
Enhancing software development processes
with artificial intelligence

University of Turku
Department of Computing

Master of Science (Tech) Thesis
Software Engineering

October 2024
Vili Ståhlberg

The originality of this thesis has been checked in accordance with the University of Turku quality assurance
system using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

Vili Ståhlberg: Enhancing software development processes with artificial intelli-
gence

Master of Science (Tech) Thesis, 87 p., 3 app. p.
Software Engineering
October 2024

Artificial intelligence (AI) has emerged as one of the most revolutionary technologies
since the internet. While many fields are affected, the field of software development
is experiencing a rather transformative impact. With the rise of AI, organizations
are presented with a new challenge: adopting artificial intelligence as a part of their
software development workflow.
However, the discussion about adopting AI in software development often seems to
gravitate towards the use of generative AI as part of the programming workflow,
with the rest of the software development lifecycle left unnoticed.
In this thesis we set out to examine the enhancement of software development phases
and tasks with AI-based solutions, while also identifying obstacles preventing the
effective adoption of AI. We explore this topic with the viewpoint in mind that
there likely exists undiscovered potential for enhancement where AI utilization is
not as apparent. To achieve this goal, we perform a systematic literature review
and conduct interviews to gain insight from experts working in the field of software
development. With their opinions and experiences in mind, we draw a holistic
overview of AI utilization, and how it could be improved, in the entire software
development lifecycle.

Keywords: artificial intelligence, machine learning, software development

Contents

1 Introduction 1

2 Research Design 4

2.1 Environment . 4

2.2 Data collection . 5

2.2.1 Literature review . 5

2.2.2 Interviews . 5

3 Software Development 7

3.1 Models . 8

3.1.1 Waterfall model . 8

3.1.2 V-model . 10

3.1.3 Spiral model . 11

3.1.4 Rapid application development 13

3.1.5 Agile development methodologies 15

3.2 Phases . 18

3.2.1 Preliminary analysis . 18

3.2.2 Requirements engineering . 20

3.2.3 Software design . 21

3.2.4 Implementation . 21

3.2.5 Testing . 23

i

3.2.6 Deployment . 25

3.2.7 Maintenance . 26

3.3 Tasks . 26

3.4 Summary . 28

4 Artificial Intelligence and Machine Learning 29

4.1 Artificial intelligence . 29

4.2 Machine learning . 30

4.3 Approaches to machine learning . 31

4.3.1 Supervised learning . 31

4.3.2 Unsupervised learning . 32

4.3.3 Semi-supervised learning . 33

4.3.4 Reinforcement learning . 34

4.4 Machine learning models . 35

4.4.1 Neural networks . 36

4.4.2 Decision trees . 37

4.4.3 Regression analysis . 39

4.4.4 Bayesian networks . 41

4.5 Summary . 41

5 Utilization of Artificial Intelligence 43

5.1 Source code generation . 43

5.2 Software documentation generation 46

5.3 AI-driven bug triage and debugging 47

5.4 AI-driven software testing and reviewing 50

5.5 AI-enhanced CI/CD . 51

5.6 AI-driven specification composition 52

5.7 AI-enhanced agile development . 54

ii

6 Interviews 56

6.1 Interview questions . 57

6.1.1 Current utilization of AI . 58

6.1.2 Scenarios . 58

6.1.3 Obstacles . 58

6.2 Results . 59

6.2.1 Current utilization of AI . 60

6.2.2 Source code generation . 61

6.2.3 Software documentation generation 63

6.2.4 AI-driven bug triage and debugging 65

6.2.5 AI-driven software testing and reviewing 68

6.2.6 AI-enhanced CI/CD . 70

6.2.7 AI-driven specification composition 71

6.2.8 AI-enhanced agile development 72

6.2.9 Obstacles . 74

7 Discussion 77

7.1 Impact on SDLC . 77

7.2 Improving current utilization of AI 80

7.3 Obstacles and drawbacks . 82

8 Conclusions 84

8.1 Remarks . 84

8.2 Research limitations . 86

8.3 Further research . 87

References 88

Appendices

iii

A Interview questions A-1

B Notice of AI usage in the thesis B-1

iv

1 Introduction

During the past few years, artificial intelligence (AI) has been the topic of discussion

in mainstream media. It has been described as one of the biggest revolutions since

the internet. It has affected almost all domains in our lives. AI has even been

characterized in popular media as the thing that is capable of taking over many jobs

that are currently done by humans [1]. The field of software development is not

exempt from this discussion.

Companies across the world that develop software are now adopting artificial

intelligence as part of their development workflow. Meanwhile, the demand for

high-quality software has also increased, while time frames have tightened to meet

the customers’ and shareholders’ ever-increasing expectations. For a company to

stay afloat, they must adapt to this wave of change and the increased expectations.

However, this is only the bare minimum. If a company wishes to stay competitive,

and even gain a lead against its competitors, they need to seek out ways for effective

and unique AI utilization.

To add to this already nuanced and complex matter, the adoption of AI can be

a slippery slope for companies. This is the case for adopting AI in any domain,

whether it be for enhancing software development or something else. By being

exposed to mainstream media, one can get quite an optimistic picture of what tasks

AI is capable of performing now and in the near future. Top executives and decision

makers in companies are prone to this exposure as well. This could lead to companies

CHAPTER 1. INTRODUCTION 2

investing into AI without truly understanding the true capabilities of the current

AI-based solutions that are available.

The goal of this thesis is to shed light on just this very topic: how can we real-

istically and effectively employ AI across the entire software development lifecycle

(SDLC). Not only that, we also want to gauge how Company X is currently utiliz-

ing AI as well as how they can overcome obstacles in the effective adoption of AI in

software development. With these goals in mind, we have decided on the following

research questions:

RQ1 Which software development phases and tasks can be enhanced using artificial

intelligence?

RQ2 Which software development phases and tasks benefit the most from the adop-

tion of artificial intelligence based solutions?

RQ3 How can Company X improve their current utilization of artificial intelligence

to enhance software development?

RQ4 How can Company X overcome obstacles in adopting and utilizing artificial

intelligence for software development?

With these research questions in mind, the goal and scope of this thesis is not

to produce an exhaustive list of all potential AI enhancement scenarios for software

development. Rather, we want to assess the level of enhancement potential through

examples and scenarios. For RQ1 and RQ2, the scope of the research is the software

development field as a whole. However, for RQ3 and RQ4, we want to specifically

examine the questions in terms of Company X and their domain.

The rest of this thesis has been structured so that we are able to explore the topic

at hand in an intuitive manner. First, we outline the research design in Chapter 2

to define the research environment as well as provide reasoning and motivation for

CHAPTER 1. INTRODUCTION 3

choosing the research design. Then, we begin the research by reviewing academic

literature about software development in Chapter 3 and about artificial intelligence

in Chapter 4. After that, we prepare for the research by innovating and exploring

different ways of utilizing artificial intelligence in software development in Chapter

5. In Chapter 6 we present the results of the research. Finally, we discuss the

results we have gathered as well as answer the research questions in Chapter 7, and

conclude the thesis in Chapter 8.

2 Research Design

In order to make meaningful progress in any field of science, systematic research

is needed. The acquisition of new knowledge is commonly based on elements like

observations, questions, experiments, hypotheses, and analyses, to name a few. In

this chapter we will outline the design of the research, what processes are involved,

and what methodologies are used and why they were chosen. [2]

2.1 Environment

Before attempting to solve a problem or presenting a solution, the environment

should be defined. The research process of this thesis is ultimately connected to

Company X and its business problems in developing a one-stop e-commerce service

for its customers. Company X is a retailing conglomerate that operates in various

sectors including grocery trade, construction, retail technical trade as well as new

and used car trade. With that said, Company X has a high threshold for producing

reliable and robust software and systems in multiple different domains including

consumer-facing applications as well as internal systems. The goal of this research

is to provide a holistic view of the various options that are available for enhancing

software development processes with AI-based tools in the aforementioned context.

2.2 DATA COLLECTION 5

2.2 Data collection

To construct a knowledge base for the thesis, we use two distinct methods to collect

data: (1) a literature review of the thesis topics and (2) semi-structured interviews

with professionals working in software development. These methods are outlined in

this section as well as the motivation for choosing them.

2.2.1 Literature review

As is common in the academic landscape, the basis for this thesis is established via

a literature review. It provides a clear context, which is important for a topic like

artificial intelligence. Not only does it establish a solid foundation, it allows this

study to identify gaps in this topic that may be of interest for further research.

We begin the literature review by exploring academic material about software

development. This is done in an effort to outline what exactly is being enhanced

in a clear manner. After that, we continue the literature review by defining the

second component of the thesis: artificial intelligence, or machine learning to be

more specific. Finally, we both (1) explore existing material and (2) innovate based

on the material we have reviewed to identify potential ways of enhancing software

development with artificial intelligence.

2.2.2 Interviews

To gather real data from actual software developers, interviews were chosen to ac-

company the literature review as a means of collecting data. Interviewing experts

of the field also provides insight, personal experiences, credibility, and a unique per-

spective to the matter at hand, something that is acquired only by working for many

years in the field. Additionally, because we want to gather information from Com-

pany X’s perspective as well, interviewing Company X’s internal software developers

2.2 DATA COLLECTION 6

appeared to be a good fit.

For this thesis, a semi-structured interview technique was chosen, making the

research qualitative. The interviews were structured using questions that provided

a theme and a clear structure for the entire interview while still allowing a more

open discussion. The interviews are described in more detail in Chapter 6.

3 Software Development

In order to truly understand what is being enhanced, and to provide an answer to

any of the research questions, we must define what software development is. Further-

more, we need to understand what explicit phases and tasks software development

involves. The aim of this chapter is to provide just that: an understanding of what

is involved in the entire software development lifecycle (SDLC). In Section 3.1 we

will explore some prominent software development models that have shaped the way

we develop software over the years in an attempt to identify distinct developmental

phases. After that, in Section 3.2, we will discuss the aforementioned phases to ob-

tain a holistic view of what is being enhanced. Finally, we will attempt to identify

a set of distinct tasks that are performed during said phases.

Software development is the process of creating and maintaining systems, appli-

cations and other software components by designing, implementing, testing, deploy-

ing and maintaining source code. However, software development can be character-

ized as the set of all activities required to produce software products ranging from

conceptualization all the way to the final manifestation of the product, implying

that the process is much more convoluted than simply writing code.

This complexity is further compounded by the dynamic nature of technology

and the evolving needs of users. The volatility caused by disruptive technologies like

artificial intelligence has implications on both (1) what kind of software we develop

and (2) what tools, frameworks and models we use to develop software. To navigate

3.1 MODELS 8

through this intricate process, there are distinct models and methodologies that

provide developers with a set of guidelines and instructions on how to orchestrate

software development. Additionally, these models are commonly organized into

explicit phases, each with its own set of tasks and objectives.

3.1 Models

Software development models are used to create a structured and systematic ap-

proach to software development. They are almost a necessity when organizing the

software development domain into distinct phases that can be executed in different

orders and intervals during the entire process depending on the project’s needs.

In this section we will explore the diverse landscape of software development

models, ranging from mature traditional methodologies like the waterfall model to

more modern and iterative approaches such as the agile models.

3.1.1 Waterfall model

Waterfall model originates from the 1970s, and is still widely used in today’s software

development. Waterfall model is one of the more traditional and linear software

development models in existence. As presented in Figure 3.1, it follows a relatively

straightforward sequential step-by-step approach, including requirements analysis,

software design, implementation, testing, integration, deployment (or installation)

and maintenance. After each step, the results of the work are reviewed and verified.

Each phase must be completed before moving on to the next one. [3]

According to Vijayasarathy et al., the waterfall model is the most used software

development model in the public sector, although it is more common for enterprises

in the public sector to utilize a mix of different models [4]. The public sector’s fa-

vor towards waterfall-based development could be due to its structured approach,

3.1 MODELS 9

Figure 3.1: Developmental phases of the waterfall model.

facilitating compliance with regulatory standards, and accommodating contractual

agreements. Furthermore, the waterfall model provides apparent predictability and

planning for budgeting, and emphasizing comprehensive documentation, all of which

are crucial considerations in large enterprise software development projects. In re-

ality, it is not uncommon for governmental bodies and other entities in the public

sector to go over their budgets, resulting in a disastrous software development project

[5].

The waterfall model has been criticized for a number of reasons. Because of

its linear nature, there is an innate inability to adapt and respond to a changing

environment. In waterfall-based approaches, the development is planned extensively

beforehand, meaning that things can be difficult to change during development.

Having to fundamentally change things in the middle of development results in

wasted work as requirements are thoroughly planned and validated in advance. This

means that the requirements need to be discarded and reworked if the environment

3.1 MODELS 10

changes in a meaningful way. Other issues commonly found in waterfall development

are high effort and costs for writing and validating documents in each developmental

phase, lack of customer and end-user feedback, carrying problems from already

finished phases to the following phases, and having to manage large amounts of

documents throughout the project. [3]

3.1.2 V-model

Similar to the waterfall model, the V-model life cycle is linear in execution of pro-

cesses, meaning each phase must be finished before the next phase can begin. How-

ever, in this model, testing plays a key role throughout the model. Testing proce-

dures required by the project are developed very early in the life cycle during each

of the phases before any implementation of actual code takes place. [6]

We can identify some developmental phases in the V-model. In the V-model,

there are phases where requirements are outlined, and an architectural design is

produced. There is a clear implementation phase as well. Finally, there is a clear

operation and maintenance phase, where the system is maintained, and possibly

improved over time. Testing, however, is executed throughout the project life cycle.

Different kinds of tests are produced and executed depending on which phase of the

model the project is currently in.

The idea behind V-model is to propose, design, and conceptualize the features

and parts of the system on the left leg of the "V" shape, while the right leg represents

appropriate testing and validation of the system. Each phase of the model has a

corresponding process on opposite sides of the "V" shape, as presented in Figure

3.2. For example, the architectural design can be tested with integration testing. [6]

Again, similar to the waterfall model, the V-model is quite rigid and not very

responsive to changes in the project and development environment [6]. Additionally,

there is little to no feedback from stakeholders or the end-user as no early prototype

3.1 MODELS 11

Figure 3.2: Developmental phases of the V-model.

is created in this model of software development. However, compared to a tradi-

tional waterfall approach, at least some feedback is gained by testing throughout

the development life cycle. With that said, the V-model may be more appropriate

in projects that provide back-end functionality, where feedback from the end-users

is not as important as, for example, a front-end application [7].

3.1.3 Spiral model

First described by Barry Boehm in 1986, the spiral model is a risk-oriented modified

version of the waterfall model that introduces several iterations to the model. As

described by Boehm in a later publication, the spiral model can be characterized as

a "process model generator" that allows the risks specific to the project to direct

and generate an appropriate process model for the project [8].

Some distinct phases can be identified within the spiral model as presented in

Figure 3.3. Engineering of requirements takes place at the beginning of each iter-

ation. On each iteration, designing, implementation, and testing also takes place.

3.1 MODELS 12

Finally, when determined appropriate, the software is deployed to its users. In ad-

dition, identification and analysis of risks is performed on each iteration, as well as

planning of the next possible iteration.

Figure 3.3: Simplified illustration of Barry Boehm’s spiral model life cycle.

Unlike the waterfall and V-model, the spiral model introduces prototypes to the

development process as each iteration within the spiral advances. Before a prototype

is produced, risks are identified and assessed in an effort to manage them robustly.

This is one of the key benefits of the spiral model as it allows identification of risks at

3.1 MODELS 13

inception, rather than acknowledging them during development. With its prototypes

and iterative nature, the spiral model resembles agile software development models

to an extent. [7]

3.1.4 Rapid application development

Rapid application development (RAD) originates from 1992 when James Martin

published a paper with the same title. According to Beynon-Davies et al., RAD

aims to (1) produce high quality systems, (2) allow quick development and delivery,

and (3) lower the costs of development. In its core, RAD utilizes prototyping to

produce a source for early feedback to the model. [9]

In a project where RAD is the model of choice, teams of typically four to eight

people are formed. This has the implication that all team members must be highly

skilled socially as well as in their craft. Teamwork is extremely important, which

means that team-building activities like, for example, team dinners are a key part

of the model. Additionally, in most RAD projects, joint application development

(JAD) workshops take place where developers, potential end-users, and other stake-

holders get together to produce requirements. [9]

One RAD implementation, known as dynamic systems development method

(DSDM), utilizes five distinct phases. As presented in Figure 3.4, the phases are:

feasibility study, business study, functional model iteration, design and build iter-

ation, and implementation. In the feasibility study phase, the project feasibility is

assessed and the development model is decided. The business study phase outlines

high-level functionality as well as affected business areas. Next, the results of these

two phases are used as a baseline for defining high-level requirements for the project.

In the next two iterative phases, requirements are defined and a functional proto-

type is produced and reviewed. Finally, the implementation phase is used to deploy

or hand the produced software over to its users or owners. In this model, the term

3.1 MODELS 14

implementation does not refer to actual coding, but rather the implementation of

the result of the previous phases where the actual coding takes place. Furthermore,

while there is no explicit testing phase in DSDM implementation of RAD, testing is

encouraged in the DSDM documentation. [10]

Figure 3.4: The dynamic systems development method, an implementation of RAD.

3.1 MODELS 15

3.1.5 Agile development methodologies

Agile software development methodologies have emerged as a disruptive response to

the growing demand for efficiency in the corporate landscape. In contrast to a tra-

ditional waterfall-based model, agile methodologies allow the development process

to become more collaborative and adaptive to a changing environment. In addition,

the end-user plays a key role throughout the life cycle of an agile model like Scrum.

While agile methodologies began from software development, they have since spun

out to different industries and are now the norm in many companies outside of

software development [11].

The four primary high-level drivers of the Agile Manifesto are: [12]

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

Each of these high-level drivers are valued from left to right, meaning the portion

on the left take precedence over the items on the right, even though both sides are

taken into consideration.

Agile software development can be characterized as utilization of a light-but-

sufficient set of rules that guide both the project behaviour and human commu-

nication and interaction. In this context, lightness means steerable and adaptive,

meaning the project can take a new approach or direction without too much trouble,

something that waterfall-based models cannot achieve as easily [13]. This kind of an

approach to software development is especially useful in environments that require

high adaptability to changing requirements such as the banking industry which is

constantly under pressure from regulation [14].

3.1 MODELS 16

There are many agile methodologies in use like Extreme Programming (XP),

Lean startup, and Kanban [13], [15], [16]. However, currently the most used agile

methodology is Scrum [13]. The Scrum workflow boils down to three key fundamen-

tal elements: events, artifacts, and roles [17]. Next, we will dive deeper into Scrum

and the aforementioned elements.

Scrum events, sometimes referred to as ceremonies or meetings, are a set of

time-constrained activities that create the iterative and incremental structure of

Scrum. The Sprint is a container for all other Scrum events: everything happens

during iterative sprints. Depending on the needs of the project, the Sprint can be

of different lengths of time, but it should be no more than a month, and it must

remain consistent. Sprint Planning initiates the Sprint. Its purpose is to outline the

work for the Sprint clearly. Additionally, the primary Sprint Goal is decided. Each

day of the Sprint the Daily Scrum is held. As the name implies, this event is held

daily, and its purpose is to assess the progress of the sprint as well as bring up any

difficulties that developers are facing within a short 15-minute meeting. The final

two events are Sprint Review and Sprint Retrospective, which are held at the end of

the sprint. The Sprint Review’s purpose is to showcase the work completed during

the Sprint to stakeholders. The Sprint Retrospective, however, is used for the team

to reflect on the Sprint’s processes and assess what went well and what did not. The

primary idea of the Sprint Retrospective is to improve the process by recognizing

both successes and failures in the process. [17], [18]

Artifacts in Scrum can be characterized as scoreboards of the project: they

represent work or value. Artifacts are transparently available to everyone in the

team, keeping the key information same for everyone. The three Scrum artifacts are

the Product Backlog, the Sprint Backlog, and an Increment. The Product Backlog

is an ordered list of items required to enhance the product. Items are selected and

picked into the Sprint Backlog from the Product Backlog when they are deemed

3.1 MODELS 17

Figure 3.5: The Scrum workflow.

small enough for completion during a single sprint. The Sprint Backlog is a list of

items that are going to be implemented during the sprint. Finally, An Increment is

an incremental step towards the Product Goal: a description of the future state of

the product. [17]

The third and final of the three elements is roles that make up the Scrum Team,

a fundamental unit of 10 or fewer people. There are three roles in a Scrum team:

(1) Scrum Master, (2) Product Owner, and (3) Developer. In a single team, there

is only one Scrum Master and one Product Owner. Developers make up for the rest

of the headcount.

The Scrum Master is responsible for establishing Scrum. They also help the

Product Owner and the Developers in several ways. For example, they help the

Product Owner to manage the Product Backlog and facilitate stakeholder collabora-

tion. For the Developers, the Scrum Master can provide coaching in self-management

and overall productivity. The Product Owner is tasked with maximizing the value

derived from the Scrum Team’s efforts, with methods varying across organizations

3.2 PHASES 18

and individuals. Their responsibilities include effective Product Backlog manage-

ment, involving the development and communication of the Product Goal, creation

of clear Product Backlog items, prioritization of items, and ensuring transparency

and understanding of the Product Backlog. Developers in the Scrum Team are ded-

icated to producing a functional Increment in every Sprint. The Developers usually

carry out a variety of tasks, including planning for the Sprint, adapting to obstacles

during the Sprint, and producing a functional Increment during each Sprint.

3.2 Phases

While individual companies and developers have their own way of producing software

and systems, commonalities can be observed in the way that said entities produce

software and systems. With global software development becoming increasingly

more common, standardized and widely agreed upon phases have become more

common as well [19]. The software development life cycle can be split into distinct

phases, each consisting of their own distinct tasks that are essential in producing

quality software. However, some overlap is to be expected between the phases.

For this thesis, based on Section 3.1, seven individual phases have been identified.

These phases are presented in Table 3.1, each accompanied by a short summarizing

description.

In the following sections, we will dive deeper into these phases, outline them,

describe the processes they involve as well as how they relate to each other from a

holistic viewpoint.

3.2.1 Preliminary analysis

A system or a piece of software is a product, similar to something you can find

from the shelf of a store. However, apart from a few exceptions, common software

3.2 PHASES 19

Table 3.1: Software development phases.

Name Synonym(s) Description

P1 Preliminary
analysis

- Conducting a high-level initial assessment of
a project, choosing appropriate development
model, and identifying business targets.

P2 Requirements
engineering

requirements
gathering

Gathering, analyzing, and documenting the
needs and expectations of stakeholders and
possibly legal bodies.

P3 Software design architectural
design, appli-
cation design

Conceptualization of the overall architecture
and structure of the software system. In-
volves creating detailed specifications for the
system’s components, modules, interfaces, and
data storage.

P4 Implementation development,
coding

Implementation of the requirements and de-
sign of the system by programming.

P5 Testing validation,
verification

Systematically evaluating the software to iden-
tify and rectify defects or discrepancies using
various testing techniques.

P6 Deployment installation,
activation,
release

Involves the release, distribution and integra-
tion of the new or updated software to end-
users or the client.

P7 Maintenance management Ongoing activities to support and enhance the
software after deployment such as addressing
issues discovered in the live environment and
implementing updates or patches.

development models rarely consider the business side of product development, even

though they are crucial for the success of the entire project [20].

The very first phase of developing a system, product, or software is preliminary

analysis. In order to wade through the following phases, as clear a target as possible

should be outlined. In fact, this phase can be recognized in projects outside of the

software development domain, as it involves generic project management processes

like defining the scope of the project, risk assessment, preliminary cost estimation,

and possibly an initial high-level design of the product. It can also be used to identify

the target audience as well as the product’s feasibility in the market. Additionally,

3.2 PHASES 20

the information gathered during preliminary analysis can be used as a basis for

choosing an appropriate software development model.

For this phase to be successful, the entity carrying out the analysis should possess

at least some technical knowledge in addition to the specific domain knowledge of

where the system or software is to be used. It can be difficult, if not impossible, to

estimate project costs or to assess risks from a technical perspective if said entity

does not understand the software development domain.

3.2.2 Requirements engineering

Most systems and software components have a list of requirements that are required

for the software to fulfill certain criteria, whether it be quality related or a legal

requirement. According to Cheng and Atlee, these needs are encapsulated within

software requirements, and the determination of these requirements is carried out

through the process known as requirements engineering (RE) [21].

Achieving success in requirements engineering entails comprehending the require-

ments of users, customers, and other stakeholders. Additionally, understanding the

context in which the developed software will be applied, engaging in activities such as

modeling, analysis, negotiation, and documentation of stakeholders’ requirements,

ensuring the alignment of documented requirements with negotiated ones through

validation, and effectively managing the evolution of requirements is also very im-

portant. [21]

It is not uncommon for requirements engineering to be characterized as a diffi-

cult process. The space where requirements are defined is rather abstract and not

constrained, whereas the software development space is more constrained. Require-

ments may be defined by individuals that are not experts in software development.

Requirement engineering processes can be long and burdensome, resulting in a long,

and possibly conflicting list of requirements that no longer serves the end-user. [21]

3.2 PHASES 21

3.2.3 Software design

In order to produce some kind of a plan for where to begin the implementation of

a system, a process called software design should be performed. Software design is

the process of an agent creating a specification for a design object with the aim of

achieving goals, fulfilling requirements, and utilizing a set of primitive components

[22]. This is done in an effort to preemptively solve problems that would otherwise

present themselves in the implementation phase, but also to envision the overall

architecture of the software. This enables the designer or architect to propose and

document both high-level architectural design and low-level component and algo-

rithmic designs for the software.

Software designers and architects may stumble upon a variety of different prob-

lems across different software projects. However, it is not uncommon for different

software projects to have similar design problems that have either been visited or

perhaps even solved in the past. Such solutions are referred to as design patterns.

Utilizing design patterns in solving problems similar in nature can help in keeping

both the design and architecture of the source code more organized. [23]

Much like requirements engineering, software design can be incredibly compli-

cated and nuanced. Software-intensive systems are inherently complex as they in-

volve not only software but people, computers, and other devices. Additionally,

software designers and architects are often bound by constraints like time, bud-

get, and other limitations that must be taken into account when designing reliable

software. [24]

3.2.4 Implementation

The implementation phase is where the majority or all of the actual programming

work is completed. Depending on the chosen software development model, this phase

can be iterative or linear in nature. For example, in Scrum, the implementation

3.2 PHASES 22

phase is treated as a black box, where the unpredictable is expected [13]. As a

result, the development goals may change during the phase. However, in a waterfall-

based model, the implementation phase strictly follows the project requirements and

design, which are defined at the beginning of the project.

Implementation is carried out by developers that use a variety of tools. Typi-

cally, developers utilize a code editor, which is software that allows the developer

to write software quickly and reliably. Code editors commonly provide a way to

easily run interpreters, compilers, or debuggers while writing the code. In addition,

many code editors provide language intelligence tools using the Language Server

Protocol (LSP). LSP, originally developed for Microsoft Visual Studio Code, allows

the developer to check for syntax errors as they write the code. It also enables other

programming language-specific features like automatic code completion and syntax

highlighting, which significantly enhances both the speed of writing code and the

correctness of it. [25]

Source code can be written and modified using a simple text editor that comes

with the developer’s computer’s operating system. However, developers also have

the option to opt in for integrated development environments (IDE) which feature a

source code editor in addition to many other features like debugging and build tools

[26]. Depending on the developer’s needs, IDEs can be a necessity or an overkill for

certain software development projects.

Software source code is often accompanied by documentation, either being di-

rectly included in the source code or provided in external documents. The purpose

of code documentation is to improve the understanding of the code logic and how

it works. This is useful for both existing and future developers as it allows them to

familiarize themselves with the source code faster. Furthermore, it also enhances the

maintainability of the code. When a developer needs to adjust a part of the code, or

perhaps extend a component, documentation provides context and guidance. This

3.2 PHASES 23

can significantly reduce the likelihood of breaking some part of the system and

introducing new errors in the process. [27]

3.2.5 Testing

Having written code or built a part of the system that appears functional, the

result ought to be tested and reviewed. Testing can reveal existing faults in the

software which can prevent these faults and other issues from slipping through from

a development stage to production. Such faults are commonly referred to as bugs in

the field of software development. Furthermore, testing also validates the quality of

the implemented solution. Additionally, regular code reviews can assist developers

in catching bugs, staying consistent and maintaining coding standards within the

team, and getting a new perspective.

Depending on the project, different things need to be tested. For example, a

mobile application usually has a user interface, which means that some kind of

usability and accessibility testing is appropriate to assess how easy or difficult the

application is to operate for its users. However, this is not the case with a REST

API, which has no visual user interface that the user can interact with. Instead,

users of the API interact with it using HTTP requests, which imposes different kinds

of usability concerns e.g. the intuitiveness of the API and the format of the result.

To make things arguably slightly simpler, testing can be divided into different

levels. To give an example, developers might decide to employ three levels of testing:

(1) unit testing, where specific sections or functions in the source code are tested, (2)

integration testing, where the interface of a single component or subsystem is tested,

and (3) system testing, where the entire system is tested against its requirements.

By utilizing this kind of a multi-level testing approach, developers can isolate issues

more effectively by narrowing or widening the scope of testing per their needs.

Additionally, it enables the identification of issues that are difficult to spot when

3.2 PHASES 24

observing the software solely from a single level or viewpoint. [28], [29]

Even the smallest change in the source code of a large system can produce

drastic unwanted results if not tested properly. This is where code testing becomes

important. However, the reliability of new code, or changes to existing code, can

be improved by arranging code reviews: a process where developers examine their

colleagues’ code to fix mistakes, ensure quality and improve the overall software

development process. Not only does this improve the quality of the code, it fosters

collaboration within the team, which can be characterized as a rather crucial aspect

of software development.

Similar to the implementation phase, code testing can be done as an iterative and

dynamic process by compiling and running the source code, observing its behaviour,

making adjustments, and repeating as needed. However, this kind of a manual

process is laborious and difficult to scale as the software or system grows larger

both in size and complexity. Additionally, as time goes on, organizations tend

to demand software developers to produce higher quality and more substance in

similar length or shorter delivery cycles, a development that has been driven by

evolving technology, increasing customer demand and expectations, and the rise of

lean approaches and practices like Agile, DevOps, and CI/CD. This means that the

need for faster deployment of production-grade code is growing. [30]

The aforementioned circumstances have led to automated tests that are often ran

before shipping any code to production. Just like any other code, these automated

tests need to be designed and written to cover important use cases of the system

or software, whether it be normal usage or an edge case. Automated tests are

often integrated as part of a CI/CD pipeline, where the build process depends on

the outcome of the tests: if the tests do not pass, the code will not be shipped to

production. This is referred to as continuous testing. The outcome is testing being

closely linked to the phase we will explore next: deployment. [30]

3.2 PHASES 25

3.2.6 Deployment

The deployment phase involves making a software application available for its users

in a specific environment. Depending on the system, the deployment phase’s tasks

can vary significantly based on factors such as the complexity of the software and

target infrastructure (e.g. cloud, on-premise, or both). With that said, the deploy-

ment phase ought to be thought of as a general process that is tailored to the needs

of a specific system. This means that deployment can involve activities that are not

directly related to software development like notifying stakeholders of deployment

contents prior to deployment [31].

A typical deployment process involves (1) running automated tests and checks,

(2) packaging the software and its components, (3) distributing the software to the

target environment, and (4) installing it. As this is an overly generalized deployment

process, the deployment process may in fact be much simpler for smaller systems

but vastly more complex for larger enterprise-level systems. For larger systems, the

process likely involves configuration of the server, activation of different services or

workflows, and post-deployment testing that is specific to the deployment. [31]

The deployment phase is rarely a one-time process. In reality, software and

systems requires constant updating and improving. This means that deployments

can be frequent for some systems, which highlights the importance of a refined

deployment pipeline. This allows developers to focus on producing quality code

rather than simultaneously juggling a variety of things in their mind about the

deployment process, whether it be testing, packaging, or something else that is

critical for the success of deployments. Additionally, a well-developed deployment

pipeline enhances consistency, efficiency, quality, speed, and scalability of the overall

development lifecycle.

3.3 TASKS 26

3.2.7 Maintenance

Software maintenance phase consists of operating, updating, fixing, and improving

the system once it has already been deployed at least once. Typically, this phase

begins after the first deployment and it continues until the system is deprecated and

ultimately taken down. In reality, the maintenance phase is really just a revisit to

the previous phases when they are needed. However, the maintenance phase does

introduce some new tasks for developers.

The maintenance needs of a system are mostly defined by the system itself. Some

systems may require constant monitoring, while others rely on constant configuration

and frequent updates to the software code. To give an example, large systems

that (1) are critical to society and infrastructure, or (2) need to handle varying

and massive amounts of traffic require constant monitoring that the system is up

and running. Another example is banking, a heavily regulated sector, which has

its software and systems under constant pressure from regulators. Furthermore,

different systems and architectures need different kinds of monitoring, whether it be

monitoring of CPU or network usage. For example, an on-premise software system,

which is self-hosted, is likely to require constant monitoring. However, a cloud-

based solution might move the responsibility of infrastructure upkeep to the cloud

platform provider, removing it either partially or completely from the development

process from the developer’s perspective.

3.3 Tasks

By analyzing the software development phases in Section 3.2, we can infer that each

phase is ultimately comprised of certain tasks. For example, P4 (the implementation

phase) usually consists of a lot of programming which can be completed using a

simple text editor that comes with the operating system, or a full-fledged IDE. These

3.3 TASKS 27

tasks are outlined in Table 3.2 in no particular order. The tasks have been identified

based on the phases presented in Section 3.2. Again, depending on the chosen

software development model, individual tasks may be found in different phases, and

they might occur in multiple different phases in varying order. Some tasks can also

be split into smaller subtasks.

Table 3.2: Summary of tasks in software development phases.

Name Phase(s) Description

T1 Gathering require-
ments

P1, P2 Gathering and documenting software
requirements.

T2 Architectural de-
sign

P3 Architectural design of a system or soft-
ware using documents or visual illustra-
tions.

T3 User interface de-
sign

P3 Designing the visual user interface of an
application.

T4 Programming P4, P5, P7 Writing the source code of a system,
possibly including automated tests.

T5 Debugging P4, P5, P6,
P7

Searching for faults and bugs in the sys-
tem or software and fixing them.

T6 Deployment P6 Making the system or software avail-
able for use to its users.

T7 Version control
management

P4, P5, P6,
P7

Managing different versions of the sys-
tem or software.

T8 Monitoring P6, P7 Monitoring the system’s behaviour.

T9 Documentation P1, P2, P3,
P4, P5, P6,
P7

Documenting important information
produced during the entire software de-
velopment lifecycle.

T10 Project manage-
ment

P1, P2, P3,
P4, P5, P6,
P7

Management of the software project,
including things like prioritization of
tasks, project coordination, estimating
timelines and tracking the development
progress.

It is also worth noting that some tasks may share some of the core activities

that make up the task. To give an example, the argument can be made that pro-

gramming and debugging are the same thing in a different context, as both of them

3.4 SUMMARY 28

usually involve making adjustments to the software’s source code. However, the

context in this instance is significant. The goal of the task is not the same, even

though they are both making adjustments to the source code. To extend the same

example, programming is innately a creative task that focuses on implementation of

new features, functionalities, or other improvements. Debugging as a task, on the

other hand, is meticulous and problem-solving oriented, and usually it involves the

identification of bugs in existing source code and then, once identified, eliminating

them.

3.4 Summary

In this chapter, we have taken a holistic approach to software development by explor-

ing software development models and phases found in the models. In addition, we

have identified tasks that are performed during said phases. Thus far, we have iden-

tified seven phases through analysis of five individual software development models.

These phases are executed in various lengths and in different points of the project’s

lifetime depending on the chosen software development model. Furthermore, we have

identified 10 tasks that are performed during the aforementioned phases. Similar to

phases, these tasks can be performed at different lengths and order. Some models

also prioritize different tasks, and some allow flexible rotation of tasks throughout

the system’s lifecycle.

With agile methodologies being one of the current predominant ways of compos-

ing the software development lifecycle, this thesis pays extra attention to how AI

can be leveraged within agile frameworks to maximize efficiency and effectiveness.

By focusing on the unique characteristics and requirements of agile practices, the re-

search explores how AI can potentially support and enhance iterative development,

continuous integration, and rapid feedback loops.

4 Artificial Intelligence and Machine

Learning

In this chapter we lay the groundwork for understanding some of the key topics of

the thesis better: artificial intelligence and machine learning. Because AI as a term

is very broad and difficult to define, one of the primary objectives of this chapter

is to provide the reader with an explicit and concise understanding of what the

thesis is examining. Additionally, we define the relevant terms used in this thesis,

and dive deeper into machine learning which powers most of the current modern AI

technology.

4.1 Artificial intelligence

Artificial intelligence has been the subject of discussion on many forums, interviews,

news, and social media platforms. It has also played the role of an antagonist,

usually a scourge-like phenomenon, in many popular movies. AI as a topic clearly

has the power to grasp the attention of the general audience because it has the

potential to disrupt and revolutionize the world. The hype is currently fueled by

promises of AI software developers like Devin, autonomous vehicles, and solutions

to many of the global issues of the modern world [32], [33]. While some of it is hype,

there may be a lump of truth to it.

Being one of the biggest buzzwords of the decade, the term artificial intelligence

4.2 MACHINE LEARNING 30

tends to be widely misused [34], [35]. Additionally, discussion on the definition of AI

tends to expand into philosophical topics rather than computer science. With that

said, while there are many different approaches to defining artificial intelligence

in the scientific domain, for this thesis we will be using IBM’s concise definition:

"Artificial intelligence, or AI, is technology that enables computers and machines to

simulate human intelligence and problem-solving capabilities." [36]

4.2 Machine learning

Machine learning (ML) is a field of artificial intelligence that aims to study and

develop algorithms that can effectively generalize, deduce, and perform tasks without

being explicitly told to do so. Instead, they infer instructions from a preferably large

set of examples [37]. As described by Jordan and Mitchell [38], ML focuses on two

questions: (1) how can one construct computer systems that automatically improve

through experience, and (2) what are the fundamental statistical computational-

information-theoretic laws that govern all learning systems, including computers,

humans, and organizations?

In the last twenty years, machine learning has undergone dramatic advance-

ments, evolving from an experimental concept in laboratories to a practical and

widely used technology in various commercial sectors. As a field of study within ar-

tificial intelligence, machine learning has emerged as one of the preferred approaches

for developing useful software used in computer vision, speech recognition, natural

language processing, robot control, and many other applications [38]. In fact, most

of the hype surrounding these AI applications is powered by the quite recent ad-

vances ML, particularly in deep neural networks [39].

With respect to this thesis, the main topic of discussion is enhancing software

development with machine learning, as the solutions presented in this thesis are

based on machine learning. However, future developments in the AI domain are

4.3 APPROACHES TO MACHINE LEARNING 31

difficult, if not impossible, to forecast with any good certainty. With that said, it is

important to understand artificial intelligence as an umbrella term. Future AI-based

solutions might not fall under the machine learning field of study at all, but rather

belong in some other subfield of artificial intelligence.

4.3 Approaches to machine learning

There are many different ways of classifying and categorizing machine learning.

One could, for example, attempt to draw the dividing lines based on what problem

the model is attempting to solve. However, we will begin our categorization by

dividing machine learning into four distinct approaches of training an ML model:

(1) supervised learning, (2) unsupervised learning, (3) semi-supervised learning, and

(4) reinforced learning.

4.3.1 Supervised learning

Supervised learning builds and shapes the model by assessing data that describes

some input, sometimes referred to as features, that produces some output, also

known as labels. The result of supervised learning is a mathematical prediction

model that can be used to make predictions on unknown data based on the training

it has received. [39]

For instance, let us assume that we would like to create a model for recognizing

different animals from pictures. To employ supervised learning, we can provide

the algorithm with a dataset that contains pictures of different animals as well as

the names for each animal. We can then let the algorithm try to figure out what

are the distinct characteristics of each animal. This is referred to as classification:

the output variable is categorical, meaning it is part of a discrete set of classes or

categories. After training, the model can be tested to verify if the training has

4.3 APPROACHES TO MACHINE LEARNING 32

Figure 4.1: Simple illustration of a supervised learning process.

worked. A simple illustration of this process is depicted in Figure 4.1.

Supervised learning is also useful in predicting real or continuous values, where a

relationship between two or more variables can be recognized. To give an example,

we could attempt to predict the grade of a student based on the hours that student

has spent on the studies. We could also try to estimate the price of a home when

given parameters about the property and neighbourhood. A problem of this nature

is called a regression problem.

By extension, supervised learning is a suitable solution when the goal is to clas-

sify, categorize, and perform regression on datasets. On a high level, supervised

learning is particularly useful in scenarios where labeled data is available, and the

goal is to learn the relationship between input variables or features and correspond-

ing output labels. [40]

4.3.2 Unsupervised learning

Unsupervised learning algorithms are arguably the opposite of supervised learning

algorithms. As the name suggests, unsupervised learning is based on self-learning

4.3 APPROACHES TO MACHINE LEARNING 33

algorithms: they attempt to find structures or commonalities in data that has not

already been labeled, classified or categorized. Hence, they are not given any in-

structions on how to process and work with pieces of data.

Figure 4.2: Simple illustration of an unsupervised learning process.

Unsupervised learning has different kinds of benefits when compared to super-

vised learning. To give an example, consider a retail company that wants to deeply

understand its customers’ behavior in order to launch targeted marketing cam-

paigns, offer personalized recommendations, and optimize product placements in

stores. They possess a large dataset about customers’ purchase history. By ap-

plying unsupervised learning techniques, the company can identify customers with

similar purchasing behaviors and group them together. With that said, unsuper-

vised learning is a suitable approach when the goal is to cluster or group similar data

points together, reducing datasets to smaller but important subsets, and detecting

anomalies in datasets.

4.3.3 Semi-supervised learning

As the name implies, semi-supervised learning combines supervised and unsuper-

vised learning by using both labeled and unlabeled data to train machine learning

models for purposes like classification and regression. Technically it is not a dis-

tinct approach to training an ML model but rather a combination of two basic

4.3 APPROACHES TO MACHINE LEARNING 34

approaches. Though it is common to employ semi-supervised learning for similar

use cases in which supervised learning could be used, it brings a benefit to the mix:

the data does not have to be completely composed of labeled data. [41]

In fact, the primary distinction between supervised and semi-supervised learning

is that the former can only be trained using fully labeled datasets. However, the

latter uses both labeled and unlabeled data samples in the training process. The

added benefit is that the supervised algorithm can be enhanced and supplemented

by using an unsupervised learning algorithm in conjunction. Labeled datapoints

provide the basis for learning. Then, the unlabeled datasets can be incorporated

when the basis is built. [41]

Semi-supervised learning is especially useful in situations where labeled data is

scarce, expensive, or otherwise difficult to obtain, but the unlabeled data is abun-

dant. In such cases, a small amount of labeled data in conjunction with a larger

amount of unlabeled data can be enough to train a model effectively.

4.3.4 Reinforcement learning

Reinforcement learning is the third basic approach to training a machine learning

model. The fundamental concern in reinforcement learning is determining the most

optimal actions agents should take in an environment to maximize cumulative re-

ward.

As illustrated in Figure 4.3, learning in this paradigm occurs in three steps: (1)

the agent performs actions, (2) receives feedback in the form of rewards or penalties

from the environment based on its actions, and (3) adjusts its strategy to maximize

cumulative rewards over time. Similar to living organisms, this learning paradigm

learns through trial and error while attempting to find the most effective way for

achieving the desired outcome.

4.4 MACHINE LEARNING MODELS 35

Figure 4.3: Simple illustration of a reinforcement learning process.

4.4 Machine learning models

In machine learning, a model is essentially a mathematical formula that can be used

to make predictions for a given data set. To simplify, the model will attempt to guess

what comes next. During training, the model will be iteratively shaped to minimize

the chance errors when making predictions. Various different types of models can

be produced by choosing different types of training methods: In this section, we

will discuss four distinct model types: (1) neural networks, (2) decision trees, (3)

regression analysis, (4) Bayesian networks.

4.4 MACHINE LEARNING MODELS 36

4.4.1 Neural networks

Recent advancements in machine learning, particularly in the development of ar-

tificial neural networks, are behind most of the modern day AI hype [39]. Taking

inspiration from the human brain, a neural network is comprised of interconnected

nodes or neurons arranged in layers that establish connections between inputs and

desired outputs. Through iterative adjustments, the machine learning model is

trained to optimize the strength and thickness of these connections, ensuring that

provided inputs correspond to the desired responses. This makes neural networks

ideal for pattern recognition.

In a neural network, neurons, the core processing units, are arranged into layers.

This is illustrated in Figure 4.4. Each layer can perform various different transfor-

mations on their given inputs. There are three categories of layers: (1) the initial

input layer, (2) intermediate hidden layers, and (3) the final output layer. However,

the hidden layers are optional. A network that contains at least two hidden layers

is referred to as a deep neural network.

Figure 4.4: The three layers of an artificial neural network.

4.4 MACHINE LEARNING MODELS 37

Let us go through an example that is illustrated in Figure 4.5. Consider a

situation where we would like to reliably differentiate an image of a square, a circle,

and a triangle from one another. We can create a neural network for achieving

this task. The input layer receives an image of one of the three shapes, in this

instance, a circle. We provide the network with a 28 by 28 pixel image of a circle

to the input layer, giving us 784 individual neurons in the input layer. Each neuron

represents a single pixel, denoted by x1, x2, x3, ... x784 in Figure 4.5. As mentioned

before, neurons of the first layer are connected to the proceeding layer. Each of these

connections is assigned a numerical value to illustrate the strength of the connection,

known as weight. In Figure 4.5, weights are denoted by w1, w2, w3, ... w1566. The

value of each input neuron is multiplied to the corresponding weights. Then, their

sum is given as input to the neurons in the proceeding layer. A bias is added to the

sum: an additional parameter that allows the neuron to output values other than

zero. Finally, this resulting value, sometimes referred to as the activation, is passed

to a threshold function called the activation function. This function determines if

the neuron is activated or not. Once a neuron is activated, the data is passed to the

neurons of the proceeding layer. This process is repeated until we reach the final

output layer, where the result is determined.

4.4.2 Decision trees

Given their simplicity and intelligibility, decision trees are one of the most popular

approaches to supervised learning, and they have been used extensively in statistics,

data mining as well as machine learning [42]. They are non-parametric and highly

flexible [40]. As illustrated in Figure 4.6, decision trees draw conclusions based on

a set of observations.

There exists two main types of decision trees: (1) classification trees, and (2)

regression trees. While the two have some similarities and are often grouped under

4.4 MACHINE LEARNING MODELS 38

Figure 4.5: An illustration of an artificial neural network that is able to differentiate
between a square, a circle, and a triangle.

the umbrella term Classification And Regression Tree (CART), they have their own

unique benefits and use cases. To simplify, classification trees are designed for sce-

narios where the target variable can take a discrete set of values. Within these tree

structures, class labels are represented by leaves, while branches symbolize combi-

nations of features leading to these class labels. However, when the target variable

can take continuous values, commonly real numbers, the corresponding tree models

are referred to as regression trees. Furthermore, the concept of regression trees can

be broadened to include any type of object containing pairwise dissimilarities, such

as categorical sequences.

To improve prediction accuracy, multiple decision trees can be combined to create

a random forest, which employs many different decision trees. If, for example, some

of the decision trees in a random forest are not relevant in some instance, they can

4.4 MACHINE LEARNING MODELS 39

Figure 4.6: A decision tree depicting survival probability of passengers on Titanic,
where SibSp is the number of siblings or spouses onboard, and the figures in each
leaf describe the probability of survival and the percentage of observations in the
leaf.

be ignored. This can help with overfitting: an issue that arises when over-complex

trees that do not generalize well from the input dataset are grown.

4.4.3 Regression analysis

Regression analysis encapsulates a common behavior that we have briefly discussed

in, for example, Section 4.3.1. It is the set of statistical processes used to assess

relationships between a dependent variable, also known as an outcome or output,

and one or more independent variables, also known as features or inputs. Variables

are pieces of data that describe an attribute or characteristic of an object.

4.4 MACHINE LEARNING MODELS 40

The most commonly used form of regression analysis is linear regression, where

one attempts to fit a line to best match the given variables. A simplified illustration

of this is shown in Figure 4.7. When there is only one independent variable, the re-

gression model is called simple linear regression. However, when there are more than

one independent variables, the regression model is called multiple linear regression.

Figure 4.7: Depiction of linear regression.

Once the regression model is trained on a dataset, it can be used to make pre-

dictions on the dependent variable’s values when given new input data. Evalua-

tion metrics such as mean squared error (MSE), mean absolute error (MAE), or

R-squared are often used to assess the model’s performance and accuracy.

4.5 SUMMARY 41

4.4.4 Bayesian networks

A Bayesian network is a probabilistic graphical model that represents some set of

variables and their conditional dependencies using a directed acyclic graph (DAG).

In essence, each graph is composed of three elements: (1) nodes, (2) edges, sometimes

referred to as arcs, and (3) probability functions. A node is simply a representation

of a variable that may be observable, an inferred latent variable, an unknown pa-

rameter or some hypothesis. An edge is formed between two nodes, and it represents

direct dependencies between the variables. Finally, each node in the network is also

accompanied by an associated probability function which quantifies the probabilistic

relationship between that node and its parents, nodes that are pointing to it in the

graph. [43], [44]

Utilizing a Bayesian network has several benefits. For example, as the model

encodes dependencies among all variables, it is capable of handling situations where

the input dataset is incomplete and missing some entries. Additionally, Bayesian

networks allow one to learn about causal relationships. [44]

Bayesian networks can be useful in predicting causalities [44]. Given an event

that occurred, Bayesian networks can be used to predict the likelihood that any one

of the possible known variables were the cause of the event, or at least a contribut-

ing factor. To give an example, in medicine, one could attempt to determine the

contributing factors of a disease using Bayesian networks.

4.5 Summary

In this chapter, we have defined artificial intelligence in the context of this thesis and

explored the world of machine learning. We have outlined and compared common

approaches to training a machine learning model as well as introduced some of the

different types of models that can be produced using different training approaches.

4.5 SUMMARY 42

The contents of this chapter have been laid out in an effort to provide an un-

derstanding of what goes on under the hood of the AI-based tools and techniques

that we will be discussing in the following chapters. In the context of this thesis,

we should now have at least an adequate understanding of what powers most of the

modern AI-based tools. This is important because, in order to see through the veil

of the AI hype, we need to be able to understand not only the potential of these

tools but also their limitations in a realistic manner.

5 Utilization of Artificial Intelligence

In this chapter, we innovate and concretize potential utilization cases for AI-based

tools and methods in software development. We base each potential utilization on

phases and tasks discussed in the Chapter 3. Furthermore, we take into account the

current realistic capabilities of ML models as discussed in Chapter 4. The list of

scenarios are summarized in Table 5.1.

For each utilization case, we will either briefly go over the task that is being

enhanced or the potential issue that the utilization case is attempting to solve.

When applicable, we will also introduce some simple examples of each utilization

case. These examples are referred to as scenarios: an instance where the utilization

might result in a meaningful enhancement. These scenarios are defined in an effort

concretely identify potential enhancements that can be discussed in the interviews.

The aim of this chapter is not to develop an exhaustive list of scenarios where AI

could provide an enhancement. Rather, we aim for a list of scenarios that covers

basic software development phases and tasks.

5.1 Source code generation

Arguably, the most famous utilization case of AI is code generation. To be exact,

it involves the use of ML models to generate correct and functional software code.

These generated snippets of code are contextually based on the current workspace,

including the current code base, libraries being used, and the syntax of the pro-

5.1 SOURCE CODE GENERATION 44

Table 5.1: Proposed AI utilization scenarios for software development

Category Target phase(s) Target task(s)

S1 Source code generation P4, P5 T4, T5

S2 Software documentation gen-
eration

P4, P5, P7 T4, T9

S3 Software documentation gen-
eration

P4, P5, P7 T4, T9

S4 AI-driven bug triage and de-
bugging

P5, P6 T10

S5 AI-driven bug triage and de-
bugging

P5, P7 T5

S6 AI-driven software testing and
reviewing

P4, P5, P6, P7 T4, T6

S7 AI-driven software testing and
reviewing

P4, P5, P6, P7 T10

S8 AI-enhanced CI/CD P4, P5, P6, P7 T4, T6, T7, T8

S9 AI-driven specification com-
position

P1, P2 T1, T9

S10 AI-driven specification com-
position

P1, P2 T1, T2, T9

S11 AI-enhanced agile develop-
ment

P1, P2, P3, P4, P5,
P6, P7

T10

gramming language. Because the underlying ML model is able to make suggestion

in the context of the workspace, it has the potential to provide quite accurate and

contextually relevant suggestions. In some trivial cases, generative AI can generate

fully functional code on its own without any help from a developer. However, at

this time, it is mostly considered an assistive tool for developers in the program-

ming task, making suggestions and generating the bulk of code. To give an example,

this could mean generating the skeleton for a specific loop structure or a complex

if-condition.

Code generation solutions are fairly easy to integrate to an existing workflow

without substantial overhead expenses. Modern code editors like Visual Studio

5.1 SOURCE CODE GENERATION 45

Code and Neovim offer ready-to-go plugins that can be installed with the click of a

button. This means that companies and developers are not required to train their

own models to get started, but can instead rely on already trained general-purpose

programming models. One example of such a model is the OpenAI Codex model,

which powers GitHub Copilot [45].

Generally speaking, the process of generating code using a code generation so-

lution like GitHub Copilot is simple: a prompt is given to the model which then

responds with an output. For example, the prompt can be a code snippet that is

incomplete, and needs to be finished. The model will then proceed to making a pre-

diction about what the developer wants, and responds with an output in the context

of the workspace. However, the prompt does not have to be just code. It can be

accompanied with a description of what the code should do. In fact, the prompt can

be just that: a description of what the output code should do, without any input

code snippet. This can be beneficial in a situation where the user providing the

prompt is not familiar with the current programming language, does not possess the

skills of programming, or is simply not tech-savvy at all. [46]

�
Scenario 1

A developer would like to increase their productivity by eliminating the

writing of repetitive and structurally simple code. They decide to utilize

generative AI by either (1) starting to write the to-be-generated code

themselves and allowing generative AI to automatically fill out the rest

of the code, or (2) write a comment describing the desired functionality

of the code and allowing generative AI to write it from scratch. This

might potentially increase the speed of development as they have to

write less code, and in some instances, juggle less things on their mind

when writing code.

5.2 SOFTWARE DOCUMENTATION GENERATION 46

5.2 Software documentation generation

In a very similar fashion to code generation, ML models can be used to generate

documentation for both new code and existing code bases. In fact, GitHub Copilot

can be used to accomplish this task. When given a prompt of some code and an

instruction to provide documentation for the code, Copilot will successfully generate

documentation, usually in the form of a comment, also known as a docstring. Again,

generative AI can be quite useful in this instance as it can help in generating the

bulk of the documentation.

To give an example, in some code documentation formats, it can be quite labo-

rious to write the description of each parameter to a function, or provide examples

of what the function should output when given certain input parameters. In cases

like this, generative AI can enhance and expedite the process of writing descriptive

and useful documentation by a significant amount. In addition to Copilot, there

currently exists other similar products that specialize in generative AI assisted code

documentation like Docify and DocuWriter. [46]–[48]

�
Scenario 2

A developer is tasked with documenting source code that is currently

missing documentation. They are required to document the functionality

of functions, input parameters, and output return values. Additionally,

the documentation should follow a specific format throughout the source

code repository. The developer uses generative AI to complete the task

for each function: they provide the function as input and ask the ML

model to generate the documentation in a specific format.

It is also worth highlighting that generative AI can be used as (1) an assistive

tool alongside the developer to generate the documentation as new code is written,

or (2) as a standalone tool to generate documentation for a code base that does not

5.3 AI-DRIVEN BUG TRIAGE AND DEBUGGING 47

have any source code documentation in the code as docstrings.

�
Scenario 3

A developer would like to generate API specification documentation for a

fairly large REST API. There are automatic REST API documentation

tools that are not based on AI, but they require certain annotations to

exist in the source code to be able to generate documentation automat-

ically, which have been omitted from the source code. To achieve this,

the developer utilizes generative AI to include the annotations in a given

syntax for each endpoint in the REST API.

5.3 AI-driven bug triage and debugging

The quality of the produced software is largely dependent on the correct functionality

of the software features. This means that not only does the software need to do the

intuitively correct action but it must also perform correctly under the hood without

any bugs. However, bugs tend to end up in production environments even in the

most careful and cautious deployment processes.

When a software bug is located, it is typically placed into a prioritized list of

bugs that need to be fixed. After some time, a suitable developer is assigned to

fixing the bug, and proceeds to reproduce it, locate it, and ultimately, fix it. The

aforementioned series of events can be divided into two distinct activities: software

bug triage and debugging.

Software bug triage (SBT) is the process of prioritizing and assigning reported

bugs to the appropriate fixers in a timely manner. This is easier said than done.

Different developers may be familiar with different code bases, different frameworks

and software libraries, and different tools and methodologies. They may be in dif-

ferent stages of their career and possess different levels of expertise. Therefore, it is

not feasible to assign a bug to just any developer.

5.3 AI-DRIVEN BUG TRIAGE AND DEBUGGING 48

The software bug triage process can be enhanced or fully automated using AI

to identify the most appropriate developers for handling each reported bug in a

much faster way. A machine learning model can be trained to achieve this task

using various types of data such as developer profiles, relevant code repositories,

and information about bugs fixed in the past. [49]

Having an automated software bug triage system can be quite a fruitful enhance-

ment for companies. Not only does it help the bug triage managers, who may or may

not be tech-savvy, in selecting the appropriate developer for fixing the bug, it will

do it much faster. Over time, the model will also accumulate knowledge, and it will

likely make predictions more accurately when assigning developers to work on bugs.

Additionally, as an automated system, it is innately scalable, making it a well-suited

solution for large-scale software projects in the enterprise domain. Overall, such a

system will very likely enable companies to minimize costs related to software bug

triage dramatically.

�
Scenario 4

A bug triage team responsible for prioritizing and assigning the fixing of

bugs to the right developers is facing a bottleneck in their process. Hence,

they need to expedite the process in a reliable way. The team employs

a predictive ML model that is able to predict and choose a developer

from a pool of developers that is most fit for the task. Additionally, they

might employ AI to also assess the priority of the bug, and placing it

into an appropriate position in the list of bugs.

Once a bug is assigned to a developer, the developer begins the debugging pro-

cess. This process can be as simple as fixing an incorrect constant value, invalid

variable type conversion, or altering the order of parameters given to a function,

which can take less than a minute to fix. However, in more complex cases, de-

bugging a single bug can take any amount of time from days to months to even

5.3 AI-DRIVEN BUG TRIAGE AND DEBUGGING 49

years.

The process of debugging can be very manual in nature, and it requires a certain

skillset from the developer, which also highlights the importance of SBT. Bugs can

exist in different ways: whether it be in the syntax of the code or at runtime,

the latter of which is arguably more difficult and complex to debug. Different

programming languages provide different tools for debugging. Some, for example,

print out a more verbose stack trace than others which aids the developer in locating

the point where the bug is introduced. Not only does the developer need to be

familiar with the language, they need to understand the environment and the system

as a whole, including its own specific intricacies and nuances, to be able to debug

efficiently.

To make manual debugging easier, an appropriate ML model can be utilized.

For example, it can be useful to use an ML model to analyze a stack of error logs

to get a more verbose and concise description of the error. Furthermore, the model

could also be supplied with the source code in addition to the error logs, allowing

the model to both pinpoint the error and provide possible fixes for the error. Even

if the model is not able to come up with the correct fix, it can guide the developer

towards the actual fix for the error.

�
Scenario 5

A developer is tasked with fixing a bug. The developer is fairly familiar

with the code base, but in this instance, the error resides in a part of the

code base that the developer is not that familiar with. To expedite the

process, the developer employs an ML model to analyze a fairly large

stack of error logs to get a clear description of what is causing the error

to occur. Furthermore, the developer also requests possible fixes for the

error from the ML model, which provides the developer with a starting

point for coming up with a fix.

5.4 AI-DRIVEN SOFTWARE TESTING AND REVIEWING 50

5.4 AI-driven software testing and reviewing

As discussed in Section 3.2.5, software testing is a crucial part of software devel-

opment. However, writing tests can be time-consuming and difficult, and software

development teams need to deploy fast. AI can be of help in this crucial step.

An appropriately trained ML model can analyze changes made in a code base.

Based on the model’s analysis, fully functional test files can be generated for covering

at the very least some basic unit tests. This removes the bulk of the work from

developers, allowing them to spend less time writing repetitive boilerplate tests and

to focus on deploying new features and improvements.

�
Scenario 6

A developer has pushed new code to a code base. To ensure the function-

ality software now and in the future, software tests need to be written

that test the new code. The developer employs an ML model to suggest

relevant tests for the changes and generates test files that can be easily

integrated to the existing testing scheme using generative AI.

AI could potentially be used for code reviews as well. Similar to the AI-driven

bug triage proposed in Section 5.3, generative AI can assist authors in selecting an

optimal reviewer from a pool of developers: someone who is well-acquainted with the

code base and more likely to identify critical issues in a specific context, whether

it be the code base itself, a given programming language, or a specific external

package or module. While picking the most suitable code reviewer for a specific

code change can be challenging for a human, an ML model has the potential to take

a holistic analytical approach by analyzing, for example, the history of code changes

and the project’s contribution graph to select the most suitable reviewers. If the

reviewer is appropriate, they are arguably less likely to overlook the review request

and delegate it to someone else. If the reviewer is not appropriate, they might also

5.5 AI-ENHANCED CI/CD 51

provide inadequate feedback or neglect a critical issue.

�
Scenario 7

A developer has pushed new code to a code base. To ensure adherence

for coding standards and maintain a high code quality, a code review

is to be held. However, a reviewer needs to be selected from a pool of

developers. The team employs generative AI to select a reviewer based

on their attributes and suitability. This takes the load off from the team

needing to manually choose a reviewer for each code change, and has the

potential to improve the quality of the code in the long run.

5.5 AI-enhanced CI/CD

The ideal CI/CD pipeline leverages automation of tasks across the entire deploy-

ment process. This can include running automated tests, deployment health checks,

checking production system logs, or looking at monitoring charts. However, depend-

ing on the complexity of the system and the deployment process, this can take a lot

of time if done manually by developers. Complex manual deployment processes are

also prone to human errors.

To decrease the workload of developers in charge of deployment, AI could be

utilized. A potential utilization would be to incorporate AI generated testing tech-

niques, as discussed in Section 5.4, as part of the CI/CD pipeline. This could mean,

for example, (1) assessing the results of existing tests, or (2) using AI to generate

tests on the fly as new code is deployed. Furthermore, AI could be utilized to mon-

itor system logs for a period of time post-deployment to catch any anomalies that

have potentially made their way to production.

5.6 AI-DRIVEN SPECIFICATION COMPOSITION 52

�
Scenario 8

A developer has made changes to a code base and would now like to de-

ploy the changes. The project has an existing CI/CD pipeline that runs

unit tests, if any. Upon success, the pipeline merges the code changes

into production. The developer would like to improve the pipeline by

making it more efficient and reliable. To achieve this, the developer

employs generative AI to generate simple unit tests on the fly as part

of the CI/CD pipeline, that are then added to the code base and ran

upon deployment, including all following deployments. They also utilize

AI to assess the production system logs for a certain period of time af-

ter deployment, to make sure that any anomalies are caught as soon as

possible.

5.6 AI-driven specification composition

Most, if not all, projects produce some kind of documentation throughout the

project’s lifecycle. Software development projects are no exception. For example,

the results of preliminary analysis are often documented, containing information

such as the project’s end user, risks, budget, and timeline.

As organizations strive to stay competitive, the ability to come up with an ini-

tial analysis of a project’s feasibility, risks, scope, and potentially its budget become

increasingly more valuable. For this purpose, AI could be utilized to produce an ini-

tial analysis of the project, providing a basis for further and more thorough analysis

performed by humans.

5.6 AI-DRIVEN SPECIFICATION COMPOSITION 53

�
Scenario 9

In the early stages of a new software project, a project team needs to

conduct a thorough preliminary analysis to understand the project scope,

feasibility, and potential risks. They decide to incorporate AI to enhance

their analysis. They leverage AI, trained with historical data on similar

projects and topics, to quickly map and estimate the potential risks, as

well as assess the feasibility of the product. While it is difficult at this

stage, they could also estimate the scope of the project using AI, allowing

for better budgeting and timeline estimates.

In the dynamic and competitive landscape of software development, accurately

capturing and prioritizing requirements through requirements engineering is essen-

tial for delivering features that meet user needs and business objectives. This process

could also potentially be enhanced using AI. After gathering initial requirements,

AI could be utilized, for example, to generate descriptive and more verbose scenar-

ios for each requirement. This would allow the requirements to be encapsulated in

a way that reflects an actual scenario that could take place when a user is using

the application. This could potentially improve the accuracy of the requirement

when it is eventually implemented during development. Additionally, if proper in-

put data such as stakeholder importance and development costs are available, the

requirements could potentially be prioritized using AI.

5.7 AI-ENHANCED AGILE DEVELOPMENT 54

�
Scenario 10

A software development team is tasked with creating a new feature for

their application. To ensure they capture all necessary requirements, the

team decides to leverage AI in their requirements engineering process.

After drafting the initial requirements, AI helps the team by drafting

detailed requirement specifications or scenarios. Finally, they utilize AI

to prioritize the requirements on factors like stakeholder importance,

development complexity, and potential impact.

5.7 AI-enhanced agile development

As described in Section 3.1.5, agile development methodologies involve an iterative

approach and a rather short feedback loop to best accommodate a rapidly changing

environment. Because the change is rapid, it can be difficult to prioritize tasks,

manage the backlog, plan for the future, and estimate the length and workload of

tasks. Agile methodologies like Scrum also involve quite a bit of routine tasks and

ceremonies that can take up a lot of time to prepare and execute, even if done

properly. To enhance the process and alleviate the aforementioned issues, AI could

potentially be incorporated to the process.

To improve task prioritization and planning, an appropriate ML model could

be utilized. The model could be used to analyze historical project data to make a

prediction on how much time and resources a single task is going to require. This can

help teams working in an agile way to, for example, estimate and plan user stories

and sprints more accurately and efficiently. Furthermore, AI could be used to refine

the backlog by prioritizing items based on business value and team capacity. This

could improve the efficiency of the team, as they have to work less on prioritization,

and more on producing and deploying high quality features.

5.7 AI-ENHANCED AGILE DEVELOPMENT 55

�
Scenario 11

The Product Owner of a software development team would like to en-

hance the process of prioritizing user stories before each sprint. The

backlog has grown to be quite large over the course of several months,

which makes the process even more difficult. To make the process easier,

the Product Owner decides to employ AI to (1) help with backlog refine-

ment, and (2) to estimate the work needed for each user story based on

the user stories the team has completed in the past.

AI could also be utilized to boost the efficiency of regularly held agile ceremonies

like the daily meetings. An appropriate model could be used to assess the progress

of each team member to keep everyone up-to-date and to identify potential blockers.

The result of the assessment could be delivered to a group team chat before the daily

meeting as an automatic status update. This can potentially remove a significant

amount routine work from daily meetings, allowing the team to focus on more

important topics of the day.

6 Interviews

As mentioned in Section 2.2.2, a semi-structured interview technique was chosen for

this thesis. The interviews were conducted individually, allowing in-depth discussion

about the topic to occur. The goal of the interviews was to gather not only the

opinions but also the experiences of Company X’s software developers about utilizing

AI throughout the software development lifecycle, with a particular interest in the

scenarios presented in Chapter 5. The interviews were an opportunity to assess and

validate the scenarios.

Table 6.1: The interviewees

Role Experience
(years)

Work description Division

I1 Senior Mobile De-
veloper

7 Mobile application develop-
ment

Retail trade

I2 Software Engineer 7 Full-stack development (fron-
tend and backend), software
design, improving agile devel-
opment in other teams

Retail trade

I3 Full-stack Devel-
oper

8 Web development (frontend
and backend)

Car trade

I4 Senior Full-stack
Developer

5 E-commerce site develop-
ment, project management,
and software design

Building and
technical
trade

I5 Senior Full-stack
Developer

10 Web development (frontend
and backend)

Building and
technical
trade

6.1 INTERVIEW QUESTIONS 57

The group of interviewees are listed in Table 6.1, including their role in Company

X, years of experience in software development, the interviewees’ description about

their work, as well as the target division of their work in Company X. In the following

sections, the interviewees are denoted using the identifiers found in the table’s first

column, while the researcher is referred to with the letter R.

All interviews took place in July of 2024. The interviews were conducted over a

video conference platform utilizing both the audio from a microphone and the video

feed from a webcam, with only the audio being recorded. The total of audio that

was recorded amounted to approximately 6 hours of material. Hence, to process and

analyze the interviews more efficiently, the audio from each interview was transcribed

into written English.

The chosen language for interviews was either English or Finnish. Therefore, for

some interviewees, the questions presented in this thesis were translated to Finnish.

Additionally, some of the quotes and responses given by interviewees have been

translated from Finnish to English.

6.1 Interview questions

To gather the desired data and to provide structure to the interviews, a set of 8

questions were used. The questions are outlined in Appendix A. The questions were

not visible to the interviewees during the interview: they were verbally presented one

at a time. Additionally, for Q4, the scenarios presented in Chapter 5 were provided

to each interviewee prior to the interview.

Before going into the questions, each interviewee was provided with an introduc-

tion to the thesis topic and goals. To emphasize that the thesis is not inspecting

solely the implementation phase of development, but rather the entire software de-

velopment lifecycle, the phases presented in Table 3.1 were also introduced to each

interviewee.

6.1 INTERVIEW QUESTIONS 58

6.1.1 Current utilization of AI

RQ3 aims at understanding how Company X’s software developers are currently

utilizing AI to enhance software development. The first two questions were used to

gain insight on just that. Q1 was used to gather knowledge about how Company X’s

developers are currently utilizing AI in software development, if at all. It was also

an opportunity to find out what specific tools they are using. Q2 aims at finding

out how interviewees feel that AI as benefited them.

6.1.2 Scenarios

To gain insight on RQ1 and RQ2, the scenarios presented in Chapter 5 were validated

in the interviews with Q3. The goal of the question was to identify scenarios that

are both (1) realistically implementable and (2) provide a significant enhancement

to the software development lifecycle, whether it be a speed boost in development

or an enhancement in the quality of the produced software or product. Additionally,

because of the open nature of the question, it enabled interviewees to present their

own adjustments and improvements to each scenario, or even present their own

scenarios.

In addition to discussing the scenarios, interviewees were asked to rank each

presented scenario with a simple score of one to five, one representing a scenario

with no enhancement to the software development lifecycle, and five a scenario with

a clear enhancement.

6.1.3 Obstacles

RQ4 aims at locating potential obstacles in adopting AI for software development

at Company X. The purpose of Q4 is to address this topic directly: it enabled

interviewees to present obstacles that they may have faced. However, Q5 was used

6.2 RESULTS 59

to recognize potential obstacles that interviewees may not categorize as obstacles by

identifying differences in how they utilize AI in different environments.

While it is not explicitly a goal or a research question for this thesis, the final set

of questions were used to gauge how software developers at Company X are gaining

and sharing knowledge on AI. Arguably, the most recent AI advancements may not

be that relevant or important for the average software developer. However, it is

important for a company, including its software developers, to stay up-to-date as

well as support and enforce the adoption and utilization of modern technologies and

tools over the long haul. Failing to do so will likely hinder the company’s success

as time passes and technology advances. Therefore, the inability to gain and share

knowledge of AI enhancements in software development can be characterized as an

obstacle.

For the aforementioned reasons, Q6 was used to identify sources of information

that Company X’s software developers use to gain knowledge on AI, specifically for

software development purposes. Q7 and Q8 were used to both (1) recognize how,

if at all, information about AI is shared in Company X, and (2) how it could be

improved.

6.2 Results

In this Section we will go through the results of the interviews. Similar to the

previous section, we will go through each category individually. However, we will

discuss the scenarios in further depth, going through each category of the scenarios

individually. Finally, the score based rankings of each scenario are outlined in Table

6.2.

6.2 RESULTS 60

Table 6.2: Scenarios ranked from 1 (no enhancement) to 5 (clear enhancement) by
each interviewee with scenarios on the Y-axis and interviewees on the X-axis.

I1 I2 I3 I4 I5 Average

S1 4 4 5 4 5 4.4

S2 2 2 4 3 2 2.6

S3 3 3 2 3 1 2.4

S4 3 1 2 2 4 2.4

S5 4 5 4 2 3 3.6

S6 5 2 3 3 5 3.6

S7 2 2 1 4 2 2.2

S8 3 1 3 3 4 2.8

S9 3 4 4 2 4 3.4

S10 3 2 1 2 5 2.6

S11 1 4 1 3 3 2.4

6.2.1 Current utilization of AI

Unsurprisingly, all interviewees utilize artificial intelligence in their workflow to some

extent. While there are a lot of similarities in how they currently utilize AI in

software development, there are also some clear differences.

All interviewees reported utilizing AI to generate code. The chosen tool was

unanimous: GitHub Copilot. However, on occasion, some interviewees used Chat-

GPT for the task as well. Some interviewees described going as far as to generate

unit tests, while others would not rely on Copilot for anything other than very simple

blocks of code. Additionally, interviewees reported to having used AI to summarize

what a block of code does as well as summarizing error logs for debugging purposes.

For personal projects (if any), interviewees felt that they are able to use genera-

tive AI more freely than when compared to Company X. This is not surprising, as a

professional setting puts the threshold of acceptable code higher as well as increases

the risk of deploying AI generated code further. Additionally, interviewees are not at

6.2 RESULTS 61

risk of supplying generative AI tools and services with copyrighted code or material

that they do not legally own when working with personal projects.

6.2.2 Source code generation

To describe source code generation to the interviewees, S1 was used. All interviewees

see generative AI to generate code as an enhancement. It was ranked the highest

with an average score of 4.4, as presented in Table 6.2. Interviewees also agreed that

the benefit of using AI in this way comes solely from saved time.

Interestingly, none of the interviewees reported an increase in code quality when

using a tool like GitHub Copilot to generate new code from scratch. On the contrary,

some interviewees described a decrease in both quality and correctness of the new

code, if AI is used this way in excess. If it is not utilized carefully, the code base can

become bloated, containing lots of unnecessary duplication and components that

none of the project’s developers are familiar with.

Interviewees recognized that AI generated code can be syntactically valid, and

even appear as the correct solution, but it does not guarantee its correctness. Hence,

all interviewees emphasized the importance of understanding the generated code to

avoid errors. For example, I3 described an event where they relied too much on the

generated code:

±
I3:

There was this one time when I used generative AI to generate [more

complex] code. With a quick glance, I thought it looked good on the

surface. However, it pretty much took me a full working day to fix the

issues that it had caused.

Furthermore, I4 brought up the fact that the level of expertise of the developer

matters when using a tool like GitHub Copilot:

6.2 RESULTS 62

±
I4:

If we are dealing with a junior-level software developer, who is essentially

a beginner level developer, there is a risk that they will utilize AI code

generation to generate code that they do not fully understand. On the

other hand, a seasoned senior developer is more likely to recognize the

risk of generating code, especially when its functionality is unclear.

The consensus about the benefits of an AI-based copilot tool was that all in-

terviewees appreciated the on-handedness and easy availability as well as its ability

to help reduce typing, especially when dealing with repetitive but trivial tasks and

minor coding issues. I4 characterized their view of a tool like GitHub Copilot as an

advanced autocomplete rather than something that should be extensively used to

generate large and complex parts of the code:

±
I4:

I view generative AI tools like GitHub Copilot with a certain kind of

scepticism. The style of usage, at least for me, is like a fancier autocom-

plete. It helps you find more elegant solutions to simple problems as well

as making your typing a lot quicker.

While having such a tool so easily available and ready-to-go at all times is great,

it has its own pitfalls. One problem that may arise is that developers can, over time,

become very reliant on the tool. I2 described this in the following manner:

±
I2:

One thing that I have noticed is that sometimes I stop writing code to

wait for [GitHub] Copilot to give me an idea as to how to continue, rather

than continuing to think for myself as to what to write next. Therefore,

instead of thinking what I am actually trying to accomplish, I rely too

much on the tool to tell me how to solve the problem.

6.2 RESULTS 63

As mentioned previously, none of the interviewees saw an improvement in code

quality when generating new code from scratch. However, I5 reported utilizing

GitHub Copilot, in addition to generate tiny code snippets and small functions, to

suggest improvements to the code that they have already written:

±
I5:

I would say that I use GitHub Copilot in a third way. What I would

do first is that I start by drafting my code, building it and making sure

that it works. And then, I will ask Copilot: can you improve my code?

So Copilot will improve code that already works rather than making

unnecessary noise and then me having to figure out which [generated]

code works and which does not.

6.2.3 Software documentation generation

For software documentation generation scenarios S2 and S3, the results were far more

mixed than, for example, source code generation. It seems that for Company X’s

case, generating documentation directly into the code as comments is not necessary.

One of the reasons behind this is that they utilize statically typed languages like Java

and arguably TypeScript, which effectively eliminates the need for type annotations

as comments in the code.

However, the interviewees do not rule out the possibility of using code docu-

mentation generation if they were dealing with a statically typed language like, for

example, plain JavaScript. In addition, I4 continues the same thought, and mentions

an interesting point about managing code documentation with AI:

6.2 RESULTS 64

±
I4:

I definitely see this useful with something like writing JSDoc for

JavaScript. However, it should always be kept in mind that some AI

model has made it, so it should always be taken with a grain of salt. But

if we were to maintain some kind of a code documentation solution like

for example JSDoc, perhaps AI could be used to pinpoint parts of the

documentation where the documentation is no longer up to date.

Another concern with documentation, generated or not, is that it has to be

maintained. This can create a lot of work for developers. For this reason, the

interviewees prefer to keep documentation very light. Furthermore, the interviewees

prefer to simply write clean code:

±
I1:

In our case, we have not used AI for this. By its nature, good code is

documentation for itself. Basically, we do not have much extra docu-

mentation apart from some instructions how to set things up, which is

not included in the code.

An interesting point mentioned by I3 was that they see AI as very useful in

generating documentation for blocks of code that are large and complex. Rather

than inspecting the function manually, they utilize AI by providing it with the

function and asking it to explain what the function does. While this generated

documentation does not get stored anywhere, it is useful in that moment for the

developer to gain an understanding of what the block of code does. I3 described

this in the following way:

6.2 RESULTS 65

±
I3:

If there is an unknown block of code, it is very easy to simply highlight

the block of code in the code editor and then ask GitHub Copilot to

explain what it does. I think that that has been very useful.

Finally, I2 mentioned that they see a lot of potential value in utilizing AI in

migrating software documentation to a single location with a standardized format:

±
I2:

We use Confluence for a lot of our software documentation needs. I think

AI could be very valuable if we could define a template for the Confluence

documentation, feed the old material – in whatever format – to the AI,

and the AI would automatically generate and upload the documentation

to Confluence in the format we want.

6.2.4 AI-driven bug triage and debugging

The interviewees’ thoughts on utilizing AI for bug triage, as presented in S4, were

mixed. Some interviewees felt that bug triage is not about choosing the right devel-

oper, but instead about sharing knowledge among the team:

±
I1:

In a way, it is more efficient to let someone with more knowledge to fix

an issue. On the other hand, if the person with the most knowledge

is always fixing some specific bugs, it can deepen the knowledge gap

between the developers. Sometimes fixing a bug is a great way to learn

about that specific part of the project.

I2 also had some thoughts about the need for bug triage in the first place. They

highlighted the importance of establishing clear product or system ownerships within

the organization, and the size of teams:

6.2 RESULTS 66

±
I2:

I believe that there should always exist some kind of a product ownership

for software products and systems. With that said, developer teams

should not have 20 members, but rather a smaller group that has a deep

understanding of the product that they own. For this reason, having AI

aid in locating that specific team that owns the product is rather trivial

and not useful in my opinion.

They also later continue on the same topic by switching to a more holistic

organization-wide view:

±
I2:

For a much larger organization, I think this could make sense. Maybe

not for developers, but on a larger scale. For example, if a bug is reported

to some very general department inside the organization, maybe there

could be a filter that would automatically perform some sort of triage,

create a bug fix ticket, and assign it to the correct developer inside the

team that is responsible for that product.

On the more optimistic side, I5 had this to say about AI-driven bug triage:

6.2 RESULTS 67

±
I5:

If done right, I think that this could save a lot of time. It could help us

prioritize the right thing.

R:

What if the AI keeps selecting certain developers for certain type of

bug fixes, leaving the rest of developers out? Do you think that, if the

knowledge gained from fixing certain bugs keeps accumulating to certain

developers, it would become a problem?

I5:

I think that is a fixable problem. We can tune the algorithm to kind of

account for that and distribute the fixes more fairly. For example, if one

developer needs to gain knowledge on debugging React, we can assign

them more bug fixes related to React.

Interviewees felt that S5 might be more useful than S4. Some interviewees re-

ported to having used AI for debugging purposes to, for example, assess a stack of

error logs. For example, I2 had previously used AI for this, as he was not that famil-

iar with the specific programming language. However, they also recognized that AI

may not always be able to provide a solution for very specific and complex problems

that require knowledge on many different parts of the system. When asked about

utilizing AI for debugging, I3 had this to say:

6.2 RESULTS 68

±
I3:

I think that bug fixing is the sum of many different aspects of the system.

Essentially, you have the logs, the code, the functionality, and possibly

other things to consider as well. Perhaps it could work, but I have not

utilized AI for that.

R:

Would you use AI for, for example, debugging a code base that is unfa-

miliar to you? Or to find out what exactly is causing the error?

I3:

That is a difficult question to answer without knowing what the [AI]

tool should be like. If you consider the debugging process: you get the

imperfect log of what is happening, you use that to figure out how to

reproduce the bug, when does it occur, and what is the outcome. All

of this nuanced context has to be provided to the model or tool. The

process is very multifaceted, and requires various different perspectives

from the debugger.

6.2.5 AI-driven software testing and reviewing

To assess the potential enhancement of utilizing AI for testing and code reviewing

purposes, S6 and S7 were used in the interviews. Again, interviewees were very

hesitant in fully relying on AI to generate tests, especially complex ones like end-

to-end tests that require knowledge on the entire system. Instead, interviewees felt

that it is appropriate to generate simple unit tests that act as a starting point for

more complex and nuanced handwritten tests.

6.2 RESULTS 69

±
I5:

For me, I would say that AI is useful for generating tests as a starting

point. From there, you can expand your tests more. But if you fully rely

on that, it is kind of dangerous. It is almost like not writing any tests

at all.

I1 also had similar thoughts on the matter:

±
I1:

I think this has a lot of potential. This is something AI could really

do. Of course, I am not so satisfied with what AI can do right now,

but I think this has some great potential. For example, let’s say you are

adding a new feature. What we already have is a bunch of tests in the

code base. The AI can check them out and take them as context on how

to write new tests. We can generate the tests for the new feature, and

then we really just need to tweak them to make them complete. I think

this would really improve the quality of the code in the project. I don’t

think this is very difficult for AI, but I just feel that AI is not quite there

yet. AI generated code is very general, and not specific to the project.

Most interviewees saw S7 as not that useful, with the exception of I4. They

saw code reviews as something that should involve developers regardless of how fit

they are for reviewing the code that is being committed. This was for the same

reason as to why some interviewees preferred bugs to be assigned without AI: to

allow knowledge to be accumulated among the team of developers somewhat evenly.

I4, however, felt that AI could help in choosing the right reviewer:

6.2 RESULTS 70

±
I4:

I see potential in this. You could use many inputs for the AI like who

has been making most code changes lately, who has the most knowledge,

or who has the most work on their table right now. It depends on the

input, but if done correctly, I see some potential in this.

6.2.6 AI-enhanced CI/CD

To obtain the opinions of interviewees about utilizing AI for enhancing a CI/CD

pipeline, S8 was used. The interviewees did not find the automatic generation

of tests as part of the CI/CD pipeline as useful. The consensus was that tests

should be written prior to any deployment taking place. Additionally, interviewees

expressed similar concerns as presented in Section 6.2.5. I2 suspected that having

AI automatically merge tests into production code might do more harm than good:

±
I2:

We already have some tools at Company X that make automatic changes

to code repositories. And in some cases, they have caused harm. I

suspect that this would apply to an AI-powered solution as well. If you

have a release planned for Monday at 7 in the morning, and your AI

hallucinates some error into one of the unit tests it has generated, it can

do more harm than good.

However, interviewees generally responded positively to having AI assess pro-

duction system logs for a period of time after the deployment pipeline has finished.

I3 suggested, that this could be an ongoing thing, not just as part of the CI/CD

pipeline. However, I5 described a concrete example situation where production logs

are getting errors, which are difficult for the developers to interpret, and ultimately,

fix:

6.2 RESULTS 71

±
I5:

I am not sure about the unit test part, but I like the production system

logs part of it. Let’s say we deploy the system, and all the time there

are some kind of alerts. There are a lot of errors in the logs, let’s say

like error 403 and so on. This goes on for like 10 minutes. No one knows

what is causing this 403 error, and it is kind of not human readable.

Sometimes we don’t know what we are supposed to do with this kind of

an error. It would be nice to have some kind of an AI translate to us:

what kind of an error is it? Some service might be down, or something

like that.

6.2.7 AI-driven specification composition

In general, interviewees had similar thoughts about S9 and S10. For the most part,

they felt that AI would not be reliable in generating project-critical documents that

are the result of the preliminary analysis and requirements engineering. However,

most interviewees thought that AI could be used to generate a starting point for the

documents that would contain, for example, the most obvious requirements. But

ultimately, they would require the input of a human to be reliable.

Interviewees had similar thoughts about the accuracy of the information provided

by the AI. The accuracy is largely dependent on the context provided to the AI,

meaning that the results will be much more accurate if AI is given the correct

context, as pointed out by I2:

±
I2:

If we are creating a similar project that we have created in the past, AI

will be more useful. But if we are working with a completely new and

different idea and concept, it will be more difficult to utilize AI.

Interviewees were also hesitant in utilizing AI to, for example, prioritize require-

6.2 RESULTS 72

ments. They felt that AI would not be capable of accurately, and with great con-

sistency, to prioritize the requirements. Additionally, it would be difficult to collect

the required variables like stakeholder importance, development complexity, risks,

and schedule that need to be considered. I1 had this to say about the matter:

±
I1:

Development complexity can be evaluated based on the tasks we have

achieved before. I just feel that collecting the required data is a challenge

here. Things like stakeholder importance, these things cannot be easily

documented in a written way. These things require social intelligence

from humans, so I would say that AI can give assistance or suggestions,

but not really do the job without human involvement.

6.2.8 AI-enhanced agile development

Interestingly, interviewees had wildly different opinions about utilizing AI in agile

development as described in S11. Some interviewees felt that AI could not reliably,

for example, prioritize tasks as it is a difficult task even for humans to perform. Ad-

ditionally, some interviewees figured that having any kind of effective prioritization

would require a lot of input variables. I1 had this to say about the matter:

±
I1:

I could use AI to improve my writing. But prioritization? That requires

a lot of input and information which is not technically official, but more

so coming from shareholders in meetings, or even a gut feeling how im-

portant something is for the value creation. I do not think you can get

that kind of data easily. As for the estimation of tasks, I think that is

also really difficult. Even for humans estimating development tasks is

really difficult. You can estimate roughly, but you never know exactly

how much work something will take.

6.2 RESULTS 73

I3 described the value of agile in continuous discussion and improvement within

the team, rather than producing the most optimal backlog. They felt that if that is

taken away and automatized with AI, it could hinder the productivity of the team:

±
I3:

I think that this is kind of a double-edged sword. In backlog refinement,

the value is gained from the discussion within the team. The discussion

and designing part of refinement is more important than the outcome.

However, I2 recognized significant value in utilizing AI in splitting larger tasks

in the backlog into sub-tasks as well as estimating the amount of work:

±
I2:

When I think about backlog refinement, I could see it being useful in

cutting up the tasks and estimating the workload. You could have a

large task in the backlog, and the AI would split it into sub-tasks. If you

have a larger team where no one takes charge or facilitates the discussion,

it can be difficult for developers in that team to give estimates for tasks.

However, if AI hallucinates some number, even if it is completely wrong,

it would at least provoke some discussion in the team.

I2 also reported to having used AI for the purpose of generating tickets and

estimating story points in the past, being the only interviewee having done so:

6.2 RESULTS 74

±
I2:

For the refinement part, I myself have used AI for generating story points

for tasks. Tools like ChatGPT have been excellent for that. I was cre-

ating the architecture for a notification project, and I used ChatGPT to

generate all of the tickets and story points for me, which was really quick.

It got almost everything right, I only had to make small adjustments and

tweaks to make sure I included the things I wanted, and excluded what

I did not want.

6.2.9 Obstacles

The biggest obstacle in adopting AI solutions for software development mentioned by

interviewees was the trust issues and skepticism about the reliability of AI-generated

material. Currently, utilizing AI for software development requires human monitor-

ing to a large extent, especially if the task is crucial and failing to complete it

correctly would cause a great deal of harm. I4 highlighted the fact that because

commonly used software development AI tools like GitHub Copilot are trained with

material available on the internet. This implies that really great solutions to prob-

lems are few, and the models that power these AI tools are trained using material

that contains partially or even completely incorrect solutions to problems:

±
I4:

For me, the skepticism towards these AI tools comes from the lack of

proper training material. There aren’t that many top notch solutions

available for all coding problems on the internet. With that said, the

question is that can these AI models perform?

Additionally, interviewees felt that one major barrier for adopting AI-based so-

lutions, especially fully automated ones, to the software development lifecycle is the

ML models’ lack of ability to account for Company X’s individual workspace or code

6.2 RESULTS 75

base. The currently available models are, for the most part, very general. They are

not specific to Company X. I5 had this to say about the topic:

±
R:

Do you think that AI would be able to solve more complex problems

that require knowledge of an entire code base?

I5:

I believe not at the moment. I mean, with the current state of copilots,

it is not possible because it can only read the current file you are working

with. It cannot access the whole repository for example. That is clearly

a problem. It can only solve problems that are open to the internet and

have been solved in the past.

Another obstacle mentioned by an interviewee is the sheer size of Company X.

Company X is a large, mature and dominant company that wishes to remain that

way. This implies that implementing new and disruptive AI solutions throughout

the company is going to be costly and time-consuming. AI is also very immature

and likely to evolve rapidly over the following years. I2 described their thoughts on

the matter as follows:

±
I2:

Well, Company X being a publicly traded company, it has a responsibility

towards shareholders that have an equity stake in the company. The

funds of the company and its shareholders need to be protected, we can’t

just throw money to the next big innovation without careful thought and

planning.

Another issue mentioned by interviewees was data privacy and legal concerns.

However, as pointed out by I4, it is not really a concern anymore, because Company

X has been able to obtain licensed versions of commercialized AI products that do

6.2 RESULTS 76

not use company data to train the underlying models:

±
I4:

Understandably, one thing that has caused concern, as we have seen [in

media], is that some data would leak out because some commercialized

ML model uses the company data as input data to train the model. For

this reason, we are understandably limited to using the AI products that

have been licensed, where the input data is not used for training the

model.

7 Discussion

The goal of this chapter is threefold. First, we aim to interpret the results presented

in Section 6.2, and explore what observations we can make based on the thesis

topic while reflecting on the information we have gained from our literature review.

Secondly, we assess the observations, and discuss what concrete steps Company X

can take to apply the knowledge gained from this thesis. Finally, we use this chapter

to address the research questions we have set for this thesis.

The impact of AI-based solutions on the entire SDLC is discussed in Section

7.1, which addresses RQ1 and RQ2. To address RQ3, the current utilization of

AI at Company X, and the potential improvement of it, is discussed in Section

7.2. Furthermore, to address RQ4, obstacles and drawbacks of AI are discussed in

Section 7.3, with potential solutions presented when applicable. To summarize, the

purpose of this chapter is to serve as a bridge between the literature review and the

interviews, offering holistic insights about the research and its results.

7.1 Impact on SDLC

Based on the research material, all phases described in Table 3.1 appear to be

enhanceable with artificial intelligence to some extent, addressing RQ1. However,

the level of enhancement appears to vary wildly per each phase. For example, P1,

P2, P3 could potentially be enhanced to a rather small degree, while P4 and P5

could be enhanced quite a bit. The remaining phases, P6 and P7 could be enhanced

7.1 IMPACT ON SDLC 78

moderately. Similar variation can be recognized in tasks outlined in Table 3.2,

with the exception of T3, which did not come up during any of the interviews.

Arguably, this could be because of two reasons: (1) no scenario was proposed for

the task specifically, and (2) all interviewees were strictly software developers, not

user interface designers. However, this does not imply that T3 cannot be enhanced

with AI-based tools.

Next, addressing RQ2, we will discuss the level of enhancement for phases and

tasks. It is clear that some phases and tasks are easier to enhance, while some are

more difficult and not as apparent. Additionally, some enhancements appear to pro-

vide greater enhancements than others, making them more beneficial to each phase

and task as well as the entire SDLC. To gauge the level of potential enhancement, we

will consider two factors: (1) the open discussion, opinions, and examples expressed

by the interviewees, and (2) the rankings given for each scenario by interviewees.

While the rest of this section goes into further detail, an overview of AI enhancement

in SDLC is presented in Figure 7.1.

Given the interview discussions, P4 and P5 appear to be the phases that benefit

most from adoption of AI-based solutions in the SDLC. Interviewees clearly felt

that AI-based tools like GitHub Copilot provide a significant enhancement to the

aforementioned phases. Especially T4 and T5, when occurring within these phases,

appear to gain a vast enhancement from AI utilization. Interviewees did not only

discuss S1, one of the scenarios targeting these phases and tasks, in a rather positive

manner, but also ranked it with the highest average score of 4.4, as depicted in Table

6.2. One reason behind this could be that it is already adopted and frequently used

at Company X, and therefore it is an obvious enhancement from the interviewees’

perspective. Additionally, the aforementioned phases and tasks tend to be one of, if

not the most, time consuming phases and tasks of the entire SDLC.

On the other hand, P1, P2, P3, were not seen as phases that would benefit sig-

7.1 IMPACT ON SDLC 79

Figure 7.1: A holistic visual overview of AI enhancement in SDLC with phases 1-7
on the Y-axis and tasks 1-10 on the X-axis.

nificantly from the adoption of AI-based solutions. The same applies to T1 and T2,

which generally take place within the aforementioned phases. This was largely due

to the interviewees’ skepticism towards the reliability of AI-based tools to account

for the necessary context such as the opinions of stakeholders, potential risks, un-

foreseen circumstances, and architectural requirements. Rather, tools like Microsoft

Copilot and ChatGPT were seen as assistive tools that could speed up those phases

and tasks in a generic way, like providing summarizations of lengthy documents and

writing aid. However, interviewees were open to the idea of using AI to create a

starting point for some of the documentation and planning-intensive phases P1, P2,

and P3. This is reflected by the rankings of the targeting scenarios S9 and S10,

7.2 IMPROVING CURRENT UTILIZATION OF AI 80

which received an average ranking of 3.4 and 2.6, respectively.

Reflecting on the interviews, phases P6 and P7, as well as tasks T6, T7, T8, T9,

and T10 appear to benefit from AI enhancement moderately. Interestingly, in most

of the interviews, the interviewees innovatively discussed realistically implementable

AI-enhanced systems and workflows that have the potential to enhance the afore-

mentioned phases and tasks, but have not been implemented yet at Company X.

These were systems that were not captured by the scenarios presented in Chapter

5. These AI-powered solutions appear to be many, as different interviewees came

up with very different kinds of suggestions as to what they could be. Examples

of what the interviewees came up with are presented in Section 7.2. Furthermore,

these phases and tasks are not as commonly enhanced in the software development

field by AI-based tools or automation as, for example P4, P5, T4, and T5. This

makes the potential enhancements not as apparent and even somewhat unfamiliar

to the interviewees. Therefore, because of the sheer amount of different utilization

cases, it is not out of the question that these phases and tasks could in fact benefit

significantly from AI enhancement.

7.2 Improving current utilization of AI

To directly address RQ3, the current utilization of AI for software development at

Company X is largely revolving around T4 and T5 with most of the utilization hap-

pening in P4 and P5. Based on the interviews, it appears that little to no attention

is currently given to the other phases and tasks outlined in this thesis. Arguably, one

of the reasons behind this could be that utilizing AI for actual programming part

of SDLC is one of the most apparent and publicly discussed ways one can utilize AI

for software development. However, based on the findings of this thesis, there likely

exists a substantial amount of undiscovered potential in utilizing AI for the other

software development phases and tasks as well.

7.2 IMPROVING CURRENT UTILIZATION OF AI 81

In the case of Company X, the most significant improvements could be gained

from examining areas within the SDLC where capabilities of AI are not currently

being leveraged. By this we mean the examination and enhancement of both phases

and tasks, but also procedures related to the SDLC that are specific to Company

X. Discussion related to this very topic came up during the interviews. In addition,

concrete examples of what the enhancements could be were also a topic of discussion.

One example would be building an AI-powered production monitoring system

that would examine the production system logs and alert developers in certain cir-

cumstances. This system could also provide a small description of the problem,

making the debugging process faster. It would also add an extra layer of defence for

projects that are business-critical, and require careful and continuous monitoring.

While the interviewees’ opinions were not unanimous on the matter, another

example would be using AI to automatically generate a base layer of simple unit tests

for new projects or features that could then be improved upon by the developers.

Naturally, the blueprint for these tests would need to be strict and simple enough

for AI to be capable of generating them reliably.

Furthermore, triage-related enhancements were also discussed during the inter-

views, and they received mixed opinions as well. However, there could be some

potential in building, for example, an AI-powered pipeline where bug fix tickets are

automatically created and assigned to the correct team that has product owner-

ship of some software system or product. This could potentially decrease the time

between the detection and recognition of a bug, and the fixing of it.

To handle the migration of older documentation to a newer format, one inter-

viewee proposed a process where old documentation is converted to a new format

using AI. Building on that, the process could potentially be extended to something

else, like documentation generation based on the contents of a pull request, which

could be automatized to be done in all future pull requests as well. For GitHub code

7.3 OBSTACLES AND DRAWBACKS 82

repositories, this would mean the automatic generation of a Markdown README

file.

From a project management viewpoint, agile development could potentially be

enhanced using artificial intelligence. One interviewee described utilizing AI for

managing and estimating the size backlog items by (1) splitting large tasks into

smaller sub-tasks and (2) estimating the workload using AI, and even reported to

having done so in the past. While some interviewees had contradicting opinions,

such a solution could prove to be an enhancement if implemented well and used

moderately.

7.3 Obstacles and drawbacks

To address RQ4, we need to consider the literature review we have done in Chapter

4 regarding artificial intelligence. Based on the review, we know that the algorithms

that power AI-based tools like GitHub Copilot are simply aiming to predict what

is the next most likely piece of a pattern. Given this information, we can make the

assumption that the algorithms, and their ability to make correct predictions, are

very highly dependent on the training material. Additionally, context is crucial for

machine learning algorithms because it provides rather essential information to the

model that allows it to make more accurate predictions. Without proper context,

the model is more likely to find superficial patterns in data that lead to incorrect

generalizations. This is one of the key obstacles of adopting AI, and it was recognized

on a high level by the interviewees. One way to combat the context problem is to

provide the necessary context. This could mean allowing the model to analyze, for

example, a code repository prior to utilizing the model to generate new code in the

context of the repository.

One drawback that came up during the interviews was the fact that over-reliance

on AI to generate code can lead to code repositories that contain poor quality code.

7.3 OBSTACLES AND DRAWBACKS 83

In addition, excessively relying on AI could lead to reduced critical thinking, erosion

of core programming skills, and reduced learning opportunities for developers using

it over time. Especially junior-level developers are prone to these pitfalls as they are

still learning to a great degree, and should not overly rely on AI to solve problems for

them. This issue is also emphasized by the fact that currently developers are using

AI in very different ways. To combat this nuanced issue, Company X has different

options. One option is to standardize and regulate AI usage for code generation to

meet certain guidelines. Another option is to educate developers on how assistive

AI tools like GitHub Copilot can be used optimally to speed up the writing process

while maintaining control and high quality.

The large size of Company X makes the adoption of new technologies and in-

novations more difficult than when compared to, for example, a startup. A small

company can move fast, and quickly adopt new technologies as well as tear them

down as they come and go. However, this is not the case for a large company. As

pointed out by the interviewees, Company X should exercise caution when investing

into new and disruptive solutions like AI. Committing to the wrong thing will likely

have a long-term negative economic effect on the company. Fortunately, there are

ways that Company X can utilize to work around this issue. For example, Com-

pany X can launch small internal proof of concepts that test a particular AI-based

solution in some selected small component within the organization. This could be a

specific product, feature, or a team. Then, once the proof of concept is completed,

they can choose to let go of the idea, or extend it into another component within

the organization. Another option is to consult experts that have adopted AI in a

similar setting as Company X. This way Company X can learn about the adoption

of AI in a similar setting without doing so themselves, and learning everything from

scratch.

8 Conclusions

In this chapter, we conclude the thesis by directly addressing the research questions

presented in Chapter 1. We also want to shed light on the limitations of the research

and provide suggestions for further research. We do this in an effort to (1) improve

transparency and credibility as well as (2) provide a potential direction for further

research.

In this thesis we set out to explore the world of enhancing software develop-

ment phases and tasks with AI-based solutions. To accomplish this, we first laid

out the basis for the thesis by reviewing contextually important academic litera-

ture on software development as well as artificial intelligence and machine learning.

Then, we innovated potential enhancement scenarios, and held semi-structured in-

terviews with software developers working at Company X. Finally, we interpreted

and discussed the results of the interviews, and drew our conclusions based on the

research.

8.1 Remarks

Beginning by addressing RQ1 and RQ2, the research indicates that all phases and

tasks of the SDLC can be enhanced by artificial intelligence to some degree. How-

ever, the extent of enhancement varies significantly between the phases and tasks.

Phases P4 and P5, along with tasks T4 and T5, benefit the most from AI tools

like GitHub Copilot, which interviewees rated highly, especially for time-intensive

8.1 REMARKS 85

activities. In contrast, phases P1, P2, and P3, as well as tasks T1 and T2, were

viewed as less suited to AI enhancement, largely due to the complexity of contex-

tual factors such as stakeholder input and architectural decisions. However, AI was

seen as useful for generic support like writing aid. Phases P6 and P7 and tasks

T6–T10 showed moderate potential for AI enhancement, with interviewees propos-

ing creative AI-enhanced solutions that have yet to be implemented at Company X.

This indicates possible future enhancements for the taking. Overall, AI shows great

promise in certain areas of the SDLC, particularly in repetitive or time-consuming

tasks, but its full potential is unknown.

Next, we will address RQ3. Currently, AI is primarily used in phases P4 and P5

and tasks T4 and T5 at Company X. This means that the usage is mainly focused

towards the implementation of software and tests. The remaining phases and tasks,

however, appear to receive little to no attention, likely because of AI’s role as a

coding assistant is widely recognized and frequently in the spotlight, leaving other

potential utilization scenarios in the dark. However, this research suggests substan-

tial untapped potential for AI enhancement across the entire SDLC. Interviewees

proposed several AI-driven improvements, including AI-powered production moni-

toring systems for enhanced monitoring and faster debugging, automated generation

of simple unit tests, and an AI-based triage pipeline for managing and directing bug

fixes. Additional ideas included AI-assisted documentation migration and genera-

tion as well as agile development enhancements through AI-based task estimation

and backlog management.

Addressing RQ4, Company X is facing some obstacles in the adoption of AI

that could be mitigated. To overcome obstacles in AI adoption, Company X has

several options to choose from. First, they can mitigate the risk of low-quality AI-

generated code and the erosion of developers’ critical thinking due to excessive AI

usage by standardizing the usage itself, and educating their developers on optimal

8.2 RESEARCH LIMITATIONS 86

practices. Additionally, to address challenges related to their large size, Company X

can start with small internal proof-of-concept projects to test AI solutions on specific

components, features, or teams before scaling up. This allows the company to test

and experiment without fully committing to any specific AI solution. Another option

is to consult with experts who have successfully adopted AI in a similar large-scale

setting, helping Company X learn from experiences outside of the company and

avoid potential missteps.

8.2 Research limitations

The research done in this thesis is not without its limitations. One clear limitation

of the research is the lack of interviewees. The opinions of five developers is not

sufficient enough to capture the general consensus among all software developers,

perhaps not even the consensus among Company X’s developers. However, it does

provide some direction and insight as to what the consensus might be. Additionally,

having only five individual interviewees means that the opinions of those developers

are emphasized in this thesis. With that said, it is not out of the question that

the selection of interviewees contains developers that have wildly different views on

the topic when compared to the majority of developers, which could certainly skew

the results. All interviewees also represent a rather similar, albeit common, type of

software development: full-stack and mobile development. Therefore, this research

could be improved by inclusion of a more diverse background of software developers.

Finally, including interviewees who are not explicitly software developers, but work

within the software development lifecycle, could be useful. An example of such

interviewees could be people working with user interface design related tasks.

Arguably, another limitation is that the selection of interviewees is limited to

Company X’s employees. Software development varies from company to company,

meaning that things may be done differently in other companies than they are at

8.3 FURTHER RESEARCH 87

Company X. This certainly has an effect on the results. However, while this can be

interpreted as a limitation for RQ1 and RQ2, it is an essential factor for examining

RQ3 and RQ4, which are targeting Company X specifically.

Finally, the list of scenarios presented in Chapter 5 is not exhaustive. It does

not contain every possible scenario for AI enhancement in software development.

However, it does capture common elements in software development that could

benefit from enhancement. What the ideal list of enhancement would look like is

going to vary from company to company. That list would also be likely to change

as time goes on as the capabilities of AI increases.

8.3 Further research

As pointed out in Section 8.2, this research would likely benefit from additional

interviewees from different types of software development. Additionally, it would

be beneficial to increase the sheer amount of developers interviewed to better gauge

the experiences and opinions of more developers.

For Company X specifically, this research could be extended by examining po-

tential enhancements in software development phases and tasks that are specific to

Company X. At the time of writing, the focus of the research could be in identify-

ing practical enhancements by automating things where traditional automation, like

rule-based if-then systems, are not capable of completing the task, but the solution

is within reach with the aid of an AI-based tool.

However, as time goes on, AI and ML models are very likely to make signifi-

cant advancements in what they are capable of solving. Future research should be

adjusted to accommodate those advancements. One interesting direction to take

would be to research how companies could better incorporate their own context into

the utilization of AI, as one of the biggest stumbling blocks in AI adaptation and

utilization is the lack of context.

References

[1] M. Egan. “AI is replacing human tasks faster than you think”. Online; accessed

September 22nd, 2024. (2024), [Online]. Available: https://edition.cnn.

com/2024/06/20/business/ai-jobs-workers-replacing/index.html.

[2] G. R. Marczyk, D. DeMatteo, and D. Festinger, Essentials of research design

and methodology. John Wiley & Sons, 2010, vol. 2.

[3] K. Petersen, C. Wohlin, and D. Baca, “The waterfall model in large-scale

development”, in Product-Focused Software Process Improvement: 10th Inter-

national Conference, PROFES 2009, Oulu, Finland, June 15-17, 2009. Pro-

ceedings 10, Springer, 2009, pp. 386–400.

[4] L. R. Vijayasarathy and C. W. Butler, “Choice of software development method-

ologies: Do organizational, project, and team characteristics matter?”, IEEE

software, vol. 33, no. 5, pp. 86–94, 2015.

[5] T. Rajala and H. Aaltonen, “Reasons for the failure of information technology

projects in the public sector”, The Palgrave handbook of the public servant,

pp. 1075–1093, 2021.

[6] N. M. A. Munassar and A. Govardhan, “A comparison between five models

of software engineering”, International Journal of Computer Science Issues

(IJCSI), vol. 7, no. 5, p. 94, 2010.

https://edition.cnn.com/2024/06/20/business/ai-jobs-workers-replacing/index.html
https://edition.cnn.com/2024/06/20/business/ai-jobs-workers-replacing/index.html

REFERENCES 89

[7] N. B. Ruparelia, “Software development lifecycle models”, ACM SIGSOFT

Software Engineering Notes, vol. 35, no. 3, pp. 8–13, 2010.

[8] B. W. Boehm and W. J. Hansen, “Spiral development: Experience, principles,

and refinements”, 2000.

[9] P. Beynon-Davies, C. Carne, H. Mackay, and D. Tudhope, “Rapid application

development (rad): An empirical review”, European Journal of Information

Systems, vol. 8, no. 3, pp. 211–223, 1999.

[10] G. Coleman and R. Verbruggen, “A quality software process for rapid appli-

cation development”, Software Quality Journal, vol. 7, pp. 107–122, 1998.

[11] D. K. Rigby, S. Berez, G. Caimi, and A. Noble, “Agile innovation”, Bain &

Company Brief, 2016.

[12] “Manifesto for Agile Software Development”. Online; accessed February 14th,

2024. (2001), [Online]. Available: https://agilemanifesto.org/.

[13] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile software de-

velopment methods: Review and analysis”, arXiv preprint arXiv:1709.08439,

2017.

[14] D. T. Llewellyn, “Financial technology, regulation, and the transformation of

banking”, in The European Money and Finance Forum (SUERF) conference:

Financial Disintermediation and the Future of Banking Sector, 2018.

[15] R. F. Bortolini, M. Nogueira Cortimiglia, A. d. M. F. Danilevicz, and A.

Ghezzi, “Lean startup: A comprehensive historical review”, Management De-

cision, vol. 59, no. 8, pp. 1765–1783, 2021.

[16] E. Brechner, Agile project management with Kanban. Pearson Education, 2015.

[17] “The 2020 Scrum Guide”. Online; accessed February 19th, 2024. (2020), [On-

line]. Available: https://scrumguides.org/scrum-guide.html.

https://agilemanifesto.org/
https://scrumguides.org/scrum-guide.html

REFERENCES 90

[18] M. Sliger, “Agile project management with scrum”, Project Management In-

stitute, 2011.

[19] R. Jain and U. Suman, “A systematic literature review on global software

development life cycle”, ACM SIGSOFT Software Engineering Notes, vol. 40,

no. 2, pp. 1–14, 2015.

[20] C. Ebert, “The impacts of software product management”, Journal of systems

and software, vol. 80, no. 6, pp. 850–861, 2007.

[21] B. H. Cheng and J. M. Atlee, “Research directions in requirements engineer-

ing”, Future of Software Engineering (FOSE’07), pp. 285–303, 2007.

[22] P. Ralph and Y. Wand, “A proposal for a formal definition of the design con-

cept”, in Design Requirements Engineering: A Ten-Year Perspective: Design

Requirements Workshop, Cleveland, OH, USA, June 3-6, 2007, Revised and

Invited Papers, Springer, 2009, pp. 103–136.

[23] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements

of reusable object-oriented software. Pearson Deutschland GmbH, 1995.

[24] P. Freeman and D. Hart, “A science of design for software-intensive systems”,

Communications of the ACM, vol. 47, no. 8, pp. 19–21, 2004.

[25] R. Rodriguez-Echeverria, J. L. C. Izquierdo, M. Wimmer, and J. Cabot, “To-

wards a language server protocol infrastructure for graphical modeling”, in

Proceedings of the 21th ACM/IEEE International Conference on Model Driven

Engineering Languages and Systems, 2018, pp. 370–380.

[26] K. Muşlu, Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Speculative

analysis of integrated development environment recommendations”, ACM SIG-

PLAN Notices, vol. 47, no. 10, pp. 669–682, 2012.

REFERENCES 91

[27] E. Aghajani, C. Nagy, O. L. Vega-Márquez, et al., “Software documentation is-

sues unveiled”, in 2019 IEEE/ACM 41st International Conference on Software

Engineering (ICSE), IEEE, 2019, pp. 1199–1210.

[28] M. A. Umar, “Comprehensive study of software testing: Categories, levels,

techniques, and types”, International Journal of Advance Research, Ideas and

Innovations in Technology, vol. 5, no. 6, pp. 32–40, 2019.

[29] J. Lee, S. Kang, and D. Lee, “Survey on software testing practices”, IET soft-

ware, vol. 6, no. 3, pp. 275–282, 2012.

[30] J. Humble and D. Farley, Continuous delivery: reliable software releases through

build, test, and deployment automation. Pearson Education, 2010.

[31] M. V. Mäntylä and J. Vanhanen, “Software deployment activities and chal-

lenges - a case study of four software product companies”, in 2011 15th Euro-

pean Conference on Software Maintenance and Reengineering, 2011, pp. 131–

140. doi: 10.1109/CSMR.2011.19.

[32] S. Wu. “Introducing Devin, the first AI software engineer”. Online; accessed

March 21st, 2024. (2024), [Online]. Available: https : / / www . cognition -

labs.com/introducing-devin.

[33] Tesla, Inc. “Autopilot”. Online; accessed March 21st, 2024. (2024), [Online].

Available: https://www.tesla.com/autopilot.

[34] “Artificial Intelligence: Defining an Often-Misused Term”. Online; accessed De-

cember 28th, 2023. (2023), [Online]. Available: https://whattheythink.com/

articles/108945-artificial-intelligence-defining-often-misused-

term/.

[35] “AI is a Buzzword. Here Are the Real Words to Know”. Online; accessed

January 8th, 2024. (2023), [Online]. Available: https://medium.com/the-

https://doi.org/10.1109/CSMR.2011.19
https://www.cognition-labs.com/introducing-devin
https://www.cognition-labs.com/introducing-devin
https://www.tesla.com/autopilot
https://whattheythink.com/articles/108945-artificial-intelligence-defining-often-misused-term/
https://whattheythink.com/articles/108945-artificial-intelligence-defining-often-misused-term/
https://whattheythink.com/articles/108945-artificial-intelligence-defining-often-misused-term/
https://medium.com/the-generator/ai-is-a-buzzword-here-are-the-real-words-to-know-47b1e0a324a7
https://medium.com/the-generator/ai-is-a-buzzword-here-are-the-real-words-to-know-47b1e0a324a7

REFERENCES 92

generator/ai-is-a-buzzword-here-are-the-real-words-to-know-

47b1e0a324a7.

[36] IBM. “What is artificial intelligence (AI)?” Online; accessed March 21st, 2024.

(2024), [Online]. Available: https://www.ibm.com/topics/artificial-

intelligence.

[37] E. Brynjolfsson, D. Li, and L. R. Raymond, “Generative ai at work”, National

Bureau of Economic Research, Tech. Rep., 2023.

[38] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and

prospects”, Science, vol. 349, no. 6245, pp. 255–260, 2015.

[39] E. F. Morales and H. J. Escalante, “A brief introduction to supervised, unsu-

pervised, and reinforcement learning”, in Biosignal processing and classification

using computational learning and intelligence, Elsevier, 2022, pp. 111–129.

[40] T. Jiang, J. L. Gradus, and A. J. Rosellini, “Supervised machine learning: A

brief primer”, Behavior therapy, vol. 51, no. 5, pp. 675–687, 2020.

[41] IBM. “What is semi-supervised learning?” Online; accessed March 30th, 2024.

(2024), [Online]. Available: https://www.ibm.com/topics/semi-supervised-

learning.

[42] X. Wu, V. Kumar, J. Ross Quinlan, et al., “Top 10 algorithms in data mining”,

Knowledge and information systems, vol. 14, pp. 1–37, 2008.

[43] S. H. Chen and C. A. Pollino, “Good practice in bayesian network modelling”,

Environmental Modelling & Software, vol. 37, pp. 134–145, 2012.

[44] D. Heckerman, “A tutorial on learning with bayesian networks”, Innovations

in Bayesian networks: Theory and applications, pp. 33–82, 2008.

[45] “GitHub Copilot - Your AI pair programmer”. Online; accessed December 28th,

2023. (2023), [Online]. Available: https://github.com/features/copilot.

https://medium.com/the-generator/ai-is-a-buzzword-here-are-the-real-words-to-know-47b1e0a324a7
https://medium.com/the-generator/ai-is-a-buzzword-here-are-the-real-words-to-know-47b1e0a324a7
https://medium.com/the-generator/ai-is-a-buzzword-here-are-the-real-words-to-know-47b1e0a324a7
https://medium.com/the-generator/ai-is-a-buzzword-here-are-the-real-words-to-know-47b1e0a324a7
https://www.ibm.com/topics/artificial-intelligence
https://www.ibm.com/topics/artificial-intelligence
https://www.ibm.com/topics/semi-supervised-learning
https://www.ibm.com/topics/semi-supervised-learning
https://github.com/features/copilot

REFERENCES 93

[46] E. Dehaerne, B. Dey, S. Halder, S. De Gendt, and W. Meert, “Code generation

using machine learning: A systematic review”, Ieee Access, 2022.

[47] “Docify AI – Code Comment & Documentation Tool”. Online; accessed Decem-

ber 28th, 2023. (2023), [Online]. Available: https://docify.ai4code.io/.

[48] “DocuWriter.ai - #1 AI Code documentation tools”. Online; accessed May

18th, 2024. (2024), [Online]. Available: https://www.docuwriter.ai/.

[49] N. K. Nagwani and J. S. Suri, “An artificial intelligence framework on soft-

ware bug triaging, technological evolution, and future challenges: A review”,

International Journal of Information Management Data Insights, vol. 3, no. 1,

p. 100 153, 2023.

https://docify.ai4code.io/
https://www.docuwriter.ai/

Appendix A Interview questions

Current utilization of AI

Q1: Do you currently utilize AI in software development? If so, how? Any specific

tools you are currently using?

Q2: What kind of benefits does AI provide for you?

Scenarios

Q3: Given these scenarios, how useful and implementable do you find each scenario?

List of scenarios provided to each interviewee prior to the interview.

Obstacles

Q4: Are there any obstacles that you have faced at Company X in adopting AI, and

if so, what kind of obstacles?

Q5: When using AI in software development, do you use it differently in Company

X’s projects than you have in your personal projects or past projects with other

companies?

Q6: How have you gained knowledge about AI based tools?

Q7: Are you currently sharing information with other Company X developers, and

if so, how?

Q8: How could sharing information among developers at Company X about artificial

APPENDIX A. INTERVIEW QUESTIONS A-2

intelligence be improved?

Appendix B Notice of AI usage in

the thesis

Artificial intelligence has been utilized in the process of writing this thesis. However,

AI has been utilized only as an assistive writing tool, not as a means of generating

content for the thesis. The usage has been strictly limited to generating ideas for how

to phrase things, improving grammar and the content already written by the author,

and generally refining the expression of ideas as a whole. The core arguments,

analysis, and research presented in this thesis are authored by the researcher, with

AI serving only as an assistive tool for writing.

	Introduction
	Research Design
	Environment
	Data collection
	Literature review
	Interviews

	Software Development
	Models
	Waterfall model
	V-model
	Spiral model
	Rapid application development
	Agile development methodologies

	Phases
	Preliminary analysis
	Requirements engineering
	Software design
	Implementation
	Testing
	Deployment
	Maintenance

	Tasks
	Summary

	Artificial Intelligence and Machine Learning
	Artificial intelligence
	Machine learning
	Approaches to machine learning
	Supervised learning
	Unsupervised learning
	Semi-supervised learning
	Reinforcement learning

	Machine learning models
	Neural networks
	Decision trees
	Regression analysis
	Bayesian networks

	Summary

	Utilization of Artificial Intelligence
	Source code generation
	Software documentation generation
	AI-driven bug triage and debugging
	AI-driven software testing and reviewing
	AI-enhanced CI/CD
	AI-driven specification composition
	AI-enhanced agile development

	Interviews
	Interview questions
	Current utilization of AI
	Scenarios
	Obstacles

	Results
	Current utilization of AI
	Source code generation
	Software documentation generation
	AI-driven bug triage and debugging
	AI-driven software testing and reviewing
	AI-enhanced CI/CD
	AI-driven specification composition
	AI-enhanced agile development
	Obstacles

	Discussion
	Impact on SDLC
	Improving current utilization of AI
	Obstacles and drawbacks

	Conclusions
	Remarks
	Research limitations
	Further research

	References
	Interview questions
	Notice of AI usage in the thesis

