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The Transformer neural network architecture has had a profound impact on the
state of the art in machine learning in numerous disciplines, well beyond its origins
in Natural Language Processing. Nevertheless, the application of Transformer mod-
els to the material field remains a relatively underexplored avenue. Therefore, we
evaluated the Transformer model’s capability in utilizing Many-Body Tensor Repre-
sentation (MBTR) method in prediction of materials’ Highest Occupied Molecular
Orbital (HOMO) energy. The dataset selected for this investigation was QM9, a
popular dataset that enabled us to conduct comparative analyses of our model’s
efficacy against a broad spectrum of prior studies. In this study, we pursued two
principal approaches. Initially, we evaluated the performance of the original MBTR
representation and the Transformer on the dataset, implementing only minimal mod-
ifications to both the model and the representation. Subsequently, we explored a
refined MBTR variant, more suitable for the variable sequence length input of the
model, which encompasses the distances between atom pairs within a molecule,
alongside a reconfigured Transformer designed to integrate encoded chemical sym-
bols of atom pairs as inputs and utilize their distances for positional embeddings.
Using the two approaches, we reached the MAE of 0.123 and 0.071, respectively. We
find that the Transformer model, designed to process sequential input, is capable
of learning to predict from molecular representations of variable length. It out-
performs the most effective kernel-based methodologies and is comparable to other
recently studied deep neural networks. In conclusion, we illustrate that, with only
slight adaptations, Transformers are able to make comparably accurate predictions
of materials’ properties.

Keywords: Transformers neural network, Many-Body Tensor Representation, Nat-
ural Language Processing, Material datasets, Material properties
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1 Introduction

Transformer neural networks achieved remarkable performance in the field of sequen-

tial modeling and Natural Language Processing (NLP). Their ability to effectively

model long-range dependencies makes them highly applicable across diverse areas,

from speech recognition to analysing DNA sequences. Although vanilla Transformer

architecture was originally introduced for language translation tasks, its variants

(e.g., Vision Transformers) have since been widely adopted in various other fields

[1] [2].

The Transformer architecture is particularly designed to process variable-length

sequences with long-distance dependencies. Unlike conventional machine learning

methods, Transformers can effectively analyse unstructured data (e.g., text input of

variable length). Another common model in processing of sequential data is Recur-

rent Neural Network (RNN) which relies on recurrent cells to capture information.

In contrast, Transformers benefit from the self-attention mechanism that captures

relationships and dependencies between elements, independent of their positions in a

sequence. Additionally, Transformers are able to process inputs in parallel, enabling

an efficient, high-speed training. These advantages, along with their superior per-

formance, have motivated researchers to adopt Transformer architecture to tackle a

wide range of complex problems.

A recent systematic study [3] was conducted to showcase the contribution of

Transformers across different fields, categorising 650 Transformer-based models in-
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troduced between 2017 and 2022. The five primary categories identified were NLP-

focused studies, computer vision (CV), multi-modality, audio and speech processing,

and IoT and signal processing. Additionally, the study highlights Transformer ap-

plications in reinforcement learning, cloud computing, and wireless networks, prov-

ing their versatility. The paper also outlines specific considerations for adapting

Transformers to model non-textual data. For instance, in image classification using

a Transformer-based model, different feature representation techniques significantly

impact model performance. Adjusting the Transformer architecture to address task-

specific challenges is also critical. For example, in medical signal processing, Tree-

Tower Transformer Network is used to predict epileptic seizures. This Transformer

based model is tailored to include three distinct encoders, each capturing specifi-

cally unique signal features. In conclusion, Transformers hold significant potential

for novel applications while considering the domain-specific challenges.

Material informatics, an emerging field that leverages data-driven approaches to

analyse and study materials for complex, multiscale insights, faces several challenges.

Techniques such as clustering similar experimental observations, training predictive

models to forecast material properties, and using statistical association analysis to

identify intricate patterns in material behavior are instances of machine learning

and data mining application in material science [4].

Designing materials with targeted properties has been a primary goal in materials

science for a long time. Traditionally, synthesizing novel materials involves exper-

imental methods or computational simulations, both of which demand significant

time and resources. However, machine learning models offer a more cost-effective

and sustainable alternative, enabling the discovery of new materials by analyzing

chemical structures and accurately predicting their properties [5].

In the context of this thesis, we focus on predicting the Highest Occupied Molec-

ular Orbital (HOMO) energy level for a dataset of organic molecules. The HOMO



CHAPTER 1. INTRODUCTION 3

energy level, along with Lowest Unoccupied Molecular Orbital (LUMO), explains

charge transport and indicates materials’ electrical conductivity, light absorption

and chemical reactivity. Accurate determination of this property is crucial in de-

veloping devices such as organic photovoltaics, organic light-emitting diodes, or-

ganic field-effect transistors, perovskite photovoltaics, and perovskite LEDs. Den-

sity Functional Theory (DFT) is a quantum mechanical method commonly used to

describe the molecular electronic structure and estimate properties (e.g., HOMO

energy) with reasonable precision [6]. However, data-driven approaches offer faster

and more cost-effective alternatives.

In the paper [7], the authors investigated predicting HOMO energy using a Ker-

nel Ridge Regression (KRR) model. They compared prediction accuracy across

two different molecular representation techniques. Representation methods extract

valuable chemical and structural information by encoding the atomic structure [8].

Therefore, their implementation is a necessary data preprocessing step in computa-

tional analysis as illustrated in Figure 1.1. Various representation approaches exist,

such as Simplified Molecular Input Line Entry System (SMILES), Bag of Bonds,

Coulomb matrix (CM), and Many-Body Tensor Representation (MBTR). Since se-

lecting a suitable representation significantly impacts model performance, it is nec-

essary to implement a representation method that describes a set of informative

molecular features for the ML model. The findings in [7] demonstrated that MBTR

outperformed CM when applied with KRR, yielding more accurate predictions.

MBTR is a numerical representation method that describes atomistic systems

invariant to rotation, translation, and permutation of atomic indices [9]. In our

thesis, it represents the spatial structure of atomic combinations in a molecule.

MBTR has the advantage of converting molecules of varying sizes into a fixed-size

representation, which is essential for machine learning models that require constant-

length inputs [8].
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Figure 1.1: The general workflow of machine learning projects aimed at predicting
material properties. The figure is reprinted from [8].

Furthermore, there have been some recent attempts to explore deployment of

Large Language Models (LLMs) to advance research in material informatics [10]

[11]. In these studies LLMs, particularly Transformers, are trained over exten-

sive corpora and fine-tuned on task-specific datasets, becoming efficient tools for

specialised applications. These applications include knowledge acquisition and sum-

marisation, especially from unfamiliar or interdisciplinary fields, dataset extraction

and structuring from unstructured text, feature extraction, and the development

of automated laboratories with operating agents, among others. Therefore, such

studies highlight the potential of LLMs as versatile, assisting tools contributing

to exploration and standardisation of cross-disciplinary subjects. Nevertheless, re-

search on adapting this advanced machine learning architecture to analyse the 3D

structure of any chemical systems remains comparatively limited within this field.

In conclusion, this thesis aims to evaluate the performance of a state-of-the-

art model, specifically Transformers, on prediction of quantum chemical properties.

We examine the implementation of a well-known representation method, such as

MBTR, when utilised with the Transformer model. A novel approach of tailoring

Transformer architecture along with a modified version of MBTR is proposed, to

analyse the 3D atomic structures of materials and predict their HOMO energy levels.

Essentially, we address the following research questions:
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1. How to implement and process the commonly used MBTR with Transformer

neural network model?

2. How can the MBTR representation and Transformer architecture be adapted

to ensure optimal compatibility and effectiveness in predicting materials’ quan-

tum chemical properties?

3. How effectively is the Transformer neural network able to learn from a molec-

ular dataset, especially compared to the state-of-the-art?

4. Which hyperparameters influence the performance of Transformer models in

predicting materials’ quantum chemical properties?

In order to study these research questions, this thesis was structured into two major

stages. In the initial stage, MBTR forms a structured set of continuous numeri-

cal features from our molecular dataset (i.e., QM9) which are then discretized and

further analysed by the Transformer model. However, during the second phase, we

introduced modifications to MBTR, leading to the development of a novel discrete

representation called Many-Body Atom Distance (MBAD). We also implemented

suitable adjustments to the Transformer architecture to evaluate its performance

alongside the new representation method. Throughout both stages, hyperparame-

ters were carefully optimised to achieve optimal results with each technique. Trained

models from both stages are further compared for their property prediction accuracy

on the test set. Our research framework is outlined in the Flowchart 1.2.
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Figure 1.2: A step-by-step illustration of our research framework to achieve our
research goals.



2 Methodology

2.1 Dataset

In this study, we employed Quantum Machines 9 (QM9), a well-known dataset

within the realm of materials informatics. It is characterized by its extensive appli-

cations in scientific research and is particularly used for the prediction of quantum

chemical properties. It provides a framework for benchmarking our findings against

a substantial number of studies. This dataset consists of 133,814 stable small or-

ganic molecules with an average of approximately 18 consisting atoms, as reported

in Figure 2.1. Figure 2.2 also demonstrates that the QM9 dataset is composed of 5

elements (Carbon, Hydrogen, Oxygen, Nitrogen, and Fluorine) with Hydrogen being

the most common one. This dataset reports geometric, thermodynamic, electronic

and energetic properties such as HOMO energy, computed at B3LYP/6-31G(2df,p)

level of theory [12]. Although the QM9 dataset is considered a benchmark in the

field of materials informatics, it exhibits certain limitations; notably, the reliability of

the B3LYP functional in producing high-accuracy results has not been conclusively

verified [13].

QM9 dataset reports molecular HOMO energy level computed using Density

Functional Theory (DFT) method, as distributed in Figure 2.3. Despite the preva-

lent application of DFT in quantum mechanical simulations, this method is both

computationally intensive and costly, which poses challenges when applied to large-
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Figure 2.1: Distribution of molecule’s sizes in QM9 dataset, highlighting the average
size.

scale data. Therefore, data-driven alternatives are suggested presenting a more

accurate estimation of quantum chemical properties [14].

We partition the dataset into segments of 80% for training, 10% testing and

10% validation. Transformer models, akin to other deep neural networks, exhibit

enhanced performance when trained over large datasets; therefore, we dedicate the

majority of our records to the model’s training to maximise its efficiency. The

validation set is used to evaluate and refine model performance by tuning the hy-

perparameters. Lastly, the test set is reserved for examining the model’s prediction

accuracy on unseen data, thereby indicating its generalization capabilities.

2.2 Molecular representation

The QM9 dataset includes atomic coordinates that define the 3D molecular struc-

ture, making it necessary to employ a suitable representation method to convert the

dataset into an appropriate input for computational modelling. The transforma-

tion of spatial coordinates to relevant new features is broadly referred to as “Feature

Engineering” or “Featurization” [8]. Given the range of available molecular represen-
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Figure 2.2: Distribution of elements among all molecules in QM9 dataset.

tations for different computational models, it is crucial to identify the most effective

and contextually appropriate representation technique for each study. According to

Himanen et al. [8], an effective representation should meet certain criteria, which

are as follows:

1. Spatial Translation Invariance: The representation maintains consistency re-

gardless of any translation of the coordinate system, ensuring that physical

properties are not influenced by arbitrary modifications of the spatial system.

2. Rotational Invariance: The representation is isotropic, meaning any rotation

of the molecular coordinates produces a constant representation.

3. Permutation Invariance of Atomic Indices: The representation is not affected

by alterations in the order of atomic indices, as such changes are uninfluential

on the molecular structural properties.

4. Uniqueness: The representation provides a unique mapping for each atomic

structure, corresponding distinctly to the specific property value it represents.

5. Continuity: Minor variations in atomic structure are reflected in corresponding

changes within the molecular representation.
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Figure 2.3: Distribution of the HOMO energy level of molecules in QM9.

6. Compactness: An efficient representation remains condensed and minimises

the number of features to reduce computational load while still providing suf-

ficient detail for accurate modelling.

7. Computational Efficiency: Although we have access to more computational re-

sources than ever in history, calculating the descriptor should still be substan-

tially less resource-intensive than direct computation of the physical properties

it represents.

2.3 Many-body tensor representation (MBTR)

The selected representation approach for the purpose of this thesis is many-body

tensor representation (MBTR), which is widely accepted in the realm of materials in-

formatics. This advanced technique is designed to provide an informative description

of the structural motifs, capturing two-body and higher-order interactions inherent

within the molecular systems. MBTR employs tensors (i.e., multi-dimensional nu-

merical arrays) to represent various atomic and molecular features. Significantly,
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MBTR is effective in describing both finite systems, e.g., small organic molecules

and biomolecules, and periodic systems, e.g., extended solid-state materials [9].

We utilise Dscribe library to implement MBTR and apply it to the QM9 dataset.

Dscribe is an open-source software package that provides feature engineering for

machine learning models in atomistic materials simulations. It includes implemen-

tations for representation methods such as Coulomb matrix, Smooth Overlap of

Atomic Positions (SOAP), and MBTR, facilitating property predictions like forma-

tion energy for solids and ionic charges for atoms in organic molecules [8].

MBTR represents the molecular complex structure by breaking it into multiple-

body terms (such as species, interatomic distances, bond angles, dihedral angles).

Each body includes fixed-length vectors and uses a geometric function (gk). In

the scope of this thesis, we only focus on values of k = 1, 2, 3. One-body terms

of MBTR (k = 1) encode the type of elements constituting the molecule. Two-

body terms (k = 2) encode the pairwise distances between the composing atoms

using Euclidean distances or inverse distances. It is worth highlighting that (k = 2)

encode distances between all atom pairs, which is independent of the molecular

bonds. Lastly, three-body terms (k = 3) encode the angular distributions for any

triplets of atoms within the molecule. A simple illustration of how MBTR encodes

the 3D structure of a water molecule is visualized in Figure 2.4 [7].

In the implementation of MBTR, while using the Dscribe library, the following

geometry functions can be configured for atoms l, m and n in a molecule [8]:

• g1(Zl) : Zl (atomic number of l)

• g2(Rl, Rm) : |Rl −Rm| (Euclidean distance) or 1
|Rl−Rm| (inverse Euclidean dis-

tance)

• g3(Rl, Rm, Rn) : ∠(Rl −Rm, Rn −Rm) (angle) or cos(∠(Rl −Rm, Rn −Rm))

Initiating g2 with inverse distance emphasises the influence of atoms based on
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Figure 2.4: Figure by paper [8], illustrates the output of MBTR for a water molecule.
The figure presents the distributions of MBTR for k values of 1, 2, and 3, encom-
passing various combinations of chemical elements.

their proximity. Atoms in close spatial proximity exert a more pronounced effect

on the final representation, while those farther apart contribute negligibly. This

approach ensures that the contributions of closer atoms are accurately reflected in

the model, thereby enhancing the precision and reliability of HOMO energy level

predictions.

The scalar values of gk are broadened by applying a Gaussian function, as il-

lustrated in Equations (1), (2), and (3). Employing Gaussian in this context is a

widely used statistical technique referred to as Kernel Density Estimation (KDE).

This non-parametric approach is utilised to estimate the probability density func-

tion of a random variable from a finite data sample [15]. KDE provides a smooth

and continuous approximation of the underlying data distribution.

Dl
1(x) =

1

σ1

√
2π

e
− (x−g1(Zl))

2

2σ2
1 (1)

Dl,m
2 (x) =

1

σ2

√
2π

e
− (x−g2(Rl,Rm))2

2σ2
2 (2)
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Dl,m,n
3 (x) =

1

σ3

√
2π

e
− (x−g3(Rl,Rm,Rn))2

2σ2
3 (3)

The variable x spans the entire range of possible values for gk. Moreover, the

parameter σk denotes the standard deviation of the Gaussian kernel and serves as

a crucial user-defined hyperparameter in the MBTR. This parameter impacts the

distribution of the k-body interactions by controlling the width of the Gaussian

curves. As depicted in Figure 2.5, the selection of σk significantly influences the

resulting representation. Specifically, larger σk values yield broader curves with

less pronounced peaks, whereas smaller σk values result in narrower curves with

sharper spikes. Proper tuning of σk is essential for optimising the MBTR’s ability to

effectively capture the molecule’s relevant structural information for the ML models.

Furthermore, the Dk distributions for each set of k atoms in a molecule are

summed, optionally using a weighting function to adjust the contributions of differ-

ent atoms, as shown in the following equations:

MBTRZ1
1 (x) =

|Z1|∑︂
l=1

wl
1D

l
1(x) (4)

MBTRZ1,Z2

2 (x) =

|Z1|∑︂
l=1

|Z2|∑︂
m=1

wl,m
2 Dl,m

2 (x) (5)

MBTRZ1,Z2,Z3

3 (x) =

|Z1|∑︂
l=1

|Z2|∑︂
m=1

|Z3|∑︂
n=1

wl,m,n
3 Dl,m,n

3 (x) (6)

Where l, m, and n denote arbitrary atoms in a molecule, and wk represents

the chosen weighting function. Figure 2.6 illustrates how MBTR2 encodes the D2

distribution of all possible atom pairs in a CO2 molecule when a unity weighting

function is applied. In this figure, (a) depicts the distribution of inverse distances

between all the atoms in the molecule, with the x-axis measured in 1/Å. However,
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Figure 2.5: MBTR representation of a propane molecule for different values of the
hyperparameter σ. Each plot demonstrates how varying σ affects the shape of the
representation curves.

in (b), the concatenation of all distributions into the final MBTR2 representation

results in an x-axis that is unitless.

In this thesis, only MBTR2 was employed, as the findings of Stuke et al. [7]

indicate that including k = 1, 3 in the molecular representation has no significant

impact on the prediction of HOMO energy when using a kernel ridge regression

model. Furthermore, incorporating k = 1, 3 increases the size of the representation,

which significantly raises the computational resources required for testing and learn-

ing from this representation by the ML model. Therefore, our model was trained

exclusively on the transformed interatomic distances, as corroborated by preceding
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(a) (b)

Figure 2.6: (a): The Gaussian transformation of inverse inter-atomic distances in
the molecule CO2, with the x-axis in 1/Å. Note how the pair of carbon and carbon
exhibits a flat line at 0, as there is only one carbon atom in CO2. (b): Visualization
of MBTR2 for the molecule CO2, showing the influence of each atom pair on MBTR2.
The x-axis is unitless.

papers [7] [16]. Additionally, we utilised inverse distances to measure interatomic

distances and applied a unit weighting function for simplicity and ease of interpre-

tation. However, σk was treated as a hyperparameter and optimised to enhance the

accuracy of the computational model.

When implementing MBTR for computational modelling, the continuous distri-

bution representing the molecule is discretised into a grid. Sampling Nx points from

the MBTR2 distribution yields a representation of size N2
e ×Nx, where Ne denotes

the number of molecular constituent elements [9]. The value of Nx is defined by the

user during the initialisation of MBTR and determines the size of the resulting fea-

ture vector. In this thesis, Nx is optimised as a hyperparameter due to its potential

impact on the model’s predictive accuracy.
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2.4 Data preprocessing

To develop a robust and reliable model, the molecular MBTR representation, serv-

ing as the model’s input, is further preprocessed through data binning along the

y-axis. This additional preprocessing step effectively reduces input noise and de-

creases the computational cost of model development. To evaluate the efficiency

and effectiveness of this binning approach, two techniques for y-axis binning were

examined:

1. Logarithmic scaling

2. Equal Width Binning

2.4.1 Logarithmic scaling

In feature engineering, logarithmic scaling or logarithmic transformation is com-

monly employed for heavily skewed data or long-tailed distributions. This tech-

nique compresses larger values in the dataset by reflecting their magnitude, while

expanding the range of smaller values. When analysing the distribution of generated

MBTR2 representation values for the QM9 dataset, we observe that the representa-

tions consist of numerous small values, indicating atom pairs at large distances. If

we merely truncate these values instead of scaling them, the majority would reduce

to zero, leading to an unstable and uninformative representative distribution for a

molecule.

Therefore, the molecular representation values generated by MBTR are first

multiplied by 10 and transformed by a logarithm to highlight even the smallest dif-

ferences between values. This transformation reduces the impact of larger values,

resulting in a more symmetrical and normal distribution. Additionally, by sub-

tracting the minimum transformed value, which is always negative, from all the

transformed values, we ensure that the transformed representation remains positive.
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This approach not only preserves the integrity of the data but also enhances the

model’s capacity to learn from subtle differences. Let X denote the set of values

representing a molecule by MBTR. For each x ∈ X, the transformation T (x) is

defined as follows:

T (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−min (⌊log2(10X)⌋) + 1 if x = 0

0 if 1
10

≤ x < 2
10

⌊log2(10x)⌋ −min (⌊log2(10X)⌋) + 1 if 0 < x < 1
10

or x > 2
10

(2.1)

The purpose of this mapping function is to filter out very small values within

a specific range ( 1
10

≤ x < 2
10

). Given that the MBTR representation forms a

continuous distribution, omitting some small values does not result in the loss of

valuable information. However, the case where x = 0 should be treated as a special

circumstance. This case, which indicates the absence of an atom pair in a molecule,

should be represented with a unique value in the final transformation.

Finally, the remaining values are normalised and shifted to remain positive. In

this case, the MBTR values indicate either very small interatomic distances, or very

large ones, both of which have a significant influence on the HOMO energy value.

This transformation maps the MBTR values to a set of discrete numbers with lower

variance, resulting in a more stable representation. Figure 2.7 illustrates this binning

approach for two molecules found in the QM9 dataset: Butane, a highly flammable

gas with various applications, and Hydrogen Cyanide, a highly toxic compound used

in manufacturing.
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(a) MBTR representation of Butane (b) MBTR representation of Butane after log
transformation

(c) MBTR representation of Hydrogen Cyanide (d) MBTR representation of Hydrogen Cyanide
after log transformation

Figure 2.7: Transformation of the MBTR representation using logarithmic scaling.
Figures (a) and (b) display the MBTR representation of butane (C4H10) before and
after transformation. Similarly, Figures (c) and (d) present the MBTR output for
hydrogen cyanide (HCN) before and after transformation. The logarithmic scaling
preserves the original distribution while highlighting smaller spikes and reducing
variance.

2.4.2 Equal-width binning

In this linear method of binning, the minimum and maximum of each molecular

MBTR representation are determined. The subtraction of the minimum from the

maximum yields the range of the MBTR representation values. Subsequently, this

range can be divided into a specified number of non-overlapping bins. This tech-

nique, also called “data bucketing”, is used to categorize data into a limited number

of bins during preprocessing phase for creating histograms. Essentially, an appropri-

ately chosen bin size or width is crucial for binning the data into various intervals.
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This allows for the counting of data points within each interval, thereby determining

the frequency of occurrences in each bin.

A binned dataset is only able to represent the original dataset as long as it

is determined with a rational number of bins. Therefore, number of bins could

be effective in revealing the characteristics of data. Using excessively large bin

numbers (more narrow bins) leads to capturing the random normal variability of

the data. This phenomenon called “under smoothing” captures the noise in the

dataset rather than emphasizing on the underlying distribution. In contrast, “over

smoothing” is able to lower the noise and highlight the general pattern by using

smaller bin numbers (wider bins). Therefore, selecting the right number of bins

serves to diminish the noise within the MBTR output values, effectively grouping

proximal values [17].

By translating the representation values into a finite set of categories, the model

can distinguish between molecules more effectively. An excessively broad or overly

limited range of model’s input values would likely obfuscate the discernment of dis-

tinct inputs, limiting the model’s learning predictability. There are many methods

and standards for selecting the optimal number of bins; however, in this thesis, we

decided to explore the impact of varying bin numbers by conducting multiple ex-

periments. We compared the models’ prediction accuracies to determine an optimal

binned representation of the QM9 dataset that contains sufficient information for

the model to learn.

2.5 Many-body atom distances (MBAD) represen-

tation

As previously discussed in Section 2.3, the MBTR offers a Gaussian kernel-based

representation. However, Transformer architectures are traditionally designed to
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process discrete inputs, such as tokens or words in natural language processing

tasks. Consequently, when integrating MBTR with Transformers, it is necessary to

discretise the MBTR output into non-overlapping bins as a data preprocessing step.

The MBTR method is distinguished by its continuous representation of fixed size,

a feature particularly advantageous for classical models such as Kernel Ridge Re-

gression (KRR). In contrast, Transformer models and Recurrent Neural Networks

(RNNs) are designed to process sequential data of variable lengths without fixed

size constraints. RNNs achieve this by maintaining hidden states across sequences,

while Transformers utilise self-attention mechanisms to dynamically focus on differ-

ent parts of the input sequence, enabling efficient handling and analysis of diverse

molecular lengths.

Given the mentioned inherent Transformers’ attributes, it is advantageous to em-

ploy a discrete representation of molecules with no constraint regarding the outputs’

length. This ensures the compatibility of the representation method with the Trans-

former’s input processing mechanism, allowing the model to effectively analyse and

interpret the molecular data. The contradiction of the MBTR’s and Transformer’s

innate unique characteristics inspired us to propose a modification to the MBTR

structure. We adopted the MBTR to suit the Transformers architecture the best.

Our aim was to make direct comparisons between conventional models that rely on

original MBTR and Transformers using tailored MBTR for a prediction task. The

set of experiments in this thesis ensures a fair comparison between such.

Considering the inherent properties of Transformers, it is advantageous to employ

a discrete representation of molecules without constraints on output length. This

ensures compatibility with the Transformer’s input processing mechanism, allowing

the model to effectively analyse and interpret molecular data. The contrasting

characteristics of MBTR and Transformer architectures prompted us to propose

a modification to the MBTR structure. We adapted MBTR to better suit the
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Transformer architecture. Our objective was to facilitate direct comparisons between

conventional models which utilise the original MBTR and Transformers using the

tailored MBTR for predictive modeling. The experiments conducted in this thesis

ensure a fair comparison between these two approaches.

Our proposed adaptation, Many Body Atom Distances (MBAD), exclusively

utilises K2, in line with the choice made in Section 2.3. The principal difference in

this new approach lies in the omission of the Gaussian function, which is intended to

smooth the interatomic distances. This alteration permits the direct extraction of

Euclidean distances from MBTR and focuses on the comparison of all interatomic

distances within a given molecule. Given the relatively small size of the organic

molecules in the QM9 dataset, the use of a cutoff distance, which limits the range

of interatomic distances considered, could result in the loss of valuable structural

information. By including all interatomic distances without a cutoff, we ensure a

comprehensive representation of the molecular structure, capturing subtle variations

that are crucial for accurate modeling and analysis. This approach maximises the

extraction of pertinent information, thereby enhancing the performance and relia-

bility of the predictive models.

MBAD, in comparison to MBTR, results in representations of variable lengths

for each molecule in the dataset. Nevertheless, it remains necessary to categorize

these interatomic distances into segments. This categorization is essential as it trans-

forms the continuous real-value distance data into discrete integer intervals, making

it suitable for Transformer processing. In Sections 2.4.1 and 2.4.2 of our previous

experiments, we tried different binning methods. Given the additional complexi-

ties and interpretative constraints imposed by logarithmic binning, we decided to

bin the MBAD representation using only the equal length binning method. This

process involves segregating all interatomic distances extracted by MBAD from the

longest to the shortest into bins of equal lengths, thereby facilitating the analysis of
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discretised inputs suitable for Transformer model processing.

2.6 Transformer neural networks

Transformers represent a groundbreaking class of neural networks that have sig-

nificantly advanced artificial intelligence. Initially conceived for tasks in natural

language processing, their primary function is to transform input sequences into

corresponding output sequences. A quintessential application of Transformers is in

machine translation, where they can convert a series of sentences from one language

into another.

Notably, Transformers have exhibited substantial improvements in performance

metrics over some older models, such as Recurrent Neural Networks (RNNs) and

Long Short-Term Memory (LSTM) networks. These earlier models are particularly

designed for processing sequential data that exhibits inherent interdependencies,

such as those found in linguistic data where the meaning of each word or phrase can

depend significantly on its context within a sentence or a broader text corpus. They

analyse elements one at a time. This sequential processing involves maintaining a

"hidden state"—essentially a form of short-term memory—that retains and updates

information about the input processed up to each step.

Due to their recurrent nature, RNNs and LSTMs take one input at a time, up-

dating the hidden state based on the current input and the previous state. This

design inherently ties each step’s output to its priorly seen inputs, leading to chal-

lenges in learning long-range dependencies within the data. These challenges are

exemplified by issues such as vanishing gradients, where the gradient signal be-

comes too small to make meaningful updates, and exploding gradients, where overly

large gradient values can lead to unstable training processes. Such issues often result

in the network failing to retain earlier learned information effectively. In contrast,

Transformers revolutionize this approach by utilizing an attention mechanism and
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by bypassing the need for a memory state that evolves over time, which eliminates

the input-output dependencies. Consequently, this new architecture supports more

robust learning, especially in scenarios involving long input sequences.

Furthermore, the attention mechanism central to Transformers provides a sig-

nificant computational advantage by enabling parallel processing of inputs. Unlike

RNNs, which must process data sequentially, Transformers can handle multiple data

points simultaneously, drastically enhancing computational efficiency. This capabil-

ity allows Transformers not only to process larger datasets more effectively but also

to scale up with increased computational resources, leading to superior performance

across numerous benchmarks.

The foundational architecture of the Transformer was first introduced in the

seminal paper "Attention is All You Need" [18]. This architecture, as illustrated in

Figure 2.8, comprises two main components: an encoder and a decoder. This dual-

component structure has laid the groundwork for subsequent state-of-the-art models

such as Bidirectional Encoder Representations from Transformers (BERT) [19] and

Generative Pre-Trained Transformers (GPT) [20]. BERT, initially developed by

Google, employs only the encoder portion of the original Transformer architecture.

In contrast, variations such as the GPT, developed by OpenAI, utilise solely the

decoder component. Each of these components—encoder and decoder—is further

subdivided into multiple layers, the specifics of which are elaborated upon in the

subsequent subsection.

2.6.1 Tokenization

Tokenization in NLP is a necessary data preparation method in which larger texts

are segmented into smaller units such as phrases, words, or even characters. This

method contributes to simplification and standardising of human language to make

it more manageable for language models. Such models typically perform more ef-



2.6 TRANSFORMER NEURAL NETWORKS 24

Figure 2.8: The dual-component structure of Transformers, consisting of an encoder
and a decoder. The figure is reprinted from "Attention is All You Need" by Vaswani
et al. [18].

ficiently with smaller units because they can analyse and interpret the information

they contain more effectively. The size of tokens and the tokenization method vary

depending on the knowledge we strategically intend to extract.

2.6.2 Padding

Padding is another critical technique in the field of NLP. Padding tokens refer to the

process of adding a specified “padding token” to the beginning, end, or both ends

of a token sequence to achieve uniformity in length among multiple sequences. The

padding token does not have any particular meaning and only ensures to equalise the

sequences’ lengths. In larger datasets, sequences within each batch can be padded to
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the length of the longest sequence in that batch. This method of dynamic padding,

considering the variability in sequence lengths, can improve memory efficiency while

speeding up the learning process. As a result of dynamic padding, the language

model receives a fixed-size and properly structured input that is ready for further

processing.

2.6.3 Embeddings

Embeddings are one of the fundamental concepts in machine learning, especially

NLP. Embeddings represent complex data structures such as images, audio, and

text. Such objects are translated by embeddings into a lower dimensional space while

preserving their relevant properties. Translated embeddings are able to maintain a

relationship to the original data, presenting its traits and remarks. In NLP, a high-

dimensional numerical embedding represents each token. Tokens are transformed

into vectors such that tokens with similar meanings are located close to each other

in the embedding space. Moreover, these embeddings contain information such as

the token’s semantic meaning, syntactic information, and contextual meaning.

Embedding size or dimension plays an important role in determining both the

model’s capacity and performance. Larger embeddings can capture more nuanced

and detailed information about each token. They can encode a greater variety of

syntactic and semantic features leading to a deeper understanding of language. In

contrast, smaller embeddings are less capable of capturing data’s complex features

but they require less memory. Therefore, embedding dimension in a model is a

deterministic hyperparameter which needs to be fine-tuned based on the data com-

plexity and the model design. In the seminal paper introducing the Transformer

architecture, the authors specified an embedding dimension of 512 [18]. However,

subsequent advancements in model capabilities, particularly in versions of OpenAI’s

GPT-3, have seen embedding dimensions expand significantly, reaching up to 12,288
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in the most advanced configurations [21].

2.6.4 Encoder

The encoder is a crucial component of the Transformer architecture, primarily tasked

with creating a continuous representation of the input sequence. As stated in [the

original paper], the encoder includes six layers, each identical in structure. The main

feature of each layer is a self-attention sub-layer that focuses on different parts of

the input sequence based on their relevance to each other. This mechanism is con-

templated in the following subsection. Next in each layer, there is a sub-layer of the

position-wise feed-forward network (FFN), consisting of two linear transformations.

These transformations are applied to the positions of input elements independently,

yet each position undergoes the same transformation, using the same weights and

biases.

Figure 2.8 demonstrates that each two encoder’s sub-layers—both self-attention

and FFN—is wrapped by a residual connection followed by layer normalisation.

Thus, the output from each sub-layer is calculated as LayerNorm(x+ Sublayer(x)),

where Sublayer(x) represents the specific operation carried out by the sub-layer. The

residual connection and the normalisation plays an important role in stabilizing the

learning process and stimulating the model’s training by combining the input and

output of each layer, thereby limiting problems such as vanishing gradients.

2.6.5 Decoder

The decoder consists of six stacked layers, commencing by receiving the previous de-

coder’s output. Similar to the encoder, the decoder contains a layer of self-attention

at the very bottom. This sub-layer of self-attention allows Transformers to dynami-

cally attend to different parts of the output. However, there is a significant difference

between the encoder’s self-attention sub-layer and the decoder’s self-attention sub-
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layer. The self-attention in the decoder uses masking to prevent a position from

being influenced by subsequent positions. This ensures that the prediction of a

position in the output sequence depends only on the knowledge available to the

transformer up to that position.

As illustrated in Figure 2.8 (right side), the transformer decoder also includes an

encoder-decoder attention (cross-attention) sub-layer. This sub-layer facilitates the

alignment of the encoder’s output with the output from the previous self-attention

sub-layer in the decoder. Consequently, the outputs of the encoder and the decoder

are combined, allowing the most relevant parts of the input sequence to influence

the prediction of each position in the output sequence. Finally, each sub-layer in the

transformer is wrapped with a residual connection followed by layer normalisation,

mirroring the structure employed in the encoder.

2.6.6 Multi-headed self-attention mechanism

The self-attention mechanism is essential to the Transformers architecture as it

allows these models a nuanced contextual understanding of the input sequence.

This mechanism concentrates on a sequence’s component dynamically, adjusting its

focus based on the surrounding context. It is analogous to how humans are able

to selectively focus on a particular part of a text. The attention function’s input

consists of query and key vectors, each with a dimension of dk, and value vectors

of dimension dv. These vectors are produced through linear transformations of the

input sequence. Practically this function operates simultaneously on a set of vectors

compacted into matrices. The attention function is mathematically represented as

follows:

Attention(Q,K, V ) = softmax
(︃
QKT

√
dk

)︃
V (2.2)

Where Q, K, and V are matrices of a set of queries, keys, and values respec-

tively. Additionally, the Transformer architecture employs multi-head self-attention,
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which consists of h layer of individual self-attention functions. Each layer performs

the attention function over a different projection of the input value, yielding dv-

dimensional outputs. Finally, as illustrated in Figure 2.9, the output from all layers

are concatenated and linearly projected, resulting in the final output values. This

innovative approach allows the Transformer to simultaneously address information

from distinct inputs representations at different positions.

Figure 2.9: Illustrating the attention mechanism’s core (on the left) and the multi-

head attention mechanism (on the right). The figure is reprinted from "Attention

is All You Need" by Vaswani et al. [18].

2.7 Positional encoding

Transformers are specially structured to process sequential data following the prior

similar models such as RNNs. Such models are equipped and adapted carefully to

consider the order of the data points when generating the outputs. Although in the

sequential data, the inherent order of the input elements is pivotal to their interpre-

tation, the attention mechanism is naturally permutation invariant. In Transformers

architecture, the order of entries are introduced by a smart solution called positional

encoding. The main purpose of positional encoding is to inject positional informa-
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tion into these models.

To elucidate further, positional embeddings are vectors of the same size as the

input token embeddings. Therefore, they can be summed with the token embeddings

at the initial steps of the decoder or encoder stack. Adding the positional encoding

to the input embeddings ensures that the model learns not only the significance

of each token but also its position in the sequence. There are multiple options for

encoding functions which must be chosen based on the input data and the project.

The one mentioned below was introduced by the original paper [18]:

PE(pos, 2i) = sin
(︂ pos

100002i/dmodel

)︂
(2.3)

PE(pos, 2i+ 1) = cos
(︂ pos

100002i/dmodel

)︂
(2.4)

Where pos is the position of the token in the sequence, i is the dimension index,

and dmodel is the dimensionality of the token embeddings. The use of sinusoidal

functions helps the model easily learn to attend by relative positions since for any

fixed offset k, PE(posk) can be represented as a linear function of PE(pos).

2.8 MBAD and Transformers integration

MBAD was designed to output the molecular interatomic distances and the elements

constituting each molecule. This design of MBAD geared us towards adapting the

NLP techniques and Transformers architecture to suit our research goal the most.

Inspired by the tokenization technique, we map each pair of composing elements

using the formula shown in Equation 2.5, where Z1 and Z2 are the atomic numbers

of the first and second elements, respectively. Coefficient 118, which is the number of

chemical elements in the periodic table, ensures an injective mapping. Considering

how MBAD is an invariant representation, same as MBTR, it preserves an order

when calculating the distances of neighbouring atoms in a molecule. Therefore, the
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mapping of each molecule certainly remains similar, even under molecular rotations.

T (Z1, Z2) = (118 · Z1) + Z2 (2.5)

In order to benefit from the Transformer technology in the field of material

science and property prediction, a few adjustments were made to the model. We in-

corporated the numerically encoded atoms in a molecule (Figure 2.10) as the model’s

input. Meanwhile, the inter-atomic distances extracted by the MBTR representa-

tion integrate into the model as positional embeddings. The inter-atomic distances

are transformed to an embedding by a randomly initialised neural network. Further-

more, the resulting mapped embeddings is incorporated into the model architecture

as positional embeddings, where it is added to the input embeddings.
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Figure 2.10: Transformers architecture is adapted to be most suited for analyzing
the interatomic distances
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2.9 Evaluation metrics

There are metrics for evaluating the model’s performance. A suitable metric is

essential to the model’s learning. Moreover, a common metric allows us to challenge

and assess how accurately a model predicts the target value compared to other

available techniques and models. Numerous metrics are popular for evaluation,

each providing unique insights.

2.9.1 Mean squared error

Mean Square Error (MSE) is a loss function which is used to penalise the model

corresponding to the margin between the predicted and the true value. MSE high-

lights the difference between targeted and predicted values more pronouncedly, by

squaring their subtraction. It also normalises the error against the number of the

observations in the dataset. The mathematical formula to calculate the MSE is:

MSE =
1

n

n∑︂
i=1

(ŷi − yi)
2 (2.6)

Where the n is the number of data points, ŷi is the predicted value by the model

and yi is the true target.

2.9.2 Mean absolute error

Mean Absolute Error (MAE) is another loss function. It measures the average

magnitude absolute difference between the target and the predicted values. It is

defined mathematically by the following formula:

MAE =
1

n

n∑︂
i=1

|ŷi − yi| (2.7)

Where the n denotes the number of observations, yi the true value and ŷi the
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predicted value. Unlike MSE, MAE is less sensitive to outliers because it employs a

linear, rather than quadratic, penalty for errors.

2.9.3 R-squared score

The R-squared score (R2-score) measures the proportion of variance in the dependent

variable that is predictable from the independent variables. In other words, the

R2-score evaluates how well the model is able to predict the target based on the

observations. It ranges from 0 to 1 and is calculated as:

R2 = 1−
∑︁n

i=1(yi − ŷi)
2∑︁n

i=1(yi − ȳ)2
(2.8)

where ȳ represents the mean of the true values, yi the true values, ŷi the predicted

values by the model, and n the number of observations. In this thesis, we report

R2-scores of trained models on the test set, where a higher score indicating a better

fit of the model to the data.

2.9.4 Applying evaluation metrics

In practice, MSE, MAE, and R2-score are used to evaluate the Transformer model’s

performance on the validation and test sets. By comparing these evaluation metrics,

we gain insights into how well the model generalises to unseen data and how accu-

rately it is able to predict. Furthermore, our set of evaluation methods is aligned

with reported metrics of other research, effectively serving as a standard in the rel-

evant field. This standardisation facilitates benchmarking and ensures consistency

in assessing model performance across different studies and applications.



3 Model Evaluation Results

In order to discuss the research goals of this thesis, we analyse and compare the

results of different models. Each model is trained on the training set and the reported

performance metrics are evaluated over the test set.

3.1 Analysis of MBTR

MBTR representation is a common tool for representing molecular structures in

various computational analyses. It describes molecules’ many-body interactions as

fixed-size continuous representations, providing machine learning models with novel

structured features. We exclusively encoded the molecular interatomic distances for

the Transformer neural network to predict the HOMO energy. Figure 3.1 illustrates

the Transformer model’s learning curve with a decaying learning rate, plotted by

measuring the model’s loss at each epoch. It also compares the model’s loss on the

training set against the evaluation one. The loss function is plotted on a logarithmic

scale to visualise the nuanced changes in the model’s learning more evidently.

As demonstrated in Figure 3.1, after inputting the processed MBTR representa-

tion to the Transformer neural network, the model’s weights are initialised randomly.

Therefore, the model begins with a high loss and error rate, which decrease as the

model starts learning from the represented molecules until around epoch 70. Since

this epoch, minimal improvement can be observed in the evaluation loss. Meanwhile,

the training loss falls dramatically after epoch 70, as the model starts memorising
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Figure 3.1: Training and evaluation of the Transformer neural network on MBTR
representation of QM9 dataset. Around epoch 70, the model begins to overfit over
the training set of data which barely improves the prediction accuracy on the eval-
uation set.

the entries and consequently overfitting on the training dataset.

3.1.1 Learning rate

In Figure 3.2 , we examine the effect of different learning rates and the convergence

speed during training. Utilising the proper learning rates impacts the learning pro-

cess evidently. As demonstrated in this figure, with larger learning rates (e.g., 0.001),

the model misses the loss function’s local minima, hence the learning curve is rela-

tively flat. Conversely, opting for a smaller learning rates (e.g., 1e− 6) leads to slow

learning and increases the probability of getting stuck in a local optimum. This

observation led us to conclude that we could benefit from decay learning rate to

adjust dynamically during the training process.
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Figure 3.2: Logarithm of loss function of the Transformer model while training on
the dataset represented by MBTR with different learning rates (ranging from 1e-3
to 1e-6) and a constant batch size of 64.

3.1.2 Sigma

Although in machine learning models there are a number of hyperparameters that

require to be fine-tuned, there are also some introduced by the MBTR. There are

19 hyperparameters affecting MBTR representation when initialisation [22]. One of

these hyperparameters is sigma, as we stated in Section 2.3. In MBTR, sigma (σ)

refers to a coefficient in the Gaussian function that determines the smoothness or

narrowness of the features when representing a molecule.

Reported in Table 3.1, we compare the MAE across different Transformer models

after being represented by MBTRs of different sigma settings (i.e., ranging from 100

to 1e− 6). The lowest MAE, indicating the best model performance, is observed at

σ = 0.1 with an MAE of 0.1829 and an R2-score of 0.7884. Conversely, the worst

performance corresponds to σ = 1e−6 and σ = 100, yielding an MAE of 0.3551 and
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0.3719 respectively. In conclusion, this comparison demonstrates the critical role of

sigma in determining the quality of the information captured by the representation

method. If sigma is too large or too small, the model is unable to effectively learn

the structural features of the molecules.

Table 3.1: Transformer model performance in predicting HOMO energy across MB-
TRs with different sigma initialisations. Optimal result is characterised by a low
MAE and a high R2-score.

Sigma MAE R2-score

100 0.3719 0.0445

10 0.3551 0.1661

1 0.2592 0.5565

0.1 0.1829 0.7884

0.01 0.2055 0.7431

0.001 0.2003 0.7274

1e− 4 0.2083 0.7069

1e− 5 0.2282 0.6671

1e− 6 0.3551 0.1661

3.1.3 Comparative discretisation methods

During the data preprocessing, stated in section 2.4, we proposed two methods

to discretise the MBTR representation outputs, preparatory to entering the Trans-

former model. One of the proposed binning methods is to map the continuous values

generated by MBTR to a set of equal length intervals. As a result, the interval in-

dices, transformed discrete integers, are structured and preprocessed for input into

the Transformer neural network.

Although the equal width binning technique is straightforward and increases the

interpretability, it introduces a new hyperparameter which requires optimisation.

In this method, the selection of the right number of bins obviously determines the
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effectiveness of our data preparation. Therefore, we examined the impact of different

binning numbers on the model performance. The results are listed in Table 3.2.

Table 3.2: Comparison of MAE in HOMO energy predictions by Transformer models
trained with segmented MBTR representations into N equal-length bins (lower MAE
is the indication of better performance).

Number of bins N MAE

10 0.3471

500 0.1383

1000 0.1273

2000 0.1275

10000 0.1742

As highlighted in Table 3.2, N = 1000 and N = 2000 are the optimal numbers

of bins when discretising the molecular representation by MBTR. If we employ a

smaller number of larger-sized buckets (e.g., 10 bins), the transformation causes a

significant loss of information, which leads to a larger error margin in the predic-

tions. Moreover, using an excessively large number of bins (e.g., 10000 bins) when

implementing the technique can counteract its intended purpose of denoising and

data processing.

An alternative approach for binning the MBTR output is the application of

logarithmic scaling, as introduced in Equation 2.1. This method is designed to

limit noise while preserving both zero values and spikes in the representations. This

method maps the represented values to a finite set of integers without the need

for any hyperparameters, thereby eliminating the necessity for further optimisation.

The results of the two discretisation methods are compared in Table 3.3, where key

machine learning model settings, e.g., batch size, learning rate, were kept constant

to ensure a fair comparison. Based on the results, we conclude that both binning

methods are equally effective, each demonstrating unique strengths.
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Table 3.3: Comparison of accuracy in HOMO energy predictions by Transformer
models trained with different methods of discretising the MBTR representation
(lower MAE and higher R2-score indicate better performance).

Binning method MAE R2-score

Logarithmic scaling 0.1245 0.88

Equal Width 0.1274 0.87

3.1.4 MBTR size

As discussed in Section 2.3, when encoding interatomic distances in a molecule

using MBTR, the size of the representation depends on both the number of unique

elements in the molecule and the number of sampling points used to discretise the

x-axis. The MBTR transforms continuous distributions of distances into fixed-size

vectors by sampling from the distribution. The number of sampling points is a

hyperparameter that requires fine-tuning when configuring the MBTR settings, as

it affects the resolution of the representation and the computational cost. In Table

3.4, we evaluate the Transformer model’s performance using MBTR representations

with varying numbers of sampling points.

Table 3.4 presents the MAE of Transformer models trained on MBTR represen-

tations of varying sizes. The number of sampling points in these representations

ranges from 20 to 80, resulting in overall representation vectors of sizes between 300

and 1200. Given that the Transformer models were trained using NVIDIA GPUs,

it is essential to consider the trade-off between input sequence length and batch

size. An increase in the representation size requires a corresponding decrease in the

batch size due to memory limitations. We utilised two NVIDIA A100 GPUs with a

total of 80GB of GPU memory, which dictated the maximum feasible batch size, as

indicated in Table 3.4.

Table 3.4 proves that sampling the distance between each combination of atom

pairs 20, 30, and 40 times results in optimal model performance. That is, represen-
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Table 3.4: Performance of Transformer models trained on MBTR representations
with varying sizes. A lower MAE indicates better predictive performance of the
models. As the representation size increases, the batch size is reduced due to GPU
memory limitations.

Sampling number MBTR vector size Batch size MAE

20 300 128 0.1273

30 450 128 0.1299

40 600 80 0.1264

50 750 50 0.1349

60 900 40 0.1451

70 1050 40 0.1452

80 1200 40 0.1316

tation lists of lengths 300, 450, and 600, respectively, provide sufficient molecular

structure information for effective model learning. Moreover, smaller representation

lists allow for the use of larger batch sizes, which, in turn, improves the training

speed of the model.

3.2 Analysis of MBAD and model adaptation

Following the implementation of the original MBTR, a continuous fixed-size repre-

sentation tool, we determined that adjustments to the representation method were

necessary, given the inherent structure of Transformers. Transformer input typically

consists of tokenized sequences of variable length. As such, it is essential to adapt our

representation tool to align with the input processing constraints of Transformers.

Therefore, in Section 2.5, we introduced MBAD, a variable-length representation

tool to encode the molecular interatomic distance.

Considering the Transformer architecture as introduced in Section 2.6, we incor-

porated key components, e.g., positional embedding, to address the specific chal-
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lenges of our project. As was stated in Section 2.8, chemical elements in the MBAD

representation output are encoded in pairs and subsequently fed into the model. In

this procedure, the interatomic distances captured by MBAD are discretised into

bins and incorporated as positional encodings. Subsequently, the positional encod-

ings and the input are mapped into embeddings and aggregated through summation.

This tailored model effectively integrates all molecular structural information to pre-

dict the HOMO energy robustly. Figure 3.3 presents the performance of such model

over the training and evaluation set by tracking the logarithm of the loss function

after each epoch.

Figure 3.3: Learning curve of Transformer-based model trained over MBAD repre-
sentation of the molecular data, depicting the logarithm of the training and evalu-
ation loss at each epoch.
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3.2.1 Discretising MBAD

MBAD representation output, specifically the encoded distances between every atom

pair in a molecule, consists of sequential continuous values. Consequently, it requires

discretisation similar to the process applied to the MBTR output. Although two

different discretisation methods were introduced in Section 2.4, both demonstrated

comparable efficacy when examining their effect on using MBTR representation with

the machine learning model (reported in Table 3.3). Thus, the equal-width binning

method was selected for discretising the MBAD representation output to further pre-

process the data. This approach is straightforward and interpretable, maintaining

relevant feature information without compromising the model’s generalisation abil-

ity, assuming that the number of buckets is properly optimised. Table 3.5 presents

an analysis of how varying the number of bins affects the Transformer’s predictive

performance when applied to the MBAD representation.

Table 3.5: MAE and R2-score of model predicting the HOMO energy molecular
dataset represented by MBAD and discretised into N bins.

Number of bins (N) MAE R2-score

5 0.15 0.84

10 0.11 0.91

50 0.086 0.94

80 0.0847 0.95

100 0.0847 0.95

500 0.086 0.94

1000 0.096 0.92

2000 0.099 0.92

5000 0.12 0.88

10000 0.16 0.79

Table 3.5 reports the impact of segmenting the data into varying numbers of
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intervals (N) on the model’s performance in predicting the target variable after

100 epochs. Specifically, when N is too small, the model is barely able to capture

nuanced relationships within the data. Conversely, an excessively large number of

intervals (e.g., N = 10000) introduces a substantial amount of noise, diluting mean-

ingful patterns and thereby degrading the model’s predictive accuracy. Therefore,

Table 3.5 proves that an optimal balance is achieved when the MBAD representation

is divided into approximately 80 to 100 bins.

3.2.2 Hyperparameter optimisation

In this section, we investigate the complex relation of the hyperparameters and the

model’s accuracy in performing the prediction task. The following variables were

studied:

• Embedding size tested over the range of [24,144,456,768,1200,1800], reflecting

on the size of the model.

• Batch size with a testing range of [24, 36, 64, 128, 512, 1024] which initiates the

number of samples the model processes at a step.

• Dropout rate examined at values [0,0.2,0.4,0.6] to prevent overfitting.

• Number of hidden layers explored over [2,4,8,12,16,24], indicating the depth

of the model.

A grid search was conducted to explore all combinations of these manipulating vari-

ables. Each model of different initiative setting was trained on 4 NVIDIA Ampere

A100 GPUs, with 40 GB of memory, and a limited compute window of 30 hours. The

Adafactor algorithm was employed to dynamically adjust the learning rate based on

the scale of parameters and their gradients, eliminating the need for a fixed initial
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learning rate. This adaptive learning rate optimisation technique offers the signifi-

cant advantage of reduced memory consumption as well [23]. In case the model was

able to complete 100 epochs within the mentioned time frame, it was subsequently

evaluated on a test set for comparison. Models that failed to converge within the

allotted time or exceeded the memory constraint were considered too complex or

inefficient for the available computational resources. Among the 255 successfully

completed models, 50 models with the lowest prediction MAE on unseen portion of

data were selected for further analysis. The distribution of each hyperparameter in

this selected set of models was closely examined to identify patterns and trends, as

illustrated in Figure 3.4.

Figure 3.4(a) illustrates the 4 largest embedding dimensions (i.e., 456, 768, 1200

and 1800) are associated with high-performing models, indicating a positive corre-

lation between increased embedding size and enhanced model efficacy. While larger

embedding sizes such as 1200 and 1800, enable the model to capture more intricate

patterns, they also raise the risk of overfitting, resulting in diminished performance

on test sets. Moreover, larger models require substantial memory resources, thus

elevating the risk of memory overflow errors, especially when implied with complex

models. Figure 3.4(b) demonstrates that smaller batch sizes, such as 24, 36, and 64,

are predominantly linked with the most effective models. Utilizing smaller batch

size has a regularisation effect on the learning process and enhances the model’s

simplicity. Although training with smaller batch sizes prolongs the process, it in-

troduces beneficial noise into the learning dynamics, enabling the final model to

generalise more effectively on unseen data [24]. Another hyperparameter examined

in the 50 best-performing models is the batch size, as presented in Figure 3.4(c). A

model of 4 to 8 hidden layers includes sufficient parameters to learn nuisance pat-

terns in data. However, adding more layers can overly complicate the model, leading

it to memorise data rather than learn from it, which often results in overfitting and
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poor performance on unseen data. Figure 3.4(d) reveals that the implementation

of dropout rates within the tested spectrum remains relatively uniform across the

highest-performing models, although a slight increase is observed in the number of

models with dropout rate of 0. Considering that models with fewer hidden layers

accounted for the largest share among the high-performing models, it is reasonable

to conclude that such models may not necessitate the use of a dropout rate.

Figure 3.5 presents a parallel coordinate plot that compares several promising

hyperparameter configurations in accordance to their model’s performance. In this

plot, each line represents a different model configuration, with axes corresponding to

specific hyperparameters, while colour indicates the performance metric (i.e., MAE

on the test set). To maintain clarity, a threshold of 0.09 was set to exclude models

with higher error rates. It is evident from the plot that increasing hyperparame-

ters—embedding size and the number of hidden layers—leads to improved model

performance. However, models with both a largest embedding size and a highest

number of hidden layers encountered memory limitations during training. The figure

also illustrates a trade-off between these two hyperparameters: a smaller embedding

size can be offset by a deeper model, and vice versa. Thus, achieving a balance

between the two hyperparameters helps optimise the error rate of the predicted

target.

Figure 3.5 also highlights a correlation between the number of hidden layers and

the dropout rate among models with lower MAE (represented by shades of red).

An excessive increase in the number of hidden layers leads to overfitting, which

can be mitigated by a higher dropout rate. The dropout rate and batch size play

a crucial role in regulating the model’s performance. By increasing the dropout

rate or reducing the batch size, we can prevent the model from becoming overly

focused on small details in the dataset, thereby reducing the risk of overfitting at

the expense of losing generalisation capabilities. However, excessively high dropout
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rates combined with a small batch size leads to an underfitted model.

As a result of this thorough optimisation experiment, we identified the most

effective hyperparameters for fine-tuning. The best-performing model (embedding

size = 768, batch size = 24, dropout rate = 0.2, and 8 hidden layers) is highlighted

by a black dashed line in Figure 3.5. This configuration significantly improved the

model’s prediction accuracy and generalisation on the test set.

3.3 Comparing models with MBTR and MBAD

Ultimately, after thoroughly analysing and optimising both approaches, we com-

pared the performance of MBTR with the original Transformer architecture and

MBAD with the adapted Transformer architecture. Both models were optimised

and evaluated on the same test set, and the results are presented in Table 3.6.

Table 3.6: Comparison of model performance with standard MBTR and adapted
approach applied with MBAD representation, highlighting the improvement in ac-
curacy and generalisation achieved by the adapted solution.

Model MAE R2-score

Transformer and MBTR 0.1239 0.89

Adapted Transformer and MBAD 0.0676 0.96

The adapted Transformer model with the MBAD representation achieved a sig-

nificantly lower MAE of 0.0676 compared to 0.1239 from the Transformer with

MBTR, indicating a substantial improvement in prediction accuracy. These results

suggest that the modifications introduced in the adapted Transformer architecture,

combined with the MBAD representation, contribute to enhanced model perfor-

mance. The adapted architecture appears to be better suited for capturing the

complex interactions modeled by MBAD, leading to improved accuracy and gener-

alisation capabilities.
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Figure 3.4: Distribution of hyperparameter values among the 50 models with the
lowest MAE (best performance) on the test set after 100 epochs of training. The
most commonly observed values for the experimented variables are embedding size
= 768, batch size = 36, number of hidden layers = 4 and dropout rate=0. (a)
Larger embedding sizes ( >= 456 ) are the only values to be seen among the top-
performing models. (b) Only the three smallest batch sizes were present among
the leading models. (c) The middle range of hidden layers, specifically 4 and 8
layers, predominantly produced the lowest prediction errors. (d) Dropout rates were
uniformly distributed among the best models, with a slight advantage observed for
a dropout rate of 0.



3.4 COMPARING TO THE STATE OF THE ART 47

Figure 3.5: Parallel coordinate plot comparing the hyperparameters of the
Transformer-based model, filtered by a predictive performance threshold of MAE
< 0.09. The dashed line represents the configuration that yields to best-performing
model, achieving an MAE of 0.062 after 100 epochs.

3.4 Comparing to the state of the art

In order to further examine the effectiveness of our adaptation of Transformer ar-

chitecture with a novel representation tailored for such a model, in Table 3.7, we

compared its performance with several state-of-the-art (SOTA) models that have

been widely applied for predicting HOMO energy in materials science. This com-

parison allows us to highlight advantages and potential limitations of our approach

to existing techniques.
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The first model compared is Kernel Ridge Regression (KRR), a regularised learn-

ing algorithm that captures nonlinear relationships by applying a kernel function to

implicitly map data into a higher-dimensional space [25]. Several studies [26], [7],

[27] reported KRR performance for predicting modeling of HOMO energy on the

QM9 dataset. Although there are some differences in their validation methods (e.g.,

cross-validation techniques and representation methods), in Table 3.7, we presented

the best-reported KRR which is applied over the MBTR representation of QM9

dataset. Wavelet Scattering Regression is a technique that uses wavelet transforms

to capture multiscale, translation-invariant features from data [28]. Lastly, with the

lowest MAE in Table 3.7, is the Cormorant model, a neural network that allows for

rotationally covariant prediction of properties of complex physical systems [29].

There are also graph-based models in Table 3.7, such as Deep Tensor Neural

Network (DTNN), a deep neural network approach that studies quantum-chemical

many-body systems by projecting spatial and chemical features onto trainable em-

beddings [30]. Expanding upon DTNN, SchNet was developed to study atomistic

systems. SchNet is another deep learning framework for quantum-chemical property

predictions by implementing continuous-filter convolutions [31].

Table 3.7: Performance comparison of the adapted Transformer model with MBAD
representation and state-of-the-art (SOTA) models on HOMO energy prediction. A
dash ("-") indicates that the corresponding metric was not evaluated in the original
source.

Model MAE R2-score

Transformer (MBAD) 0.06766 ± 0.00258 0.96169 ± 0.00273

Kernel Ridge Regression (MBTR) 0.086±0.001 0.950±0.002

Deep Tensor Neural Network 0.16 0.9

Cormorant 0.034 ± 0.002 -

SchNet 0.041 -

WaveScatt 0.085 -
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Pinpointed in Table 3.7, our adapted Transformer model using MBAD surpassed

more conventional models, such as KRR and DTNN by an MAE of 0.0676. How-

ever, both SchNet and Cormorant demonstrated superior performance in capturing

complex molecular interactions. This is likely due to the design of these models,

which are specifically tailored to study molecular structures, contributing to their

enhanced accuracy.



4 Conclusion and Future Work

4.1 Conclusion

In this thesis, we investigated the capabilities of Transformer-based models in pre-

dicting material quantum chemical properties, specifically focusing on the HOMO

energy level. Our motivation stemmed from the impressive results achieved by

Transformers across various domains and the potential benefits of applying novel

models in the realm of material science, a field that has not yet been extensively

explored.

Our analysis was divided into two distinct stages. Initially, the molecular dataset

(i.e., QM9) was represented using MBTR, a well-known method that encodes the

structural features of molecules into a fixed-length continuous vector for compu-

tational modelling. During the first stage, we retained the original MBTR and

Transformer architecture with minimal modifications, such as discretising the con-

tinuous representation, to test the baseline performance. This approach yielded an

MAE of 0.123, demonstrating that even with minimal changes, the Transformer

model can reasonably predict HOMO energy levels compared to regression models

such as KRR.

We also examined hyperparameters and different approaches to data discretisa-

tion to maximise the efficiency of using MBTR and the Transformer model in pre-

dicting molecular orbital energy. MBTR’s initial hyperparameters, such as sigma
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(σ) and representation size, influence the descriptiveness and precision of the rep-

resentation method in interpreting molecular structures. Therefore, they have a

significant impact on the prediction accuracy of the Transformer model. Mean-

while, when molecules are discretised using different techniques, as long as these

techniques preserve the main characteristics of the original representation, they lead

to similar prediction accuracy by the Transformer model.

As the Transformer neural network is capable of analysing sequences of variable

length, we developed a more suitable representation approach during the second

stage of our research. The Many-Body Atom Distance (MBAD) is a discretised

representation tailored to fit the Transformer model while descriptively present-

ing molecular structural information. Molecules are introduced to the Transformer

model as combinations of atom pairs. Using this novel representation method, the

Transformer model receives encoded atomic numbers as input and interatomic dis-

tances as positional encodings. By leveraging a purposefully designed representation

and modifications to the Transformer architecture, we achieved a significantly lower

MAE of 0.071 compared to our first approach.

Hyperparameters were fine-tuned diligently throughout both stages of the study.

Unlike MBTR, MBAD is a simpler representation with no hyperparameters, elimi-

nating the need for optimisation. In contrast, optimising MBTR, which has a total

of 15 hyperparameters, can be overly complex. However, the Transformer model

itself includes numerous hyperparameters that significantly influence the model’s

learning process. When applying MBAD with the Transformer-based model, an ex-

tensive grid search revealed that the model’s hyperparameters are heavily correlated.

While fine-tuning the hyperparameters proved to be highly resource-intensive, it was

crucial for achieving more reliable predictions of the HOMO energy level.

Since MBAD, unlike MBTR, does not constrain molecules to fixed-length repre-

sentations, it is faster and more memory-efficient. In datasets containing molecules
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of various sizes, MBTR produces a highly sparse representation. This sparsity is

not only inefficient but also increases the risk of overfitting. On the other hand, the

Transformer neural network, due to its large number of parameters, is a resource-

intensive model. This complexity, depending on the allocated resources, can lead to

memory errors when analysing large molecules, even with the MBAD representation.

In conclusion, our findings manifest the potential of leveraging the Transformer

neural network for the unconventional task of predicting quantum chemical proper-

ties of organic molecules. Our adaptation of the original Transformer architecture,

along with our simple variable-length representation, enhances the Transformer

model’s understanding of the molecular structure. Through the model’s learning

process, the Transformer attends to each pair of atoms in relation to other pairs

in the molecule and gradually captures an understanding of molecular interatomic

distances with regard to the targeted property.

4.2 Recommendation for future work

While the current study has demonstrated the efficacy of Transformer-based models

for predicting material properties using the QM9 dataset, several promising av-

enues for future research remain unexplored. Expanding the scope of this research

to include larger and more challenging datasets represents a key next step. The

QM9 dataset, though popular and well-suited for comparative studies, contains rel-

atively simple organic molecules. Applying the Transformer model to more complex

datasets with a greater diversity of molecular structures would provide a more com-

prehensive evaluation of its generalisation capabilities. This would also allow the

model to encounter molecular representations that are more challenging, testing its

ability to learn from larger and more varied input spaces.

Another critical aspect of future work lies in leveraging the power of Transformer

models for transfer learning. One of the primary strengths of the Transformer ar-
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chitecture in fields such as NLP has been its ability to benefit from pretraining on

vast datasets, which allows the model to transfer learned knowledge to specific tasks

with limited data. In the context of materials science, pretraining a Transformer

model on a large and chemically diverse dataset could provide it with a broad under-

standing of molecular structures and interactions, enabling it to make more accurate

predictions on specialized tasks like quantum chemical energy prediction.

Additionally, the Transformer-based model proposed in this work could be ex-

tended to predict other material properties beyond those derived from electronic

structures. Investigating its performance on properties that are influenced by differ-

ent physical or chemical factors, such as thermal conductivity, mechanical strength,

or solubility, could provide valuable insights into the model’s versatility. Studying

such properties would test the model’s ability to generalize beyond electronic struc-

ture predictions and adapt to diverse property types further validating its potential

as a robust tool for materials science research.

In conclusion, this work highlights the promising capabilities of Transformer-

based models in materials property prediction and lays the foundation for further

exploration. By expanding to larger datasets, utilising transfer learning, and ad-

dressing diverse property predictions, future studies can unlock the full potential of

this approach, advancing the role of machine learning in materials informatics.
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