀
𝒮𝑡

)︀
;

20 if ℛ𝒪ℐ𝑡𝑌 𝑂𝐿𝑂 = None then
21 𝒫𝑡

𝑈𝐴𝑉 , flag = object extraction (𝒫𝑡
𝑟𝑎𝑤, 𝒫𝑡−1

𝑢𝑎𝑣 ) ;
22 if flag = 0 then
23 P𝑡

𝑈𝐴𝑉 = KF predict (get center(𝒫𝑡−1
𝑈𝐴𝑉 )) ;

24 KF update (P𝑡
𝑈𝐴𝑉 )

25 else
26 P𝑡

𝑈𝐴𝑉 = get center(𝒫𝑡
𝑈𝐴𝑉 ) ;

27 KF update (P𝑡
𝑈𝐴𝑉 ) ;

28 else
29 𝒫𝑡

𝑈𝐴𝑉 = 𝑜𝑏𝑗𝑒𝑐𝑡 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛
(︀
𝒫𝑡

𝑟𝑎𝑤, 𝒫𝑡−1
𝑈𝐴𝑉 , ℛ𝒪ℐ𝑡

)︀
;

30 P𝑡
𝑈𝐴𝑉 = 𝑔𝑒𝑡 𝑐𝑒𝑛𝑡𝑒𝑟

(︀
𝒫𝑡

𝑈𝐴𝑉

)︀
;

31 𝐾𝐹 𝑢𝑝𝑑𝑎𝑡𝑒
(︀
P𝑡
𝑈𝐴𝑉

)︀
;
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5.3.3 Evaluation Setup

Hardware Information

The experimental setup consists of an Ouster OS0-128 LiDAR, an Intel computer,
and a Holybro X500 V2 drone shown in Figure 58. The Ouster OS0-128 boasts a
wide FoV (360∘ × 90∘) and is capable of producing both dense point cloud data and
signal images at a frequency of 10 Hz. The drone is equipped with OptiTrack mark-
ers, allowing the acquisition of the drone’s actual position at 100 Hz in the motion
capture (MOCAP) system, which is also partially visible in Figure 58.

Customized Holybro X500 UAV

Ouster OS0-128 3D Lidar

Optitrack PrimeX 22 Camera

Figure 58: Experimental hardware and site.

Software Information

The system was implemented based on the ROS Noetic framework on Ubuntu 20.04
operating system. The tracking package, Ouster drivers, and OptiTrack mocap pro-
gram were executed on the laptop computer connected to the Ouster LiDAR. Our
tracking approach requires YOLOv55 for UAV detection and Open3D6 for point
cloud data processing. The algorithms and code designed and developed for these
experiments are written in Python and are publicly available in a GitHub repository7.

5https://github.com/ultralytics/yolov5/releases
6http://www.open3d.org/
7https://github.com/TIERS/UAV-tracking-based-on-LiDAR-as-a-camera
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Data collection

Regarding the data consisting of UAV detections with the Ouster LiDAR, we col-
lected three different data sequences (𝑆𝑒𝑞 𝑖, 𝑖 ∈ (1 ∼ 3)). in an indoor area of
10.0 × 10.0𝑚2, with distances ranging 0.5 m to 8 m between the LiDAR and the
UAV. The details of the collected data can be seen in Table 23. Seq 1 and Seq 3 rep-
resent a helical ascension trajectory, while Seq 2 represents an elliptical trajectory.

Table 23: Data sequences collected in our experiment.

Sequences Time (s) Ground Truth Trajectory Distance (m)

Seq 1 35.8 MOCAP elliptical trajectory 7.0
Seq 2 26.9 MOCAP spiral trajectory 6.3
Seq 3 32.7 MOCAP spiral trajectory 8.0

Evaluation

To validate the precision of the UAV estimated poses and velocities by our approach,
we calculate the absolute pose error (APE) and velocity error based on the ground
truth from the MOCAP system. We conducted a comparative analysis of our pro-
posed method with a UAV tracking method that solely relies on either Ouster LiDAR
images or point clouds. The point cloud tracking method uses only Ouster OS0-128
LiDAR point cloud data as input, with a frame rate of 10HZ. When tracking the
UAV using point cloud data, the initial position of the UAV needs to be known as
the point cloud of the UAV is sparser than that of larger objects, such as cars or hu-
mans, and distinguishing the point cloud of the UAV from the environment using
features is challenging. On the other hand, the image tracking method uses only
Ouster OS0-128 LiDAR signal images with a frame rate of 10 Hz. Firstly, the sig-
nal image undergoes target detection processing to obtain the UAV’s bounding box
in the signal image. Subsequently, the image in the bounding box is converted into
point cloud data. The point cloud clustering algorithm is then utilized to separate the
UAV’s point cloud from the environment based on the number and distance features
of the point cloud clusters. This approach allows us to obtain the trajectory of the
UAV. Both of these methods are estimated by the Kalman filter method to obtain the
UAV’s trajectory.

We conducted the experiments on two different platforms to assess real-time
performance, the Lenovo Legion Y7000P equipped with 16GB RAM, 6-core Intel
i5-9300H (2.40 GHz) and Nvidia GTX 1660Ti (1536 CUDA cores, 6GB VRAM), as
well as the commonly used embedded computing platform Jetson Nano with 4-core
ARM A57 64-bit CPU (1.43 GHz), 4 GB RAM, and 128-core Maxwell GPU.
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Dis = 0.9m, 419 Points Dis = 1.8m, 72 Points Dis = 5.1m, 20 Points Dis = 7.0m, 7 Points

Dis = 6.9m, 8 Points Dis = 7.0m, 7 Points Dis = 7.0m, 6 Points Dis = 7.0m, 10 Points

Figure 59: UAV point cloud of drones at different distances, the bottom line shows
UAV point cloud of four consecutive frames at the same long distance.

5.3.4 UAV Tracking Result Evaluation

In this section, we report the experimental results, based on the three data sequences
gathered in the indoor test environment.

UAV in the Ouster LiDAR point cloud

The first parameter to analyze is the number of points that reflect from the UAV at dif-
ferent distances. Our analysis, shown in Figure 59, reveals that the point cloud struc-
ture generated by the UAV is significantly influenced by the distance from the target.
At short distances, the point cloud produced by LiDAR is abundant and presents
comprehensive details. When the distance extends to a medium range, the number of
UAV point clouds decreases to less than 100, but the three-dimensional structure of
the UAV remains discernible. However, when the distance is at a medium range of
7 m according to our results, the number of UAV point clouds reduces to single dig-
its, and the point cloud structure becomes highly unpredictable and unstructured. It
is worth noting that in a more realistic application, additional elements such as other
sensor payloads or a cargo bay would potentially increase significantly the reflective
surface of the UAV.
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Figure 60: Absolute position error (APE) value of three data sequences.

Trajectory Validation

We also show a quantitative analysis of the APE based on ground truth, with the
main results summarized in Figure 60. To ensure the trajectories are compared under
the same coordinates, we utilize the coordinates of the ground truth as the reference
coordinates and convert all trajectories generated by the three UAV tracking methods
to these coordinates. Table 24 presents a comprehensive comparison of three differ-
ent UAV tracking methods in terms of detectable distance, average APE, algorithm
update frequency, and need for initial conditions.

Table 24: Performance( Detectable distance, frame rate, and APE error) and initial
conditions comparison of selected tracking methods.

Distance APE Error(Mean/RMSE) FPS Initialization
(m) (m) (Hz)

Tracking with point cloud 8.0 0.104 / 0.142 8.3 Yes
Tracking with signal images 2.4 0.078 / 0.088 10 No
Fused(Ours) 8.0 0.061 / 0.067 10 No

The image-based UAV tracking method shows a relatively small average error;
however, its overall error distribution is inconsistent, as the Y-axis error in the Seq 1
sequence reaches up to 0.3 m. Conversely, the point cloud-based UAV tracking
method has the largest average error, but its error distribution is more uniform. Our
proposed method, on the other hand, achieves the smallest average error and minimal
error fluctuation. Additionally, to supplement the quantitative trajectory analysis,
we also provide a visualization of the trajectories based on the point cloud tracking
method and our proposed method from three different viewpoints, as illustrated in
Figure 61, with more consistent behavior.

120



LiDAR as a Camera

2.5 3 3.5 4

3

4

5

Ours Point Cloud GT

(a) XY trajectory plot

2.5 3 3.5 4

0.5

1

1.5

(b) XZ trajectory plot

3 4 5

0.5

1

1.5

(c) YZ trajectory plot

Figure 61: Comparison of estimated trajectories with the point cloud tracking method
and our proposed method from three different projections.

Velocity Validation

In addition to pose estimation, we conducted a quantitative analysis of the UAV
velocities based on the ground truth data and compared them with different UAV
tracking methods. Figure 62 illustrates the velocity errors of each method along
the X, Y, and Z axes. The experimental results reveal that all methods have similar
mean values of the velocity errors, but different fluctuations. The image tracking
method has a large fluctuation in the Y-axis velocity error, reaching up to 0.75 m/s
in Seq 3. The point cloud tracking method also has relatively large fluctuations in all
dimensions. In contrast, our method achieves smaller overall velocity errors in both
the mean value and fluctuation range.
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Figure 62: Velocity estimation error for each linear component in the three data se-
quences.
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Resource Consumption

Both the Intel laptop and the Jetson Nano run ROS Melodic on Ubuntu 18.04. The
CPU and memory utilization is measured with a ROS resource monitor tool8. Addi-
tionally, for minimizing the difference of the operating environment, we unified the
dependencies used in each method into same version. The results are summarized in
Table 25.

Table 25: Average run-time resource (CPU/RAM) utilization and performance (pose
calculation speed) comparison of selected tracking methods across multiple plat-
forms. CPU utilization of 100% equals one full processor core.

Laptop Jetson Nano
( CPU (%), RAM (MB), Pose rate (Hz) )

Tracking with point cloud (422.7, 296.1, 8.3 ) (121.7, 179.7, 5.15 )
Tracking with image (209.0, 293.6, 10 ) (113.8, 232.9, 6.07)
Fused (ours) (195.5, 299.0, 10 ) (114.5, 247.8, 6.04)

The memory utilization of each selected method was roughly equivalent in both
processor architecture platforms. However, the same algorithm showed generally
higher CPU utilization and achieved the highest publishing rate when running on
the Intel processor. For the Intel processor, the point cloud tracking method had
higher CPU utilization than other methods but the lowest publishing rate. The fusion
method performed well on the laptop and had the smallest overall error. On the
embedded computing platform, the CPU utilization of all methods did not differ
significantly, and the point cloud tracking method had the lowest memory utilization
but the lowest pose publication rate. The difference in CPU utilization is caused by
the use of CUDA GPU acceleration in the Open3D binaries utilized for the Jetson
Nano platform, while the Intel computer uses only the CPU for point cloud data
processing. The image processing also leverages the embedded GPU in the Jetson
Nano board. Because of the small ROI that we extract to process the point cloud, the
fused method adds little overhead on top of the vision-only method.

5.4 Summary
This section is on utilizing LiDAR as a camera to enhancing various robotic percep-
tion tasks. First, we have presented an analysis of the performance of different object
detection and semantic segmentation DL models on images generated by LiDAR
sensors. We have collected data with two different LiDARs indoors and outdoors
and in both daylight and night scenes. Our experiments show that state-of-the-art

8https://github.com/alspitz/cpu monitor
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DL models can process this type of data with a promising performance by interpo-
lating the low-resolution images to adequate resolutions. Object segmentation results
are particularly optimistic, therefore paving the path for further usage of LiDARs be-
yond the current algorithms focused on odometry, localization, mapping, and object
detection from geometric methods. The main limitation of the current analysis is per-
haps the lack of re-training for the models with larger datasets of LiDAR-generated
images, owing to the lack of such annotated datasets.

Secondly, to mitigate computational overhead while ensuring the retention of a
sufficient number of dependable key points for point cloud registration in LO, this
study introduces a novel approach that incorporates LiDAR-generated images. A
comprehensive analysis of keypoint detection and descriptors, originally designed
for conventional images, is conducted on the LiDAR-generated image. This not only
informs subsequent sections of this paper but also sets the stage for future research
endeavors aimed at enhancing the robustness and resilience of LO and SLAM tech-
nology. Building upon the insights gleaned from this analysis, we propose a method-
ology for down-sampling the raw point cloud while preserving the integrity of salient
points. Our experiments demonstrate that our proposed approach exhibits compara-
ble performance to utilizing the complete raw point cloud and, notably, surpasses it
in scenarios where the full raw point cloud proves ineffective, such as in cases of
drift. Additionally, our approach exhibits commendable robustness in the face of
rotational transformations. The computation overhead of our approach is lower than
the LO utilizing raw point cloud but with a higher odometry publishing rate.

In the end, this work has proposed a novel approach for tracking a UAV based
on the fusion of signal images and point clouds from an Ouster LiDAR. Unlike con-
ventional LiDAR and camera fusion, this approach does not need any calibration and
preprocessing with external cameras and the LiDAR data is more resistant to harsh
environments. We collected three different data sequences in an indoor environment
with the OptiTrack MOCAP system providing ground truth positions. We compared
the proposed approach with the approaches based on either only point clouds or sig-
nal images and the results showed the effectiveness of our proposed approach. Addi-
tionally, we found that our approach can be utilized in a popular mobile computing
platform, Jetson Nano according to our evaluation.
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6 UAV Tracking with a Solid-State LiDAR

Even though rotating LiDARs nowadays with 64 or 128 vertical channels can pro-
vide high angular resolution in both horizontal and vertical dimensions, these high-
end devices are not the most common. Moreover, the scanning pattern is in general
repetitive, which has benefits from a geometric perspective in terms of data process-
ing but does not enable a higher FoV coverage with longer exposure if the position
of the sensor is fixed. In previous sections, we discussed the benefits and challenges
of solid-state LiDAR, including its long-range scanning technology that produces
high-density point clouds, making it ideal for tracking objects in three-dimensional
space such as UAVs [7]. With non-repetitive scan patterns as that shown in Fig-
ure 63a, solid-state LiDARs can generate more dense point clouds with adjustable
frequencies and varying FoV. In particular, we are interested in the possibilities of
dynamically adjusting the FoV coverage and density in the point cloud to be pro-
cessed for detection and tracking. Among the benefits of these new LiDARs and the
possibilities of adaptive scanning rates is also higher resilience against one of the
challenges in LiDAR-based perception: motion-induced distortion [254].

UAVs are increasingly used in various applications due to their mobility and ease
of deployment [255; 256], and, equipped with only a flight controller and a basic
sensor suite, they serve as efficient mobile sensing platforms [257; 258]. Recent
research has focused on UAV navigation in GNSS-denied environments [259; 135;
260] and state estimation in both single and multi-UAV systems [203; 101].

In multi-robot systems, tracking UAVs or MAVs from UGVs enhances flexibility
and reduces the need for high-accuracy onboard localization. A significant example
of multi-robot system deployment in GNSS-denied environments is the DARPA Sub-
terranean Challenge [126; 127], where localization and collaborative sensing were
critical challenges. During the challenge, MAVs were dynamically deployed from
UGVs. Since MAVs often rely on VIO for self and relative state estimation, external
LiDAR-based tracking can extend operability to low-visibility conditions or other
scenarios where VIO faces limitations [100; 261].

The work presented in Section 6.1 introduces adaptive scan integration methods
for tracking a UAV from a UAV station. To the best of our knowledge, this approach
has not been previously explored. Due to the unavailability of a MOCAP system
to verify the tracking results at the time of this study, we have developed our own
validation method. And in the later work in Section 6.2, we improve the previous
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idea in both data processing (real-time adaptive dynamic integration) and a tracking
algorithm using KF with ground truth provided by MOCAP system.

The main contribution of this work is as follows:

1. We first introduce a novel adaptive LiDAR scan integration method enabling
more accurate and reliable UAV tracking from 3D point clouds, specifically
applied to MAV detection. (in Section 6.1)

2. In addition, we define a multi-modal tracking system to process point clouds
resulting in different integration times for higher accuracy and persistent track-
ing, while validating the trajectories using a priori known information about
the MAV dimensions. (in Section 6.1)

(It is worth noting that the aforementioned studies on UAV tracking primarily
focuses on iterative detections (tracking by detection) conducted offline and in
post-processing.)

3. Unlike the above work, we propose an algorithm that adjusts the LiDAR frame
integration time, or frequency, dynamically based on the UAV speed and dis-
tance from the sensor. We integrate consecutive scans in a sliding window
manner to retain the most recent information about the state of the UAV. (in
Section 6.2)

4. We develop a novel dual tracking approach using a Kalman filter variant that
combines the two scan integration frequencies into one single state estimation
using inverse covariance intersection. We evaluate the tracking performance
during the experiments with ground truth data generated by a motion capture
system. (in Section 6.2)

5. We provide a method to detect the initial position of the UAV using the object
detection algorithm YOLOV5 over range images generated from a solid-state
LiDAR point cloud. (in Section 6.2)

6.1 UAV Tracking Based on Adaptive Scan Integration
In this work, we assume that the initial position of the MAV after take-off is known.
We also assume that its shape and size are known a priori. We develop a method
targeting solid-state LiDARs owing to the higher density of the resulting point cloud
even with more limited FoV. In these LiDARs, the concept of a frame or scan fre-
quency changes considerably. Similarly as in rotating 3D LiDARs, a frame in solid-
state LiDARs can be naturally related to a single revolution. With non-repetitive scan
patterns, LiDARs can output point clouds at adjustable frequencies with varying FoV
coverage, as illustrated in Figure 63a. This opens the door to a new LiDAR percep-
tion method that exploit the possibilities of adaptively adjust the frame integration
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(a) Illustration of the field of view (FoV) coverage with different point
cloud integration times in a non-repetitive LiDAR scanning device.
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(b) Illustration of a ground robot tracking a micro-aerial vehicle (MAV)
using a limited-FoV solid-state LiDARs.

Figure 63: Conceptual illustration of the field-of-view coverage with different inte-
gration times on a Livox Horizon LiDAR (top) and its application to tracking MAVs
(bottom).

time to better sense the objects. We apply the proposed an adaptive LiDAR scan
integration method within the problem of a UGV tracking a MAV for external state
estimation, as conceptualized in Figure 63b. While our focus is on MAVs, the pro-
posed method can also be easily adapted to detect foreign objects or intruder MAVs
more accurately. We first put our focus on single and known MAV detection, but
the presented generic method that can be extended to multi-MAV tracking as long as
FoV limitations are accounted for.
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Figure 64: Overview of the proposed methods, where tracking is simultaneously
performed at three different scan frequencies. Within each of these three threads, the
scan frame integration is adjusted based on the distance to the target MAV and its
speed.

6.1.1 Methodological Overview

We consider the problem of tracking a MAV from a ground robot. The ultimate ob-
jective is to improve the collaboration between the robots and the ability of the MAV
to navigate in complex environments aided by the UGV. The rest of this paper delves
into the definition, design, and implementation of a method for tracking a single
MAV. Nonetheless, these can be extended to multiple MAVs. The main limitation
when tracking multiple units is the FoV of the LiDAR sensors onboard the ground
vehicle, and therefore assumptions have to be made to the spatial distribution of the
MAVs (always within the FoV of the ground robot).

System Overview

We aim to define more optimal settings for generating point clouds based on the
state (speed and distance to the sensor) of the MAV being tracked. We propose three
simultaneous tracking modalities with three processes analyzing point cloud frames
resulting in integration times ranging several orders of magnitude. A general view of
the multi-modal tracking processes is shown in Figure 64. In more detail, the three
modalities are described below:

1. Adaptive high-frequency tracking. In this first process, sparse point clouds are
integrated at frequencies up to 100 Hz. The MAV is only trackable through a
reduced number of points, but we are able to estimate its position and speed
with high accuracy. In this process, the MAV is not necessarily recognizable
in all processed frames.

2. Adaptive medium-frequency tracking. The second process operates at fre-
quencies within the range of typical LiDAR scanners (i.e., 5 to 20 Hz). The
frequency within that same range is dynamically adjusted to optimize the den-
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Figure 65: Integration trajectory recovery example

sity of the point cloud. At these frequencies, the extracted point cloud repre-
senting the MAV is distorted by motion, and thus the localization and speed
estimation accuracy is lower. However, this process enables more robust and
persistent tracking as the MAV can be recognized in most if not all frames.

3. Low-frequency trajectory and object validation. The third and last process that
runs in parallel to the previous two performs long-term tracking and validates
the reconstructed trajectory of the MAV based on predefined dimensional con-
straints. An illustration of such trajectory reconstruction is shown in Figure 65

Formulation

Let 𝒫𝑘(𝐼𝑘𝑟 ) be the point cloud generated by the LiDAR with an integration time
𝐼𝑘𝑟 . We also denote by s𝑘𝑀𝐴𝑉 ={p𝑘𝑀𝐴𝑉 ,ṗ𝑘𝑀𝐴𝑉 } the position and speed of the MAV.
We use discrete steps represented by 𝑘 owing to the discrete nature of the set of
consecutive point clouds. The output of the main tracking algorithm is to extract
from 𝒫𝑘(𝐼𝑘𝑟 ) the set of points representing the MAV, which we denote by 𝒫𝑘

𝑀𝐴𝑉 ,
and to adjust the integration time for the next point cloud, 𝐼𝑘𝐻𝐹 , 𝐼

𝑘
𝑀𝐹 .

Adaptive Scan Integration

Since we assume that the state of the MAV (p𝑘−1
𝑀𝐴𝑉 , ṗ

𝑘−1
𝑀𝐴𝑉 ) is initially known, the

point cloud processing proceeds as follows: First, we perform ground removal based
on the last-known altitude of the MAV. We then proceed with finding the nearest
neighbor points to a predicted MAV position. This step is repeated for both the high
and medium frequency scans, the former one providing a more accurate position
estimation while the latter is more persistent in time. Finally, these two estimations
are combined, and the results are utilized to adjust the integration rates based on
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Algorithm 7: MAV tracking with adaptive scan integration

Input:
High- and medium-freq int. rates: {𝐼𝑘−1

𝐻𝐹 , 𝐼𝑘−1
𝑀𝐹 }

3D lidar point clouds: {𝒫𝑘(𝐼
𝑘−1
𝐻𝐹 ),𝒫𝑘(𝐼

𝑘−1
𝑀𝐹 ) }

Last known MAV state: (p𝑘−1
𝑀𝐴𝑉 , ṗ𝑘−1

𝑀𝐴𝑉 )

Output:
MAV state: {p𝑘

𝑀𝐴𝑉 , ṗ𝑘
𝑀𝐴𝑉 }

UGV control: q̇𝑘
𝑈𝐺𝑉

Int. rates: {𝐼𝑘𝐻𝐹 , 𝐼
𝑘
𝑀𝐹 }

1 Function 𝑜𝑏𝑗𝑒𝑐𝑡 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛
(︁
𝒫, 𝐼, p𝑘−1

𝑀𝐴𝑉 , ṗ
𝑘−1
𝑀𝐴𝑉

)︁
:

2

Ground removal: 𝒫
′
← 𝒫;

Generate KD Tree: 𝑘𝑑𝑡𝑟𝑒𝑒← 𝒫
′
;

MAV pos estimation: p̂𝑘
𝑀𝐴𝑉 ← p𝑘−1

𝑀𝐴𝑉 +
ṗ𝑘−1

𝑀𝐴𝑉
𝐼

;

MAV points: 𝒫𝑘
𝑀𝐴𝑉 = 𝐾𝑁𝑁(𝑘𝑑𝑡𝑟𝑒𝑒, p̂𝑘

𝑀𝐴𝑉 );

MAV state estimation: p𝑘
𝑀𝐴𝑉 = 1

|𝒫𝑘
𝑀𝐴𝑉

|

∑︀
𝑝∈𝒫𝑘

𝑀𝐴𝑉
𝑝;

3 return p𝑘
𝑀𝐴𝑉 ;

// Coarse but persistent tracking

4 while new 𝒫𝑘(𝐼𝑘𝑀𝐹 ) do
5 p𝑘′

𝑀𝐴𝑉 = 𝑜𝑏𝑗𝑒𝑐𝑡 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝒫𝑘(𝐼
𝑘
𝑀𝐹 ), 𝐼

𝑘
𝑀𝐹 , p𝑘−1

𝑀𝐴𝑉 , ṗ𝑘−1
𝑀𝐴𝑉 );

// Fine-grained estimation

6 while new 𝒫𝑘(𝐼𝑘𝐻𝐹 ) do
7 p𝑘′′

𝑀𝐴𝑉 = 𝑜𝑏𝑗𝑒𝑐𝑡 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝒫𝑘(𝐼
𝑘
𝐻𝐹 ), 𝐼

𝑘
𝐻𝐹 , p𝑘−1

𝑀𝐴𝑉 , ṗ𝑘−1
𝑀𝐴𝑉 );

8 p𝑘
𝑀𝐴𝑉 , ṗ𝑘

𝑀𝐴𝑉 ← 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒
(︁

p𝑘′

𝑀𝐴𝑉 , p𝑘′′

𝑀𝐴𝑉

)︁
;

9 {𝐼𝑘𝐻𝐹 , 𝐼
𝑘
𝑀𝐹 } ← 𝑎𝑑𝑗𝑢𝑠𝑡 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑒𝑞𝑠

(︀
p𝑘
𝑀𝐴𝑉 , ṗ𝑘

𝑀𝐴𝑉

)︀
;

10 q̇𝑘
𝑈𝐺𝑉 ← 𝑘𝑒𝑒𝑝 𝑤𝑖𝑡ℎ𝑖𝑛 𝐹𝑜𝑉

(︀
p𝑘
𝑀𝐴𝑉 , ṗ𝑘

𝑀𝐴𝑉

)︀
;

the point cloud density expected for the given distance and speed. This process is
outlined in Algorithm 7.

Trajectory Validation

The main purpose of the low-frequency scan stream is to validate the extracted
MAV’s trajectory. While the tracking with adaptive scan integration only takes into
account the MAV size roughly in terms of distance within which nearest neighbors
are looked for, the extracted point cloud is not validated against its known dimen-
sions. This is done when enough points are accumulated into a reconstructed tra-
jectory. As exposed in Algorithm 8, we first perform a cubic spline interpolation
based on the history of estimated positions and speeds. To calculate the parameters
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Algorithm 8: Trajectory validation
Input:

Low-freq int. rate: 𝐼𝑘−1
𝐿𝐹

3D lidar point cloud: 𝒫𝑘

(︀
𝐼𝑘−1
𝐿𝐹

)︀
MAV state history: (p𝑀𝐴𝑉 , ṗ𝑀𝐴𝑉 )

Output: Trajectory validation (𝑏𝑜𝑜𝑙)

1 while new 𝒫𝑘
(︁
𝐼𝑘−1
𝐿𝐹

)︁
do

// Generate cubic splines
// with position and speed constraints

2 {𝐵𝑖} ← {p𝑀𝐴𝑉 , ṗ𝑀𝐴𝑉 };
// Estimate expected point cloud from
// known density at given distance and speed

3 𝒫𝑘 ← {{𝐵𝑖}, p𝑀𝐴𝑉 , ṗ𝑀𝐴𝑉 } ;
// Calculate IoU

4 𝐼𝑜𝑈 = 𝑐𝑎𝑙𝑐 𝐼𝑜𝑈
(︁
𝒫𝑘

(︀
𝐼𝑘−1
𝐿𝐹

)︀
,𝒫𝑘

)︁
;

5 if 𝐼𝑜𝑈 > 𝑡ℎ then
6 return True
7 else
8 return False

of the cubic spline, we utilize constraints on the first derivative based on the speed,
rather than forcing the first and second derivative to be continuous. Indeed, the ac-
celeration of the MAV can suddenly change. Based on predetermined values of point
cloud density as a function of the MAV’s distance to the LiDAR and its speed, we
then produce an expected point cloud. We validate the original point cloud given a
threshold for the IoU measure with the generated estimate.

6.1.2 Experimental Setup

Experimental platforms

The experimental platform (shown in Figure66) consists on a single ground robot
and a commercially available Ryze Tello MAV. The ground robot is an EAI Dashgo
platform equipped with a Livox Horizon LiDAR (81.7∘ × 25.1∘ FoV). The lidar is
able to output scanned pointcloud up to 100 Hz, featuring a non-repetitive pattern.

A pair of UWB transceivers is used to obtain a single range between the robot
and the MAV at frequencies ranging from 10 Hz to 100 Hz.The UWB ranging is used
in aiding the manual validation of the extracted trajectory in places where there was
no external positioning system. In the future work, it could be incorporated as part
of the tracking algorithm as well, as is becoming increasing adopted in multi-robot
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UWB Transceiver

Livox 3D Lidar with 81.7 o x25.1o FoV

Onboard Computer

Wi-Fi

UWB Transceiver

EAI Dashgo Ground Robot Ryze Tello MAV

Figure 66: Ground robot and MAV utilized in the experiments.

systems [61; 73].

Software

The system has been implemented using ROS Melodic under Ubuntu 18.04. The al-
gorithms are running in the main computer onboard the ground robot. The computer
runs the Tello MAV driver1, the Livox LiDAR driver2, and our open-source MAV
tracking package3. The latter is a multi-threaded node able to process the different
point clouds in real time. The point cloud library (PCL) [262] is utilized to extract
the position of the MAV from the LiDAR’s point cloud.

Metrics

Owing to the lack of an accurate external positioning system such as a MOCAP
system for a large environment. our focus is instead on measuring the performance
of the tracking at different scan integration rates and manually validating the overall
trajectory. The experimental flights are carried out in large indoor halls with multiple
columns and objects, as shown in Figure 28. Another set of experiments is carried
out in a small flying area where an external UWB positioning system was available
and used to fly the MAV over a predefined trajectory. A characterization on the
accuracy of such system can be found in [263].

1https://github.com/TIERS/tello-driver-ros
2https://github.com/Livox-SDK/livox_ros_driver
3https://github.com/TIERS/adaptive-lidar-tracking
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Figure 67: Accumulated point cloud for the circular trajectory.

6.1.3 UAV Tracking Results

The experimental results consist mainly of flights in two different indoor environ-
ments and different conditions.

Adaptive scan integration

The first objective of our experiments was to assess the tracking performance at dif-
ferent scan frequencies in order to better model the adaptiveness of our algorithm.
In order to adapt the scanning frequency to optimize the tracking performance, key
parameters are the point cloud density, which is the number of points representing
the UAV, at different distances and the reliability of the detections at different speeds.

The point cloud density for different scanning frequencies as a function of the
distance between the LiDAR and the MAV is shown in Figure 68. This measure
refers only to the density of the points representing the MAV and not the overall
density including the rest of the scene. The darker lines represent the average point
cloud density, while the band with higher transparency represents the values within
the standard deviation. The size of the Tello MAV is about 500 cubic centimeters.
According to our observation in the experiments, reliable tracking at high speeds can
be achieved with at least 4 points, while we require at least 20 points at medium
scanning frequency. This, however, only applies in free space. As can be seen in
Figure 67, significant noise appears in the point cloud between the MAV and walls
in the environment when flying nearby. We discuss further this issue at the end of
this section.
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Figure 68: Density of the point cloud (number of points) representing the MAV based
on the distance to the LiDAR scanner and the scanning frequency.

In terms of the tracking performance based on the speed, we plot in Figure 69
the distance between consecutive detections at different scanning frequencies. The
results in this particular figure cannot be directly utilized to model the adaptive nature
of our tracking Algorithm Nonetheless, they can be leveraged to better understand
what are the speed limits under which given scanning frequencies do not provide the
expected distance between detection that can be inferred from the MAV speed and
the scan frequency.

The results included in Figure 68 and Figure 69 have been obtained flying the
MAV in a long, straight corridor with a length of about 35 m. The MAV was flying
mostly in straight lines and the speed was estimated using both visual odometry and
the position history extracted from the LiDAR data in a partially manual manner.

Qualitative trajectory validation

In order to validate the performance of the tracking algorithm and better understand
the limitations of our tracking approach at different scanning frequencies, we com-
pare two different types of trajectories. Owing to the lack of a system to obtain
ground truth (e.g., a motion capture system), we provide qualitative analysis for one
of the trajectories and compare it with a UWB positioning system in the other one.

First, we test the tracking algorithm through a trajectory where the MAV flies
in a large open area at distances from 2 m to over 17 m far from the LiDAR scan-
ner and variable speeds. In this scenario, the analysis is mostly qualitative, with the
trajectories shown in Figure 70. However, the UWB ranging data and the LiDAR
data has been both manually checked and the maximum positioning error along the
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Figure 69: Distance between consecutive MAV detections based on its speed and the
LiDAR’s scanning frequency.

track is at worst around 20 cm. Qualitatively, the main results from this experiment
are the ability of the tracking algorithm to keep track of the MAV over changes in
speed, direction, and at longer distances. The figure only shows frequencies equal to
or above 5 Hz because at lower scanning frequencies the speed estimation was highly
inaccurate during the early stages of the flight. We can see that only at the highest
frequency we are able to track the MAV along the completed trajectory, while the
trajectory itself is noisier. The higher level of error when estimating the MAV po-
sition is due to a lower number of points being detected, which can correspond to
different parts of the MAV in consecutive scans. The last subplot shows the overall
estimated trajectory where our algorithm has combined the different scanning fre-
quencies to obtain the smoothness of the medium frequencies and the performance
of the higher frequencies. The trajectory also employs the cubic spline interpolation
from the validation Algorithm

Second, we perform a continuous flight with a predefined circular trajectory in a
small flying arena where the UWB positioning system is available. The results for
this flight are shown in Figure 71. The leftmost plot shows the reference position.
However, it is worth noticing that the accuracy of the LiDAR, of around 2 cm for
distances smaller than 20 m, is higher than the average accuracy of 10 to 15 cm in
the UWB positioning system. Therefore, the trajectory is mere as a reference and
only a qualitative discussion is possible with these results. In any case, owing to the
continuous change in the speed of the MAV, which is a prior unknown to the tracking
algorithm, again only at frequencies equal or over 5 Hz are we able to track the MAV.
Nonetheless, at 5 Hz the tracking stops before the fourth revolution is completed, and
persistent tracking is only possible when higher frequencies are taken into account.
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Figure 70: Estimated trajectories at different frequencies and with adaptive approach
(top five plots), and trajectory estimated from our algorithm (bottom plot).
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Discussion

We have shown in this section qualitative results that show the performance of the
adaptive tracking algorithm and the same approach applied only to specific scanning
frequencies. From both sets of experiments, the main conclusion is that the adaptive
approach is able to accommodate a wider variety of scenarios. We have been able to
put together the flexibility of high-speed tracking with the robustness of medium fre-
quencies, avoiding the frequent errors of the former, and the lower tracking capacity
of the latter is more challenging conditions.

One key limitation when tracking MAVs, as visualized in the circular trajectory
experiments, is the low density of the point cloud and the inability to tell the dif-
ference between the MAV’s points and LiDAR noise. This is also due to the low
reflectively of the MAV, and there is thus the potential for mitigation with more re-
flective surfaces that could aid in separating the sparse MAV point cloud from the
LiDAR noise originated due to near objects. As we can see in Figure 67, the point
cloud density near the rear wall is very sparse in some areas, therefore being unable
to reconstruct a robust trajectory as there are multiple options available that would
meet the dynamics and dimensional constraints of the MAV.
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6.2 UAV Tracking Based on Dynamic Multi-Frequency
Scan Integration using Kalman Filter

In this work, we build upon our previous works in Section 6.1 to provide a more
sophisticated approach that enables real-time UAV tracking. Specifically, we design
and develop an algorithm to dynamically adjust the scan integration time, or fre-
quency, based on the tracking state (position and velocity). We do this in parallel
for two different integration frequencies, both dynamically adjusted. A higher fre-
quency, as preliminary results in [7] show, allows for more accurate tracking, while
the lower frequency enables persistence over time. Importantly, we address here two
main limitations in [7]. First, the lack of tracking, as the previous algorithm sim-
ply tracks a UAV by iterative detections. Second, while the concept is similar, the
integration in [7] is done offline and in post-processing. We also provide a quantifi-
able comparison with ground truth data, extending the benchmarks in [264] with the
new dynamic multi-frequency integration approach. Finally, we no longer require a
manually given priori knowledge of the UAV shape but only its approximate size.

Holybro 
X500

Optitrack PrimeX 22 Camera

Autel 
Evo II

Livox
Horizon

Figure 72: Illustration of hardware used in the experiments.
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Intersection (ICI) method. The fused estimate is used to refine the estimations and
integration times of both estimators.

6.2.1 Methodology

Baseline Method

To establish a baseline for comparison, we investigate a tracking approach that keeps
the integration time constant along the UAV trajectory. Unlike our proposed method,
the approach in [264] performs tracking without using a sliding window. Our base-
line method uses a sliding window to integrate the LiDAR scans and capture more
relevant information while keeping the integration time constant.

Overall, the baseline method is similar to our adaptive method, with the main
difference being that in the adaptive method, we vary the integration time based on
the UAV motion dynamics. In the following section, we provide further analysis
of the results and compare the performance of the adaptive method to that of the
baseline.

Formulation

We propose two simultaneous tracking estimators on two different scan frequencies
running in parallel where the integration time 𝐼 , defining the number of scans to
accumulate, is dynamically adjusted to optimize the point cloud density as depicted
in Figure 73:

(i) Adaptive Sparse Tracking (AST): Sparse point clouds are integrated up to 5
consecutive scans. This process provides high accuracy for estimating the
UAV position and speed, but only tracks it through a reduced number of points
and not necessarily in all frames.

(ii) Adaptive Dense Tracking (ADT): The number of scans ranges between 10
and 50. The extracted point cloud representing the UAV is distorted by mo-
tion, which reduces the accuracy of localization and speed estimation, but the
tracking is more robust and persistent as the UAV can be recognized in most
frames.
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In the following formulation, we denote discrete steps as 𝑘 due to the discrete
nature of the set of consecutive point clouds.

Let 𝒫𝑘(𝐼𝑘𝑟 ) = {p𝑘1,p𝑘2, . . . ,p𝑘𝑛𝑘
} be the set of 𝑛𝑘 points in the point cloud gen-

erated by the LiDAR sensor at time step 𝑘 using an integration time 𝐼𝑘𝑟 , where 𝑟 is
the range of the interval. The objective of the tracking algorithm is to identify the
subset of points in 𝒫𝑘(𝐼𝑘𝑟 ) that corresponds to the UAV, denoted 𝒫𝑘

UAV, to estimate its
position and velocity, and consequently adjust the integration time for the next point
cloud in the two integration time intervals, 𝐼𝑘AST, 𝐼

𝑘
ADT.

To initiate the tracking process, we assume the initial position of the UAV to be
known. In this part of the experiment, we manually give the initial position of the
UAV for the verification of our tracking algorithm. Subsequent investigations will
consider the feasibility of employing intensity images from the solid-state LiDAR to
automate the acquiring of this preliminary data by UAV detection. The point cloud
𝒫𝑘(𝐼𝑘𝑟 ) is integrated by accumulating the number of scans defined by 𝐼𝑘𝑟 in a sliding
window fashion. This allows us to retain the most recent information about the state
of the UAV in the point cloud. We then employ a Nearest-Neighbor Search (NNS)
algorithm to identify the points in the point cloud that are closest to the predicted
position of the UAV, based on its initial position. To improve the reliability and ac-
curacy of the tracking results, we leverage a priori information about the dimensions
of the tracked object. Specifically, the NNS is constrained to a search radius of 𝑟,
which is set to half of the largest dimension (length, width or height) of the UAV. This
allows us to constrain the NNS to a smaller volume around the estimated position,
leading to faster and more accurate search results.

Next, we estimate a new position for the UAV by averaging the extracted points,
which serves as the measurement in the Extended Kalman Filter (EKF) update step.
To account for the large distances between scans caused by the velocity of the UAV,
we have chosen to prioritize the most recent point clouds. This means that points in
these more recent clouds are given greater importance than those in earlier ones. We
accomplish this by assigning a weight to each point based on its timestamp 𝑡𝑝, which
follows the formula shown in Equation (11):

𝑤p = exp
[︀
−𝛾 ×

(︀
𝑡scan − 𝑡p

)︀]︀
(11)

where 𝑡scan corresponds to the time at which the latest scan is acquired.
For the prediction step of the EKF, we use a Constant Turn Rate and Velocity

(CTRV) motion model, commonly used for airborne tracking systems [265]. In our
case, we extended this model to the 3D scenario by incorporating a Constant Velocity
(CV) motion model for the 𝑧 coordinate. We opted for this model for its proven
robustness in the literature [266; 267].

The state space

x = [ 𝑥 𝑦 𝑧 𝑣 𝜓 𝜓̇ ]𝑇 (12)
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can be transformed by the non-linear state transition.

x𝑘+1 = x𝑘 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣𝑘
𝜓̇𝑘

(︁
sin

(︁
𝜓𝑘 + 𝜓̇𝑘Δ𝑡

)︁
− sin (𝜓𝑘)

)︁
𝑣𝑘
𝜓̇𝑘

(︁
− cos

(︁
𝜓𝑘 + 𝜓̇𝑘Δ𝑡

)︁
+ cos (𝜓𝑘)

)︁
𝑧̇Δ𝑡

0

𝜓̇𝑘Δ𝑡

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

Next, the updated predicted position is used as input to the NNS algorithm to
obtain an updated measurement. This measurement is then used in the next iteration
of the EKF to further improve the accuracy of the predicted position. For more
details, we refer the reader to Algorithm 9.

Algorithm 9: UAV tracking with adaptive scan integration
Input:
Adaptive Sparse and Dense Tracking int. rates:

{︀
𝐼𝑘−1

AST , 𝐼𝑘−1
ADT

}︀
3D lidar point clouds:

{︀
𝒫𝑘

(︀
𝐼𝑘−1

AST

)︀
,𝒫𝑘

(︀
𝐼𝑘−1

ADT

)︀ }︀
Last known UAV state:

(︀
x𝑘−1

UAV , ẋ𝑘−1
UAV

)︀
Output:

UAV state: {x𝑘
UAV, ẋ𝑘

UAV}

1 Function 𝑢𝑎𝑣 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔
(︁
𝒫, 𝐼, x𝑘−1

UAV , ẋ
𝑘−1
UAV

)︁
:

2

UAV pos estimation: x̂𝑘
UAV, ẋ𝑘

UAV = 𝒦ℱprediction

(︀
x𝑘−1

UAV , ẋ𝑘−1
UAV

)︀
;

Generate KD Tree: 𝑘𝑑𝑡𝑟𝑒𝑒← 𝒫;

UAV points: 𝒫𝑘
UAV = 𝑁𝑁𝑆

(︁
𝑘𝑑𝑡𝑟𝑒𝑒, x̂𝑘

UAV

)︁
;

UAV measurement: z𝑘UAV = 1

|𝒫𝑘
UAV|

∑︀
𝑥∈𝒫𝑘

UAV
𝑥;

UAV state estimation: x𝑘
UAV = 𝒦ℱupdate

(︀
z𝑘UAV

)︀
;

3 return x𝑘
UAV, ẋ𝑘

UAV;

// Adaptive Sparse Tracking

4 foreach new 𝒫𝑘
(︀
𝐼𝑘AST

)︀
do

5 x𝑘′′
UAV = 𝑢𝑎𝑣 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔

(︀
𝒫𝑘

(︀
𝐼𝑘AST

)︀
, 𝐼𝑘AST, x𝑘−1

UAV , ẋ𝑘−1
UAV

)︀
;

// Adaptive Dense Tracking

6 foreach new 𝒫𝑘
(︀
𝐼𝑘ADT

)︀
do

7 x𝑘′
UAV = 𝑢𝑎𝑣 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔

(︀
𝒫𝑘

(︀
𝐼𝑘ADT

)︀
, 𝐼𝑘ADT, x𝑘−1

UAV , ẋ𝑘−1
UAV

)︀
;

// Inverse Covariance Intersection

8 {x𝑘
UAV, ẋ𝑘

UAV} ← 𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛
(︁

x𝑘′
UAV, x𝑘′′

UAV

)︁
;

9 {𝐼𝑘AST, 𝐼
𝑘
ADT} ← 𝑎𝑑𝑗𝑢𝑠𝑡 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑠

(︀
x𝑘

UAV, ẋ𝑘
UAV

)︀
;
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Within each integration time interval, the integration time is adjusted based on the
distance and velocity of the tracked object. To avoid motion blur, shorter integration
times are used for closer and faster-moving objects, while longer integration times
are used for more distant and slower-moving objects. This adjustment is based on
Equation (14).

𝐼𝑘𝑟 = 𝐼𝑘min +
(︁
𝐼𝑘max − 𝐼𝑘min

)︁(︂
𝑑

𝑑max

)︂
(14)

Here, 𝐼𝑘max and 𝐼𝑘min define the upper and lower bound for the integration time
within each interval, and 𝑑 represents the current distance of the UAV from the sen-
sor. As for 𝑑max, it represents the maximum distance within an integration time
interval for which a minimum of 4 points on the UAV were recognized in the point
cloud 𝒫𝑘(𝐼𝑘𝑟 ). This distance was empirically calculated by manually determining the
number of points detected at a distance of 4 m. Moreover, a simplified approxima-
tion of the number of points hitting the target was designed assuming that the point
density remains constant, and the primary factor influencing the number of points is
the spreading of points over distance due to the LiDAR’s angular resolution as per
Equation (15):

𝑁 =
𝑆2

𝑑2𝜃
(15)

where 𝑆 represents the side length of the target surface, 𝑑 is the distance from the
sensor and 𝜃 represents the LiDAR’s angular resolution in radians which accounts for
the angular spacing between individual points.

The maximum distance 𝑑max was then extrapolated using the Equation (16):

𝑁𝑑 =
42𝑁4

𝑑2
(16)

where 𝑁𝑑 is the number of points detected at distance 𝑑, and 𝑁4 is the number
of points detected at a distance of 4 m.

To further enhance the accuracy and reliability of the tracking system, the AST
and ADT tracking modalities are fused together. One intuitive method is the naive
fusion which ignores the inherent correlations directly. In this sense, this method is
too optimistic, and cannot guarantee consistent results [268].

In our method, we employ two different Kalman filters, each generating its own
estimate based on the accumulated data. While these estimates originate from the
same LiDAR sensor, the use of separate Kalman filters implies a degree of indepen-
dence between the two estimation processes. This separation can be seen as a form
of distributed processing, where different components (the two Kalman filters) are
responsible for generating their own estimates. Its distributed nature can guide the
selection of appropriate fusion techniques, such as Inverse Covariance Intersection

141



Xianjia Yu

(ICI) [269], that represents a well-suited fusion rule for typical Kalman filter-based
fusion problems [270].

ICI combines the covariance matrices of the two estimators (ΣAST and ΣADT)
using a weighting factor 𝜔 ∈ [0, 1] to generate a fused matrix that more accurately
represents the estimated state uncertainty.

The state estimations xAST and xADT are fused into a final state xUAV using a
weighted average:

xUAV = KICIxAST + LICIxADT (17)

where the gains KICI and LICI are computed based on the fused covariance ΣUAV

and the individual covariances of the two measurements:

ΣUAV =
(︁
Σ−1

AST +Σ−1
ADT − (𝜔ΣAST + (1− 𝜔) ΣADT)

−1
)︁−1

KICI = ΣUAV

(︁
Σ−1

AST − 𝜔 (𝜔ΣAST + (1− 𝜔)ΣADT)
−1

)︁
(18)

LICI = ΣUAV

(︁
Σ−1

ADT − (1− 𝜔) (𝜔ΣAST + (1− 𝜔)ΣADT)
−1

)︁
The optimal value of 𝜔 is found using Brent’s algorithm [? ] to minimize the

trace of the inverse covariance matrix:

(19)trace
[︁(︀
Σ−1

AST +Σ−1
ADT − (𝜔ΣAST + (1− 𝜔)ΣADT)

−1
)︀−1

]︁
By fusing the two estimators at two frequencies, the tracking system can bet-

ter handle challenging tracking scenarios, such as sensor noise, and provide more
accurate and reliable estimates of the UAV state.

6.2.2 Experimental Results

The experimental platform consist of a Livox Horizon LiDAR (81.7∘ × 25.1∘ FoV)
capable of generating non-repetitive point cloud scans up to 100 Hz, and an external
positioning system to validate the extracted trajectories. To test our adaptive tracking
algorithm, we evaluated its performance on several trajectories.

Metrics

First, to quantify the disparity between the LiDAR and the external position system
estimates, we computed the error by taking the difference between the position esti-
mates obtained from both systems for two distinct positions and orientations of the
target. This analysis revealed a RMSE of 0.0143 m.
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Table 26: Position error (RMSE) for both constant and adaptive integration methods
(N/A when the error diverges because the estimated trajectory is incomplete. Unit:
meter)

Track Tracking Method

𝐼2 𝐼5 𝐼10 𝐼20 𝐼50 𝐼KF 𝐼KF
AST 𝐼KF

ADT 𝐼EKF 𝐼EKF
AST 𝐼EKF

ADT

T1 0.0786 0.0774 0.0788 0.0844 0.1019 0.0782 0.0773 0.0845 0.0852 0.087 0.0861

T2 0.0202 0.0195 0.0227 0.0332 0.0515 0.0253 0.0203 0.0335 0.0395 0.0371 0.046

T3 0.0491 0.0421 0.0451 0.0553 0.0803 0.0456 0.0431 0.0537 0.0421 0.0426 0.0466

T4 N/A N/A N/A N/A N/A N/A N/A N/A 0.0758 0.0535 0.1025

T5 N/A 0.0471 0.0564 0.0841 0.1682 0.0551 0.0501 0.0783 0.0377 0.0314 0.0624

T6 N/A 0.0551 0.0609 0.0915 N/A 0.0707 N/A 0.0861 0.0373 0.0291 0.0571

T7 N/A N/A N/A N/A N/A 0.0873 N/A N/A 0.0580 0.0538 0.0733

T8 N/A N/A N/A N/A N/A 0.0939 N/A 0.1154 0.0530 0.0487 0.0732

T9 N/A N/A N/A N/A 0.2576 N/A N/A N/A 0.0616 0.0537 0.0813

T10 N/A 0.0956 0.0828 0.1089 0.1911 0.0881 0.1167 0.1071 0.0522 0.0460 0.0730

To benchmark the proposed approach, we compared two versions of our adaptive
method, one using a KF with a CV motion model, and the other using an EKF with
a CTRV motion model. As baseline, we also included tracking keeping the integra-
tion time constant. To evaluate the tracking performance quantitatively, we used the
RMSE metric, with the main results summarized in Table 26.

Indoor Experiments

Our results show that the proposed method outperforms the suggested baseline ap-
proach. As shown in Table 26, if the integration time is held constant, the error
quickly increases as more scans are integrated. This means that accurate tracking is
only possible if the lower end of the range is taken into account.

Despite the inherently higher error with lower scan frequencies, our method of-
fers potential benefits in terms of robustness, efficiency, and flexibility: by adapting
the integration time to the UAV motion dynamics, the method is more robust to
changes in the environment and can handle unforeseen circumstances, such as sud-
den changes in direction. Additionally, the adaptive method is more efficient, as
it only integrates the number of scans required to obtain accurate state estimates,
rather than using a fixed integration time, and it allows for different integration times
to be used in different parts of the trajectory. Therefore, although the combination
of the two estimators does not always lead to the best accuracy, at the expenses of
a slightly higher RMSE it increases robustness offering potential benefits that could
be valuable in certain scenarios: it can effectively fuse the two simultaneous scan
frequencies and provide accurate and reliable estimates of the UAV state, even when
only one of the two estimators is available.
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As shown in Table 26, specifically for the tracks T6, T7 and T8, when one or
both single estimators fail to track the target, our method can still perform track-
ing along the whole trajectory by combining both methods using the ICI approach.
This demonstrates the effectiveness of our adaptive method in handling challenging
tracking scenarios, such as when one estimator is unavailable or unreliable.

Moreover, in 8 out of the 10 analyzed trajectories the EKF demonstrates lower
RMSE compared to the KF. Notably, for trajectories T4 and T9, the KF alone fails
to effectively complete the tracking task. This suggests that using the CTRV motion
model extended to 3D along with an EKF is a viable option also for UAVs.

Furthermore, for both track T1 and T10, although our method does not achieve
the overall best performance, it still results in lower errors compared to using the
single estimators. In addition to the quantitative analysis, we provide visualizations
of a subset of the trajectories obtained with our adaptive methods in Figure 74 and
Figure 77. More results are available on the project’s GitHub page. Both methods
were able to estimate the overall trajectories well. We also observed that the combi-
nation of EKF and CTRV was able to track the target more accurately in situations
where the UAV transitioned from a straight motion to a curve, as illustrated in the
zoomed portion of Figure 74.

Initialization and Outdoors Experiments

While the presented outcomes demonstrate the feasibility of our proposed approach,
it is worth noting that the quantitative results rely on the assumption of the initial po-
sition being already known. To address this issue, we have developed a method to de-
tect the target’s starting location in outdoor scenarios. Drawing inspiration from the
effective tracking at short distances demonstrated by Sier et al. [135], who used sig-
nal images generated by a spinning LiDAR, we employed the same custom YOLOv5
model trained on panoramic signal images generated by an Ouster LiDAR [135] to
detect the UAV. In our tests, we generate our own range images using a combination
of depth and intensity values from a solid-state LiDAR point cloud.

To minimize noise and artifacts when creating a single image, we first integrate
a total of 30 frames. Later, the 3D point cloud is projected onto a 2D plane, taking
into account both the field of view and image resolution. The transformation process
considers both the intensity and distance of each point, combining them through a
weighted sum operation to produce the final result. Using only intensity or distance
to detect drones from the background becomes challenging for the YOLO model due
to the proximity to ground and walls as well as the reflectivity of both the background
and the drone being similar.

Furthermore, normalization is applied to ensure appropriate contrast in the result-
ing image. Upon obtaining the preliminary 2D image, its quality is enhanced through
filtering and interpolation: we first identify areas with zero values and substitute them
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Figure 74: Comparison of trajectories estimated on T1.
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(a) Drone detection on a stationary position on the ground before tak-
ing off.

(b) Drone detection with target hovering mid-air.

  

(c) Raw point cloud with target hovering mid-air (0.3 s integration).

Figure 75: Results of the YOLOv5 object detector trained in [135], applied on the
generated range images in the outdoors experiment (a)-(b). In (c), we show a sample
point cloud with the target hovering in mid-air.

with constants to prevent visual discontinuities. There are two distinct cases that lead
to zero-valued pixels after point cloud projection: the sky and other background re-
gions where the emitted laser fails to reflect, and areas within the environment where
objects might be present but the LiDAR does not scan. Differentiating between these
two cases is crucial for the task of image completion, as it allows for an accurate
understanding of the context surrounding the missing pixels.

To remove noise artifacts, we use binary thresholding and a nearest-neighbor
interpolation to fill in missing or noisy regions, which results in smoother and more
accurate images. Figure 75 showcases the final generated depth map and the result
of YOLOv5 object detection: the model was able to accurately detect the UAV and
determine its initial position based on these images with no need for further training.

Finally, in Figure 76 we provide a visualization of the tracking algorithm per-
formed with our adaptive method and unknown initial position. Notably, the 𝑧 = 0

line in the figure corresponds to the ground instead of the LiDAR reference line. It
should be noted that, due to the outdoor nature of the recorded data, ground truth
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Figure 76: Trajectories estimated with the adaptive method and initialization from
range images.

Table 27: Position error (RMSE) for our adaptive integration method for different
types of weight functions (N/A when the error diverges because the estimated trajec-
tory is incomplete. Unit: meter)

Track No Decay Linear Decay Exponential Decay

𝐼KF 𝐼KF
AST 𝐼KF

ADT 𝐼EKF 𝐼EKF
AST 𝐼EKF

ADT 𝐼KF 𝐼KF
AST 𝐼KF

ADT 𝐼EKF 𝐼EKF
AST 𝐼EKF

ADT 𝐼KF 𝐼KF
AST 𝐼KF

ADT 𝐼EKF 𝐼EKF
AST 𝐼EKF

ADT

T1 0.0788 0.0773 0.0882 0.08615 0.087 0.0901 0.0814 0.0783 0.0973 0.0863 0.0886 0.101 0.0782 0.0773 0.0845 0.0852 0.087 0.0861

T2 0.023 0.0197 0.0346 0.0375 0.0365 0.0471 0.0309 0.0195 0.0439 0.04062 0.0371 0.0565 0.0253 0.0203 0.0335 0.0395 0.0371 0.046

T3 N/A N/A N/A N/A N/A N/A 0.0506 0.0438 0.0661 0.0451 0.0444 0.0601 0.0456 0.0431 0.0537 0.0421 0.0426 0.0466

T4 N/A N/A N/A 0.7311 0.728 0.7409 N/A N/A N/A 0.735 0.7298 0.7475 N/A N/A N/A 0.0758 0.0535 0.1025

T5 0.0585 N/A 0.0872 0.0432 0.0314 0.0722 0.0674 N/A 0.1053 0.0503 0.0331 0.0937 0.0551 0.0501 0.0783 0.0377 0.0314 0.0624

T6 0.0708 N/A 0.0907 0.0393 0.0288 0.067 0.0778 N/A 0.1044 0.0467 0.0311 0.0837 0.0707 N/A 0.0861 0.0373 0.0291 0.0571

T7 N/A N/A N/A 0.06 0.0538 0.0797 0.09 N/A N/A 0.0645 0.0551 0.0933 0.0873 N/A N/A 0.058 0.0538 0.0733

T8 N/A N/A N/A N/A N/A N/A 0.38 N/A N/A N/A N/A N/A 0.0939 N/A 0.1154 0.053 0.0487 0.0732

T9 N/A N/A N/A 0.0629 0.0534 0.0882 N/A N/A N/A 0.0677 0.0542 0.1058 N/A N/A N/A 0.0616 0.0537 0.0813

T10 0.1073 0.1153 0.1136 0.0539 0.0461 0.0955 N/A 0.1178 0.1303 0.0605 0.0475 0.1028 0.0881 0.1167 0.1071 0.0522 0.0460 0.073

data is not available.

Ablation study

To assess the impact of different weighting functions on the performance of our
proposed method, we conducted an ablation study. Specifically, we computed the
root mean square error (RMSE) for each track using three different configurations:

(i) No weighting function: this configuration assigns equal weight to all points in
the track, without considering their temporal order.

(ii) Linear decay: the weight assigned to each point decreases linearly with time.

(iii) Exponential decay: the weighting function is described in Equation (11).
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Figure 77: Visualization of a subset of the trajectories analyzed.

By systematically evaluating the effects of different weighting functions, we have
validated the effectiveness of our choice, as presented in Table 27.

The usage of a weight function improves robustness (specifically on tracks T3,
T7, T8). In particular, using an exponential weighting function almost always (ex-
cept for track T2 and T4) reduces the RMSE for the combined estimation and the
estimation obtained accumulating a higher number of scans (𝐼EKF

ADT).
Similarly, we conducted ablation studies to verify the effectiveness of the ICI as

fusion strategy. We compared it against a simple and a weighted average, where the
covariance matrices of each estimator was used to weight its contribution. As shown
in Table 28, for 7 out of the 10 tracks analyzed, ICI reports a lower RMSE.

6.3 Summary
First, we have presented a set of methods for detecting and tracking MAVs that are
deployed from ground robots, assuming that the initial position is known. The focus
has been on the introduction of a novel adaptive LiDAR scan integration method that
enables more accurate MAV localization with high-frequency scans, robust and per-
sistent tracking with longer frame integration times, and trajectory validation with
low-frequency analysis. Experimental results from different settings confirm the
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Table 28: Position error (RMSE) for our adaptive integration method for different
types of fusion strategies (N/A when the error diverges because the estimated trajec-
tory is incomplete. Unit: meter)

Track Simple Average Weighted Average ICI

𝐼KF 𝐼EKF 𝐼KF 𝐼EKF 𝐼KF 𝐼EKF

T1 0.0795 0.0839 0.0799 0.0867 0.0782 0.0852

T2 0.0235 0.0361 0.0236 0.0361 0.0253 0.0395

T3 0.0472 0.041 0.0479 0.0413 0.0456 0.0421

T4 N/A 0.733 N/A N/A N/A 0.0758

T5 0.0617 0.0429 0.0634 0.044 0.0551 0.0377

T6 N/A 0.0395 N/A 0.0409 0.0707 0.0373

T7 N/A 0.0607 N/A 0.0618 0.0873 0.058

T8 N/A N/A N/A N/A 0.0939 0.053

T9 N/A 0.0650 N/A 0.0667 N/A 0.0616

T10 0.0997 0.0554 0.0929 0.0565 0.0881 0.0522

better suitability of the different integration times for different scenarios or MAV be-
haviour, with our adaptive tracking being able to consistently track a MAV in places
where a constant lidar scan frequency cannot. Finally, with an additional method to
validate the trajectory based on the known shape and size of the MAV, we are able to
confirm that the object being tracked meets the dimensional constraints.

After this work, we further presented a novel adaptive tracking approach for
UAVs that fuses tracking information from two different scan frequencies from a
single solid-state LiDAR sensor. One of the frequencies allows for high accuracy
while the second enables more persistent tracking. Our method dynamically adjusts
the LiDAR’s frame integration time based on the UAV’s travelling speed and distance
from the sensor, allowing for accurate estimates of the UAV’s state.

The experimental results demonstrate that by tailoring the frame integration time
to the UAV’s movement characteristics, our method outperforms the established
baseline method, while also providing more reliable and precise tracking when the
estimator from one of the scan frequencies is unavailable or unreliable. The proposed
method leverages the Inverse Covariance Intersection method and Kalman filters to
enhance tracking accuracy and handle challenging tracking scenarios, suggesting that
using the CTRV motion model extended to 3D along with an EKF is a viable option
also for UAVs.

In addition, to overcome the challenge of needing a known initial position for
detection, we have developed a solution that generates range images in outdoor en-
vironments. These range images, created by combining depth and intensity data, can
then be used by a YOLOv5 model to accurately detect the UAV’s initial position.
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7 Federated Learning Enhanced Visual
Obstacle Avoidance in a Multi-Robot
System

In an autonomous multi-robot system, each robot can have a DL model representing
the environment based on their situated awareness, for different purposes, such as
visual obstacle avoidance. Different robots may have the limitation of detecting the
environment due to their limited resources. It is of great necessity to have a collec-
tive model to share their knowledge about the environment. Instead of an individual
robot, in a multi-robot system, multiple robots, situated in various whereabouts, col-
laboratively performing particular tasks is more efficient and of high success rate in
heterogeneous environments including unknown ones [271]. However, because of
the limits of scenarios where vision-based obstacle avoidance is applied, it is still
challenging for DL to collect enough visual inputs for collaborative learning and
share them with other agents for privacy and security reasons. To address these
concerns, we proposed an approach that included FL, Sim-to-Real (Sim2Real) via
a photorealistic simulator, and lifelong learning. A conceptual illustration of such
system is illustrated in Figure 3. We study the performance of FL over centralized
learning in the simulated and real worlds separately, analyze the improvements of
merging data from heterogeneous scenarios, and finally the potential for Sim2Real
knowledge transfer.

To the best of our knowledge, this is also the first work to introduce an strat-
egy for continuous learning together with FL and validating it in the real world. In
addition to real-world robots, we also utilize simulations to obtain enough data for
training the DL models. Due to the proliferation of photorealistic simulators, studies
are increasingly relying on these simulators to supplement data collection in situ-
ations where we cannot reach or collect sufficient data. In addition, through these
types of simulators, the deployment of robotic and autonomous systems can be more
accessible. In this way, we believe it may be beneficial for real-world vision-based
obstacle avoidance. Throughout their lives, humans and animals can acquire, fine-
tune, and transfer knowledge and skills. It is instrumental and interesting for robots
to have the same type of learning capabilities. To continually learn the model for ob-
stacle avoidance like humans, we involved multiple robots performing other tasks in
different places, including the simulator, into the FL-based lifelong learning system
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for data collection, model training, and model sharing. We compare the performance
of both AlexNet [272] and ResNet18 [273] (as a lightweight backbone) with cen-
tralized and FL approaches to model training. We evaluate the model on different
synthetic and real-world datasets, and train the models on combinations of different
subsets to better study the effect of environment heterogeneity during the training
phase. New data is also acquired with a Clearpath Husky mobile robot while it is
operating other tasks and autonomously navigating a new indoors environment. The
new data is automatically labelled with additional sensor suited (LiDAR). This opens
the door to wider usage of heterogeneous robot fleets where robots with additional
sensor capabilities can generate labelled data to train models able to reproduce their
autonomous behaviour with more limited sensors, mainly cameras.

The main contribution of this work is as follows:

1. The design, implementation, deployment, and evaluation of a vision-based DL
approach to obstacle avoidance in mobile robots in heterogeneous simulated
and real scenarios. We then evaluate the performance benefits of such an ap-
proach over offline learning or learning from more limited data sources. We
put an emphasis on the benefits when robots are deployed in heterogeneous
environments, showing that collaborative learning improves performance even
for robots that do not change their environment. For this work, we deploy
robots in highly photorealistic and physically-accurate virtual environments
and study the ability of such a setup for Sim2Real transfer. (in Section 7.1)

2. We investigated the possibility of federated and continuous learning within hy-
brid teams of simulated and real robotic agents in this work. We then evaluate
the performance benefits of such an approach over offline learning or learning
from more limited data sources. First, we evaluate two different deep obsta-
cle avoidance neural networks with both synthetic and real-world data. For
both of the architectures a FL-based knowledge sharing method (where the lo-
cally trained models are fused) is compared to a centralized training approach
(where raw data needs to be aggregated before the training starts). Both mod-
els are validated with data from the photorealistic simulator and real-world
environment separately. (in Section 7.2)

3. We analyzed the Sim2Real performance of two different deep obstacle avoid-
ance models generated by FL methods, with our results showing that FL out-
performs the centralized data aggregation methods. (in Section 7.2)

4. We integrate LiDAR-based navigation for automated labelled data gathering.
We implemented an online FL-based visual obstacle avoidance system both in
a simulator and real-world environment. With such a system, we can continu-
ously collect data from obstacles and free paths and train the model while the
robots operate other tasks. (in Section 7.2)
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(a) Hospital (b) Office (c) Warehouse

Figure 78: Customized simulation environments from NVIDIA Isaac Sim

7.1 Federated Learning for Visual Obstacle Avoidance

7.1.1 Methodology

This section covers the different tools, simulation environments and robots utilized
in the experiments. We describe the approaches to centralized and FL, and the DL
models used for vision-based obstacle avoidance.

Simulation Settings

As a platform to validate the proposed approach in simulated robots, we have used
NVIDIA Isaac Sim, powered by Omniverse. Isaac Sim is a scalable robotics sim-
ulation application and synthetic data generation tool that enables the creation of
photorealistic, physically accurate virtual environments for developing, testing, and
managing AI-based robots [274].

We have set up a series of simulation environments to gather data and validate
the vision-based approach to obstacle avoidance. Three main environments are used
to analyze the performance of the trained model, with a focus on heterogeneity of
objects and backgrounds. The datasets used in this study include data from environ-
ments that replicate a hospital (see Figure 78a), a office room (see Figure 78b), and
a warehouse (see Figure 78c).

To obtain sufficient data for model training, we used the NVIDIA Isaac Sim’s
Domain Randomization (DR) and Synthetic Data Recorder (SDR) features. By uti-
lizing DR, we can select a specific object and randomly set its properties such as
movement, rotation, light, and texture within a defined range. We can easily record
the data generated by DR using SDR. These operations were carried out in the three
customized environments mentioned previously and pictured in Figure 78. The dis-
tribution of the datasets is shown in Table 29, with 𝒮𝑖 representing the dataset asso-
ciated to environment 𝑖.
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Table 29: Distribution of simulation datasets

Hospital (𝒮0) Office (𝒮1) Warehouse (𝒮2)

blocked free blocked free blocked free

Prop. 44% 56% 64% 46% 60% 40%

Total 27% 54% 19%

Real-World Experimental Settings

We utilize three mobile robots for real-world experiments and a local computing
server for training the DL models. The platforms used in the experiments are three
Jetbot robots from Waveshare (depicted in Figure 79), equipped by default with a
wide-angle lens RGB camera and an embedded NVIDIA Jetson Nano development
kit. In addition, a Rplidar A1 2D rangefinder has been installed on a 3D printed
frame for automated data labeling when real-world data is collected. The local edge
server used for training the obstacle avoidance models is equipped with an 8-core
Intel i7-9700K processor, 64 GB of memory, and an NVIDIA GeForce RTX 2080 Ti
GPU card.

Rplidar A1
A 360° 2D lidar

Nvidia Jetson Nano
Wide-angle RGB camera

3D printed lidar frame

Figure 79: Customized Jetbot platform

We deployed the mobile robots in three different indoor environments (office
spaces, hallways and laboratory environments) to validate the obstacle avoidance
policies trained with the different approaches. The three rooms vary in terms of
objects present as obstacles, material texture, layout, and style. The distribution of
the images acquired by the three robots is shown in Table 30, where ℛ𝑖, 𝑖∈{0,1,2}
represent each of the acquired datasets for the respective real-world environments.
We intentionally imbalance the data in order to imitate a situation in which robots
would not be able to collect data equally across different environments and opera-

153



Xianjia Yu

Table 30: Distribution of real-world datasets

Room 1 (ℛ0) Room 2 (ℛ1) Room 3 (ℛ2)

blocked free blocked free blocked free

Prop. 40% 60% 50% 50% 50% 50%

Total 11% 44% 45%

tional conditions. We also do this to evaluate whether there is a performance impact
in environments based on the amount of collected data. As such, Room 1 only ac-
counts for 11% of the total amount of collected images.

Vision-based Obstacle Avoidance Models

To achieve vision-based obstacle avoidance for the operation of mobile robots, we
have chosen to train a generic DL model to assist robots in discriminating between
different types of obstacles across heterogeneous environments. This approach
comes in contrast to other options, including the detection of individual objects
or semantic segmentation (e.g., for segmenting free floor from objects and walls).
The selected approach enables us to focus on analyzing the performance of a FL
approach and the ability for Sim2Real transfer rather than on the design of a specific
obstacle avoidance strategy, which is the main objective of this study

More precisely, we utilized a deep CNN to carry out a vision-based obstacle
classifier for only two classes, that define whether the environment ahead is blocked
or free for the robot to navigate. Owing to the relative low level of complexity of the
classifier and the limited size of the collected datasets, we have selected the AlexNet
architecture as appropriate for such binary classification task. AlexNet has been
established as the precedent for deep CNN as one of the most widely used backbones
for executing various tasks across multiple domains.

We train different models for each separate dataset with both simulated and real
data, as well as combinations of these. The models are trained using two approaches:
a centralized learning approach that aggregates data from all robots in the local edge
server and trains them at once; and a FL approach that only fuses the individual
models trained in each of the different scenarios.

7.1.2 Experimental Results

Through this section, we report the experimental results obtained with data from
both simulated and real robots. We show first the performance of the different ap-
proaches, with the latter part shifting towards the potential for Sim2Real knowledge
transferability.
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Figure 80: Accuracy of the different models obtained through centralized learning
with aggregated data or federated learning with fused local models. These results
are trained (𝑡) and validated (𝑣) with respective simulation datasets (𝒮𝑡𝑖 , 𝒮𝑣𝑖 ) and real
datasets (ℛ𝑡

𝑖, ℛ𝑣
𝑖 ) independently.

Centralized Training vs. Federated Learning

The first objective of our experiments is to analyze the performance improvements
that a FL approach brings over a centralized training with traditional data aggre-
gation. To do this, we used the data we collected in the simulated hospital (𝒮0),
office (𝒮1), and warehouse (𝒮2) to train our model on each dataset and all possible
combinations of two or three of the datasets. Equivalently for the FL approach, we
run different training rounds in which we simulate that a different subset of robots
is collaboratively learning without sharing any actual raw data. In this approach,
only the models are fused and a common model updated iteratively. Figure 80a and
Figure 80b report the accuracy of the different models for the centralized and fed-
erated approaches, respectively. For the FL results, the training happens only with
combination of datasets from different environments.

The accuracy of models trained with real-world data is then shown in Figure 80c
and Figure 80d. The data has been obtained with Jetbots navigating in three different
office and laboratory indoor environments (ℛ𝑖, 𝑖∈0,1,2).

In addition to the accuracy, we also calculate the area under the ROC (Receiver
Operating Characteristics) curve (AUC) for each of the scenarios where training is
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Table 31: Area under ROC curve (AUC) values for the aggregated centralized learn-
ing and federated learning approaches.

Training datasets
Centralized learning with aggregated data Federated learning

V
al

id
at

io
n

da
ta

se
ts

𝒮𝑡0 𝒮𝑡1 𝒮𝑡2 𝒮𝑡0,1 𝒮𝑡0,2 𝒮𝑡1,2 𝒮𝑡1,2,3 𝒮𝑡0,1 𝒮𝑡0,2 𝒮𝑡1,2 𝒮𝑡1,2,3

Si
m

𝒮𝑣0 0.28 0.56 0.56 0.33 0.50 0.71 0.52 0.85 0.85 0.85 0.85
𝒮𝑣1 0.33 0.50 0.75 0.33 0.50 0.75 0.60 0.94 0.93 0.93 0.95
𝒮𝑣2 0.43 0.94 0.46 0.42 0.50 0.23 0.62 0.96 0.95 0.95 0.95

ℛ𝑡
0 ℛ𝑡

1 ℛ𝑡
2 ℛ𝑡

0,1 ℛ𝑡
0,2 ℛ𝑡

1,2 ℛ𝑡
1,2,3 ℛ𝑡

0,1 ℛ𝑡
0,2 ℛ𝑡

1,2 ℛ𝑡
1,2,3

R
ea

l ℛ𝑣
0 0.63 0.58 0.42 0.75 0.63 0.08 0.58 0.88 0.88 0.88 0.88

ℛ𝑣
1 0.31 0.66 0.60 0.35 0.25 0.50 0.70 0.83 0.85 0.85 0.85

ℛ𝑣
2 0.69 0.57 0.87 0.46 0.51 0.48 0.56 0.90 0.92 0.90 0.92

carried out through either the centralized or federated approaches. The results are
reported in Table 31. This metric gives a better understanding of the reliability of
the models. In this particular application scenario of robotic navigation, there is
indeed a disparity in the cost of false negatives over false positives in terms of the
robot’s integrity. However, from the point of view of performance, false positives can
degrade significantly the navigation speed and time, while low-frequency collisions
can be mitigated with, e.g., bumper sensors. Therefore, the classification-threshold
invariance of the AUC metric is relevant to this use case.

Through both the accuracy and AUC results, we see that there is a clear improve-
ment when the models and not the data are aggregated. In addition to the better
navigation results, this also brings other advantages. First, we optimize the network-
ing resources, allowing for intermittent connectivity and potentially lower bandwidth
requirements when the size of the data in training batches is significantly smaller than
the models. Moreover, this allows for privacy-preserving collaboration between dif-
ferent end-users or robot operators, as the raw data does not need to be exposed to a
central authority or service.

Sim-to-Real Performance Evaluation

In the last part of our experiments, we evaluate the ability of both the centralized and
FL approaches to transfer knowledge from simulation environments to the real world.
To do this, we rely on the same simulation environments but introduce an indepen-
dent data validation set (ℛ*) from a navigation mission across different types of in-
door spaces. The accuracy for each of the trained models is shown in Figure 81. We
can observe that relatively low performance is achieved with either approach when
only one of the simulation environments is used for training the models. This may
result from overfitting the model to non-realistic features in the simulated worlds.
However, when heterogeneous data is introduced in training, the FL approach sig-
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Figure 81: Sim-to-real accuracy of simulation-trained models validated on an inde-
pendent real-world navigation dataset.

nificantly improves. Our results also show that only when aggregating data from all
three simulation environments the centralized learning approach is able to improve
the performance to the level of FL. The specific reason behind this behaviour requires
further study and will be the object of future research.
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7.2 Federated Learning Based Lifelong Learning for
Visual Obstacle Avoidance

7.2.1 Methodology

This section outlines the robot platform utilized in this experiment, two different
deep neural networks to do vision-based obstacle avoidance for further validation of
FL performance, and navigation settings for continual learning.

Data Collection for Federated Learning

The details of the data gathering, including the usage of the photorealistic simula-
tor NVIDIA Isaac Sim, the environment settings, and data distributions, are detailed
in Section 7.1, from where we reuse the base simulation and training datasets. The
datasets from 7.1 include data from three distinct scenarios in NVIDIA Isaac Sim
and from Jetbot robots deployed in three real-world rooms to train and validate the
vision-based obstacle avoidance models. In this work, part of the datasets from the
simulator and real-world are also 𝒮𝑖, 𝑖∈{0,1,2} and ℛ𝑖, 𝑖∈{0,1,2}, respectively. Addi-
tional datasets acquired specifically for this work are introduced in the relevant sec-
tions, with Clearpath Husky training data referred to as ℋ𝑆 or ℋ𝑅 for the simulated
and real robots, respectively.

Regarding data training hardware, in this work, we utilized a Lambda Vector
workstation equipped with two RTX 3080 GPU cards and a 24-core AMD Thread-
ripper 3960X processor to train our models for vision-based obstacle avoidance.

Vision-Based Obstacle Avoidance Models

We trained two distinct types of DL models to ensure FL’s performance in visual
obstacle avoidance and assess how performance differs. These two deep CNN are
vision-based obstacle classifiers for two classes that define whether the environment
ahead is blocked or free for the robot to navigate. Owing to the relatively low level
of complexity of the classification task and the size of potential datasets for such
tasks, we have selected the AlexNet and and ResNet18 architectures as appropriate
for such binary classification task.

These two models are generic DL models designed to aid robots in discerning be-
tween various types of barriers in heterogeneous situations. This strategy contrasts
with other possibilities, such as object detection or semantic segmentation (e.g., seg-
menting free floor from objects and walls). The chosen approach enables us to con-
centrate on examining the performance of a federated learning approach and its ca-
pacity for Sim2Real transfer rather than on developing a specific obstacle avoidance
strategy, which is the study’s primary purpose.
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Ouster OS0-128 Lidar

RealSense L515

ClearPath Husky
Nvidia Jetson AGX Xavier

(Inside Husky)

Figure 82: The customized Clearpath Husky platform

Proposed FL Based Lifelong Learning Obstacle Avoidance

By incorporating LiDAR into the Clearpath Husky navigation system, we developed
a straightforward FL-based lifelong learning system for visual obstacle avoidance.
We used LiDAR to differentiate between blocked and free space of visual data while
performing specified navigation tasks. After collecting sufficient data, the robots
will train the models independently and send them to the server for aggregation into
a global model. Concerning the fusion of models in FL, federated averaging was
applied in this work by taking the average of all model updates. The global model
can then be deployed to another type of robot for obstacle avoidance performance
evaluation.

Regarding the experimental environments, we implemented this with a Clearpath
Husky in Figure 82 robot both in a simulator and real-world environments. Our
customized Clearpath Husky robot platform is equipped with one Ouster OS0-128
LiDAR for measuring distances to objects when performing autonomous navigation
tasks. When the distances are lower to a certain threshold, an Intel Realsense L515
camera will be triggered to capture the images as obstacles included continuously.
Otherwise, the images will be categorized to free labels. Once a sufficient number
of images are collected, we will train local models based on these data, fuse them to
be a global model by FL methods, and then apply the global model to a real-world
robot obstacle avoidance operation.

It is worth emphasizing that we used simulated data to help the continuous learn-
ing process, as obtaining real-world data is not always straightforward. In the follow-
ing section, we evaluate the FL fused model’s real-world deployment performance
using either simulated or real-world data.
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Figure 83: Accuracy of the different models obtained through centralized learning
with aggregated data or federated learning with fused local models based on AlexNet.
These results are trained (𝑡) and validated (𝑣) with respective simulation datasets (𝒮𝑡𝑖 ,
𝒮𝑣𝑖 ) and real datasets (ℛ𝑡

𝑖, ℛ𝑣
𝑖 ) independently.

7.2.2 Experimental Results

This section presents experimental results obtained using data from both simulated
and real robots. We first demonstrate the performance of various knowledge-sharing
approaches for obstacle avoidance using AlexNet and ResNet18 models before delv-
ing into the possibility of Sim2Real knowledge transferability. Finally, we demon-
strated the FL method’s ability to facilitate lifelong learning by having Husky per-
forming simulation and real-world navigation tasks.

Centralized Training vs. Federated Learning

Our experiments begin by analyzing the performance improvements of federated
learning over traditional centralized training with data aggregation. Both simulated
and real-world data are evaluated separately in this part. By including the AlextNet
and ResNet18 in this study, we can compare how the performance will vary for cen-
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Figure 84: Accuracy of models obtained through centralized learning with aggre-
gated data or federated learning with fused local models based on ResNet18. These
results are trained (𝑡) and validated (𝑣) with respective simulation datasets (𝒮𝑡𝑖 , 𝒮𝑣𝑖 )
and real datasets (ℛ𝑡

𝑖, ℛ𝑣
𝑖 ) independently.

tralized training and FL using different DL models. To accomplish this, we used the
data we collected in the simulated hospital (𝒮𝑡0), office (𝒮𝑡1), and warehouse (𝒮𝑡2) to
train our model on each dataset and all possible combinations (𝒮𝑡0,1, 𝒮𝑡0,2, 𝒮𝑡1,2, 𝒮𝑡0,1,2)
of two or three of these datasets and validate the models on 𝒮𝑣𝑖, 𝑖∈{0,1,2}. Equivalently
for the federated learning approach, we run different training rounds in which we
simulate that a different subset of robots is collaboratively learning without sharing
any actual raw data. Only the models are fused in this approach, and a global model
is updated iteratively. In the case of real-world data, we repeat the procedure above
with ℛ𝑡

0, ℛ𝑡
1. ℛ𝑡

2 representing the training datasets from rooms, office and labora-
tory and ℛ𝑡

0,1, ℛ𝑡
0,2, ℛ𝑡

1,2, ℛ𝑡
0,1,2 representing the combinations of two or three of the

previous sets while ℛ𝑣
𝑖, 𝑖∈{0,1,2} denotes the corresponding validation data. Figure 83

and Figure 84 report the accuracy of the different models (AlexNet and ResNet18)
for centralized learning and FL, respectively. From the results, we found that FL
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based approach is robust both in a sim and real separately, and its accuracy is com-
petitive with traditional centralized data aggregation training methods for performing
vision-based obstacle avoidance tasks.

Table 32: Area under ROC curve (AUC) values for the aggregated centralized learn-
ing and federated learning approaches.

Training datasets (AlexNet, ResNet18)
Centralized learning with aggregated data Federated learning

V
al

id
at

io
n

da
ta

se
ts

𝒮𝑡
0,1 𝒮𝑡

0,2 𝒮𝑡
1,2 𝒮𝑡

1,2,3 𝒮𝑡
0,1 𝒮𝑡

0,2 𝒮𝑡
1,2 𝒮𝑡

1,2,3

Si
m

𝒮𝑣
0 (0.33, 0.53) (0.50, 0.58) (0.71, 0.56) (0.52, 0.31) (0.85, 0.74) (0.85, 0.78) (0.85, 0.79) (0.85, 0.78)

𝒮𝑣
1 (0.33, 0.54) (0.50, 0.40) (0.75, 0.96) (0.60, 0.21) (0.94, 0.88) (0.93, 0.89) (0.93, 0.86) (0.95, 0.89)

𝒮𝑣
2 (0.42, 0.64) (0.50, 0.50) (0.23, 0.26) (0.62, 0.23) (0.96, 0.84) (0.95, 0.92) (0.95, 0.93) (0.95, 0.91)

ℛ𝑡
0,1 ℛ𝑡

0,2 ℛ𝑡
1,2 ℛ𝑡

1,2,3 ℛ𝑡
0,1 ℛ𝑡

0,2 ℛ𝑡
1,2 ℛ𝑡

1,2,3

R
ea

l ℛ𝑣
0 (0.75, 0.42) (0.63, 0.50) (0.08, 0.33) (0.58, 1.00) (0.88, 0.86) (0.88, 0.75) (0.88, 0.94) (0.88, 1.00)

ℛ𝑣
1 (0.35, 0.68) (0.25, 0.69) (0.50, 0.48) (0.70, 0.71) (0.83, 0.80) (0.85, 0.86) (0.85, 0.76) (0.85, 0.82)

ℛ𝑣
2 (0.46, 0.45) (0.51, 0.42) (0.48, 0.47) (0.56, 0.67) (0.90, 0.70) (0.92, 0.87) (0.90, 0.73) (0.92, 0.82)

Along with accuracy, we also calculate the area under the ROC curve (AUC) for
each of the scenarios where training is conducted through either the centralized or
federated approaches. The results are summarized in Table 32 where the AUC values
for AlexNet-based and ResNet18-based models are enclosed with a bracket in order.
This metric enables a better understanding of the models’ reliability. In the context
of robotic navigation, there is indeed a cost differential between false negatives over
false positives in terms of the robots’ integrity. However, from the point of view
of performance, false positives can significantly degrade the navigation speed and
time, while low-frequency collisions can be avoided with other sensors, consider-
ing as well that a false negative is not necessarily consistent over time and multiple
observations of the same obstacle are processed before a collision may happen.

For both AlexNet and ResNet18, the AUC results together with the accuracy
boxplots show that there is a performance boost with the federated learning approach
in contrast to the centralized learning method where all data is first aggregated in a
single training set.

Sim-to-Real Performance Evaluation

In terms of Sim2Real performance of the two architectures, we analyzed the perfor-
mance of both the centralized and federated learning approaches to an independent
real-world dataset. The results showing the potential for vision-based obstacle avoid-
ance inference for both AlexNet and ResNet18 are shown in Figure 85. The results
indicate that both AlexNet and ResNet18-based obstacle avoidance models imple-
mented with the FL approach can outperform the ones with the centralized data ag-
gregation method in terms of Sim2Real performance. Additionally, AlexNet is more
suitable for performing obstacle avoidance tasks in our dataset.
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Figure 85: Evaluation of sim-to-real capability of the trained models.

(a) (b) (c) (d)

Figure 86: Husky navigation environment and maps. Figure 86a, 86b, 86c, 86d are
the operating environment and the navigation map in the simulator and real-world,
respectively.

Federated Continual Learning for Visual-Based Obstacle Avoidance

In this section, we describe the results from experiments where the Husky robot has
been utilized both in a simulated playpen (see Figure 86a) and in a large-open indoor
office environment (see Figure 86c) to operate autonomous navigation tasks in their
navigation maps (see Figure 86b and in Figure 86d, respectively).

At the same time, while the Husky robot was operating autonomous navigation
tasks in the sim and real environments, we collected images continuously for training
local models for FL models fusion. By validation on an independent dataset ℛ*,𝑣,
we evaluated the global models fused with the local model from simulated husky
robot ℋ𝑆 only, the local model from real-world Husky robot ℋ𝑅 only, and the local
models of both them ℋ𝑆,𝑅. The results are shown in Figure 87. Regarding AlexNet,
fusing the models either from simulation or real-world can improve the accuracy of
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the vision-based obstacle avoidance. However, for ResNet18, our results show that
fusing the local model from the simulator can improve the performance of the global
model more than fusing the one from the real-world Husky. By fusing both of them,
the accuracy can be improved, which shows the potential benefit of collaborative
learning from both simulated and real robots.
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Figure 87: Accuracy of FL fused models based on images collected while Husky was
operating navigation tasks in simulated and real-world environments for continual
learning purposes

7.3 Summary
7.3.1 Federated Learning Enhanced Visual Obstacle Avoid-

ance

We have presented a federated learning approach for vision-based obstacle avoid-
ance in mobile robots that leverages data from both simulated agents and real robots
with additional sensors. We have shown that interconnected robots relying on deep
learning for vision-based navigation can aid each other without sharing raw data.
Specifically, we show how training the same model with data from heterogeneous
environments improves performance across the simulated and real worlds. More
importantly, the performance improvements are better when the models are trained
through a federated learning approach compared to centralized learning. In addition
to the application-specific improvements, the federated learning approach brings in-
herent benefits in terms of communication optimization and preservation of data pri-
vacy, enabling collaboration across organizations or users. Finally, we have shown
that the presented approach is able to transfer knowledge from simulation to reality
effectively.
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Owing to the potential for Sim2Real transfer and accounting for the better perfor-
mance of federated over centralized learning, future work will be directed towards
lifelong FL through a combination of simulated and real agents. Additionally, we
will further explore the reasons behind the differences in performance across the
approaches presented in this manuscript.

7.3.2 LiDAR Assisted Federated Lifelong Learning for Visual
Obstacle Avoidance

This work presents an FL-based lifelong learning method for vision-based obstacle
avoidance among various mobile robots involving both simulated and real-world en-
vironments. Rather than applying a single deep neural network, we analyzed the
performance of the FL-based method compared with the centralized data aggrega-
tion method with two different deep neural networks, providing to better generalize
results. More specifically, we found that the FL approach can bring competitive ac-
curacy compared to centralized learning across the simulated and real worlds while
also delivering inherent benefits in communication optimization and data privacy
preservation, enabling collaboration across organizations or users. Additionally, we
evaluated the FL method’s Sim2Real vision-based obstacle avoidance performance.
The result indicates that transferring the obstacle knowledge from simulation to re-
ality using the FL method is more effective and stable. Within the FL-based lifelong
learning system, one agent can improve its obstacle avoidance performance by ag-
gregating models from local models in other agents situated either in simulated or
real-world environments in our study.
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8 Conclusion and Future Work

This thesis is designated to study the integration of the advanced multi-modal sen-
sors for high-level robotic sensing and perception and meanwhile bring the privacy-
preserving by utilizing Federated Learning into the process.

8.1 Conclusion
In this thesis, we first introduced novel datasets featuring multi-modal sensors for
various applications, including SLAM, LiDAR odometry, localization, and UAV
tracking. These datasets encompass a variety of LiDARs, such as spinning and
solid-state LiDARs, and provide ground truth data via MOCAP, GNSS/RTK, and
SLAM-assisted methods. Additionally, we reviewed state-of-the-art localization and
tracking approaches.

Following the dataset introduction, we explored innovative multi-robot relative
positioning methods to enhance robotic perception tasks, emphasizing UWB-based
techniques. We evaluated UWB-based relative localization between UAVs and
ground robots through simulations and outdoor experiments in urban environments
with poor GNSS performance. The analysis revealed that UWB-based systems can
serve as alternatives to RTK-GNSS, maintaining adequate accuracy for autonomous
flight even when GNSS accuracy is insufficient.

Further research introduced a particle-filter-based approach for relative multi-
robot localization integrating UWB ranges, robot odometry, and cooperative spatial
detections. This method uses LSTM networks to predict ranging errors, improving
accuracy and real-time performance. Unlike VIO-based approaches, our method em-
ploys cameras solely for cooperative spatial detections. Experiments demonstrated
that this approach outperforms traditional multilateration in relative state estimation,
with low CPU usage and memory consumption.

We also analyzed the performance of various deep learning models for object
detection and semantic segmentation on LiDAR-generated images, collected in dif-
ferent environments and lighting conditions. Results indicated that state-of-the-art
DL models perform well with this data type, suggesting expanded applications for
LiDAR beyond current geometric methods. A key limitation noted was the lack of
re-training with larger annotated datasets.

To address computational overhead in point cloud registration for LiDAR odom-
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etry, we proposed a novel method using LiDAR-generated images. This approach
preserves key points during down-sampling, maintaining performance comparable
to using full raw point clouds, and proving more effective in scenarios prone to drift
and rotational transformations.

Additionally, we presented a novel UAV tracking method using fused signal im-
ages and point clouds from an Ouster LiDAR, which does not require calibration
with external cameras. Indoor experiments demonstrated the effectiveness of this
approach compared to methods using only point clouds or signal images, and its
feasibility on a Jetson Nano platform.

Finally, we proposed a federated learning (FL) approach for vision-based obsta-
cle avoidance in mobile robots, leveraging data from both simulated and real en-
vironments. This method showed better performance improvements and communi-
cation optimization compared to centralized learning, preserving data privacy and
enabling cross-organizational collaboration. Our FL-based lifelong learning system
effectively transferred obstacle knowledge from simulation to reality, improving ob-
stacle avoidance performance through model aggregation.

8.2 Future Work
The future work of the dissertation can be from different aspects. Instead of the
benchmark tests only focus on SLAM algorithms based on spinning LiDAR and
solid-state LiDAR, we can add benchmark tests based on cameras and even SLAM
algorithms based on multiple sensor fusions in the future.

Regarding LiDAR as a camera, we can explore a wider variety of preprocessing
techniques and study the performance benefits of re-training some of the studied net-
work architectures with data from the LiDAR camera sensors. Furthermore, there
is potential to seamlessly integrate the current LiDAR-generated image keypoint
extraction process into the broader SLAM pipeline. For instance, one avenue of
exploration could involve amalgamating features extracted from LiDAR-generated
images with those derived from point cloud data, facilitating the development of a
lightweight SLAM system complemented by additional sensors, such as an IMU.

In future work, we will concentrate on utilizing and adapting the FL-based life-
long learning system to perform other robotic navigation tasks with a view toward
sim-to-real capabilities. We also find potential in dynamically adjusting the simula-
tion environments based on real-world robot experiences, e.g., adding 3D models of
new objects found.
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