
Adapting Sustainable Software
Development Methods Into Agile Processes

Master of Science (Tech.) Thesis
University of Turku
Department of Computing
Software Engineering
2024
Tuomas Rinne

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

Tuomas Rinne: Adapting Sustainable Software Development Methods Into Agile
Processes

Master of Science (Tech.) Thesis, 98 p.
2024

There is growing interest in developing software that is more sustainable technically
and economically but also environmentally. The sustainability of software has been
researched for over a decade and many methods for creating more sustainable soft-
ware have been discovered. However, most development processes employing these
methods have stayed on a theoretical level and practical implementations are hard
to find. There are also many open questions about measuring the sustainability of
software. This thesis presents a practical implementation of a sustainable software
development process that also allows for measuring relevant sustainability metrics.
A literature review was used to identify methods for creating sustainable software,
existing agile methodologies for sustainable software, and relevant metrics and tools
for measuring the sustainability of software. These findings were then added to a de-
velopment model that splits the software development process into pre-development,
development, usage, and post-development phases to facilitate sustainability in dif-
ferent phases of a software development project and measure relevant metrics in
these phases. This model was then validated with existing literature on criteria for
sustainable software development processes and with expert interviews. The result
of this thesis is a development model that should produce more sustainable software
and allow for the measurement of different aspects of sustainability with relevant
metrics.

Keywords: green code, green software, sustainable software, agile, scrum

Contents

Glossary 1

1 Introduction 1

1.1 Challenges in Sustainable Software 2

1.2 Goal . 2

1.3 Research Questions . 3

1.4 Research Methods . 3

1.5 Scope . 5

1.6 Structure of the Thesis . 5

2 What Affects Software Sustainability? 7

2.1 Criteria for Sustainable Software . 7

2.2 Methods for Developing Sustainable Software 8

2.2.1 Architecture . 9

2.2.1.1 Caching and Bulk Requests 10

2.2.1.2 Data Structures and Algorithms 10

2.2.1.3 Error Handling . 11

2.2.1.4 Logging . 11

2.2.1.5 Offloading . 11

2.2.1.6 Indexing . 11

2.2.2 Technology Choices . 12

i

2.2.2.1 Programming Language 12

2.2.2.2 Runtime . 12

2.2.2.3 Database . 12

2.2.2.4 Libraries and Frameworks 13

2.2.2.5 Large Language Models 13

2.2.3 Size of Data . 13

2.2.4 Development Tools . 14

2.2.4.1 Tests . 15

2.2.4.2 Benchmarks . 15

2.2.4.3 Formatters . 15

2.2.4.4 Linters . 16

2.2.4.5 Build Tools . 16

2.2.5 Hosting . 16

2.2.6 Configuration . 18

2.2.7 User Interfaces . 18

2.2.8 User Actions . 19

2.3 Motivation for Sustainable Software 19

2.3.1 Costs . 20

2.3.2 User Experience . 20

2.3.3 Environment . 20

2.3.4 Legislation . 21

3 Agile Software Development 22

3.1 Existing Agile Frameworks . 22

3.1.1 Scrum . 22

3.1.2 Extreme programming . 24

3.1.3 Kanban . 25

3.2 Existing research for developing green software 25

ii

3.2.1 The Greensoft model . 26

3.2.1.1 Life cycle of a software product 27

3.2.1.2 Indirect effects during development 28

3.2.1.3 Sustainability Criteria and Metrics 29

3.2.1.4 Procedure models . 29

3.2.1.5 Recommendations and tools 30

3.2.2 A Green Model for Sustainable Software Engineering 30

3.2.2.1 Level 1 . 31

3.2.2.2 Level 2 . 32

3.2.2.3 Tools and Metrics 33

3.2.3 Green Lean process . 34

4 Measuring Sustainability of software 36

4.1 Metrics for Different Sustainability Aspects 36

4.1.1 Technical Sustainability . 37

4.1.2 Economic Sustainability . 37

4.1.3 Environmental Sustainability 38

4.2 Measurement Tools . 39

4.2.1 Technical Sustainability . 39

4.2.2 Economical Sustainability . 39

4.2.3 Environmental Sustainability 39

4.2.3.1 Software Tools . 40

4.2.3.2 Hardware devices . 41

5 Adapting Sustainable Agile for Kvanttori Case 42

5.1 How Kvanttori Implements Agile . 42

5.1.1 Pre-development Phase . 44

5.1.1.1 Roadmapping . 44

iii

5.1.1.2 Technology Evaluation 45

5.1.1.3 Architectural Planning 45

5.1.1.4 Configuration, Development Tools and CI/CD 45

5.1.2 Development Phase . 46

5.1.3 Usage Phase . 46

5.1.4 Post-development Phase . 47

5.1.5 Roles . 47

5.2 Sustainable Agile Implementation . 47

5.2.1 Pre-development Phase . 49

5.2.1.1 Roadmapping . 49

5.2.1.2 Architectural Planning 50

5.2.1.3 Technology Evaluation 53

5.2.1.4 End of Life Plan . 55

5.2.1.5 Configuration . 55

5.2.1.6 Development Tools 56

5.2.1.7 Build Settings . 57

5.2.1.8 CI/CD . 58

5.2.2 Development Phase . 59

5.2.2.1 Backlogs . 59

5.2.2.2 Development and Energy Efficient Choices 61

5.2.2.3 Acceptance tests . 62

5.2.2.4 Code review . 62

5.2.2.5 Review . 62

5.2.2.6 Retro . 62

5.2.3 Usage Phase . 63

5.2.4 Post-development Phase . 63

5.2.4.1 Reuse . 63

iv

5.2.4.2 Disposal . 64

5.2.4.3 Post mortem . 64

5.2.5 Metrics . 65

5.2.5.1 Energy Consumption and Resource Usage Measure-

ments . 65

5.2.5.2 Costs . 65

5.2.5.3 Story points in backlogs 66

5.2.5.4 Unhandled errors . 66

5.2.6 Roles . 66

5.2.6.1 Product owner . 66

5.2.6.2 Lead developer . 67

5.2.6.3 Scrum master . 67

5.2.6.4 Developer . 67

5.2.6.5 Stakeholder . 68

5.3 What changes were made to current agile implementation 68

6 Validating the framework 70

6.1 Research on Evaluating Sustainable Software Development 70

6.1.1 Green Agile Maturity Model 70

6.1.1.1 Risk Factors . 71

6.1.1.2 Success factors . 72

6.1.2 Assessment criteria for sustainable software engineering pro-

cesses . 75

6.1.2.1 Implemented . 77

6.1.2.2 Partially Implemented 78

6.1.2.3 Not implemented . 79

6.1.2.4 Scoring the model 80

6.2 Expert interviews . 80

v

6.2.1 Interview process . 80

6.2.2 Interview analysis . 81

6.2.2.1 Additions . 81

6.2.2.2 Removals . 82

6.2.2.3 Metrics . 83

6.2.2.4 Roles . 83

6.2.2.5 Phases and Steps . 83

6.2.2.6 Interest . 84

6.2.2.7 Conclusion . 84

7 Discussion 86

7.1 Answers to the research questions . 86

7.1.1 RQ1: What methods are there for developing sustainable soft-

ware? . 86

7.1.2 RQ2: How to measure the sustainability of the software? . . . 89

7.1.3 RQ3: How to integrate sustainable development methods into

an agile development process? 90

7.2 Implications . 93

7.3 Threats to validity . 93

7.4 Further Research . 94

8 Conclusion 96

References 98

A Original quotes in Finnish 111

A.1 Interviewee 1 . 111

A.1.1 . 111

A.1.2 . 111

vi

A.1.3 . 111

A.1.4 . 111

A.1.5 . 112

A.1.6 . 112

A.1.7 . 112

A.2 Interviewee 2 . 112

A.2.1 . 112

A.2.2 . 113

A.2.3 . 113

A.2.4 . 113

A.3 Interviewee 3 . 113

A.3.1 . 113

A.3.2 . 113

A.3.3 . 114

A.3.4 . 114

A.4 Interviewee 4 . 114

A.4.1 . 114

A.4.2 . 114

A.4.3 . 114

vii

List of Figures

3.1 Scrum process [51] . 24

3.2 Extreme programming project steps [54] 25

3.3 Kanban board . 25

3.4 Overview of the Greensoft model [9] 26

3.5 Life cycle of the software product . 27

3.6 Level 1 of the green model for sustainable software engineering [55] . 31

3.7 Level 2 of the green model for sustainable software engineering [55] . 33

3.8 Metrics for green software of the green model for sustainable software

engineering [55] . 34

3.9 Green lean process [56] . 35

5.1 Kvanttori’s current agile implementation 44

5.2 Proposed sustainable agile implementation model 49

5.3 Highlighted additions of the proposed model 69

7.1 Final model including metrics and roles in Section 5.2 91

viii

List of Tables

6.1 Risk factors for sustainable software [75] and if proposed model mit-

igates them. 71

6.2 Success factors for sustainable software [75] and if proposed model

includes them. 73

6.3 Criteria for sustainable software [76] and what criteria the proposed

model implements . 76

7.1 Methods for increasing sustainability of software in Section 2.2 89

7.2 Sustainability metrics presented in Section 4.1 90

7.3 Scoring of the model using existing green agile criteria in Section 6.1 . 92

7.4 Average, median, and distribution of comments for each code per

interview in Section 6.2 . 92

ix

Glossary

Corporate Sustainability Reporting Directive (CSRD) Mandates large cor-

porations to report their emissions, including those from ICT systems [1]. 1,

21

Economic sustainability The ability of software development to shield stakehold-

ers from economic risks [2]. 1, 7, 8, 38, 43

Embedded emissions Emissions produced during the manufacturing and trans-

portation of a product. 81, 82

Environmental sustainability The ability of software and its development to

minimize the impact on the environment [2]. 1, 7, 38, 39, 43

Green and sustainable software Software that has a minimal negative or posi-

tive environmental, social, economic, and technical impact. This is achieved

by continuously monitoring these aspects and optimizing them during devel-

opment[3][4]. 1, 3–5, 7, 8

Green by IT Sustainability improvements by IT systems. Systems whose func-

tionality allows sustainability gains. For example energy management systems

in buildings. 5, 27, 32

Green in IT Sustainability improvements in IT regardless of the use case of the

IT system in question. For example optimized code. 5, 27

Individual sustainability The ability of software development to keep developers

satisfied with their jobs [2]. 7

International Financial Reporting Standards (IFRS) Offers standardized ways

of producing financial statements for companies. 1

International Sustainability Standards Board (ISSB) Responsible for creat-

ing sustainability-related financial reporting standards. 1

MSR Model Specific Register. A register in a CPU that exposes specific informa-

tion about the CPU, for example, energy consumption. 40

PGO Profile Guided Optimization. Allows compiler to better optimize software

based on data collected from usage environments. 16, 57

RAPL Running Average Power Limit. An interface for the CPU to report its

energy consumption. Can be read by different monitoring programs. 38, 40

Social sustainability The ability of software to affect society positively and min-

imize negative effects [2]. 7

Sustainability debt Debt that is accumulated in software projects that negatively

affects its sustainability aspects [5]. 47

Technical sustainability The ability of software to adapt to future change [2]. 1,

7, 8, 12, 22, 37, 43, 60, 62, 66, 71

2

1 Introduction

ICT systems are estimated to use about 7% of all energy produced globally and

this is estimated to grow to 13% by 2030 [6]. Additionally, energy prices are be-

coming more volatile [7]. There are also many geopolitical tensions connected to

semiconductor manufacturing and rare metals needed for modern computers. EU

has also passed the Corporate Sustainability Reporting Directive (CSRD) and the

International Sustainability Standards Board (ISSB) has also mandated that every

company following the International Financial Reporting Standards (IFRS) must

report emissions including those from ICT systems [8]. All of this has led to more

interest in green and sustainable software which in part aims to maximize the poten-

tial of hardware to run software faster, cheaper, and with less computing power and

energy required and also have tools to measure the energy consumption of software

accurately.

The idea of green and sustainable software development has been around for a

long time. Some parts of technical sustainability such as technical debt and economic

sustainability such as the cost of developing and running software are well-known

factors in the software development industry. Recently the environmental sustain-

ability has also seen more interest. There are studies from 2011 [9] presenting ideas

on creating software more sustainably and as far back as 2001 for estimating the

impact of ICT on the environment [10]. Despite this, the energy usage of ICT is

growing and remains a concern [11]. Green and sustainable software often requires

1.2 GOAL 2

making code more efficient by optimizing it. Unfortunately, this has historically

been seen as more difficult and expensive than just buying more hardware when

scaling the software to more users. The problem of rising system requirements with-

out apparent benefit for the software being used has been known for a long time and

is often referred to as Wirth’s Law [12], which states that any advantages gained

from faster hardware are negated by software becoming slower.

1.1 Challenges in Sustainable Software

There are many open challenges in developing sustainable software. Lack of standard

interfaces, metrics, configurations, and tools are often mentioned [13] [14] [15]. There

is also a general lack of awareness and knowledge on the topic of sustainable software

among developers [16] and how to measure energy consumption [17]. There is also

relatively little research on sustainable software and how to apply it in practice as

most of the existing research is very theoretical [18]. This can make it hard to

create guidelines for developing sustainable software. This thesis aims to address

some of these challenges by providing some guidelines, metrics, and implementations

of different steps of existing development processes to facilitate more sustainable

software development.

1.2 Goal

The goal of this thesis is to create a sustainable agile development process primarily

for use at Kvanttori, a small-sized software development company. This means that

the model mainly focuses on web development and primarily aims at team sizes of

2 to 10 people.

[draft]

1.4 RESEARCH METHODS 3

1.3 Research Questions

This thesis aims to integrate sustainable software development practices into an

existing agile software development process to produce more sustainable software

by answering the following research questions:

• RQ1: What methods are there for developing sustainable software?

• RQ2: How to measure the sustainability of the software?

• RQ3: How to integrate sustainable development methods into an agile devel-

opment process?

1.4 Research Methods

A literature review is used to establish a clear understanding of the meaning of green

and sustainable software development and current agile development methods as well

as documented methods for increasing and measuring the sustainability of software.

A model for the agile development process is then created based on the findings of the

literature review while also taking into account the current development model used

at Kvanttori. The model should consider relevant methods for increasing software

sustainability by reducing and measuring energy consumption and costs and by

enhancing the technical aspects of software. In addition, expert interviews and

existing criteria for sustainable agile processes are used to validate the usefulness of

the proposed model.

The following query was used both on ACM and IEEE databases to find sources

for the literature review:

[draft]

1.4 RESEARCH METHODS 4

Query

Green OR Sustainable OR "Energy usage" OR "Energy efficiency" OR “Energy

consumption” OR “Power usage” OR “Power consumption”

AND

Software OR Coding OR Code OR Programming OR Pipeline OR CI/CD

AND

Measuring OR Analyzing OR Estimating OR Predicting OR Ranking OR Agile

OR Development OR Engineering

AND NOT

Android OR IOS OR Mobile OR Phone OR Embedded OR IoT OR

Cryptocurrency OR Building

This query excludes mobile, embedded, and IoT research as energy consumption

has been a key issue in these domains for many years already due to battery con-

straints and they are not necessarily applicable to reducing energy consumption in

domains where constant power sources are available. However, some energy-saving

patterns can be ported from these devices [19]. These patterns can be found by

the snowball search method from found sources. Buildings and cryptocurrencies

were excluded as their energy consumption is irrelevant to this thesis. This query,

when limited to titles, yielded 113 results on ACM and 213 results on IEEE Xplore.

From these, the most relevant were chosen by manual selection. The selected liter-

ature was also used as a starting point for the snowball search method to find the

sources for information present in the research papers. ACM and IEEE were chosen

since they have the most research papers relating to green and sustainable software

development [20].

[draft]

1.6 STRUCTURE OF THE THESIS 5

1.5 Scope

The development of green and sustainable software is a broad subject that considers

many parts of the development processes and organizations using them as well as

different aspects of sustainability such as technical, economic, environmental, social,

and individual sustainability. This thesis focuses on the sustainability of the software

itself and as such will only briefly mention indirect effects of software development

such as working environment, developer travel, and communications methods. The

thesis aims to find what makes software itself sustainable, how to measure it, and

how those aspects can be included in an agile development process. The complete

sustainability impact of the software often also depends on the software’s use case.

A smart thermostat system that regulates temperature automatically can save a

lot of energy regardless of how much energy running the software consumes. The

focus of this thesis, as mentioned previously, is on green in IT, not green by IT.

This thesis mainly focuses on the technical, economic, and environmental aspects

of sustainability as those can be the most affected within a single software project.

While the social and individual sustainability aspects are affected in parts of the

proposed model, measuring their impact is difficult within the context of a single

project and is therefore left outside the scope of this thesis. Using the proposed

development model in a project is also outside the scope of this thesis.

1.6 Structure of the Thesis

This thesis is split into 8 chapters. Chapter 1 provides an introduction of the subject,

research questions, and limitations in the scope of the thesis. Chapter 2 defines green

and sustainable software in the context of this thesis and gives insight into what

can be done to make software more sustainable. Chapter 3 examines current agile

software development methods and how they take efficiency into account as well as

[draft]

1.6 STRUCTURE OF THE THESIS 6

some existing research on incorporating sustainability into the agile development

process. Chapter 4 focuses on measuring the sustainability of software. Chapter 5

introduces an agile framework for sustainable software development. Chapter 6

contains expert interviews and results of trying to validate the framework with

criteria found in the literature. Chapter 7 contains the answers to the research

questions, threads to the validity of this thesis, and presents further research topics.

Finally, Chapter 8 contains the conclusion of the thesis.

[draft]

2 What Affects Software

Sustainability?

This chapter defines what is meant by sustainable software, what affects the sus-

tainability of software, and why the sustainability of software is important. This

chapter also answers RQ1: What methods are there for developing sustain-

able software? by listing methods for increasing the sustainability of software and

its development.

2.1 Criteria for Sustainable Software

One definition for green and sustainable software is that it is software that has a

minimally negative or even positive impact on the economy, society, and environ-

ment [3]. This takes into account the impact of all parts of the software lifecycle

from the development process to the usage in a production environment to the even-

tual deprecation and replacement of the software. Another common definition for

green and sustainable software is software for which direct and indirect consumption

of resources during different phases are monitored and optimized [4]. For software

to be sustainable, it should account for all different aspects of sustainability includ-

ing technical sustainability, economic sustainability, environmental sustainability,

social sustainability and individual sustainability [2].

Determining when exactly software can be called sustainable as many parts af-

2.2 METHODS FOR DEVELOPING SUSTAINABLE SOFTWARE 8

fect the sustainability of software and there is yet to be a single label or certification

for green and sustainable software that is commonly recognized. There are some

efforts to create such labels. One of these labels is the Blue Angel label in Germany

which applies to software products among many other types of products. So far

only one software has this label [21]. There is also the MitViDi-criteria for public

sector ICT projects that categorizes projects into one of three different classes de-

pending on their sustainability requirements [22] and the Responsibility criteria for

public procurement for software services [23] which is partly based on the MitViDi-

criteria. These criteria can be used to introduce features and patterns promoting

sustainability into software products even if these criteria are not yet commonly

used.

2.2 Methods for Developing Sustainable Software

The sustainability of software, or how much the development and usage of the soft-

ware affect the different sustainability aspects, is determined by both factors relating

directly to the software, its development, and effects from its usage and also indi-

rectly from the organization and its members who develop the software, their habits,

and processes. Performance, efficiency, maintainability, portability, usability, and re-

liability have been identified as the most relevant characteristics for energy efficiency

of software with performance being the leading indicator [24].

Relevant energy efficiency characteristics also have an effect on the technical and

economic aspects of sustainability as technical sustainability is directly affected by

how maintainable the software is and economic sustainability is often affected by

how much software costs to develop and run. Efficient software can run on less

powerful and therefore less costly hardware. In services where usage is billed per

hour, more performant software costs less to run. A core principle behind increasing

the sustainability of software is to do less. This can manifest as doing less to achieve

[draft]

2.2 METHODS FOR DEVELOPING SUSTAINABLE SOFTWARE 9

the same result, which is the case when using performant technologies and techniques

such as caching, which allows using fewer CPU cycles to achieve the same result. It

can also manifest as just doing less by not doing anything unnecessary. This can

be achieved by requirements engineering and quickly dropping unnecessary features

from the software.

Compared to performance, memory usage has little correlation [25][26][27] with

energy consumption. Lower memory usage might allow running more applications on

the same hardware or running applications in more constrained environments, which

in itself can make the software more sustainable so it should still be considered when

optimizing for efficiency. Optimizing memory, not for lower memory consumption

but rather for better usage of it for caching, can reduce the work the CPU needs to do

and lead to faster execution, which in turn saves energy by preventing unnecessary

work on the CPU. It should also be noted that optimizing for speed and memory

are not redundant with each other so both should be targets for optimization [28].

It should be noted that while performance has a strong correlation with en-

ergy efficiency, this is not always the case [29]. For example, constantly running

a CPU with maximum clock speeds is possible, theoretically resulting in the best

performance but much worse energy consumption. However the correlation is strong

enough that it can be used as a heuristic for efficiency [28] [17] [30]. As a general

rule, the faster something runs, the less it does and by extension the less it consumes

energy.

2.2.1 Architecture

A well-thought-out architecture makes adding features more streamlined without the

need to resort to workarounds that are sub-optimal from a performance standpoint.

It also makes it easier for developers to follow good practices when implementing

features.

[draft]

2.2 METHODS FOR DEVELOPING SUSTAINABLE SOFTWARE 10

2.2.1.1 Caching and Bulk Requests

Software architecture can also be used to enhance performance by introducing cache

systems and minimizing requests and database queries as these are always slower

than querying in memory values. Generally, network and disk I/O traffic should be

minimized. In addition, redoing work on the CPU should also be minimized.

Caches can help prevent unnecessary work by allowing the memoization of return

values of functions so that the function does not need to run again if its arguments do

not change. Caches can also be used to save values from network or I/O operations

so that data does not need to be fetched again every time it is needed. [31]

Queries to resources over the network or on disk should be done in bulk when

possible to get as much done in a single query as possible [31]. This can make the

application more performant and also lower costs in case used services for hosting

are billed based on usage. Most databases have a way to do bulk requests or combine

data from multiple tables with a single request.

2.2.1.2 Data Structures and Algorithms

Used data structures and algorithms can also have a great impact on energy con-

sumption. Studies done with Java point to correct data structures having up to

11% improvements in energy consumption [32]. Another study showed that picking

incorrect data structures can raise energy usage by over 300% while optimizing can

lower it by as much as 38% [33]. Algorithms and data structures should be optimized

for speed rather than memory usage because the correlation between performance

and energy consumption is much higher than the correlation between memory usage

and energy consumption. Therefore data structures and algorithms with lower time

complexity should be preferred.

[draft]

2.2 METHODS FOR DEVELOPING SUSTAINABLE SOFTWARE 11

2.2.1.3 Error Handling

Error handling is also an important part of the architecture. Restarting a crashing

application on errors will generally use more energy than handling errors gracefully.

Error handling is also important for the maintainability of the software as handling

errors in the same way and maybe even in the same place in code makes ensuring

all errors are handled easier.

2.2.1.4 Logging

Not everything should be logged in running software. Unnecessary logs can cause

performance slowdowns and unnecessary data transfer and storage. They can also

make it more difficult to find relevant logs for specific issues.

2.2.1.5 Offloading

It can also be beneficial to offload heavy processing to a server in applications using

a client-server architecture instead of running them on the client side [17]. This can

also help extend the lifespan of client devices as applications can have lower system

requirements and do not require replacing client devices with more powerful ones to

use the software.

2.2.1.6 Indexing

When planning the database architecture of the software, deciding what fields should

be indexed for fast retrieval is important. This can significantly boost the perfor-

mance of a database with the cost of some memory usage which should reduce the

energy used by the database queries using indexed fields.

[draft]

2.2 METHODS FOR DEVELOPING SUSTAINABLE SOFTWARE 12

2.2.2 Technology Choices

Technology choices such as programming language, framework, and database sys-

tems can drastically affect energy consumption.

2.2.2.1 Programming Language

Lower level and compiled languages tend to be much faster and more efficient, often

in orders of magnitude, than interpreted languages [25][26][27]. They also often

result in smaller sizes for the software.

The choice of programming language affects more than just the performance.

Languages with strong and static type systems can help prevent many issues that

are typical to dynamically typed languages such as unexpected values. Some lan-

guages are also null safe, opting to use "Optional"-types instead, which can prevent

unexpected crashes and other issues. Similarly, some languages handle errors as

values instead of exceptions which makes it easier to ensure all error cases are han-

dled. All of these attributes can greatly improve the technical sustainability of the

software.

2.2.2.2 Runtime

In interpreted languages the choice of the runtime can impact the performance

for example when comparing the following production-ready JavaScript runtimes:

Node, Deno, and Bun, there are great differences in their performance with Bun

generally being the fastest and most energy efficient [34] [35].

2.2.2.3 Database

Some database systems such as relational databases like PostgreSQL can be dras-

tically faster than document-oriented databases such as MongoDB [36]. Some

databases also enforce much stricter typing of items put in them. Using these kinds

[draft]

2.2 METHODS FOR DEVELOPING SUSTAINABLE SOFTWARE 13

of databases helps keep software maintainable by helping prevent mistakes caused

by incorrect types.

2.2.2.4 Libraries and Frameworks

Even different libraries and frameworks can have drastic differences in speed despite

using the same language [37]. Newer and actively maintained frameworks tend to

be faster as they leverage newer language features internally and have less technical

debt which can be seen when comparing three Javascript web frameworks which are

Express, Fastify, and Hono [38]. Express being much older is also slower than the

other two.

2.2.2.5 Large Language Models

LLMs can use a lot of energy both when training and using them. Usage of these

technologies should be carefully considered as they can also add a lot of complexity

to the software. If these technologies are used, their impact should be mitigated.

Using smaller, local models can reduce energy usage while also being faster and

cheaper to run [39].

2.2.3 Size of Data

The size of data directly affects the energy usage and performance when moving data

via network or disk I/O. Therefore optimal datatypes should be used when moving

files. Compression should also be used to minimize the size of data in transit and at

rest [39]. Many backend services use JSON to move data but more efficient formats

such as protocol buffers or CSV can be used to decrease the size of data [31]. The

used data format also depends on the complexity of the data as CSVs for example

cannot be used to represent nested data.

File format is especially relevant in images as they are often large and can form a

[draft]

2.2 METHODS FOR DEVELOPING SUSTAINABLE SOFTWARE 14

significant part of the data moved over the network in cases such as front-end appli-

cations. Newer formats such as WEBP and AVIF are much more space-efficient com-

pared to formats such as JPEG and PNG and should therefore be used if possible.

The image resolution is also an important factor. Images should be appropriately

sized for their use case.

The size of the entire software is also an important factor when distributing it.

Smaller software and updates use less energy when transferred over the network and

are also faster to download. In some specific cases such as applications running on

browsers, the size can be even more important than performance due to the software

being fetched from the server every time it is used.

Data size should also be optimized when storing data. Using efficient formats and

only storing what is needed can reduce the need for additional storage hardware [39].

2.2.4 Development Tools

There are many tools that can be used during development to improve the sus-

tainability of the software being developed. Automated testing and releasing can

improve the quality of the software but they also affect the energy consumption of

the development process. Factors such as how often tools are run can cause un-

necessary energy consumption during development. Furthermore, different testing

and build systems can be drastically more efficient even within the same language

ecosystem.

The energy consumed by development tools and tests can be affected by the

efficiency of the software being built. Quality of implementation and chosen tech-

nologies will affect how long it takes for parts of the software and by extension tests

to run. The required resources by testing environments also depend on the resource

usage of the software. This will affect the cost of the testing environment and CI/CD

pipelines.

[draft]

2.2 METHODS FOR DEVELOPING SUSTAINABLE SOFTWARE 15

Any tools used during the development are likely to increase the energy con-

sumption of the development process. Software is often used much longer than it is

developed. Therefore it makes sense to optimize the efficiency in the usage of the

software even if the development consumes more energy as a result.

2.2.4.1 Tests

Tests can be used to maintain the technical quality of the software and catch issues

early to prevent them from going into the production build of the software. Testing

should be used to ensure that the software functions correctly.

Running unnecessary tests can decrease the sustainability of the development

process by consuming more energy and costing more. Therefore only necessary tests

should be run. The types of tests often depend on the project and therefore no

general recommendation can be given on the types of tests.

2.2.4.2 Benchmarks

Benchmarks can be used to measure the performance of the software and should be

used to ensure the software is fast and that there are no performance regressions in

features.

At least the most used code paths should be benchmarked in addition to any

performance-sensitive sections of the software.

2.2.4.3 Formatters

Formatters help keep the code consistent and easy to read. This helps improve

maintainability as all code is at least mostly similar in every part of the software

code.

Formatters should also be integrated into developers’ editors to prevent develop-

ers from pushing unformatted code and causing CI/CD pipelines to re-run unnec-

[draft]

2.2 METHODS FOR DEVELOPING SUSTAINABLE SOFTWARE 16

essarily after failing on formatting issues.

2.2.4.4 Linters

Linters and other static analysis tools can catch issues during development resulting

in a more sustainable final product but will likely increase the energy consumption

of the development environment and CI/CD pipelines. Linters can also often be

integrated directly into the code editors which can help catch issues early and prevent

unnecessary CI/CD runs caused by these issues.

2.2.4.5 Build Tools

There are also other tools that can be integrated into the build process to enhance

sustainability. Such tools include minifiers that allow optimizing the size of some

static assets such as images. These tools allow automating image format conversions

to more efficient formats which in turn reduces network traffic during the usage of

the software.

PGO is another build tool that allows collecting data from software and feeding

it to the compiler during the build process to further optimize the software.

2.2.5 Hosting

The devices running the software also have a significant impact on the sustainability

of the software. In servers, the energy efficiency of the hardware used to run the

software, virtualization, and things such as if the software is running all the time

or started only when requests are made to it affect the energy usage and often

the costs too. Virtualization allows fully utilizing hardware by splitting physical

hardware into many virtual computers which allows maximizing the hardware use.

There is also research in utilizing virtual machines to scale the number of servers

that virtual machines run on depending on the load to optimize energy usage [40].

[draft]

2.2 METHODS FOR DEVELOPING SUSTAINABLE SOFTWARE 17

Using serverless functions for some tasks can also save energy as they allow using

hardware only when needed. However, research is conflicted on this as some research

suggests serverless functions can increase the overall energy consumption by up to 15

times [41] while others suggest serverless platforms using up to 58% less energy [42].

These results indicate that the implementation of the serverless model is important

and should be factored in when deciding to use serverless platforms.

When choosing a platform for hosting an application, the measurements pro-

vided by the hosting provider should be considered. Some services offer much more

detailed metrics on resource and energy usage than others. Different hosting services

also offer different services at different prices which affects the economical sustain-

ability. They also have varying levels of support for different technologies in hosting

platforms.

The source of the energy used by hosting providers should also be considered.

Green Web Foundation keeps a database of hosting providers that mainly use green

energy to run their platforms [43]. It should also be noted that there are other factors

such as the usage of heat from cooling and usage of water in hosting providers. This

should also be considered if such information is available when making decisions

about hosting services.

Distance is also an important factor when discussing hosting providers. Applica-

tions should use servers that are as close to users as possible to minimize the distance

data needs to travel as this also lowers the energy consumption and sometimes even

the costs of running the software [39].

Another important factor in hosting is the choice of hardware. Some providers

allow running software on different CPUs, some of which might be more energy

efficient [39]. The efficiency of the hardware is affected by how new it is and what

architecture it uses.

[draft]

2.2 METHODS FOR DEVELOPING SUSTAINABLE SOFTWARE 18

2.2.6 Configuration

Configuration used when building or bundling the software can also have drastic run-

time performance impact [30]. Optimization levels in some compilers for languages

such as C and Rust can be used to optimize for speed or size and the difference be-

tween the lowest and highest optimization level can be great. In addition, optimizing

for certain architecture levels to leverage instructions found in newer processors [44].

Therefore the target hardware should be taken into account when possible. Default

configurations are often aimed at making the software work equally well on all sup-

ported platforms so it might make sense to change the configurations to optimize

the build process to project specific target platforms.

Some web frameworks might use client-side rendering by default, or render pages

every time on request if server-side rendering is enabled. These can often be config-

ured to render specific pages that are not expected to change at build time and serve

them to request preventing unnecessary rebuilding of pages on every request [39].

2.2.7 User Interfaces

User interface and user experience design can also affect energy consumption. All

functionality should require as few actions from the user as possible as this leads to

less code being run and therefore saves energy and resources. This includes making

the software accessible for accessibility tools. In addition, there should be easy

ways to handle error situations and undo actions by the user. UI energy usage can

also be reduced by using darker colors if client devices are expected to have OLED

displays, which is often the case with smart TVs and smartphones, and by reducing

the amount of animations and moving elements [19].

Optimizing for energy efficiency may require making trade-offs in user interfaces

as animations and other decorative features can often increase energy consumption.

These features might make the software stand out from the competition and can

[draft]

2.3 MOTIVATION FOR SUSTAINABLE SOFTWARE 19

be important from a marketing perspective. The purpose of the software should

be considered when designing the user interface. Simpler user interfaces should be

preferred if it is not important to have one that stands out. In use cases where the

user interface should stand out, elements with high energy consumption should be

used sparingly to save energy while still being effective for their purpose. The effects

of expensive visuals can also be mitigated by using smaller file formats and more

efficient technologies.

2.2.8 User Actions

There is also some benefit in allowing users to disable features they do not need

to save energy [19] [22]. This could be for example allowing users to choose how

many charts they want to see in an application showing different devices’ power

consumption. This would affect how many devices need to be fetched and how

many charts need to be drawn.

Users can be incentivized to change their usage patterns by displaying relevant

energy consumption metrics in the application. The users should also see actionable

tips on how to improve the energy consumption of the application by changing their

usage patterns in addition to showing them metrics [45].

2.3 Motivation for Sustainable Software

The benefits of developing sustainable software are not limited to the reduction of

environmental impacts only. Sustainable software can help reduce the running costs

of software and improve user experience. This section covers reasons for creating

sustainable software in addition to the environmental aspects.

[draft]

2.3 MOTIVATION FOR SUSTAINABLE SOFTWARE 20

2.3.1 Costs

More efficient software means that less hardware is required to perform some work.

This means that hardware can remain in use longer and there is no reason to imme-

diately buy new hardware as the amount of users grows. Many cloud services bill

users based on usage especially when using serverless functions but often also with

shared virtual cores. The faster the software is, the less time it is used. This leads

to lower costs over time. In self-hosted setups, more efficient software means lower

electricity bills and longer life for the hardware.

2.3.2 User Experience

Sustainable software also means a smoother experience for the end user. Sustainable

software is usually faster which means that end user spends less time waiting for

software to perform certain tasks. Users also appreciate software that does not

use unnecessary resources on their devices. On mobile heavy resource usage has

been linked to lower reviews of the application [46]. Sustainable software should

also be easier to use as reducing actions user needs to make can also reduce energy

consumption.

2.3.3 Environment

Sustainable software helps the environment by requiring less hardware allowing it

to remain in use longer and reducing the energy needed to run software. Electronic

waste is one of the fastest growing waste categories and recycling it is not without

its problems [47]. In addition, energy prices can be volatile which can cause large

cost spikes in resource-intensive applications.

[draft]

2.3 MOTIVATION FOR SUSTAINABLE SOFTWARE 21

2.3.4 Legislation

IT infrastructure emissions reporting is starting to appear in such as in the Corporate

Sustainability Reporting Directive (CSRD). Reporting emissions requires software

to be measurable. There is currently no standard way of measuring emissions from

software products but being able to at least estimate energy consumption is a step

in the right direction.

[draft]

3 Agile Software Development

Agile methodologies are used by most of the software engineers today. These

methodologies have been adapted into different agile frameworks providing clearer

guidelines for the development process. This chapter explores if and how current

agile frameworks take the sustainability impact of software into account and what

agile frameworks already exist for creating more sustainable software. The frame-

works inspected here are limited to team-level agile frameworks and as such will not

take into account models such as Scrum at Scale, SAFe, and LeSS.

3.1 Existing Agile Frameworks

The most used agile frameworks are Scrum, Extreme programming, and Kanban

with Scrum being the most utilized [48][49]. This section explains these agile frame-

works briefly. These frameworks are mostly focused on technical sustainability and

as such were used to find ways to improve that sustainability aspect in the model

proposed in this thesis.

3.1.1 Scrum

Scrum has three roles: Scrum master, Product owner, and developer. The Scrum

master makes sure that the scrum is followed correctly and helps the team be as

effective as possible by helping other roles in scrum events. The product owner

is responsible for maximizing the value of the product. The product owner has

3.1 EXISTING AGILE FRAMEWORKS 23

the vision for the product and communicates it to other members as well as the

stakeholders. They also facilitate communication between stakeholders and the de-

velopment team. Developers create the backlog for each sprint and do the actual

development work. [50]

Scrum has events that should happen in every sprint. These events are Sprint

planning, daily scrum, sprint review, and sprint retrospective. Planning is used to

see what work is going to be done during the sprint. The daily scrum is a catch-up

event each day for communicating what every member of the development team will

be doing. Review is used to discuss what was accomplished during the sprint with

the key stakeholders. Finally retrospective is used to discuss how the sprint went

and what can be learned and implemented for the next sprint. [50]

Scrum also has artifacts which are the product backlog, sprint backlog, and an

increment. The product backlog contains all the planned work for the product.

Sprint backlog contains planned work for that sprint and an increment which is the

version of the product being built after the sprint. The Scrum process is illustrated

in Figure 3.1. [50]

Scrum does not take qualitative aspects of software such as stability or perfor-

mance into account unless they are part of the requirements for some feature or the

overall system [50]. Some requirements for these aspects could appear in the defi-

nition of done for some user stories if so defined by the product owner or if there is

a requirement from the client for some functionality to be performed within certain

time limit. Without external requirements, sustainability aspects are unlikely to be

part of the definition of done for any user story.

[draft]

3.1 EXISTING AGILE FRAMEWORKS 24

Figure 3.1: Scrum process [51]

3.1.2 Extreme programming

Extreme programming is often more used in embedded domains where energy ef-

ficiency and performance have already been a concern for years due to hardware

limitations [52]. Extreme programming uses user stories to create a backlog like

Scrum. Unlike Scrum, Extreme programming is more opinionated in how the ac-

tual development process is conducted. It enforces measures such as test-driven

development, pair programming, enforced standards, and refactoring to ensure the

quality of the software being produced. Extreme programming also imposes a 10-

minute limit on build times for the software. In addition, extreme programming

uses spikes which are simple throwaway programs to explore potential solutions to

a complex or uncertain problem. The extreme programming process is illustrated

in Figure 3.2. [53]

[draft]

3.2 EXISTING RESEARCH FOR DEVELOPING GREEN SOFTWARE 25

Figure 3.2: Extreme programming project steps [54]

3.1.3 Kanban

Kanban is the simplest of the three most used Agile methodologies. Kanban can

also refer to the Kanban board as a tool that is often used in other agile processes

such as Scrum or Extreme programming. Kanban uses the Kanban board to keep

track of the work. The Board is separated into different statuses of the tasks or user

stories that are currently being done. Unlike Scrum, Kanban does not have specific

roles for different members of the team. The Kanban board is shown in Figure 3.3.

Figure 3.3: Kanban board

3.2 Existing research for developing green software

There is some existing research on developing software while taking into account its

impact. This section explores three such development models.

[draft]

3.2 EXISTING RESEARCH FOR DEVELOPING GREEN SOFTWARE 26

3.2.1 The Greensoft model

The Greensoft model is a reference model for software engineering that takes into

account the entire life cycle of a software product from development to end of life.

It also presents metrics for measuring sustainability, procedures for different parties

involved in the use of software, and tool recommendations for these parties. The

overview of the Greensoft model is shown in Figure 3.4.

Figure 3.4: Overview of the Greensoft model [9]

[draft]

3.2 EXISTING RESEARCH FOR DEVELOPING GREEN SOFTWARE 27

3.2.1.1 Life cycle of a software product

The life cycle of software products is split into 3 different parts: development, us-

age, and end of life. All parts have first-, second-, and third-order effects on the

sustainability of the software. First-order effects include direct effects of ICT supply.

These include things such as performance and hardware requirements. Second-order

effects include the effects of ICT usage. Third-order effects are the systemic effects

of ICT. First-order effects are therefore in the green in IT-category and second and

third-order effects in green by IT- category [9]. As this thesis is focused on the green

in IT category, first-order effects will be focused on here. The Life cycle of a software

product is shown in Figure 3.5.

Figure 3.5: Life cycle of the software product

The development phase of the Greensoft model takes into account both develop-

ment and distribution factors. These include office costs and conditions, commuting

to work, business trips, and ICT energy usage. The distribution part includes things

such as the size of the software, data formats, packaging, and transportation.

The usage part of the software is concerned with hardware requirements and

overall energy consumption of the software and other resources required by it. The

usage phase is the most affected by the software itself being as energy efficient as

[draft]

3.2 EXISTING RESEARCH FOR DEVELOPING GREEN SOFTWARE 28

possible.

The final phase, end of life, is split into deactivation and disposal. Deactivation

is concerned with preserving the data from the software and as such is affected by

the backup size, format, and conversion of the data and long-term data storage. The

disposal part on the other hand takes into account the data medium and packaging.

This phase is used when at some point maintaining existing software can become too

costly and a new software solution might be required. This can also be caused by

changing business requirements or priorities. Energy consumption in this phase is

mostly caused by saving and archiving data from the old software product because

of legal restrictions or migrating data to the new software product. For these cases

choosing the correct data format and compression method can make the migration

easier and save time and disk space, which in turn reduces the energy needed.

3.2.1.2 Indirect effects during development

Some things affect the total energy use of the development that are not directly

related to the software being made. These are called second and third-order ef-

fects [9]. The office space used for working and how efficient it is regarding things

such as heating and air conditioning are also factors. Some new building may even

produce their energy with solar panels and be able to store it in batteries for later

use. Indirect effects are mostly outside the scope of this thesis.

Remote working can also affect total energy consumption. Depending on the

distance from home to the office and what is used to commute to work, it might be

better to work remotely when possible and utilize different communication services

to work in teams.

Development time and effects related to that should also be considered. The

choice of the most efficient technologies might not be a net positive if developers are

not familiar with them and developing the software takes longer than with familiar

[draft]

3.2 EXISTING RESEARCH FOR DEVELOPING GREEN SOFTWARE 29

technologies.

Organizations can affect how people commute by providing public transportation

tickets for workers or otherwise encouraging using public transport or non-polluting

vehicles such as bicycles. The viability of these options is somewhat dependent on

the distance between the workplace and the home of the employee.

3.2.1.3 Sustainability Criteria and Metrics

The model presents different quality properties that can be observed in different

phases of the software lifecycle. The development phase lists modifiability, reusabil-

ity, predictability, and efficiency as properties. Usage phase on the other hand lists

portability, stability, performance, dependability, usability, and accessibility.

The model states that hardware lifetime should be maximized in order to prevent

costs from replacing it. For this purpose the performance and portability of the

software are important as performance helps maximize the lifetime of hardware and

portability makes it easier to switch hardware when replacing it becomes necessary.

Energy efficiency is also an important metric. Energy efficiency is affected by

more than just the runtime performance of the software. For example, lowering

performance requirements or required service quality can help in reducing the overall

energy usage of the software. [9]

3.2.1.4 Procedure models

The procedure models presented in the model are split into develop, purchase, ad-

ministrate, and use submodels.

The development model proposes adding sustainability review and preview, pro-

cess assessment, sustainability journal, and sustainability retrospective to the soft-

ware development process. The idea behind this is that these can be added to any

software development process that is iterative.

[draft]

3.2 EXISTING RESEARCH FOR DEVELOPING GREEN SOFTWARE 30

The purchase model mostly focuses on procurement processes. Purchasing and

procurement processes can define criteria that require measurement of energy ef-

ficiency, specific features such as those presented in the Criteria for software sys-

tems [23].

The administrator model focuses on allowing administrators to install, configure,

and monitor the software. This includes allowing administrators to check the energy

and resource consumption of the software.

The use model focuses on how the users use the software. This is affected by the

design of the software as well as the features in it that allow users to customize their

experience. Displaying data on software resource usage and energy consumption

may also affect the usage of the software by users.

3.2.1.5 Recommendations and tools

The model recommends making tools and recommendations available for different

user groups to monitor and improve their energy usage. These tools and recommen-

dations can include checklists, best practices, and guides for different user groups

on how to use software more efficiently. This could be an optimization guide for de-

velopers, for administrators a tool that allows them to make infrastructure choices

based on sustainability, and for users, a tool that allows them to configure their

system’s behavior regarding performance and energy consumption. [9]

3.2.2 A Green Model for Sustainable Software Engineering

Mahmoud and Ahmad present a two-level model for creating green software and

measuring the greenness of the software [55]. The first level of the model aims to

present an agile and green software development process. The second level presents

different ways to measure the greenness of the software using existing tools and

methods.

[draft]

3.2 EXISTING RESEARCH FOR DEVELOPING GREEN SOFTWARE 31

3.2.2.1 Level 1

The first level is divided into seven stages that represent different parts of the soft-

ware engineering process. These stages are shown in Figure 3.6.

Figure 3.6: Level 1 of the green model for sustainable software engineering [55]

The first stage is requirements engineering. This stage aims to determine the

feasibility of the system if the system can solve the specific problem, create an outline

for services to be provided, order the services, analyze the risk in terms of energy,

and finally test the requirements. This stage is inspired by extreme programming

conventions of requirements testing.

The design and implementation stages are used to create system architecture

based on requirements. This stage includes guidelines for designing environmentally

sustainable software. The guidelines mention using efficient algorithms based on the

used data structures, programming languages, and hardware. The guidelines also

mention that systems should stick to design and be as small as possible to avoid

unnecessary lines of code. Frameworks and libraries are mentioned as potentially

detrimental as they add more layers to software and might make it more inefficient.

The third stage is the testing stage which aims to discover defects in software

functionality or meeting requirements. Tests should be developed early in the

[draft]

3.2 EXISTING RESEARCH FOR DEVELOPING GREEN SOFTWARE 32

project. The paper presents metrics including fault tolerance, failure management,

and testability for measuring the environmental impact of testing on software.

The fourth stage is analysis which aims to measure the energy usage of the soft-

ware itself using metrics such as CPU usage, performance tests such as benchmarks

and debug logs. Hardware may also support specific power measuring functions that

could be used.

The fifth stage is usage which takes into account how users use the program.

Software should aim to be simple and allow users to perform the minimum amount

of actions for software to fulfill its purpose. Software should also support power

management features such as using minimal power when idle.

The sixth stage is maintenance. This step is concerned with the maintainability

of the software such as required access and knowledge to perform it and the amount

and quality of documentation available for the software.

The final stage is disposal and it is concerned with how well the software can be

recycled and reused in other software, how hardware can be recycled or repurposed,

and how efficiently is migrating to the next software product. [55]

3.2.2.2 Level 2

The second level introduces different tools for creating, measuring, and using energy-

efficient software. This includes operating systems, application frameworks, energy

usage measurement software, virtualization technologies for maximizing hardware

use, and green by IT products that are used to help reduce energy consumption.

The second level is shown in Figure 3.7. [55]

[draft]

3.2 EXISTING RESEARCH FOR DEVELOPING GREEN SOFTWARE 33

Figure 3.7: Level 2 of the green model for sustainable software engineering [55]

3.2.2.3 Tools and Metrics

The paper presents metrics for measuring the impact of the software being devel-

oped. These metrics are presented in Figure 3.8. The GPI metrics are divided into

IT resource usage, applications life cycle KPIs, Energy impact, and Organizational

GPIs.

IT resource usage metrics take into account the resource usage of the software,

Application lifecycle takes into account the development and configuring costs. The

energy impact on the other hand takes into account the impact of data centers. The

organizational GPIs include organizational factors. [55]

[draft]

3.2 EXISTING RESEARCH FOR DEVELOPING GREEN SOFTWARE 34

Figure 3.8: Metrics for green software of the green model for sustainable software

engineering [55]

3.2.3 Green Lean process

Ibrahim, Sallehudin, and Yahaya explore using lean methods to reduce waste in

software development processes. It presents preliminary work for Green Lean De-

velopment components. The study considers Software waste, meaning incomplete

work, unnecessary features, lost knowledge, hand-offs, task switching, delays, and

defects, and theorizes that reducing them using lean methods will lead to greener

software. Therefore sustainable software processes should strive to eliminate this

waste. The paper shows that developing the Green Lean Model combines energy

efficiency, waste reduction, and sustainable design [56]. The process is shown in

Figure 3.9.

[draft]

3.2 EXISTING RESEARCH FOR DEVELOPING GREEN SOFTWARE 35

Figure 3.9: Green lean process [56]

[draft]

4 Measuring Sustainability of

software

Measuring the sustainability of software is critical for proving the benefits and im-

provements that can be made by optimizing software and its development process

as well as helping guide decisions made during the development on what to focus on.

This chapter answers RQ2: How to measure the sustainability of the soft-

ware? by introducing metrics, methods, and tools for measuring different aspects

of sustainability.

4.1 Metrics for Different Sustainability Aspects

There are many metrics to determine the sustainability of software and its devel-

opment. The metrics should aim to measure different parts of sustainability such

as technical, economic, environmental, social, and individual. As mentioned in Sec-

tion 1.5, individual and social sustainability measurements are often outside the

scope of single projects and should be measured on an organizational level and are

therefore mostly outside the scope of this thesis.

4.1 METRICS FOR DIFFERENT SUSTAINABILITY ASPECTS 37

4.1.1 Technical Sustainability

The technical sustainability of software should be measured to ensure the software

being produced allows fast iterations and efficient solutions so no unnecessary work

needs to be done to introduce new features or change existing ones. Technically

sustainable software can also be more performant which affects both economic and

environmental sustainability. To achieve technical sustainability, defects in software

should be measured. This is usually done with project management tools where

defects can be added to the development backlog and labeled.

In addition to defects, refactor opportunities should also be measured as they can

tell if there is existing technical debt in the software being developed. Refactoring

can be used to reduce technical debt and allow for faster iterations and feature

additions.

Another measurement for technical sustainability is story points in user stories.

This is used in many agile implementations to indicate the work required for a

specific story. If completed story points are decreasing every sprint, it can indicate

that technical debt is accumulating and slowing down development.

Crashes caused by unhandled errors should also be measured as they can indicate

low stability of the software. Stability was one of the metrics identified in the

Greensoft model in Section 3.2.1.

4.1.2 Economic Sustainability

For software to be sustainable, the costs of developing and using it should be mea-

sured. This is usually relatively easy when using hosting platforms or cloud service

providers as they report the costs of running the software. In addition, the cost of

the development team and tools used by them such as development tools and CI/CD

pipeline usage costs should be measured to keep track of overall costs. These met-

rics include most of the lifecycle cost indicators presented in the green model for

[draft]

4.1 METRICS FOR DIFFERENT SUSTAINABILITY ASPECTS 38

sustainable software engineering in Section 3.2.2. Cost of development was also men-

tioned as a relevant metric in the Greensoft model in Section 3.2.1 as the "efficiency"

metric.

4.1.3 Environmental Sustainability

As mentioned in Section 1.1, the lack of tools is highlighted as one of the biggest chal-

lenges in measuring the energy consumption of software which presents challenges

for measuring the environmental sustainability.

Studies on measuring energy efficiency show that energy, performance, utiliza-

tion, and economic, performance in relation to energy and pollution are used as

metrics [57]. Findings of Section 2.2 support performance as a good heuristic for

energy consumption. This applies to energy in relation to performance as well. This

means that during development, benchmarks can be used to measure the environ-

mental sustainability of specific features or code paths. In addition, benchmarks

can catch regressions in software that affect environmental sustainability and by

extension economic sustainability. Performance was also included as a key metric

in the Greensoft model in Section 3.2.1.

Resource utilization can reveal high network or disk (I/O) usage which can be

mitigated with caching strategies and architectural improvements. High CPU usage

can also be a good or a bad thing depending on the performance achieved. It can

mean that the application is busy waiting instead of allowing other tasks to use

the CPU time but it can also mean that the system resources are utilized well.

Measuring resource utilization can therefore reveal good refactoring opportunities.

Depending on the platform the software is running on, resource usage and energy

consumption can be read directly from the operating system using APIs such as

RAPL and reported as part of the telemetry and logs collected such as in native

desktop or mobile applications. On servers, different tools can be installed to monitor

[draft]

4.2 MEASUREMENT TOOLS 39

and report energy consumption and resource usage. Cloud service providers also

allow monitoring of resource usage and sometimes even metrics directly relevant to

environmental sustainability such as CO2 emissions or energy usage.

4.2 Measurement Tools

There are many tools available for measuring different aspects of sustainability.

Project management tools often allow measuring the number of items such as user

stories, velocity of development by assigning story points to items, and costs relating

to development. For environmental sustainability there exist tools for measuring

resource usage and energy consumption for different hosting infrastructures.

4.2.1 Technical Sustainability

Defects and refactor opportunities can be measured with project management tools

such as Kanban boards. Most kanban board tools allow labeling items or events

separating them into different lanes or boards. These tools often also report the

number of items on each label or board.

4.2.2 Economical Sustainability

Cost of development is often measured using work time tracking, project billing

per hour or per month, and costs reported by development tools such as CI/CD

pipeline and hosting costs. These should be collected and available to customers

and the development team.

4.2.3 Environmental Sustainability

There are different tools for measuring software energy consumption. Measuring

tools can be broadly separated into three different categories: Software tools, Hard-

[draft]

4.2 MEASUREMENT TOOLS 40

ware devices, and hybrid methods [58]. The software tools are generally not as

accurate but they are more convenient and easily available as software is often run

in cloud environments and having a physical testbench on premises is not always

possible.

4.2.3.1 Software Tools

Software tools can be used to estimate the energy consumption of the system or

processes based on available hardware sensors in different components of a com-

puter and are as such limited to what sensors hardware offers. In addition to these

methods, benchmarking software performance and resource usage can give some in-

dication of its energy usage characteristics and can be used to detect changes in

energy usage during the program lifecycle. Most software tools are based on RAPL

API and MSRs. These have been proven to be accurate measurements of energy

usage and therefore software tools based on them can be used to give at least a

fairly accurate estimate of energy usage [59][60]. The overhead from RAPL is also

negligible [60] and should not affect the measurements.

Profiling and monitoring tools can be used to determine the energy consumption

of processes. In some cases, profiling tools can introduce overhead which affects the

overall performance of the program and can make them unsuitable for production

usage [61][62]. Some tools such as JoularJx can be used to measure the energy

consumption of specific methods but might be limited in their programming language

support [63].

Monitoring tools such as PowerAPI [64], Schapandre [65], PowerJoular [63] and

Green metrics tool [66] can be installed on the machine running the software such as

on a server to continuously monitor the energy usage. Tools such as these do have

their limitations, they might not work in virtualized environments unless the host

has installed the software and exports metrics to virtualized guest systems. There

[draft]

4.2 MEASUREMENT TOOLS 41

are also many tools presented as an example in literature such as GreenTracker [67]

but finding working versions of these tools for general use is difficult.

Some tools can analyze the website on a given URL and give it a score based on

several factors relating to greenness and efficiency. These tools can be used to evalu-

ate front-end web applications. These tools are by themselves not enough but can be

used to indicate potential optimizations for front-end applications. Google’s light-

house is one such tool. These tools should be also integrated into CI/CD pipelines

if they provide an API that allows developers to do so or are usable locally such as

Lighthouse.

4.2.3.2 Hardware devices

Power meters can be used to directly measure how much energy a computer is

using while running software. This method must take into account all different

services and operating systems running on a computer and first form a baseline

idle energy consumption that is used when comparing to energy usage while a pro-

gram to be measured is running [68]. Hardware tools are not always feasible for

software development organizations and therefore for the model proposed by this

thesis, software-based tools are recommended.

[draft]

5 Adapting Sustainable Agile for

Kvanttori Case

This chapter explores how agile software development is currently implemented at

Kvanttori, what Kvanttori wants to achieve with a sustainable agile model, how to

create and implement such a model, and how it differs from the current agile model

at Kvanttori. This chapter answers RQ3: How to integrate sustainable de-

velopment methods into an agile development process? by adding methods

and criteria in Chapter 2, parts of different agile models in Chapter 3, and metrics

and tools in Chapter 4 to the current development model at Kvanttori.

5.1 How Kvanttori Implements Agile

The development model described in this section was created by gathering informa-

tion from Kvanttori’s internal development guides and by personally having worked

on different projects at Kvanttori.

Kvanttori’s current agile implementation is based on Scrum using Essential Scrum [69]

as a guidebook for applying Scrum during the development process. The process im-

plements all parts of the Scrum framework as pictured in Figure 3.1 in Section 3.1.1

as well as some additional parts from the Essential Scrum book. The current process

is illustrated in Figure 5.1. The process is split into four sections: pre-development,

development, usage, and post-development. Usually, the project starts with pre-

5.1 HOW KVANTTORI IMPLEMENTS AGILE 43

development with development and usage happening at the same time when the

project is in active development. Post-development phase happens after the project

ends or moves into maintenance mode. The maintenance usually entails working on

bug fixes and updating dependencies when needed. It can also include monitoring

and fixing issues with the hosting environment as needed. Earlier phases can be

revisited as necessary. Introducing a new feature might require new technologies to

be evaluated and projects can return from maintenance to active development.

Currently, the development process does not take performance and other factors

correlating with environmental sustainability into account as long as they are not

part of the customer requirements. Only if some features must happen in a specific

time limit or if performance is detrimental to usability, will it be used as a reason to

not accept a feature as done. Economic sustainability is mostly the responsibility of

the customer in the current model as costs are reported directly to the customer but

following them and actively minimizing them is not prioritized over other tasks as

long as they stay within the customer’s budget. Technical sustainability is measured

in the backlog using labels for defects in software but bugfixes and refactors are not

systematically prioritized and can often stay in the backlog for a long time if not

deemed critical.

[draft]

5.1 HOW KVANTTORI IMPLEMENTS AGILE 44

Figure 5.1: Kvanttori’s current agile implementation

5.1.1 Pre-development Phase

Pre-development phase consists of setting up the project, finding out high-level

requirements, choosing technologies, and setting up the development environment.

5.1.1.1 Roadmapping

Projects start by meeting with a customer to get a better understanding of the cus-

tomer’s business and the problem that needs to be solved. During these meetings,

[draft]

5.1 HOW KVANTTORI IMPLEMENTS AGILE 45

high-level requirements are gathered for the software solution to be developed dur-

ing the project. This entails estimating how many sprints there will be, how long

they are, deadlines imposed by the customer, how releases are done, and estimated

work required for the most central features. This is expected to change during the

development process but it is used as a starting point for determining what big

features are the most important. These features or epics will be split into smaller

stories during development. This implements envisioning and release planning from

the Essential Scrum [69].

5.1.1.2 Technology Evaluation

Technologies for a project are chosen based on customer and technical requirements

such as previous technology used, platform support, and library ecosystem. The

familiarity of the development team with technologies is also considered.

5.1.1.3 Architectural Planning

Architectural planning takes into account any customer requirements for existing

systems interoperability with the software being developed as well as the needs of

the software being developed.

Architectural planning also includes the distribution and hosting of the software.

The choice of hosting methods and hosting provider is affected by the customer’s

existing systems, the need for scalability, costs, and the skill set of the development

team.

5.1.1.4 Configuration, Development Tools and CI/CD

The configuring step is for setting up the necessary development tools and CI/CD

pipelines for automated testing and releases.

All projects use linters, formatters, and testing tools to ensure the quality and

[draft]

5.1 HOW KVANTTORI IMPLEMENTS AGILE 46

readability of the code and to ensure the software is working as expected. These are

chosen by the lead developer depending on the project and technologies used and

are often integrated directly into the development environment as well as CI/CD

pipelines.

5.1.2 Development Phase

The day-to-day development process follows Scrum closely including daily Scrum,

sprint planning, retro and review steps. Kvanttori uses story points and planning

poker together with project management tools to estimate and track team velocity.

Project backlogs are used to keep track of work to be done for the project. This

is implemented with a Kanban 3.1.3 board that allows labeling use of stories with

labels such as features or bugs.

Sprint planning is used to estimate story points and choose stories from the

project backlog to the sprint backlog. The chosen stories depend on the stakeholder

requirements as well as the amount of points assigned to each task.

Sprint backlog tracks work that needs to be done in the current sprint. This is

implemented with the same tool as the project backlog.

Acceptance tests are automatically run in CI/CD pipelines to ensure compliance

with formatting, linting, and tests.

Code review is conducted by other team members, often by the lead developer to

ensure the quality of implementation and compliance with high-level architecture.

5.1.3 Usage Phase

Logs are collected from the software to find errors that users may run into and add

fixing them to the product backlog. Telemetry may also be implemented to find

what features are used the most but is not required.

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 47

5.1.4 Post-development Phase

Lastly, after the project ends, there is a post-mortem of the project where things

learned from the project are discussed among the development team and written for

other development teams to read for future projects.

5.1.5 Roles

Kvanttori has four roles in the development team with one person sometimes having

multiple roles. These are Product owner, Scrum master, lead developer, and devel-

oper. With one person often taking on multiple roles due to team sizes. For example,

the Product owner can also be the lead developer and the Scrum master is often

also a developer. The lead developer is a role that is not specified in Scrum roles

but has been deemed useful at Kvanttori based on experiences in different projects.

5.2 Sustainable Agile Implementation

The sustainable agile model described in this section was created by implementing

findings of the literature review including methods for creating sustainable software

in Chapter 2, existing agile and sustainable agile methods in Chapter 3, and metrics

and measurement tools in Chapter 4 into the current development model used at

Kvanttori presented in Section 5.1.

Kvanttori wants a model that allows it to create software that is more sustainable

technically, economically, and also environmentally. The model should also aim to

prevent the accumulation of sustainability debt [5] including technical sustainability

debt, economical sustainability debt, and environmental sustainability debt. In

addition, the model helps standardize the development model to ensure that teams

have a checklist of issues to take into account in every project. This model should

aim to include all methods for improving the sustainability of software presented

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 48

in Section 2.2 as well as issues raised in Chapter 3 green agile models such as

measuring and reporting sustainability, reducing waste in software and allow users

to use software in more sustainable ways. The model should also implement metrics

discussed in Section 4.1. The result of using the proposed model should be software

that is cheaper to develop and run, uses less energy, is faster, and is easier to

maintain.

The new model retains the four phases of the current model, those being pre-

development, development, usage, and post-development. Similarly to the current

model, these phases can be revisited multiple times during development.

Some new steps and metrics for the development model are required to ensure

that sustainability is taken into account during all phases of the development model.

In addition, some existing steps and roles have been changed to better take sustain-

ability into account. Figure 5.2 illustrates the proposed process model.

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 49

Figure 5.2: Proposed sustainable agile implementation model

5.2.1 Pre-development Phase

Many steps can be taken at the beginning of the project that can facilitate a more

sustainable development process and end product. These steps often need to be

done once per project and sometimes updated during the course of the project but

can still have a great impact on the sustainability of the software.

5.2.1.1 Roadmapping

Roadmapping stays mostly the same as in the current model. The core functionality

of the product is discussed with the customer and a high-level roadmap is created

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 50

for the product depending on the feature priorities. These features are then split

into epics, which will be further split into user stories. The purpose of this roadmap

represent the overall vision for the product and to ensure the project stays true to

this vision and does not start adding unnecessary features during development. The

roadmap should answer the question of why this software exists. If this question can

not be answered, the development should be stopped and the necessity reevaluated

as it is the most efficient to not develop anything that is not needed.

The roadmapping step partially implements the requirements engineering of the

Green model for sustainable software engineering shown in Section 3.2.2 by helping

determine if the software should be built to solve the problem of the customer. It also

creates an outline of the services and features as a roadmap. Risk analysis in terms

of energy usage is left out as there is no way to accurately estimate energy usage

this early in the project. Requirements testing is also left out as the requirements

presented here are meant to indicate what the product needs to do on a high level,

meaning they can well be changed during the development.

5.2.1.2 Architectural Planning

The architecture of the software should be planned so that it is extensible enough

that features can be easily added but are not too complex. The architecture plan

should account for the architecture of the whole software stack including frontend,

backend, databases, and hosting platform as well as the architectures of these parts

individually. The result of this should be a document describing the high-level archi-

tecture of the software stack as well as the high-level architectures of the individual

parts of the stack.

Section 2.2.1 introduced the following considerations for the architecture of soft-

ware from a sustainability perspective: Caching and bulk requests, data struc-

tures and algorithms, error handling, logging, offloading, and indexing.

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 51

Many choices made during architectural planning are likely to reappear in day-to-

day development work and should follow the same principles as outlined in this

step.

Caching should be implemented in all levels of software if possible meaning for

example that the database should cache indexes and specific query results, backend

should cache expensive function results, database query results, and external API

results. Frontend should also cache the results of requests to the backend and

possible requests to external APIs. Backend and databases should be planned in

such a way that clients can fetch all relevant information with as few queries as

possible. This can be achieved with good planning and utilizing bulk requests.

Some data structures and algorithms can already be decided during the

architecture planning of the software. For data structures, these decisions should

account for the most common use cases and optimize for access, search, insertion,

or deletion speed based on the use cases. The same applies to algorithms. Decisions

on what algorithms are used should take the use case into account and in cases

such as password hashing algorithms, find a balance between security and required

computation. For both data structures and algorithms optimizing for speed is more

important than optimizing for memory.

Architecture should also include details such as how errors are handled. While

error handling is largely dependent on the chosen languages and error handling

paradigms used by them, there should be some outline of how the errors are prop-

agated through the software and gracefully handled to prevent unexpected errors

from crashing the software.

In addition, the architecture should outline what should be logged in the soft-

ware to catch helpful information about errors and usage. Good logs are vital for

finding issues with the software but not everything should be logged as outlined in

Section 2.2.1.4. At a minimum, any errors and relevant context to their occurrence

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 52

should be logged. Any additional logs should be carefully reviewed to determine

their usefulness.

Architecture should also outline what should be indexed in databases when

planning the initial database schemas to ensure the database operates with optimal

performance. Any fields that are frequently used to search for items in the database

should be indexed.

Offloading specific computationally intensive work to a server can benefit the

client application by lowering system requirements and also allow for more central-

ized caching of computationally intensive calculations. This should also be accounted

for in the software architecture.

Infrastructure architecture should take into account the features that will be

added according to the roadmap and ensure the chosen infrastructure is scalable

for the expected amount of users for the software. Costs are also an important

factor as some infrastructure options might be initially sufficient and cheap but

become expensive when scaling up. Developer familiarity with platform options is

key in predicting these costs and should therefore be a factor when choosing hosting

platforms and methods. The choice of service provider should also be affected by

how they produce their energy and other factors mentioned in Section 2.2.5. This

will not likely have an impact on the energy consumption of the software but it

ensures that the energy consumed is produced responsibly. Hosting platforms also

provide varying levels of metrics on energy consumption and using the platform with

the most accurate tools should be considered if possible within other requirements.

This phase implements the design and implementation stages of the green model

for sustainable software engineering in Section 3.2.2 by creating a system architecture

based on the requirements and guidelines for producing more sustainable software.

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 53

5.2.1.3 Technology Evaluation

The technology used for a project often depends on customer requirements such as

compatibility and performance and also on potential earlier development work. Sec-

tion 2.2.2 outlined different technological decisions affecting the energy consumption

of the application. These were Programming language, runtime, databases

and libraries and frameworks, and large language models. This step should

consider all those decisions.

Platform support can affect what technologies can be used for the project for

example not all languages and frameworks are suitable for mobile development or

embedded systems. If desired platforms do not have an operating system, using

low-level languages such as C or Rust is often required.

Faster programming languages allow using less powerful hardware to serve

the same amount of users as less performant languages with more powerful hardware

which also saves in hosting and usage costs making it more sustainable both econom-

ically and environmentally. Performance is also especially important on serverless

functions platforms as they are often billed by usage time. On serverless platforms,

the startup time of the software is crucial for ensuring users do not need to wait

too long when using an application. Using performant technologies also allows for

higher scaling for lower prices.

Even if the language used is not the most efficient such as many interpreted

languages, the choice of runtime can significantly improve the performance and by

extension energy consumption. For example, JavaScript developers should consider

Bun as runtime instead of Node due to it being more efficient as mentioned in

Section 2.2.2.2 while not being that different from using NodeJs in practice.

Another consideration is how a language or framework handles errors. Making

as many errors recoverable as possible is usually better than crashing and restarting

the application. To this end technologies that use errors as values and are null

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 54

safe should be considered provided the team is proficient with them as they can

help developers make sure all errors are handled and reduce the rate of unexpected

crashes. These kinds of technologies can help enhance technical sustainability by

making the software more resilient and also easier to refactor as many issues are

caught during the build process.

The current development team’s expertise in technologies should also be con-

sidered. The development team should choose the most efficient technology they

are familiar with and that supports the desired target platforms for the software

and configure those technologies to be as efficient as they can. Using familiar tech-

nologies allows the team to make better quality software making it more technically

sustainable.

The choice of database often depends on the use case. However, for most

cases at least at the beginning of a project a SQL database such as Postgres or

MySQL is sufficient and provides good performance and technical maintainability,

especially with proper indexing. SQL databases are also well-supported in most

cloud platforms and have solid library support in most languages.

Libraries and frameworks should be carefully considered as they can intro-

duce a lot of unnecessary bloat to software. Libraries should accomplish some specific

task and the smallest but still actively maintained library should be used. In cases

where only some functionality from a large library is needed, it might make sense to

only implement the required functionality. Unnecessary libraries were noted to be

detrimental in A Green Model for Sustainable Software Engineering in Section 3.2.2.

In the case of frameworks, first, it should be evaluated if a framework is even

needed. If it is, the choice should be based on performance and available features,

not just on what the development team has previously used. Unlike new languages,

the time required to learn framework-specific features is often much shorter if the

language used in the framework is familiar to the developers.

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 55

As mentioned in Section 2.2.2.5, some technologies such as large language

models can consume large amounts of energy and there are considerations when

using them. For LLMs, the smallest model that fits the requirements should be

used. The usage of these technologies should also be carefully considered as more

traditional approaches can often be sufficient.

5.2.1.4 End of Life Plan

Software products should have a plan for when they are eventually deprecated and

the data needs to be migrated to different platforms. There should be a plan that

includes how to export the data used by the software, what format the data is in, and

who can export the data. Open data formats should be used to make the data export

and reuse easier. It should also include what will be done with the current software

in case of end-of-life. Will it be partially reused, open-sourced, or just thrown away?

This plan can change throughout the software lifecycle but thought should be given

to this as it will likely affect how development is conducted. For example, if the

plan is to eventually open source the project, special attention needs to be paid to

not use any proprietary code or other media that cannot be open-sourced. Open

sourcing specifically should be considered as even if current users might eventually

not need the software, someone else can benefit from it and it might even lead to

them not needing to develop another comparable product themselves.

5.2.1.5 Configuration

Depending on the technologies used, different configuration options can be used to

drastically improve the performance and resource usage of the application as men-

tioned in Section 2.2.6. Out of the box, many languages have a separate development

mode for fast builds and iterations and a production mode for faster runtime perfor-

mance and smaller bundle sizes. However, these configurations can often be further

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 56

improved for specific situations and developers should not rely on default options

being the best for their use case. During the configuration step, the target platform

should be taken into account, and configure the software to be as performant on

that platform as possible. If the target platform is a browser or embedded device, it

might make sense to optimize for size to ensure minimal network traffic or to ensure

that the program can fit the device.

5.2.1.6 Development Tools

Different development tools such as linters and formatters should be used to improve

overall code quality and consistent formatting of the code. Running these tools

locally also reduces unnecessary CI/CD runs as the code is already compliant with

formatting and linting settings enforced in CI/CD pipelines.

Developers can also use tools to assist in writing more efficient software. These

tools should present minimal overhead for the developer. This is often achieved by

integrating these tools directly with the editors. Static code analyzers are great for

integrating with build pipelines as well as the developer’s development environment.

While tools for directly finding energy patterns in code are still lacking, tools for

writing more performant code exist. Depending on the technology used, there are

tools such as SonarLint [70] that can give hints on writing more performant software.

These kinds of tools should be known and recommended in projects by the lead

developer depending on the technologies used. They should also be included in the

CI/CD pipelines to enforce compliance with them.

Tests should be used to help maintain code quality by detecting issues as early

as possible. There are many types of tests such as unit tests, integration tests,

end-to-end tests, and testing methods such as property-based testing and fuzzing.

Relevant testing approaches are determined by the nature of the project and should

be chosen so that they help in detecting issues in the software but do not cause

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 57

unnecessary overhead to developers.

Benchmarks can be used to catch regressions in the performance of the appli-

cation or enforce limits on certain features based on what is acceptable according

to customer needs or the definition of done. Performance correlates strongly with

energy consumption and therefore this can be useful in estimating changes in en-

ergy consumption of a specific part of the software. Benchmarks, like tests, can be

used as part of the definition to prevent new features and changes from raising the

execution time of some features more than is acceptable. They can also be included

in CI/CD pipelines to follow changes in performance and energy consumption [30].

5.2.1.7 Build Settings

PGO is a technique that can be used to improve performance in some compiled

languages by compiling software with it enabled, collecting produced data from the

production environment, and feeding it back to the compiler during the build step.

This allows the compiler to make use case-specific optimizations to the software.

For many technologies, there are additional tools to make the final product more

efficient. Image optimizer tools such as sharp [71] can be used to automatically

convert PNG and JPEG images to newer formats such as AVIF and WEBP during

the build process as well as compress images without noticeable quality loss. For

web assembly, there are minifier tools such as wasm-opt [72] that can be used to

reduce the size of the wasm files during the build process. These tools should be

set up at the beginning of the project and used in CI/CD pipelines as part of

the build process. For JavaScript and Typescript, many bundlers already perform

minimization for code and style files. These techniques can be used to make web

applications load faster and reduce network traffic.

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 58

5.2.1.8 CI/CD

CI/CD pipelines should also be set up at the start of the project to run chosen

tools on pull requests. These tools can include testing frameworks, benchmarks,

formatters, linters, and other static analyzers. CI/CD pipelines should be configured

to use caching for build artifacts and dependencies to keep them from needing to

redownload and recompile on every run. Pipelines should also run the fastest tests

and tools first and stop running if any tools fail as this prevents running all tools if

the result of the combined tests is a failure.

Unused dependencies should be checked as part of testing and release pipelines

and removed from the project. Unused dependencies can, depending on the tech-

nologies used, slow the software, bloat the bundle size, or increase compile and

therefore pipeline execution times. They also cause unneeded network and I/O us-

age during building as dependencies are downloaded and installed. There are tools

for detecting unused dependencies for most major languages. These tools should

be integrated into the CI/CD pipeline to check for unused dependencies. Removing

unused dependencies is part of reducing the waste defined in Section 3.2.3 of the

software by removing unneeded features from it.

Automated tools should also be used to catch dependencies that have vulnerabil-

ities so they can be addressed. This is mostly useful for security but also indirectly

saves energy as handling issues caused by possible exploitation of these vulnerabili-

ties is sure to consume more energy than patching them preemptively.

Tools such as Google’s Lighthouse can be run in CI/CD pipelines for web applica-

tions to detect performance, accessibility, and SEO issues in front-end applications.

The viability of these kinds of specific tools often depends on the nature of the

project.

Some tests could also be run only when things relating to them have changed

and on some commits, tests could be skipped altogether [73]. For example, all tests

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 59

should not be run if only some documentation files were updated. Similar to extreme

programming presented in Section 3.1.2, the build and testing pipeline should take

at most 10 minutes. The 10-minute mark can be used as a heuristic that something

is wrong with the performance of the pipeline and it should be addressed.

5.2.2 Development Phase

These steps are done once or more times during every iteration, therefore it is im-

portant to avoid adding too many things here so as not to distract from the actual

development work. Daily scrum was also dropped as a requirement since many

teams within Kvanttori have noticed that it does not bring any benefit and serves as

an unneeded distraction from actual work as the same effect can be achieved with

communication tools used by teams. This observation is likely due to the develop-

ment team sizes at Kvanttori being often relatively small. Teams may implement

this if they feel it is beneficial.

This phase together with the pre-development phase corresponds to the develop-

ment phase in the Greensoft model’s lifecycle of software products in Section 3.2.1.

5.2.2.1 Backlogs

Backlogs are used to keep track of work that needs to be done. The product backlog

keeps track of all the work while the sprint backlog shows work that has been picked

for the current sprint. The product backlog is split into feature, defect, and refactor

backlogs. Kanban board presented in Section 3.1.3 can be used to implement these

backlogs, as many Kanban tools allow separating backlog into different sections such

as labels or lanes.

Feature backlog keeps track of new features that need to be added to the product.

These items are often added due to customer or other stakeholder requirements.

Items can be also added to enhance the energy efficiency of the software. Such

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 60

features could be based on the criteria presented in Section 2.1. This also partially

implements the usage stage of the green model for sustainable software engineering

in Section 3.2.2 by implementing features that enhance energy efficiency.

A separate refactor backlog ensures that potential refactors do not get prioritized

as is often the case if they share the backlog with features. Developers should keep

an eye out for potential refactoring opportunities and streamlining of functionality

on features done earlier in the project to ensure the project does not become too

complex and accumulate technical debt. There is research suggesting that some

refactors can improve the energy efficiency of software [74]. There seems to be a

problem where the need for refactors is recognized during the project but no time

is given to do them as they do not seem to immediately give value to the customer.

These slowly accumulate technical sustainability debt and make adding new features

harder to do correctly without workarounds [5]. Any potential refactors should be

reported to the product owner who will then add them to the refactor backlog. If

there are items in the refactor backlog, at least 10% of the sprint effort must be

spent on those items to ensure that architectural, technical, and sustainability debt

cannot accumulate in the software. In addition to developer feedback, adding items

to the refactor backlog is informed by customer feedback and energy and resource

usage reported by the hosting environment of the application in addition to error

logs and telemetry data collected from the hosting environment.

A separate backlog for defects in software should also be set up. This is important

to keep track of the technical sustainability of the project and ensure defects cannot

accumulate in software. As with refactor backlog, at least 10% of sprint effort should

be spent on fixing defects and as with refactor backlog, the percentage will likely

change during the project depending on the speed defects are accumulating.

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 61

5.2.2.2 Development and Energy Efficient Choices

Section 2.2 outlined methods for ensuring UI design facilitates more efficient soft-

ware. The UI/UX design should try to minimize the amount of actions required

from the user to perform some task within the software. Dark colors should be

preferred for better energy efficiency with OLED displays. Visual elements such as

animations should also be used sparingly.

Accessibility also needs to be taken into account to improve the software’s energy

efficiency. If the software does not support accessibility tools such as screen readers,

the likelihood of misinputs by users relying on those tools increases which in turn

increases the energy usage of the application. The minimum requirement for front-

end applications should be the Google lighthouse accessibility check.

There will likely be many times during the development when developers need to

choose data structures and algorithms to solve a specific problem or to add some fea-

ture. These decisions should use the same criteria as the architecture planning step.

That is, choose the algorithms based on the use case, prefer lower time complexity

over lower space complexity, and find a balance between usability and robustness.

The same applies to other part of the architecture planning. Adding new indexes to

the database, creating features that make requests to the database or external ser-

vices, or adding error handling to new features should follow the patterns outlined

in the architecture planning step and enforced by the lead developer during code

reviews.

This step partially implements the usage stage of the green model for sustainable

software engineering in Section 3.2.2 by making software as simple as possible to

allow users to perform as few actions as possible to achieve a specific task with the

software.

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 62

5.2.2.3 Acceptance tests

Tests and other development tools such as formatters and linters that have been set

up during the pre-development phase and those added later during the development

should be automatically run on code pull requests to enforce code quality.

This step implements the testing stage of the green model for sustainable software

engineering in Section 3.2.2 by discovering defects in software before taking it to

production. This also partially implements the analysis stage as benchmarks are

run during this step.

5.2.2.4 Code review

During code review the lead developer should review the code and ensure it follows

the architecture created during the architecture planning and also make sure the code

follows sustainable software principles such as using caching, correct data structures

and algorithms, and handling error cases properly.

5.2.2.5 Review

In addition to the current model’s review step, stakeholders should be made aware

of the different measurements collected during the projects such as costs, energy and

resource usage, and technical sustainability metrics.

5.2.2.6 Retro

Similarly to the review, the retro step stays mostly the same in the new model.

This step should be used to collect developer feedback for the refactor and defect

backlogs. It should also be used to discuss the usefulness of the different phases and

tools and their effects during the sprint.

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 63

5.2.3 Usage Phase

This phase will likely have a lot of overlap with the development phase as the software

will be used by the customers during the development in an ideal setting. During the

usage phase, the software should be monitored for errors and warnings. Resource

usage and energy consumption should also be monitored in addition to costs of

usage including those from possible third-party APIs and the hosting platform.

These metrics can inform the product owner on what to prioritize in the refactor

backlog and feature backlog. Resource usage metrics can also reveal opportunities

to downscale hardware needed to run software which in turn reduces running costs.

In addition, users should have a channel to provide feedback to the product owner

who can relay it to the development team.

This phase implements the rest of the analysis and usage stages of the green

model for sustainable software engineering mentioned in Section 3.2.2 by collecting

energy usage and resource utilization metrics as well as feedback from the usage

environment to inform further development. This phase together with the develop-

ment phase also corresponds to the usage phase in the Greensoft model’s lifecycle

of software products in Section 3.2.1.

5.2.4 Post-development Phase

This phase starts after the active development is either complete or finished for some

other reason. This can be because the project moves into maintenance mode or the

development is stopped but the software remains in use. This can also happen when

the software is deprecated and is ready for disposal.

5.2.4.1 Reuse

After the project is done, there should be a session where internal tools developed

to help build the product and functionality written for the product are analyzed

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 64

for possibilities of reuse in the next projects. In addition, possible hardware such

as development kits should be repurposed. This can mean moving internal tools

to separate repositories, separating some functionality to separate library packages,

and reusing the same hardware kits in future projects. This can help save time and

energy in the next projects. The tools and libraries produced from this step should

be open-sourced if possible so others will not need to develop the same functionality

again later.

This step implements the recommendation from the Green model for sustainable

software engineering in Section 3.2.2 for recycling hardware and software during

disposal with the difference that this step can be conducted during development for

example in case of software being moved to maintenance.

5.2.4.2 Disposal

The disposal step is used only if the software comes to the end of its lifecycle during

the project. This step implements the disposal stage of the Green model for sustain-

able software engineering in Section 3.2.2 and the end-of-life phase in the Greensoft

model’s lifecycle of software products mentioned in Section 3.2.1.

During this step, the end-of-life plan is used to migrate all needed data to a new

platform, destroy or archive unneeded data depending on the requirements, and

archive, destroy, or open-source the old software. The initial end-of-life plan should

be reevaluated for the last time here as some things may have changed since it was

last been updated.

5.2.4.3 Post mortem

Post-mortem stays mostly the same as in the current model. The project is reviewed

as a whole and learnings are written down to be used in future projects. In addition

to this, all the metrics collected during the project should be used to support the

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 65

review to see what worked and what did not.

5.2.5 Metrics

The phases must produce concrete measurements and other documentation to allow

for following the energy consumption of the application and making decisions based

on that. The model should implement metrics mentioned in Section 4.1.

5.2.5.1 Energy Consumption and Resource Usage Measurements

Users should have constant access to the test environment for the software being

developed. This environment should have some monitoring software running that

produces reports of the energy consumption on set intervals, for example, every

sprint. This report can be used when determining the sprint backlog for the next

sprint. This kind of reporting should also be done in the production environment

for the application to gather data from actual use cases of the software. Out of the

different tools presented in Section 4.2. Many of the tools are easy to integrate into

any running server-side web application. Schapandre [65] for example can be run

with a single docker-compose command and the dashboard provided via Grafana can

be customized to show the most important processes and their energy consumption.

These tools can be used to implement both the sustainability reporting and the

monitoring ability mentioned in the administrative process in the Greensoft model

in Section 3.2.1.

5.2.5.2 Costs

Costs should be monitored and actions should be taken to reduce them when possi-

ble. Most hosting and cloud service providers allow monitoring and sometimes even

limiting costs easily. In case of costs rising unexpectedly, item should be added to

refactor the backlog to solve or mitigate the issue. The cost measurement steps,

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 66

that being development cost and usage costs implement the lifecycle cost indicators

of the Green model for sustainable software engineering in Section 3.2.2.

5.2.5.3 Story points in backlogs

Story points in different backlogs used in the model are tracked to determine the

technical sustainability of the software. Too much work, meaning too many story

points, in defect or refactor backlogs can indicate problems with technical debt or

insufficient quality control. Story points also allow monitoring of the velocity of the

development team.

5.2.5.4 Unhandled errors

Error logs collected from the usage environment can reveal unhandled error cases

which can indicate poor technical sustainability and issues with the current software

architecture.

5.2.6 Roles

Overall no new roles need to be added to the current process but all existing roles,

those being: Product owner, Scrum master, lead developer, and development team,

should have at least a basic understanding of green software principles. With some

roles requiring a deeper understanding of the subject. Organizations likely need to

adopt a learning plan to ensure all members of the development teams have the

required skills.

5.2.6.1 Product owner

In addition to product owner duties in the old model, product owners should have

knowledge of the sustainability features so they can be added to backlogs and pri-

oritized properly. Additionally, the product owner will be responsible for following

[draft]

5.2 SUSTAINABLE AGILE IMPLEMENTATION 67

the reports from the hosting environments and determining if changes in energy

consumption warrant further investigation and potential additions to the refactor

backlog.

5.2.6.2 Lead developer

Lead developers are often the senior developers at an organization and should have

substantial knowledge of sustainable software development practices. They are re-

sponsible for the technology choices, architecture planning, and configuration and

should therefore also have knowledge of sustainable architecture patterns and differ-

ent technologies and tools and also be familiar with their sustainability characteris-

tics such as energy usage and costs. They should be able to recognize the common

sources of energy consumption in software, and how to minimize the impact of those.

5.2.6.3 Scrum master

The role of a scrum master stays the same as a facilitator of the development process.

Scrum masters should be familiar with the different phases and steps of the proposed

model and ensure they are done properly.

5.2.6.4 Developer

All developers should have at least a basic understanding of green software principles

and how to make decisions that facilitate the efficiency of the software in day-to-

day programming work. For example how to implement a caching system for a

specific component. Developers should also be able to configure their development

environment with tools recommended by the lead developer.

[draft]

5.3 WHAT CHANGES WERE MADE TO CURRENT AGILE
IMPLEMENTATION 68

5.2.6.5 Stakeholder

In addition to the old model, stakeholders should be made aware of the different

metrics by not just offering access to them but going over them in reviews. This

increases stakeholder awareness of the sustainability effects of the software.

5.3 What changes were made to current agile im-

plementation

Figure 5.3 illustrates what was added to the current model. Existing parts of the

model were also modified to include steps facilitating sustainability. The goal of

these changes was to fit into the existing model and be light enough that they do

not take too much time away from the actual development work while also helping

in developing more sustainable software. The model should also as a reference for

starting a new project when setting up the development and building environments.

[draft]

5.3 WHAT CHANGES WERE MADE TO CURRENT AGILE
IMPLEMENTATION 69

Figure 5.3: Highlighted additions of the proposed model

[draft]

6 Validating the framework

This chapter explains how the proposed model is validated. The methods chosen

for this thesis are criteria for green agile processes presented in literature and expert

interviews. These methods are used to establish the feasibility of the model in an

actual software development project.

6.1 Research on Evaluating Sustainable Software

Development

Existing research on criteria for sustainable software engineering processes was used

to extract the criteria from different criteria models and the proposed model was

then compared to these criteria to determine how well it fulfills them.

6.1.1 Green Agile Maturity Model

Green Agile Maturity Model by Rashid, Khan, Khan, and Ilyas [75] lists risk and

success factors for green software development processes. Furthermore, it defines

seven green agile maturity levels for the development processes. This model was de-

veloped to evaluate software vendors’ agile development models from the perspective

of sustainable software development.

6.1 RESEARCH ON EVALUATING SUSTAINABLE SOFTWARE
DEVELOPMENT 71

6.1.1.1 Risk Factors

The risk factors and if they have been mitigated in the proposed model are listed in

Figure 6.1.

Risk factors Mitigated

Insufficient system documentation Yes

Limited support for real-time systems and large systems Yes

Management overhead Yes

Lack of customer’s presence Yes

Lack of formal communication Yes

Limited support for reusability Yes

Insufficient knowledge of the customer Yes

Lack of long-term planning Yes

Table 6.1: Risk factors for sustainable software [75] and

if proposed model mitigates them.

The insufficient system documentation is mitigated by having the roadmap,

architectural plan, and end-of-life documents that are kept up to date during the

development process.

Limited support for real-time systems and large systems is mitigated as

the model does not pose such limitations. In addition, the technical sustainability

aspects of the model are helpful when the system’s size and complexity increase.

Management overhead is mitigated by using scrum as a basis for the model.

The development team is responsible for the project and creating value for the

customer.

Lack of customer presence is mitigated by allowing customers access to all

information of the development process as well as having them take part in sprint re-

[draft]

6.1 RESEARCH ON EVALUATING SUSTAINABLE SOFTWARE
DEVELOPMENT 72

views. Customers and the development team also constantly communicate through-

out the iteration.

Lack of formal communication is mitigated by available communication tools

and stakeholders having to attend at least the sprint review sessions.

Limited support for reusability is mitigated by the reuse step of the post-

development phase.

Insufficient knowledge of the customer is mitigated by constant commu-

nication as well as the roadmap planning where the customer’s business case is

presented to the development team and the key features are decided.

Lack of long-term planning is mitigated by the roadmap planning as well as

the end-of-life plan done for the project. Additionally, architectural planning takes

into account the scaling of the software for future features and users.

6.1.1.2 Success factors

The success factors and if they appear in the proposed model and if they are included

in the proposed model are listed in Figure 6.2.

Success factors Included

Accelerated delivery Yes

Continuous integration Yes

Continuous validation Yes

Efficient utilization of time and computing resources Yes

E-waste minimization Yes

Flexibility towards change Yes

Green and sustainable management of product lifecycle Yes

Improved quality Yes

Iterative development Yes

[draft]

6.1 RESEARCH ON EVALUATING SUSTAINABLE SOFTWARE
DEVELOPMENT 73

Minimal documentation Unclear

Minimal reengineering No

Optimization of processes Yes

Optimized code Yes

Polymorphic design Unclear

Reduced cost Yes

Rich communication and collaboration Yes

Table 6.2: Success factors for sustainable software [75]

and if proposed model includes them.

Accelerated delivery is included in the form of the models underlying scrum

processes and delivery following and estimation using the story point system. The

model also encourages preventing the accumulation of technical debt that would

eventually slow down development speed.

Continuous integration is a core part of the model but the release cycle can

depend on what part of its lifecycle software is in and on the teams and stakeholder

preferences. Releases can be done once a sprint, multiple times per sprint, or after

reaching some feature milestones.

Continuous validation is done via running tests, linters, and other tools to

improve the software quality and find issues. Users also have access to the software

so it can be tested manually.

The model aims to create more performant software by utilizing many different

kinds of tools and architectural patterns so it should have efficient utilization of

time and computing resources.

The model minimizes e-waste by producing more performant software allowing

the same hardware to be used for more users or in the case of client applications

[draft]

6.1 RESEARCH ON EVALUATING SUSTAINABLE SOFTWARE
DEVELOPMENT 74

allowing lower-powered hardware to run the application. The hardware reuse step

also reduces e-waste by aiming to reuse hardware kits used for development in the

future.

Flexibility towards change is included in the form of open communication

with stakeholders and iterative development, allowing the features to be added and

dropped even on short notice.

Lifecycle of the software is taken into account in different phases of the model.

The model uses automated tools such as linter and tests as well as manual code

reviews to maintain and improve the quality of the software.

The model specifies sprints as iterations but does not determine their length as

it depends on the project.

The model does not have specifications on minimal documentation. It only

requires a roadmap, architectural plan, and end-of-life plan. The model should not

produce unnecessary documentation.

Minimal reengineering is not included. The model encourages refactoring to

improve efficiency and reduce technical debt.

Optimization of processes is included as every sprint includes a retro where

the sprint is assessed by the team and processes that do not contribute value are

changed or removed.

Polymorphic design is not included as the model does not specify design

patterns that should be used.

Multiple parts of the model aim to reduce the costs of stakeholders both from

the development process and running the software.

The model states that stakeholders should be represented in the review sessions,

have access to information in all parts of the model, and have a way to constantly

communicate with the team.

The model should score well in GAMM [75] as it includes mitigations for most of

[draft]

6.1 RESEARCH ON EVALUATING SUSTAINABLE SOFTWARE
DEVELOPMENT 75

the risk factors and includes most of the success factors. 13 out of 16 success factors

are included and 8 out of 9 risk factors are mitigated.

6.1.2 Assessment criteria for sustainable software engineer-

ing processes

Exploring Assessment Criteria for Sustainable Software Engineering Processes by

Wahler, Seyff, and Ramirez [76] presents assessment criteria for sustainable soft-

ware engineering processes. This criteria was developed for a software development

industry partner for assessing their development process. The criteria for sustainable

software and if they are included in the proposed model are presented in Table 6.3.

Criteria Included

Multidisciplinarity of the Development Team Yes

Software Engineering Best Practices Yes

Capacity for Technical Debt Reduction Yes

Sustainable Collaboration Setup No

Sustainable Team Culture No

Ability to Handle Changing Requirements Yes

Code Maintainability Yes

Strong Feedback Loops Yes

Willingness to Change the Process Yes

Transparency of Communication Yes

Automatic Quality Checks Yes

Business Continuity of the Development Environment Partially

Willingness to Change Requirements Yes

Implementation of Resource-Intensive Operations Yes

Sustainable Test Management Yes

[draft]

6.1 RESEARCH ON EVALUATING SUSTAINABLE SOFTWARE
DEVELOPMENT 76

Continuous Sustainability Improvement Yes

Participation of the Team Yes

Sustainability in Different Process Phases Yes

Sustainable Design Decisions No

Sustainability Reporting Yes

Implications of Software Operations Partially

Sustainability Awareness Partially

Value of Sustainability No

Availability of Metrics Yes

Sustainable Procurement and Governance No

Knowledge about Sustainability Partially

Development for Efficient Execution Yes

Sustainability in Release Planning No

Sustainable Data Structures Yes

Sustainability Incentive No

Sustainability Quality Attributes No

Usage of tools to assess sustainability Yes

Energy Consumption of the Development Process No

Different Sustainability Dimensions Yes

Consideration of Different Orders of Effects No

Direction and Policies to Improve Sustainability Yes

Sustainable Infrastructure Yes

Technologies for System Development Yes

Table 6.3: Criteria for sustainable software [76] and what

criteria the proposed model implements

[draft]

6.1 RESEARCH ON EVALUATING SUSTAINABLE SOFTWARE
DEVELOPMENT 77

6.1.2.1 Implemented

The multidisciplinarity of development team is accounted for in the model

as required roles for the development team. The engineering best practices are

accounted for mainly in the pre-development phase using development tools and

integrating them to CI/CD pipelines which also implements Automatic quality

checks. This also allows implementing Code maintainability which is further

implemented by enforcing code reviews in addition to automatic checks. The model

also enforces allocating development work to defects and refactors from separate

backlogs to improve maintainability which also allows for Capacity for technical

debt reduction.

The ability to handle changing requirements is implemented as the process

is based on agile principles and works in iterations allowing fast reaction to changes.

Similarly, the willingness to change requirements is implemented. Strong

feedback loop is implemented by collecting user feedback from the running app

and by requiring key stakeholder presence in iteration reviews.

Willingness to change the process is implemented as during the sprint retro

the development team will discuss what worked and what did not. These discussions

might lead the team to drop some parts of the process model that do not produce

any value. In the post-development phase, a larger post-mortem is conducted to

inspect the project as a whole and collect findings that can be used in subsequent

projects. This might also include adding, dropping, or changing parts of the model

to fit the team better.

Transparency of communication is implemented by allowing all relevant

stakeholders to access the information about the project. Implementation of

Resource-Intensive Operations is included as the model includes many moni-

toring tools in the usage environment as well as benchmarks to find specific intensive

code paths. Sustainable Test Management is implemented as optimizing CI/CD

[draft]

6.1 RESEARCH ON EVALUATING SUSTAINABLE SOFTWARE
DEVELOPMENT 78

pipelines to run in under 10 minutes and by setting the pipelines up in such a way

that tests are not run if not necessary such as with documentation changes.

Continuous Sustainability Improvement is implemented by monitoring us-

age and running benchmarks to find issues with performance, energy consumption,

or resource usage and adding these issues to refactor or defect backlogs so they can

be fixed. Participation of the Team is implemented as teams are responsible for

implementing the model in their projects in ways that work for them. Sustainabil-

ity in Different Process Phases is implemented as the model is split into four

different phases with each having different methods for increasing sustainability.

Sustainability Reporting is implemented as the model includes many metrics

related to different aspects of sustainability, all of which are available to stakeholders.

These metrics also allow implementation of Availability of Metrics and Usage

of tools to assess sustainability. Development for Efficient Execution is

implemented as multiple phases of the model are aimed at optimizing execution effi-

ciency. Sustainable Data Structures is implemented in the architecture planning

phase.

Different Sustainability Dimensions are taken into account in the model.

Technologies for System Development is implemented as performance and

maintainability are considerations in technology evaluation.

6.1.2.2 Partially Implemented

The business continuity of the development environment is partially imple-

mented as the software should be easily changeable based on changing needs. The

model also has an end-of-life plan for migrating to new software if necessary. The

model however does not use the ability to adapt technologies for new platforms as

criteria in technology evaluation. The model considers only the target platforms de-

fined at the start of the project as configuring for those platforms allows for greater

[draft]

6.1 RESEARCH ON EVALUATING SUSTAINABLE SOFTWARE
DEVELOPMENT 79

efficiency.

Sustainability Awareness is partially implemented as the stakeholders have

access to all metrics but they are not required to actively follow them. Knowledge

about Sustainability is partially implemented as the development team roles re-

quire some knowledge of sustainability practices. This is not required from all stake-

holders. Direction and Policies to Improve Sustainability is implemented as

the development takes into account regulation and stakeholder needs.

Sustainable Infrastructure is included as the technology evaluation uses the

sustainability of infrastructure as a criterion. Implications of Software Opera-

tions is partially implemented as the model enforces collecting metrics from different

phases but does not require measuring all sustainability aspects in every phase.

6.1.2.3 Not implemented

The model does not take sustainable collaboration setup into account as it does

not enforce a specific way of collaborating within the team. Similarly, the model

does not say anything about sustainable team culture.

Sustainable Design Decisions is not implemented as the model does not

require explicitly documenting the estimated sustainability impact of all design de-

cisions. Value of Sustainability, Sustainable Procurement and Governance

and Sustainability Incentive are not included as implementing them is beyond

the scope of single development projects.

Sustainability in Release Planning is not implemented as the model makes

no specific mention of the release schedule. Sustainability Quality Attributes

is not implemented as the requirements are based on stakeholder needs and while

the model aims to produce sustainable software, this does not need to be specified

in requirements. Energy Consumption of the Development Process is not

implemented as there are no tools for reliably measuring the entire development

[draft]

6.2 EXPERT INTERVIEWS 80

process energy consumption. Consideration of Different Orders of Effects are

only partially implemented as the model only accounts for first-order effects.

6.1.2.4 Scoring the model

The model fully fulfills 24 of 39 criteria and 4 out of 39 partially. 3 out of 39 are

out of scope for single projects leaving 8 unfulfilled criteria out of 39. This shows

there is some room for improvement for the model but implementing all the phases

without making the model too heavy to use can be challenging.

6.2 Expert interviews

The expert interviews were conducted to validate the model against the experiences

of developers from different organizations that are interested in green and energy-

efficient software.

6.2.1 Interview process

The model for the interviews is semi-structured. The interview audio was recorded

and transcribed with OpenAI whisper model [77] running locally. The transcription

was coded and analyzed with QualCoder [78]. Coding was then used to quantify

feelings towards the model, either positive or negative, and additions or removals

from the model.

The following questions are asked during the interview but not necessarily in the

same order:

1. What is missing from the model if anything?

2. What would you remove from the model if anything?

3. Are the metrics proposed in the model effective?

[draft]

6.2 EXPERT INTERVIEWS 81

4. Are the roles in the model useful?

5. Do you think the model is overall effective in increasing sustainability?

6. Would you use this model in a project? Why or why not?

A thematic analysis was performed for the interviews to find out the effectiveness

of the model regarding sustainability, the heaviness of the model, sentiment on the

usefulness of the metrics and roles in the model, possible challenges with using the

model, and interest in using the model. The interview transcripts were coded with

the following codes: Additions / Removal of phases, Negative / Positive on metrics,

Negative / Positive on roles, Negative / Positive on usage, Negative / Positive on

usefulness, and finally Usage notes to identify what needs to be taken into account

when using the model.

Most of the interviews were conducted in Finnish. The quotes from interviews

are translated into English and shortened to illustrate the results of the analysis.

Original quotes in Finnish are listed in Appendix A.

6.2.2 Interview analysis

The amount of additions was overall high with 3 to 5 additions per interview which

might indicate something is missing from the model. Upon further analysis most

additions were clarifications and additions to existing phases and are therefore not

indicative of the model missing any crucial phases but rather that some parts of the

model need further refinement.

6.2.2.1 Additions

One interviewee noted that embedded emissions is not taken into account in the

model. This can affect the overall sustainability as, depending on the platform,

embedded emissions can account for almost half of the emissions. This can affect

[draft]

6.2 EXPERT INTERVIEWS 82

whether the software should be optimized to work on the same devices for as long

as possible. "At some point when newer hardware is more energy efficient, it makes

sense to take the embedded emissions hit" [Appendix 1.4].

Many interviewees also noted the lack of granular measurements for energy con-

sumption in the model and mapping energy consumption to specific parts of the

code. "Like currently, you can trace single user request through the full stack of

the application, you could do the same with the energy used by that single user re-

quest" [Appendix 3.3]. "So there is currently no tool for following so-called energy

hotspots?" [Appendix 4.3]. This can present challenges due to tooling around gran-

ular measurements still being lackluster at best as interviewee 1 noted: "400 papers

about measurements and not one of them was universal in the end" [Appendix 1.6].

Two of the interviewees also noted the lack of social and individual sustainability

aspects in the metrics. "There are five of these sustainability aspects and here there

are three and the velocity" [Appendix 1.7]. "Yes, I don’t know, I think that maybe

that social aspect. Could something be added to that?" [Appendix 2.3].

6.2.2.2 Removals

None of the interviews indicated a desire to remove anything from the model.

"...That I would not remove anything and I don’t see anything that would be un-

necessary in this." [Appendix 4.1]. This together with a high amount of positive

responses on the usefulness of the model, which there were 2 to 6 per interview, in-

dicates that according to the interviewees, the phases proposed by the model could

be effective in increasing the sustainability of the software being developed. There

were also no instances of negative comments relating to the usefulness of the model.

[draft]

6.2 EXPERT INTERVIEWS 83

6.2.2.3 Metrics

Responses on metrics were inconclusive but more critical as there were 1 to 2 pos-

itive comments on metrics and 0 to 5 negative comments on metrics per interview.

Negative comments regarding metrics focused on pointing out their simplicity and

half of the interviewees desired more complex metrics that combine the proposed

metrics, which were useful as the positive comments pointed out, such as measuring

the ratio of different backlogs instead of their sizes or combining cost information

with sprint velocity or work time. "So how we can make these into second-level

metrics so that there is division and multiplication with something that we can use

to compare these between software projects." [Appendix 1.2].

6.2.2.4 Roles

Roles were also inconclusive with them mainly being seen as useful and there were

some comments regarding the usefulness of some roles such as the scrum master.

"That Scrum master...I’m not necessarily sure why it is needed." [Appendix 3.4].

The introduction of the tech lead role was seen as positive. "We have had the

tech lead role for a long time" [Appendix 1.1]. "As sustainable development is

not necessarily a widespread skill, having someone who knows these things can be

beneficial" [Appendix 2.2]. Interviewee 1 noted that organizations could have green

coding experts that don’t necessarily work full time in the development team but

are available for consulting in specific scenarios: "It could have like a green coding

expert that will be used when necessary so that the team does not have to know

everything" [Appendix 1.3].

6.2.2.5 Phases and Steps

The phases and steps in the model were seen as useful. "On paper, this should pro-

duce more sustainable software if followed completely" [Appendix 2.4]. Introduction

[draft]

6.2 EXPERT INTERVIEWS 84

of energy measurement was also seen as especially useful: "If we can get the energy

consumption data, that is something that is not probably used anywhere because there

has been no way to get it. That is something new." [Appendix 3.1]. Architecture and

technology evaluation were also seen as useful. "What was great about it was that

every high-level architectural and technology choices guide to the correct direction

really well" [Appendix 4.2].

6.2.2.6 Interest

All interviewees indicated interest in using the model in software development projects

which reinforces the ideas of its overall usefulness. Usage notes highlighted some con-

siderations for taking the model into an actual project, such as the need to adapt

it to the processes of the organization implementing it and taking into account the

project type. Interviewee 2 noted that the model might not be the best fit for quick

prototyping: "This will be a bit heavier than some regular agile would be...This

means that this will have a specific purpose for example if we want high-quality soft-

ware...But if we make some fast MVPs or other things I, well I don’t think that it is

the purpose of this, this won’t be fit for that." [Appendix 2.1]. "I would like to try

it. But every model is made for specific context so that won’t work for us without

some adaptations" [Appendix 1.4].

6.2.2.7 Conclusion

Based on the interview analysis the model is seen as useful and mostly includes

relevant phases and roles and therefore no new phases or roles need to be added.

Metrics on the other hand need some revisions to include more complex metrics,

however, existing metrics are good and relevant for producing these more complex

metrics. These more complex metrics can be produced by measuring ratios of the

current metrics. These include development velocity’s ratio with development team

[draft]

6.2 EXPERT INTERVIEWS 85

costs, the ratio between all different backlogs, the ratio of energy consumption with

usage costs, and development cost per backlog item among other possible combina-

tions. More relevant metrics are likely to emerge when the model is used in practice.

Most interviewees indicated the need for fine-grained energy measurement in

software but implementing it with currently available tools is not necessarily feasible

in this kind of model.

Measuring the social and individual aspects mentioned in two of the interviews

is outside the scope of this thesis and becomes more important when measuring the

impact of this model on an organizational level.

The green coding expert proposed in the interviews is an organizational role and

is therefore outside the scope of this thesis. It does highlight some adjustments that

should be made when scaling the model beyond single teams and is a good topic for

future research.

There is also a clear interest in using the model in practice to enhance the

sustainability of software and its development. Interviewees also noted that there

are some adaptations that need to be made to the model before this to adapt it to

different company sizes and development processes. This is often the case with all

agile processes as no single implementation works for all organizations.

[draft]

7 Discussion

This chapter summarizes the key findings of the thesis, explores their implications

for the field of sustainable software engineering, lists potential threats to the validity

of this thesis, and lists further research opportunities.

7.1 Answers to the research questions

The research questions of this thesis were:

• RQ1: What methods are there for developing sustainable software?

• RQ2: How to measure the sustainability of the software?

• RQ3: How to integrate sustainable development methods into an agile devel-

opment process?

7.1.1 RQ1: What methods are there for developing sustain-

able software?

This thesis presents multiple methods for developing more sustainable software in

Section 2.2. Technology choices can affect environmental, technical, and economic

sustainability. Configuration can be used to further optimize the sustainability

of chosen technologies. Technology choices also affect the technical sustainability

of the software as strongly types languages and error handling paradigms where

7.1 ANSWERS TO THE RESEARCH QUESTIONS 87

errors are values instead of exceptions allow moving many checks to compile or

build time instead of runtime. User interfaces can also have an effect as they affect

how many actions users have to do to achieve a specific task with software. UIs

also address accessibility concerns as poorly accessible software is difficult to use

for users with accessibility tools and causes misinputs which in turn increase energy

consumption. Table 7.1 lists different methods for increasing the sustainability of

software in Section 2.2 and their benefits.

Method Benefit

Use of caching in all layers of software Improves performance, reduces energy

consumption, can reduce hosting costs

Use of bulk requests with network and I/O Improves performance, reduces energy

consumption, can reduce hosting costs

Use of correct algorithms and data struc-

tures for the task

Improves performance, reduces energy

consumption, improves technical sustain-

ability

Logging only what is necessary such as er-

rors

Reduces energy consumption

Offloading expensive calculations to a

server

Reduces hardware requirements of client

devices

Indexing database field used for searching

rows

Improves performance, reduces energy

consumption

Use of high-performance languages Improves performance, reduces energy

consumption, and lowers hardware re-

quirements.

Use of languages with strict, static type

systems

Helps catch errors at build time, improves

technical sustainability

[draft]

7.1 ANSWERS TO THE RESEARCH QUESTIONS 88

Use of languages with errors as values and

optional types

Helps make sure errors and missing values

are handled at build time, improves tech-

nical sustainability

Use of faster runtimes in interpreted lan-

guages

Improves performance, lowers energy con-

sumption

Use of databases that enforce types such

as SQL databases

Improves technical maintainability

Adding only necessary libraries to a

project and using small libraries that per-

form specific tasks

Large libraries can bloat the bundle size

of software

Choosing frameworks that are performant

and actively maintained. Newer frame-

works tend to use newer language features

Improves performance, which can reduce

energy consumption

When using LLMs using the smallest

model possible for specific tasks

Reduces hardware requirements and en-

ergy consumption

Use of smallest data formats that allow

representing needed information. For ex-

ample WEBP or AVIF for images.

Improves performance, reduces costs, im-

proves page load times, lowers bundle sizes

Use of development tools such as linters

and formatters

Improve code quality and readability

Running CI/CD pipelines only when nec-

essary

Reduces energy consumption and costs

Preferring hosting services using clean en-

ergy

Reduces carbon emissions

Configuring technologies used for target

platform

Improves performance, reduces energy

consumption

[draft]

7.1 ANSWERS TO THE RESEARCH QUESTIONS 89

Designing UIs to be as simple as possible Reduces energy consumption, improves

user experience

Making software accessible Reduces energy consumption by prevent-

ing misinputs, improves user experience

Use of dark colors Reduces energy consumption on OLED

devices

Allowing users to disable unneeded fea-

tures

Reduces energy consumption

Showing users energy and resource usage Can lead to reduced energy consumption

Table 7.1: Methods for increasing sustainability of soft-

ware in Section 2.2

7.1.2 RQ2: How to measure the sustainability of the soft-

ware?

Chapter 4 presented metrics and measurement tools for different sustainability as-

pects. Many monitoring tools are available especially for web applications that allow

measuring the environmental sustainability by measuring energy usage of the soft-

ware. Economic sustainability can be measured by monitoring the costs of hosting

platforms, version control services, and other development tools in addition to the

costs of the development team. Technical sustainability can be measured by using

project management tools that allow labeling user stories as features, defects, and

refactors and measuring the number of story points assigned to each category. Story

points can also be used to measure development velocity. Sustainability metrics pre-

sented in Section 4.1 are listed in Table 7.2. These metrics can be further combined

to measure ratios between different metrics.

[draft]

7.1 ANSWERS TO THE RESEARCH QUESTIONS 90

Measurement Sustainability aspect

Amount of work in features Technical

Amount of work in defects Technical

Amount of work in refactors Technical

Error logs from unhandled errors Technical

Development velocity of the team Technical

Cost of development team Economic

Cost of development tools Economic

Cost of hosting Economic

Energy consumption of software Environmental

Energy consumption of infrastructure Environmental

Resource usage of software Environmental

Performance benchmarks of software Environmental

Table 7.2: Sustainability metrics presented in Section 4.1

7.1.3 RQ3: How to integrate sustainable development meth-

ods into an agile development process?

This thesis presented a sustainable agile development model that integrates sustain-

able software development practices into the agile process used by Kvanttori. This

model was presented in Section 5.2 and further validated in Chapter 6. Integrating

these practices was done by implementing parts of the models proposed in earlier

research on sustainable software development processes in Chapter 3, using methods

from research on what affects sustainability in Section 2.2 to add concrete steps for

increasing the sustainability of the software and its development to different phases

of the model and adding metrics and tools for different sustainability aspects in

[draft]

7.1 ANSWERS TO THE RESEARCH QUESTIONS 91

Chapter 4. The model was validated with existing criteria on sustainable agile pro-

cesses in Section 6.1 and mostly fulfilled the relevant criteria within the scope of

the model. Expert interview validation in Section 6.2 also reinforced the usefulness

of the model and interest in using it. The final model in Section 5.2 is pictured in

Figure 7.1.

Figure 7.1: Final model including metrics and roles in Section 5.2

The results of the validation with sustainable software development process cri-

teria in Section 6.1 are presented in Table 7.3.

Measurement Score

[draft]

7.1 ANSWERS TO THE RESEARCH QUESTIONS 92

Green agile maturity model risk factors 8/8 mitigated

Green agile maturity model success fac-

tors

13/16 included

Assessment criteria for sustainable soft-

ware engineering processes

24/39 fulfilled

Table 7.3: Scoring of the model using existing green agile

criteria in Section 6.1

The results of the interview validation in Section 6.2 are presented in Table 7.4.

Times themes appeared in interviews Avg Mod Dist

Additions 4,5 5 5, 3, 5, 5

Removals 0 0 0, 0, 0, 0

Positive on metrics 1.5 1.5 1, 1, 2, 2

Negative on metrics 2.5 2.5 0, 2, 3, 5

Positive on Roles 0.75 1 0, 1, 1, 1

Negative on Roles 0.75 0.5 0, 0, 1, 2

Positive on Usefulness 3.5 3 2, 2, 4, 6

Negative on usefulness 0 0 0, 0, 0, 0

Positive on usage 1.25 1 1, 1, 1, 2

Negative on usage 0 0 0, 0, 0, 0

Usage notes 3.5 4.5 0, 4, 5, 5

Table 7.4: Average, median, and distribution of com-

ments for each code per interview in Section 6.2

[draft]

7.3 THREATS TO VALIDITY 93

7.2 Implications

This thesis was able to create a concrete implementation of existing sustainable soft-

ware practices and agile processes by implementing phases of existing sustainable

software development processes and combining them with researched methods of

increasing software sustainability across different sustainability aspects. This shows

that it is possible to make use of these models in software development to poten-

tially improve sustainability. This should be used as a starting point to adapt more

theoretical sustainable development processes and methods into use in software de-

velopment companies. Companies should start adapting these kinds of models into

their development processes to test their effectiveness and to improve the sustain-

ability of their software.

7.3 Threats to validity

The validation using the existing research on sustainable software criteria might

have been affected by the author’s bias as the creator of the model which might

have caused the evaluation of the model to be more positive, especially in cases

where the description of some criteria was unclear.

All interviewees were interested in sustainable software development and had

some previous knowledge of what methods can be used to make software more sus-

tainable. This might have led them to view the model in a more positive light as

opposed to someone who is skeptical of the benefits of sustainable software develop-

ment.

The interviewees did not necessarily take the same amount of time to familiarize

themselves with the model before the interview which might cause some differences

in the answers as they are dependent on the understanding of the model as some

interviewees might have had a better understanding of the proposed model before-

[draft]

7.4 FURTHER RESEARCH 94

hand.

The amount of interviews in the interview part of this thesis was low which might

have caused these interviews to not be representative of the opinions of the majority

of software engineers or experts in sustainable software.

The model has not been used in an actual software development project as this

thesis did not include a case study of the model. This is important as real-world

scenarios can reveal unexpected challenges in software development processes.

7.4 Further Research

One of the main limitations of measuring the energy consumption of software is

measuring the energy consumption of single functions and methods. A tool that

allows writing unit tests for energy consumption would make following and improv-

ing the energy consumption of specific functionality much easier. While some tools

do exist, no easily available and actively maintained testing framework exists for

energy consumption.

Another potential avenue of research would be actual case studies from projects

using this model to find out how the sustainability aspects would be affected. Such

case studies would help determine what parts of the model are effective and what

parts are difficult to implement in real-world scenarios.

Further research could be conducted on what changes need to be made to adapt

the model for scaling scrum frameworks such as Safe, Less, or Scrum at scale. This

could also take into account what can be added to the model on an organizational

level. This could include what roles the organization needs in addition to those

in the project teams, how organizations can track the evolution of sustainability in

their projects, and how organizations can minimize e-waste for example by preferring

refurbished computers. Organizations could also include the social and individual

sustainability aspects and metrics for measuring them to the model.

[draft]

7.4 FURTHER RESEARCH 95

The proposed model focuses primarily on web applications. Further research

should be conducted on how the model can be optimized when focusing on specific

software domains such as native applications, mobile, or embedded systems.

[draft]

8 Conclusion

This thesis presented a literature review to find out what affects the sustainability of

the software, how current agile methods account for sustainability, and how to mea-

sure the sustainability of the software. A new model for developing more sustainable

software was created based on the current model used at a software development

company called Kvanttori by adding relevant methods and metrics from the liter-

ature review. This model was then validated with existing criteria for sustainable

development processes found in literature and expert interviews from developers at

Kvanttori as well as external experts on sustainable software.

The literature review identified multiple relevant methods for increasing the sus-

tainability of the software including the choices of architectural patterns, technolo-

gies, and hosting platforms. The literature review also found existing agile models for

sustainable software which included sustainability-enhancing steps such as disposal

of software, requirements engineering, and measuring energy consumption. Finally

literature review identified multiple metrics and measurement tools for measuring

different aspects of sustainability including easy-to-set-up tools for server environ-

ments for measuring the energy usage of different software applications running on

the server. These findings combined with the existing methods used at Kvanttori

produced a model that accounts for sustainability in different parts of the software

development project and based on the expert interviews, should allow for making

more sustainable software.

CHAPTER 8. CONCLUSION 97

The model presented in this thesis can be used by software development compa-

nies to better implement methods to increase the sustainability of software in their

development processes. The model can also be further specialized depending on the

domain of software development it is used in such as embedded systems, mobile or

native applications. Some additions need to be made when moving the model from

a project level to an organizational level such as taking the larger sustainability

impact including the social and individual aspects into account.

[draft]

References

[1] Directive - 2022/2464 - EN - CSRD Directive - EUR-Lex — eur-lex.europa.eu,

https://eur- lex.europa.eu/legal- content/EN/TXT/?uri=CELEX:

32022L2464, [Accessed 18-02-2024].

[2] C. Calero and M. Piattini, “Introduction to green in software engineering”,

in Green in Software Engineering, C. Calero and M. Piattini, Eds. Cham:

Springer International Publishing, 2015, pp. 3–27, isbn: 978-3-319-08581-4.

doi: 10.1007/978-3-319-08581-4_1. [Online]. Available: https://doi.

org/10.1007/978-3-319-08581-4_1.

[3] M. Dick, S. Naumann, and N. Kuhn, “A model and selected instances of green

and sustainable software”, in What Kind of Information Society? Governance,

Virtuality, Surveillance, Sustainability, Resilience, J. Berleur, M. D. Hercheui,

and L. M. Hilty, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,

pp. 248–259, isbn: 978-3-642-15479-9.

[4] T. Johann, M. Dick, E. Kern, and S. Naumann, “Sustainable development,

sustainable software, and sustainable software engineering: An integrated ap-

proach”, in 2011 International Symposium on Humanities, Science and Engi-

neering Research, 2011, pp. 34–39. doi: 10.1109/SHUSER.2011.6008495.

[5] S. Betz, C. Becker, R. Chitchyan, et al., “Sustainability debt: A metaphor to

support sustainability design decisions”, CEUR Workshop Proceedings, vol. 1416,

pp. 55–63, 2015.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32022L2464
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32022L2464
https://doi.org/10.1007/978-3-319-08581-4_1
https://doi.org/10.1007/978-3-319-08581-4_1
https://doi.org/10.1007/978-3-319-08581-4_1
https://doi.org/10.1109/SHUSER.2011.6008495

REFERENCES 99

[6] Press corner — ec.europa.eu, https://ec.europa.eu/commission/presscorner/

detail/en/qanda_22_6229, [Accessed 17-01-2024].

[7] Global Energy Crisis – Topics - IEA — iea.org, https://www.iea.org/

topics/global-energy-crisis, [Accessed 18-02-2024].

[8] IFRS - ISSB unanimously confirms Scope 3 GHG emissions disclosure require-

ments with strong application support, among key decisions — ifrs.org, https:

//www.ifrs.org/news-and-events/news/2022/10/issb-unanimously-

confirms- scope- 3- ghg- emissions- disclosure- requirements- with-

strong-application-support-among-key-decisions/, [Accessed 18-02-

2024].

[9] S. Naumann, M. Dick, E. Kern, and T. Johann, “The greensoft model: A refer-

ence model for green and sustainable software and its engineering”, Sustainable

Computing: Informatics and Systems, vol. 1, no. 4, pp. 294–304, 2011, issn:

2210-5379. doi: https://doi.org/10.1016/j.suscom.2011.06.004. [On-

line]. Available: https://www.sciencedirect.com/science/article/pii/

S2210537911000473.

[10] F. Berkhout and J. Hertin, “Impacts of information and communication tech-

nologies on environmental sustainability: Speculations and evidence”, 2001.

[Online]. Available: https://web-archive.oecd.org/2012-06-15/168420-

1897156.pdf.

[11] E. Gelenbe and Y. Caseau, “The impact of information technology on energy

consumption and carbon emissions”, Ubiquity, vol. 2015, no. June, 2015. doi:

10.1145/2755977. [Online]. Available: https://doi.org/10.1145/2755977.

[12] N. Wirth, “A plea for lean software”, Computer, vol. 28, no. 02, pp. 64–68,

1995, issn: 1558-0814. doi: 10.1109/2.348001.

[draft]

https://ec.europa.eu/commission/presscorner/detail/en/qanda_22_6229
https://ec.europa.eu/commission/presscorner/detail/en/qanda_22_6229
https://www.iea.org/topics/global-energy-crisis
https://www.iea.org/topics/global-energy-crisis
https://www.ifrs.org/news-and-events/news/2022/10/issb-unanimously-confirms-scope-3-ghg-emissions-disclosure-requirements-with-strong-application-support-among-key-decisions/
https://www.ifrs.org/news-and-events/news/2022/10/issb-unanimously-confirms-scope-3-ghg-emissions-disclosure-requirements-with-strong-application-support-among-key-decisions/
https://www.ifrs.org/news-and-events/news/2022/10/issb-unanimously-confirms-scope-3-ghg-emissions-disclosure-requirements-with-strong-application-support-among-key-decisions/
https://www.ifrs.org/news-and-events/news/2022/10/issb-unanimously-confirms-scope-3-ghg-emissions-disclosure-requirements-with-strong-application-support-among-key-decisions/
https://doi.org/https://doi.org/10.1016/j.suscom.2011.06.004
https://www.sciencedirect.com/science/article/pii/S2210537911000473
https://www.sciencedirect.com/science/article/pii/S2210537911000473
https://web-archive.oecd.org/2012-06-15/168420-1897156.pdf
https://web-archive.oecd.org/2012-06-15/168420-1897156.pdf
https://doi.org/10.1145/2755977
https://doi.org/10.1145/2755977
https://doi.org/10.1109/2.348001

REFERENCES 100

[13] P. Lago, R. Kazman, N. Meyer, M. Morisio, H. A. Müller, and F. Paulisch,

“Exploring initial challenges for green software engineering: Summary of the

first greens workshop, at icse 2012”, SIGSOFT Softw. Eng. Notes, vol. 38,

no. 1, pp. 31–33, Jan. 2013, issn: 0163-5948. doi: 10.1145/2413038.2413062.

[Online]. Available: https://doi.org/10.1145/2413038.2413062.

[14] I. Manotas, C. Bird, R. Zhang, et al., “An empirical study of practitioners’

perspectives on green software engineering”, in Proceedings of the 38th Interna-

tional Conference on Software Engineering, ser. ICSE ’16, Austin, Texas: As-

sociation for Computing Machinery, 2016, pp. 237–248, isbn: 9781450339001.

doi: 10.1145/2884781.2884810. [Online]. Available: https://doi.org/10.

1145/2884781.2884810.

[15] G. Pinto, F. Castor, and Y. D. Liu, “Mining questions about software energy

consumption”, in Proceedings of the 11th Working Conference on Mining Soft-

ware Repositories, ser. MSR 2014, Hyderabad, India: Association for Comput-

ing Machinery, 2014, pp. 22–31, isbn: 9781450328630. doi: 10.1145/2597073.

2597110. [Online]. Available: https://doi.org/10.1145/2597073.2597110.

[16] L. Karita, B. C. Mourão, and I. Machado, “Software industry awareness on

green and sustainable software engineering: A state-of-the-practice survey”,

in Proceedings of the XXXIII Brazilian Symposium on Software Engineering,

ser. SBES ’19, Salvador, Brazil: Association for Computing Machinery, 2019,

pp. 501–510, isbn: 9781450376518. doi: 10.1145/3350768.3350770. [Online].

Available: https://doi.org/10.1145/3350768.3350770.

[17] G. Pinto and F. Castor, “Energy efficiency: A new concern for application

software developers”, Commun. ACM, vol. 60, no. 12, pp. 68–75, Nov. 2017,

issn: 0001-0782. doi: 10.1145/3154384. [Online]. Available: https://doi.

org/10.1145/3154384.

[draft]

https://doi.org/10.1145/2413038.2413062
https://doi.org/10.1145/2413038.2413062
https://doi.org/10.1145/2884781.2884810
https://doi.org/10.1145/2884781.2884810
https://doi.org/10.1145/2884781.2884810
https://doi.org/10.1145/2597073.2597110
https://doi.org/10.1145/2597073.2597110
https://doi.org/10.1145/2597073.2597110
https://doi.org/10.1145/3350768.3350770
https://doi.org/10.1145/3350768.3350770
https://doi.org/10.1145/3154384
https://doi.org/10.1145/3154384
https://doi.org/10.1145/3154384

REFERENCES 101

[18] S. Nurmivaara, Green in software engineering : A systematic literature review,

eng, 2023. [Online]. Available: URN:NBN:fi:hulib- 202306132611;http:

//hdl.handle.net/10138/358772.

[19] P. Rani, J. Zellweger, V. Kousadianos, L. Cruz, T. Kehrer, and A. Bacchelli,

“Energy patterns for web: An exploratory study”, in 2024 IEEE/ACM 46th

International Conference on Software Engineering: Software Engineering in

Society (ICSE-SEIS), 2024, pp. 12–22.

[20] C. Marimuthu and K. Chandrasekaran, “Software engineering aspects of green

and sustainable software: A systematic mapping study”, in Proceedings of the

10th Innovations in Software Engineering Conference, ser. ISEC ’17, Jaipur,

India: Association for Computing Machinery, 2017, pp. 34–44, isbn: 9781450348560.

doi: 10.1145/3021460.3021464. [Online]. Available: https://doi.org/10.

1145/3021460.3021464.

[21] Blue Angel, software products, resources and energy efficient, transparent in-

terfaces | Blauer Engel — blauer-engel.de, https://www.blauer- engel.

de / en / productworld / resources - and - energy - efficient - software -

products, [Accessed 15-01-2024].

[22] E. Heinonen, S. Lankiniemi, M. Jokinen, et al., Ekologisesti kestävien julkisten

ohjelmistohankintojen opas, https : / / www . theseus . fi / handle / 10024 /

806728, [Accessed 15-01-2024], 2023.

[23] Software services | Kriteeripankki — kriteeripankki.fi, https://kriteeripankki.

fi/en/t/54, [Accessed 13-10-2024].

[24] C. Calero, M. F. Bertoa, and M. Á. Moraga, “A systematic literature review

for software sustainability measures”, in 2013 2nd International Workshop on

Green and Sustainable Software (GREENS), 2013, pp. 46–53. doi: 10.1109/

GREENS.2013.6606421.

[draft]

URN:NBN:fi:hulib-202306132611;http://hdl.handle.net/10138/358772
URN:NBN:fi:hulib-202306132611;http://hdl.handle.net/10138/358772
https://doi.org/10.1145/3021460.3021464
https://doi.org/10.1145/3021460.3021464
https://doi.org/10.1145/3021460.3021464
https://www.blauer-engel.de/en/productworld/resources-and-energy-efficient-software-products
https://www.blauer-engel.de/en/productworld/resources-and-energy-efficient-software-products
https://www.blauer-engel.de/en/productworld/resources-and-energy-efficient-software-products
https://www.theseus.fi/handle/10024/806728
https://www.theseus.fi/handle/10024/806728
https://kriteeripankki.fi/en/t/54
https://kriteeripankki.fi/en/t/54
https://doi.org/10.1109/GREENS.2013.6606421
https://doi.org/10.1109/GREENS.2013.6606421

REFERENCES 102

[25] R. Pereira, M. Couto, F. Ribeiro, et al., “Ranking programming languages

by energy efficiency”, Science of Computer Programming, vol. 205, p. 102 609,

2021, issn: 0167-6423. doi: https://doi.org/10.1016/j.scico.2021.

102609. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0167642321000022.

[26] R. Pereira, M. Couto, F. Ribeiro, et al., “Energy efficiency across program-

ming languages: How do energy, time, and memory relate?”, in Proceedings of

the 10th ACM SIGPLAN International Conference on Software Language En-

gineering, ser. SLE 2017, Vancouver, BC, Canada: Association for Computing

Machinery, 2017, pp. 256–267, isbn: 9781450355254. doi: 10.1145/3136014.

3136031. [Online]. Available: https://doi.org/10.1145/3136014.3136031.

[27] M. Couto, R. Pereira, F. Ribeiro, R. Rua, and J. Saraiva, “Towards a green

ranking for programming languages”, in Proceedings of the 21st Brazilian Sym-

posium on Programming Languages, ser. SBLP ’17, Fortaleza, CE, Brazil:

Association for Computing Machinery, 2017, isbn: 9781450353892. doi: 10.

1145/3125374.3125382. [Online]. Available: https://doi.org/10.1145/

3125374.3125382.

[28] A. Rajan, A. Noureddine, and P. Stratis, “A study on the influence of soft-

ware and hardware features on program energy”, in Proceedings of the 10th

ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement, ser. ESEM ’16, Ciudad Real, Spain: Association for Comput-

ing Machinery, 2016, isbn: 9781450344272. doi: 10.1145/2961111.2962593.

[Online]. Available: https://doi.org/10.1145/2961111.2962593.

[29] M. Couto, R. Pereira, F. Ribeiro, R. Rua, and J. Saraiva, “Towards a green

ranking for programming languages”, in Proceedings of the 21st Brazilian Sym-

posium on Programming Languages, ser. SBLP ’17, Fortaleza, CE, Brazil:

Association for Computing Machinery, 2017, isbn: 9781450353892. doi: 10.

[draft]

https://doi.org/https://doi.org/10.1016/j.scico.2021.102609
https://doi.org/https://doi.org/10.1016/j.scico.2021.102609
https://www.sciencedirect.com/science/article/pii/S0167642321000022
https://www.sciencedirect.com/science/article/pii/S0167642321000022
https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1145/3125374.3125382
https://doi.org/10.1145/3125374.3125382
https://doi.org/10.1145/3125374.3125382
https://doi.org/10.1145/3125374.3125382
https://doi.org/10.1145/2961111.2962593
https://doi.org/10.1145/2961111.2962593
https://doi.org/10.1145/3125374.3125382
https://doi.org/10.1145/3125374.3125382

REFERENCES 103

1145/3125374.3125382. [Online]. Available: https://doi.org/10.1145/

3125374.3125382.

[30] M. Weber, C. Kaltenecker, F. Sattler, S. Apel, and N. Siegmund, “Twins or

false friends? a study on energy consumption and performance of configurable

software”, in 2023 IEEE/ACM 45th International Conference on Software En-

gineering (ICSE), 2023, pp. 2098–2110. doi: 10.1109/ICSE48619.2023.

00177.

[31] L. Ardito and M. Morisio, “Green it – available data and guidelines for reducing

energy consumption in it systems”, Sustainable Computing: Informatics and

Systems, vol. 4, no. 1, pp. 24–32, 2014, issn: 2210-5379. doi: https://doi.

org/10.1016/j.suscom.2013.09.001. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S2210537913000504.

[32] R. Pereira, M. Couto, J. Saraiva, J. Cunha, and J. P. Fernandes, “The in-

fluence of the java collection framework on overall energy consumption”, in

Proceedings of the 5th International Workshop on Green and Sustainable Soft-

ware, ser. GREENS ’16, Austin, Texas: Association for Computing Machinery,

2016, pp. 15–21, isbn: 9781450341615. doi: 10.1145/2896967.2896968. [On-

line]. Available: https://doi.org/10.1145/2896967.2896968.

[33] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle, “Energy

profiles of java collections classes”, in Proceedings of the 38th International

Conference on Software Engineering, ser. ICSE ’16, Austin, Texas: Association

for Computing Machinery, 2016, pp. 225–236, isbn: 9781450339001. doi: 10.

1145/2884781.2884869. [Online]. Available: https://doi.org/10.1145/

2884781.2884869.

[draft]

https://doi.org/10.1145/3125374.3125382
https://doi.org/10.1145/3125374.3125382
https://doi.org/10.1145/3125374.3125382
https://doi.org/10.1145/3125374.3125382
https://doi.org/10.1109/ICSE48619.2023.00177
https://doi.org/10.1109/ICSE48619.2023.00177
https://doi.org/https://doi.org/10.1016/j.suscom.2013.09.001
https://doi.org/https://doi.org/10.1016/j.suscom.2013.09.001
https://www.sciencedirect.com/science/article/pii/S2210537913000504
https://www.sciencedirect.com/science/article/pii/S2210537913000504
https://doi.org/10.1145/2896967.2896968
https://doi.org/10.1145/2896967.2896968
https://doi.org/10.1145/2884781.2884869
https://doi.org/10.1145/2884781.2884869
https://doi.org/10.1145/2884781.2884869
https://doi.org/10.1145/2884781.2884869

REFERENCES 104

[34] Node.js vs. Deno vs. Bun: JavaScript runtime comparison | Snyk — snyk.io,

https://snyk.io/blog/javascript-runtime-compare-node-deno-bun/,

[Accessed 18-02-2024].

[35] J. J. Merelo-Guervós., M. García-Valdez., and P. Castillo., “An analysis of en-

ergy consumption of javascript interpreters with evolutionary algorithm work-

loads”, in Proceedings of the 18th International Conference on Software Tech-

nologies - ICSOFT, INSTICC, SciTePress, 2023, pp. 175–184, isbn: 978-989-

758-665-1. doi: 10.5220/0012128100003538.

[36] Á. H. Tortosa, F. del Carmen Santiago Cermeño, E. Calvo, et al., Performance

benchmark postgresql / mongodb, https://info.enterprisedb.com/rs/069-

ALB-339/images/PostgreSQL_MongoDB_Benchmark-WhitepaperFinal.pdf,

[Accessed 18-02-2024], 2019.

[37] I. Manotas, C. Sahin, J. Clause, L. Pollock, and K. Winbladh, “Investigating

the impacts of web servers on web application energy usage”, in 2013 2nd

International Workshop on Green and Sustainable Software (GREENS), 2013,

pp. 16–23. doi: 10.1109/GREENS.2013.6606417.

[38] Web Frameworks Benchmark — web-frameworks-benchmark.netlify.app, https:

//web-frameworks-benchmark.netlify.app/compare?f=fastify,express,

hono, [Accessed 18-02-2024].

[39] Green Software Patterns | Green Software Patterns — patterns.greensoftware.foundation,

https://patterns.greensoftware.foundation/, [Accessed 17-11-2024].

[40] A. Carrega and M. Repetto, “Exploiting novel software development paradigms

to increase the sustainability of data centers”, in Proceedings of the 9th Inter-

national Conference on Utility and Cloud Computing, ser. UCC ’16, Shang-

hai, China: Association for Computing Machinery, 2016, pp. 310–315, isbn:

[draft]

https://snyk.io/blog/javascript-runtime-compare-node-deno-bun/
https://doi.org/10.5220/0012128100003538
https://info.enterprisedb.com/rs/069-ALB-339/images/PostgreSQL_MongoDB_Benchmark-WhitepaperFinal.pdf
https://info.enterprisedb.com/rs/069-ALB-339/images/PostgreSQL_MongoDB_Benchmark-WhitepaperFinal.pdf
https://doi.org/10.1109/GREENS.2013.6606417
https://web-frameworks-benchmark.netlify.app/compare?f=fastify,express,hono
https://web-frameworks-benchmark.netlify.app/compare?f=fastify,express,hono
https://web-frameworks-benchmark.netlify.app/compare?f=fastify,express,hono
https://patterns.greensoftware.foundation/

REFERENCES 105

9781450346160. doi: 10.1145/2996890.3007878. [Online]. Available: https:

//doi.org/10.1145/2996890.3007878.

[41] P. Sharma, “Challenges and opportunities in sustainable serverless computing”,

SIGENERGY Energy Inform. Rev., vol. 3, no. 3, pp. 53–58, Oct. 2023. doi:

10.1145/3630614.3630624. [Online]. Available: https://doi.org/10.1145/

3630614.3630624.

[42] A. Alhindi, K. Djemame, and F. Heravan, “On the power consumption of

serverless functions: An evaluation of openfaas”, Oct. 2022. doi: 10.1109/

UCC56403.2022.00064.

[43] The Green Web Foundation — app.greenweb.org, https://app.greenweb.

org/directory/, [Accessed 09-09-2024].

[44] Benchmarking The Experimental Ubuntu x86-64-v3 Build For Greater Perfor-

mance On Modern CPUs — phoronix.com, https://www.phoronix.com/

review/ubuntu-x86-64-v3-benchmark, [Accessed 18-01-2024].

[45] A. Noureddine, M. D. Lodeiro, N. Bru, and R. Chbeir, “The impact of green

feedback on users’ software usage”, IEEE Transactions on Sustainable Com-

puting, vol. 8, no. 2, pp. 280–292, 2023. doi: 10.1109/TSUSC.2022.3222631.

[46] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do mobile app

users complain about?”, IEEE Software, vol. 32, no. 3, pp. 70–77, 2015. doi:

10.1109/MS.2014.50.

[47] WHO, Electronic waste (e-waste) — who.int, https://www.who.int/news-

room/fact-sheets/detail/electronic-waste-(e-waste), [Accessed 15-

08-2024], 2023.

[48] G. S. Matharu, A. Mishra, H. Singh, and P. Upadhyay, “Empirical study of

agile software development methodologies: A comparative analysis”, SIGSOFT

Softw. Eng. Notes, vol. 40, no. 1, pp. 1–6, Feb. 2015, issn: 0163-5948. doi:

[draft]

https://doi.org/10.1145/2996890.3007878
https://doi.org/10.1145/2996890.3007878
https://doi.org/10.1145/2996890.3007878
https://doi.org/10.1145/3630614.3630624
https://doi.org/10.1145/3630614.3630624
https://doi.org/10.1145/3630614.3630624
https://doi.org/10.1109/UCC56403.2022.00064
https://doi.org/10.1109/UCC56403.2022.00064
https://app.greenweb.org/directory/
https://app.greenweb.org/directory/
https://www.phoronix.com/review/ubuntu-x86-64-v3-benchmark
https://www.phoronix.com/review/ubuntu-x86-64-v3-benchmark
https://doi.org/10.1109/TSUSC.2022.3222631
https://doi.org/10.1109/MS.2014.50
https://www.who.int/news-room/fact-sheets/detail/electronic-waste-(e-waste)
https://www.who.int/news-room/fact-sheets/detail/electronic-waste-(e-waste)

REFERENCES 106

10.1145/2693208.2693233. [Online]. Available: https://doi.org/10.1145/

2693208.2693233.

[49] A. Begel and N. Nagappan, “Usage and perceptions of agile software de-

velopment in an industrial context: An exploratory study”, in First Inter-

national Symposium on Empirical Software Engineering and Measurement

(ESEM 2007), 2007, pp. 255–264. doi: 10.1109/ESEM.2007.12.

[50] K. Schwaber and J. Sutherland, The Scrum Guide. 2020.

[51] What is Scrum? — scrum.org, https://www.scrum.org/resources/what-

scrum-module, [Accessed 11-03-2024].

[52] O. Salo and P. Abrahamsson, “Agile methods in european embedded software

development organisations: A survey on the actual use and usefulness of ex-

treme programming and scrum”, Software, IET, vol. 2, pp. 58–64, Mar. 2008.

doi: 10.1049/iet-sen:20070038.

[53] D. Wells, Extreme Programming Rules — extremeprogramming.org, http://

www.extremeprogramming.org/rules.html, [Accessed 10-03-2024].

[54] D. Wells, XP flow Chart — extremeprogramming.org, http://www.extremeprogramming.

org/map/project.html, [Accessed 10-03-2024].

[55] S. Mahmoud and I. Ahmad, “A green model for sustainable software engi-

neering”, International Journal of Software Engineering and its Applications,

vol. 7, pp. 55–74, Jan. 2013.

[56] S. R. A. Ibrahim, H. Sallehudin, and J. Yahaya, “Exploring software devel-

opment waste and lean approach in green perspective”, in 2023 International

Conference on Electrical Engineering and Informatics (ICEEI), 2023, pp. 1–6.

doi: 10.1109/ICEEI59426.2023.10346869.

[draft]

https://doi.org/10.1145/2693208.2693233
https://doi.org/10.1145/2693208.2693233
https://doi.org/10.1145/2693208.2693233
https://doi.org/10.1109/ESEM.2007.12
https://www.scrum.org/resources/what-scrum-module
https://www.scrum.org/resources/what-scrum-module
https://doi.org/10.1049/iet-sen:20070038
http://www.extremeprogramming.org/rules.html
http://www.extremeprogramming.org/rules.html
http://www.extremeprogramming.org/map/project.html
http://www.extremeprogramming.org/map/project.html
https://doi.org/10.1109/ICEEI59426.2023.10346869

REFERENCES 107

[57] P. Bozzelli and P. Lago, “A systematic literature review on green software

metrics”, 2013. [Online]. Available: https://api.semanticscholar.org/

CorpusID:17855436.

[58] T. A. Ghaleb, “Software energy measurement at different levels of granular-

ity”, in 2019 International Conference on Computer and Information Sciences

(ICCIS), 2019, pp. 1–6. doi: 10.1109/ICCISci.2019.8716456.

[59] M. Hähnel, B. Döbel, M. Völp, and H. Härtig, “Measuring energy consumption

for short code paths using rapl”, SIGMETRICS Perform. Eval. Rev., vol. 40,

no. 3, pp. 13–17, Jan. 2012, issn: 0163-5999. doi: 10.1145/2425248.2425252.

[Online]. Available: https://doi.org/10.1145/2425248.2425252.

[60] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, “Rapl in ac-

tion: Experiences in using rapl for power measurements”, ACM Trans. Model.

Perform. Eval. Comput. Syst., vol. 3, no. 2, Mar. 2018, issn: 2376-3639. doi:

10.1145/3177754. [Online]. Available: https://doi.org/10.1145/3177754.

[61] E. Jagroep, J. M. E. M. van der Werf, S. Jansen, M. Ferreira, and J. Visser,

“Profiling energy profilers”, in Proceedings of the 30th Annual ACM Sympo-

sium on Applied Computing, ser. SAC ’15, Salamanca, Spain: Association

for Computing Machinery, 2015, pp. 2198–2203, isbn: 9781450331968. doi:

10.1145/2695664.2695825. [Online]. Available: https://doi.org/10.1145/

2695664.2695825.

[62] T. Babakol, A. Canino, K. Mahmoud, R. Saxena, and Y. D. Liu, “Calm en-

ergy accounting for multithreaded java applications”, in Proceedings of the

28th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, ser. ESEC/FSE 2020,

Virtual Event, USA: Association for Computing Machinery, 2020, pp. 976–988,

[draft]

https://api.semanticscholar.org/CorpusID:17855436
https://api.semanticscholar.org/CorpusID:17855436
https://doi.org/10.1109/ICCISci.2019.8716456
https://doi.org/10.1145/2425248.2425252
https://doi.org/10.1145/2425248.2425252
https://doi.org/10.1145/3177754
https://doi.org/10.1145/3177754
https://doi.org/10.1145/2695664.2695825
https://doi.org/10.1145/2695664.2695825
https://doi.org/10.1145/2695664.2695825

REFERENCES 108

isbn: 9781450370431. doi: 10.1145/3368089.3409703. [Online]. Available:

https://doi.org/10.1145/3368089.3409703.

[63] A. Noureddine, “Powerjoular and joularjx: Multi-platform software power mon-

itoring tools”, in 2022 18th International Conference on Intelligent Environ-

ments (IE), 2022, pp. 1–4. doi: 10.1109/IE54923.2022.9826760.

[64] G. Fieni, D. R. Acero, P. Rust, and R. Rouvoy, “Powerapi: A python framework

for building software-defined power meters”, Journal of Open Source Software,

vol. 9, no. 98, p. 6670, 2024. doi: 10.21105/joss.06670. [Online]. Available:

https://doi.org/10.21105/joss.06670.

[65] Hubblo, Green metrics tool, 2020. [Online]. Available: https://github.com/

hubblo-org/scaphandre.

[66] G. C. S. GmbH, Green metrics tool, 2022. [Online]. Available: https : / /

github.com/green-coding-solutions/green-metrics-tool.

[67] N. Amsel and B. Tomlinson, “Green tracker: A tool for estimating the energy

consumption of software”, in CHI ’10 Extended Abstracts on Human Factors

in Computing Systems, ser. CHI EA ’10, Atlanta, Georgia, USA: Association

for Computing Machinery, 2010, pp. 3337–3342, isbn: 9781605589305. doi:

10.1145/1753846.1753981. [Online]. Available: https://doi.org/10.1145/

1753846.1753981.

[68] A. Rajan, A. Noureddine, and P. Stratis, “A study on the influence of soft-

ware and hardware features on program energy”, in Proceedings of the 10th

ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement, ser. ESEM ’16, Ciudad Real, Spain: Association for Comput-

ing Machinery, 2016, isbn: 9781450344272. doi: 10.1145/2961111.2962593.

[Online]. Available: https://doi.org/10.1145/2961111.2962593.

[draft]

https://doi.org/10.1145/3368089.3409703
https://doi.org/10.1145/3368089.3409703
https://doi.org/10.1109/IE54923.2022.9826760
https://doi.org/10.21105/joss.06670
https://doi.org/10.21105/joss.06670
https://github.com/hubblo-org/scaphandre
https://github.com/hubblo-org/scaphandre
https://github.com/green-coding-solutions/green-metrics-tool
https://github.com/green-coding-solutions/green-metrics-tool
https://doi.org/10.1145/1753846.1753981
https://doi.org/10.1145/1753846.1753981
https://doi.org/10.1145/1753846.1753981
https://doi.org/10.1145/2961111.2962593
https://doi.org/10.1145/2961111.2962593

REFERENCES 109

[69] K. S. Rubin, Essential Scrum: A Practical Guide to the Most Popular Agile

Process, 1st. Addison-Wesley Professional, 2012, isbn: 0137043295.

[70] Linter IDE Tool & Real-Time Software for Code | Sonar — sonarsource.com,

https://www.sonarsource.com/products/sonarlint/, [Accessed 15-11-

2024].

[71] Sharp - High performance Node.js image processing — sharp.pixelplumbing.com,

https://sharp.pixelplumbing.com/, [Accessed 24-11-2024].

[72] GitHub - WebAssembly/binaryen: Optimizer and compiler/toolchain library

for WebAssembly — github.com, https://github.com/WebAssembly/binaryen,

[Accessed 24-11-2024].

[73] R. Abdalkareem, S. Mujahid, E. Shihab, and J. Rilling, “Which commits can

be ci skipped?”, IEEE Transactions on Software Engineering, vol. 47, no. 3,

pp. 448–463, 2021. doi: 10.1109/TSE.2019.2897300.

[74] G. Pinto, F. Soares-Neto, and F. Castor, “Refactoring for energy efficiency:

A reflection on the state of the art”, in 2015 IEEE/ACM 4th International

Workshop on Green and Sustainable Software, 2015, pp. 29–35. doi: 10.1109/

GREENS.2015.12.

[75] N. Rashid, S. U. Khan, H. U. Khan, and M. Ilyas, “Green-agile maturity

model: An evaluation framework for global software development vendors”,

IEEE Access, vol. 9, pp. 71 868–71 886, 2021. doi: 10.1109/ACCESS.2021.

3079194.

[76] M. Wahler, N. Seyff, and M. S. Soriano Ramirez, “Exploring assessment crite-

ria for sustainable software engineering processes”, in Proceedings of the 46th

International Conference on Software Engineering: Software Engineering in

Society, ser. ICSE-SEIS’24, Lisbon, Portugal: Association for Computing Ma-

[draft]

https://www.sonarsource.com/products/sonarlint/
https://sharp.pixelplumbing.com/
https://github.com/WebAssembly/binaryen
https://doi.org/10.1109/TSE.2019.2897300
https://doi.org/10.1109/GREENS.2015.12
https://doi.org/10.1109/GREENS.2015.12
https://doi.org/10.1109/ACCESS.2021.3079194
https://doi.org/10.1109/ACCESS.2021.3079194

REFERENCES 110

chinery, 2024, pp. 107–117, isbn: 9798400704994. doi: 10.1145/3639475.

3640109. [Online]. Available: https://doi.org/10.1145/3639475.3640109.

[77] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever,

Robust speech recognition via large-scale weak supervision, 2022. arXiv: 2212.

04356 [eess.AS]. [Online]. Available: https://arxiv.org/abs/2212.04356.

[78] C. Curtain, Qualcoder 3.5, 2023. [Online]. Available: https://github.com/

ccbogel/QualCoder/releases/tag/3.5.

[draft]

https://doi.org/10.1145/3639475.3640109
https://doi.org/10.1145/3639475.3640109
https://doi.org/10.1145/3639475.3640109
https://arxiv.org/abs/2212.04356
https://arxiv.org/abs/2212.04356
https://arxiv.org/abs/2212.04356
https://github.com/ccbogel/QualCoder/releases/tag/3.5
https://github.com/ccbogel/QualCoder/releases/tag/3.5

Appendix A Original quotes in

Finnish

A.1 Interviewee 1

A.1.1

"Meillä on toi, Tech leadina, toi Lead developer rooli ollu pitkää."

A.1.2

"Että mitenkä näistä saa niinkun toisen tason mittareita. Että niitä niinkun. Tulee

jakolaskua tai kertolaskua jonkun jutun kanssa, jolla voidaan sitten ruveta saamaan

jotain vertailtavuutta niinkun eri softien yli."

A.1.3

"Sillä vois olla sellanen niinku Green code expert, jota käytetään silloin kun on

tarve, että vältetään se, että kaiken tiedon ei tarvi olla siinä tiimissä."

A.1.4

"Kyllä mä haluaisin kokeilla. Siis se, että jokainen mallihan tehdään niinku kontek-

stiin. Niin toi ei ihan suoraan meille uppoa."

A.2 INTERVIEWEE 2 112

A.1.5

"Että jossain kohtaa, kun uudempi rauta on modernempi rauta, energiatehokkaam-

paa, milloin kannattaa ottaa se Embedded Emissions-isku ja vaihtaa se rauta sieltä

alta."

A.1.6

"Pintapuolisesti mittauksesta löytyi 400 paperia, tai muutaman vuoden vanha kir-

jallisuustyö, missä oli 400 paperia mittaamiseen liittyen ja yksikään niistä ei loppu-

pelissä ollut sellainen universaali."

A.1.7

"Tässä nyt on viisi oli niitä sustainability kulmia ja tässä on kolme plus toi velocity."

A.2 Interviewee 2

A.2.1

"No ainutta on ehkä silleen, kun tässä on tosi paljon asioita, mitä tämä muistaa pitää

tehdä tälleen, niin mä uskon, että tästä tulee astetta raskaampi prosessi vähintäänkin

kuin joku normi-agile ehkä olisi. Niin sitten se voi tarkoittaa sitä, että tälle on sitten

oma käyttötarkoituksensa. Esimerkiksi jos halutaan sellaista laadukasta softaa ke-

hittää ja sellaista, mitä tullaan käyttämään tälleen. Mutta sitten jos tehdään vaikka

jotain nopeita MVPtä tai muita. Niin silloin mä, no se ei nyt ole varmaan tämän

tarkoituskaan, niin siihen semmoinen ei varmaan silloin sovellu myöskään."

[draft]

A.3 INTERVIEWEE 3 113

A.2.2

"Joo, se voi toimia tähän sen takia, koska tämä ehkä vaatii sitten semmoista ainakin,

vielä kun tämä ei nyt ole niin tämmöistä niin sanotusti widespread, tai tämmöistä

niin laajasti osattua ehkä, taitoa tämmöinen sustainable kehitys, niin sitten on hyvä,

että on semmoinen joku, joka tietää ne asiat."

A.2.3

"Niin, en mä tiedä, mun mielestä se on ainoa toi ehkä toi social-puoli, että saisiko

siihen jotain vielä mietittyä."

A.2.4

"Sitten se paperillahan, jos ihmiset seuraa pointista pointtiin näitä asioita, niin

kyllähän sen pitäisi tuottaa silloin kestävämpää."

A.3 Interviewee 3

A.3.1

"No siis toi on tietysti, että jos sieltä saadaan sitä niinkun energiankulutustietoa,

niin se on semmosta, mikä ei siis missään varmaan käytetä, kun ei sitä oo saatu.

Siis se on niinkun semmonen yksittäinen ihan niinkun uusi juttu."

A.3.2

"Siis jos me puhutaan backlogista, niin mitä nyt on backlogia nähnyt, niin jos se on

vaan se määrä, et kuinka monta kappaletta siellä on, niin nehän voi olla yks voi olla

helvetin iso ja yks voi olla helvetin pieni."

[draft]

A.4 INTERVIEWEE 4 114

A.3.3

"Mä oon aina haaveillu semmosesta, et samalla kun sä pystyt tuolla nykyisillä

valvontavehkeillä jäljittää sen yhden käyttäjäkliksun, niinku sä et tehä sen full stack-

tracing, et kun se menee sinne kantaan astaan se kysely, niin se näkyy, missä se siellä

juoksee ja menee, niin ihan samalla pystys jäljittää sen yhden käyttäjätoiminteen

käyttävän energiamäärän, et se voitais viedä sille tasolle."

A.3.4

"Et toi Scrum Masteri on mulle vähän niinku...Et mä en oo ihan varma, et miks

sitä niinku tarvitaan."

A.4 Interviewee 4

A.4.1

"Joo, taisin olla sanomassa vaan sitä, että en ottaisi pois ja en ehkä näe mitään

sellaista selkeää, mikä olisi mun mielestä ylimääräistä tässä."

A.4.2

"Mutta se, mikä siinä oli hyvä, oli, että kaikki korkean tason arkkitehtuurivalinnat

ja teknologiavalinnat ja muut ohjaavat kyllä siihen suuntaan tosi hyvin."

A.4.3

"Eli tämmöisten energiahotspottien seuraamiseen ei ollut mitään työkaluja ehdotet-

tua?"

[draft]

	Glossary
	Introduction
	Challenges in Sustainable Software
	Goal
	Research Questions
	Research Methods
	Scope
	Structure of the Thesis

	What Affects Software Sustainability?
	Criteria for Sustainable Software
	Methods for Developing Sustainable Software
	Architecture
	Caching and Bulk Requests
	Data Structures and Algorithms
	Error Handling
	Logging
	Offloading
	Indexing

	Technology Choices
	Programming Language
	Runtime
	Database
	Libraries and Frameworks
	Large Language Models

	Size of Data
	Development Tools
	Tests
	Benchmarks
	Formatters
	Linters
	Build Tools

	Hosting
	Configuration
	User Interfaces
	User Actions

	Motivation for Sustainable Software
	Costs
	User Experience
	Environment
	Legislation

	Agile Software Development
	Existing Agile Frameworks
	Scrum
	Extreme programming
	Kanban

	Existing research for developing green software
	The Greensoft model
	Life cycle of a software product
	Indirect effects during development
	Sustainability Criteria and Metrics
	Procedure models
	Recommendations and tools

	A Green Model for Sustainable Software Engineering
	Level 1
	Level 2
	Tools and Metrics

	Green Lean process

	Measuring Sustainability of software
	Metrics for Different Sustainability Aspects
	Technical Sustainability
	Economic Sustainability
	Environmental Sustainability

	Measurement Tools
	Technical Sustainability
	Economical Sustainability
	Environmental Sustainability
	Software Tools
	Hardware devices

	Adapting Sustainable Agile for Kvanttori Case
	How Kvanttori Implements Agile
	Pre-development Phase
	Roadmapping
	Technology Evaluation
	Architectural Planning
	Configuration, Development Tools and CI/CD

	Development Phase
	Usage Phase
	Post-development Phase
	Roles

	Sustainable Agile Implementation
	Pre-development Phase
	Roadmapping
	Architectural Planning
	Technology Evaluation
	End of Life Plan
	Configuration
	Development Tools
	Build Settings
	CI/CD

	Development Phase
	Backlogs
	Development and Energy Efficient Choices
	Acceptance tests
	Code review
	Review
	Retro

	Usage Phase
	Post-development Phase
	Reuse
	Disposal
	Post mortem

	Metrics
	Energy Consumption and Resource Usage Measurements
	Costs
	Story points in backlogs
	Unhandled errors

	Roles
	Product owner
	Lead developer
	Scrum master
	Developer
	Stakeholder

	What changes were made to current agile implementation

	Validating the framework
	Research on Evaluating Sustainable Software Development
	Green Agile Maturity Model
	Risk Factors
	Success factors

	Assessment criteria for sustainable software engineering processes
	Implemented
	Partially Implemented
	Not implemented
	Scoring the model

	Expert interviews
	Interview process
	Interview analysis
	Additions
	Removals
	Metrics
	Roles
	Phases and Steps
	Interest
	Conclusion

	Discussion
	Answers to the research questions
	RQ1: What methods are there for developing sustainable software?
	RQ2: How to measure the sustainability of the software?
	RQ3: How to integrate sustainable development methods into an agile development process?

	Implications
	Threats to validity
	Further Research

	Conclusion
	References
	Original quotes in Finnish
	Interviewee 1
	
	
	
	
	
	
	

	Interviewee 2
	
	
	
	

	Interviewee 3
	
	
	
	

	Interviewee 4
	
	
	

