
Leveraging Large Language Models for
Network Traffic Analysis: Design,

Implementation, and Evaluation of an
LLM-Powered System for Cyber Incident

Reconstruction

University of Turku
Department of Computing

Master of Science (Tech) Thesis
Cyber Security
November 2024

Md Naeemur Rahman

Supervisors:
Tahir Mohammad (University of Turku)

Seppo Virtanen (University of Turku)

The originality of this thesis has been checked in accordance with the University of Turku quality assurance
system using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

Md Naeemur Rahman: Leveraging Large Language Models for Network Traffic
Analysis: Design, Implementation, and Evaluation of an LLM-Powered System
for Cyber Incident Reconstruction

Master of Science (Tech) Thesis, 70 p.
Cyber Security
November 2024

Cyberthreats are evolving, and becoming more sophisticated. Hence, there is a grow-
ing need for advanced security analysis tools. Traditional approaches for analyzing
network traffic and reconstructing cyber incidents struggle to efficiently process and
analyse large amounts of network data in real-time. The rapid advancement of Gen-
erative AI, particularly large language models (LLMs), opens up new possibilities
for extending current digital forensics and incident response capabilities. LLMs can
play an important role in cybersecurity, but their adoption has been limited due to
reliance on commercial models, data privacy concerns, and a lack of domain-specific
fine-tuning.
This thesis proposes a new type of framework that uses locally run open-source
LLMs and vector databases to perform network traffic analytics to reconstruct a
cyber incident and identify the attacker. The architecture of the proposed system
includes five major components: (1) a data preprocessing pipeline that ingests the
network packet capture (PCAP) files and extracts relevant features while also using
external threat intelligence data source, such as "VirusTotal", to provide a context-
aware response; (2) a vector database (ChromaDB) that stores the preprocessed data
for fast similarity search and retrieval; (3) Locally run open-source LLMs (LLAMA,
Falcon, and Mistral) which analyze the retrieved data and generate human-like
responses to the security queries; and (4) a user interface that allows security analysts
to interact with the system, to gather insights.
The proposed system was tested using real-world network traffic data and offers
a practical framework for using advanced LLM in network security analysis while
ensuring data privacy and system efficiency. The comparison of LLMs like LLAMA,
Falcon, and Mistral with different parameter sizes (7B,13B) provides useful insights
for selecting and optimizing models for real-world use. The results indicate that these
open-source LLMs have great potential to provide accurate and smart responses to
security queries. The results indicate that larger models (large parameters) gen-
erally perform better than smaller ones in accuracy. Llama7-13b stood out as the
top performer across all metrics. Furthermore, designing a detailed form with suffi-
cient information and context is important to guide the output of LLMs and obtain
relevant insights.

Keywords: Large Language Models, Cybersecurity, Network Traffic Analysis, Digi-
tal Forensics, Artificial Intelligence, Incident Response

Contents

1 Introduction 1

1.1 Emergence of Large Language Models 2

1.2 Research problem and its significance 3

1.3 Research Questions . 4

1.4 Research Objective . 4

1.5 Contributions . 5

1.6 Structure of the Thesis . 5

2 Literature Review 7

2.1 Background . 8

2.1.1 Generative AI and LLM . 8

2.1.1.1 Historical Context and Core Technologies 8

2.1.1.2 How LLMs Work and Importance of LLMs 10

2.1.1.3 Training Process . 10

2.1.1.4 Capabilities of LLMs and Relevance to Cybersecurity 11

2.1.2 Incident Response . 13

2.1.2.1 Traditional Approach 13

2.1.2.2 How Traditional Incident Response Systems Work . . 14

2.1.2.3 Phases of Incident Response 14

2.1.2.4 Tools and Technologies 15

i

2.1.2.5 Challenges in Traditional Systems 16

2.1.3 Cyber Incident Reconstruction 17

2.1.3.1 Importance of Network Traffic Analysis 18

2.2 Current State of LLMs in Cybersecurity 19

2.2.1 Vulnerability Detection and Analysis 20

2.2.2 Malware Detection and Classification 21

2.2.3 Network Intrusion Detection 21

2.2.4 Phishing Detection . 22

2.2.5 Automated Threat Intelligence 23

2.2.6 Hardware Security . 23

2.3 Challenges and Limitations in Applying LLMs to Cybersecurity Tasks 24

2.3.1 Model Size and Deployment Challenge 24

2.3.2 Computing Power and Resources 25

2.3.3 Data Scarcity and Quality . 25

2.3.4 Privacy and Security Concerns 26

2.3.5 Interpretability and Trustworthiness 27

2.3.6 Adversarial Attacks and Model Robustness 27

2.3.7 Domain Adaptation and Generalization 28

2.4 Emerging Trends and Future Directions in LLM-based Cybersecurity

Solutions . 29

2.4.1 Domain-Specific LLMs . 29

2.4.2 Efficient, Lightweight and Multimodal LLMs 30

2.4.3 Explainable AI in LLM-based Cybersecurity 30

2.4.4 Adversarial Training and Robustness 31

2.5 Research Gaps and Future Directions 31

2.5.1 Current Limitations in Literature 31

2.5.2 Areas for Further Research . 33

ii

3 Methodology 35

3.1 System Design . 35

3.2 Hypotheses and Expected Outcomes 36

3.3 System Workflow . 38

3.3.1 Role of Major Components . 38

3.4 Vector Database . 39

3.4.1 Purpose of Vector Database in the System 40

3.4.2 Embedding Creation for Similarity Search 41

3.4.3 Query Handling Using Vector DB 42

3.4.4 Query Processing Pipeline . 43

3.5 LLM Utilization . 44

3.5.1 Selection of LLM Models . 44

4 System Design and Implementation 46

4.1 System Overview . 46

4.1.1 Problem Scope and Use Case 46

4.1.2 High-Level Architecture Description 47

4.2 Technical Implementation . 48

4.2.1 PCAP Parsing and Feature Extraction 48

4.2.1.1 VirusTotal API Integration 50

4.2.1.2 JSON Conversion . 50

4.2.2 Embedding Generation and Vector Storage 50

4.2.2.1 Similarity Search and Retrieval 52

4.2.3 Local LLM Integration and Query Processing 52

4.3 Development Environment and Infrastructure 53

4.3.1 Hardware Infrastructure and Resource Management 53

4.3.2 Software Stack and Dependencies 54

iii

5 Testing and Evaluation 56

5.1 Performance Analysis . 56

5.1.1 Experimental Setup and Datasets 56

5.1.2 Prompt Design . 57

5.1.3 Evaluation Metrics and Results 60

5.1.3.1 Vector Database Performance Analysis 61

5.1.3.2 Model Performance Evaluation 63

6 Conclusion and Future Work 67

6.1 Summary of Findings and Contributions 67

6.2 Reflection on the Practicality and Effectiveness 68

6.3 Further Research and Improvements 69

References 71

iv

List of Figures

2.1 LLM Pre-training, Fine-Tuning, and In-Context Learning Phases [15] 11

3.1 Partial System Diagram Showing the Data Preprocessing and Feature

Extraction . 41

3.2 Vector Search . 43

4.1 System Design Architecture . 47

5.1 User Interface . 58

5.2 Memory Consumption of "nomic-embed-text" Model 62

5.3 Memory Consumption of "mxbai-embed-large" Model 62

5.4 Interactive System UI Showing User Queries 65

5.5 Interactive System UI Showing User Queries 66

v

List of Tables

5.1 System Specifications . 57

5.2 Malware Category Distribution . 57

5.3 Vector Database Performance Comparison: "nomic-embed-text" and

"mxbai-embed-large" . 63

5.4 Comprehensive Model Performance Analysis 63

vi

List of acronyms

AI Artificial Intelligence

API Application Programming Interface

APT Advanced Persistent Threats

BERT Bidirectional Encoder Representations from Transformers

CWE Common weakness enumerations

GPT Generative Pre-trained Transformers

LLMs Large Language Models

ML Machine Learning

NER Named Entity Recognition

NIST National Institute of Standards and Technology

NLP Natural Language Processing

NTA Network traffic analysis

RTID Robust Transformer-based Intrusion Detection System

SIEM Security Information and Event Management

T5 Text-To-Text Transfer Transformers

vii

1 Introduction

We are living in an interconnected digital world where cyberattacks are not only

becoming more frequent but also more advanced and harder to detect. It has be-

come a key area of concern as Generative Artificial Intelligence started to take off.

This widespread use of Artificial Intelligence (AI) has lowered the entry barrier for

cybercriminals, expanding the threat landscape and putting more systems at risk.

Traditional cybersecurity methods such as threat detection and incident response

systems are struggling to keep up with the sheer number of attacks [1] [2]. With

the continuous generation of network traffic and data, manual monitoring is not an

option anymore, making dangerous critical infrastructures and businesses vulnera-

ble to breaches. The increasing sophistication of cyberthreats, including malware,

ransomware, and Advanced Persistent Threats (APTs), demands robust defensive

strategies [3].

Digital forensics plays a crucial role in modern cybersecurity strategies. It in-

volves identifying, recovering, and investigating digital evidence systematically from

electronic devices. This not only aids in detecting security breaches but also supports

post-incident investigations, enabling organizations to understand the full scope of

an attack, mitigate its damage, and potentially pursue legal action against perpe-

trators. With the surge in the number of networked devices and the complexity of

modern cyberattacks, network traffic analysis has emerged as a critical component

of digital forensics. It allows analysts to traverse forward, interpret, and reconstruct

1.1 EMERGENCE OF LARGE LANGUAGE MODELS 2

the timeline of events in an attack to help identify exploitable vectors and also trace

the sources of malicious activity.

With cyberthreats growing more complex and sophisticated all the time, the

need for modern investigation techniques arises. This is where the importance of

AI comes in, which provides revolutionary approaches to streamline digital forensic

workflows. This thesis explores the potential of utilizing Large Language Models

(LLMs) in forensic investigations to improve efficiency. Combining the capabilities

of AI and LLM, digital forensic experts can not only speed up the identification and

analysis of possible threats in real-time but also improve their findings.

1.1 Emergence of Large Language Models

Conventional digital forensics is highly dependent on manual analysis and rules-

based systems, which are proving to be less practical as they are less effective for the

current levels of cybersecurity threats. Hence, a paradigm shift toward automated

and LLM-powered digital forensics is underway and is expected to greatly enhance

the capabilities to accomplish incident reconstruction and response. That being said,

the emergence of automated and AI forensics can be a radical evolution of the digital

forensics field and is a major step forward in the incident reconstruction and response

process. LLMs can analyze large amounts of unstructured data such as network

traffic, threat intelligence, reports, and user behavior patterns to find potential

threats and anomalies in security [4]. Because LLMs are good at understanding

context and semantics, they can identify subtle patterns and correlations that rule-

based systems may not detect; these very capabilities also make them especially

suited to hunting new and as-yet unseen threats such as zero-day vulnerabilities and

advanced persistent threats. For example, Fu et al. [5] introduced LLM4SecHW, a

framework that fine-tunes mid-sized LLMs with datasets of hardware design defects

and test the performance of that model for identifying bugs in hardware systems.

1.2 RESEARCH PROBLEM AND ITS SIGNIFICANCE 3

This innovative approach provides a blueprint for integrating domain-specific LLMs

into other fields. By combining AI and large language models, there is an immense

potential to enhance and automate network traffic analysis for digital forensics.

1.2 Research problem and its significance

Traditional forensic methodologies, though effective, often require manual interven-

tion and are reactive by nature. As cyberthreats become more sophisticated, timely

and accurate incident reconstruction becomes harder. Traditional approaches are

often slow and cannot process large volumes of network traffic efficiently. As a result,

their usefulness in real-time attack detection and response is limited. One of the

major limitations of current traffic analysis methods for digital forensics methods is

their reliance on static analysis techniques and traditional rule-based systems, which

struggle to adapt to the dynamic nature of modern cyberattacks [6]. Moreover, ex-

isting digital forensics tools may fail to fully extract and interpret subtle patterns

within large datasets, leaving gaps in incident response strategies. The demand for

more advanced systems that can analyze massive datasets, detect patterns indicative

of cyberthreats, and help reconstruct cyber incidents is more pressing than ever.

This thesis will address these limitations involving traditional and ML-based

triage methods by introducing Generative AI-powered systems that leverage LLMs

to analyze large amounts of network traffic data to enhance the capabilities of cyber

incident reconstruction. Furthermore, the accuracy of digital forensics investigations

can be greatly enhanced by using LLMs. However, while their integration offers

significant opportunities to streamline and enhance forensic processes, challenges and

limitations remain. Challenges like handling large amounts of data and combining

different types of evidence must be solved to fully benefit from these advanced

technologies. Addressing these issues is key to maximising LLMs in digital forensics.

1.4 RESEARCH OBJECTIVE 4

1.3 Research Questions

Based on the research problem presented, this thesis aims to find answers to the

following research questions:

1. Research Question 1 (RQ1): What are the challenges in conventional ap-

proaches for incident response and cyber incident reconstruction, and how can

the LLM assist?

2. Research Question 2 (RQ2): What LLMs models be used to assist in the cyber

incident reconstruction that are cost-effective and can be customized?

3. Research Question 3 (RQ3): How effective are the LLM-assisted in cyberse-

curity incident reconstruction analysis?

1.4 Research Objective

The primary objective of this research is to develop and evaluate a GenerativeAI-

powered system that leverages LLMs to analyse network traffic data to enhance

digital forensics investigations. The system aims to assist in reconstructing cyber

incidents by identifying patterns within log data and digital artifacts, providing

forensic analysts with deeper insights into the structure and method of attacks. In

addition to this, this thesis work is meant to respond to some of the key gaps in cur-

rent approaches for digital forensic materials and network traffic analysis objectives.

The thesis centres on the following objectives:

1. Investigate and study inherent problems in traditional digital forensics method-

ologies from the perspective of managing large and complex system network

traffic data.

2. Explore the capabilities of Locally run LLMs and provide a framework for

processing and analyzing large volumes of network traffic data and log files.

1.6 STRUCTURE OF THE THESIS 5

3. Compare the effectiveness, speed, and scalability of LLM-powered traffic anal-

ysis (as run locally) to traditional ones.

1.5 Contributions

The key contributions of this research are:

1. Development of a Generative AI-powered Network Traffic Analyzer: This sys-

tem will use locally operated LLMs for analyzing network traffic and log file

data to be produced. In itself an attack pattern recognizer, it is also to inves-

tigators about the manner in which their assailants work.

2. Evaluation of Open-Source Models: Present the evaluation of open-source

models like LLAMA, Falcon and Mistral in network traffic analysis regardless

of their size or number of parameters

3. Practical Guidelines for Implementation: The research will offer guidelines for

implementing LLM-based digital forensics systems in real-world cybersecurity

scenarios, addressing issues such as data privacy and the admissibility of digital

evidence in legal contexts.

1.6 Structure of the Thesis

The rest of the thesis is organized as follows:

Chapter 2: Literature Review - This chapter introduces Generative AI and LLMs

and reviews their architecture, training approaches, and current applications. It

surveys the current research trends on employing LLMs in cybersecurity. It also

reviews current methodologies and notes the gaps in the literature that this thesis

will address.

1.6 STRUCTURE OF THE THESIS 6

Chapter 3: Methodology - This chapter provides the research methodology of

this work. It includes the design of the LLM-powered system. It provides a detailed

description of the proposed method for network traffic analysis. It also explains the

proposed system’s workflow, how LLMs are integrated, and the role of LLMs.

Chapter 4: System Design and Implementation - In this chapter, the technical

details of the proposed system are described. It also includes the design and setup

of the actual system. It also provides a detailed description of each component of

the system and how it works.

Chapter 5: Testing and Evaluation - This chapter discusses the outcome of the

system evaluation. It involves dataset selection, performance analysis, and case

studies.

Chapter 6: Conclusion and Future Work - The final chapter summarizes the

remaining findings from this research and also revisits the research objectives to

show how they have been met. It also includes a look at where this research could

be headed.

2 Literature Review

This literature review chapter aims to provide a comprehensive overview of current

research on applying LLMs in various cybersecurity areas. This section will explore

how these powerful models are being utilized to improve threat detection, vulner-

ability assessment, and the overall security posture of digital environments. The

review chapter will cover several key areas, which are:

• Background of Generative AI.

• The evolution and current state of LLMs

• Applications of LLMs across different cybersecurity domains

• Challenges and limitations in applying LLMs to cybersecurity tasks

• Emerging trends and future directions in LLM-based cybersecurity solutions

By reviewing recent scientific literature and examining these areas, this chapter

aims to provide solid background knowledge for understanding the potential of LLMs

in cybersecurity practices and identify gaps in current research.

2.1 BACKGROUND 8

2.1 Background

2.1.1 Generative AI and LLM

Generative AI is a term that describes a category of AI models that are designed

to generate new data instances from what they were trained on. Generative AI is

important in applications such as Natural Language Processing (NLP) and content

generation because it is capable of generating meaningful contextual output. The

most visible form of generative AI at scale comes in the form of LLMs, which are

trained to generate coherent text as produced by humans. These models are based

on deep learning architectures, and they are trained on thousands of terabytes of

data, enabling them to achieve state-of-the-art performance across a wide variety of

natural language processing tasks [7].

Thus, they are able to perform tasks that require anything from generating

simple text to performing sophisticated reasoning and even analysis [8]. Unlike

traditional neural networks, which process data sequentially, LLMs simultaneously

process multiple data elements, allowing LLMs like Generative Pre-trained Trans-

formers (GPT), Bidirectional Encoder Representations from Transformers (BERT),

and Text-To-Text Transfer Transformers (T5) to process and understand complex

language patterns. These models are purpose-built to process various linguistic

tasks, from machine translation to summarization and question-answering.

2.1.1.1 Historical Context and Core Technologies

Language processing has evolved from classical rule-based systems and statistical

methods to deep learning techniques and advances with Generative AI and LLMs.

The availability of computational power and access to large datasets has made this

transition possible. Such resources and data have allowed for the training of complex

models that capture the intricacies of human language.

2.1 BACKGROUND 9

In this domain, one of the most important innovations is the introduction of

transformer architecture, which drastically improved traditional natural language

processing methods and became the state-of-the-art of large-scale transformer-based

models. NLP was used in cybersecurity mostly for basic text analysis and pattern

matching in the early days. But, it was the transformer architecture that was a

semantic boundary in the field. Vawani et al. [9] in 2017 introduced the trans-

former model that revolutionized the field of NLP by enabling parallel processing of

sequential data and significantly improving performance on various language tasks.

This architecture laid the foundation for developing large-scale language models that

have become increasingly relevant to cybersecurity applications. The transformer

architecture, which revolutionized natural language processing through several key

mechanisms:

• Attention Mechanisms: These allow models to weigh the importance of differ-

ent parts of input data dynamically, as a result, the model understands the

context better [9] [10].

• Self-Attention: This mechanism enables models to understand relationships

between different parts of the input text, which improves the comprehension

and generation capabilities of the model.

• Parallel Processing: Unlike earlier sequential models, transformers can process

input data in parallel. This approach is much faster than earlier sequential

models, and as a result, it greatly increases efficiency. [10]

The capabilities of language models improved significantly with the release of

models like BERT [11] and GPT series [12] [13]. These models excelled at a variety

of natural language processing (NLP) tasks, including common cybersecurity tasks

such as question answering, named entity recognition, and text classification. Ac-

cording to Xu et al. [7], the use of LLMs in cybersecurity has risen dramatically

2.1 BACKGROUND 10

since 2020. This increase is due to the models’ ability to process and comprehend

large amounts of textual data, which is critical for cybersecurity because natural lan-

guage is frequently used to describe threat intelligence, vulnerability descriptions,

and attack patterns.

2.1.1.2 How LLMs Work and Importance of LLMs

LLMs are powerful because of their advanced training and wide-ranging abilities.

LLMs are quickly becoming a cornerstone of modern tech, especially around cyber-

security and digital forensics.

2.1.1.3 Training Process

LLMs are based on a complex and resource-intensive training process. The training

process consists primarily of feeding the model large datasets in the form of text

data so that it can learn patterns, relationships, and context from the dataset.

As stated by Ferrag et al. [14], pre-training frequently utilizes a large text data

set of hundreds of billions of tokens from various sources. During the pre-training

step, the model encodes into an understanding of language in general and obtains

the relevant analytic ability, such as predicting masked words or estimating the

likelihood of continuing the tokens in history.

After the pre-training phase, models are fine-tuned based on a smaller dataset.

This is a very important phase, allowing them to fine-tune to certain domains or

tasks. This further training occurs on carefully curated datasets, so these systems

are guided by domain-specific data. As noted by Myers et al. [8], fine-tuning

enables models to retain their broad language understanding while gaining tailored

capabilities for specific tasks. This two-stage approach (pre-training, then fine-

tuning) has also shown great success in constructing models that perform well in

terms of a broad understanding of context and performing well on specific tasks. The

2.1 BACKGROUND 11

diagram in Figure 2.1 illustrates the pre-training and fine-tuning phases of LLM.

Figure 2.1: LLM Pre-training, Fine-Tuning, and In-Context Learning Phases [15]

Tokenization is a vital part of how the LLM works. The text input is recursively

split into tokens, which can be words, subwords or characters depending on the

used tokenization scheme. Tokenization stands as one of the essential processes for

LLM functioning. It is the process of splitting the input text systematically into

tokens, and tokens are the basic unit of the text that can mean words, sub-words,

or characters depending on the type of tokenization used. Xu et al. [7] highlights

that improved tokenization techniques allow models to better understand languages

and different text formats, facilitating them to be more versatile and widely used.

2.1.1.4 Capabilities of LLMs and Relevance to Cybersecurity

According to Yao et al. [16], modern LLMs possess sophisticated reasoning skills

that enable them to comprehend intricate queries, find pertinent information in

data, and preserve context over lengthy text passages. These models are very adept

at producing coherent, contextually relevant text with long-range consistency across

an output. They can adapt extremely fast to different kinds of styles and domain

needs. Their strength in transferring knowledge between fields and adapting to new

tasks with little additional training makes them ideal for rapidly developing areas

2.1 BACKGROUND 12

like cybersecurity. Qiu et al. [17] noted that this flexibility enables the LLMs to syn-

thesize information from several sources and make detailed analyses and inferences

that are difficult to achieve through conventional systems.

Leveraging LLMs in Cybersecurity marking a paradigm shift in organizations’

approach to threat detection, analysis, and response. These models provide accuracy

along with huge opportunities to handle and analyze the huge amount of data from

the sources of modern systems. As concluded by various authors’ studies in the area

of cybersecurity [18] [10], LLMs are capable of exemplary real-time threat detection

by tracking network traffic in real-time and detecting possible security attacks with

high precision. Their ability to understand context helps reduce false positive alerts,

which is a common challenge in traditional security systems.

Moreover, LLMs have already shown remarkable effectiveness in processing mas-

sive volumes of security log data during automated analytics processing. Yao et

al. [16] showed that such custom detection methods could even discover attack

patterns and anomalies in the data that are not easily recognizable through tra-

ditional detection methods. Such LLMs can produce specific security reports and

recommendations to enable security teams to respond to incidents more efficiently.

Additionally, these models have automation capabilities that simplify repetitive se-

curity tasks, enabling human analysts to devote their time and energy to complex

challenges.

In addition, LLMs can significantly enhance incident response through rapid

evaluation of security events and the generation of response plans. They are capable

of rapidly absorbing past incidents and adapting to new variants of threats enabling

them to be power tools against the evolving world of cyberthreats. As Ferrag et al.

[14] stated, such adaptability is indispensable when countering zero-day attacks and

novel threat vectors typically not recognized by conventional detection systems.

2.1 BACKGROUND 13

2.1.2 Incident Response

Cybersecurity incident response is a process used to help locate, isolate, and elimi-

nate threats to informational systems. It hopes to minimize damage and maintain

low costs of recovery. According to Cichonski et al. [19], incident response is a

structured organization of the steps to be taken regarding security breaches. It has

a mix of technical action and organizational effort to create a robust defense. On

top of that, it also encompasses policy-making, team organizing, and organization-

wide strategic decision-making. According to the National Institute of Standards

and Technology (NIST), incident response is a set of actions taken to respond to

a violation of security policies [19]. This definition clearly indicates that there is a

requirement for standardized processes and procedures to respond to such security

events. As organizations experience ever more frequent and complex cyber-attacks,

having these frameworks is more important now than ever.

2.1.2.1 Traditional Approach

Traditional incident response systems started from basic computer security prac-

tices. They developed into formal structures as cyberthreats became more common.

These systems use a structured approach to manage incidents and include various

tools and methods to detect and respond to security issues. Cichonski et al. [19]

explain that traditional frameworks rely heavily on set procedures and human ex-

pertise. They often follow guidelines and best practices built over many years of

cybersecurity work. According to Ahmad et al. [20], traditional incident response

systems originated from fundamental computer security practices and evolved into

formal structures as cyberthreats became more prevalent. The author also em-

phasized traditional frameworks rely heavily on established procedures and human

expertise.

2.1 BACKGROUND 14

2.1.2.2 How Traditional Incident Response Systems Work

Traditional incident response systems operate through a series of well-defined phases

and methodologies. It follows clear steps and involves multiple phases. According

to a study by Sumanth Rao [21], these systems focus on detailed investigation and

response. They use a mix of automated tools and manual analysis to find and handle

security incidents. This approach has proven effective in dealing with known patterns

of threats, but it faces major challenges when confronted with novel or sophisticated

forms of attack vectors. A survey study by Alzaabi et al. [22] shows that traditional

systems mainly use rule-based detection and signature analysis. These methods are

good at spotting familiar threats but perform poorly on detecting zero-day attacks

or advanced techniques that do not match known patterns. Traditional systems also

depend on human analysts to make decisions and link incidents, which is challenging

when dealing with complex, multi-layered attacks.

2.1.2.3 Phases of Incident Response

Traditional incident response systems follow a clear structure with several key phases.

According to NIST Special Publication by Cichonski et al. [19], this process starts

with preparation and moves through detection, analysis, containment, eradication,

and recovery. Each phase is vital to processing security incidents and lays a very

important foundation for response to breaches. Preparation is the cornerstone of

any effective incident response. A persistence case study by Ahmed et al [20] shows

good results for organizations that have invested heavily in preparation for real in-

cidents. This includes creating incident response plans, forming response teams,

and running regular training exercises. This preparatory work creates the necessary

infrastructure for managing security events effectively. This finding is further sup-

ported by Verizon’s 2023 "Data Breach Investigations Report"(DBIR) [23], which

analyzed multiple case studies showing that organizations investing in thorough

2.1 BACKGROUND 15

preparation—such as developing incident response plans, forming dedicated teams,

and conducting regular training exercises—were able to detect incidents more quickly

and respond more effectively to security breaches.

Detection and analysis are the first steps in responding to potential security

incidents. These are when security teams identify and look into possible threats.

Alzaabi et al. [22] explain that traditional detection relies on tools like Security

Information and Event Management (SIEM) systems, Intrusion Detection Systems

(IDS), and log analysis software. These tools create alerts based on set rules and

signatures. Security analysts then need to check these alerts to see if they are real

threats and how severe they might be.

The containment phase is about stopping confirmed security incidents from

spreading further. According to Bartnes et al. [24] traditional strategies include

isolating affected systems, applying temporary fixes, and saving evidence for deeper

analysis. Their case study focused on Norwegian electric power companies which

demonstrates that this phase requires careful balance between maintaining business

continuity and preventing further spread of the security incident. Another case

study by Ahmad et al. [20] also emphasized that effective containment strategies

must consider both technical and business impact factors when responding to secu-

rity incidents.

2.1.2.4 Tools and Technologies

Traditional incident response systems use many tools and technologies to work ef-

fectively. According to [25], several main types of tools are used in these systems

which are:

• Network Monitoring Tools: Network monitoring tools are crucial for finding

and analyzing suspicious activity. These tools are used to look at network traf-

fic, system logs, and application behavior to spot possible security incidents.

2.1 BACKGROUND 16

However, their success often depends on the quality of the detection rules and

signatures they use. Hofstede et al. [26] provide an in-depth explanation of

flow monitoring, including packet capture and data analysis using NetFlow and

IPFIX. The author also points out that effective network monitoring requires

a combination of packet analysis, flow monitoring, and behavioral analytics.

• Security Information and Event Management (SIEM) Systems: SIEM systems

are like the central nervous system for traditional incident response. These

platforms collect and connect data from different sources. This helps security

teams see all potential security incidents in one place. According to a study by

Cinque et al. [27], SIEM systems encounter significant challenges in processing

the volume and variety of data produced by modern networks. The research

highlights that the effectiveness of incident response heavily depends on the

integration of various security tools and monitoring systems working in concert

to detect and respond to threats.

• Role of Human Analysts: Human analysts are central to traditional incident

response. They make key decisions at every step of incident management.

Sundaramurthy et al. [28] highlights that human expertise is vital for inter-

preting alerts, investigating issues, and choosing the right response. However,

depending on human judgment has both advantages and drawbacks for the

response process.

2.1.2.5 Challenges in Traditional Systems

Modern cybersecurity landscapes present many challenges that strain traditional in-

cident response capabilities. Freitas and Gharib [29] point out several major weak-

nesses in these older systems. One of the biggest issues is their ability to scale as

data volumes and attack methods grow more complex. Their research highlights how

these traditional methods struggle to maintain performance and accuracy when pro-

2.1 BACKGROUND 17

cessing large amounts of data across complex enterprise environments. Scalability

is another primary concern in traditional incident response systems. Scalability is

another major concern for incident correlation systems. Organizations are produc-

ing more and more security data at an exponential rate. As a result, conventional

analysis methods are struggling to keep up with this overwhelming amount of data.

Freitas and Gharib [29] also illustrated in their studies how conventional systems

struggle to efficiently correlate billions of alerts, leading to potential delays in the

timely detection and response to security incidents.

Another study by González-Granadillo et al. [30] shows that traditional sys-

tems struggle with performance when processing large amounts of data. This study

highlights that SIEM systems encounter significant challenges in processing a large

volume of data, which leads to delays in detecting and responding to incidents.

Another major issue is the heavy reliance on human analysis. According to Sun-

daramurthy et al. [28], the heavy reliance on human analysts for interpreting alerts

and investigating incidents can introduce delays, especially during large or complex

incidents. This dependence can slow down response times and lead to inconsis-

tencies in incident handling. Traditional systems also have trouble managing the

complexity of modern cyberthreats. The research by Wang et al. [31] highlights that

conventional incident response frameworks may fail to identify and address sophisti-

cated attack patterns that utilize multiple attack vectors simultaneously. This study

emphasizes that reconstructing lateral movements and understanding the full scope

of multi-vector APT attacks requires advanced, integrated approaches to improve

detection and response capabilities

2.1.3 Cyber Incident Reconstruction

Cyber incident reconstruction is an important part of digital forensics and incident

response. It helps organizations understand the full scope and impact of security

2.1 BACKGROUND 18

incidents. According to Casey [32] incident reconstruction means putting together

different digital artifacts and evidence to build a clear timeline of events before,

during, and after an incident. This process is essential for quick incident response

and for making long-term security improvements.

2.1.3.1 Importance of Network Traffic Analysis

An important component of incident reconstruction is Network traffic analysis (NTA).

It provides critical insight into how attacks are carried out and the methods used

by the attacker. According to Thakare et al. [33], NTA involves the "capturing of

network traffic and inspection of it closely enough to understand what is happen-

ing network". This method converts the data packets and displays them in plain

text. Network Traffic Analysis is used for various purposes, including proactive net-

work optimization and security. Nour Alqudah et al. [34] described an overview of

where traffic analysis is commonly used, for example, assessing use case scenarios,

efficiency and security of network governance and performance. NTA is considered

as important for the security as well as the performance of a network. As network

traffic increases, new ways are needed to detect intrusions, classify Internet traffic,

and analyze virus behavior.

Dhakad et al. [35] states that modern network traffic is both extremely fast and

a large volume, complicating analysis. The rise in encrypted traffic has also created

new challenges for traditional methods. Nowadays, modern network traffic analysis

methods use Machine Learning (ML) and AI. These methods "utilize machine learn-

ing to learn and recognize malicious traffic patterns" and are "more potent against

emerging and changing threats" [35]. This is crucial because traditional signature-

based detection is not always effective against new or unknown threats. Modern

network traffic is studied at different levels, as described by Thakare et al [33].

• Flow Level Analysis: Examines features like "duration of the flow, volume

2.2 CURRENT STATE OF LLMS IN CYBERSECURITY 19

of data, number of packets per flow". Flow analysis is useful for spotting

command-and-control traffic and attempts to steal data. However, it needs a

lot of computing power for real-time processing.

• Packet Level Analysis: Studies characteristics such as "length of the packet,

mean and variance of the packet length"

• Network Level Analysis: Looks at elements like hostnames and server names

The challenges in network traffic analysis are significant. This thesis will explore

LLM-based solutions for analyzing network traffic, which would enable organizations

to understand network behavior better, detect anomalies, and respond to security

incidents more effectively.

2.2 Current State of LLMs in Cybersecurity

LLMs such as GPT-3, GPT-4, LLAMA, Falcon LLM, and BERT have brought major

changes to various industries, including cybersecurity. These models can analyze

large data sets, adapt to different situations, and handle complex tasks without

the need for specific programming. The use of LLM in cybersecurity has altered

how security challenges are addressed. Recent research indicates an increasing use

of LLMs for security tasks, such as vulnerability detection and threat intelligence

analysis [7]. The rapid development of LLMs, particularly open-source models such

as LLAMA3, Falcon, and Mistral, has resulted in new ways to automate and improve

cybersecurity operations. In recent years, LLMs have demonstrated remarkable

abilities to comprehend and process complex security-related tasks. Ferrag et al.

[14] found that LLMs have significant potential in several areas, including:

• Automated vulnerability detection

• Malware analysis

2.2 CURRENT STATE OF LLMS IN CYBERSECURITY 20

• Network intrusion detection

• Phishing detection

• Threat intelligence generation

This has driven the field to develop sophisticated techniques for security analysis

and threat detection that have grown progressively automated. [14] Moreover, there

is rising interest in devising ways to make LLMs more efficient and accessible for

deployment in resource-constrained environments. That is essential for real-time

cybersecurity operation [36]. Model compression, knowledge distillation, and effi-

cient fine-tuning are some of the techniques being investigated to make LLMs more

amenable to these tasks.

2.2.1 Vulnerability Detection and Analysis

Vulnerability detection and analysis is one of the most common applications of

LLMs in cybersecurity. Current approaches are mostly based on matching regular

expression patterns from the source code, such as from the OWASP vulnerability

patterns. LLMs already have already shown great capabilities to enumerate and

analyze vulnerabilities in both software and hardware domains. The research by

Ferrag et al. [14] shows that LLMs can easily read and analyze source code to

discover security bugs and vulnerabilities. Recent works find that LLMs can show

competitiveness to traditional methods in terms of vulnerability detection tasks.

For example, Chen et al. introduced "DiverseVul", [37] is a vulnerable source

code dataset that covers a wide range of programming languages. When applying

this to security, their research demonstrated that LLMs trained on security-related

datasets are able to discover complex vulnerabilities that may be difficult for classi-

cal linear static analysis tools to identify on their own, which is crucial for detecting

those more advanced security issues that traditional rule-based systems have trouble

2.2 CURRENT STATE OF LLMS IN CYBERSECURITY 21

detecting. In addition, "LineVul", a line-level transformer model initiated by Fu et

al. [38] predicts software vulnerabilities. The model was evaluated on an extensive

dataset of C/C++ functions. It was demonstrated to be highly effective at iden-

tifying vulnerable code with respect to the most dangerous 25 Common Weakness

Enumerations (CWEs).

2.2.2 Malware Detection and Classification

LLMs have demonstrated great potential for malware detection and classification

tasks. They can even understand the structural pattern of a code, Application

Programming Interface (API) calls, and natural language description of its behavior

to make a classification of malicious software. Demirkıran et al. [39] showed that

transformer-based models could achieve good performance in classifying malware

family based on a sequence of API-call as features. Their findings demonstrated

that these models outperformed more classical machine learning approaches in the

F1-score as well as AUC scores. This work obtained the best performance on several

benchmark datasets, demonstrating the promising abilities of LLMs in malware

analysis tasks. Other work by Joyce et al. introduced "AVScan2Vec" [40] that

maps antivirus scan reports into vector representations. It works well with any

task, such as the classification of malware, clustering analysis, and also in nearest

neighbour search. These studies show that LLMs can be used at scale to parse and

interpret malware information.

2.2.3 Network Intrusion Detection

Network intrusion detection is another area of application for LLMs that has changed

the way security systems detect and deal with potential threats. The study of

Wu et al. [41] introduced Robust Transformer-based Intrusion Detection System

(RTID). The system achieved better performance than traditional machine learning

2.2 CURRENT STATE OF LLMS IN CYBERSECURITY 22

and deep learning techniques on CICID2017 and CIC-DDoS2019 datasets. They

demonstrated the applicability of LLMs to allow for improved security analysis of

complex network traffic data. This trend was further confirmed by Ferrag et al. [14],

which provided evidence on how LLMs are efficient in:

• Process and analyze network traffic patterns

• Identify anomalous behavior in real-time

• Better performance and reduced false positive rates compared to traditional

methods

• Adapt to new types of attacks through continuous learning

2.2.4 Phishing Detection

Phishing detection is another area where LLMs have shown significant promise.

These models can analyze email content, URLs, and other metadata to identify

potential phishing attempts. The application of LLMs in phishing detection has

shown remarkable progress in identifying and preventing social engineering attacks.

Koide et al. [42] presented ChatSpamDetector, which uses LLMs to effectively

detect phishing emails with an impressive 99.70% accuracy. This system not only

flags phishing attempts but also explains why it marked them as a result, users can

learn about the choices of potentially suspicious emails. Another research by Jamal

and Wimmer [43] who developed IPSDM, an improved model based on the BERT

family. It was specifically fine-tuned to detect phishing and spam emails. Their

research showed that IPSDM had excellent accuracy, precision, recall, and F1-score

results on both balanced and unbalanced datasets.

2.2 CURRENT STATE OF LLMS IN CYBERSECURITY 23

2.2.5 Automated Threat Intelligence

LLMs are increasingly being used to automate the process of gathering, analyzing,

and disseminating threat intelligence. They have greatly improved how threat intel-

ligence is gathered and analyzed. LLMs can handle large amounts of security data

and turn it into useful insights. This ability has changed how organizations spot and

react to new security threats [14]. Evange et al. [44] found that transformer-based

methods perform better than previous top approaches for Named Entity Recogni-

tion (NER) in threat intelligence. Their study used the dataset for NER in Threat

Intelligence (DNRTI), which includes over 300 threat intelligence reports that con-

tain 175,220 annotated words in 13 classes. This research showed that LLMs are

effective at identifying cybersecurity-related entities.

2.2.6 Hardware Security

One of the latest applications of LLMs is in hardware security. Although this is a

new field of study, early research has been very promising. Fu et al. [5] introduced

"LLM4SECHW" recently, it is a proposed framework for hardware debugging based

on a domain-specific Large Language Model (LLM) fine-tuned on a custom dataset.

Their research demonstrated the effectiveness of LLMs in the following areas, such

as:

• Locating bugs in hardware design

• Giving suggestions on debugging

• Road to automated quality control in hardware design

Additionally, Ahmad et al. [45] investigated the feasibility of the LLMs on

hardware security bugs. Their research demonstrated that models such as GPT-3

and CodeGen can successfully synthesize replacement code that addresses security

2.3 CHALLENGES AND LIMITATIONS IN APPLYING LLMS TO
CYBERSECURITY TASKS 24

vulnerabilities in hardware designs. It can also automate hardware bug repair ex-

periments yielding promising results, with success rates varying according to the

type of bug and the LLM model used.

2.3 Challenges and Limitations in Applying LLMs

to Cybersecurity Tasks

Although Large Language Models demonstrate great potential for several cyberse-

curity uses, it is not easy to implement. This section presents the major limitations

and challenges when using LLMs in cybersecurity tasks.

2.3.1 Model Size and Deployment Challenge

The first and probably the most critical challenge of using LLMs in cybersecurity is

their sheer size and computational demands. They have become much bigger over

time, reaching 117 million parameters for GPT-1 and going up to 175 billion for

GPT-3 [46] [7]. The scaling drawbacks are significant, such as:

• Storage requirements

• Memory management

• Real-time processing capabilities

• Deployment costs in resource-constrained environments

Training and deploying these models need a lot of computational power. For ex-

ample, training a model like GPT-NeoX-20B requires many high-end GPUs. It was

trained on twelve Supermicro AS-4124GO-NART servers, each equipped with eight

NVIDIA A100-SXM4-40GB GPUs [47]. These demands make it hard for many

organizations and researchers in cybersecurity to access and use such models.

2.3 CHALLENGES AND LIMITATIONS IN APPLYING LLMS TO
CYBERSECURITY TASKS 25

2.3.2 Computing Power and Resources

The computational demands of LLMs present a significant barrier to their widespread

adoption in cybersecurity applications. As highlighted by Xu et al. [7], running ad-

vanced LLMs requires:

• High-performance GPUs or TPUs

• Substantial memory resources

• Special infrastructure for deployment

• High energy consumption

These requirements lead to high operational costs, especially for real-time security

applications. Running large LLMs also uses a lot of energy, raising concerns about

environmental impact and sustainability [14]. Nowadays, the environmental impact

of LLM deployment has emerged as a critical concern. Studies by Patterson et

al. [48] indicate that training LLMs can use as much energy as several hundred

households do in a year. This high energy use is especially concerning because these

models also need frequent updates to keep up with new security threats. Another

research by Strubell et al. [49] found that training one large transformer model can

emit approximately 626,155 pounds (284 metric tons) of CO2 equivalent, which is

nearly five times the lifetime emissions of an average American car. This environ-

mental impact raises serious questions about sustainability and responsible LLM use

in cybersecurity.

2.3.3 Data Scarcity and Quality

Another challenge is the lack of high-quality domain-specific data to train LLMs

in cybersecurity. Zhang et al. [50] addressed this issue in their review that many

cybersecurity datasets are limited in size and diversity. Such approaches often lead to

2.3 CHALLENGES AND LIMITATIONS IN APPLYING LLMS TO
CYBERSECURITY TASKS 26

models that perform well on benchmark tests but poorly against actual cybersecurity

problems. Also, the quality and representativeness of the data at hand matter a lot.

Researchers identified the risk of dataset contamination due to repeated filtering of

the same data, which created an overlap between training and testing sets. This

can make performance metrics look better than they are. The challenges related to

data include [7]:

• Limited availability of labelled security datasets.

• Difficulty in obtaining real-world attack data because no one wants to share

critical data.

• Imbalanced datasets that do not represent all attack vectors

• Lack of quality verification of training data

2.3.4 Privacy and Security Concerns

The use of proprietary LLMs in cybersecurity introduces its own set of privacy and

security concerns. It raises significant privacy and security concerns that extend

beyond traditional cybersecurity challenges. The integration of LLMs into secu-

rity systems introduces new attack risks and vulnerabilities that must be carefully

considered [16] [51]. One major concern is the exposure of sensitive information

during the training process. LLMs might accidentally memorize confidential data

from their training sets. A study by Carlini et al. [52] has demonstrated that LLMs

can unintentionally memorize and expose sensitive information from their training

data, including personally identifiable information, API keys, and security creden-

tials. This is particularly problematic in the world of cybersecurity, where models

can be dealing with very sensitive data. Fine-tuning models on organization-specific

security information, in particular, increases the likelihood of data exposure through

leakage. In addition, Xu et al. [7] brings concerns regarding model tampering and

2.3 CHALLENGES AND LIMITATIONS IN APPLYING LLMS TO
CYBERSECURITY TASKS 27

poisoning attacks. Threat actors can manipulate the model through training data

or create adversarial examples to create holes in the model architecture to influence

the security decisions it makes. The use of LLMs for automated decision-making,

particularly in such critical security applications, can pose quite serious risks.

2.3.5 Interpretability and Trustworthiness

The black-box nature of LLMs is one of the major challenges in building trust and

ensuring interpretability in cybersecurity. As noted by Liu et al. [53], the com-

plexity of these models makes it hard to understand how they make any decisions.

This is a critical issue in cybersecurity, where false positives or negatives can have

serious consequences. The lack of interpretability also makes it difficult for security

professionals to validate the model’s decisions and ensure they comply with security

policies and regulations. A separate study from Yang et al. [54] also emphasizes the

trustworthiness that is needed when LLMs are employed in sensitive environments

and put into critical infrastructure. The opacity around how these models make de-

cisions can lead to reluctance towards adopting them for critical security activities.

Additionally, this problem is made worse by model hallucination, in which the gen-

erated suggestions by LLMs appear valid but are not [55]. Implemented uncritically,

it could blow a hole in security.

2.3.6 Adversarial Attacks and Model Robustness

LLMs are vulnerable to adversarial attacks, which represents a significant concern in

cybersecurity applications. LLMs are vulnerable to different types of adversarial. As

LLM technology has advanced, so have these types of attacks, creating a constant

challenge for security professionals [50]. Prompt injection attacks have become a

serious threat. Research by Liu et al. [53] demonstrated that carefully crafted

prompts can trick LLMs into producing malicious outputs or bypassing security

2.3 CHALLENGES AND LIMITATIONS IN APPLYING LLMS TO
CYBERSECURITY TASKS 28

measures. This can be very dangerous in security-critical applications where the

model’s output directly affects security decisions. The researchers also discovered

that even advanced models could be vulnerable to subtle manipulations that take

advantage of their learned patterns and behaviours. Moreover, Ferrag et al. [14]

outlined some of the most serious vulnerabilities of LLM-based security systems,

such as prompt injection, insecure output handling, and training data poisoning.

These vulnerabilities can cause models to behave in ways that stray from intended

security protocols. The researchers emphasized that traditional security measures

might not be enough to defend against these new types of attacks, highlighting the

need for specialized defenses for LLM-based security systems.

2.3.7 Domain Adaptation and Generalization

LLMs work well for a wide variety of natural language processing tasks, but adapting

them to a specific cybersecurity domain remains challenging. Because cybersecurity

threats are complex and evolving rapidly, these models must also respond to new

patterns and contexts. However, domain adaptation and generalization are some of

the most technical challenges of LLM-based security systems. LLMs that have been

trained on general-purpose data will not adapt well to specialized cybersecurity do-

mains. This limitation is especially visible when models face unseen attack patterns

or highly technical security scenarios that strongly differ from their training set [5].

Research by Abdali et al. [56] observed that in the face of novel security threats

that they never trained on, LLM performance could reduce dramatically. This fail-

ure to generalize poses serious risks in cybersecurity implementation settings, where

novel, unanticipated, and never-before-seen attack vectors are constantly emerging.

The researchers write that while LLMs show an ability to handle known security

patterns, their capability to generalize to new threats is still limited.

Also, many of the cybersecurity tasks are so specialized that models need to grasp

2.4 EMERGING TRENDS AND FUTURE DIRECTIONS IN LLM-BASED
CYBERSECURITY SOLUTIONS 29

highly technical detail and domain terms. Xu et al. [7] note the need for detailed

fine-tuning or domain expertise training, which is a challenge since high-quality

domain-specific data are scarce. The researchers note that successful adaptations

of their model to cybersecurity domains will require both technical modifications of

the model itself and a thorough understanding of the particular security context in

which the model will be employed.

2.4 Emerging Trends and Future Directions in LLM-

based Cybersecurity Solutions

LLMs in cybersecurity are evolving quickly. Trends and developments are influencing

new usages of these models in security applications. This progress plays a role in

solving today’s issues but also opens up new horizons for improved security and

threat detection.

2.4.1 Domain-Specific LLMs

The recent development of LLM has focused on the aspect of fine-tuning the models

and creating domain-specific custom LLM to enhance the model’s learning of the

task at hand. A recent development is that there are researchers working on build-

ing and optimizing LLMs for security-specific workloads. For instance, Fu et al.

[5] developed LLM4SECHW, and Ferrag et al. [10] proposed a privacy-preserving

lightweight BERT-based architecture for the detection of IoT threats. The two

teams utilized medium-sized LLMs and customized them with a fine-tuning process

containing their own datasets. Their results are impressive as both the fine-tuned

models outperform general LLMs that are trained on general datasets. Their work

shows the need to design model architectures and training procedures specialized to

the various cybersecurity domains for more efficient and accurate results.

2.4 EMERGING TRENDS AND FUTURE DIRECTIONS IN LLM-BASED
CYBERSECURITY SOLUTIONS 30

2.4.2 Efficient, Lightweight and Multimodal LLMs

Resources are limited, and training large models can be very expensive, so the

efficient and lite LLM architecture building is another important trend in the field.

A literature review study from Zhang et al. [50] showed that high performance could

be maintained with significant reductions in computational requirements by careful

architecture design and applying model-optimization techniques.

The use of LLMs which integrate several forms of data can lead to exciting new

use cases for cybersecurity, these multimodal approaches enable LLMs to handle

and analyze different kinds of security-related data at the same time. In the current

cybersecurity landscape, where threats traverse numerous data types and formats,

this capability can be incredibly valuable. Xu et al. [7] have found in their litera-

ture review that LLMs could process multimodal data sources (even joint complex

network traffic patterns) such as JSON log data and network packet binary code.

Which in turn scaled the number of false positives and the detection accuracy of

the indicator across diverse data types. It improves the efficiency and reliability of

threat detection systems.

2.4.3 Explainable AI in LLM-based Cybersecurity

Critical cybersecurity systems need transparency and interpretability in the security-

critical decision-making process. As a result, developing explainable AI capabilities

in LLM-based cybersecurity solutions has emerged as a new research direction. The

integration of explainable AI techniques with LLMs allows security specialists to

understand the reasoning behind model decisions, which is crucial for validating

alerts and maintaining regulatory compliance [16]. For example, Ahmad et al. [57]

proposed FLAG (Finding Line Anomalies in Code with Generative AI), the first

attention-based mechanism for bug detection. The model gives clear explanations

of the vulnerabilities, which makes it convenient for security analysts to analyze the

2.5 RESEARCH GAPS AND FUTURE DIRECTIONS 31

justification of the model’s decisions.

2.4.4 Adversarial Training and Robustness

As the variety and nature of cyberthreats are complex and continuously evolving,

researchers have since shifted gears to developing an all-around LLM resistant to

all forms of adversarial attacks. Yao et al. [16] reflected this need in their survey

on LLM security and privacy. In their research, they discussed important security

challenges and proposed solutions by suggesting a framework for LLM-based secu-

rity systems. It also highlighted the need to combine diverse defensive approaches,

including adversarial training, input validation, and continuous model monitoring,

to make a robust system. Another interesting example comes from Deng et al. [58]

introduced the “MASTERKEY” framework, which highlights the serious vulnerabil-

ities of LLM chatbots to adversarial inputs. The study emphasized the importance

of adversarial training, input validation, and ongoing model monitoring to improve

the robustness of LLMs.

2.5 Research Gaps and Future Directions

LLMs in cybersecurity bring many opportunities in order to create more robust

LLM-powered solutions these research gaps need to be filled. For example, focusing

on open-source LLM-based solutions will give organizations more control over the

system and will allow better customization to their needs.

2.5.1 Current Limitations in Literature

The current research landscape reveals several significant limitations that need at-

tention from the research community. A primary concern is the predominant focus

on proprietary LLM solutions, which makes it impossible for organizations to adopt

2.5 RESEARCH GAPS AND FUTURE DIRECTIONS 32

and customize them with full control. Although models such as GPT-4 and Claude

have shown impressive capabilities, they are closed-source and unsuitable for sensi-

tive security environments, in which organizations require tools that they can fully

control—something that closed-source models cannot offer.

Data Representation and Quality: One of the major limitations found in

existing research is the inability to represent most real-life cybersecurity scenarios

in training data. Xu et al. [7] point out that most of the existing studies are based

on syntactic or really old data sets that may no longer represent current threat

landscapes. This gap is even sharper in the area of hardware security applications

where Fu et al. [5] stated that because there are no high-quality, labelled hardware

vulnerability datasets, it is really difficult to develop effective LLM-based detection

systems.

Privacy and Data Control: For organizations that deal with sensitive data

around security, public proprietary LLMs like Gpt-4 present a major risk. Yao et

al. [16] pointed out that few articles in the literature conducted in-depth studies on

the negative effects of deploying proprietary LLMs in security-critical scenarios, es-

pecially the problems caused by data privacy and control. The way these companies

are collecting and handling data is still not clear. For instance, the recent incident

where data privacy concerns led Samsung to ban the use of ChatGPT highlights

this gap in present-day research and implementation approaches [59].

Evaluation Metrics and Benchmarks: One of the major limitations is the

absence of standardized evaluation frameworks to evaluate LLMs for cyber tasks.

Different metrics and benchmarks are used in the current literature, preventing

meaningful comparisons of different approaches. The inconsistency in evaluation

methodology not only makes the comparison of the efficacy of different security

LLM architectures and approaches challenging but also raises concerns about the

real effectiveness achieved from the different security applications of LLM.

2.5 RESEARCH GAPS AND FUTURE DIRECTIONS 33

Integration Challenges: Studies focused on the pragmatic incorporation of

LLMs into current security frameworks are scarce. Theoretical frameworks are differ-

ent from proof-of-concept implementations, Ferrag et al. [14] highlighted difficulties

in deploying systems in practice such as latency on systems, resource optimization,

and integration with legacy systems are surprisingly limited.

Resource Requirements and Scalability: While many open-source models

like LLama and Falcon recently emerged, there has not yet been much research

into optimizing these models for resource-constrained security environments. Fu et

al. [5] also stated that although there is some interest in applying this technique

to real-world security tasks, most studies have focused on performance metrics at

the expense of practical deployment metrics like resource usage and scalability of

performances in real security contexts.

2.5.2 Areas for Further Research

In order to bridge these gaps and progress in the field of cybersecurity, the following

key research should be prioritised:

• Develop Advanced Model Architectures: The research agenda should focus

on the creation, open-sourcing, and security-oriented purpose-design of high-

performance models. The performance of specialized architectures could be

drastically lower on computational requirements while not losing efficiency on

security tasks, already a few studies have shown this.

• Standardization of Evaluation Frameworks: There is a need for a unified eval-

uation framework for security-oriented LLMs. This will enable organizations

to run their proposed system over consistent benchmarks that would allow for

much more meaningful comparisons of individual personal solutions.

• Enterprise Integration Strategies: More work is needed on creating complete

2.5 RESEARCH GAPS AND FUTURE DIRECTIONS 34

solutions for integrating open-source LLMs in enterprise security ecosystems

It is also researching scalable methods for deployment, frameworks for moni-

toring, and integration with existing security tools.

3 Methodology

3.1 System Design

The goal of this research is to design a system and test its performance for network

traffic analysis and cyber incident reconstruction. The core architecture is built

upon locally run LLMs. This system utilizes the LLMs and is capable of providing

insightful information regarding the network traffic data. It addresses the major

issues of traditional methodologies and works as a helpful personal assistant in ana-

lyzing large amounts of data. It also provides a comprehensive framework to create

an effective network traffic analyzer that is context-aware and provides intelligent

responses for security analysis. The system design criteria can be listed as:

1. Develop a chatbot for processing and analyzing network traffic data (PCAP

files).

2. Collect threat intelligence data and integrate that information for providing

enhanced security analysis.

3. Implement a database system for efficient storage and retrieval of relevant in-

formation so that LLMs can provide insightful and context-relevant responses.

4. Develop and test a framework that can be used for processing and analyzing

large amounts of network traffic data (PCAP file) at the same time maintaining

high accuracy in threat detection.

3.2 HYPOTHESES AND EXPECTED OUTCOMES 36

These design criteria align well with the growing concern and the need for sophisti-

cated cybersecurity analysis tools as highlighted by many researchers [10] [7] [5]. It

also demonstrates the possibilities of security analysis tools that use LLMs as their

core processing mechanism.

3.2 Hypotheses and Expected Outcomes

Based on this thesis’s literature review and work, this thesis sets several hypotheses

to address the limitations and challenges of modern cybersecurity analysis and inci-

dent reconstruction. Most of these hypotheses are identified based on future trends,

which were analyzed in Chapter 2, and the design criteria outlined in the previous

section. This study proposes the following hypothesis:

• H1: Integrating Locally run LLMs will improve the speed and accuracy of

network traffic analysis for cyber incident reconstruction. At the same time,

it will ensure the privacy of data.

• H2: Getting data from VirusTotal API and feeding that information to the

LLM will provide more background context and required threat intelligence.

As a result, it will provide more comprehensive threat intelligence for cyber

incident reconstruction.

• H3: Storing custom data in a vector database will enhance the LLM’s ability

to provide contextually relevant responses to that specific custom data. As a

result, more accurate threat identification will be possible.

• H4: Developing an LLM-powered private chatbot will allow users to ask ques-

tions and get informative instruction or assistance, which will make their task

a lot easier.

3.2 HYPOTHESES AND EXPECTED OUTCOMES 37

The first hypothesis (H1) points out that, integrating locally run open-sourced

LLMs for network traffic analysis will significantly increase the speed and accuracy

of the cyber incident reconstruction process. This hypothesis addresses not only

performances but also crucial data privacy concerns. Local LLM deployment al-

lows the user to process sensitive network data without compromising privacy while

harnessing the advanced analytical capabilities of these models.

The second hypothesis (H2) addresses the quality and comprehensiveness of

threat intelligence for cyber incident reconstruction and points out that it will be

increased due to the integration of VirusTotal API data. It will boost LLM’s knowl-

edge base with real-time threat intelligence from VirusTotal. As a result, the system

is expected to provide more detailed and contextually relevant analysis.

The third hypothesis (H3) proposes that storing custom security data in a vector

database will increase the performance of the LLM by providing responses that

are more contextual. This hypothesis is based on the vector database’s ability to

maintain semantic relationships across multiple data types, as a result, it prduce

more accurate threat detection. This hypothesis is also supported by the recent

work of Zhao et al. [55], who show how retrieval-augmented generation mechanisms

can improve LLM capabilities and performance across specialized domains.

The final hypothesis (H4), which is the user interaction component of the sys-

tem, proposes that an LLM-powered private chatbot will serve to increase both the

accessibility and utility of security analysis to end users. This acknowledges the

increasing impact of intuitive interfaces in security tools and suggests that natural

language interaction could improve security operations. The chatbot is likely to

respond clearly to each security query in a context that will ensure security analysis

for security teams with different skill levels to understand even the most complex

issues. This will help to improve how security analyses are explained and ensure

everyone can follow along. Testing these hypotheses would lead to the following

3.3 SYSTEM WORKFLOW 38

expected results:

This study anticipates demonstrating a quantifiable improvement in the efficiency

of security incident analysis by developing a solution that combines vector databases

with local LLMs. This solution’s effectiveness will be evaluated using precision,

recall, and F1 scores as baselines, particularly for complex attack patterns and

zero-day threats. Secondly, the work intends to create a paradigm shift in context-

aware security analysis using LLMs with vector database integration, enabling the

transfer of contextual semantic understanding. This is a critical gap addressed in

recent studies since almost all current security analysis tools are context-impaired.

Thirdly, this work expects that this domain-specific framework will produce more

concrete and comprehensible security solutions using human-interpretable natural

language analysis. This outcome aligns with the growing need for more readily

available security intelligence in contemporary organizational settings — which is

also reflected in the recent academic literature.

3.3 System Workflow

The framework of the proposed system architecture combines traditional packet

capture analysis with modern LLM-driven techniques. The design is essentially a

pipeline that converts raw network data into actionable security insights via interre-

lated components. This design fits well with the trends of cybersecurity automation

and effectiveness, as noted by many researchers [10] [55] [5], highlighting the im-

mense power of combining large language models into a security architecture.

3.3.1 Role of Major Components

The system architecture consists of four key modules that lie at the center of the

security analysis pipeline of this workflow:

3.4 VECTOR DATABASE 39

PCAP Analysis Module: It acts as the first intake point of data, taking

network packet captures in their raw state and extracting the security-related fea-

tures from them. It performs a detailed examination of packets to detect potential

security breaches and unusual traffic activities.

VirusTotal API Integration: The system uses an external threat intelligence

source, VirusTotal API, to give an enriched analysis with a substantial amount of

malware and threat data. This integration provides multi-engine analysis and threat

intelligence that extends the internal analysis functionality of the system.

Vector Database: Acting as a centralized knowledge repository. The vector

database stores and manages high-dimensional representations of security-related

data. It enables efficient similarity searches and contextual retrieval, maintaining

historical context and providing quick access to information during analysis.

Large Language Models: The system implements locally run LLMs to provide

advanced natural language understanding and generation capabilities. These models

interact with the vector database to supply contextualized security insights and

suggestions. It is the heart of the systems architecture that uses advanced reasoning

capabilities to solve and provide insightful guidelines.

3.4 Vector Database

Vector databases have become the foundation of modern information retrieval for

LLM systems and Generative AI. The primary goal of combining a vector database

into the system is to store vector data in a structured manner, allowing for semantic

search and semantically evaluating relevant information based on query content.

3.4 VECTOR DATABASE 40

3.4.1 Purpose of Vector Database in the System

The vector database performs several important functions in this architecture. Its

primary function is to act as an intelligent repository, preserving the semantic re-

lationships between various types of security events, network patterns, and threat

indicators. This ability is especially useful in cybersecurity, where the context of

each event does not always match an actual cyber incident; the relationship between

two independent events can be useful in both threat detection and incident recon-

struction. Furthermore, similarity search in vector databases improves performance,

which is computationally expensive in traditional database systems. To optimize

data storage and retrieval, the Vector Database stores embeddings, which represent

input data as dense vectors. This is the foundation of semantic embeddings, which

identify the meaning of data rather than relying on keywords. It makes it possible

to conduct more intelligent searches, including identifying connections and relation-

ships that might not be clearly indicated in the raw data. The vector database is

incorporated into this system architecture primarily for the following reasons:

Efficient Similarity Search: Vector databases support similarity search, al-

lowing for quick searches over large amounts of network traffic data, which can help

detect patterns and anomalies in near real-time [55]. This ability is especially im-

portant when it comes to identifying potential security threats that might be similar

to known malicious patterns.

Dimensional Reduction: The vector database allows efficient indexing and

storage of the high-dimensional nature of network traffic data [60]. This approach

gives a significant advantage in avoiding the computational overhead for larger net-

work traffic with big packets.

Scalable Data Management: The vector database architecture provides a

scalable solution to handle growing volumes of network traffic data while maintaining

quick response times for queries.

3.4 VECTOR DATABASE 41

Since the vector database reduces the search space map, it helps the LLM get

more relevant information for generating responses, which causes it to play a sig-

nificant role in system performance and scalability. For larger datasets, searching

throughout the entire database can be computationally and time-consuming.

3.4.2 Embedding Creation for Similarity Search

This embedding process serves as a link between raw network traffic data and vec-

tor databases. The methodology begins with analyzing PCAP files using a Python

script, which generates preliminary results that serve as the foundation for the cre-

ation of the embedding shown in Figure 3.1 as part of the system design shown

below.

Figure 3.1: Partial System Diagram Showing the Data Preprocessing and Feature
Extraction

This system converts PCAP file output into high-dimensional vectors using an

embedding model to capture the most relevant network traffic patterns. This con-

version is required for similarity search and pattern recognition. According to a

study, Ferrag et al. [10] found that the strength of the embeddings has a significant

impact on overall performance, particularly in terms of detecting potential disasters

and anomalies. This system utilizes only locally running models to produce the em-

beddings. The system processes network traffic data using two different approaches,

as shown in the architectural diagram shown in Figure 3.1 created for this project

3.4 VECTOR DATABASE 42

(Options 1 and 2).

In option 1, the system sends pre-processed data to the specialized LLM for direct

analysis. Based on the user’s query, LLM analyzes the PCAP file using Python script

(TShark command) and returns answers. In contrast, option 2 generates embeddings

and stores them in a vector database before sending them to the specialized LLM.

As a result, there are two distinct approaches to real-time market analysis and trend

discovery.

This vector database infrastructure utilizes these embeddings to enable imme-

diate retrieval of similar traffic patterns and security-related pieces of information

using a similarity search mechanism based on the user’s query. Using structural

and semantic-level features of the network data with advanced metrics for comput-

ing similarity, the system permits complex pattern matching for detection beyond

simple signature-based types of detection methods.

3.4.3 Query Handling Using Vector DB

After the embeddings are generated and saved in the vector database, they can be

retrieved by comparing the vector expressions of the query. This process is referred

to as a similarity search, which essentially calculates the cosine similarity or other

distance metrics with respect to the query vector and the document vectors [61].

The vector database returns a ranked list of n most similar documents according

to these computed similarities, which is then fed to the LLM as context to help

it generate a relevant response. This drastically limits the information that the

LLM needs to deal with and allows it to answer quicker and with more precision.

Figure 3.2 shows a typical flow of handling queries using a vector database, where

the query is embedded into a vector space, and then compared in similarity to all

stored document vectors, after which the document with the highest similarity score

is retrieved.

3.4 VECTOR DATABASE 43

Figure 3.2: Vector Search

3.4.4 Query Processing Pipeline

This system workflow follows a query processing structure where processing takes

place in a sequential manner with the vector database tech and the LLMs providing

power respectively. This starts from query transformation and goes up until re-

sponse generation. The process of handling the query is presented in the Figure 3.1

diagram where the query follows a path through several layers of processing. The

query-handling engine is built around the interaction of the embedding model and

the vector database. This traces the embedded model, which takes a query input

in natural language and converts it to a vector representation to fit the database

structure. Query processing is performed in a 5-phase pipeline:

• Stage 1 - Query Embedding Transformation: First, the system will convert the

incoming query into a vector using its embedding model (the same one that

was used at the time of the initial data ingestion step). This guarantees that

there is uniformity between the vectors we query and the vectors we store,

which is an important aspect of similarity matching accuracy.

• Stage 2 - Vector Database Search: Then, the transformed vector is used as

a query and perform a similarity search within the vector database. This

involves searching over-optimized indexing structures that enable the fastest

3.5 LLM UTILIZATION 44

search for the most relevant matches based on vector similarity metrics.

• Stage 3 - Context Retrieval : The system retrieves applicable contexts based

on the vector similarity search results. These contexts include linked meta-

data and security-relevant information that provide extra depth to the query

response.

• Stage 4 - LLM Integration: These retrieved contexts are then forwarded to

the LLM component of the system to be processed along with the original

query. The architecture diagram of this system also shows how it uses only

locally run LLMS for natural language understanding and response generation

integration.

• Stage 5 - Response Generation: Lastly, it generates an elaborated answer,

taking advantage of the accuracy of vector similarity-based relevance matched

to the domain context solutions.

3.5 LLM Utilization

In this proposed system architecture, locally run LLMs play the main role in un-

derstanding user queries, generating human-like responses, and interacting with the

vector database for efficient information retrieval.

3.5.1 Selection of LLM Models

The thesis work employs only open-source models that can be run on local de-

vices, reducing concerns about security, privacy, and local control. This model also

addresses the very serious security risks associated with public commercial LLMs,

ensuring complete data authority. This system, in particular, uses a specific set of

Llama 3, Llama 3.1, Falcon, and Mistral models with sizes ranging from 8 to 32

3.5 LLM UTILIZATION 45

billion parameters, which are easily runnable on dual NVIDIA TITAN RTX-based

hardware infrastructure with 24GB of VRAM deployed in the system hardware.

The choice was made not only according to performance needs but also practical

limitations. The applicability of LLM for security-related purposes is quite specific

to the model’s architecture, scale, and training, as noted by Xu et al. [7]. Larger

models such as GPT-4 have shown generally good performance, but this work shows

that with this system framework, locally run models can do much better and match

performance on specific security-analysis tasks while providing privacy of data.

This work was performed using NVIDIA TITAN RTXs with 24576MiB memory,

ensuring capability for fast model inference while acting as a realistic constraint

on model size. This configuration provided both optimization and balance between

model performance and resource utilization. This setup offered optimization and a

balance of performance versus resource use. Models of 8-32 billion parameters are

selected to balance processing speed and security analysis accuracy and pick optimal

model parameters that provide the best performance for specific tasks. Recent

research in the field also supports the choice of these particular models.

The Llama model family, for example, was reported by many researchers to be

surprisingly efficient on narrow tasks. Likewise, Falcon and Mistral models have

performed well in security use cases, especially when fine-tuned within well-defined

domains. This implementation takes advantage of these properties while allowing

full control over the inference and data flows.

4 System Design and

Implementation

4.1 System Overview

The proposed system aims to use the power of Large Language Models and vec-

tor databases and provide context-aware querying and generative AI responses

for network traffic analysis. The system aims to help security analysts in catch-

ing and investigating potential security threats. It does this by processing packet

capture (PCAP) files, integrating external threat intelligence sources, and offering

intelligence-based querying capabilities.

4.1.1 Problem Scope and Use Case

As the volume and complexity of enterprise network traffic continue to grow, human

analysis has become impractical and inefficient. The problem for security analysts is

that they need to rapidly assess most threats and then respond quickly to remediate

them. The proposed answer to this problem is to utilize the power of LLMs and

present a framework that automates feature extraction from PCAP files, comple-

ments them with a threat intelligence database, and enables LLM-powered querying

and response generation. This use case falls into the category of security analysts

being required to conduct an investigation into a potential security event, such as

4.1 SYSTEM OVERVIEW 47

malware infection, phishing attack, or data exfiltration. Analysts can use the sys-

tem’s context-aware querying and generative AI replies to find associated events,

detect patterns, and learn about the nature and extent of occurrences.

4.1.2 High-Level Architecture Description

As shown in the full system architecture in Figure 4.1, the proposed system comprises

four high-level architectural components:

Figure 4.1: System Design Architecture

1. PCAP File Preprocessing Pipeline - this takes care of ingesting and parsing

PCAP files, extracting features and also integrating external threat intelligence

feeds like VirusTotal.

4.2 TECHNICAL IMPLEMENTATION 48

2. Store in Vector Database - The part of the system that deals with generating

vector embeddings for preprocessed network traffic and storing it in a vector

database, which is used to search (similarity search) retrieved data.

3. LLM Query Processing and Response generation - This component works with

LLMs running locally to get the user query, search for related context in the

vector database and generate AI responses.

4. User Interface - A user-facing part of the system that allows security analysts

to communicate with it by sending queries and getting responses.

The data preprocessing pipeline converts raw PCAP files into structured JSON

format, which can then be evaluated and integrated with the vector database and

LLM agent helpers. This consists of three major steps: reading PCAPs and ex-

tracting features, integrating with the VirusTotal API, and converting to JSON

file. The vector database integration component produces vector embeddings of the

preprocessed network traffic JSON. It allows fast similarity searches and retrievals

utilizing ChromaDB [62], a high-performance vector repository intended for efficient

similarity matching and retrieval. The LLM query processing and response genera-

tion component uses locally hosted language models to understand inquiries, retrieve

relevant material from the vector database, and synthesize LLM-powered responses.

The LangChain [63] library is used to integrate OLLAMA models with the vector

database and manage the question handling and response fabrication workflow.

4.2 Technical Implementation

4.2.1 PCAP Parsing and Feature Extraction

The first step of the data preprocessing pipeline is parsing the raw PCAP files and

extracting meaningful features appropriate for analysis. In this stage, PCAP files

4.2 TECHNICAL IMPLEMENTATION 49

are read using PyShark [64], which is a Python wrapper for the TShark library

from Wireshark, and features are extracted, including IPs, port numbers, protocols,

and payload data. This system converts raw network capture data into embed-

dings suitable for analysis through a multi-stage pipeline. In the last step, TShark

(terminal-based network protocol analyzer) is used to convert PCAP file data into

structured JSON format. Compared to working at a packet level, it has multiple

benefits, such as better data structure and more efficient processing. The informa-

tion transformation method follows a systematic workflow.

Listing 4.1: Libraries Used for PCAP Preprocessing Pipeline

from langchain_community.llms.ollama import Ollama

from langchain.document_loaders import JSONLoader

from langchain.text_splitter import

RecursiveCharacterTextSplitter

from langchain_community.embeddings import OllamaEmbeddings

This implementation uses JSONLoader to parse the structured data from the

network and then the RecursiveCharacterTextSplitter for optimal content segmenta-

tion. This method is consistent with the research conducted by Xu et al. [7], which

emphasizes the significance of appropriate data segmentation in security analysis

systems. The transformation pipeline is represented as follows:

PCAP → JSON → Text Segments → Embeddings → Vector Storage

This sequential transformation ensures network traffic data is properly structured

and contextualized before embedding generation. A study by Ferrag et al. [10]

emphasizes the significance of appropriate data segmentation in security analysis

systems.

4.2 TECHNICAL IMPLEMENTATION 50

4.2.1.1 VirusTotal API Integration

The system uses external threat intelligence data sources to improve the collected

cyber threat features. It compares IP addresses, domain names, and file hashes to

the VirusTotal database [65] through API calls to see if they are associated with

any known malicious activities. These API queries return information about each

distinct attribute parsed from network traffic. After that, the characteristics and

threat data are combined for further processing.

4.2.1.2 JSON Conversion

The final stage of the data preprocessing pipeline is to transform both the integrated

feature and the integrated threat intelligence information into JSON format. JSON

(JavaScript Object Notation) is a lightweight data transport format that is both

human-readable and machine-parseable [66]. Changing the data to JSON allows for

better interaction with vector databases and LLMs, as well as smooth integration

with other tools/systems. The JSON Conversion function converts features and

threat intelligence data into a hierarchical arrangement, in which each network traffic

record is saved as a JSON object with varied characteristics in key-value pairs. This

JSON data is subsequently saved to a file or passed straight to the system’s next

component.

4.2.2 Embedding Generation and Vector Storage

This system uses "OllamaEmbeddings" to generate vector representations of the pro-

cessed network data. The decision to use this library was driven by several factors,

including its local processing capabilities and seamless integration with our chosen

LLM implementation. Ollama is a platform that provides tools for running and

interacting with large language models locally, including the capability to generate

embeddings. In this project, the’ nomic-embed-text’ model was used for embedding

4.2 TECHNICAL IMPLEMENTATION 51

tasks. This model is specifically designed to convert data into dense vector repre-

sentations and effectively capture the semantic meaning and relationships between

different features. The embedding generation process is as follows:

Listing 4.2: Embedding Creation Process Code

from langchain_community.embeddings.ollama import

OllamaEmbeddings

base_url = "http :// localhost :11434" # Update IP and port as

needed

def get_embedding_function ():

"""Get embedding function using Ollama """

try:

embeddings = OllamaEmbeddings(

base_url=base_url ,

model="nomic -embed -text"

)

return embeddings

except Exception as e:

print(f"Error␣initializing␣embeddings:␣{e}")

raise

The generated embeddings are saved within ChromaDB, a vector storage solu-

tion. The integration between embedding creation and storing is intended to main-

tain semantic relationships while allowing efficient retrieval. Embedding generation

involves the following steps:

• The preprocessed JSON data is loaded into memory using the JSONLoader

utility, which is specifically designed to handle structured JSON data effi-

4.2 TECHNICAL IMPLEMENTATION 52

ciently.

• To efficiently handle huge datasets, split JSON data into smaller chunks using

the "RecursiveCharacterTextSplitter".

• Applying the OLLAMA Embeddings model to each chunk of JSON data to

generate the corresponding vector embeddings.

• Store the generated vector embeddings in the ChromaDB vector database for

a more optimal and efficient search and retrieval of similar vectors.

4.2.2.1 Similarity Search and Retrieval

ChromaDB helps perform fast and efficient similarity searches and user queries based

on the retrieval of relevant network traffic data. Once a user submits a query,

the system first creates a vector embedding of the inputted query using the same

OLLAMA Embeddings model used on the preprocessed data. Next, the query vector

is compared within the locally created ChromaDB database using a similarity metric,

such as cosine similarity. ChromaDB computes similarity scores and returns a ranked

list of the closest vector embeddings from the set. These top-k (similarity) results are

then used to fetch the respective preprocessed data from JSON in order to provide

context to the LLMs so they can generate accurate and relevant responses back to

the user query.

[Figure 5.4: Similarity search and retrieval process using ChromaDB.]

4.2.3 Local LLM Integration and Query Processing

The system uses Ollama to deploy LLMs locally so the user can have complete

privacy with data and perform more efficient analysis operations at lower latencies.

The implementation supports several open-source models, for example, some of the

tested models are Llama, Falcon, and Mistral with 8 to 32 billion parameters which

4.3 DEVELOPMENT ENVIRONMENT AND INFRASTRUCTURE 53

are optimized for dual NVIDIA TITAN RTX GPU infrastructure. This architecture

also includes a smart query processing pipeline in which contextual information

retrieved from the vector store is combined with the reasoning capabilities of LLMs

running locally. It offers a high-throughput pipeline that is seamlessly integrated

and compliant with strict data privacy policies. Using Ollama for local processing,

the system resolves some of the most important security concerns while providing

flexibility in model selection and configuration.

4.3 Development Environment and Infrastructure

The proposed security analysis system should be implemented in a well-organized

development environment that maintains a balance between computational require-

ments, security considerations, and system efficiency. This section discusses the

detailed architecture that supports the system’s core capabilities.

4.3.1 Hardware Infrastructure and Resource Management

The computational architecture of this suggested system rests on high-performance

GPU computing, which is needed to run efficient local LLM operations and embed-

ding creation. The core hardware configuration consists of:

• NVIDIA TITAN RTX Dual GPU with 24GB VRAM Each

• High-performance CPU

• RAM Requirements:

– 7B models: At least 8 GB of RAM.

– 13B models: At least 16 GB of RAM.

– 33B models: At least 32 GB of RAM.

– 70B models: At least 64 GB of RAM.

4.3 DEVELOPMENT ENVIRONMENT AND INFRASTRUCTURE 54

4.3.2 Software Stack and Dependencies

To ensure scalability, performance, and ease of maintenance, the proposed system

will be implemented using open-source tools, libraries, and frameworks. The main

software components are:

Listing 4.3: Core Dependencies

Core Dependencies:

- langchain ==0.1.10 # Framework for LLM operations

- chromadb # Vector storage

- streamlit # User interface framework

- ollama # Platform for running and managing LLMs

locally

- python -dotenv # Environment configuration

- pyshark # PCAP file processing

- tqdm # Progress monitoring

- langchain -community # LangChain capabilities

Additional specialized libraries for specific functionalities are:

Listing 4.4: Additional Processing Libraries

Processing Libraries:

- JSONLoader # Data parsing

- RecursiveCharacterTextSplitter # Content segmentation

- OllamaEmbeddings # Local embedding generation , it generates

embeddings using Ollama 's models.

Here are the details of the technology stack and implementation:

• Data Preprocessing:

4.3 DEVELOPMENT ENVIRONMENT AND INFRASTRUCTURE 55

– PyShark: For PCAP parsing and feature extraction

– Python-dotenv: For managing environment variables and API keys

– Requests: For "VirusTotal" API integration

– Tqdm: For progress tracking during data preprocessing

• Vector Database:

– ChromaDB: For vector embedding storage and similarity search

– OLLAMA Embeddings: For vector embedding generation

– LangChain: For integrating OLLAMA with ChromaDB

– Handling large JSON file:

∗ JSONLoader: Structured data parsing

∗ RecursiveCharacterTextSplitter: Content segmentation

• LLM Query Processing and Response Generation:

– OLLaMA: For query understanding and response generation using LLMs

locally

– LangChain: Framework that helps to integrate LLMs into applications.

– Groq: Alternative of Local implementation using Groq API (optional)

• User Interface:

– Streamlit: For building the web-based user interface

– Streamlit Components: For integrating custom UI elements and visual-

izations

5 Testing and Evaluation

5.1 Performance Analysis

A detailed evaluation and testing were done on the proposed system with captured

network traffic files (PCAP) and security incident scenarios for its effectiveness and

performance assessment.

5.1.1 Experimental Setup and Datasets

The datasets used for testing and evaluation are collected from the website "Mal-

ware Traffic Analysis" [67], an open-source repository of real-world malware network

traffic data. This repository contains a large dataset of PCAP files with different at-

tack signatures. In the evaluation, these PCAP files were used to test the proposed

system. The system was deployed in a high-performance computational environ-

ment to make it robust and reliable. This configuration was specifically selected to

accommodate the high performance and memory needed to run those LLMs. The

experimental setup is equipped with the following specifications detailed in Table

5.1:

The datasets were carefully chosen to cover a wide range of security incidents,

including malware infections, for example, ransomware, trojans, botnets, phishing,

and social engineering attacks. A total of Twelve PCAP files were chosen from

the "Malware Traffic Analysis" website to provide a diverse range of attack types

5.1 PERFORMANCE ANALYSIS 57

Table 5.1: System Specifications
Component Specification

Processing Unit AMD Ryzen Threadripper 2920X 12-Core Processor
Memory 96GB DDR4
Storage 1TB NVMe SSD
GPU 2 NVIDIA TITAN RTX GPUs with 24GB memory each

Operating System Ubuntu 22.04.3 LTS

and network traffic characteristics. The testing dataset composition was distributed

across different malware categories in order to allow for comprehensive system test-

ing. Each of the files is processed individually using the developed pipeline, which

includes PCAP parsing, feature extraction, and threat intelligence enrichment. The

preprocessed data is then stored in the ChromaDB vector database for efficient sim-

ilarity search and retrieval. Table 5.2 presents the distribution of malware families

in our test dataset.

Table 5.2: Malware Category Distribution
Malware Category Number of Samples Percentage Actual File Size

Ransomware 5 41.67% 20MB
Banking Trojans 4 33.33% 12MB
Other Malware 3 25.00% 15MB

The system comes with a very user-friendly interface where users can upload

PCAP files and analyze them with the help of LLM. They can chat with the model,

and it will give insightful information and recommendations based on the captured

traffic file. The bellow Figure 5.1 is the User Interface of the system:

5.1.2 Prompt Design

The system prompt plays an important role in steering this LLM-powered system

towards giving relevant and correct answers to user queries. Listing 5.1 is the exam-

ple prompt that is used in the evaluation process, it demonstrates how a well-defined

prompt provides the necessary context for the LLMs to reasonably analyze packet

captures. The prompt begins by stating that the assistant is an expert in packet

5.1 PERFORMANCE ANALYSIS 58

Figure 5.1: User Interface

capture analysis. This improves the LLMs’ ability to analyze network traffic and

respond in ways that are relevant to the needs of the Network Engineer and Cyber-

security professional.

It also has detailed instructions for varied user queries. For instance, if the query

is about an application layer protocol such as HTTP, HTTPS, or SSH, the prompt

tells the LLMs to search the database for the corresponding port numbers. This

allows the system to quickly locate accurate information and deliver protocol-specific

relevance. For general analysis, the prompt encourages the LLMs to pull information

from all layers of the network stack (Ethernet, IP, transport, etc) with source and

destination IPs, port numbers, and so on, highlighted as critical information to

return.

At runtime, the {context} placeholder for the given prompt is dynamically

filled with real packet capture information retrieved from the vector and VirusTotal

databases, allowing the LLMs to access relevant network traffic for context-based

responses. Similarly, the user’s question replaces the placeholder {question}. When

the prompt is about a topic unrelated to the context provided, it instructs the LLMs

5.1 PERFORMANCE ANALYSIS 59

to inform the user that the prompt is unrelated to the context while still providing

relevant information from its general knowledge. That keeps the system useful and

responsive, even for irrelevant questions.

Listing 5.1: Prompt Design

You are a helper assistant specialized in analyzing packet

captures used for technical analysis and malware detection.

Use the information present in the vector database and

VirusTotal analysis results to answer all questions

truthfully.

When analyzing security -related questions or potential threats

:

1. First check if there are any VirusTotal results in the

context

2. Consider both the packet capture data and VirusTotal

analysis when forming your response

3. If malicious activity is detected , explain the nature of

the threat and potential implications

4. Provide specific indicators or patterns found in the packet

capture that correlate with the VirusTotal findings

For general analysis:

- Extract information about every layer (such as ethernet , IP ,

transport layer)

- Identify source and destination IPs , port numbers and other

possible insights

- Note any suspicious patterns or known malicious indicators

- Correlate findings with any VirusTotal security analysis

5.1 PERFORMANCE ANALYSIS 60

results

Format your response in markdown text with line breaks. You

are encouraged to use emojis to make your response more

presentable and fun.

hints:

http means tcp.port = 80

https means tcp.port = 443

ssh means tcp.port = 22

{context}

Answer the question based on the above context and use your

own knowledge to provide a comprehensive explanation: {

question}

Note: if the asked question is not relevant to the context ,

inform the user that it is not relevant to the provided

documents and then use your own knowledge to answer it.

5.1.3 Evaluation Metrics and Results

The following key metrics are used to evaluate the performance of the LLM-Powered

network traffic analysis system:

• Accuracy: This measures how well the system correctly identifies each type of

PCAP file from the test dataset and classifies them into the right categories.

5.1 PERFORMANCE ANALYSIS 61

It is calculated as the percentage of correctly identified events out of the total

dataset.

• Precision and Recall: Precision shows how many of the system’s positive pre-

dictions are correct, while recall measures how many actual positive events

were correctly identified. Together, these metrics give a clearer picture of the

system’s performance by accounting for both false positives and false negatives.

• Query Response Time: This tracks how quickly the system processes user

queries, retrieves information from the vector database, and generates AI-

powered responses. It is one of the key metrics for evaluating the system’s

ability to support fast incident responses.

• Model Comparison: Performance of open-source LLMs: LLAMA, Falcon, and

Mistral with various parameters (7B, 12B, etc.). The comparison reveals each

model’s effectiveness for this specific task.

5.1.3.1 Vector Database Performance Analysis

Vector databases’ performance is measured using several key metrics, including the

time it takes to create an embedding, the efficiency of initial indexing, the query

response time, and the similarity search quality. For this testing, two open-source

models were used: "nomic-embed-text" and "mxbai-embed-large". The "nomic-

embed-text model" has 137 million parameters and is one of the smaller models

evaluated. However, according to the model’s performance benchmark, it outper-

forms OpenAI’s "Ada-002" and "text-embedding-3-small" models in both short and

long context tasks. On the other hand, "mxbai-embed-large" is a slightly larger

model with 334 million parameters.

To obtain the results, both models were used for embedding creation and a query

response task. Each model was used to embed all of those PCAP files separately,

5.1 PERFORMANCE ANALYSIS 62

and performance was evaluated in four categories: embedding creation time, initial

indexing time, query processing time, and query response quality. Both models had

consistent GPU memory spikes when it was creating the embedding. The "nomic-

embed-text" model was using 1818 MB of GPU memory during the entire runtime

to process it whereas the "mxbai-embed-large" model was using 1224 MB. Despite

having more than twice as many parameters, the "mxbai-embed-large" model sur-

prisingly used less GPU RAM. Figure 5.2 5.3 shows the GPU memory consumption

of both models during the task running process. "watch -n 1 nvidia-smi" command

was used to view track memory uses during the processing time.

Figure 5.2: Memory Consumption of
"nomic-embed-text" Model

Figure 5.3: Memory Consumption of
"mxbai-embed-large" Model

In terms of preliminary indexing and query processing tasks, the models both per-

formed well and processed efficiently and quickly. However, a significant difference

appeared in the time spent creating the embeddings. However, when we analyzed

embedding creation time, the difference was significant. The "mxbai-embed-large"

model outperformed the "nomic-embed-text" model and efficiently converted those

document inputs into the vector.

Table 5.3 provides a breakdown of the above comparison, including GPU mem-

ory consumption, embedding creation time, indexing time, and query return time.

Overall "mxbai-embed-large" model performed better in the embedding task.

5.1 PERFORMANCE ANALYSIS 63

Table 5.3: Vector Database Performance Comparison: "nomic-embed-text" and
"mxbai-embed-large"

Operation Phase Model Average Time (ms) Memory Usage (MB)
Embedding Creation nomic-embed-text 205000 1818

mxbai-embed-large 167000 1224
Initial Indexing nomic-embed-text 340 1818

mxbai-embed-large 300 1224
Query Processing nomic-embed-text 300 1818

mxbai-embed-large 280 1224

5.1.3.2 Model Performance Evaluation

To evaluate the performance of different LLMs, a set of 12 PCAP files was used

to carry out a number of tests. Each PCAP file was tested using the selected

LLMs, such as Llama2-13B, Llama3.1-8B, Mistral-7B, and Falcon-40B. During the

evaluation phase, the PCAP files were uploaded one by one, and these models’

performance was tested. The performance of each LLM was evaluated according to

its ability to correctly identify relevant patterns and provide relevant information

based on user queries. In Table 5.4, the model performance analysis summary is

presented, including the accuracy (the proportion of correct responses), response

time, and memory usage for each LLM.

Table 5.4: Comprehensive Model Performance Analysis
LLM Accuracy (Proportion) Response Time (s) Memory Usage (GB)

Llama2-13B 0.75 0.9 14.5
Llama3.1-8B 0.67 0.8 7.1
Mistral-7B 0.67 0.8 7.2
Falcon-40B n/a 2.5 31.1

The results show that Llama2-13B produced the highest accuracy out of all

models, with relevant and actionable information being identified in 75% of the

tested PCAP files (9 out of 12). Llama3.1-8B and Mistral-7B achieved slightly

lower accuracies of 67%.

During testing, each model demonstrated various response styles, which could be

due to the prompt template. All models used the same prompt template. However,

5.1 PERFORMANCE ANALYSIS 64

differing prompt templates cause the LLMs to respond differently. Mistral-7B de-

livered concise, focused solutions that immediately answered the user’s inquiries. In

comparison, Llama2-13B produced more thorough responses, including context and

insights. Falcon-40B’s performance was not formally examined due to its excessive

memory consumption. It is evident that larger models, such as the Falcon-40B, have

more capabilities, but their implementation in resource-constrained contexts can be

difficult.

Among those tested LLMs in this study, Llama2-13B achieved the best perfor-

mance based on the evaluation results. Compared to other models, better accuracy

and response generation make it a good candidate for a tactical analyst to sort

through network traffic or perform incident response. However, model size plays a

very critical role in performance, even though Llama3.1 is the latest model of Llama

series it was outperformed by LLama2 which is mostly likely because of the size of

the model. Llama3.1 was tested with an 8B parameter version, whereas Llama2-13B

used a larger 13B parameter version. Here are two screenshots of the system UI,

shown in Figure 5.4 and Figure 5.5, where the user was chatting with the PCAP file

and retrieving insightful information directly from it. The user’s questions included

queries such as, "Which IPs are making HTTP requests?" and "For the HTTP

requests identified, what are the source and destination IPs, and what data was

exchanged?"

5.1 PERFORMANCE ANALYSIS 65

Figure 5.4: Interactive System UI Showing User Queries

5.1 PERFORMANCE ANALYSIS 66

Figure 5.5: Interactive System UI Showing User Queries

6 Conclusion and Future Work

6.1 Summary of Findings and Contributions

This thesis proposes a new framework for cybersecurity analysis: a privacy-preserving,

LLM-powered system that is capable of analyzing network traffic. By integrating lo-

cally run large language models with open-source security tools, this privacy-centric

design maintains high-fidelity analysis without compromising data confidentiality.

This solves important aspects of RQ1, which has been examined extensively in

Chapter 2 with respect to traditional approaches.

This work contributes in several ways. To begin, a complete pipeline comprising

PCAP parsing, feature extraction, and threat knowledge enrichment was imple-

mented with state-of-the-art tools and libraries such as PyShark and VirusTotal.

This whole system is designed to run locally, ensuring that user has full control of

their data and that sensitive information regarding network traffic (privacy, secu-

rity, anonymity) is preserved. The machine operates on the principle of “data stays

where it belongs” as it uses open-source LLMs and runs proprietary hardware, which

limits the potential for data leakage, and also ensures confidentiality throughout the

investigative process. This alone is a meaningful contribution because it addresses

increasing concerns surrounding the privacy and safety of AI-based digital forensic

investigations. The implementation details introduced in Chapter 4 target the most

crucial components for both RQ1 and RQ2.

6.2 REFLECTION ON THE PRACTICALITY AND EFFECTIVENESS 68

The second contribution demonstrates how integrating a vector database can im-

prove the storage and retrieval of security-related embeddings, allowing for context-

aware threat detection. For example, using similarity search in a custom-created

vector database improves both response accuracy and retrieval speed. This com-

plements the second part of RQ2, which focuses on cost-effective and customizable

solutions.

The third contribution is to show the benefits of using an external threat in-

telligence database from the VirusTotal API, which gives LLM recently updated

information and helps to produce more accurate intuition. The effectiveness men-

tioned in RQ3 is supported by the experimental results presented in Chapter 5.

6.2 Reflection on the Practicality and Effectiveness

The LLM-enhanced digital forensics system was developed and tested. This work

sheds light on how vector databases and LLMs, as a platform, can be used in practi-

cal cybersecurity applications. This approach allows for automated feature extrac-

tion and data parsing, as well as other manual or time-consuming tasks associated

with network traffic analysis. It also has room to improve in terms of the correlation

of events across multiple data sources. This allows security analysts to concentrate

on higher-level decision-making, and incident response, thus increasing the efficiency

of digital forensics investigations by leveraging smart algorithms and large language

models.

However, it is critical to understand its limitations and challenges. A particu-

larly problematic issue is the interpretability and the explainability of the produced

insights and recommendations. Although LLM has demonstrated remarkable per-

formance in generating coherent and contextually relevant responses, there is still

some ambiguity about the reasoning mechanisms and decision-making criteria inher-

ent in these models. It is important to have some sort of assurance that the output

6.3 FURTHER RESEARCH AND IMPROVEMENTS 69

of a system is accurate, which can be a problem, especially for big cybersecurity

investigations because false positives or negatives can be very costly.

Also to run it locally, it requires a lot of computer power. Only small models were

tested due to hardware limitations and that may limit system performance during

the evaluation phase. Larger models, with more parameters and more training data,

are expected to produce better results and more accurate and nuanced information.

Therefore, it should be noted that LLM models can be computationally intensive to

run, so organizations should pay close attention to the old performance versus cost

dynamic with an LLM-infused traffic analysis system.

6.3 Further Research and Improvements

Even though the system has produced promising results, there are still areas where

it can be improved for more practical use. One important area for future research

would be to fine-tune open-source LLMs to handle specific security tasks. While

current models perform reasonably well, fine-tuning the model with a customized

dataset for cybersecurity purposes could significantly improve its accuracy. Fine-

tuning allows the model to learn the artifacts and patterns specific to this domain

that will provide recommendations more precisely around incident response and

forensic analysis. As described in the recent cybersecurity literature review paper

by Xu et al. [7], domain-specific fine-tuning can significantly improve model perfor-

mance in specialized tasks.

One other challenge of testing was that there was also a limited capacity from the

hardware side. This situation really constrains the usage of bigger LLMs because

of this limitation only smaller models were tested. However, with better availability

of hardware, larger models such as LLaMA-70B and other similar models could

give even better results. So future research will be done with higher computational

resources so that the performance of those bigger models can also be tested. Notably,

6.3 FURTHER RESEARCH AND IMPROVEMENTS 70

larger models with more training data and parameters are expected to produce

better outcomes even without fine-tuning. Another topic for future work will be

the addition of more external sources of data and threat intelligence feeds. For

example, endpoint logs, system events, user behavior, or external threat intelligence

feeds may make possible much deeper cybersecurity analytics. This will help in

incident reconstruction and detailed attacker behavior understanding.

References

[1] M. Brundage, S. Avin, J. Clark, H. Toner, P. Eckersley, B. Garfinkel, A. Dafoe,

P. Scharre, T. Zeitzoff, B. Filar, H. Anderson, H. Roff, G. C. Allen, J. Stein-

hardt, C. Flynn, S. Ó. hÉigeartaigh, S. Beard, H. Belfield, S. Farquhar, C. Lyle,

R. Crootof, O. Evans, M. Page, J. Bryson, R. Yampolskiy, and D. Amodei,

“The malicious use of artificial intelligence: Forecasting, prevention, and mit-

igation”, arXiv preprint arXiv:1802.07228, 2018.

[2] N. Kaloudi and J. Li, “The AI-based cyber threat landscape: A survey”, ACM

Computing Survey, vol. 53, no. 1, pp. 1–34, Feb. 2020.

[3] M. Abbasi, A. Shahraki, and A. Taherkordi, “Deep learning for network traf-

fic monitoring and analysis (NTMA): A survey”, Computer Communications,

vol. 170, pp. 19–41, 2021.

[4] H. Guo, S. Yuan, and X. Wu, “Logbert: Log anomaly detection via BERT”, in

2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen,

China, 2021, pp. 1–8.

[5] W. Fu, K. Yang, R. G. Dutta, X. Guo, and G. Qu, “LLM4SecHW: Lever-

aging domain-specific large language model for hardware debugging”, in 2023

Asian Hardware Oriented Security and Trust Symposium (AsianHOST), Tian-

jin, China: IEEE, Dec. 2023.

REFERENCES 72

[6] I. Elsharef, Z. Zeng, and Z. Gu, “Facilitating threat modeling by leveraging

large language models”, in Workshop on AI Systems with Confidential Com-

puting (AISCC) 2024, San Diego, USA, 2024.

[7] H. Xu, S. Wang, N. Li, K. Wang, Y. Zhao, K. Chen, T. Yu, Y. Liu, and

H. Wang, “Large language models for cyber security: A systematic literature

review”, arXiv preprint arXiv:2405.04760, 2024.

[8] D. Myers, R. Mohawesh, V. I. Chellaboina, A. L. Sathvik, P. Venkatesh, Y.-H.

Ho, H. Henshaw, M. Alhawawreh, D. Berdik, and Y. Jararweh, “Foundation

and large language models: Fundamentals, challenges, opportunities, and so-

cial impacts”, Cluster Computing, vol. 27, no. 1, pp. 1–26, 2024.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł.

Kaiser, and I. Polosukhin, “Attention is all you need”, in Advances in Neural

Information Processing Systems, vol. 30, Long Beach, CA, USA, 2017.

[10] M. A. Ferrag, M. Ndhlovu, N. Tihanyi, L. C. Cordeiro, M. Debbah, T. Lestable,

and N. S. Thandi, “Revolutionizing cyber threat detection with large language

models: A privacy-preserving bert-based lightweight model for IoT/IIoT de-

vices”, IEEE Access, vol. 12, pp. 23 733–23 750, 2024.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of

deep bidirectional transformers for language understanding”, arXiv preprint

arXiv:1810.04805, 2018.

[12] OpenAI, OpenAI platform: Models documentation, Accessed: 2024-11-02, 2024.

[Online]. Available: https://platform.openai.com/docs/models.

[13] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A.

Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G.

Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter,

C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,

https://platform.openai.com/docs/models

REFERENCES 73

S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models

are few-shot learners”, arXiv preprint arXiv:2005.14165, 2020.

[14] M. A. Ferrag, F. Alwahedi, A. Battah, B. Cherif, A. Mechri, and N. Tihanyi,

“Generative AI and large language models for cyber security: All insights you

need”, arXiv preprint arXiv:2405.12750, 2024.

[15] B. Ghosh, “Empowering language models: Pre-training, fine-tuning, and in-

context learning”, Medium, Jun. 2023, Accessed: 2024-11-26. [Online]. Avail-

able: https://medium.com/@bijit211987/the-evolution-of-language-m

odels-pre-training-fine-tuning-and-in-context-learning-b63d4c16

1e49.

[16] Y. Yao, J. Duan, K. Xu, Y. Cai, Z. Sun, and Y. Zhang, “A survey on large

language model (LLM) security and privacy: The good, the bad, and the ugly”,

High-Confidence Computing, vol. 4, no. 2, pp. 100–211, 2024.

[17] X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang, “Pre-trained models for

natural language processing: A survey”, Science China Technological Sciences,

vol. 63, no. 10, pp. 1872–1897, 2020.

[18] F. N. Motlagh, M. Hajizadeh, M. Majd, P. Najafi, F. Cheng, and C. Meinel,

“Large language models in cybersecurity: State-of-the-art”, arXiv preprint,

2024.

[19] P. Cichonski, T. Millar, T. Grance, and K. Scarfone, “Nist special publica-

tion 800-61, revision 2: Computer security incident handling guide”, NIST, US

Department of Commerce, 2012.

[20] A. Ahmad, J. Hadgkiss, and A. Ruighaver, “Incident response teams – chal-

lenges in supporting the organisational security function”, Computers & Secu-

rity, vol. 31, no. 5, pp. 643–652, 2012.

https://medium.com/@bijit211987/the-evolution-of-language-models-pre-training-fine-tuning-and-in-context-learning-b63d4c161e49
https://medium.com/@bijit211987/the-evolution-of-language-models-pre-training-fine-tuning-and-in-context-learning-b63d4c161e49
https://medium.com/@bijit211987/the-evolution-of-language-models-pre-training-fine-tuning-and-in-context-learning-b63d4c161e49

REFERENCES 74

[21] S. Rao, “After the breach: Incident response within enterprises”, arXiv preprint

arXiv:2406.07559, 2024.

[22] F. R. Alzaabi and A. Mehmood, “A review of recent advances, challenges,

and opportunities in malicious insider threat detection using machine learning

methods”, IEEE Access, vol. 12, pp. 30 907–30 927, 2024.

[23] Verizon, “2023 data breach investigations report”, Verizon, Tech. Rep., 2023,

Accessed: 2024-11-03. [Online]. Available: https://www.verizon.com/busin

ess/resources/T76/reports/2023-data-breach-investigations-repor

t-dbir.pdf.

[24] M. Bartnes, N. B. Moe, and P. E. Heegaard, “The future of information se-

curity incident management training: A case study of electrical power compa-

nies”, Computers & Security, vol. 61, pp. 32–45, 2016.

[25] K. Mandia, M. Pepe, and J. Luttgens, Incident Response & Computer Foren-

sics, Third Edition. McGraw-Hill Education, 2014, isbn: 9780071798686.

[26] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, and A.

Pras, “Flow monitoring explained: From packet capture to data analysis with

netflow and ipfix”, IEEE Communications Surveys & Tutorials, vol. 16, no. 4,

pp. 2037–2064, 2014.

[27] G. Apruzzese, M. Colajanni, L. Ferretti, A. Guido, and M. Marchetti, “On

the effectiveness of machine and deep learning for cyber security”, in 10th

international conference on cyber Conflict (CyCon), IEEE, Tallinn, Estonia,

2018, pp. 371–390.

[28] S. C. Sundaramurthy, J. McHugh, X. Ou, M. Wesch, A. G. Bardas, and S. R.

Rajagopalan, “Turning contradictions into innovations or: How we learned to

stop whining and improve security operations”, in Proceedings of the Twelfth

https://www.verizon.com/business/resources/T76/reports/2023-data-breach-investigations-report-dbir.pdf
https://www.verizon.com/business/resources/T76/reports/2023-data-breach-investigations-report-dbir.pdf
https://www.verizon.com/business/resources/T76/reports/2023-data-breach-investigations-report-dbir.pdf

REFERENCES 75

USENIX Conference on Usable Privacy and Security, Denver, CO, USA, 2016,

pp. 237–251.

[29] S. Freitas and A. Gharib, “Graphweaver: Billion-scale cybersecurity incident

correlation”, in Proceedings of the 33rd ACM International Conference on In-

formation and Knowledge Management, Boise, ID, USA, 2024, pp. 4479–4486.

[30] G. González-Granadillo, S. González-Zarzosa, and R. Diaz, “Security informa-

tion and event management (SIEM): Analysis, trends, and usage in critical

infrastructures”, Sensors, vol. 21, no. 14, 2021.

[31] Y. Wang, H. Liu, Z. Li, Z. Su, and J. Li, “Combating advanced persistent

threats: Challenges and solutions”, IEEE Network, vol. 38, pp. 324–333, 2024.

[32] E. Casey, Digital evidence and computer crime: Forensic science, computers,

and the internet. Academic press, 2011.

[33] S. Thakare, A. Pund, and M. A. Pund, “Network traffic analysis, importance,

techniques: A review”, in 2018 3rd International Conference on Communica-

tion and Electronics Systems (ICCES), Coimbatore, India, 2018, pp. 376–381.

[34] N. Alqudah and Q. Yaseen, “Machine learning for traffic analysis: A review”,

Procedia Computer Science, vol. 170, pp. 911–916, 2020.

[35] A. Dhakad, S. Singh, Mohana, M. Moharir, and A. K. A. R, “Real time network

traffic analysis using artificial intelligence, machine learning and deep learning:

A review of methods, tools and applications”, in 2023 International Conference

on Self Sustainable Artificial Intelligence Systems (ICSSAS), Erode, India,

2023, pp. 372–378.

[36] Y. Chen, H. Xie, M. Ma, Y. Kang, X. Gao, L. Shi, Y. Cao, X. Gao, H. Fan,

M. Wen, J. Zeng, S. Ghosh, X. Zhang, C. Zhang, Q. Lin, S. Rajmohan, D.

Zhang, and T. Xu, “Automatic root cause analysis via large language models

REFERENCES 76

for cloud incidents”, in Proceedings of the Nineteenth European Conference on

Computer Systems, Athens, Greece, 2024, pp. 674–688, isbn: 9798400704376.

[37] Y. Chen, Z. Ding, L. Alowain, X. Chen, and D. Wagner, “Diversevul: A new

vulnerable source code dataset for deep learning based vulnerability detection”,

in Proceedings of the 26th International Symposium on Research in Attacks,

Intrusions and Defenses, Hong Kong, China, pp. 654–668.

[38] M. Fu and C. Tantithamthavorn, “Linevul: A transformer-based line-level vul-

nerability prediction”, in Proceedings of the 19th International Conference on

Mining Software Repositories, Pittsburgh, Pennsylvania, 2022, pp. 608–620.

[39] F. Demirkıran, A. Çayır, U. Ünal, and H. Dağ, “An ensemble of pre-trained

transformer models for imbalanced multiclass malware classification”, Com-

puters & Security, vol. 121, p. 102 846, 2022.

[40] R. J. Joyce, T. Patel, C. Nicholas, and E. Raff, “Avscan2vec: Feature learning

on antivirus scan data for production-scale malware corpora”, in Proceedings of

the 16th ACM Workshop on Artificial Intelligence and Security, Copenhagen,

Denmark: Association for Computing Machinery, 2023, pp. 185–196.

[41] Z. Wu, H. Zhang, P. Wang, and Z. Sun, “Rtids: A robust transformer-based

approach for intrusion detection system”, IEEE Access, vol. 10, pp. 64 375–

64 387, 2022.

[42] T. Koide, N. Fukushi, H. Nakano, and D. Chiba, “Chatspamdetector: Lever-

aging large language models for effective phishing email detection”, arXiv

preprint arXiv:2402.18093, 2024.

[43] S. Jamal, H. Wimmer, and I. H. Sarker, “An improved transformer-based

model for detecting phishing, spam and ham emails: A large language model

approach”, SECURITY AND PRIVACY, vol. 7, no. 5, e402, 2024.

REFERENCES 77

[44] P. Evangelatos, C. Iliou, T. Mavropoulos, K. Apostolou, T. Tsikrika, S. Vrochidis,

and I. Kompatsiaris, “Named entity recognition in cyber threat intelligence

using transformer-based models”, in 2021 IEEE International Conference on

Cyber Security and Resilience (CSR), Rhodes, Greece, 2021, pp. 348–353.

[45] B. Ahmad, S. Thakur, B. Tan, R. Karri, and H. Pearce, “On hardware security

bug code fixes by prompting large language models”, IEEE Transactions on

Information Forensics and Security, vol. 19, pp. 4043–4057, 2024.

[46] J. Yang, H. Jin, R. Tang, X. Han, Q. Feng, H. Jiang, S. Zhong, B. Yin, and

X. Hu, “Harnessing the power of LLMs in practice: A survey on chatgpt and

beyond”, ACM Transactions on Knowledge Discovery from Data, vol. 18, no. 6,

Apr. 2024.

[47] S. Black, S. Biderman, E. Hallahan, Q. Anthony, L. Gao, L. Golding, H.

He, C. Leahy, K. McDonell, J. Phang, et al., “Gpt-neox-20b: An open-source

autoregressive language model”, arXiv preprint arXiv:2204.06745, 2022.

[48] D. Patterson, J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia, D. Rothchild,

D. So, M. Texier, and J. Dean, Carbon emissions and large neural network

training, 2021.

[49] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considerations

for modern deep learning research”, in Proceedings of the AAAI conference on

artificial intelligence, vol. 34, New York, USA, 2020, pp. 13 693–13 696.

[50] J. Zhang, H. Bu, H. Wen, Y. Chen, L. Li, and H. Zhu, “When LLMs meet cy-

bersecurity: A systematic literature review”, arXiv preprint arXiv:2405.03644,

2024.

[51] B. Yan, K. Li, M. Xu, Y. Dong, Y. Zhang, Z. Ren, and X. Cheng, “On pro-

tecting the data privacy of large language models (LLMs): A survey”, arXiv

preprint arXiv:2403.05156, 2024.

REFERENCES 78

[52] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A.

Roberts, T. Brown, D. Song, U. Erlingsson, et al., “Extracting training data

from large language models”, in 30th USENIX Security Symposium (USENIX

Security 21), Vancouver, B.C., Canada, 2021, pp. 2633–2650.

[53] Y. Liu, G. Deng, Y. Li, K. Wang, Z. Wang, X. Wang, T. Zhang, Y. Liu,

H. Wang, Y. Zheng, et al., “Prompt injection attack against LLM-integrated

applications”, arXiv preprint arXiv:2306.05499, 2023.

[54] Y. Liu, Y. Yao, J.-F. Ton, X. Zhang, R. G. H. Cheng, Y. Klochkov, M. F.

Taufiq, and H. Li, “Trustworthy LLMs: A survey and guideline for evaluating

large language models’ alignment”, arXiv preprint arXiv:2308.05374, 2023.

[55] H. Zhao, H. Chen, F. Yang, N. Liu, H. Deng, H. Cai, S. Wang, D. Yin, and M.

Du, “Explainability for large language models: A survey”, ACM Transactions

on Intelligent Systems and Technology, vol. 15, no. 2, Feb. 2024.

[56] S. Abdali, R. Anarfi, C. Barberan, and J. He, “Securing large language models:

Threats, vulnerabilities and responsible practices”, arXiv preprint arXiv:2403.12503,

2024.

[57] B. Ahmad, B. Tan, R. Karri, and H. Pearce, “FLAG: Finding line anomalies (in

code) with generative AI”, in In proceedings Network and Distributed System

Security (NDSS) Symposium, San Diego, CA, USA.

[58] G. Deng, Y. Liu, Y. Li, K. Wang, Y. Zhang, Z. Li, H. Wang, T. Zhang, and

Y. Liu, “Masterkey: Automated jailbreaking of large language model chat-

bots”, in Proceedings 2024 Network and Distributed System Security Sympo-

sium, ser. NDSS 2024, Internet Society, 2024.

[59] M. Gurman, “Samsung bans employees from using AI after spotting ChatGPT

data leak”, Business Standard, May 2023, Accessed: 2024-11-07. [Online]. Avail-

able: https://www.business-standard.com/technology/tech-news/sams

https://www.business-standard.com/technology/tech-news/samsung-bans-employees-from-using-ai-after-spotting-chatgpt-data-leak-123050200197_1.html
https://www.business-standard.com/technology/tech-news/samsung-bans-employees-from-using-ai-after-spotting-chatgpt-data-leak-123050200197_1.html

REFERENCES 79

ung-bans-employees-from-using-ai-after-spotting-chatgpt-data-le

ak-123050200197_1.html.

[60] T. Gao and P. Ji, “Extended abstract: Leveraging large language models to

identify Internet censorship through network data”, in Free and Open Com-

munications on the Internet, 2024.

[61] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with

GPUs”, IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–547, 2021.

[62] Chroma, Getting started, Accessed: 2024-11-24, 2024. [Online]. Available: htt

ps://docs.trychroma.com/getting-started.

[63] LangChain, Langchain: Build context-aware reasoning applications, Accessed:

2024-11-24, 2024. [Online]. Available: https://github.com/langchain-ai/l

angchain.

[64] KimiNewt, Pyshark: Python packet parser using wireshark’s tshark, Accessed:

2024-11-24, 2024. [Online]. Available: https://kiminewt.github.io/pyshar

k/.

[65] VirusTotal, Virustotal api v3 overview, Accessed: 2024-11-24, 2024. [Online].

Available: https://docs.virustotal.com/reference/overview.

[66] D. Crockford and C. Morningstar, Standard ecma-404 the json data inter-

change syntax, Dec. 2017.

[67] B. Duncan, Malware-traffic-analysis.net, Accessed: 2024-11-27, 2024. [Online].

Available: https://malware-traffic-analysis.net/.

https://www.business-standard.com/technology/tech-news/samsung-bans-employees-from-using-ai-after-spotting-chatgpt-data-leak-123050200197_1.html
https://www.business-standard.com/technology/tech-news/samsung-bans-employees-from-using-ai-after-spotting-chatgpt-data-leak-123050200197_1.html
https://www.business-standard.com/technology/tech-news/samsung-bans-employees-from-using-ai-after-spotting-chatgpt-data-leak-123050200197_1.html
https://www.business-standard.com/technology/tech-news/samsung-bans-employees-from-using-ai-after-spotting-chatgpt-data-leak-123050200197_1.html
https://docs.trychroma.com/getting-started
https://docs.trychroma.com/getting-started
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://kiminewt.github.io/pyshark/
https://kiminewt.github.io/pyshark/
https://docs.virustotal.com/reference/overview
https://malware-traffic-analysis.net/

	Introduction
	Emergence of Large Language Models
	Research problem and its significance
	Research Questions
	Research Objective
	Contributions
	Structure of the Thesis

	Literature Review
	Background
	Generative AI and LLM
	Historical Context and Core Technologies
	How LLMs Work and Importance of LLMs
	Training Process
	Capabilities of LLMs and Relevance to Cybersecurity

	Incident Response
	Traditional Approach
	How Traditional Incident Response Systems Work
	Phases of Incident Response
	Tools and Technologies
	Challenges in Traditional Systems

	Cyber Incident Reconstruction
	Importance of Network Traffic Analysis

	Current State of LLMs in Cybersecurity
	Vulnerability Detection and Analysis
	Malware Detection and Classification
	Network Intrusion Detection
	Phishing Detection
	Automated Threat Intelligence
	Hardware Security

	Challenges and Limitations in Applying LLMs to Cybersecurity Tasks
	Model Size and Deployment Challenge
	Computing Power and Resources
	Data Scarcity and Quality
	Privacy and Security Concerns
	Interpretability and Trustworthiness
	Adversarial Attacks and Model Robustness
	Domain Adaptation and Generalization

	Emerging Trends and Future Directions in LLM-based Cybersecurity Solutions
	Domain-Specific LLMs
	Efficient, Lightweight and Multimodal LLMs
	Explainable AI in LLM-based Cybersecurity
	Adversarial Training and Robustness

	Research Gaps and Future Directions
	Current Limitations in Literature
	Areas for Further Research

	Methodology
	System Design
	Hypotheses and Expected Outcomes
	System Workflow
	Role of Major Components

	Vector Database
	Purpose of Vector Database in the System
	Embedding Creation for Similarity Search
	Query Handling Using Vector DB
	Query Processing Pipeline

	LLM Utilization
	Selection of LLM Models

	System Design and Implementation
	System Overview
	Problem Scope and Use Case
	High-Level Architecture Description

	Technical Implementation
	PCAP Parsing and Feature Extraction
	VirusTotal API Integration
	JSON Conversion

	Embedding Generation and Vector Storage
	Similarity Search and Retrieval

	Local LLM Integration and Query Processing

	Development Environment and Infrastructure
	Hardware Infrastructure and Resource Management
	Software Stack and Dependencies

	Testing and Evaluation
	Performance Analysis
	Experimental Setup and Datasets
	Prompt Design
	Evaluation Metrics and Results
	Vector Database Performance Analysis
	Model Performance Evaluation

	 Conclusion and Future Work
	Summary of Findings and Contributions
	Reflection on the Practicality and Effectiveness
	Further Research and Improvements

	References

