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The debate around the predictability of stock prices has been going on for decades and wealth 

managers have been scrambling to find any type of long-term edge over the market. This search 

inspired De Bondt and Thaler (1985) to compare returns between a portfolio of past losers and a 

portfolio of past winners. They found that past losers tended to have higher than market average 

returns in the following years. The phenomenon causing this is now known as reversal which has 

had a profound impact on how we think about the behaviour of stock prices and sparked numerous 

studies on the topic of mean reversion.  

The aim of this thesis is to find out whether the Finnish stock market (OMXHPI-index) is mean 

reverting and if so, how long does it take for stock returns to revert to their mean (50-day moving 

average) and more importantly, how does this reversal affect risk. The presence of mean reversion 

is studied using a modified version of Lo and MacKinlay’s (1988) variance ratio and the Hurst 

exponent and half-life. The risk measures chosen are value at risk and expected shortfall, 

otherwise known as conditional value at risk.  

The results show that the Finnish stock market is mean reverting, and it takes 8 to 15 trading days 

for stock price changes to revert back to their mean. The Hurst exponent and half-life have a low 

positive correlation with the risk measures. Additionally, they are statistically significant methods 

of explaining the changes with the risk measures based on the robust standard errors test. This 

means that as the amount of mean reversion increases, the amount of risk in the market also 

increases. Changes in half-life had a stronger impact on risk. The findings of this thesis can be 

valuable for portfolio managers looking to hedge risk or opportunistic investors aiming to 

outperform the market. 
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Osakkeiden hinnanmuutoksien ennustettavuudesta on käyty keskustelua jo vuosikymmeniä, ja 

varainhoitajat pyrkivät löytämään pitkän aikavälin etulyöntiaseman markkinoihin nähden. Tämä 

innoitti De Bondt ja Thaleria (1985) vertailemaan aiempia häviäjiä sisältävän salkun ja aiempia 

voittajia sisältävän salkun tuottoja. He havaitsivat, että aiemmilla häviäjillä oli taipumus tuottaa 

markkinoita paremmin seuraavina vuosina. Tätä ilmiötä selitetään nykyään 

keskiarvohakuisuudella ja sillä on ollut suuri vaikutus siihen, mitä ajattelemme osakekurssien 

käyttäytymisestä.  

Tämän tutkimuksen tavoitteena on selvittää, ovatko Suomen osakemarkkinat (OMXHPI-indeksi) 

keskiarvohakuisia, ja jos ovat, kuinka kauan kestää, että osakkeiden tuotot palautuvat 

keskiarvoonsa (50 päivän liukuva keskiarvo), sekä miten keskiarvohakuisuus vaikuttaa riskiin. 

Keskiarvohakuisuuden esiintymistä tutkitaan käyttämällä muunneltua versiota Lo ja MacKinlayn 

(1988) varianssisuhteesta sekä Hurstin eksponentista ja puoliintumisajasta. Riskimittareiksi 

valittiin value at risk ja odotettu alijäämä, joka tunnetaan myös nimellä ehdollinen value at risk. 

Tulokset osoittavat, että Suomen osakemarkkinat ovat keskiarvohakuisia ja kestää 8–15 

kaupankäyntipäivää ennen kuin osakekurssien muutokset palautuvat keskiarvoonsa. Hurstin 

eksponentilla ja puoliintumisajalla on matala positiivinen korrelaatio riskimittareiden kanssa. 

Lisäksi ne ovat tilastollisesti merkitseviä selittäjiä riskimittareiden muutoksille robustin 

keskivirhetestin perusteella. Kun keskiarvohakuisuus voimistuu, myös riskin määrä markkinoilla 

kasvaa. Puoliintumisajan muutoksilla oli voimakkaampi vaikutus riskiin. Tämän tutkielman 

tulokset voivat olla arvokkaita salkunhoitajille, jotka pyrkivät suojautumaan riskeiltä tai 

lisätuottoa hakeville opportunistisille sijoittajille.  

 

Avainsanat: keskiarvohakuisuus, value at risk, odotettu alijäämä, varianssisuhde, Hurstin 

eksponentti, puoliintumisaika, riskienhallinta 
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1 Introduction 

The debate on whether stock prices change in specific patterns has been going on for 

decades. If these predictable patterns would be found, they could be used in numerous 

trading strategies that could give investors lucrative returns. In financial theory it is often 

assumed that the prices of stocks represent all available information and the future 

changes in prices could not be predicted. This does not mean, for example, that directional 

predictability would be impossible. Additionally, it is generally accepted that, for 

investors to obtain meaningful returns, they would have to expose themselves to risk.  

A new development in financial literature started to change the way people think about 

stock returns in the 1980s. Several separate studies indicated that historical prices of 

stocks could be, to some degree, used to forecast future prices. One of these studies was 

by De Bondt and Thaler (1985) that found that there is too much weight placed on new 

information and not enough on past information by investors. They called this 

phenomenon the Overraction Hypothesis. They found that past losers (stocks that 

underperformed the market) tended to outperform the overall market in the following 3- 

and 5-year period. They argued that this could be seen as evidence that prices of stocks 

were mean reverting with respect to the market, at least in longer time frames.  

Jegadeesh and Titman (1993) found indications of the contrary happening in shorter time 

frames. In these shorter periods, they found that stock prices often persist in their current 

trend, which is what they called return persistence. By creating portfolios funded through 

the proceeds of selling underperforming stocks and investing in the outperforming ones, 

they demonstrated that this approach yields considerable gains over periods of three to 

twelve months. The research indicated that stocks with recent success are likely to 

maintain their positive trajectory for the subsequent three to twelve months, showing 

straightforward evidence of momentum within short-term price movements.  

These two studies made researchers re-evaluate the true efficiency of stock markets. If an 

investor was able to detect these overreactions, they could incorporate this information 

into their own investment strategy. Such an approach could yield substantial returns while 

only using historical data. This would suggest a potential contradiction to the theory of 

weak form efficiency in the financial market.  
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1.1 Research questions 

This thesis aims to study the existence of mean reversion in the Finnish stock market and 

if there is mean reversion, what is its effect on selected risk measures. In financial 

literature, mean reversion is often referred to as the tendency for equity prices to fluctuate 

around the mean price or trendline over time. The thesis will aim to find an answer for 

the following research questions: 

• Does (relative) mean reversal occur in equity prices? 

• If so, how long does it take for prices to reverse back to their mean? 

• What is the relationship between mean reversion and risk? In this thesis, risk will 

be measured using value at risk and expected shortfall. 

1.2 Structure of the thesis 

The thesis is structured as follows. In the second chapter the efficient market hypothesis 

and random walk are presented. The theory behind them is explained to give the reader a 

basic understanding of the concepts. The third chapter explains mean reversion and some 

key findings related to it. In the fourth chapter the properties of financial time series are 

introduced. The methodology is described in the fifth chapter. This includes the 

description of the data used and tests performed. In chapter six, the results of the tests are 

presented. Finally, in chapter seven, conclusions of this thesis and suggestions for future 

works are made.   
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2 Theory 

2.1 Efficient market hypothesis 

The groundwork for the efficient market hypothesis (EMH) was laid by Samuelson 

(1965) and Mandelbrot (1966) when they studied the role of expected return models and 

their relationship with the efficient markets theory. Fama (1970) built upon this work to 

form the EMH as it is now known. The hypothesis has had a major influence on the 

practices and theory in the field of finance and has been extensively referenced across 

various studies and papers. It states that the stock markets are deemed efficient when 

share prices instantaneously and accurately incorporate all available information at any 

given moment, thus reflecting the true value of securities without any delay. For adequate 

market efficiency to be achieved, Fama (1970) lists three conditions: 

1. No transaction costs when trading securities. 

2. All available information is available to everyone in the market without cost. 

3. All participants are homogeneous in what the implications of the current available 

information are to the stock’s price and how the future prices will be distributed 

across each security. 

Fama (1970) acknowledges that the real-world market does not align with the ideal of a 

frictionless market where information is uniformly accessible and interpretations of its 

impact on security prices are unanimous. However, these ideal conditions are not strictly 

necessary for market efficiency. Even in a market with significant transaction costs 

affecting trades, the market can still be efficient if enough participants are informed. 

Variations in how individuals assess the information’s effect on prices do not necessarily 

undermine market efficiency. What is crucial is the absence of any systematic bias where 

some investors consistently outperform others in predicting the future prices based on the 

available information. This perspective maintains that markets can be efficient despite 

obvious practical imperfections and varied interpretations of data. 

In reality, markets are influenced by transaction costs, taxes, and the resources required 

to acquire new information, knowing that time spent gathering data could be allocated 

elsewhere. Financial theory recognises these realities and concedes that market efficiency 

that market efficiency can exist alongside these imperfections. It does not necessitate that 
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stock prices always precisely reflect the underlying value of assets. Instead, market 

efficiency is characterised by the notion that any discrepancies between the pricing of the 

market and the intrinsic value occur randomly. This randomness implies that stocks are 

equally likely to be priced above or below their value at any given moment, with these 

variations being inherently unpredictable. Consequently, no pattern should exist that 

allows for consistent prediction of overvalued or undervalued stocks, nor should it be 

possible to systematically exploit market anomalies for profit. This concept asserts that 

no investment strategy can reliably identify and capitalise in mispriced securities over 

time. (Knüpfer & Puttonen 2018.) 

Market efficiency implies that stock returns follow a random walk, meaning that the 

returns from previous days have no bearing on future returns in an efficient market. This 

lack of correlation is due to the fact that stock prices only change in response to new 

information. Under the EMH model, when new information is made available, a stock’s 

price adjusts instantly and appropriately in an efficiently functioning market. In contrast, 

in less efficient markets, investors might delay or overreact to new information, leading 

to a gradual correction of the stock price over time. Knüpfer & Puttonen (2018) illustrate 

this concept with two scenarios depicting stock price movements upon the release of new 

information.  

 

Figure 1 Stock price reaction to a release of new information (Knüpfer & Puttonen 2018) 

In Figure 1, the efficient market is represented by a black line, where price adjustment is 

immediate and accurate, while the lighter line denotes the reaction of an inefficient 

market, characterised by a sluggish response to new information. 
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Market efficiency, as defined in the EMH, is categorised into three levels: weak, semi-

strong, and strong. These levels can be distinguished by how much information is 

reflected in the prices of securities. In the weakest form of efficiency, stock prices 

incorporate all past trading information (prices), meaning that historical data cannot be 

used to secure superior returns. Semi-strong form efficiency asserts that the prices of 

stocks reflect all publicly available information on top of the historical data, negating any 

advantage from trading on public news or data (such as annual reports). Finally, strong 

form efficiency goes a step further by suggesting that stock prices factor in all 

information, public and private (including insider information), making it practically 

impossible for any investor to achieve consistently higher returns than the general market. 

Essentially, as the market efficiency scales from weak to strong, the possibility of earning 

abnormal returns by exploiting specific information diminishes, with strong form 

efficiency representing a state where even inside information is immediately priced into 

market values. (Fama 1970, 388.) 

The first studies around the EMH focused around testing the weak form efficiency of 

markets and therefore the past prices of stocks. Historical data is practically costless to 

obtain from various sources (e.g. Yahoo Finance) by investigating market-trading data 

(Fama 1970, 388). Therefore, achieving superior risk-adjusted returns should not be 

feasible based solely on prior knowledge of historical prices and returns (Shleifer 2006, 

6). The majority of findings align with the random walk literature, which supports the 

weak form of the EMH. Consequently, these findings correspond with the notion that 

returns cannot be predicted solely on the basis of past returns. (Fama, 1970.) 

As many studies supported the weak form of the EMH, studies shifted focus to the semi-

strong form. This form states that stock prices should instantly incorporate all historical 

and publicly available information (Fama 1970). Essentially, the semi-strong form 

examines how swiftly prices adapt to new public information. Under this hypothesis, if 

markets are truly efficient, investors would be unable to achieve higher risk-adjusted 

returns because any public information would already be priced in (Shleifer 2000, 6). 

However, the possibility of earning excess returns is not entirely dismissed; such profits 

might arise from access to non-public or insider information. The strong-form efficiency 

hypothesis expands on this, suggesting that all information, both public and private, 

potentially available in the future is already priced in (Shleifer 2000, 6). It particularly 
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scrutinises whether any individuals or groups, such as fund managers, possess exclusive 

information that can influence price formation (Fama 1970, 388). While the strong form 

suggests a theoretical possibility of profit from insider information, in practice, it is 

challenging to capitalise on such data as markets tend to assimilate any leaked insider 

news rapidly and accurately into security prices (Shleifer 2000, 6).  

Critique of the EMH often highlights misunderstandings regarding its implications for 

market behaviour, specifically in three areas: stock price deviations, the ability to 

outperform the market, and overall market rationality. (Clarke et al. 2001, 7–11; Knüpfer 

& Puttonen 2018.) 

Firstly, critics note that stock prices do not constantly reflect their intrinsic values. EMH 

acknowledges this, suggesting that while prices may deviate from actual values, these 

deviations are random and unpredictable. Thus, market efficiency does not require that 

stock prices always mirror intrinsic value; instead, it contends that price variations are not 

systematically exploitable. (Knüpfer & Puttonen 2018.) 

Secondly, EMH does not claim that no investor has the ability to beat the market; rather, 

it implies that consistent outperformance is more likely due to chance than skill (Clarke 

et al. 2001, 8). While investors can profit from new information that causes stock prises 

to rise, the hypothesis argues that over time, successful investing is not generally 

attributable to a particular strategy but to luck. In efficient markets, investment returns 

correspond to their risk level over the long term, but short-term disparities between actual 

and expected returns are common. (Knüpfer & Puttonen 2018.) 

Lastly, EMH assumes that the market operates rationally, not that every individual market 

participant acts rationally. Individual irrational decisions do not necessarily indicate 

market inefficiency. The theory assumes that the collective actions of all market 

participants, including rational traders capitalising on the misjudgements of others, drive 

prices to reflect intrinsic value, thereby upholding market efficiency even in the presence 

of irrational behaviour. (Knüpfer & Puttonen 2018.) 

2.2 Random walk 

The random walk hypothesis is a theory that states that market prices fluctuate in an 

unpredictable manner, moving up and down without being influenced by previous price 

trends (Knüpfer & Puttonen 2018, 169). This randomness makes it difficult to accurately 
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predict the future direction of the market at any given moment. This concept implies that 

a financial market’s past behaviour does not provide any useful clues for forecasting 

future security prices. Essentially, the history of a stock’s price offers no advantage in 

predicting its future trajectory, suggesting that investors cannot consistently predict 

security prices with more than a 50 per cent success rate. The random walk theory aligns 

with the principles of the EMH, operating under the premise that financial markets 

function efficiently and that all known information is already reflected in stock prices 

(Fama 1965b, 76). 

Numerous empirical studies have investigated the random walk theory and the ability to 

predict stock prices. For instance, Odean (1998) analysed the performance of investors 

discount brokerage accounts, comparing their trading profits against their trading costs. 

He found that these investors generally performed worse than those who adopted a simple 

buy-and-hold strategy, frequently buying securities that underperformed compared to the 

ones they sold, not even managing to cover their trading costs. Similarly, Chitenderu et 

al. (2014) studied the Johannesburg Stock Exchange All Share Index between 2000 and 

2011 using monthly data. Their research concluded that the stock prices in this market 

were not correlated and followed a random walk pattern, supporting the hypothesis that 

future stock prices in this market are unpredictable and move independently. An example 

of what a random walk would look like for stock returns is shown in Figure 2.  

Figure 2 Joint distribution of yesterday's and today's returns of OMX 
Helsinki Cap -index 2002-2017 (Knüpfer & Puttonen 2018) 



15 
 

 

Each dot shows the return from a certain day and the day after it. Based on the figure it 

seems to be impossible to predict tomorrow’s return based on what has happened today. 

If this was the case, the dots would be grouped in a way that could be interpreted as a line 

(Knüpfer & Puttonen 2018).  

Conversely, Lo and MacKinlay (1988) presented findings that challenged the notion of 

random walk in stock prices. Analysing data from the United States stock market between 

1962 and 1985, including various indices and size-sorted portfolios, they tested the 

random walk hypothesis specifically on weekly returns. Their research strongly refuted 

the random walk model across the whole sample period and all subperiods examined. 

They highlighted evidence suggesting that stock returns might be somewhat predictable, 

contradicting earlier studies that upheld the random walk theory. 

Fama and French (1988) reported findings in line with those of Lo and MacKinlay (1988), 

noting that while autocorrelation is weak for short-term daily and weekly periods, it 

becomes more pronounced over longer durations. This suggests that there are times when 

stock prices deviate from the random walk model, particularly over the long term, 

implying a degree of predictability in stock prices. Kim et al. (2002) observed that stock 

price movements are not entirely random. Their research identified significant statistical 

correlations between the prices of certain stocks, suggesting that in some instances, the 

movement of one stock could predict the movement of another.  
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3 Mean reversion 

3.1 Definitions and types of mean reversion 

The concept of mean reversion means that asset prices will ultimately gravitate back to 

their historical averages or a relative measure like the MSCI World Index. This historical 

average can be, for example, a simple price-to-earnings multiple. Assets trading below 

their long-term average are typically viewed as buys, while those above are expected to 

decrease. The further a price strays from its mean, the more likely it is that it will revert, 

creating opportunities for investors and traders to plan their market entry and exit 

strategies. Mean reversion is a principle that can be utilised across various financial 

metrics like price, earnings, and ratios. (Chen 2023.) 

A straightforward mathematical approach to mean reversion could be presented as a 

simple autoregressive process of order one with drift: 

𝑥𝑡 = 𝜃0 + 𝜃1𝑥𝑡−1 + 𝜀𝑡, 

where 𝜀𝑡 ~ (0, 𝜎) and 𝜃 ∈ (0,1).  The unconditional mean of the process is 

𝔼(𝑥) =  
𝜃0

1 − 𝜃1
, 

where the persistence parameter, 𝜃1, determines how quickly the process returns to this 

mean. Essentially, a shock 𝜀𝑡−1 impacts the variable 𝑥𝑡 proportionally to 𝜃1; its effect 

diminishes over time, influencing 𝑥𝑡+1 to a degree of 𝜃1
2, and so on. In other words, a 

portion 𝜃1 of the initial shock continues onward with each time unit, and conversely, a 

proportion [1 − 𝜃1 ∈ (0,1)] of the shock dissipates each time unit. The inverse (
1

1−𝜃1
) 

represents the average duration it takes for a shock to dissipate fully, known as the mean 

reversion time. The lower the persistence parameter 𝜃1 is, the faster the process reverts to 

its mean. It should be noted that this process only models positive autocorrelations. 

In economic literature, two distinct types of mean reversion are identified: absolute and 

relative. Absolute mean reversion suggests that stock prices tend to revert to a constant, 

unspecified mean value over time, typically evidenced by negative autocorrelation in 

stock market returns. On the other hand, relative mean reversion indicates a more dynamic 

relationship where stock prices revert to a mean that is directly related to fundamental 
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indicators such as dividends and earnings, reflecting the intrinsic value of the stocks. Both 

concepts are crucial in understanding the patterns and long-term behaviours of stock 

prices, with absolute mean reversion focusing on the historical average and relative mean 

reversion emphasising the underlying economic fundamentals. (Spierdijk et al. 2012, 230; 

Arsalan et al., 2022.) 

3.2 Rational of mean reversion 

The notion of mean reversion conflicts with the EMH. For example, sudden positive news 

may cause the price of a stock to jump 30 per cent instead of 10 per cent causing it to go 

over its fundamental value, a value which it would have in an efficient market. After this, 

traders who pay attention to the fundamentals understand that the stock’s price is over its 

fundamental value and start selling it, causing downward pressure on the price, and 

therefore causing the average price to fall in the following periods. Eventually, the value 

of the stock goes back to its fundamental value. (Engel & Morris 1991, 24–25.) 

Due to this conflict, many explain mean reversion through human psychology. The 

Overreaction Hypothesis developed by De Bondt and Thaler (1985) could be used to 

explain the temporal dependence of why the return process is driven back to its mean at 

some time scale. The hypothesis suggests that investors typically respond sluggishly to 

favourable news about a stock, incorporating the information into prices more slowly than 

they should, which leads to continued positive returns. This underreaction is believed to 

cause positive autocorrelation in returns over certain periods. On the other hand, 

overreaction occurs when investors get carried away by a series of positive developments, 

assuming the trend will continue and thus pushing prices beyond what is justified. When 

negative news finally emerges, it causes a sharp downturn in price. This overreaction is 

often associated with a negative autocorrelation in returns.  

Griffin and Tversky (1992) propose that both underreaction and overreaction can occur 

simultaneously and serve to explain market behaviours. They differentiate between the 

“strength” and “weight” of signals. For instance, a series of positive earnings 

announcements is noticeable and widely discussed (strong) but might not be as 

informative as it seems (light) because such sequences can occur randomly. Conversely, 

a single positive earnings announcement might not attract much attention (weak) but 

could be extremely informative (heavy). Investors tend to overemphasise the strength of 

signals while overlooking their weight, leading to underreaction to isolated pieces of good 
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news and overreaction to continuous good news. This tendency results in positive 

autocorrelation of returns over shorter timescales (between one month and one year) and 

negative over longer timescales (between three and four years). 

3.3 Evidence and measurement of mean reversal 

The debate around mean reversion in stock returns was ignited by a study conducted by 

De Bondt and Thaler (1985), which examined stocks on NYSE (New York Stock 

Exchange) from early 1926 to late 1982. They classified stock into “winner” an “loser” 

portfolios based on their performance across sixteen separate three-year intervals from 

January 1930 to January 1975, using monthly returns as a measure. Stocks with top 

performance (top 35, top 50, or top decile) were assigned to the “winner” portfolio, while 

those with the lowest performance (bottom 35, bottom 50, or bottom decile) were placed 

in the “loser” portfolio. The study aimed to determine whether the stocks past 

performance could predict their future returns, specifically looking at the cumulative 

excess returns (returns over the average) for the subsequent years.  

What De Bondt and Thaler (1985) discovered was counter to what market efficiency 

would predict: stocks that were previously “winners” significantly underperformed in the 

following years, whereas the “loser” stocks tended to yield much higher returns. This 

effect was more pronounced for “losers”, suggesting an asymmetry in the mean reversion 

effect. These findings were consistent regardless of the specific criteria for “winner” and 

“loser” categorization or the length of the periods examined. This meant that the past 

performance of a stock could be utilised in predicting its future performance. Further 

evidence of mean reversion can be found from the likes of Poterba and Summers (1988), 

Fama and French (1988), and Jegadeesh (1991). 

Poterba and Summers (1988) used a variance ratio test derived from the model made by 

Summers (1986) to measure mean reversion. The variance ratio for monthly returns 𝑟𝑡 

was defined as 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜(𝑘) =
𝑉𝑎𝑟(𝑟𝑡,𝑡+𝑘)

𝑉𝑎𝑟(𝑟𝑡,𝑡+12)
×

12

𝑘
, 

where k-period returns are compared to the variance of annual returns. If the stock price 

were to follow a random walk, then the returns would act as white noise, meaning their 

variance increases linearly with k. In such a scenario, the variance of the returns over a 
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12-period horizon would be 𝑉𝑎𝑟(𝑟𝑡,𝑡+12) = 𝜎𝑟
2 × 12, and for any k-period, it would be 

𝑉𝑎𝑟(𝑟𝑡,𝑡+12) = 𝜎𝑟
2 × 𝑘, making the variance ratio 𝑉𝑅(𝑘) = 1 for all k periods. However, 

if the returns are mean reverting, the variance of returns over longer periods will not 

increase as quickly as it would under a white noise process. As a result, the variance ratio 

for these longer periods will drop below one, indicating the presence of mean reversion 

rather than a random walk in stock price returns.  

As an example, to illustrate (Figure 3) the difference in behaviour between a mean 

reversing stock and a stock in efficient markets: consider a stock with potential annual 

changes of a 20 per cent increase or a 10 per cent decrease. One way to examine this 

stock’s volatility is by the range of its possible returns over a set time. For a one-year 

period, the maximum return is 20 per cent, and the minimum is a 10 per cent loss, making 

the volatility 30 per cent. In a two-year span, the best scenario yields a 40 per cent return 

(20 per cent each year), and the worst case is a 20 per cent loss, resulting in a volatility of 

60 per cent1. Therefore, for an efficient market, the volatility of a two-year investment is 

double that of a one-year investment. (Engel & Morris 1991, 26–27.)  

 

Figure 3 Volatility of a mean reversing stock and a stock in efficient market (Engel & Morris 1991, 
27) 

 

1 When not taking into account for interest on interest -effect. 
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However, if the stock prices are mean reverting, the volatility of a longer-term investment 

will not scale linearly (Figure 3, dashed line). In the short term, prices might deviate 

significantly from the fundamental value (Figure 3, solid line) – say, fluctuating between 

a 30 per cent increase and a 20 per cent decrease in the first year, giving a 50 per cent 

volatility. But if the price reverts to its fundamental value in the following period, the 

volatility over two years would align with the efficient market scenario at 60 per cent, 

indicating that the long-term volatility is significantly less than double the one-year 

volatility. This reduced scaling reflects the dampening effect of mean reversion on price 

fluctuations over extended periods. (Engel & Morris 1991, 26–27.) 

Further methods for detecting mean reversion utilize the Hurst exponent and the half-life 

of stock returns. Both methods can be used to evaluate the magnitude of mean reversion. 

Serletis and Rosenberg (2007, 2009) used the Hurst exponent to measure the mean 

reversion in energy futures prices and the United States stock market. They discovered 

that both display mean reversing behaviour.  

The half life is a commonly used metric for assessing mean reversion. It represents the 

duration needed for a time series’ reaction to a single shock to reduce by one half (Kim 

& Ji 2011, 1959). Chaudhuri and Wu (2003) found mean reversion in emerging market 

stock indices while Kim and Ji (2011) used half-life to study mean reversion in global 

real interest rates. These studies show how mean reversion can be detected with multiple 

methods, all of which will be used in this thesis. Further explanation to the methods 

(variance ratio, Hurst exponent, and half-life) will be given in Chapter 5.  

3.4 Mean in mean reversion 

The absence of proof supporting mean reversion is frequently linked to using too small a 

sample size and the use of statistical tests that are inherently not powerful enough to 

capture the phenomenon. By clearly defining the fundamental value process to which 

stock prices revert, a significant enhancement in the accuracy of estimations can be 

realised. A critical issue that arises when looking at relative mean reversion is the method 

of approximating the fundamental value process, which is by nature not directly 

observable. (Spierdijk et al. 2012, 231.)  

Proxies for the fundamental value could be dividends, earnings, or valuation metrics, 

enterprise value or price-to-earnings (P/E) ratios (Spierdijk et al 2012, 231). From a 
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theoretical standpoint, these ratios should exhibit mean reverting behaviour, given that 

fundamentals drive stock prices. For example, should the stock price be elevated relative 

to the fundamentals of a company, an adjustment in either the stock’s price or its 

fundamentals are expected to occur. Campbell and Shiller (2005) investigated the 

tendency of the dividend yield and P/E-ratio to revert to their means over time. They 

found that more often than not, the price of a stock was the key contributor to the 

fundamental ratio reverting towards its mean.  
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4 Stylized features of financial time series 

Research into the statistical characteristics of financial time series has uncovered 

numerous intriguing and standardized observations that appear to be consistently present 

across various markets, instruments, and time frames. Cont (2001) gives a comprehensive 

list of stylized facts for financial time series and this thesis will present some of them in 

more detail: 

• Excess volatility: Cutler et al. (1989) showed that the occurrence of significant 

positive or negative returns often cannot be fully accounted for by the emergence 

of new market information. Empirical investigations have highlighted the 

challenges in explaining the observed volatility of asset returns solely based on 

changes in fundamental economic variables.  

• Heavy tails: the distribution of returns, without any given conditions, shows a 

pronounced heavy tail, indicating a higher peak and fatter tails than the normal 

distribution, known as positive excess kurtosis (Ghose & Kroner 1995; 

Mandelbrot 1963). 

• Absence of autocorrelations: asset returns do not show significant level of 

autocorrelation besides on short intraday time scales (Cont 2001). 

• Volatility clustering: Mandelbrot (1963) noted that significant market movements 

are typically succeeded by other significant movements, which can be either 

upward or downward, while minor movements are likely to be followed by 

similarly minor movements. This phenomenon is reflected in the behaviour of 

absolute returns |𝑟𝑡| or their squares 𝑟𝑡
2. Although the returns might be 

uncorrelated (see Chapter 4.2), the squared and absolute returns exhibit a positive, 

significant, and slowly diminishing autocorrelation (Ding et al. 1993, 87).  

• Volume and volatility correlation: trading volume and market volatility are 

positively correlated (Cont 2001). Additionally, both volatility and trading 

volume exhibit a similar pattern of long memory, indicating that past values can 

influence future values over extended periods (Lobato & Velasco 2000). 
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4.1 Excess volatility 

The findings of Cutler et al. (1989) suggest a significant challenge in attributing even half 

of the aggregate stock price volatility to public news related to fundamental values, 

echoing Roll’s (1984) conclusion that new information cannot fully account for the 

variations in individual stock or futures returns. While it is plausible that there is some 

form of crucial news being overlooked that would significantly impact asset prices 

volatility, scepticism remains. This scepticism is due to the belief that news impactful 

enough to cause major shifts in stock demand should be detectable in economic indicators 

or market reports.  

Moreover, the difficulty in correlating price changes with fundamental values extends 

beyond the general stock market. Research in areas with directly measurable fundamental 

values also struggles to explain price behaviour. Most notably with stock return 

anomalies, like those occurring around holidays and various calendar periods documented 

by Thaler (1987a, 1978b) are similarly challenging to link to news about fundamentals, 

as these values typically do not exhibit systematic changes during such times. This 

persistent issue highlights the complexity and potential gaps in understanding the factors 

that drive asset prices.  

Excess volatility can be witnessed in the bond market as well. Bao and Pan (2013) used 

a Merton (1974) model with the primary inputs being stochastic interest rates and the 

volatility of equities and found that the Merton model gave significantly lower bond 

volatilities compared to their actual volatilities, indicating that there is a notably higher 

level of excess volatility in the corporate bond market. They proposed two potential 

explanations for this excess volatility. The first is that the excess volatility might be due 

to the Merton model's inability to accurately capture the underlying fundamentals that 

link equity and credit markets. The second possibility they suggest is that the volatility 

could be a result of fluctuating levels of illiquidity in the credit markets. (Bao & Pan, 

2013, 3095.) 

4.2 Heavy tails 

Mandelbrot (1963) showed the insufficient nature of the Gaussian distribution in 

modelling the marginal distribution of returns for assets, particularly noting their heavy 

tails. This deviation from normality is prominently observed in two statistical phenomena: 
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extreme events happen more frequently than what should be expected in a normal 

distribution (Mandelbrot 1963; Fama 1963; Kon 1984), and significant market 

downswings tend to occur more often than meaningful market upswings (Fama 1965a; 

Arditti 1971; Singleton & Wingender 1986). Following this, the non-Gaussian properties 

of price change distributions have been consistently observed across multiple studies (see 

Fama 1965a; Guillaume et al. 1997; Gopikrishnan et al. 2000).  

 

Figure 4 Density of daily natural logarithmic of the OMXH25-index and a normal distribution 

The non-gaussian property of asset returns is depicted in Figure 4. The red histogram 

shows the density of the daily logarithmic returns of the OMXH25-index, and the green 

histogram is what the normal distribution, with an equal mean and variance to the sample, 

would be. The histogram of the OMXHPI-index includes 6273 observations, while the 

normal distribution was simulated using 100 000 observations. The distribution of asset 

returns appears to be sharp-edged with a higher peak and heavy tailed, similar to the 

findings of Ghose and Kroner (1995) and Mandelbrot (1963). These properties become 

more pronounced when the frequency of data increases, meaning that the distribution gets 

further from a normal distribution as the frequency increases, leading to a phenomenon 

Cont describes as “aggregated Gaussianity”. Because of these features, the distribution of 

returns cannot be fully determined using one single model. (Cont 2001, 226.) 
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Consequently, to bridge this gap, there has been numerous parametric models that have 

been presented in economic literature besides normal distribution. Only naming some of 

the models: exponentially truncated stable distribution (Bouchaud and Potters 1997), 

stable distribution (Mandelbrot 1963), hyperbolic distribution (Prause 1998), Student 

distribution (Kon 1984), and normal inverse Gaussian distribution (Barndorff-Nielsen 

1997).  

4.3 Absence of autocorrelation 

In liquid markets, price movements do not show substantial autocorrelation. The 

autocorrelation function of price changes quickly diminishes to zero in a matter of 

minutes. For time periods longer than 15 minutes, the autocorrelation is effectively 

negligible and can be considered zero. (Cont 2001, 229.) 

 

Figure 5 OMXH25 total return index daily logarithm returns autocorrelation function 

In Figure 4 is shown the autocorrelation function of daily logarithmic returns from 

OMXH25 stock index. The black dotted line depicts the five per cent significance level. 

No lag, besides 0, goes over this level, meaning that there is no statistically significant 

autocorrelation up to lag 50 which is consistent with the remarks made by Cont (2001, 

224). Additionally, the ACF shows that there is no trend or seasonality for 50-day periods 
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in the chosen index. One explanation to the lack of correlation can be explained by 

arbitrage. If price changes were significantly correlated, traders could exploit this 

relationship through simple strategies aimed at gaining positive expected returns. These 

strategies would naturally work to diminish any correlations, except over very brief 

periods representing the market’s response time to new information. This reaction time is 

generally just a few minutes in organised options markets and even shorter in foreign 

exchange markets. (Cont 2001, 229.) 

However, this absence of autocorrelation does not consistently apply to longer time 

scales. When examining weekly or monthly returns, some degree of autocorrelation does 

appear. But, as the scope of the time scale increases, the amount of available data 

decreases, making the statistical evidence less definitive and more varied across different 

data sets. (Cont 2001, 230.) 

4.4 Volatility clustering 

A well recognised characteristic of financial asset returns is the phenomenon known as 

volatility clustering. Essentially, periods of high volatility, marked by large swings in 

returns, are often followed by similar periods of intense fluctuation. Conversely, times of 

low volatility, where returns change minimally, typically precede calmer market 

conditions. This tendency leads to observable patterns of clustered high and low volatility. 

Understanding and modelling these volatility clusters is crucial in the financial market, 

as asset return volatility significantly affects option pricing and the risk levels of stocks 

and portfolios. (Ning et al. 2015, 62.) 
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Figure 6 Daily logarithmic returns of the OMXH25 and rolling 100-day mean return in absolute 
values 

Evidence of volatility clustering can be seen in Figure 6 where there has been plotted the 

daily logarithmic changes in the OMXH25-index from early 1999 to the end of 2023. The 

blue bars show daily logarithmic returns while the red line showcases the 100-day rolling 

mean return which is achieved by calculating the average of the previous 100 data points 

starting from the 100th index and repeating this for each subsequent index. Times of 

higher volatility (larger changes in price) tend to be close together and the same can be 

said about the times when volatility is lower. Notable periods of high volatility are around 

2001–2002 and 2008. This visual pattern is distinctive to volatility clustering. Ning et al. 

(2015) discovered that in series of high returns, clusters of higher volatility occur more 

frequently than those of lower volatility, indicating an asymmetry in how volatility 

aggregates. This pattern was consistently observed over various time frames before, 

during, and after the financial crisis of 2008. Additionally, Ning et al. (2015) noted that 

these clusters exhibit strong persistence and longevity, remaining evident for extended 

periods of over a month and longer.  

There have been multiple studies on what the reasons behind volatility clustering are. 

Ghashghaie et al. (1996, 769) argued that interruptions in the trading process, especially 

longer ones for holidays or weekends, were one reason behind the clustering and changes 

in the shape of probability densities. Clark (1973) reasons that irregularly arriving 

information causes volatility clustering and non-gaussianity. 
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5 Methodology 

The research methodology of this thesis is to collect historical data from a stock index, 

calculate the daily logarithmic returns and study these returns for possible mean reverting 

behaviour. Following this, the daily value at risk and expected shortfall (also referred to 

generally as risk measures) values will be calculated in a rolling fashion to examine 

whether there is visible correlation between the possible mean reversion and the risk 

measures. For a more analytical approach, this thesis will conduct several parametric 

models. The data manipulation and analysis will be conducted using the programming 

language R.  

5.1 Data 

The data that will be used in this thesis is the Finnish OMXH price index (OMXHPI), 

which includes the 139 largest companies listed in Finland by market capitalisation as of 

March 1st 2024. The data was downloaded online from Nasdaq OMX Nordic. The total 

amount of observations amounts to 6273, from January 1999 to December 2023, further 

descriptive statistics can be seen from Table 1. Lo and MacKinlay (1988) argued that the 

volatility of inflation is insignificant compared to the volatility of the return of stocks and 

thus can be disregarded when doing the variance ratio tests. Therefore, the price index is 

not adjusted for inflation. 

Table 1 Descriptive statistics 

Descriptive Statistics Value 

Minimum -17.42461% 

1st Quartile -1.05717% 

Median 0.09551% 

Mean 0.02575% 

3rd Quartile 1.06907% 

Maximum 14.56310% 

Skewness -0.42417 

Kurtosis 11.91586 

Standard Deviation 1.66506% 

Observations 6273 

 

Based on the histogram (Figure 4) of the daily returns, the daily returns seem to follow a 

normal distribution. However, based on the Shapiro-Wilk test conducted in R, the null 
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hypothesis of normality must be rejected. This finding is consistent with that of Fama’s 

(1965a, 89) that daily returns are not normally distributed.  

5.2 Variance ratio 

The Lo and MacKinley (1988) (LMK) variance ratio statistic is based on the characteristic 

that the variance of random walk’s (𝑋𝑡) changes increases proportionally with the length 

of the time interval (Figure 3, solid line). This implies that the variance of the difference 

of 𝑋𝑡 and 𝑋𝑡−𝑞 is equal to q times the variance of the difference between 𝑋𝑡 and 𝑋𝑡−1. In 

other words, to test the random walk hypothesis, one could calculate whether 

1

𝑞
∗ 𝑉𝑎𝑟(𝑋𝑡 − 𝑋𝑡−𝑞) = 𝑉𝑎𝑟(𝑋𝑡 − 𝑋𝑡−1) 

holds true. Letting 𝑃𝑡 represent the rate of exchange at time t and 𝑋𝑡 be the natural 

logarithm of 𝑃𝑡(𝑋𝑡 = 𝑙𝑛𝑃𝑡), the variance ratio 𝑉𝑅(𝑞) can be calculated as 

𝑉𝑅(𝑞) =
𝜎2(𝑞)

𝜎2(1)
, 

where  

𝜎2(𝑞) =
1

𝑚
∑(𝑋𝑡 − 𝑋𝑡−𝑞 − 𝑞𝑋̅)2

𝑛𝑞

𝑡=𝑞

, 

where  

𝑚 = 𝑞(𝑛𝑞 − 𝑞 + 1) (1 −
𝑞

𝑛𝑞
), 

and 

𝜎2(1) =
1

𝑛𝑞 − 1
∑(𝑋𝑡 − 𝑋𝑡−1 − 𝑋̅)2

𝑛𝑞

𝑡=1

. 

𝑋̅ is the mean of (𝑋𝑡 − 𝑋𝑡−1) and 𝑋𝑛𝑞 is the final observation in the time series. The 

assumption, or null hypothesis, posits that VR(q) is not significantly different from one.  
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Poterba and Summers (1988) compared the two methods of LMK (1988) and Fama and 

French (1988) and concluded that the variance ratio test used by LMK was more powerful 

when it comes to detecting mean reversion. Chow and Denning (1993, 389) argue that 

the LMK method is suitable for evaluating a variance ratio tied to a particular level, q, by 

comparing the test statistic, 𝑍1(𝑞) or 𝑍2(𝑞), against the standard critical value. Yet, as 

the random walk hypothesis necessitates that variance ratios for all chosen aggregation 

intervals, q, should equal one, an effective approach to test this hypothesis is by 

conducting a multiple comparison of all the chosen variance ratio estimates against the 

number one.  

Chow and Denning (1993) modified LMK’s methodology into a method they called the 

“multiple comparison test” to test multiple variance ratios at once. Examining a collection 

of variance ratio estimates, denoted as {𝑉𝑅(𝑞𝑖) | 𝑖 = 1,2, … , 𝐿} which align with a 

predetermined series of lags {𝑞𝑖 | 𝑖 = 1,2, … , 𝐿}. Under the assumption of a random walk, 

we examine a series of smaller hypotheses, 𝐻0𝑖: 𝑉𝑅(𝑞𝑖) = 1, for each 𝑖 = 1,2, … , 𝐿. As 

any single disproof of 𝐻0𝑖 implies the failure of the random walk hypothesis, we consider 

the most extreme (largest value in absolute terms) of the test statistics as significant. The 

values of the test statistics are  

𝑍1(𝑞) = max
1≤𝑖≤𝐿

|𝑍(𝑞𝑖)|, 

and  

𝑍2(𝑞) = max
1≤𝑖≤𝐿

|𝑍∗(𝑞𝑖)|, 

where 𝑍(𝑞𝑖) and 𝑍∗(𝑞𝑖) are calculated as 

𝑍(𝑞) =
(𝑉𝑅(𝑞) − 1)

√𝜃(𝑞)
~𝑁(0,1), 

where 

𝜃(𝑞) =
2(2𝑞 − 1)(𝑞 − 1)

3𝑞(𝑛𝑞)
, 

and 

𝑍∗(𝑞) =
(𝑉𝑅(𝑞) − 1)

√𝜃∗(𝑞)
~𝑁(0,1), 
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where 

𝜃∗(𝑞) = ∑ [
2(𝑞 − 𝑗)

𝑞
]

2

𝛿(𝑗)

𝑞−1

𝑗=1

, 

where 

𝛿(𝑗) =
∑ (𝑋𝑡 − 𝑋𝑡−1 − 𝑋̅)2(𝑋𝑡 − 𝑋𝑡−𝑗−1 − 𝑋̅)2𝑛𝑞

𝑡=𝑗+1

[∑ (𝑋𝑡 − 𝑋𝑡−1 − 𝑋̅)2𝑛𝑞
𝑡=1 ]

2 . 

Rejecting the null hypothesis relies on the maximum absolute value among the individual 

variance ratio test statistics. This test statistic follows the studentised maximum modulus 

(SMM) distribution, characterised by L and T (the sample size) degrees of freedom, with 

critical values accessible from Stoline and Ury (1979). In instances where the sample size 

T is considerable, the null hypothesis is rejected at the 𝛼 significance level if 𝑍1(𝑞) [or 

𝑍2(𝑞)] exceeds the [1 −
𝛼∗

2
]th percentile of a standard Gaussian distribution, where 𝛼∗ =

1 − (1 − 𝛼)
1

𝐿. Both 𝑍1(𝑞) and 𝑍2(𝑞) adhere to identical critical values. For example, for 

a large T and at significance levels of 10%, 5%, and 1%, the SMM critical values for 𝐿 =

4 are 2.23, 2.49, and 3.03, respectively.  

This thesis will use the multiple comparison test of Chow and Denning (1993) instead of 

Lo and MacKinlay’s (1988) individual variance ratio test. One reason for this is because 

the multiple comparison test notably lowers the probability of a Type I error (false 

positive) (Charles & Darné 2009). Although this thesis will not be using or going over 

them, additional versions of the variance ratio test can be seen from Malliaropulos and 

Priestley (1999), Wright (2000), and Kim (2006). 

5.3 Hurst exponent 

The Hurst exponent (HE) is formed from the detrending moving average (DMA) and 

detrended fluctuation analysis (DFA). DFA was first introduced by Peng et al. (1994) and 

involves segmenting the series 𝑦(𝑡) into non-overlapping segments of uniform length n. 

Within each segment of size n, a least squares line 𝑦𝑛𝑚(𝑡) is fitted to represent a local 

linear trend. The series 𝑦(𝑡) is then detrended by removing this linear trend, 𝑦𝑛𝑚(𝑡). 

Following this, the fluctuation of the root mean square of this detrended series is 

computed. This process is repeated across various segment sizes to distinguish the 
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relationship between the time scale n and the average detrended fluctuation. For the 

mathematical representation of the process see Weron (2002, 288).  

The DMA process represents an advancement over the DFA because it does not 

necessitate segmenting the time series 𝑦(𝑡) into distinct, non-overlapping sections. 

Instead, DMA detrends the time series by subtracting a moving average, a continuous 

function, from the series. This method is shown to be more precise, as the moving average 

(MA) functions as a more effective low-pass filter when comparing it to the polynomial 

filter employed in DFA. To explain the DMA process, let us consider a time series 𝑔(𝑡) 

where 𝑡 ranges from 1 to 𝑁. The nth order MA of 𝑔(𝑡) is represented as 

𝑔̅𝑛(𝑡) =
1

𝑛
∑ 𝑦(𝑡 − 𝑘)

𝑛−1

𝑘=0

. 

In this process, the series 𝑔(𝑡) is detrended by removing the MA, 𝑔̅𝑛(𝑡). The standard 

deviation of 𝑔(𝑡) relative to its MA, 𝑔̅𝑛(𝑡), is then determined with 

𝜎𝐷𝑀𝐴 = √
1

𝑁 − 𝑛𝑚𝑎𝑥
∑ [𝑔(𝑡) − 𝑔̅𝑛(𝑡)]2

𝑁

𝑡=𝑛𝑚𝑎𝑥

, 

where 𝑛𝑚𝑎𝑥 is the maximum value for 𝑛. (Serletis & Rosenberg 2007, 326.) 

The Hurst exponent is determined by plotting 𝜎𝐷𝑀𝐴 against 𝑛 on a log-log scale and 

calculating the slope of the resulting line. The value of the slope, or Hurst exponent, is 

indicative of the type and strength of correlation in the time series and is explained in 

Table 2. 
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Table 2 Explanations to Hurst Exponent values (Serletis & Rosenberg 2007, 327) 

Hurst Exponent 
(H) Value 

Correlation Type Description 

0 < H < 0.5 
Negative (Anti-persistent, 
Mean reverting) 

Indicates anti-persistence or mean 
reversion in the data. Trends are more 
likely to reverse in the future. 

H = 0.5 
None (Random or 
Brownian) 

Suggests a completely random process, 
similar to a Brownian motion, with no 
discernible trend (white noise).  

0.5 < H < 1 Positive (Persistent) 
Implies persistence. Trends are likely to 
continue. 

 

5.4 Half-life 

A random walk process means that any shock to the stock price is lasting, with no 

inclination for the price to revert to its historical trend over time (Chaudhuri & Wu 2003, 

24). Conversely, half-life, a widely used metric for assessing mean reversion, is 

characterised by the duration (in periods) needed for the impact of a single shock on a 

time series to reduce by half (Kim & Ji 2011, 1959). The half-life is frequently used to 

gauge the mean-reversion characteristics of economic time series, especially when 

evaluating the legitimacy of purchasing power parity (PPP) conditions in international 

economics. A prime example is the mean reversion of real FX rates, which is crucial for 

PPP’s validity (Rogoff 1996). Chaudhuri and Wu (2003) used the half-life method to 

study and discover mean reverting behaviour in emerging market equity prices. Balvers 

et al. (2000) studied the relative mean reversion in stock price indices from eighteen 

different countries and found evidence of mean reversion with a half-life of 3.5 years 

when using annual data.  

In the context of the univariate AR(1) model with a slope coefficient 𝛼1, the half-life is 

determined by the formula  

log (0.5)

log (𝛼1)
. 
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When 𝛼1 = 0.5, the AR(1) model is in a stationary state, and the half-life is 1, signifying 

strong mean reversion. On the other hand, when 𝛼1 = 1, the model is non-stationary, and 

the half-life becomes infinite, reflecting a tendency towards mean aversion. (Kim & Ji, 

2011.) 

The half-life is derived from an autoregressive (AR) model represented as  

𝑌𝑡 = 𝜇 + 𝑏𝑡 + 𝛼1𝑌𝑡−1 + ⋯ + 𝛼𝑝𝑌𝑡 + 𝑢𝑡 , 

where the error term 𝑢𝑡~(0, 𝜎) and is assumed to be i.i.d. However, the method for 

estimating the half-life can also manage error terms that are (conditionally) 

heteroskedastic. This AR model can be reformulated as an MA(∞) model with 

coefficients {𝛽𝑖}𝑖=0
∞ , where 𝛽0 = 0 and 𝛽𝑖 indicates the impulse response of 𝑌𝑡+𝑖 to a unit 

shock in 𝑢𝑡 at time 𝑡. The graph of {𝛽𝑖}𝑖=0
∞  against 𝑖, for a sufficiently large 𝑚, illustrates 

the impulse response function of 𝑌, showing how the time series reacts to a shock in the 

error term within a period 𝑚. For an AR(p) model with 𝑝 > 1, ℎ is derived from {𝛽𝑖}𝑖=0
∞ . 

When 𝑗 falls between 𝑖 − 1 and 𝑖, linear interpolation can be used to establish the value 

of ℎ. 

5.5 Value at risk 

Before the 1987 market crash, standard deviation was commonly used to gauge 

investment risk (Tsay 2010, 325). However, the crash shifted focus towards measuring 

extreme risk or tail risk, garnering substantial interest from investors, industry 

practitioners, and academics. In response to this need for more comprehensive risk 

assessment tools, value at risk (VaR) emerged around the end of the 1980s at J.P. Morgan 

and quickly became a market risk measurement standard (Tsay, 2010, 325; Hull 2018, 

269). J.P. Morgan’s leadership sought a single metric to encapsulate the risk across their 

entire investment portfolio (Miller 2019, 51). The changes to banking regulations in the 

Basel III Accord require banks to regularly disclose their VaR which further pushed VaR 

to be the standard risk measurement metric of the financial markets (Patton et al. 2019, 

389) 

As Tsay (2010, 327) explains, VaR provides an estimate of potential monetary loss at a 

specific time, quantified to a certain confidence level, and can be depicted as  

𝑉𝑎𝑅𝛼 = 𝑖𝑛𝑓{𝑥|𝐹𝑡(𝑥) ≥ 𝛼}, 
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where 1 − 𝛼 represents the confidence level, 𝐹𝑡(𝑥) is the cumulative distribution function 

over the time horizon t, and inf is the smallest 𝑥 ∈ ℝ that fulfills 𝐹𝑡(𝑥) ≥ 𝛼. 

The specifics of VaR depend on its intended application. Traders, who typically engage 

in higher turnover with more liquid assets, opt for detailed short-term models that offer 

higher precision, allowing them to mitigate risk by offloading assets before potential 

losses materialise. Conversely, investment managers might favour longer time horizons 

and more general modelling due to their extended duration of risk exposure. The 

implementation of VaR and other risk metrics varies significantly among different 

financial professions due to these varying needs and practices. (Alexander 2008, 4, 14.) 

VaR has become widely favoured for several reasons, notably its simplicity and the way 

it consolidates various risk factors into a single, intuitive statistic, making tracking risk 

over time quite practical. Unlike standard deviation or variance, which consider returns 

symmetrically around the mean, VaR specifically addresses negative returns, aligning 

with risk management’s focus on downside risk. Its adaptability allows for consolidation 

of risks across distinct types of securities into one aggregate figure. Additionally, its 

robustness against extreme data values enables risk managers to concentrate on 

significant but not excessively rare losses, which some may find advantageous in practical 

risk assessment. (Miller 2019, 54.) 

Yamai and Yoshiba (2005) point out some critical limitations to VaR, first of which is its 

lack of subadditivity, meaning it does not fully account for the benefits of diversification. 

Consequently, the estimated potential loss for a portfolio could exceed the sum of the 

individual VaRs for each asset within the portfolio. Another critical issue is VaR’s 

disregard for negative returns beyond its set confidence level, where the most impactful 

losses might occur. This characteristic can lead to an underestimation of risk, especially 

under conditions of market stress. A more comprehensive breakdown of the strengths and 

weaknesses of both VaR and CvaR are in Table 3. 

Since VaR is intended to approximate potential losses over a given time frame, its 

calculation relies on a predictive distribution of future returns, which is a complex task 

due to the need to account for the unique behaviour of asset returns discussed in Chapter 

4 (Tsay 2010, 328). Given these complexities, various estimation techniques have been 

developed. Nadarajah and Chan (2016, 289) categorise these approaches into three broad 

types: conditional (parametric) methods, which presuppose a specific distribution for the 
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calculations; unconditional (nonparametric) methods, which makes no such distributional 

assumptions; and semiparametric methods, which are a hybrid of the two.  

Table 3 Pros and cons of VaR and CVaR (Sarykalin et al. 2014, 282–284) 

Feature VaR Pros VaR Cons CVaR Pros CVaR Cons 

Concept clarity  

VaR is simple and 
has a clear 
interpretation based 
on a specific 
confidence level. 

VaR does not 
account for the tail 
beyond the specified 
confidence level, 
missing potential 
extreme losses. 

CVaR provides a 
clear measure of the 
worst-case average 
losses beyond a 
specified confidence 
level, focusing on 
tail risks. 

CVaR's 
effectiveness is 
highly dependent on 
accurate tail 
modelling; without a 
good model, CVaR 
estimations can be 
misleading. 

Risk 
measurement 

Measures potential 
losses at a specified 
confidence level. 

VaR may 
underestimate risk in 
distributions with fat 
tails or skewness, 
especially in 
extreme market 
conditions. 

Measures the 
average of the worst 
losses, providing a 
more 
comprehensive risk 
assessment. 

More sensitive to 
estimation errors 
than VaR, 
particularly in the 
tail. 

Application 

Widely used in 
various industries for 
its 
straightforwardness. 

Optimization can be 
challenging as VaR 
is nonconvex and 
discontinuous for 
discrete 
distributions, making 
computational 
problems complex. 

CVaR optimization 
is generally easier 
due to its convex 
nature, allowing for 
reduction to convex 
or even linear 
programming in 
some cases. 

- 

Mathematical 
properties 

Comparatively 
stable estimation 
procedures, less 
affected by tail 
losses. 

Discontinuous and 
nonconvex nature 
makes it 
computationally 
difficult to handle in 
optimization 
scenarios. 

CVaR is a 
consistent risk 
measure and is 
continuous with 
respect to 
confidence levels, 
providing 
mathematical 
consistency. 

Requires robust 
historical data for 
accurate modelling, 
especially in 
financial contexts 
where historical data 
may be limited. 

Use case(s) 

Can rank several 
different distributions 
by comparing their 
VaRs at the same 
confidence level. 

High risks in the tail 
of the distribution 
can be overlooked, 
leading to potentially 
high unexpected 
losses. 

Allows for the 
shaping of portfolio 
distributions with 
multiple CVaR 
constraints, 
enhancing risk 
management 
capabilities. 

Equally weighted 
strategies may 
outperform CVaR-
optimized ones out 
of sample, 
particularly if the 
historical data are 
skewed. 

 

5.6 Expected shortfall 

In response to the limitations of VaR, an alternative market risk metric called expected 

shortfall (otherwise known as conditional value at risk, CVaR) was developed to address 

the tail risk overlooked by VaR. Hull (2018, 274) describes the difference between VaR 

and ES followingly: 

Whereas VaR asks the question “How bad can things get?” ES asks: “If 

things do get bad, what is the expected loss?” 
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ES is defined by Yamai and Yoshiba (2005) in a more mathematical way as the expected 

negative return for returns that exceed the VaR threshold at a given confidence level 

𝐸𝑆𝛼 = 𝔼{𝑥|𝑥 ≥ 𝑉𝑎𝑅𝛼(𝑥)}. 

ES provides a broader view of market risk, especially under extreme conditions by 

considering the severity of losses beyond the VaR threshold. However, accurately 

estimating ES involves larger sample sizes and more complex calculations, which can 

lead to greater estimation errors and increased computation time (Yamai & Yoshiba 

2005).  
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6 Results 

This chapter will start by presenting the results from the tests regarding mean reversion. 

Later, the rolling risk measures will be presented. Finally, the findings will be combined 

and analysed. All the parameters were presented thoroughly in Chapter 5. This thesis uses 

a 50-day rolling window to calculate the Hurst exponent, half-life, VaR, and CVaR. 

Therefore, the time span of mean reversion that will be studied is only 50 days or in other 

words, the time it takes for stock prices to the reverse to their 50-day moving average.  

The variance ratio (VR) test follows the theory presented by Chow and Denning’s (1993) 

multiple comparison test. One change to the final value has been made for this thesis. The 

figure calculated by the multiple comparison test has been subtracted by one to make the 

difference between mean reverting and non-mean reverting behaviour more apparent. 

Now mean reverting behaviour is indicated by negative Z-statistic values and the opposite 

is true for positive values. Figure 7 displays the results of the multiple comparison test. 

 

Figure 7 Variance ratio test 

The presence of mean reversion in the Finnish stock market is evident based on the VR 

test (Figure 7). This can be concluded from the fact that the value of the Z-statistic 

becomes negative. Mean reversion is strongest between the intervals 8-15, because there 
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the Z-statistic achieves its lowest values and afterwards the absolute Z-statistic value 

decreases. This means that it usually takes 8 to 15 trading days for price changes to go 

back to their mean. The Z-statistic does not go extremely negative and on longer intervals 

it approaches zero, indicating that the mean reversion in the Finnish stock market is not 

as strong on periods longer than 30 days. One interpretation of this could be that due to 

the strength of mean reversion when it reaches its lowest Z-statistic value of 

approximately -1 (around intervals 8 to 15), the returns have reached their relative mean 

(or close to it) and therefore no meaningful mean reversion can be achieved, which is 

indicated by the Z-statistic returning to around zero after the strongest period of mean 

reversion.  

Like in the case of Lo and MacKinlay (1988), the random walk hypothesis can be rejected 

based on the VR test. Additionally, the VR test gives the first sign of mean reverting 

behaviour in the Finnish stock market. Poterba and Summers (1988) studied mean 

reversion in the New York Stock Exchange using yearly and monthly returns between 

1926-1985. Additionally, they had 17 indices from other countries (not including 

Finland). Using VR, they found consistent positive autocorrelation in short periods and 

negative autocorrelation in longer periods, meaning that the VR can be used to detect 

mean reversion using daily, monthly, and yearly data.  

 

Figure 8 Hurst exponent 
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The Hurst exponent (HE) further validates the presence of mean reversion in the Finnish 

stock market. The black line in Figure 8 is the rolling value HE and was calculated using 

a 50-day rolling window. The red line depicts the average of the previous 100 values, 

therefore showcasing the movements of the HE in a clearer way. The rolling value HE 

was calculated as the mean of the previous 100 observations, starting with the 101st index 

and continuing it in a rolling fashion. As a reminder, the sign of mean reverting behaviour 

is a Hurst exponent value below 0.5, which in Figure 8 is the dotted grey line. Based on 

this, several periods of mean reversion can be identified, the most notable of which are 

around 2009, 2012, and 2021. These periods are when notable economic downturns 

occurred and out of these three, the most powerful mean reversion occurred in 2021, this 

being the only time in the chosen period where even the 100-day average HE fell below 

0.5. The lengthy period from 2013 to 2020 of no mean reversion (even the rolling value 

HE depicted by the black line staying above 0.5) could be argued as being one reason 

behind why the reversal was so strong in 2021.  

The results from the Hurst exponent data imply that mean reversion should not be thought 

as a phenomenon that is constantly, or even commonly, affecting the market. Rather, it 

mostly occurs during large market swings. Most of the time prices are persistent following 

a certain trend, indicated by the Hurst exponent staying above the grey dotted line. Serletis 

and Rosenberg’s (2009) analysis reached a similar conclusion using for four different 

U.S. stock indices. They found the U.S. stock market strongly mean reverting.  

 

Figure 9 Half-life 
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As we already observed that there is mean reversion in the Finnish stock market, the half-

life can be used to assess the strength of mean reversion. In Figure 9, the black line is the 

rolling half-life value and was calculated using a 50-day rolling window. the red line is 

the rolling 100-day average, like what was shown in Figure 8 with the Hurst exponent. 

Essentially, the lower the half-life is, the stronger the mean reversion as it takes a shorter 

period for the returns to come back to their mean. The periods where the half-life is the 

shortest, and therefore the mean reversion at its strongest, are the same as with the Hurst 

exponent (most notably 2009, 2012, 2021). As with the Hurst exponent, the strongest 

mean reversion period occurred during 2021. It should be noted that the correlation 

between the Hurst exponent and half-life is 0.615 and statistically significant (p-value < 

0.001), indicating a strong positive correlation. 

Chaudhuri and Wu (2003) and Spierdijk et al. (2012) studied mean reversion with half-

life using monthly emerging market data and yearly OECD country data, respectively. 

Both studies found mean reverting behaviour in their data. Additionally, Spierdijk et al. 

(2012, 3) observed large fluctuations in the rate of mean reversion over time. While there 

is notable fluctuation in the daily data’s half-life, it is not as profound as Spierdijk et al. 

(2012, 3) found using yearly data. They found half-lives ranging from 2.1 years to 23.8 

years. Again, as with the Hurst exponent, half-life can be used to find mean reverting 

behaviour for yearly, monthly, and daily data.  

A key observation from Figures 8 and 9 is that the strength of mean reversion changes in 

time, which is homogenous with the findings of Kim et al. (1991) and Spierdijk et al. 

(2012). Reasons for this can be numerous but can most likely be explained by the political 

and economic environment at a specific period (Fama & French 1988, 264; Spierdijk et 

al. 2012, 228). Another observation is that mean reversion is often at its strongest when 

stock prices are going down. This indicates that stock market downturns are more 

profound than positive stock market movements and that when stock prices return their 

mean, it is usually because they have been above, rather than below, their mean. In other 

words, the stock market has been above its fundamental value (if you consider the mean 

to depict fundamental value) before reverting.  

In Figure 10, the daily VaR (blue line) and CVaR (red line) are shown. The risk measures 

were calculated in a rolling fashion by using data from the previous 100 days. The highest 



42 

values are captured in 2001, 2009, and 2020 which are similar to the periods where the 

strongest mean reversions were observed. 

 

Figure 10 Daily VaR and CVaR calculated using a 100-day window 

Visually, it appears that the risk measures become more pronounced (the value at risk 

increases) when mean reversion is stronger, indicating a positive correlation with the 

amount of risk and strength of mean reversion in the Finnish stock market. The 

correlations between risk and mean reversion measures are presented in Table 3.  

Table 4 Correlation between risk and mean reversion measures 

 
Hurst exponent Half-life 

VaR 0.208755 0.244653 

CVaR 0.144425 0.226792 

 

For the correlation analysis in Table 3, the 100-day rolling averages for VaR and CvaR 

were calculated to make them comparable to the Hurst exponent and half-life measures. 

All the correlations indicate weak positive correlation. VaR had a stronger correlation 
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with both mean reversion measures, while half-life was stronger correlated with the risk 

measures. All the correlations are statistically significant at a significance level of 0,1%. 

Therefore, half-life can be considered a superior method of assessing the affect of mean 

reversion on risk. This observation is further confirmed by parametric models used to 

evaluate the relationship between mean reversion and the chosen risk measures.  

Further analysing the possible causes behind mean reversion gives at least two options, 

one where market efficiency rules and one where it does not. Assuming market efficiency, 

the price of a stock (or index) is determined by its future returns per share. As shown by 

Summers (1986), mean reversion occurs when these expected returns are mean reverting. 

Combining this finding with the results of this thesis, during high periods of high 

economic uncertainty, expected returns most likely deviate from their long-term values 

and quickly revert back to these levels, much faster than during more stable periods. 

When economic uncertainty dissipates, expected returns tend to rise significantly over a 

short period, contributing to the high speed of mean reversion. Actions by financial and 

governmental institutions to restore stability may also accelerate this adjustment process, 

as was the case during COVID-19.  

Outside the efficient market framework, mean reversion could also be driven by the 

irrational behaviour of speculative short-term traders, leading to stock prices that 

significantly diverge from the fundamental values. Such irrational pricing behaviour can 

be due to overreactions to financial news as shown by De Bondt and Thaler (1985). This 

can manifest itself in two ways: at the onset of uncertainty, overreaction to negative news 

can drive stock prices well below their intrinsic values, and during recovery, overreaction 

to positive news can push stock prices far above their intrinsic values. In both scenarios, 

significant price swing over a short period lead to rapid mean reversion.  

This thesis checks for heteroskedasticity in two separate regression models where the 

dependent variables separately are VaR and CVaR and in both regression models the 

independent variables are the Hurst exponent and the rolling half-life. The Breusch-Pagan 

(BP) test is used to examine the presence of heteroskedasticity in the data (Breusch & 

Pagan 1979). The BP test’s null hypothesis of homoskedasticity is rejected for both 

regression models. Following this result, this thesis will implement the heteroscedasticity-

consistent covariance matrix estimators popularised by Halbert (1980), otherwise known 
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and later referred to as robust standard errors (RSE), to compute the relationship between 

the variables. 

 

Table 5 Results for the RSE method 

1st model (VaR) Estimate Std. Error t-value Significance 

VaR (dependent) 0.0333542 0.00099934 33.3762 *** 

Hurst exponent -0.00225947 0.00082741 -2.7308 ** 

Half-life -0.01394741 0.00124579 -11.1956 *** 

2nd model (CVaR) Estimate Std. Error t-value Significance 

CVaR (dependent) 0.04608153 0.00099934 46.1119 *** 

Hurst exponent -0.00227397 0.00082741 -2.7483 ** 

Half-life -0.02185762 0.00124579 -17.5451 *** 

     

Significance codes: '***' 0.001, '**' 0.01, '*' 0.05, '.' 0.1, ' ' 1 
 

 

The results for the RSE method are in Table 5. The first model used VaR as the dependent 

variable and Hurst exponent and half-life as the independent variables. Both independent 

variables are statistically significant at the one per cent level. For each one unit increase 

in Hurst exponent the VaR decreases by approximately 0.0023. This indicates that more 

persistent movements, and therefore a higher Hurst exponent, results in lower value at 

risk. Only when prices start to become mean reverting (Hurst exponent decreases) the 

VaR goes up. The same could be said for the half-life measure, although the effect of 

changes are more pronounced, as a one unit increase in half-life results in a 0.0139 

decrease in VaR. Therefore, changes in half-life are more impactful than changes in Hurst 

exponent.  

The results are practically identical for VCaR, although slightly more noticeable. Both 

independent variables are statistically significant at the one per cent level. An increase of 

one unit in Hurst exponent results in an identical decrease of 0.0023 for CVaR as with 

VaR. The more sizeable difference is with how CVaR behaves to changes on half-life. 

One unit of increase in half-life results in a decrease of 0.021 for CVaR.  
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7 Conclusions 

The purpose of this thesis was to evaluate whether the Finnish stock market (FSM) was 

mean reversing and if it was, what was its effect on chosen risk measures, value at risk 

(VaR) and expected shortall (ES or CVaR). A quarter of a century of daily data spanning 

from January 1999 to December 2023 from the OMXHPI was used to first find out 

whether the FSM was mean reverting and if it was, how would it affect the 

aforementioned risk measures. There were three separate methods used to evaluate 

whether the FSM was mean reverting or not: variance ratio, Hurst exponent, and half-life. 

Based on the methods used, the FSM is clearly mean reverting. Although that is true, that 

does not mean that mean reversion is a constant phenomenon affecting the FSM. While 

there were periods of notable mean reversion (2009, 2012, 2021), there were also lengthy 

periods of up to eight years (2013–2020) where one could argue no mean reversion took 

place. This could also be seen as a reason why the reversal to the mean was so strong in 

2021. Mean reversion was at its strongest around the times of significant economic 

uncertainty (global financial crisis around 2009 and COVID-19 around 2021) and during 

times of low economic uncertainty, mean reversion appears to be almost non-existent 

(trending behaviour).  

The affect of mean reversion on risk was evaluated using the robust standard errors 

method that takes into account the heteroskedastic nature of stock returns. Both VaR and 

CVaR are affected by the persistence of price movements and the mean reverting nature 

of of stock prices. The findings indicate that as market behaviour shifts from persistent 

trends to mean reverting patterns, risk measures like VaR and CVaR tend to rise. 

Additionally, half-life appears to be the more impactful of the variables used (Hurst 

exponent and half-life) in explaining the changes of the risk measures. CVaR shows 

greater sensitivity to changes in half-life compared to VaR, indicating that CVaR may 

provide a more responsive assessment of risk under different market conditions.  

The results suggest that the FSM is mean reverting which is consistent with previous 

studies on the subject of mean reversion conducted for stock indices in other regions (see 

Poterba and Summers 1988). Possible explanations for this mean reversion could be 

numerous, but this thesis raises two: expected returns reverting to their mean and 

irrational behaviour by traders caused by overreactions to new information.  
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This thesis used a value-weighted index for its analysis. In future research, an equally 

weighted index could be used and compared, whether the weightings affect the amount 

of mean reversion or not. Additionally, more complicated methods of detecting mean 

reversion, such as the Ornstein-Uhlenbeck process or the Vasicek model, could be used. 

This thesis argued that the length of the persistent period could affect the strength of the 

following mean reverting period but could not claim this as a certainty. Therefore, this 

could be another angle of future research on mean reversion. Another topic of research 

around mean reversion that could bring value would be if mean reversion could be 

predicted and what are the actual reasons behind mean reversion. Lastly, as this thesis 

used daily data, the affect of different data intervals (weekly, monthly) on risk measures 

could be studied, whether there are any differences in the results compared to daily data. 
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