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In recent years, Light Detection and Ranging (LiDAR) technology, a critical sen-
sor in robotics and autonomous systems, has seen significant advancements. These
improvements include enhanced resolution of point clouds and the capability to pro-
vide 360° low-resolution images. These images encode various data such as depth,
reflectivity, and near-infrared light within the pixels. However, an excessive density
of points and conventional point cloud sampling can be counterproductive, particu-
larly in applications such as LiDAR odometry, where misleading points may induce
drift errors and geometry information is degraded. Currently, extensive research
efforts are being directed towards leveraging LiDAR-generated images to improve
situational awareness.
This paper presents a comprehensive review of current deep learning (DL) tech-
niques, including colorization and super-resolution, which are traditionally utilized
in conventional computer vision tasks. These techniques are applied to LiDAR-
generated images and are analyzed qualitatively. BBuilding on this analysis, we
have developed a novel approach that selectively integrates the most effective meth-
ods with LiDAR imagery to sample reliable points from the LiDAR point cloud.
This approach aims to not only improve the accuracy of point cloud registration but
avoid mismatching caused by lacking of geometry information, thereby augment-
ing the utility and precision of LiDAR systems in practical applications. In our
evaluation, the proposed approach demonstrates superior performance compared to
our previous work, achieving lower translation and rotation errors with a reduced
number of points.

Keywords: LiDAR, Odometry, Super-Resolution, Colorization, LiDAR-as-a-camera,
Point Cloud Sampling
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1 Introduction

LiDAR (Light Detection and Ranging) sensors have become increasingly significant

in various domains of robotics and autonomous systems, particularly in navigation,

perception, LiDAR Odometry (LO), and Simultaneous Localization and Mapping

(SLAM) [1], [2]. Key factors that facilitate LiDARs’ utility are the progressively

increasing precision and density of point cloud data, which offers extensive geomet-

ric information about the surroundings. LiDAR technology is able to provide sys-

tems with accurate 3D spatial information from point cloud data, enabling robots

to understand and respond to changes in their surroundings in real time. As Li-

DAR sensor accuracy and point cloud density continue to increase, the accuracy of

navigation and localization tasks has improved dramatically. High-precision point

cloud data not only provides rich geometric detail, but also improves the resolution

of environment modeling, thus enhancing the system’s ability to perceive complex

environments.

However, despite the increasing quality and resolution of point cloud data, there

are still challenges in processing LiDAR data. During calculating accurate LO or

SLAM, the dense point cloud and conventional sampling approaches may intro-

duce more inaccuracies, leading to error drift, which in turn affects the accuracy

of localization and map construction. This issue becomes particularly evident in

environments where geometric information is degraded, such as tunnels and corri-

dors. Consequently, the process of extracting relevant points from the LiDAR point
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cloud is of notable importance for effective point cloud registration. In these en-

vironments, the geometric features in LiDAR data are often insufficient to provide

accurate spatial location information, and the system has difficulty distinguishing

between different locations, leading to increased localization errors.

Nowadays, continuously more LiDAR manufacturers enable the capability of

LiDARs to capture low-resolution panoramic images by encoding the depth, re-

flectivity, and near-infrared light information within the pixels. This technologi-

cal breakthrough in multidimensional data fusion allows LiDAR to go beyond tra-

ditional geometric modeling tasks and generate richer environmental information.

And this development holds significant potential for the application of deep learn-

ing (DL) techniques from the traditional computer vision field to LiDAR-generated

images [3]. Such applications are particularly advantageous given that DL models

utilized directly to point cloud data tend to be computationally expensive.

In addition, LiDAR-generated images open up new opportunities for computer

vision tasks such as semantic segmentation, target detection, and object recognition.

Combining reflectance information with depth images, the system can recognize and

classify objects more accurately with existing DL models. Meanwhile, the use of

near-infrared light data enhances the system’s performance in low-light and complex

environments, providing higher robustness and reliability for autonomous driving,

robot navigation, and other fields.

In the context of enhancing the accuracy and robustness of LO, existing research

has primarily focused on traditional methods utilizing intensity information for the

displacement calculation between image frames [4]. In our previous work, we as-

sessed the performance of keypoint detectors and extractors on LiDAR-generated

images, exploring the potential of these tools to enhance the robustness of LO [5].

However, there remains significant potential for other DL approaches to improve

system robustness further. For instance, Figure 1.2 illustrates our evaluation of
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Figure 1.1: Example of potential drift and its correctness of our proposed approach.

Figure 1.2: Results of DL-based super-resolution and colorization on a LiDAR gen-
erated image. The RGB image is shown on the left side, the images on the right,
from top to bottom, represent the LiDAR-generated signal image, the colorized
near-infrared (near-IR) image, and the colorized signal image, respectively

one of the DL-based super-resolution and colorization approaches applied to LiDAR

images. Given that LiDAR-generated images are low-resolution, these techniques

demonstrate significant potential for enhancement. In addition to this, unlike in our

previous work, we employed key point extractors across all color channels (R, G,

and B) of the image, rather than restricting the extraction to a single channel.
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1.1 Problem Statement

Currently, LO exhibits some lack of robustness when facing scenes with degraded

geometric information. These degraded scenarios may include low-texture, planar

surfaces, long-range targets, etc., which makes it difficult for the system to accurately

capture the geometric features of the surrounding environment. In addition, despite

some progress in the work in [6] using LiDAR-generated images, the performance of

the existing methods can still be improved when facing complex degraded scenes.

Meanwhile, with the development of LiDAR technology, the potential of LiDAR data

to generate images has not been fully investigated and utilized. By better mining

and fusing LiDAR-generated image information, it may be possible to improve the

performance of the system in complex environments. Therefore, how to improve

the robustness of LiDAR Odometry to scenes with degraded geometric information

and fully utilize the potential of LiDAR-generated images has become an important

issue that needs to be addressed.

Despite the rapid adoption of LiDAR in autonomous driving, LiDAR-generated

images have a low presence in the visual domain. Previous experiments using signal

image keypoints to estimate LiDAR’s odometry in a new approach have shown

dramatic improvements in drift in LO. However, in terms of rotation offset, perhaps

due to the lack of a reference with only a single image. The new idea we propose

brings down the rotation error.

1.2 Significance and Motivation

In the field of deep learning, Colorization and Super-Resolution techniques have

made significant progress. Colorization technology can convert grayscale images

into color images to enrich visual information, while Super-Resolution technology

can improve the resolution of images and enhance the detail performance. These
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two techniques have been widely used in natural image restoration, enhancement

and medical image processing, and have demonstrated powerful processing capabil-

ities. However, although they show great potential in visual data processing, their

application in LiDAR-generated images has not been fully explored.

LiDAR-generated images differ significantly from traditional natural images due

to characteristics such as low resolution, sparse data, and non-visual spectra. This

makes it challenging to effectively apply colorization and super-resolution techniques

on LiDAR images. However, if these techniques can be successfully applied to

LiDAR image processing, they will provide important opportunities to improve the

overall performance of LiDAR systems. For example, the colorization technique

can introduce more dimensional information into the otherwise monotonous LiDAR

images to enhance their visual expression, while the super-resolution technique can

make up for the shortcomings of low resolution of LiDAR data and improve the

capture and understanding of environmental details.

Combining the recent advances of these techniques in the field of deep learning

and exploring their applications in LiDAR image processing not only helps to im-

prove the quality of LiDAR-generated images, but also may provide new solutions

and ideas for existing work, which in turn will promote the development of LiDAR

Odometry as well as other related fields. This is the core motivation of this study.

Currently, there is a lack of systematic benchmarking on the processing effec-

tiveness of LiDAR-generated images in different environments, especially the per-

formance of colorization and super-resolution techniques applied. This has led to

a bottleneck in the further development of LiDAR-based simultaneous localization

and map building (SLAM) techniques in diverse environments. To fill this research

gap, we propose a benchmark test comparing the effect of colorization and super-

resolution techniques on LiDAR image processing in different environments (e.g.,

open roads, forests, indoor offices, halls). This benchmark test provides the pos-



1.4 STRUCTURE OF THE THESIS 6

sibility of evaluating the performance of LiDAR-based SLAM systems in diverse

scenarios and helps to assess the robustness of the system to real-world scenarios.

We hope that the research results in this paper can provide useful references and

insights for other scholars with similar interests in this field.

1.3 Contribution

To address these issues, this paper gives the most comprehensive review of existing

DL-based super-resolution and colorization methods, offering a detailed comparison

of their key features. Subsequently, we provide a qualitative analysis of their perfor-

mance on low-resolution panoramic LiDAR-generated images, aiming to enrich the

photometric information available. Building on this analysis, we applied these DL

approaches to keypoint extraction, testing various combinations of LiDAR-generated

images enhanced through super-resolution and colorization techniques. Our evalua-

tion of LO accuracy revealed that these methods resulted in improved accuracy and

robustness compared to our previous work.

1.4 Structure of the Thesis

This paper is structured into six chapters, each providing a coherent flow of the

research process.

1. Chapter 2 offers an overview of the related work, discussing current state-of-

the-art studies, as well as the foundational settings, software, and hardware

systems utilized in the development of this research.

2. Chapter 3 delivers an in-depth survey of existing deep learning-based models

for colorization and super-resolution.
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3. Chapter 4, the research methodology is thoroughly detailed, including the

experimental design, technical discussion, and a description of the algorithms

employed.

4. Chapter 5 presents the experimental results, offering insights into the findings.

5. Chapter 6 concludes the thesis, summarizing the contributions and outlining

directions for future work.



2 Related Work

This section first introduce the LiDARs, then presents the methods of point cloud

processing with sampling and matching. This is followed by a brief analysis of the

LiDAR Odometry with point cloud and the pipeline of robotic operating system. Fi-

nally, summarize and explain the LiDAR application in robotics and some keypoint

extractor methods.

2.1 LiDARs

LiDAR is an advanced sensor technology that uses lasers to scan the surface of

a target object in order to construct detailed three-dimensional information. The

technology works by emitting high-frequency laser pulses, which are reflected when

they encounter an object, and the sensor measures the round-trip time delay of the

light by recording the time it takes for the light to be reflected back to the sensor,

which in turn accurately calculates the distance between the object and the sensor.

This process is capable of generating 3D point cloud data with very high accuracy,

accurately reflecting the spatial structure of the surrounding environment.

The images generated by the OS0-64 shown in Figure 2.1 include a signal image,

a range image, and a point cloud with expansive 360° × 90° field of view. Range

image is a 2D image representation of the distance between the LiDAR sensor and

objects in the environment. It is created from the 3D point cloud data collected by

the LiDAR sensor and shows the distance from each point in the sensor’s field of
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view to the sensor itself. And signal image represents the strength of the reflected

laser signal. Signal intensity is a measure of how much of the emitted laser energy

is reflected back to the sensor, and is affected by material, surface roughness and

reflection angle.

Figure 2.1: Samples of LiDAR-generated images, from top to bottom, are signal
image, range image, and point cloud

The advantage of LiDAR technology is its ability to provide high-resolution data

under different environmental conditions, especially when the field of view is limited

or the ambient light is insufficient. Compared to traditional imaging methods, such

as photogrammetry or satellite imagery, LiDAR technology has greater penetration

capabilities and can effectively cope with adverse weather conditions such as light

rain and light fog. In addition, because LiDAR does not rely on natural light

sources, it continues to provide accurate 3D environmental data at night or in low
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light conditions. This gives LiDAR an irreplaceable advantage in applications that

require real-time, accurate sensing, especially in self-driving cars and unmanned

aircraft systems that need to deal with complex environments.

In the field of robotics and autonomous driving, LiDAR, as one of the core

sensors, can help the system perceive the surrounding environment in real time,

and realize the functions of path planning and obstacle avoidance, etc. LiDAR’s

high-precision data helps the system quickly identify and classify obstacles on the

road, ensuring that the vehicle or robot can perform its tasks safely and reliably.

The three-dimensional point cloud data acquired by LiDAR enables self-driving cars

to build accurate maps of the environment so that they can make effective driving

decisions.

In addition, LiDAR also plays an important role in the fields of geographic in-

formation systems (GIS) [7], surveying and mapping, archaeology [8], and urban

modeling [9]. LiDAR systems can generate high-resolution topographic maps and

three-dimensional models, providing accurate spatial data that can help with geo-

graphic analysis and spatial research. For example, in terrain mapping, LiDAR tech-

nology can obtain fine terrain information that cannot be captured by traditional

methods, and is especially suitable for accurate modeling of complex landforms.

Compared with traditional RGB cameras, LiDAR sensors not only have a wider

range of distance detection, but also have higher ranging accuracy and can capture

finer depth information than cameras. Therefore, in applications that require high

accuracy and high reliability, LiDAR technology shows strong competitiveness by

virtue of its robustness and robustness, and is especially suitable for data collection

and analysis in complex and dynamic environments.

In summary, this section not only introduces the basic principles of LiDAR tech-

nology, but also outlines its applications and importance in several key areas, em-

phasizing its important role in modern research and technological development, es-
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pecially in the wide range of applications in data collection and analysis.

2.2 Point Cloud Processing

Point cloud processing has become an important and active research area in com-

puter vision and robotics in recent years, as it plays a crucial role in a variety of

application scenarios, such as 3D computer vision, robot navigation, autonomous

driving, and augmented reality. A point cloud is composed of a set of discrete 3D

points that are usually captured by LiDAR or stereo vision system. These 3D points

represent the surface geometry and spatial layout of an object or environment, and

can provide rich geometric and structural information to computers. Therefore,

point clouds are widely used in tasks such as 3D reconstruction, object detection,

scene understanding, surface modeling, and map construction.

2.2.1 Point Cloud Sampling

Point cloud sampling is a critical step in 3D data processing, particularly for ef-

ficiently handling large datasets generated by modern 3D scanning technologies.

Non-learning-based methods like voxel downsampling and Farthest Point Sampling

(FPS) are widely used. Voxel downsampling is common in applications such as Li-

DAR odometry [10]–[12] and SLAM [13], [14], where it reduces point cloud size by

replacing points within each voxel with a single representative point, though it may

sacrifice fine details. FPS [15], [16], often employed in deep learning applications,

iteratively selects well-distributed points across the cloud, balancing uniform cover-

age with feature preservation [17]. However, FPS is computationally intensive and

may overlook small details.

Recent advancements in deep learning have introduced methods like S-NET [18]

and PST-NET [19], which optimize sampling for specific tasks. S-NET learns task-
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specific sampling strategies, outperforming traditional methods like FPS by tailoring

the selection of points to the needs of applications such as classification and retrieval.

PST-NET further innovates by leveraging a point-based transformer to consider

geometric relationships among points, incorporating features like self-attention and

local feature extraction to generate an optimal resampling distribution. Inspired

by Canny edge detection and attention mechanisms, APES [20] is proposed as a

non-generative method for capturing salient points in point cloud outlines.

Despite these advancements, research in point cloud processing has predomi-

nantly focused on tasks like classification [21], [22], segmentation [23], [24], and

object detection [25], [26], with less attention given to sampling strategies. This un-

derscores the need for continued research into efficient and effective sampling tech-

niques, particularly within learning-based frameworks, to enhance the performance

of point cloud applications.

2.2.2 Point Cloud Matching

Point cloud matching is a key task in 3D computer vision that involves the precise

alignment of two or more point clouds. This task has important applications in 3D

object recognition, spatial alignment, and motion tracking, especially in scenarios

such as autonomous driving, robot navigation, and AR/VR. In order to achieve

high-precision point cloud matching, various types of algorithms have emerged.

The iterative closest point (ICP) algorithm [27], proposed by Besl and McKay

in 1992, is one of the earliest and most widely used matching algorithms.ICP con-

tinuously optimizes the alignment between two sets of point clouds by iteratively

minimizing the Euclidean distance between the corresponding points of the two

sets of point clouds. However, ICP has a slow convergence rate and may exhibit

limitations when dealing with large-scale data or noisy scenes.

In this experiment, we use KISS-ICP [28] as the main point cloud matching
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method.KISS-ICP is a simplified variant of ICP, which aims to improve efficiency

and robustness, and is particularly suitable for real-time application scenarios such

as autonomous navigation. Compared to traditional ICP methods, KISS-ICP re-

duces the algorithm complexity by removing redundant computational steps while

maintaining good performance in dynamic and noisy environments. Its main advan-

tage is that it provides real-time matching capabilities without sacrificing accuracy,

which makes it particularly suitable for time-sensitive applications such as SLAM.

In addition to ICP and its variants, there are a number of non-ICP matching

methods. The Normal Distribution Transformation (NDT) [29] is a probabilistic

model-based approach. Instead of relying on point-to-point distance minimization,

NDT divides the point cloud into voxels and models normal distributions in each

voxel. By maximizing the fit of the point cloud to these distributions, NDT achieves

faster convergence and is especially superior in noisy environments. Compared to

ICP, NDT is better at handling rough initial alignments and is often used for real-

time localization and map construction in autonomous driving.

Another non-ICP algorithm is Super4PCS [30], which is a global point cloud

matching method based on geometric features. Super4PCS achieves fast global

matching without initial alignment by using 4-point Congruent Sets as the matching

datum. The algorithm achieves fast global matching without initial alignment. The

algorithm shows high efficiency on large-scale point cloud data and is robust to large,

noisy or partially occluded scenes.

In addition, Fast Point Feature Histogram (FPFH) [31] is an accelerated local

geometric feature description method. FPFH generates compact and representative

global descriptors by calculating the local geometric features of each point in the

point cloud, which greatly improves the computational efficiency. Compared with

the standard PFH, FPFH significantly reduces the computation time while pre-

serving the matching accuracy. This approach performs well in dealing with noise,
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partial occlusion, and cases with low initial alignment requirements.

Dealing with partial occlusions, noise and dynamic environments in point cloud

matching remains a challenge for the algorithms, and KISS-ICP provides a practical

solution by balancing simplicity and effectiveness, especially in real-time systems.

2.3 Lidar Odometry with Point Cloud

In the context of LiDAR odometry, 3D point cloud matching plays a key role in

determining the pose of a robot by aligning successive point clouds to estimate the

motion between them. By accurately matching the point cloud data collected at

different points in time, the system can infer the motion trajectory of the device

and ensure that it can realize real-time positioning in complex 3D environments.

LiDAR odometry methods typically involve two key components: feature ex-

traction and matching. The goal of feature extraction is to extract key points with

significant geometric features, such as edges, planes, etc., from the point cloud data,

while feature matching is to find the correspondence between different point clouds

through these key points, and then derive the bitmap transformation between them.

Traditional feature extraction methods rely on geometric information, such as geo-

metric feature extraction based on corner points and planes. With the development

of deep learning techniques, the efficiency and robustness of the feature extraction

and matching process have been greatly improved. For example, 3DFeatNet [32] uti-

lizes a convolutional neural network to extract global and local features from point

clouds, which significantly improves the accuracy of point cloud matching. Simi-

lar work has been done with PointNet [33] and DGCNN [34], which enable a more

robust feature extraction and matching process in dynamic scenes by learning the

geometric structure inside the point cloud. Advances in the field utilize deep learn-

ing techniques to enhance the feature extraction and matching process, enabling

more accurate and robust odometer estimation even in challenging environments
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with dynamic objects [35].

In the field of autonomous robotics, LiDAR SLAM technology is one of the

keys to achieve autonomous navigation.SLAM systems require the robot to track

its position while constructing a map in an unknown environment. Compared to

traditional vision-based SLAM methods such as ORB-SLAM [36], LiDAR SLAM

has obvious advantages in outdoor scenes due to its insensitivity to ambient lighting

conditions and its ability to penetrate environmental disturbances such as light fog

and light rain. Therefore, LiDAR SLAM has become a mainstream solution for

applications such as autonomous driving and UAV navigation.

A typical LiDAR SLAM system is LOAM (Lidar Odometry and Mapping) [37].

LOAM uses LiDAR data for real-time odometry estimation, and provides environ-

ment awareness and path planning with a continuously updated map. To further

improve the real-time performance and efficiency of SLAM, Shan and Englot pro-

posed LeGO-LOAM [38] in 2018, which is an algorithm designed for ground-based

robots, and greatly improves the computational efficiency and accuracy of the system

by partitioning the point cloud into ground and non-ground points.The innovations

of LeGO-LOAM are utilizing ground points for pose estimation, which in turn re-

duces the computational burden and allows the SLAM system to be more robust

and efficient in real-time applications.

In summary, LiDAR-generated 3D point cloud data and its matching techniques

have become a core tool for advancing robot perception, navigation, and environment

understanding. With the introduction of deep learning methods, LiDAR odometry

and SLAM systems are increasingly capable of handling dynamic environments.

These technological advances have driven the rapid development of autonomous

systems, especially in the field of unmanned vehicles and robotics, enabling them to

perform more reliably and accurately in diverse and complex environments.
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2.4 Robotic Operating System

The Robot Operating System (ROS) is an open-source framework for robotics that

helps users and developers control devices with code and pass information between

robotics applications. At the core of ROS’s modular design and communication ca-

pabilities are the nodes, each of which is responsible for a module, such as controlling

a motor or publishing data from a sensor. A complete ROS system consists of many

cooperating nodes, each of which can send and receive data to and from other nodes

by subscribing to or publishing ros topics. Figure 2.2 presents the working principle

of ROS.

Figure 2.2: Introduction to the working principle of ROS

One of the greatest strengths of ROS is its open source nature, which fosters col-

laboration and innovation among a global community of developers and researchers.

This allows for a variety of libraries, drivers, and algorithms, which can be easily

integrated into new projects. In terms of visualization and tools, ROS includes a

variety of tools such as Rviz (a 3D visualization tool) and Gazebo (a simulation

environment) that enable developers to visualize sensor data, test algorithms, and

simulate robot motion without the need for physical hardware. Figure2.3 shows the

data publishing flow of the ROS driver and sensor.

ROS is widely used in the development of autonomous systems such as self-
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Figure 2.3: ROS interfaces for the LiDAR sensors integrated

driving cars and drones. Its modular architecture and real-time data processing

capabilities make it suitable for handling tasks such as sensor fusion, path planning

and navigation. In manufacturing and automation, ROS supports the development

of flexible robotic systems that can be easily reconfigured for different tasks, such

as assembly lines or material handling.

Essentially, ROS revolutionized the way robotic software is developed by pro-

viding a unified open source platform to simplify the development, testing, and

deployment of robotic systems. With the transition to ROS 2, the framework con-

tinues to evolve to meet the growing demand for real-time, secure, and scalable

robotic applications. Extensive community support and a wide range of available

packages make ROS an essential tool for research, education, and industry, shaping

the future of robotics.

In this thesis, the datasets used are collected by various sensors controlled by

ROS. The collected spatial 3D coordinates (X, Y, Z) are exchanged through the

nodes, allowing us to integrate and process the information collected by the various

sensors, greatly reducing the time required to tune the parameters of individual

sensors.
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2.5 LiDAR-Generated Images in Robotics

In the field of robotics, computer vision is an important research direction because

it is closely related to the robot’s ability to perceive, understand and interact with

the environment. Computer vision acquires images or point cloud data of the sur-

rounding environment through sensors such as cameras and LiDAR, and processes

this data to enable object detection, recognition, localization, navigation, and other

functions. These capabilities are critical to the proper functioning of systems such

as self-driving cars, drones, and service robots.

The article [39] evaluates the effectiveness of LiDAR imagery as an input to

autonomous driving and also conducts driving tests at night and in winter. It is

shown that LiDAR can perform many basic autonomous driving subtasks, such as

real-vehicle road tracking tasks. This result demonstrates the feasibility and util-

ity of LiDAR data for autonomous driving applications, especially in poor lighting

conditions, where LiDAR sensors have a greater advantage over traditional cameras.

To further enhance the processing capability of LiDAR data, from 2017 to 2018,

researchers began to introduce deep learning techniques to enhance the analysis and

interpretation of LiDAR data. For example, Chen et al. in their work [40] utilized

deep learning methods to improve the target detection algorithm in LiDAR data.

By combining LiDAR data with image data and with the support of convolution

neural network (CNN), this method effectively improves the detection accuracy of

self-driving cars in complex scenarios, especially in the multi-target detection task,

which shows significant advantages. Yang et al. [41] also applied deep learning tech-

niques in classification and recognition tasks on LiDAR data. Deep learning models

are utilized to enhance the performance of self-driving cars in dynamic scenarios,

especially in urban environments with complex traffic. By introducing 3D convolu-

tional networks, this enables better processing of 3D point cloud data from LiDAR

sensors.
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Overall, the combination of LiDAR and deep learning has opened up new oppor-

tunities for autonomous driving technology. the high precision spatial information

provided by LiDAR sensors, coupled with the power of deep learning in large-scale

data processing, enables self-driving cars to sense and understand their surroundings

more accurately in complex environments.

2.6 Keypoint Extractor

Keypoint extraction is a fundamental step in many computer vision projects, it

aims to identify salient points in an image that are invariant to transformations

such as rotation, scaling, and illumination changes. Over the years, several keypoint

extraction methods have been proposed.

Scale-Invariant Feature Transform (SIFT) [42], [43] uses a Difference-of-Gaussian

(DoG) method to detect keypoints and compute invariant descriptors to image scal-

ing and rotation. It is highly accurate but computationally expensive. Speeded-Up

Robust Features (SURF) [44] is a faster alternative to SIFT, uses box filters to ap-

proximate DoGs, thus enabling faster computation while maintaining robust perfor-

mance. Features from Accelerated Segment Test (FAST) [45] is an efficient keypoint

detector. It identifies keypoints by comparing the intensity of a pixel to the intensity

of pixels in a circular neighborhood. FAST is designed for speed and is well suited

for applications that require real-time processing. However, it does not provide ori-

entation information, making it less robust to rotation. Binary Robust Independent

Elementary Features (BRIEF) [46] constructs binary strings by comparing the in-

tensities of random pixel pairs within smooth image blocks. Although BRIEF is

extremely fast and memory efficient, it is not inherently rotation-invariant, which

limits its robustness under rotation. Oriented FAST and Rotated BRIEF (ORB) [47]

enhances the FAST detector by adding orientation information and coupling it to

the BRIEF descriptor.
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SuperPoint [48] is an end-to-end self-supervised neural network designed for fea-

ture detection and description in computer vision. It addresses the challenge of

detecting and describing keypoints in images by learning from data through self-

supervision. In many cases, SuperPoint outperforms traditional methods like SIFT

and ORB. With its learned feature points and descriptors, the model excels in var-

ious computer vision tasks.

Accurate and Lightweight Keypoint Detection and Descriptor Extraction (ALIKE)

stands out from the crowd of methods because of its focus on both accuracy and

computational efficiency [49], [50]. ALIKE implements a hybrid approach that uti-

lizes classical computer vision techniques augmented with modern machine learning

methods. This enables accurate and reliable keypoint detection in a wide range of

image conditions. The descriptors in ALIKE are designed to be both unique and

compact to be less susceptible to image variations such as noise, lighting changes,

or occlusion. This improves the high robustness against image transformations.

In summary, ALIKE represents a significant advancement in the field of keypoint

extraction and descriptor extraction, providing a practical solution without compro-

mising performance. Its combination of accuracy and efficiency makes it a valuable

tool for a variety of computer vision applications.



3 DL-based Super-Resolution and

Colorization

In this section, we endeavor to conduct the most comprehensive review possible at

this time on the DL-based super-resolution and colorization approaches, paving the

way for our following research attempts.

3.1 DL-based Colorization

In the realm of DL-based Colorization, it is commonly used in image restoration,

digital medial and thermal infrared image colorization. We evaluate various coloring

models and their application environments for LiDAR-generated ranging and signal

images, and describe in Table 3.1 the effect of the models on LiDAR-generated

images.

DeOldify [51] model is a DL-based tool that is used to colorize and restore

old black and white images and videos. It utilizes the techniques of NoGAN 1 to

achieve. The generator network learns to add colour to the greyscale image, while

the discriminator network learns to differentiate between the real colour image and

the generator-generated image. Compared to the traditional GAN model, this model

prioritizes natural colors and performs well and consistently on landscapes.

1No paper for this GAN, it is a new type of GAN developed to solve problems in the DeOldify

process. It provides GAN training advantages and minimizes the time spent on direct GAN

training.
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Table 3.1: Details of Deep Learning-based Colorization Models

Model Indoor Outdoor Code Description Language compatible

DeOldify [51]
√ √ √ Effectiveness in restoring and col-

orizing old black-and-white photos
Python3

DDColor [52]
√ √ √ Utilizes diffusion models for high-

quality image colorization
Python3

BigColor [53]
√ √ √ Designed for large-scale, high-

resolution image colorization
Python3

BigGAN [54]
√ Generating high-resolution, high-

fidelity natural images

PearlGAN [55]
√ √ Focuses on colorizing thermal and

infrared images using GANs, effec-
tive in outdoor environments

Python3

I2V-GAN [56]
√ √ GAN-based model for colorizing in-

frared to visible spectrum images
Python3

Colorful Image Colorization [57], [58]
√ √ √ One of the first CNN-based coloriza-

tion models, introducing probabilis-
tic color assignment

Python3

Let there be Color [59]
√ √ √

A fully automatic image coloriza-
tion method that works on both
grayscale and natural images using
deep learning

Lua

DISCO [60]
√ √ √

Uses deep neural networks to pro-
vide automatic colorization with a
focus on preserving detail and tex-
ture

Python3

Deep Koalarization [61]
√ √ √ Combines a pre-trained VGG net-

work with a colorization model for
realistic colorization

Python3

Palette [62]
√ √ √

A versatile colorization model that
leverages palette-based techniques
to achieve high-quality results across
various image types

Python3

ChromaGAN [63]
√ √ √ GAN-based model that emphasizes

perceptual loss for natural coloriza-
tion results

Python3

InstColorization [64]
√ √ √

An instance-aware colorization
model that handles complex scenes
by focusing on individual object
instance

Python3

SCGAN [65]
√ √ √

A self-consistent GAN-based col-
orization approach that ensures
color consistency across different re-
gions of an image

Python3

pix2pix [66]
√ √ √ A general-purpose image-to-image

translation model
Python3

The core concept of the DDColor [52] model is the use of two distinct decoders

for image colorization. The Pixel Decoder focuses on recovering spatial details and

image structure, while the Colour Decoder learns semantically aware color represen-

tations from visual features at multiple scales. By combining the outputs of both

decoders, DDColor aims to produce more natural and vivid colors, especially in

complex scenes with multiple objects.

BigColor [53] model serves as a precursor to the DDColor model, which builds

upon and refines the foundations established by BigColor. This model introduces
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a novel approach based on BigGAN [67], expanding the representation space and

offering a range of coloring results.

BigGAN is a colorization model for generating high-resolution, high-fidelity nat-

ural images based on Large Scale GAN Training for High Fidelity Natural Image

Synthesis [68] training. The framework consists of a generator and a discriminator.

The generator creates images, the discriminator evaluates them against real images,

and then iteratively trains to generate high quality images.

PearlGAN model [55] is tailored for converting nighttime thermal infrared (NTIR)

images into daytime color (DC) images. It excels at producing high-quality col-

orization for NTIR images of open roads. However, its application is restricted to

outdoor scenes, and its colorization capabilities are primarily focused on roads and

trees, particularly in LiDAR-generated images.

I2V-GAN model [56] is designed for unpaired infrared-to-visible video transla-

tion. Like PearlGAN, it is specialized for outdoor scenes and works with infrared

images. The model facilitates the conversion of infrared video data into visible spec-

trum equivalents, although it shares similar limitations in its applicability to specific

scene types and environments.

Let There Be Color [59] is a Convolutional Neural Network (CNN) model trained

using paired grayscale and color images. The model learns to colorize grayscale

images by leveraging the correlations between the grayscale inputs and their corre-

sponding color images. It employs a deep architecture to capture complex patterns

and color distributions, resulting in visually appealing colorization of grayscale im-

ages. The approach effectively handles a variety of image types, providing robust

colorization across different scenes.

DISCO model [60] provides a new method of colouring images by separating

colour representation from spatial information. This method helps to produce im-

ages with vibrant and realistic colors.
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Deep Koalarization [61] combines CNNs with the advanced Inception-ResNet-

v2 architecture, allowing it to capture complex details and nuances in images. The

model leverages Inception modules for efficiently handling multi-scale features, while

ResNet’s residual connections enable deeper networks to be trained without encoun-

tering gradient vanishing issues. However, the model’s complexity and high com-

putational demands require significant processing power and memory. Paltte [62] is

similar to Deep Koalarization, as it reproduces the full model.

ChromaGAN [63] by utilizing an adversarial framework, ChromaGAN’s network

of generators and discriminators work in tandem to produce high-quality color im-

ages. Where the generator network learns to generate color images from grayscale

inputs, the discriminator network evaluates the veracity of these colorizations. How-

ever, like many GAN-based models, ChromaGAN requires significant computational

resources and is a complex and time-consuming process.

Instance-aware Image Colorization [64] Enhance coloring accuracy and fidelity by

incorporating instance-level perception into the process. The model distinguishes

between different instances of the same object class in an image, enabling more

accurate and consistent application of color. However, the complexity of the model

and instance-level segmentation increases the computing time.

Saliency Map-Guided Colorization With Generative Adversarial Network (SC-

GAN) [65] is the use of saliency maps to inform the generator network within the

GAN framework to ensure that the generated colors are visually appropriate, which

is particularly beneficial for images with complex compositions or where certain

objects should stand out.

Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) [66]

enables the model to perform transformations that are both visually compelling and

contextually relevant by introducing a versatile framework that uses conditional

generative adversarial networks (cGANs) to transform one type of image into an-
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Table 3.2: Details of Deep Learning based Super Resolution Models

Model Code Architecture Training Data Strengths Weaknesses Language compatible

SRCNN [69] 3-layer CNN ImageNet Simple, Effective
Limited long-range depen-
dency capture

VDSR [70] 20-layer CNN ImageNet
Deep architecture, Residual
learning

High computational cost

SRGAN [71] CNN with GAN ImageNet, DIV2K High perceptual quality Potential artifacts

DRRN [72]
Recursive Residual
Network

ImageNet, DIV2K
Parameter efficient, Deep
architecture

High computational cost

CARN [73]
√ Cascading Residual

Network
DIV2K Lightweight, Fast inference Slightly lower accuracy Python3

SwinIR [74]
√

Transformer-based DIV2K, Flicker2K
High performance, Handles
large scale factors

High computational cost Python3

SCUNet [75]
√ CNN with Spatially

Consistent Normaliza-
tion

DIV2K
Maintains spatial consis-
tency, Effective edge preser-
vation

High computational re-
sources, Training complex-
ity

Python3

ESRGAN [76]
√ GAN with Residual-

in-Residual Dense
Blocks

DIV2K, Flicker2K
Realistic textures, Superior
perceptual quality

High computational cost,
Can produce artifacts

Python3

DCSCN [77]
√ CNN and Sparse Cod-

ing
CIFAR-10, ImageNet

Efficient high frequency de-
tail capture

Struggles with complex im-
ages

Python3

RGT [78]
√ Recursive Generation

Transformer
DIV2K, Flickr2K

Excellent handling of recur-
sive structures

High computational de-
mands

Python3

CAT [79]
√ Cross-Attention

Transformer
DIV2K, Flickr2K

Strong cross-modal learn-
ing, High fidelity

Computationally expensive Python3

Perceptual Losses [80]
CNN with Perceptual
Loss

MS-COCO, ImageNet
High-quality image genera-
tion, Real-time performance

Dependent on pre-trained
networks, Generalization
limits

SinGAN [81]
√ GAN with Single Im-

age Learning
Single Image

Effective for artistic en-
hancement, Versatile

Training on each image re-
quired, Limited scalability

Python3

DnCNN [82], [83]
√ Deep CNN with Batch

Normalization
ImageNet, BSD400

Effective denoising, Simple
architecture

Limited to small scale fac-
tors

Python3

SR3 [84]
√ Diffusion Model for

SR
CelebA-HQ, FFHQ

Generates realistic and
high-quality images

High computational cost,
Slow inference

Python3

EDSR [85]
Enhanced Deep Resid-
ual Network

DIV2K
High accuracy, No batch
normalization

Requires extensive training,
Large memory footprint

other. However, the model is more computationally demanding and may encounter

problems such as pattern collapse.

To sum up, although there are many DL based colorization models, they are

mainly designed for black and white images and thermal infrared images, and no

colorization models specifically for LiDAR-generated images. DeOldify [51] per-

formed better than the other models in all aspects, therefore, this model was used

as the colorization method for this research.

3.2 DL-based Super Resolution

DL has greatly advanced the development of image super-resolution (SR), enabling

the models to generate high-quality magnified images from low-resolution inputs.

This part provides a comparative analysis of various DL super-resolution models,

describing their architecture, performance, programming language compatibility, ad-
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vantages, and disadvantages, as shown in Table 3.2.

Super-Resolution Convolutional Neural Network (SRCNN) [69] is one of the

pioneering deep learning models for image super-resolution. Its three-layer CNN is

designed for feature extraction, non-linear mapping, and reconstruction. Trained

on ImageNet with mean square error (MSE) as the loss function, SRCNN aims

to minimize the difference between the output and the ground truth image. It

achieves strong results on datasets like Set5, Set14, and BSD. However, due to

its shallow architecture, SRCNN struggles to capture long-range dependencies in

complex images, limiting its overall performance.

Very Deep Super Resolution (VDSR) [70] model builds on the SRCNN frame-

work by employing a much deeper CNN with 20 layers. This increased depth enables

VDSR to learn more complex mappings from low- to high-resolution images, sig-

nificantly improving performance. To mitigate the vanishing gradient problem, the

model incorporates residual learning. VDSR consistently outperforms SRCNN on

benchmark datasets, showcasing the benefits of its deeper architecture for super-

resolution tasks. However, this added depth also results in higher computational

costs.

Super-Resolution Generative Adversarial Network (SRGAN) [71] was the first to

apply generative adversarial networks (GANs) to super-resolution tasks. SRGAN

comprises two neural networks: a generator that creates realistic high-resolution

(HR) images from low-resolution (LR) inputs, and a discriminator that distinguishes

between generated images and real HR photos. This adversarial framework pushes

the generator to produce increasingly convincing results. However, the adversarial

training can introduce artifacts, and achieving a balance between the generator and

discriminator remains challenging.

Deep Recursive Residual Network (DRRN) [72] leverages deep recursive learn-

ing with recursive residual blocks to effectively capture dependencies across different
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scales. The model employs a recursive structure with shared parameters, allowing

it to increase network depth without significantly inflating the number of param-

eters. However, the recursive design complicates the training process and can be

computationally intensive.

Cascading Residual Network (CARN) [73] is a ResNet-based image super-resolution

model designed for real-time applications. By using cascading connections, CARN

reduces computational cost while retaining high performance, enabling it to merge

features across layers and capture intricate image details more effectively. Trained

on large-scale super-resolution datasets, CARN strikes a balance between speed and

accuracy, though its efficiency-focused design can lead to slight compromises in im-

age quality compared to more complex models.

Swin Transformer for Image Restoration (SwinIR) [74] leverages the Swin Trans-

former architecture for tasks like super-resolution. By dividing images into smaller

patches and analyzing them at multiple scales, SwinIR captures both local details

and long-range dependencies. This method enhances the model’s understanding of

the image’s global structure, although it increases computational complexity.

Swin Conv UNet (SCUNet) [75] introduces a novel method for enhancing image

quality by removing noise without prior knowledge of its properties. This is accom-

plished through the integration of the Swin Conv UNet model with a strategic data

synthesis process. SCUNet outperforms traditional methods and other state-of-the-

art models in denoising tasks, effectively eliminating noise while preserving image

details and textures. However, its high computational requirements and reliance on

high-quality synthetic data are key considerations for practical deployment.

Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) [76] im-

proves upon the SRGAN model by introducing Residual Dense Blocks (RRDB) and

Perceptual Loss Functions to enhance image realism. ESRGAN trains generators

and discriminators simultaneously, resulting in superior image quality. However,
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the model is computationally demanding, requiring substantial processing power,

memory, and numerous iterations for optimal results. Additionally, ESRGAN can

produce artifacts, particularly in images with complex textures.

Deep CNN with Skip Connection and Network (DCSCN) [77] leverages deep Con-

volutional Neural Networks (CNNs), skip connections, and Networks-in-Networks

(NINs) architectures to enhance the quality of super-resolution images while main-

taining computational efficiency. This approach enables the generation of high-

quality images with precise details and textures. However, despite its efficiency-

focused design, the deep architecture and NIN layers still demand considerable pro-

cessing power and memory. Additionally, if not properly normalized, the model’s

powerful feature extraction capabilities may lead to overfitting, impacting perfor-

mance on unseen data.

Recursive Generalization Transformer for Image Super-Resolution (RGT) [78]

uses a recursive structure within the Transformer framework that allows it to refine

image features over multiple iterations recursively. This recursive approach helps

to incrementally improve image quality by refining learned features and capturing

more complex patterns, resulting in superior super-resolution results. However, the

recursive structure of the model is computationally intensive and requires a lot of

processing power and memory.

Cross Aggregation Transformer for Image Restoration (CAT) [79] utilizes a cross-

attention mechanism to aggregate features from various parts of the image, allowing

it to recover finer details and textures that are often lost in traditional methods,

and also ensuring that the model can more efficiently handle a variety of restoration

tasks including denoising, deblurring, and SR. However, the complexity and com-

putational demands of the transformer architecture can be challenging and require

significant processing power.

Perceptual Losses [80] utilizes a perceptual loss function to enhance the visual
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quality of generated images, using high-level feature differences from a pre-trained

CNN, rather than relying on traditional pixel-by-pixel comparisons. Despite its

advantages, the model’s reliance on pre-trained networks for perceptual loss cal-

culations may limit its adaptability across different datasets, as performance may

depend on the characteristics of the specific network used.

SinGAN [81] generates images by training a generative adversarial network (GAN)

on a single image, enabling the model to generate a variety of outputs that maintain

the visual features of the original image, including texture, color, and structure.

While SinGAN’s ability to process a single image is an advantage, the model is

computationally intensive and the results can sometimes lack diversity compared to

models trained on large datasets. In addition, the quality of the generated images

depends heavily on the characteristics of the original image.

Deep CNN with Skip Connection and Network (DnCNN) [82], [83] employs a

deep CNN combined with NIN architecture and skip connections. These connections

help integrate NIN layers, enhancing the model’s ability to capture fine details and

represent high-frequency components, improving texture and edge preservation in

super-resolution images. However, without adequate regularization, the model’s

strong feature extraction capabilities can lead to overfitting, potentially affecting

performance on unseen data.

SR3 [84] enhances the image resolution in multiple stages, with each iteration re-

fining the output of the previous stage. This progressively improves the image qual-

ity, resulting in finer details and more accurate textures in the final high-resolution

image. However, the iteration of the process can lead to an increase in computational

requirements, as multiple passes are required to obtain the final result. This can

limit its use in real-time applications or environments with limited computational

resources.

Based on the traditional deep residual network (ResNet), Enhanced Deep Resid-
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ual Networks for Single Image Super-Resolution (EDSR) [85] has optimized its archi-

tecture for super-resolution tasks by removing unnecessary modules and introducing

a deeper and wider network structure that enables it to capture more complex pat-

terns and finer details in images. However, the increased depth and complexity of

the EDSR model come with the cost of higher computational requirements, making

it more demanding in terms of processing power and memory.

The comparison of these models include evolution from simple CNNs to complex

transformer-based architectures. The summary in Table 3.2 provides a clear visual

comparison.



4 Methodology

In this section, we illustrate the methodology of this study. Initially, we explain

the qualitative evaluation of the DL-Based Super Resolution and Colorization on

LiDAR-generated images. Subsequently, we introduce our proposed algorithm,

which integrates these approaches into the point cloud registration within the con-

text of LO.

4.1 Dataset for Evaluation

We carry out all evaluations in the experiment with the published open-source multi-

modal LiDAR datasets [2], [86]. However, for the purposes of this study, we specif-

ically utilize data from the Ouster LiDAR, the detailed specifications of which are

provided in Table 4.1. Ouster LiDAR generates an incredibly dense point cloud along

with various types of images. These images include range images, signal images, and

ambient images, each encoded with specific information: depth data, infrared inten-

sity, and ambient light intensity, respectively. We particularly use range and signal

images as they have been proven effective enough in the key point extraction [5].

Table 4.1: Specifications of Ouster OS0-128.

IMU Type Channels Image Resolution

Ouster OS0-64 ICM-20948 spinning 128 1024× 128

FoV Angular Resolution Range Freq Points

360◦ × 90◦ V : 0.7◦, H : 0.18◦ 50m 10 Hz 2,621,440 pts/s
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The data sequences used for evaluation include indoor and outdoor environments.

The outdoor environment is from the normal road and a forest, denoted as Open

road and Forest, respectively. The indoor data includes a hall in a building and two

rooms, denoted as Hall (large), Lab space (hard), and Lab space (easy), respectively.

The Forest dataset we recorded was collected within a forested area, with a limited

traversal distance of approximately 12 meters due to the constraints of our motion

capture system. Thus, although the dataset was recorded outdoors, the environment

is relatively confined.

4.2 Analysis of Colorization Approaches

In Section 3.1, we conduct a comprehensive survey on the DL-based colorization Ap-

proaches. In this part, we qualitatively analyze the performance of the approaches

on LiDAR-generated images (signal images), utilizing publicly available code repos-

itories on GitHub. The selection of evaluation methods is based not only on the

availability of their implementations but also on the simplicity of their deployment

for a standard laptop. More specifically, the approaches examined include Big-

Color, Colorful Image Colorization, DDColor, DeOldify, DISCO, InstColorization,

Let there be color, PearlGAN, as detailed in shown in Table 3.1.

4.3 Analysis of Super-Resolution Approaches

The review of the DL-based super-resolution approaches is in Section 3.2. Among

these approaches, we select the methods based on the same principle mentioned

above: the availability of implementation and the simplicity of deployment for a

standard laptop. The approaches included in the part are CARN, SwinIR, DCSCN,

ESRGAN, SCUNET, as detailed in Table 3.2. We qualitatively evaluate the super-

resolution performance of these approaches on signal images.
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4.4 Evaluation Scheme of the Proposed Algorithm

4.4.1 Overall Pipline

The overall pipeline of the proposed algorithm is illustrated in Figure 4.1. Com-

pared to our previous work [5], the proposed approach integrates DL-based super-

resolution and colorization models, along with key point extractors utilizing the

RGB three channels from colorized images within the processing pipeline.

Figure 4.1: The system overview of the proposed approach

In the evaluation, we applied DL-based colorization approaches to the signal

images, as our findings indicated that applying the models to the range images did

not significantly improve in keypoint extraction.

4.4.2 Combination of Super Resolution and Colorization

Given that super-resolution results in varying image sizes within the system, we

conducted the evaluation using different combinations of images produced through

super-resolution and colorization techniques. Table 4.2 shows the exact combination
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we applied in the experiment. It is worth noting that our findings indicate that

the resolution size did not significantly affect the results of the effective key point

extraction if it is above 2.

Name Combinations

comb_0 [rng sig sig2r]
comb_1 [rng sig sigc]
comb_2 [rng sig sigc

2r]
comb_3 [rng sig sigc sig2r sigc

2r]
comb_4 [rng rng2r sig sigc sig2r sigc

2r]
comb_5 [rng rng2r sig2r sigc

2r]
comb_6 [rng rng2r sig sigc

2r]

Table 4.2: The different combinations of images from DL-based super-resolution
and colorization are denoted as follows: rng represents range images, sig represents
signal images, 2r indicates a resolution size increased by a factor of two, and c denotes
the application of colorization.

Selection of DL-based Methods

The super-resolution and colorization models utilized in this study are CARN and

DeOldify, respectively. This selection is based on our analysis of both result quality

and inference speed. For keypoint extraction, we employed the Alike model.

Point Cloud Registration

In this experiment, KISS-ICP 1 is employed as the method for calculating LO.

Specifically, we disable the sampling functionality within the KISS-ICP code, as our

approach focuses on sampling the point cloud using key point extractors.

Evaluation Metrics

We are particularly interested in understanding how the DL-based super-resolution

and colorization techniques contribute to mitigating drift error and improving the

1https://github.com/PRBonn/kiss-icp.git
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accuracy of the LO system. To evaluate the accuracy of the LO, we calculated the

translation and rotation errors using the tool evo 2. Additionally, we quantified the

number of extracted point clouds to assess the effectiveness of these techniques.

Evaluation Scheme

The detailed evaluation scheme is outlined in Algorithm 1. In this scheme, we sys-

tematically iterate through all image combinations with the corresponding DL-based

approaches applied, listed in Table 4.2. We execute the full sequence of processes

for each combination, including preprocessing, super-resolution, colorization, key-

point extraction, and LO calculation, followed by the computation of translation

and rotation errors.

Given that LiDAR-generated images typically appear dark, a key objective dur-

ing the preprocessing stage is to apply gamma compensation to enhance image

brightness (Lines 6 - 13). Unlike range images, signal images exhibit highly uneven

exposure across different regions. To address this issue, we first retain pixels with

pixel values exceeding a predefined threshold, denoted as pthresh = 240 . For pixel

values below this threshold, adaptive histogram equalization (CLAHE) is applied to

enhance details in the darker regions of the signal image. Following the preprocess-

ing stage, super-resolution and colorization techniques were applied to the images

as needed, depending on the specific combination of methods. Additionally, the

key point extraction process was integrated into these enhanced images for further

analysis.

To ensure greater robustness and consistency in key points across different im-

age frames, we employed the Mutual Nearest Neighbor Matching(MNN) algorithm

to match the key points extracted between the current and previous frames. We

retained only the matched key points for subsequent processing.

2https://github.com/MichaelGrupp/evo
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After obtaining the robust key points, we apply the aforementioned LO approach

and calculate the translation error and rotation error using the EVO tool.

Hardware Information

The evaluation was conducted using a Razer Blade 15 laptop by Ubuntu 22.04.4

LTS equipped with an Intel Core i7-12800H-20 processor, 16 GB of RAM with a

frequency of 4800 MHz, and a GeForce RTX 3070 Ti GPU with 8 GB of memory.
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Listing 1 The evaluation scheme
Input:

Range image: rng
Signal image: sig
Point cloud: pc
Combinations in Table 4.2: combs = [comb_i], i ∈ (0 ∼ 6)

Output:
Translation error: trans_err (mean/rmse, unit : m)
Rotation error: rot_err (mean/rmse, unit : ◦)

/* Variable Declarations: */

kpst : Current Key points mkptst : matched Key points pckp: Point cloud cor-
responded to key points LOC : LiDAR odometry calculation GT : Ground
truth

/* Image preprocess for brighter images */

def img_preprocess(img):
if img == rng then

imgprc ← gamma (img)

else
if pixel_value < p_thresh then

img_hist ← hist_equalizer (img) img_prc ← gamma (img_hist)

return img_prc;

/* Key point detect & track */

def kp_tracker(kpst, kpst−1):
matches ← MnnMatcher(kpst−1, kpst) mkps ← kpst[matches] return mkps

rng = img_preprocess(rng) rng2r ← super_resolution(rng)
sig = img_preprocess(sig) sigc ← colorization(sig)
sig2r ← super_resolution(sig)
sigc

2r ← colorization(sig2r)
/* Arrange and combine sig, rng, rng2r, sig2r,sig

c

2r
,sigc to be comb in table 4.2 */

foreach comb_i in combs do
foreach img in comb_i do

kpst ← keypoint_detect (img) mkptst ← kp_tracker(kpst, kpst−1)

pcikp ← pc[index[mkptst]]

pckp ← Combine(pcikp)
Odom ← LOC(pckp)
trans_err, rot_err ← EVO(Odom,GT)



5 Experimental Results

In this section, we present the qualitative evaluation results of DL-based super-

resolution and colorization models. Following this analysis, we select the model

that, based on our experimental findings, is more suitable in terms of both processing

speed and output quality. These selected models are then applied to our point cloud

sampling approach, where we further analyze its performance in terms of accuracy

and the number of points extracted.

(a) Raw image indoor

(b) Raw image outdoor

Figure 5.1: Raw images of indoor and outdoor environment
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(a) Example of CARN super-resolution indoor image

(b) Example of CARN super-resolution outdoor image

Figure 5.2: Example of CARN super-resolution

(a) Example of SCUNET super-resolution indoor image

(b) Example of SCUNET super-resolution outdoor image

Figure 5.3: Example of SCUNET super-resolution

(a) Example of ESRGAN super-resolution indoor image

(b) Example of ESRGAN super-resolution outdoor image

Figure 5.4: Example of ESRGAN super-resolution

5.1 Super-Resolution of LiDAR-generated Images

The example processed images in Figure 5.2 and Figure 5.3, like most super-resolution

models, the final rendering for the signal image has a higher degree of sharpening
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or an overall smoother image than the raw image in Figure 5.1. Table 5.2 shows

the inference speeds of the multiple popular DL-based super-resolution models with

input and output sizes illustrated. The DL model CARN demonstrates relatively

high result quality, as illustrated in Figure 5.2, while also exhibiting fast processing

speed, as shown in Table 5.2.

Model Input size Output size Running speed (secs/image)

CARN (1024, 128) (2048, 256) 0.005
SwinIR (1024, 128) (4096, 512) 2.217
DCSCN (1024, 128) (2048, 256) 0.238
ESRGAN (1024, 128) (4096, 512) 2.667
SCUNET (1024, 128) (1024, 128) 1.706

Table 5.1: Comparison of running speed of each super-resolution model based on
local environment

(a) Example of DeOldify colorization indoor image

(b) Example of DeOldify colorization outdoor image

Figure 5.5: Example of DeOldify colorization

(a) Example of DDColor colorization indoor image

(b) Example of DDColor colorization outdoor image

Figure 5.6: Example of DDColor colorization
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(a) Example of BigColor colorization indoor image

(b) Example of BigColor colorization outdoor image

Figure 5.7: Example of BigColor colorization

(a) Example of Paltte colorization indoor image

(b) Example of Paltte colorization outdoor image

Figure 5.8: Example of Paltte colorization

5.2 Colorization of LiDAR-generated Images

Figure 5.5 and Figure 5.6 show the result of the two colorization models after col-

oring, which present different results due to the differences in the training datasets.

Table 5.2 shows the inference speed of the multiple popular DL-based colorization

models with input and output sizes illustrated. The DL model DeOldify produces

good colorization results, as shown in Figure 1.2 and Figure 5.5, while demonstrating

relatively faster processing speed, as indicated in Table 5.2.
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Model Input size Output size Running speed (secs/image)

BigColor (1024, 128) (1024, 128) 0.54
Colorful Image Colorization (1024, 128) (1024, 128) 0.27
DDColor (1024, 128) (1024, 128) 0.37
DeOldify (1024, 128) (1024, 128) 0.23
DISCO (1024, 128) (1024, 128) 3.27
InstColorization (1024, 128) (256, 256) 0.05
PearlGAN (1024, 128) (1024, 128) 0.28

Table 5.2: Comparison of running speed of each colorization model based on local
environment

5.3 Our Proposed Point Cloud Sampling Approach

To assess the efficacy of our proposed point cloud sampling approach, as outlined

by various combinations in Table 4.2, we conducted an evaluation using ICP-based

LO to calculate both its translation and rotation errors. The resulting errors, along

with comparative data from previous studies under different scenarios, are presented

in Table 5.3. The data indicate that our sampling method performs particularly

well in more expansive environments, such as on Open road and an Hall(large)

datasets. Furthermore, the rotation errors associated with our method are generally

lower than those reported in prior studies. However, in more confined spaces, such

as Forest, Lab space(hard), and Lab space (easy), our method exhibits slightly higher

translation errors compared to existing approaches.

It is important to note that our current methodology does not incorporate neigh-

boring points around the key points. This exclusion results in a significantly lower

point density, as evidenced in Table 5.4, while still maintaining relatively competitive

accuracy, as shown in Table 5.3.
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Combination Open road Forest Lab space (hard) Lab space (easy) Hall (large)
(Translation error (mean/rmse), rotation error (mean))

comb_0 (1.055/1.222, 1.782) (0.086/0.102, 1.666) (0.094/0.107, 1.185) (0.083/0.095, 1.143) (0.457/0.500, 0.903)
comb_1 (0.605/0.731, 1.855) (0.087/0.103, 1.663) (0.120/0.136, 1.398) (0.098/0.115, 1.216) (0.485/0.532, 0.955)
comb_2 (0.357/0.409, 1.808) (0.087/0.102, 1.668) (0.126/0.149, 1.473) (0.097/0.110, 1.186) (0.456/0.500, 0.903)
comb_3 (5.726/6.738, 1.957) (0.086/0.102, 1.666) (0.045/0.050, 0.721) (0.032/0.036, 0.657) (0.438/0.476, 0.920)
comb_4 (1.464/1.641, 1.806) (0.086/0.102, 1.662) (0.092/0.104, 1.235) (0.080/0.095, 1.066) (1.175/1.326, 0.929)
comb_5 (1.052/1.307, 1.807) (0.088/0.103, 1.672) (0.101/0.114, 1.213) (0.089/0.105, 1.118) (0.456/0.503, 0.922)
comb_6 (0.492/0.595, 1.806) (0.086/0.103, 1.668) (0.109/0.123, 1.319) (0.093/0.107, 1.156) (0.452/0.498, 0.929)

Prior work [5]
(rng_sig)

4_7 (0.817/0.952, 2.33) (0.082/0.102, 7.88) (0.039/0.046, 1.46) (0.027/0.033, 0.98) (0.583/0.660, 2.88)
5_5 (2.176/2.410, 1.76) (0.108/0.203, 6.96) (0.037/0.043, 1.35) (0.027/0.032, 0.97) (0.707/0.801, 2.66)
7_5 (1.784/2.006, 2.30) 0.080/0.102, 7.22) (0.033/0.047, 1.59) (0.025/0.028, 0.97) (0.698/0.803, 3.11)

Table 5.3: Comparison of translation and rotation errors across various combina-
tions of DL-based super-resolution and colorization methods shown in Table 4.2,
benchmarked against the results reported in prior work [5]. In the table, sig and
rng represent the size of neighboring point areas for the signal and range images,
respectively, denoted as sig_rng.

Combination Open road Forest Lab space (hard) Lab space (easy) Hall (large)
(Number of Points (pts))

comb_0 1149 1131 1613 1589 1492
comb_1 628 826 999 970 875
comb_2 787 820 1264 1229 1093
comb_3 1310 1167 1796 1270 1731
comb_4 1317 1170 2053 2031 1737
comb_5 1028 732 1587 1571 1322
comb_6 793 823 1396 1370 1099

Prior work [5]
(rng_sig)

4_7 4784 11447 9518 9392 7094
5_5 3183 7568 6446 6292 4783
7_5 4756 11627 9469 9378 7078

Table 5.4: Comparison of the number of points across various combinations of DL-
based super-resolution and colorization methods shown in Table 4.2, benchmarked
against the results reported in prior work [5].In the table, sig and rng represent the
size of neighboring point areas for the signal and range images, respectively, denoted
as sig_rng.



6 Conclusion and Future Work

6.1 Conclusion

This paper introduces a novel approach to point cloud sampling, specifically designed

to mitigate drift error during the point cloud registration phase of LO. In contrast

to our previous work, this study employs a DL-based super-resolution and coloriza-

tion technique to enhance the key point extraction process for LiDAR-generated

images. This approach is supported by a more comprehensive review of existing

DL-based super-resolution and colorization methods compared to other literature.

Our review demonstrates that these DL-based techniques perform effectively on

LiDAR-generated images. Furthermore, the proposed sampling method surpasses

our previous work in terms of rotation error across most datasets and translation er-

ror in more open environments. However, it exhibits reduced accuracy in translation

errors within more confined spaces.

The most computationally expensive and time-consuming phase is DL-based col-

orization, as it operates at the pixel level and is applied in parallel to multiple images

in this study. The system currently achieves a processing frequency of approximately

4Hz. However, this performance could be further improved through distributed

computing, integration with other methods such as nearest points searching, and

advancements in lightweight colorization models.
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6.2 Future Works

Our findings suggest a promising strategy for reducing drift. In future work, this ap-

proach could be integrated into the entire LO process, such as by combining it with

existing LO and SLAM methods, like Faster-LIO. Additionally, during our evalua-

tion of the colorization and super-resolution models on LiDAR images, we observed

that the existing models are primarily designed and trained on camera images rather

than LiDAR images. While these models have shown significant improvements in

the quality of LiDAR images, we believe their potential has yet to be fully realized.

Therefore, future research could focus on developing and training colorization and

super-resolution models specifically tailored for LiDAR images, which could further

enhance the accuracy and performance of these techniques in the context of LO and

SLAM systems.
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