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ABSTRACT 

Children with rhinovirus (RV)-induced severe early wheezing have higher risks of 
subsequent recurrences and asthma than those with other viral aetiologies. The 
immunopathogenesis of this novel association remains unclear. While all major 
guidelines recommend against the use of bronchodilators and corticosteroids as a 
treatment regimen for bronchiolitis and early wheezing, they fail to consider the 
emerging evidence of bronchiolitis heterogeneity. Though early RV-induced 
wheezing resembles recurrent wheezing and asthma, its immunopathogenesis and 
the efficacy of bronchodilators and corticosteroids remain poorly studied. 

In this thesis we evaluated the clinical short- and long-term effectiveness of both 
inhaled β2-agonist with and without oral corticosteroid treatment in early wheezing, 
RV-affected children. Moreover, we studied the immune responses from anti-
CD3/anti-CD28-stimulated peripheral blood mononuclear cells (PBMCs), and their 
association with short- and long-term prognoses in first-time wheezing children 
under different scenarios, including sole RV vs. sole respiratory syncytial virus 
(RSV), and sole RV vs RV while coinfecting with human bocavirus 1 (HBoV1). 
Lastly, the association between the initial disease severity during sole RV-associated 
wheezing and cytokine response from stimulated PBMCs was evaluated. 

The results of this thesis support the assumption of bronchiolitis heterogeneity. 
Concomitant use of β2-agonist and systemic corticosteroids appears to be beneficial 
in children with early wheezing induced by RV. Moreover, early wheezing induced 
by RV and RSV result in different cytokine responses and short- and long-term 
prognoses, thus suggesting different immunopathology between the two primary 
inducers of bronchiolitis. Furthermore, HBoV1 coinfecting with RV leads to 
immunomodulation by suppression, indicating that coinfections during bronchiolitis 
may impact the overall cytokine responses. Finally, an improper balance between 
pro- and anti-inflammatory cytokine profiles is associated with poorer initial disease 
severity. 

These results highlight the heterogeneity of bronchiolitis and its effect on long-
term prognosis and emphasize the need for more personalised treatment strategies 
for children with early wheezing. 

KEYWORDS: Asthma, atopy, cytokine, β2- agonist, bronchiolitis, human bocavirus 
1, immunity, oral corticosteroid, peripheral blood mononuclear cells, recurrent 
wheezing, respiratory syncytial virus, rhinovirus, virus  
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TIIVISTELMÄ 

Lasten rinoviruksen (RV) aiheuttama varhainen uloshengitysvaikeus on yhteydessä 
suurempaan riskiin sairastua taudin myöhempiin uusiutumisiin ja astmaan kuin 
muilla virusetiologioilla. Tämä havainto on suhteellisen uusi ja sen taustalla oleva 
immunopatogeneesi on edelleen epäselvä. Vaikka kaikki keskeiset hoitosuositukset 
suosittelevat välttämään bronkodilataattoreita ja kortikosteroideja varhaisen 
uloshengitysvaikeuden hoidossa, ne eivät huomioi lisääntyvää näyttöä sairauden 
heterogeenisyydestä. RV-infektion aiheuttama varhainen uloshengitysvaikeus 
muistuttaa toistuvaa uloshengitysvaikeutta ja astmaa, mutta bronkodilataattoreiden 
ja kortikosteroidien tehokkuutta sen yhteydessä on tutkittu vain vähän. 

Tässä väitöskirjassa arvioimme hengitettävän β2-agonistin ja suun kautta 
annettavan kortikosteroidin sekä niiden yhdistelmän lyhyt- ja pitkäaikaista kliinistä 
tehoa varhaisessa uloshengitysvaikeudessa RV-infektion aikana. Lisäksi tutkimme 
immuunivasteita anti-CD3/anti-CD28-stimuloiduista perifeerisen veren mono-
nukleaarisista valkosoluista (PBMCs) ja näiden yhteyttä ensimmäistä kertaa 
uloshengitysvaikeudesta kärsivien lasten lyhyen ja pitkän aikavälin ennusteisiin 
verraten eri virusetiologioita (RV vs. respiratory syncytial virus (RSV), sekä RV vs. 
RV- human bocavirus 1 (HBoV1) koinfektio). Arvioimme myös akuutin sairauden 
vakavuuden ja sytokiinivasteiden välistä yhteyttä RV-infektioon liittyvässä ulos-
hengitysvaikeudessa. 

Tämän väitöskirjan tulokset osoittavat, että RV:n aiheuttamassa varhaisessa 
uloshengitysvaikeudessa sekä β2-agonistin että systeemisten kortikosteroidien 
yhtäaikainen käyttö vaikuttaa hyödylliseltä. Lisäksi RV:n ja RSV:n aiheuttamat 
varhaiset sytokiinivasteet sekä lyhyt- ja pitkäaikaisennusteet poikkeavat toisistaan, 
mikä viittaa erilaiseen immunopatologiaan. RV-HBoV1-koinfektio johtaa vaimenta-
vaan immunomodulaatioon viitaten siihen, että koinfektiot voivat vaikuttaa syto-
kiinivasteisiin bronkioliitin aikana. Epätasapaino pro- ja anti-inflammatoristen 
sytokiiniprofiilien välillä on yhteydessä vaikeampaan taudinkuvaan. 

Tulokset korostavat uloshengitysvaikeuden heterogeenisyyttä ja sen vaikutusta 
pitkän aikavälin ennusteeseen, ja korostavat tarvetta kehittää yksilöllisempiä 
hoitostrategioita varhaisesta uloshengitysvaikeudesta kärsiville lapsille. 

AVAINSANAT: Astma, atopia, β2-agonisti, bronkioliitti, human bocavirus 1, 
immuniteetti, oraalinen kortikosteroidi, perifeerisen veren mononukleaariset solut, 
toistuva uloshengitysvaikeus, respiratory syncytial virus, rinovirus, sytokiini, virus   
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1 Introduction 

Bronchiolitis is the most common illness requiring hospitalisation in young children. 
Up to one-third of children younger than two years experience bronchiolitis, of 
whom 2% to 5% need hospitalisation (Jartti et al., 2019; Mahant et al., 2022). 
Historically, bronchiolitis has been viewed as a single condition, leading to a scarcity 
of studies exploring potential endotypes. Most of the prior research has focused on 
comparing respiratory syncytial virus (RSV) and non-RSV agents in bronchiolitis 
and early wheezing, with limited data on other viral causes. However, recent 
evidence suggests that bronchiolitis is a spectrum of endotypes that may benefit from 
personalised treatment (Jartti et al., 2019; Makrinioti et al., 2022; Meissner, 2016). 

The primary viral agents linked to bronchiolitis are RSV and rhinovirus (RV) 
(Florin et al., 2017; Meissner, 2016). RSV-associated illness is common in children 
younger than 12 months, whereas RV infections are the most common in older 
children (Jartti et al., 2019). While both viruses increase the risk of recurrent 
wheezing and asthma, the risk is more pronounced with RV infection. Additionally, 
atopic traits and other host-related factors also contribute to the risk of developing 
recurrent wheezing and asthma (Dumas et al., 2016; Fujiogi et al., 2022; Jartti et al., 
2019; Makrinioti et al., 2022). However, the immunopathogenesis of these 
associations remains unelucidated. 

While corticosteroids and bronchodilators are crucial for asthma management, 
most global guidelines advise against their use in bronchiolitis and early wheezing 
(Tapiainen et al., 2016). Oral corticosteroids may offer benefits with RV-associated 
early wheezing, particularly in case of high viral load, but the results are inconsistent 
(Jartti et al., 2015; Lehtinen et al., 2007). Given the significant health and economic 
impact, a better understanding of personalised treatment for bronchiolitis is needed. 

The aims of this thesis were to assess the efficacy and short-term outcomes of 
inhaled salbutamol with and without oral prednisolone, and to examine the early 
immunological factors contributing to the acute bronchiolitis and its prognosis. 
Additionally, to better understand the underlying immunopathogenesis, we aimed to 
investigate the effect of different viral aetiologies and their independent dynamics 
on immune responses.  
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2 Review of the Literature 

2.1 Definitions of bronchiolitis, wheezing, recurrent 
wheezing, and asthma 

2.1.1 Bronchiolitis 
Bronchiolitis is generally defined as inflammation of the small bronchi and the 
surrounding tissue induced by an acute viral infection. Importantly, in up to 100% 
of bronchiolitis cases, a causative viral agent can be identified (Turunen et al., 2014). 
The viral infection triggers a rapid immune response characterised by extensive 
inflammation and oedema in the bronchioles and adjacent tissue. Airway obstruction 
and air retention within the bronchioles are further exacerbated by excessive mucus 
production, epithelial cell apoptosis, necrosis, and sloughing of epithelial cells 
(Florin et al., 2017; Jartti et al., 2019; Meissner, 2016). 

Bronchiolitis is diagnosed clinically according to the typical signs and 
symptoms. Generally, after an incubation period of 4 to 6 days, upper respiratory 
tract infection symptoms such as nasal congestion, rhinitis, and fever appear 
(Meissner, 2016), followed by lower respiratory tract illness characterised by cough, 
increased respiratory effort, feeding challenges, and decreased ventilation indicated 
by insufficient oxygenation (Jartti et al., 2019; Meissner, 2016). While physical 
examination during auscultation reveals crepitations with diffuse crackles with or 
without expiratory wheezing as distinctive clinical findings for bronchiolitis, the 
manifestations of bronchiolitis can exhibit a diverse array of symptoms and varying 
degrees of severity (Florin et al., 2017; Jartti et al., 2009a).  

Globally, the definition of bronchiolitis is not standardised. In European 
countries, bronchiolitis is referred to as the acute first lower respiratory tract 
infection induced by a virus, and characterised by the presence of crackles, with or 
without wheezing during expiration, in children younger than 12 months of age 
(Korppi, 2015; Nenna et al., 2020; Ralston et al., 2014; Tapiainen et al., 2016). In 
contrast, in some countries such as the United States of America, bronchiolitis is 
referred to as the acute first lower respiratory infection induced by a virus in children 
younger than 24 months of age (Ralston et al., 2014). These differences in definitions 
have led to inconsistencies in terminology. For example, in European countries, 
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children older than 12 months experiencing the same clinical condition are described 
as having a virus-induced wheezing illness or asthma, while in the USA, the 
condition is still referred to as bronchiolitis. These variations in terminology have 
led to discrepancies in study protocols involving children with bronchiolitis 
worldwide. 

2.1.2 Wheezing  
Wheezing is defined as a high-pitched whistling sound accompanied by expiratory 
breathing difficulty (Jartti et al., 2019). Wheezing occurs as a result of the narrowing 
of airways within the thoracic cavity, leading to variable limitations in expiratory 
airflow, also referred to as obstruction. Airway obstruction arises from adverse 
epithelial reactions such as cell death, necrosis, epithelial sloughing, and excessive 
secretion of mucus with or without smooth muscle contraction within the wall of the 
airways (De Benedictis et al., 2017). This leads to an increased workload of 
breathing, clinically characterised by nasal flaring, increased breathing rate, 
prolonged expiration, and the use of accessory respiratory muscles (Meissner, 2016). 

Wheezing episodes in young children are associated with respiratory virus 
infections (Jartti et al., 2019; Meissner, 2016). Due to the small calibre of the airways 
during infancy, many young children are prone to obstruction of bronchioles and its 
consequent wheezing during viral infections (El-Gamal et al., 2011). Fortunately, as 
these infants mature, the calibre of the airways increases, reducing the likelihood of 
this tendency. Nevertheless, some children continue to have wheezing episodes, 
known as recurrent wheezing.  

Early wheezing illness and viral bronchiolitis are recognised as one of the most 
significant risk factors for recurrent wheezing and subsequent asthma development 
(both defined below) (Dalziel et al., 2022; Jartti et al., 2019; Meissner, 2016). While 
other viral agents, such as RSV, also increase the risk for poor short- and long-term 
prognosis, in RV-associated disease, the risk is notably pronounced. Surprisingly, 
this finding is relatively novel; previously, the focus has mainly been on overall 
bronchiolitis regardless of the viral agent, or RSV-associated disease. This emphasis 
is not surprising, considering that the latter is linked to the majority of morbidity and 
mortality associated with bronchiolitis, particularly in infants and neonates with 
additional risk factors for severe disease (Dalziel et al., 2022; Florin et al., 2017; 
Jartti et al., 2019; Meissner, 2016).  

2.1.3 Recurrent wheezing 
Recurrent wheezing is commonly defined as the occurrence of wheezing more than 
once. Moreover, recurrent wheezing has previously been classified clinically into 
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two main phenotypes: time trend-based and symptom-based phenotypes. The time-
trend based phenotype has been further divided into transient wheezing (symptoms 
emerge and resolve before 3 years of age), persistent wheezing (symptoms emerge 
before 3 years of age and persist beyond 6 years of age), and late-onset wheezing 
(symptoms emerge after 3 years of age) (Martinez et al., 1995; Stokes et al., 2020). 
On the other hand, symptom-based phenotype has been further divided into episodic 
wheezing and multiple-trigger wheezing depending on whether wheezing is present 
between the upper respiratory tract virus infection episodes or not (Owora et al., 
2018). However, assigning individual children to these phenotypes has proven to be 
challenging in clinical scenarios, since the manifestation of wheezing and the 
outcome of treatment intervention can be variable (Schultz et al., 2011; van 
Wonderen et al., 2016). Therefore, the classification of wheezing remains under 
active investigation and debate, and there is a demand for enhanced classification 
(GINA, 2024). 

Contrary to bronchiolitis (defined above), the management of recurrent 
wheezing and asthma exhibits notable similarities, with bronchodilators and 
corticosteroids being commonly used (Stokes et al., 2020). The shared fundamental 
properties in both conditions pose challenges in distinguishing between the two 
illnesses, and therefore, it is imperative to assess the possibility of asthma in all 
children experiencing recurrent wheezing.  

As stated before, bronchiolitis is a prevalent condition, affecting up to a third of 
infants (Jartti et al., 2019). However, while around 30% to 50% of children 
experience acute wheezing at least once before school age, less than half of these 
children continue to endure recurrent wheezing (Taussig et al., 2003). Of recurrent 
wheezing children, approximately half present aeroallergen sensitisation by school 
age (Guilbert et al., 2004). With increasingly advanced viral diagnostic techniques, 
a viral agent can be identified in up to 100% of cases involving bronchiolitis and 
early wheezing (Petat et al., 2021; Turunen et al., 2014). However, the viral detection 
rate declines in an age-dependent manner, ranging from 80% to 95% in older 
children (Jartti et al., 2009a). 

2.1.4 Asthma 
Asthma is a chronic, but heterogeneous disorder characterised by inflammation of 
the airways, with both variable and recurring symptoms such as wheezing, persistent 
cough, decreased physical endurance, and dyspnoea (Cloutier et al., 2020; GINA, 
2024; Papadopoulos et al., 2012). These symptoms result from airway obstruction, 
air trapping, and bronchial hyperreactivity, ultimately leading to limitations in the 
flow of air during expiration. Typically, asthma symptoms and airflow limitations 
exhibit variability in both time and intensity, and are often induced by exercise, 
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exposure to allergens or irritants, weather changes, or viral respiratory infections 
(Cloutier et al., 2020; GINA, 2024). 

The underlying mechanism for the limitation of airflow derives from 
inflammatory changes in the airways. However, the exact immunopathogenesis of 
asthma is unelucidated (Cloutier et al., 2020; GINA, 2024; Papadopoulos et al., 
2012). Nonetheless, studies have shown that children suffering from active airway 
symptoms during infancy are at increased risk of having reduced lung function 
during childhood, suggesting that changes in the lungs leading to asthma 
development are progressive (Malmström et al., 2011). In contrast, infants who 
experience recurrent wheezing and have atopic eczema (defined below), both of 
which are significant risk factors for asthma, exhibit notably diminished lung 
function even from birth compared to those who do not have these conditions 
(Håland et al., 2007). These findings have prompted the need for better 
understanding of the immunopathogenesis of asthma.  

According to clinical cluster analyses, several asthma phenotypes, emphasising 
the heterogeneity of asthma, have been suggested, including allergic asthma, non-
allergic asthma, adult-onset asthma, asthma with persistent airflow limitations, and 
asthma with obesity (Bel, 2004; Moore et al., 2010; Wenzel, 2012). The allergic 
asthma phenotype is the most readily identifiable phenotype, often linked to a prior 
or family history of allergic conditions, as well as high efficacy of inhaled 
corticosteroids and bronchodilators (GINA, 2024). 

From a pathological standpoint, asthma, particularly allergic asthma, is often 
described as eosinophilic bronchitis accompanied by a strong type 2 immune 
response, characterised by the presence of immune cells secreting interleukin (IL) 4, 
IL-5, and IL-13 in hosts with atopic diseases (defined below). Nonetheless, in adults, 
asthma can manifest without eosinophilic infiltration and the presence of cytokines 
associated with non-type 2 immunity (Borish, 2016). However, in the paediatric 
population, the majority of patients have asthma that is associated with type 2 
inflammation characterised by heightened levels of type 2 immunity biomarkers 
(Papadopoulos et al., 2024).  

Asthma is the most common chronic disease in children. Globally, the 
prevalence of asthma across all age groups has been documented to range from 2.4% 
to 4.3% (Shin et al., 2023; To et al., 2012). However, while the Global Asthma 
Network (GAN) reported a prevalence of 10.4% in adolescents (13-14 years old) and 
9.9% (6–7 years old) in children (Asher et al., 2021), according to the International 
Study of Asthma and Allergies in Children (ISAAC), the overall prevalence of 
asthma worldwide is 13.7% in adolescents and 11.6% in children (Asher et al., 
2020). The variation in asthma prevalence reported in different studies could be 
attributed to differences in the countries and age groups included. This is particularly 
significant given the notable diversity in asthma prevalence among countries and 
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across various stages of life, as evidenced by data from the Global Burden of Disease 
(GBD) and other international studies. Moreover, while the number of asthma 
patients has risen, the global age-standardised prevalence between 1990 and 2019 
has decreased by almost a quarter, indicating that, at least partly, the global increase 
in asthmatic patients can be attributed to global population expansion. Nevertheless, 
certain regions, such as the high-income North America region, have experienced an 
increase in asthma prevalence (Shin et al., 2023). In addition, boys are 
disproportionately affected by asthma compared to girls globally (Lai et al., 2009), 
as well as in Finland (Kankaanranta et al., 2017). In Finland, the prevalence of 
paediatric asthma is reported to range from 4% to 9% (Hugg et al., 2008; Lai et al., 
2009; Pekkanen et al., 1997). In a recent study, the prevalence of asthma in children 
aged 6-17 years in Nordic countries was found to be 4.1%, 3.5%, and 4.4% in 
Norway, Sweden, and Finland, respectively. Additionally, among these cases, 0.4%, 
1.0%, and 0.3%, respectively were classified as severe asthma (requiring 
administration of high-dose inhaled corticosteroids along with long-acting β2-
agonists, long-acting muscarinic antagonists, leukotriene receptor antagonists, or 
receiving biological therapies such as anti-immunoglobulin (Ig) E or anti-IL-
5/IL5R). Interestingly, the study also indicated that asthma and severe asthma were 
more prevalent among females than males in the population aged over 18 years. 
However, in paediatric patients, both asthma and severe asthma are more prevalent 
in boys compared to girls, consistent with the global trend (Hansen et al., 2023).  

2.1.5 Atopy and atopic eczema 
Atopy is generally defined as a genetic predisposition to an excessive production of 
allergen-specific IgE. Furthermore, atopy is associated with an exaggerated type 2 
immune response to prevalent allergens, particularly those that are inhaled or found 
in foods, resulting in cluster of differentiation (CD) 4 positive T helper (Th) 2 cell 
differentiation. Typical clinical manifestations associated with atopy include atopic 
eczema, food allergies, and allergic asthma (Diaz-Cabrera et al., 2021). 

Atopic eczema, also referred to as atopic dermatitis, is a chronic inflammatory 
skin condition influenced by both genetic predisposition and environmental factors, 
manifesting with symptoms such as itching, redness, swelling, and cracks in 
common areas of the skin. The disruption of the epidermal barrier, dysregulation of 
immunity, and microbial dysbiosis are believed to be key factors in the development 
of skin inflammation. The pathogenesis of atopic eczema is characterised by 
excessive type 2 inflammation (defined below) (Ständer, 2021). 
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2.2 Immunity 
Immunity refers to the host’s ability to resist and protect the body against pathogenic 
microbes, including bacteria, viruses, fungi, and parasites, as well as harmful substances 
such as venoms. This protection is achieved through both anatomical barriers and the 
responses of primary and secondary immune cells. A well-functioning immune system 
primarily defends the body through the collaboration of diverse immune and immune-
associated cells, recognising and neutralising foreign invaders while distinguishing 
them from the body's own cells and tissues (Delves et al., 2000; Zach et al., 2023). 

2.2.1 Innate immunity 
In the respiratory system, innate immunity, consisting of anatomical barriers (physical 
barriers of mucosa, as well as chemical barriers), and the activity of innate immune 
cells, serves as the initial wave of defence against pathogenic microbes (Johnston et 
al., 2021; LeMessurier et al., 2020; Riera Romo et al., 2016). If the former are 
breached, the latter are activated (Matsui et al., 2015; Riera Romo et al., 2016). Innate 
immunity relies on innate immune cells, which lack antigen-specific receptors on their 
surfaces, and as a result, innate immunity functions as a nonspecific defence and 
surveillance system. The responses of innate immunity can be divided into cellular and 
humoral components, and the activation of innate immunity leads to an immediate 
maximal response, and it does not possess immunological memory (Riera Romo et al., 
2016). However, innate immunity participates in the initiation of adaptive immune 
responses and contributes to tissue repair (Iwasaki et al., 2015).  

Cells principally participating in innate immune responses within the respiratory 
tract include monocytes, basophils, eosinophils, neutrophils, natural killer (NK) 
cells, innate lymphoid cells (ILCs), and dendritic cells (DCs) (Lamichhane et al., 
2019; Marshall et al., 2018). In addition to primary innate immune cells, specific 
cells with alternative primary roles, such as epithelial cells, play a crucial indirect 
role in innate immune responses, including alarmin production such as IL-33, IL-25, 
and thymic stromal lymphopoietin (TSLP) and subsequent chemotaxis and 
infiltration, as well as activation of primary innate immune cells (Holgate et al., 
2000; Johnston et al., 2021; LeMessurier et al., 2020; Tan et al., 2020). 

Cellular component 

The cellular component of innate immunity relies on pattern-recognition receptors 
(PRRs) situated within various cellular compartments such as the plasma membrane, 
endosomes, and cytoplasm, to identify specific canonical microbial molecular 
structures, known as pathogen-associated molecular patterns (PAMPs). Furthermore, 
molecules released in tissue injury, known as damage-associated molecular patterns 
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(DAMPs) are also recognised by PRRs (Amarante-Mendes et al., 2018; Li et al., 
2021a). PRRs belong to diverse molecular families, including toll-like receptors 
(TLRs) (Duan et al., 2022), C-type lectins (Hoving et al., 2014), nucleotide-binding 
oligomerisation domain (NOD)-like (Almeida-da-Silva et al., 2023), and retinoic acid-
inducible gene I (RIG-I)-like receptors (RLR) (Rehwinkel et al., 2020), stimulator of 
interferon genes (STING) (Ishikawa et al., 2009), and scavenger receptors (Taban et 
al., 2022). PRRs are extensively present in primary immune cells, such as macrophages 
and DCs but also in non-immune cells, including epithelial cells. The activation of 
PRRs ultimately leads to nuclear factor kappa B (NF-κB)- and/or interferon regulatory 
factor (IRF) family -mediated upregulation of cytokines, chemokines, adhesion 
molecules, and antimicrobial effectors or phagocytosis of the microbes (Amarante-
Mendes et al., 2018; Honda et al., 2006; Li et al., 2021a). 

Epithelial cells of the respiratory tract infected with respiratory viruses, such as 
RV or RSV, recognise the viral presence via PRRs including TLRs, C-type lectins, 
NOD-like receptors, RIG‐I receptors, or melanoma differentiation-associated protein 
5 (MDA5) (He et al., 2016; Heyl et al., 2014; Mayer et al., 2007; Slater et al., 2010; 
Slevogt et al., 2007). This ultimately leads to the expression of antimicrobial factors 
such as defensins and interferons (IFNs) (Denney et al., 2018), as well as cytokines 
and chemokines associated with the pro-inflammatory response, including IFN-γ, IL-
1β, IL-6, and IL-8, resulting in chemotaxis and activation of innate immune cells (Yeo 
et al., 2010). Notably, environmental challenges may be associated with a reduction in 
the expression of PRRs and impairment in the cell’s ability to recognise viruses. 
Interestingly, exposure to environmental air pollutants leads to downregulation of PRR 
messenger ribonucleic acid (mRNA) resulting in an increased RV genome load, 
indicating heightened susceptibility to RV infection (Müller et al., 2021). Furthermore, 
the challenges in the responses of the cellular component of innate immunity have been 
associated with poorer prognosis, as seen in a murine model, in which impaired 
expression of β-defensin during allergen exposure was associated with asthma 
(Borchers et al., 2021). On the other hand, dysregulation of PRR downstream 
signalling is associated with autoinflammatory diseases (Masumoto et al., 2021).  

Humoral component 

The humoral component of the innate immune system consists of various classes of 
molecules, including pentraxins (Kim et al., 2016), collectins (Holmskov et al., 2003), 
and ficolins (Cedzynski et al., 2009; Garred et al., 2016). These molecules serve as 
precursors to antibodies by commencing the activation of the complement system, 
opsonisation of injured cells and microbes, agglutination or neutralisation of microbes, 
and regulation of inflammation. Furthermore, a deficiency of L-ficolin has been 
associated with respiratory tract infections in atopic children (Cedzynski et al., 2009).  
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2.2.2 Adaptive immunity 
Adaptive immunity, the second layer of protection, is recruited if the innate 
immunity fails to eliminate the pathogenic microbe. In contrast to innate immunity, 
adaptive immunity is characterised by the high pathogen- and antigen-specificity via 
T cell and B cell receptors (Shah et al., 2021; Yam-Puc et al., 2018). Adaptive 
immunity is composed of the function and various interplay of three key cell types: 
B cells, CD4+ T cells, and CD8+ T cells (Marshall et al., 2018). For T cells to 
undergo expansion and conduct the effector functions, antigen presentation by 
antigen-presenting cells (APCs) to naïve T cell is necessary (Smith-Garvin et al., 
2009). Additionally, activated CD4+ T cells offer co-stimulation for the activation 
of both B cells and CD8+ T cells (Akkaya et al., 2020; Duttagupta et al., 2009; 
Welten et al., 2013). Activated CD8+ T cells play a critical role in eliminating 
infected cells directly, and the main function of CD8+ T cells is to defend the host 
against intracellular pathogens (Harty et al., 2000). Furthermore, the activated and 
differentiated B cells produce affinity-matured and isotype-switched 
immunoglobulins (antibodies), which function to neutralise pathogens located in the 
extracellular space (Doria-Rose et al., 2015). Moreover, both T and B cells may 
undergo differentiation into memory cells, offering a more prompt and robust 
response to previously encountered pathogens, thus also forming the foundation for 
efficient vaccination (Akkaya et al., 2020; Zhang et al., 2022a).  

Upon primary infection, due to initial clonal proliferation and differentiation of 
the naïve lymphocytes (T and B cells) into effector lymphocytes, a noticeable delay 
between activation and the attainment of sufficient effector function is observed 
(Yunis et al., 2023). Following expansion, if the microenvironment becomes 
unsuitable for survival (Zhan et al., 2017), a contraction phase commences, resulting 
in the apoptosis of approximately 95% of effector T cells, and subsequently the 
surviving T cells can undergo differentiation into memory T cells (Gasper et al., 
2014; Valbon et al., 2016).  

Adaptive immunity can be divided into cell-mediated and humoral arms. The 
former is known for its direct T cell-mediated responses, and the latter is known for 
the production of antigen-specific antibodies by effector B cells (Annunziato et al., 
2015; Sebina et al., 2018).  

As the main purpose of adaptive immunity is to eliminate invading pathogenic 
microbes and any harmful substances they generate, it is vital that these responses 
are triggered exclusively by molecules of foreign origin and not by the host's own 
molecules. The ability to discern between foreign and host molecules is a 
fundamental characteristic of the adaptive immune system. Nevertheless, rarely, the 
adaptive immune system may falter in distinguishing between foreign and host 
molecules, resulting in harmful responses directed against the host, potentially 
leading to induction of autoimmune diseases (Marshall et al., 2018). Moreover, not 
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all foreign substances are pathogenic or toxic, but are considered harmless. However, 
in some cases, adaptive immune system may misidentify harmless molecules as 
threats, leading to the initiation of adaptive immune responses, resulting in allergic 
conditions such as allergic rhinitis, food allergy, and asthma (Wang et al., 2023). 
Moreover, the adverse reactions from both autoimmune and allergic diseases can 
vary from mild to potentially life-threatening (Turner et al., 2017; Walsh et al., 
2000).  

2.2.2.1 Cell-mediated adaptive immunity 

In brief, cell-mediated adaptive immunity is commonly defined as the function of 
activated T cells that respond directly to an antigen of foreign origin displayed on 
the surface of the cellular membrane of the host cell. However, several additional 
cell types play a pivotal role directly and indirectly in the activation and regulation 
of T cells (Annunziato et al., 2015).  

Upon a viral infection, the infected cell is primed to begin producing viral 
proteins. Parts of these viral proteins are degraded in proteasomes and presented on 
major histocompatibility complex (MHC) class I or II molecules that are further 
transported to the cell surface. On the cell surface, lymphocytes such as T cells can 
recognise and bind to these MHC molecules leading to the activation of the 
corresponding T cell (Wieczorek et al., 2017).  

MHC molecules are divided into two main groups, referred to as MHC class I 
and II, according to antigen presentation. MHC class I molecules are expressed on 
all nucleated cells, while MHC class II molecules are primarily expressed on APCs, 
including DCs, macrophages and B cells (Wieczorek et al., 2017; Wu et al., 2021; 
Xie et al., 2003). The binding of CD8+ T cells to MHC class I molecules primes and 
activates the naïve cytotoxic T (Tc) cells, whereas the binding of CD4+ T cells to 
MHC class II molecules primes and activates naïve Th cells (Wieczorek et al., 2017).  

Importantly, the immune response is influenced and characterised by the 
corresponding effector T cell. The activation of CD8+ T cells leads to the induction 
of apoptosis in the targeted cell by means of effector molecules such as perforin, 
granzymes, or FAS (FS7-associated cell surface antigen)/FASL (FAS ligand) 
pathway (Al Moussawy et al., 2022). In contrast, activation of naïve CD4+ T cells 
leads to differentiation and expression of cytokines and chemokines which enhances 
the activity of other cells, including macrophages, natural killer cells (NK cells), B 
cells, Tc cells (CD8+ T cells), and Th cells (CD4+ T cells) (Annunziato et al., 2015; 
Zhu et al., 2010). 

While the naïve CD4+ T cells are activated by APC, the subsequent 
differentiation is driven by the cytokines expressed in the microenvironment. 
Notably, activated CD4+ T cell may differentiate to various subsets that all exhibit 
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different immunological characteristics and engage in different types of immune 
responses (Annunziato et al., 2015; Zhu et al., 2010). The main subsets of activated 
and differentiated effector CD4+ T cells are Th1, Th2, Th17, and regulatory T (Treg) 
cells (Annunziato et al., 2015; Luo et al., 2022; Zhu et al., 2010). Th1 cells are 
typically associated with proinflammatory responses, Th2 cells with allergic and 
parasitic diseases, Th17 cells with autoimmune diseases, and Treg cells with the 
suppression and regulation of immunological activity (Künzli et al., 2023; Martinez-
Sanchez et al., 2018).  

In a broader context, cell-mediated adaptive immune responses can be divided 
into three main categories according to the specific cytokines secreted by the effector 
CD4+ T cell: type 1, type2, and type 3 immunities. Naïve CD4+ T cells undergo 
differentiation into effector subsets with distinct characteristics contributing to the 
responses of either cell-mediated or humoral immunity (Figure 1) (Annunziato et al., 
2015; Martinez-Sanchez et al., 2018). 

 
Figure 1. The three main types of cell-mediated effector immunity (innate and adaptive). CILp, 

Common innate lymphoid precursor; CLp, common lymphoid precursor; Tp, T cell 
progenitor. From the article Annunziato et al., 2015. 
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Type 1 immune responses are the result of intracellular pathogenic events 
leading to the upregulation of the transcription factor T-Bet in CD4+ T cells. 
Subsequently, T-Bet CD4+ T cells undergo differentiation to Th1 cells mediated by 
IL-12/ IFN-γ-induced signalling of signal transducer and activator of transcription 
(STAT) 1 and STAT4 (Annunziato et al., 2015; Farrar et al., 2002; Romagnani, 
1994). Th1 cells are characterised by the ability of synthesisation and secretion of 
IFN-γ, and ability to enhance the activity of CD8+ T cells and macrophages 
(Romagnani, 1994). Furthermore, T-Bet is expressed on other types of lymphocytes 
such as CD8+ Tc1 (Fuchs et al., 2013; Mosmann et al., 1995), and ILC1s (Fuchs et 
al., 2013), and thereby, they are considered to be involved in type 1 immunity. 

Type 2 immune responses are the result of responses towards extracellular 
pathogens, and allergens, promoting the upregulation of transcription factor GATA3 
in CD4+ T cells through IL-4-mediated STAT6 signalling (Annunziato et al., 2015; 
Farrar et al., 2002; Romagnani, 1994). GATA3-expressing CD4+ T cells are 
described as Th2 cells and are characterised by the capability to secrete IL-4, IL-5, 
and IL-13 (Farrar et al., 2002; Romagnani, 1994). Moreover, GATA3 can be 
expressed in other lymphocytes such as CD8+ Tc2 cells (Jia et al., 2013; Mosmann 
et al., 1995), group 2 ILCs (Walker et al., 2013), which both are also involved in 
type 2 immunity via IL-4, IL-5, and IL-13 secretion. Additionally, IL-4, a cytokine 
associated with type 2 immunity, facilitates isotype switching in B cells, leading to 
the production of IgE (Lebman et al., 1988).  

Type 3 immune responses are the result of responses towards fungal and 
extracellular bacterial infections, leading to the upregulation of transcription factor 
RORγt, promoting the CD4+ T cell to differentiate to Th17 cell (Ivanov et al., 2006). 
Th17 cells are signified by the production of IL-17 (Harrington et al., 2005), which 
is induced via STAT3 signalling (Yang et al., 2007), triggered by IL-6, IL-23, IL-1β 
or transforming growth factor (TGF) β (Acosta-Rodriguez et al., 2007; Cosmi et al., 
2008). Additionally, RORγt can be expressed on other types of lymphocytes, such 
as CD8+ Tc17 cells (Intlekofer et al., 2008), and group 3 ILC (Eberl et al., 2004). 

While type 1 responses induce the activity and attraction of CD8+ T cells and 
macrophages, and type 2 responses induce the activity and chemotaxis of 
eosinophils, mast cells, and basophils, type 3 responses predominantly lead to the 
recruitment of neutrophils to the site of inflammation (Annunziato et al., 2015). 
However, these reactions must be controlled. The primary function of Treg cells, 
which are comprised of Foxp3+ expressing CD4+ T cells (Fontenot et al., 2003), is 
to maintain self-homeostasis and downregulate the effects of type 1-3 immune 
responses carried out by conventional T cells and other cell types (Figure 2) 
(Josefowicz et al., 2009; Sakaguchi et al., 2008). While Treg cells secrete various 
immunosuppressive cytokines such as IL-10 and TGF-β (Li et al., 2007; Rubtsov et 
al., 2008), they can directly induce apoptosis of affected immune cells, including B 
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cells, T cells and APC, for example, via the granzyme B-mediated cell death 
(Gondek et al., 2005; Grossman et al., 2004; Zhao et al., 2006).  Moreover, Treg 
cells robustly express IL-2R, which can deprive the micromilieu of IL-2, leading to 
suppression of the proliferation capabilities of other effector T cells and subsequent 
apoptosis via cytokine-deprivation (Pandiyan et al., 2007). In addition, constant 
expression of Foxp3+ is required for the Treg cell development and for sustaining 
the suppressive functions (Williams et al., 2007). However, conversely, in a murine 
model of RSV-induced pulmonary infection, Treg deprivation led to higher viral 
clearance at the expense of more severe immune-mediated tissue damage, ultimately 
contributing to poorer outcome (Loebbermann et al., 2012).  

 
Figure 2. The role of Treg cells in relation to type 2 immunity, with regular arrows indicating 

stimulation and blunt arrows representing inhibition. From the article of (Holgate, 2012). 

2.2.2.2 Humoral adaptive immunity 

Humoral adaptive immunity refers to antigen-specific, antibody-mediated immunity 
characterised by the effector B cells. After encountering stimulation by an antigen 
via B cell receptor, B cells have the capability to process and display the antigen via 
MHC class II molecules. The subsequent  interaction with CD4+ T cell 
ultimately leads to the proliferation and differentiation of B cells to high-affinity 
antibody (Ig) secreting plasma cells or memory cells (Batista et al., 2009; Bonilla et 
al., 2010; Rajewsky, 1996). While the activation of B cells predominantly relies on 
CD4+ T cells, B cells can be activated independently of T cells by other activators 
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such as foreign polysaccharides and unmethylated CpG sites of deoxyribonucleic 
acid (DNA) (Krieg et al., 1995; Rastogi et al., 2022).  

In humans, there are five distinct isotypes of immunoglobulins based on the type 
of the heavy chain, including IgM, IgG, IgA, IgD, and IgE. Briefly, the isotypes vary 
in their biological characteristics, location of function, and capacity to respond to 
different antigens (Stavnezer et al., 2008; Stavnezer et al., 2014). 

However, naïve B cells are known to exclusively co-express IgM and IgD 
(Rolink et al., 2004). Due to the specific functions tailored to various antibody 
isotypes, a process termed isotype or class switching becomes necessary post-
activation. This process, which is dependent on the type of cytokine signal B cells 
receive from Th cells during antigen presentation, is essential for acquiring non-IgM 
and IgD effector capabilities, enabling efficient targeting and elimination of the 
antigen. The subsequent isotype after class switching is also dependent on the type 
of cytokine signal B cells receive from Th cells during antigen presentation (Bossie 
et al., 1991; Kühn et al., 1991; Punnonen et al., 1997; Purkerson et al., 1992; 
Robinson et al., 2017). 

Increased levels of total serum IgE and allergen-specific IgE serve as important 
risk factors associated with atopic diseases such as allergic rhinitis, allergies, asthma 
and atopic eczema (Skaaby et al., 2017; Wong et al., 2020). IL-4, IL-5, and IL-13 
which are strongly associated with type 2 immunity, can promote class switching in 
B cells to IgE (Punnonen et al., 1997; Purkerson et al., 1992). Furthermore, for class 
switching, IL-4 appears to be required, since in an IL-4-deficient murine model, class 
switching to IgE is impaired (Kühn et al., 1991; Robinson et al., 2017). In contrast, 
IFN-γ, a type 1 immunity-associated cytokine, can promote class switching to IgG2 
(Bossie et al., 1991). 

Antibodies can induce neutralisation, activation of the complement, and both 
antibody-dependent cell-mediated cytotoxicity and phagocytosis, as well as 
degranulation of mast cells, basophils, and eosinophils (Forthal, 2014; Joulia et al., 
2015; Pantaleo et al., 2022), all of which are important defence mechanisms against 
harmful pathogens. Nevertheless, in certain settings, the effector functions of 
antibodies have the potential to intensify inflammation and cause additional harm, 
as demonstrated in the case of antibody-dependent enhancement observed in dengue 
disease (Teo et al., 2023).  

2.2.3 Peripheral blood mononuclear cells (PBMCs), 
research tool, stimulation models 

Human PBMCs consist of blood cells with a rounded nucleus, including 
lymphocytes, monocytes, NK cells, and DCs. A whole blood sample is segregated 
into two portions by means of density gradient centrifugation, and PBMCs, having 
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lower density, remain above the density gradient medium, while other cells (mainly 
red blood cells and granulocytes), having higher density, remain under the density 
gradient (Kleiveland et al., 2015; Stabel et al., 2023).  

The majority of PBMCs are naïve or resting cells. In the absence of an ongoing 
immune response, T cells, which constitute the largest fraction of the isolated 
PBMCs, are predominantly in the form of naïve or memory T cells (Chen et al., 
2020; Kleiveland et al., 2015). 

In the peripheral blood, the existence of lymphocytes with single antigen 
specificity is limited. Thus, to stimulate these cells in vitro, polyclonal activators are 
employed since they can activate a substantial proportion of lymphocytes regardless 
of their antigen specificity. Depending on the stimulant, different PBMC populations 
may be stimulated, and the secreted and measured cytokine responses correspond to 
the stimulant used (Kleiveland et al., 2015). To target naïve T cell activation, 
antibodies that selectively bind to CD3, either alone or in conjunction with CD28, 
such as anti-CD3/anti-CD28, can be used (Kleiveland et al., 2015; Trickett et al., 
2003). Other commonly used mitogenic stimulants include phytohaemagglutinin 
(PHA) and concanavalin A, primarily inducing T cell proliferation (Kleiveland et 
al., 2015; Lawlor et al., 2021); pokeweed mitogen (PWM), inducing both T and B 
cell proliferation (Bekeredjian-Ding et al., 2012; Kleiveland et al., 2015); and 
lipopolysaccharide (LPS), which stimulates proliferation of B cells and activation of 
monocytes (Kleiveland et al., 2015; Lawlor et al., 2021). However, while anti-
CD3/anti-CD28 stimulates T cells directly, it has recently been identified to 
stimulate B cells indirectly (Lawlor et al., 2021). 

2.3 Pathogenesis of bronchiolitis 

2.3.1 Rhinovirus (RV) 

Definition 

RV is a small non-enveloped, positive-sense, single-stranded RNA (ssRNA) virus 
belonging to the Enterovirus genus, and therefore, is part of the Picornaviridae 
family (Bizot et al., 2021). RVs exhibit substantial genetic and antigenic 
heterogeneity. Three different species of RV, specifically RV A, B, and C, have been 
identified, comprising more than 160 different serotypes distinguished by variations 
in antigens or genetics (Bochkov et al., 2014; Bochkov et al., 2016; McIntyre et al., 
2013; Simmonds et al., 2010). 

RV was first isolated from a culture sample in 1953 from common cold patients 
(Andrewes et al., 1953). Following advancements in diagnostic testing, in 1988, the 
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first polymerase chain reaction (PCR)-based assay for RV detection from respiratory 
samples was described (Gama et al., 1988). Previously, the detection of RV infection 
was accomplished via viral cultures, and therefore initially, only RV A and B were 
identified (Horsnell et al., 1995; Savolainen et al., 2002a; Savolainen et al., 2002b). 
Later, however, it was revealed that not all RV species grow sufficiently in 
traditional laboratory-based cell cultures (Bochkov et al., 2011), and in 2006, 
through sequencing and phylogenetic analysis of genome sequences, RV C species 
were discovered (Lamson et al., 2006).) Furthermore, due to advancements in 
molecular diagnostics, a substantial number of new RV genotypes have been 
identified (Bochkov et al., 2016; McIntyre et al., 2013). 

Currently, due to the delay and difficulties associated with identification via viral 
culture, acute RV infections are identified using reverse transcription (RT)-PCR 
(Gilbert et al., 1996; Rotbart et al., 2000; Wright et al., 2007). Additionally, for 
identification of RV, the use of serological tests is restricted to epidemiological 
studies, and rapid antigen tests are unavailable (Jartti et al., 2017; Rotbart et al., 
2000).  

Though, several genotypes of RV co-circulate throughout all seasons (Horvat et 
al., 2024; Jartti et al., 2008a; van der Zalm et al., 2011), a greater frequency of acute 
RV infections has been reported during autumn and spring (Jartti et al., 2004; Yuan 
et al., 2020). Notably, RV A and C are more commonly identified in circulation 
compared to RV B (Calvo et al., 2010; Erkkola et al., 2020; Marcone et al., 2014; 
Martin et al., 2018; Turunen et al., 2017), and RV C is associated with more severe 
illness (Calvo et al., 2010; Erkkola et al., 2020).  

The transmission of RV commonly occurs through infectious aerosols and 
droplets, but also, through fomites and direct interpersonal contact (Andrup et al., 
2023). Notably, RV can remain viable on various surfaces for up to several days and 
on intact skin for several hours (Andrup et al., 2023; L’Huillier et al., 2015; Winther 
et al., 2011).  

The signs and symptoms of RV infection typically appear after an incubation 
period of approximately 2 days, generally lasting for 1 week (Arruda et al., 1997; 
Lessler et al., 2009). Nevertheless, in up to 25% of cases, some symptoms may 
persist for up to 2 weeks (Arruda et al., 1997). Though clinically RV infections are 
generally mild and can be treated without the need for medical intervention (Rotbart 
et al., 2000), the clinical manifestations of RV infections vary widely, ranging from 
asymptomatic infections to lower respiratory tract infections such as pneumonia, 
bronchiolitis, recurrent wheezing, and asthma exacerbations, which may require 
hospitalisation (Cox et al., 2018; Granados et al., 2015; Jacobs et al., 2013; Toivonen 
et al., 2016). 
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Pathogenesis of RV infection 

RV primarily enters the body through the upper respiratory tract and infects the 
epithelial cells of the airway. RV can attach itself to both ciliated and non-ciliated 
cells (Jakiela et al., 2008; Tan et al., 2018), but usually, particularly RV C, seems to 
target ciliated cells only (Griggs et al., 2017). Interestingly, RV can also infect 
monocytes, but while the infection can activate monocytes, the replication is not 
considered sufficient (Korpi-Steiner et al., 2006; Laza-Stanca et al., 2006).  

To enter the respiratory epithelial cells, the majority of RV A and B serotypes 
utilise the intercellular adhesion molecule 1 (ICAM-1) as a receptor for binding. 
However, a minority of serotype subgroups within RV A, bind to the low-density 
lipoprotein receptor (LDLR) instead (Uncapher et al., 1991). Notably, unlike RV A 
and RV B, RV C employs cadherin-related family member 3 (CDHR3) for binding 
and entry into the targeted epithelial cell (Bochkov et al., 2015).  

Following attachment to its corresponding receptor, the RV enters the cell via 
receptor-mediated endocytosis, leading to internalisation into clathrin-coated 
endosomes. However, other types of receptors may also be used. Within the acidic 
endosome, pH level is decreased, leading to expansion of the virus and formation of 
pores in endosome via viral protein 1 (VP1) (Shingler et al., 2013).  

While the endosomal pores facilitate the passage of uncoated viral RNA through 
to the other side of the endosome, viral proteins remaining inside the endosome are 
subsequently degraded and fragmented viral proteins are transported via MHC class 
molecules to the cell surface for presentation to immune cells. Afterward, uncoated 
RV RNA initiates the replication process, including the translation of viral proteins 
and the synthesis of the viral RNA genome, ultimately resulting in the assembly of 
new viral particles (Ganjian et al., 2020; Louten, 2016).  

In comparison to the direct cytopathology of RSV infection, the damage caused 
to the airway epithelium by RV infection tends to be milder. However, RV infection 
can alter epithelial tight junctions, which leads to an increase in permeability of the 
epithelium (Looi et al., 2016; Unger et al., 2014). Moreover, RV replication thrives 
in damaged epithelium compared to intact tissue, as it is found in the deeper cell 
layers of scratched or damaged cell cultures, indicating a preference for disrupted 
environments (Jakiela et al., 2008). 

Immune responses to RV infection 

During an RV viral infection, the mucosal epithelial cells present several 
mechanisms of defence. Endosomal TLR3 and TLR7/8 recognise uncoated viral 
RNA, double-stranded RNA (dsRNA), and ssRNA, respectively, and the recognition 
leads to innate immune responses via NF-κB or IRF signalling (Hewson et al., 2005; 
Tan et al., 2018; Triantafilou et al., 2011). Further, cytoplasmic receptors, such as 
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MDA-5 and RIG-1 can detect replicative intermediates of the RV genome synthesis, 
leading to enhanced antiviral activity characterised by increased expression of type 
I and III IFNs and pro-inflammatory cytokines via IRF and NF-κB, respectively 
(Hewson et al., 2005; Sajjan et al., 2006; Slater et al., 2010; Triantafilou et al., 2011). 

Following the detection of RV, the expression of early pro-inflammatory 
cytokines and growth factors by the airway epithelial cells occurs rapidly, and 
induces the activity and chemotaxis of various leukocytes, such as neutrophils, 
lymphocytes, and eosinophils (Jartti et al., 2019). Interestingly, RV appears to trigger 
more pronounced neutrophilic inflammation compared to other viral agents, such as 
RSV, as evidenced by a higher IL-8 response from highly differentiated human 
airway epithelial cells in response to a viral challenge, with the effect of RV infection 
further enhanced by an allergenic challenge (Chun et al., 2013). The ensuing 
inflammatory response causes epithelial oedema and an excessive increase in mucus 
production, ultimately resulting in airway obstruction and wheezing (De Benedictis 
et al., 2017; Jartti et al., 2019; Meissner, 2016). Interestingly, in asthmatic 
individuals, RV infection and IL-33 may interact, as indicated by type 2-skewed 
immune responses (Jurak et al., 2018).  

RV infections also elicit a humoral adaptive immune response, characterised by 
the appearance of serotype-specific antibodies (IgG and IgA) approximately 2 weeks 
post-incubation (Bochkov et al., 2023; Jacobs et al., 2013). However, although the 
antibody levels may remain elevated for more than 1 year after the infection, due to 
the abundant number of serotypes and limited cross-neutralisation, the efficacy of 
humoral adaptive immunity in reducing the overall risk of RV infections is limited 
(Bochkov et al., 2023).  

2.3.2 Respiratory syncytial virus (RSV) 

Definition 

RSV, classified within the Orthopneumovirus genus, is an enveloped, negative-
sense, ssRNA virus, and a member of the Pneumoviridae family (Griffiths et al., 
2017). RSV consists of two distinct antigenic groups, RSV A and B, both comprising 
several different genotypes. RSV epidemics are expressed seasonally, and typically, 
in the northern parts of the globe, epidemics manifest in the midst of winter, with 
nearly every child acquiring an RSV infection before 2 years of age (Kutsaya et al., 
2016; Yuan et al., 2020). 

RSV, which was first discovered in 1957 (Chanock et al., 1957), causes 
infections that constitute a major health and economic burden. Annually, 
approximately 30 million episodes, 3.6 million hospitalisations, and over 100,000 
mortalities are estimated to be attributed to RSV infections globally (Li et al., 2022). 
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Importantly, risk for more severe disease is associated with young age, which is 
further increased by prematurity, chronic respiratory or congenital heart disease, 
neurological disorders, or a compromised immune system (Wildenbeest et al., 2023).  

Globally, in clinical practice, rapid RSV antigen tests are commonly used to 
identify RSV infections. Additionally, RT-PCR may also be employed, and the 
sensitivity of both methods appears to be equivalent (Griffiths et al., 2017). 
Clinically, symptoms of RSV typically start after an incubation period of 4 days, 
reaching their peak around day 5 of the clinical illness and often showing signs of 
improvement by days 7 to 10 (Eiland, 2009; Lessler et al., 2009).  

Pathogenesis of RSV infection 

After the transmission of RSV, which occurs via direct contact or aerosol particles, 
the virus first attaches to and replicates inside epithelial cells in the upper respiratory 
tract subsequently advancing to the lower respiratory tract (Eiland, 2009). RSV 
primarily infects ciliated epithelial cells, but also pneumocytes (type I) (Moore et al., 
2008; Zhang et al., 2002). Upon infection, RSV attaches itself using fusion (F 
protein) and glycoprotein (G protein) surface proteins to CX3CR1 on the surface of 
the target cell leading to receptor-mediated caveolar endocytosis that results in the 
internalisation of the virus (Werling et al., 1999). Subsequently, the viral replication 
process is initiated.  

Furthermore, aside from facilitating the initial fusion between the viral and 
plasma membranes, the F protein also induces fusion between infected and adjoining 
plasma membranes, leading to the creation of syncytia, a multinucleate cell, which 
though uncommon, serves as a characteristic cytopathic effect of RSV infection 
(Pastey et al., 1999).  

Immune responses to RSV infection 

During RSV infection, the host cells employ various mechanisms of detection, 
activating antiviral defences and cytokine production via plasma membrane- and 
endosome-bound TLRs (such as TLR2, TLR3, TLR4, TLR6, and TLR7/8), cytosolic 
RLRs (including RIG-I and MDA5), and cytosolic nucleotide-binding 
oligomerisation domain-like receptors (NLRs) (including NOD2 and NLRP3). The 
signals from PRRs lead to activation of transcription factors such as NF-κB and IRF, 
ultimately leading to upregulation of type I IFNs, activation of DCs, and expression 
of proinflammatory cytokines and chemokines (Ouyang et al., 2022).  

Apart from PRRs within the cell, TLR4, the primary extracellular receptor on 
airway epithelial cells, detects RSV via interaction with the viral F protein, which 
leads to the activation of NF-κB-mediated expression of proinflammatory cytokines 
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such as IL-1β, IL-6, IL-8, and IL-12 in different cell types (Haeberle et al., 2002; 
Haynes et al., 2001; Kurt-Jones et al., 2000). 

Following RSV infection, the expression of plasma membrane-bound TLR4 is 
increased (Monick et al., 2003). However, RSV can employ various immune evasive 
mechanisms, such as expression of the soluble G protein, which blocks type I IFN 
production mediated by TLR3/4, or induction of the expression of suppressor of 
cytokine signalling (SOCS) proteins, such as SOCS1 and SOCS3, that inhibit 
pathways associated with production of IFNs and proinflammatory cytokines 
(Ouyang et al., 2022; Shingai et al., 2008; Yoshimura et al., 2007).  

In contrast to RV infection, RSV infection leads to direct epithelial damage and 
necrosis, as well as ciliary disruption and destruction (Mata et al., 2012; Smith et al., 
2014). As a result, the epithelial cells are sloughed, and production of 
proinflammatory cytokines is increased. Subsequently, the robust inflammatory 
response attracts innate immune cells such as ILCs, DCs, and granulocytes (Jartti et 
al., 2019; Jartti et al., 2017; Smith et al., 2014).  

2.3.3 Human bocavirus 1 (HBoV1) 
HBoV1 is a small non-enveloped, negative-sense, single-stranded DNA (ssDNA) 
virus belonging to the Parvoviridae family (Qiu et al., 2017). It was first discovered 
in 2005 while investigating nasopharyngeal aspirates (NPAs) of children 
experiencing respiratory infections (Allander et al., 2005). Afterwards, three 
additional types of bocaviruses, designated as HBoV2 to HBoV4, have been 
identified (Kapoor et al., 2009, 2010). Notably, whereas HBoV1 is primarily 
associated with respiratory tract infections, HBoV2-4 have been predominantly 
identified in faecal samples both in the presence and absence of gastroenteritis 
(Kantola et al., 2015; Paloniemi et al., 2014).  

Pathogenesis and immune responses of HBoV1 

The exact pathogenesis of HBoV1 infection is still not fully understood, and due to 
the absence of optimal in vivo and animal models, the knowledge of HBoV1 
infections has relied predominantly on either in vitro, epidemiological or clinical 
studies based on varying diagnostic criteria such as serology, qualitative PCR of sole 
HBoV1 infection or identification of the presence of HBoV1 mRNA (Christensen et 
al., 2019; Mohammadi, 2023). However, the detection of HBoV1 DNA in 
asymptomatic children is also common, and HBoV1 DNA may persist for a long 
time in healthy subjects. Therefore, the determination of the relationship between 
active infection and the identification of HBoV1 DNA by qualitative PCR alone is 
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not advised (Byington et al., 2015; Christensen et al., 2019; Martin et al., 2015; 
Mohammadi, 2023). 

In vitro, HBoV1 is capable of infecting differentiated laboratory-based cultured 
airway cells referred to as polarised epithelial cells (Shao et al., 2021). In response 
to HBoV1 infection these cells secrete IL-1 and IL-18 (Deng et al., 2017). Moreover, 
in HBoV1-associated bronchiolitis, enhancement of both type 1 and 2 immune 
responses has been observed, as indicated by increased levels of IFN-γ, IL-2, and 
IL-4 (Chung et al., 2008). Interestingly, while coinfecting with other viruses, 
particularly with RV, HBoV1 has been observed to suppress the overall cytokine 
response, but the long-term consequences of this effect are still not known 
(Lukkarinen et al., 2014). During acute HBoV1 infection, T cell responses appear to 
be predominantly mediated by CD4+ T cells, and activation through HBoV1 virus-
like particles leads to elevated levels of various cytokines, including IL-10, IFN-γ, 
and IL-13 (Kumar et al., 2011).  

Globally, HBoV1 is among the most frequently detected viruses in young 
children experiencing upper and lower respiratory tract infections (Jartti et al., 2019). 
HBoV1 can be detected in up to 25% of children experiencing symptoms of 
respiratory tract infection (Malta et al., 2020). Interestingly, due to the persistence of 
viral DNA, a similar prevalence is found in asymptomatic children. Viral coinfection 
with HBoV1 is frequent, with up to 75% of positive qualitative PCR HBoV1 DNA 
samples showing the presence of another concurrent viral agent (Calvo et al., 2016; 
Christensen et al., 2019). Due to prolonged shedding, this might correspond to an 
inactive viral infection, but importantly, in respiratory samples where HBoV1 
mRNA is detected, other viruses have been identified in up to half of the cases 
(Christensen et al., 2013).  

2.3.4 Other viruses and viral coinfections 
While RV and RSV are the most prevalent viral agents identified, it is crucial to note 
that other viral agents, such as metapneumovirus (hMPV) (Jartti et al., 2004), 
parainfluenza virus (types 1-4) (Jackson et al., 2008; Kotaniemi-Syrjänen et al., 
2003), influenza viruses (types A and B) (Kusel et al., 2007; Miller et al., 2013), 
adenoviruses (Jartti et al., 2004), human coronaviruses (specifically 229E, OC43, 
NL63, and HKU1)  (Bisgaard et al., 2010; Jartti et al., 2008b; Kusel et al., 2007),  
and enteroviruses (EVs) (Jartti et al., 2009a), are also associated with viral 
bronchiolitis and early wheezing (Figure 3). Interestingly, severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) infection is not associated with an increased 
likelihood of developing bronchiolitis or early wheezing during childhood (Curatola 
et al., 2021). 
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The prevalence of these viral agents ranges from 3% to 21% among wheezing 
children, and the associations between the short- and long-term prognoses of these 
single viral infections are still not fully established (Jartti et al., 2017). However, it 
is noteworthy that coinfections are common (Jartti et al., 2019), and that coinfections 
such as RV and RSV with other viruses may contribute to an unknown interplay 
between the viral aetiologies and early immunity. This is indicated by a recent study 
observing the formation of hybrid virus particles in human lung cells when 
coinfected with both RSV and influenza virus (Haney et al., 2022). While 
bronchiolitis caused by a sole RV infection tends to require a shorter hospitalisation 
period compared to a sole RSV infection alone (Jartti et al., 2014), coinfections may 
exacerbate the severity of illness. A previous study examining viral aetiologies and 
hospital stay length highlighted that RV-RSV coinfection was significantly linked to 
longer hospitalisations, exceeding the duration seen in children infected with either 
RV or RSV alone (Mansbach et al., 2012). However, the data are not consistent, as 
suggested by a prior meta-analysis comparing the role of viral coinfections in the 
clinical severity among RSV infected young children. Significantly, only RSV-
hMPV coinfection, characterised by an extended hospital stay and increased risk of 
intensive care unit (ICU) admission, was associated with poorer prognosis compared 
to sole RSV infection (Li et al., 2020). Yet, the severity of bronchiolitis and the 
broader influence of coinfection are subjects of ongoing debate, with the potential 
effects varying depending on the specific viral agents involved in the coinfection. In 
addition, since the prevalence of different viral agents is age-dependent, the 
variations in the upper age limit used to define bronchiolitis could impact the 
outcomes observed (Jartti et al., 2019). 

Several of the most prevalent causes of hospital admission related to 
bronchiolitis include hypoxia, requirement for supplementary oxygen, feeding 
difficulties, and respiratory distress (Habib et al., 2022; Halstead et al., 2012; Zorc 
et al., 2010). 

While detection of viral coinfection in children with bronchiolitis is common, 
and viral coinfections have been associated with more severe disease, including 
increased duration of hospitalisation and disease as well as increased risk for 
hypoxemia (Ferro et al., 2020; Harada et al., 2013; Richard et al., 2008; Tan et al., 
2021), the data are not universal (Brand et al., 2012; de Souza et al., 2016; Marguet 
et al., 2009; Petrarca et al., 2018), and notably, bacterial infections may further 
complicate the data, as observed in children with severe bronchiolitis necessitating 
intensive care (Wiegers et al., 2019). 
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Figure 3. The frequency of viral etiologic agents according to the age of the hospitalised patients 

with the first episode of bronchiolitis or wheezing. RSV, respiratory syncytial virus; RV, 
rhinovirus; BoV, human bocavirus 1; MPV, metapneumovirus; PIV, parainfluenza virus; 
AdV, adenovirus; CoV, coronavirus; Flu, influenza viruses. From the article of Jartti et 
al 2019. 

2.3.5 Viral aetiology of the early wheezing and the risk of 
subsequent recurrent wheezing and asthma 

As described before, viral agents can be identified in up to 100% of cases of early 
wheezing episodes occurring within the first 2 years of life. Among these, RV and 
RSV are the most common and significant causes of wheezing illness. Furthermore, 
in recent years, HBoV1 has emerged as a notable viral agent associated with 
wheezing, and presently, the relationship between viral infection and wheezing 
episodes in childhood is well-established (Jartti et al., 2019; Petat et al., 2021; 
Turunen et al., 2014).  

Bronchiolitis is a common illness, and depending on the definition, between 2% 
and 5% of infants experience severe bronchiolitis, necessitating hospitalisation, 
within their first 12 months of life (Díez-Domingo et al., 2014), and roughly 2% of 
children during the first two years of life (Mahant et al., 2022). Notably, severe 
bronchiolitis correlates with heightened strain on healthcare resources and 
diminishes the quality of life for affected families (Díez-Domingo et al., 2014; Tan 
et al., 2021). Significantly, the impact of severe bronchiolitis extends beyond the 
acute illness, as over 30% of children necessitating hospitalisation in the acute phase, 
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develop recurrent wheezing (Díez-Domingo et al., 2014; Gern, 2010; Zhang et al., 
2020a). Moreover, in Swedish and Finnish children, the likelihood of recurrent 
wheezing following bronchiolitis has been observed to exceed 50% at 2–3 years of 
age (Piippo-Savolainen et al., 2008). While the risk of asthma following severe 
bronchiolitis during the first 12 months of life decreases over time, between 15% 
and 30% of children suffer from asthma during the early school age (Piippo-
Savolainen et al., 2008), and the risk of asthma persists higher than in control patients 
even up to early adulthood (Sigurs et al., 2010).  

Although bronchiolitis, as defined currently, is a virus-associated lower 
respiratory tract infection, emerging evidence suggests a connection between 
specific viral agents identified during bronchiolitis and the development of preschool 
wheezing and asthma (Kenmoe et al., 2020; Makrinioti et al., 2022).  

In the past, numerous studies have shown that RSV bronchiolitis is associated 
with recurrent wheezing and subsequent development of asthma. However, the 
results are highly variable due to differences in study protocols and sample size. 
Compared to non-hospitalised healthy children, RSV bronchiolitis has been shown 
to be associated with recurrent wheezing before school-age (Bertrand et al., 2015; 
Bont et al., 2000; Chung et al., 2002; Kristjánsson et al., 2006; Schauer et al., 2002; 
Tian et al., 2009). In contrast, in prior studies comparing RSV bronchiolitis and 
RSV-negative-bronchiolitis, data concerning the association with recurrent 
wheezing has been reported as inconclusive, indicated by two smaller studies in 
favour of and one larger population-based study against RSV bronchiolitis as a risk 
factor (Cifuentes et al., 2003; Marlow et al., 2019; Valkonen et al., 2009). However, 
when the association between recurrent wheezing and viral aetiologies of RV and 
RSV bronchiolitis have been compared, the data suggest a more marked risk of 
recurrent wheezing after RV bronchiolitis compared to RSV bronchiolitis (odds ratio 
(OR) 1.5-8.8) (Bergroth et al., 2016; Da Silva Sena et al., 2021; Hasegawa et al., 
2019a; Lemanske et al., 2005; Midulla et al., 2012).  

When the association between asthma and post-RSV bronchiolitis has been 
analysed, compared to healthy asymptomatic children, RSV bronchiolitis has shown 
increased risk of subsequent asthma during the period before school age (OR 5.6-
17.3) (Cassimos et al., 2008; Sigurs et al., 2000; Yamada et al., 2010; Zomer-
Kooijker et al., 2014). Yet, when comparing RSV bronchiolitis to non-RSV 
bronchiolitis, the analysis of post-bronchiolitis asthma shows inconsistency (del 
Rosal et al., 2016; Fjærli et al., 2005; García-García et al., 2007; Henderson et al., 
2005; Koponen et al., 2012; Stein et al., 1999). However, importantly, when RSV 
bronchiolitis and RV bronchiolitis are compared with respect to their effect on risk 
for subsequent asthma during childhood, RV bronchiolitis is shown to be a more 
marked risk factor compared to RSV bronchiolitis (OR 1.1-8.6), with Kusel et. al 
indicated decreased risk with RV bronchiolitis compared to RSV aetiology (OR 0.7) 
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(Bergroth et al., 2020; Hasegawa et al., 2019b; Jackson et al., 2008; Kotaniemi-
Syrjänen et al., 2002; Kusel et al., 2007; Leino et al., 2019; Lukkarinen et al., 2013, 
2017; Teeratakulpisarn et al., 2014).  

Notably, RV serotype, RV C in particular, seems to be associated with the 
highest risk for subsequent recurrent wheezing and asthma (Bergroth et al., 2020; 
Hasegawa et al., 2019a). Furthermore, atopic sensitisation, during the first severe 
wheezing episode is associated with recurrent wheezing (hazard ratio (HR) 1.9-3.47) 
(Jackson et al., 2012; Lukkarinen et al., 2013), and bronchial reactivity before 
school-age (OR 8.8) (Leino et al., 2019), especially with the identification of 
concomitant RV infection. 

Moreover, RV bronchiolitis is more strongly associated with atopic asthma than 
RSV bronchiolitis, and conversely, the association of non-atopic asthma and RSV 
bronchiolitis is more marked when compared to RV bronchiolitis (Lukkarinen et al., 
2017).  

In the past, while RSV-associated bronchiolitis has been recognised as an 
important risk marker for subsequent wheezing and development of asthma 
(Papadopoulos et al., 2004; Sigurs et al., 2000), it is noteworthy, that the increased 
risk has been observed in studies comparing asymptomatic healthy children to 
children with RSV-associated bronchiolitis (Valkonen et al., 2009). Conversely, a 
mounting number of studies are establishing a connection between RV-associated 
wheezing episode during early years of life and the development of subsequent 
recurrent wheezing as well as asthma in preschool-aged children (Hasegawa et al., 
2018a; Makrinioti et al., 2022; Midulla et al., 2014). Furthermore, in infants with 
atopic predisposition and showing signs of allergic sensitisation, the association 
appears to be more robust (Hasegawa et al., 2019a; Lemanske et al., 2005).  

While a strong epidemiological association exists between severe RSV infection 
during infancy and the later development of asthma (Szabo et al., 2013), a recent 
meta-analysis, examining whether prevention of early life RSV-associated lower 
respiratory tract infection was associated with reduced incidence of recurrent chronic 
wheezing illness, failed to show a causal association between the two (Brunwasser 
et al., 2020). Moreover, another recent meta-analysis comparing the impact of RSV- 
and RV-associated bronchiolitis on recurrent wheezing and asthma found a stronger 
association between RV and recurrent wheezing compared to RSV (OR 4.1). 
Furthermore, bronchiolitis associated with RV infection exhibited a higher 
likelihood of developing subsequent asthma compared to RSV (OR 2.72) 
(Makrinioti et al., 2022). Nevertheless, RSV bronchiolitis is associated with 
recurrent wheezing and asthma when compared to children without prior history of 
bronchiolitis. 

Bronchiolitis caused by HBoV1 has also been suggested to be associated with a 
risk for recurrent wheezing and asthma. However, the strong evidence validating the 
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risk is still scarce. Nevertheless, a study observing children infected with singleton 
infections of HBoV1 and RSV during bronchiolitis showed that HBoV1 infection 
was more strongly associated with asthma (OR 1.28) and wheezing (OR 2.18) than 
the RSV group. Interestingly, no differences were found between the viral groups in 
atopic characteristics of the host or the family, and surprisingly, the viral groups were 
not associated with a decline in pulmonary function (del Rosal et al., 2016).  

2.4 Treatment regiments of first wheezing episode 

2.4.1 β2-agonist 
Inhaled bronchodilators (β2-agonists) play a crucial and indisputable role in 
managing recurrent wheezing and asthma exacerbations. Despite their overall 
significance in the treatment of obstructive breathing difficulties, major guidelines 
such as the Scottish Intercollegiate Guidelines Network (SIGN) 2006, the Spanish 
National Health System (SNHS) 2010, the American Academy of Pediatrics (AAP) 
2014, the Finnish Current Care 2014, the National Institute for Health and Care 
Excellence of the UK (NICE) 2015, the Australasian Paediatric Research in 
Emergency Departments International Collaborative (PREDICT) committee 2018, 
and the Canadian Paediatric Society (CPS) 2018 advise against their routine use as 
part of bronchiolitis treatment (Bakel et al., 2017; Friedman et al., 2014; O’Brien et 
al., 2019; Ralston et al., 2014; Ricci et al., 2015; Tapiainen et al., 2016). Only in the 
SNHS 2010 guideline is a salbutamol trial as part of bronchiolitis treatment regarded 
as optional, whereas in other guidelines the option is not addressed (Bakel et al., 
2017; Friedman et al., 2014; O’Brien et al., 2019; Ralston et al., 2014; Ricci et al., 
2015; Tapiainen et al., 2016). This is unsurprising since, though the efficacy of 
bronchodilators in treatment of bronchiolitis has been studied extensively, only a few 
trials have demonstrated clinical benefits of β2-agonists compared to placebos in 
young, first-time wheezing children (Cai et al., 2020; Flores et al., 1997; Gadomski 
et al., 2014; Kirolos et al., 2020). Importantly, since emerging evidence suggests that 
bronchiolitis is a spectrum, there is a lack of conclusive evidence regarding their 
efficacy in specific subgroups of bronchiolitis. 

β2-agonists bind to adrenergic receptors, while importantly, exhibiting enhanced 
selectivity for β2-adrenergic receptors. In airway smooth muscle cells, upon the 
activation of the receptor, a transmembrane signal cascade is initiated, resulting in 
an intracellular signal cascade, which has been suggested to influence either the 
levels or the sensitivity of intracellular Ca2+. The decreased efficacy of intracellular 
Ca2+ is considered to inhibit the phosphorylation of myosin light chain, which 
consequently prevents the contraction of smooth muscle in the airways, leading to 
bronchodilation (Billington et al., 2013).  
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Interestingly, β2-agonists are also suggested to have the capability to trigger 
various inflammatory pathways in the smooth muscles of the airways, which results 
in a decrease in levels of intercellular adhesion molecules and chemokines, as well 
as the stabilisation of mast cell degranulation (Barisione et al., 2010). Notably, RSV 
infection has been associated with dictating the characteristics of β2-adrenergic 
receptors by decreasing the receptor quantity and quality (function and position). 
This dysregulation may explain, at least partly, the lack of observed efficacy of β2-
agonists in the treatment of RSV-associated bronchiolitis (Harford et al., 2021). 

Curiously, regular stimulation with β2-agonists may lead to tolerance (Haney et 
al., 2005), and increased airway hyperreactivity to both direct and indirect stimuli 
(Murphy et al., 2021). However, concomitant corticosteroid treatment may 
counteract these adverse reactions by increasing the upregulation of β2 adrenergic 
receptors, thus potentiating the effects of inhaled β2-agonists (Aksoy et al., 2002).  

2.4.2 Corticosteroid treatment 
Corticosteroids are essential in the management of recurrent wheezing and asthma 
exacerbations, and a crucial part of asthma control medication (Cloutier et al., 2020; 
GINA, 2024). The robust anti-inflammatory and immunosuppressive effects are 
mediated via intracellular glucocorticoid receptor (GR) signalling, and the activation 
of the GR leads to regulation (induction or inhibition) of various gene transcriptions, 
for instance, inhibition of NF-κB. While GR is expressed in almost every cell, it is 
important to note that the cellular response to glucocorticoids displays significant 
diversity in specificity and sensitivity, even within the same tissue depending on the 
targeted cell (Oakley et al., 2013; Zielińska et al., 2016).  

In the airways, glucocorticoids inhibit the expression of chemoattractant and cell 
adhesion molecules as well as hinder the inflammatory cell survivability, leading to 
a decrease in the quantity of immune cells, such as eosinophils, T cells, mast cells 
and DCs at the site of inflammation. For instance, in response to glucocorticoid 
treatment, the mitigation of mucosal inflammation occurs promptly, leading to a 
notable decrease in immune cells, such as eosinophils within hours, which is 
accompanied by a reduction in airway hyperresponsiveness (Barnes, 2011; Oakley 
et al., 2013; Zielińska et al., 2016).  

Furthermore, apart from the impacts of corticosteroids on IL-10 expression in 
laboratory settings, administering corticosteroids to individuals with asthma 
increases IL-10 production while simultaneously decreasing the levels of Th1 and 
Th2 effector cytokines (John et al., 1998; Richards et al., 2000). In addition, in T 
cells isolated from PBMCs, the use of inhaled corticosteroids enhances the 
expansion of Treg cells and increases the expression of the Foxp3 gene in CD4+ T 
cells (Karagiannidis et al., 2004). Moreover, the lack of an increase in IL-10 levels 
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following steroid exposure is associated with steroid-resistant illness in adults 
(Xystrakis et al., 2006). These findings may impact the poor response to 
corticosteroid treatment in bronchiolitis, especially in young atopic children with 
delayed Treg cell maturation (Tulic et al., 2012).  

Currently, according to major guidelines, the administration of corticosteroids is 
not advised for the treatment of bronchiolitis despite their crucial role in recurrent 
wheezing and asthma exacerbations (Bakel et al., 2017; Friedman et al., 2014; 
O’Brien et al., 2019; Ralston et al., 2014; Ricci et al., 2015; Tapiainen et al., 2016). 
The efficacy of corticosteroid treatment for bronchiolitis has been previously studied 
extensively, and the results have been inconclusive (Fernandes et al., 2013; Kirolos 
et al., 2020). However, overall, the focus has been on comparing RSV-associated 
bronchiolitis to non-RSV-associated bronchiolitis, possibly contributing to the 
discouraging results. Nevertheless, recent studies have emphasised the differences 
in short- and long-term prognosis between RSV and RV bronchiolitis, and 
highlighted the need for more targeted management, as well as the potential for more 
personalised treatments (Makrinioti et al., 2022). 

2.4.3 Other treatments 
According to the majority of current guidelines, the treatment of bronchiolitis and 
the first wheezing illness consists mainly of supportive care, including the use of 
supplementary oxygen and the prevention of dehydration via nasogastric tube or 
parenteral fluid therapy. Additionally, the use of antibiotics, inhaled saline and 
bronchodilators such as adrenaline, as well as various inhaled and oral 
corticosteroids, has been studied without strong supporting evidence (Ralston et al., 
2014; Tapiainen et al., 2016). However, as previously mentioned, these guidelines 
fail to consider the heterogeneity of bronchiolitis. 

2.4.4 Vaccination 

2.4.4.1 RV vaccination 

Since RV exhibits limited cross-reactivity and a large antigenic variety across its 
strains, it has been difficult to create an effective vaccine against the large number 
of RV strains. However, anti-RV targeting, including strategies using extracellular 
trapping, capsid binders, binder blockers, receptor mimetics, endocytosis inhibitors, 
acidification inhibitors, and RNA replication inhibitors remain under active research 
(Real-Hohn et al., 2021).  
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2.4.4.2 RSV vaccination 

Due to the significant impact on health and the economy, efforts have been ongoing 
for decades to develop an effective vaccine with long-lasting efficacy against RSV. 
Palivizumab, the first monoclonal antibody against RSV, was approved in 1998, and 
has been used to successfully decrease RSV infection severity (Romero, 2003). 
However, the high cost and limited availability have restricted its usage only to high-
risk children.  

A significant breakthrough occurred approximately 10 years ago when the 
structure of the virus was successfully stabilised for vaccine development, and the 
importance of the pre-fusion form of the virus's F protein (pre-F) as a key antigen 
was identified (McLellan et al., 2013). This opened a new era in the development of 
RSV prophylactics, and in the past year, vaccines as well as a long-acting 
monoclonal antibody for infants have entered the market. 

In 2022, the European Medicines Agency (EMA) approved nirsevimab, a new 
generation antibody with an extended half-life and increased potency. It maintains 
sufficient serum concentration for up to 150 days, making it suitable for RSV 
prophylaxis in children younger than 12 months of age (Griffin et al., 2020; Hammitt 
et al., 2022; Rodriguez-Fernandez et al., 2021; Simões et al., 2023). Furthermore, 
the efficacy of nirsevimab was demonstrated in a large unblinded, European 
multicentre study, involving over 2000 children, in which hospitalisations associated 
with RSV infections were decreased by 77%, and the severe RSV infections were 
reduced by 85% (Simões et al., 2023).  

Importantly, another strategy for protecting infants against RSV infection is 
based on maternal immunisation during pregnancy. By administering the vaccine to 
a pregnant individual, the foetus can be protected during the first few months of life 
through the transfer of maternal antibodies via the placenta (Saso et al., 2020). 
During autumn 2023, EMA approved the administration of a maternal RSV pre-F 
vaccine during pregnancy to protect the newborn during the first RSV epidemic. In 
the study supporting the approval, the maternal pre-F vaccine, administered between 
weeks 24-36 of gestation, demonstrated a protective efficacy of 57% against 
hospitalisations, and 70% against severe RSV infections up to the age of six months. 
However, the protective efficacy was greater during the first three months 
(Kampmann et al., 2023). This is unsurprising, since the maternal antibodies can 
decline in a time-dependent manner (Hoang et al., 2016; Munoz et al., 2014).  

2.5 Immune responses and clinical outcomes of 
first wheezing episode 

Previously, the classical Th1/Th2 balance model for the development of asthma has 
been extensively studied. According to this model asthma is a result of Th2-skewed 
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immune responses. However, the Th1/Th2 model has faced criticism for its 
oversimplified nature, as in vivo, immune responses exhibit a greater degree of 
heterogeneity and nuance, indicated by discoveries, including ILCs (Moro et al., 
2010), macrophage polarisation (Gordon, 2003) and the recognition of additional 
CD4+ T cell subsets beyond Th1 and Th2 (Luo et al., 2022). Nevertheless, in early 
childhood, the Th1- and Th2-mediated immune responses and their differences, are 
suggested to influence the risk of subsequent asthma. In addition, data from infants 
suggest an age-related Th2-skewed immunity in all children during early life, and 
which is importantly emphasised by delayed Treg cell maturation in atopic children 
compared to non-atopic children (Tulic et al., 2012). Notably, this bias is evident in 
inclination toward producing Th2-associated cytokines when a naïve T cell from a 
newborn is stimulated in vitro (Roux et al., 2011). Furthermore, the occurrence of 
impaired Th1 responses (Tulic et al., 2012), predisposes already susceptible children 
to lower respiratory tract infections, including RV- and RSV-associated 
bronchiolitis, with subsequent type 2 immune responses (Jackson et al., 2008; 
Tregoning et al., 2008; Tulic et al., 2012; Wolters et al., 2024). The immune 
responses measured from nasal lavage fluids in children with bronchiolitis receiving 
outpatient care seem to be age-dependent (Cortegano et al., 2022). Furthermore, 
while the prior proinflammatory cytokine expression and subsequent expression of 
the nuclear factor-κB gene decrease during convalescence after bronchiolitis, earlier 
studies reported that a less significant reduction in the levels of leukotrienes is 
associated with recurrent wheezing in children post-bronchiolitis (Dalt et al., 2007; 
Sastre et al., 2020). This is interesting, since leukotrienes enhance capillary 
permeability, increase mucus secretion, induce bronchoconstriction and leukocyte 
attraction, and increase the responsiveness of the airways. Furthermore, leukotriene 
antagonists have been associated with attenuation of airway remodelling (Hur et al., 
2018). Finally, the cell-mediated immune responses are thought to influence the 
outcomes depending on the viral infection. In RSV infections, a shift from a type 1 
to a type 2 immune response is linked to greater disease severity, while in RV 
infections, the type 2 immune response contributes to the development of subsequent 
wheezing.  

2.5.1 RV 
Although the lungs may still be developing during the typical timeframe of a first 
severe wheezing episode caused by RV infection, they are generally more mature 
compared to their development during the time of an RSV infection. 

In contrast to the common risk factors for RSV bronchiolitis (Murray et al., 
2014), susceptibility to RV-associated illness appears to be influenced by 
predisposition. This is evidenced by the observation that among infants experiencing 
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recurrent moderate-to-severe respiratory illnesses, the prevalence of previous RV-
associated bronchiolitis ranges from 50% to 80% within the first 12 months of life 
(Jartti et al., 2008b).  

Biomarkers (cytokines, chemokines etc.) 

RV infection is suggested to induce type 2 immunity-associated cytokines, including 
IL-4, IL-5, IL-13 and TLSP (Custovic et al., 2018; Rossi et al., 2015; Vandini et al., 
2017). Moreover, a multicentre study investigating the interaction of singleton RV-
associated bronchiolitis and type 2 associated cytokine responses found that elevated 
levels of IL-4 IL-5, IL-13 and TLSP during the acute phase were associated with 
asthma at 4 years, while in the RV-RSV coinfection group these were not, indicating 
an interplay between the RV and type 2 immune responses affecting asthma risk 
(Hasegawa et al., 2019b).  

Polymorphisms in genes associated with IL-33 and its receptor (IL-1 receptor-
like 1) are associated with increased risk of wheezing and asthma (Savenije et al., 
2014). Interestingly, in a murine model, exposure to an aeroallergen during a 
concomitant pneumovirus-induced asthmatic state leads to the expression of IL-33 
which consequently impairs the production of type I IFNs resulting in higher viral 
genome loads, airway smooth muscle growth and type 2 inflammation (Lynch et al., 
2016).  

IFNs play a pivotal role in the antiviral activity, especially in the acute phase of 
an initial infection to a specific pathogen, and they are divided into three main types, 
type I, II, and III, distinguished by their primary molecular compositions and the 
receptors they bind to (Hile et al., 2020). Type II IFN, also referred to as IFN-γ, 
induces the activation of transcription factor T-bet in type 1 immunity-associated 
cells, and thereby linked to the activity of Th1 cells, and subsequently suppresses the 
activity of transcription factor GATA3, inhibiting the activity of Th2 cells. 
Conversely, IL-4 exhibits the opposite influence (Chopp et al., 2023; Zissler et al., 
2016). In addition, type I IFNs can also impede the differentiation of naïve CD4+ T 
cells into Th2 cells and destabilise the secretion of cytokines from Th2 cells by 
inhibiting GATA3 (Huber et al., 2010). Furthermore, whereas ILC2s participate in 
type 2 immune responses (Bartemes et al., 2014), type I IFNs have been reported to 
inhibit proliferation and induce apoptosis in ILC2s in the airways and alleviate 
airway hyperreactivity (Maazi et al., 2018). 

Higher nasal IL-8, a potent chemoattractant for neutrophils, is associated with 
the severity of illness in the RV bronchiolitis (Turner et al., 1998). Moreover, both 
IL-8 polymorphism and cytokine expression are linked to an increased risk of 
subsequent atopic asthma (Charrad et al., 2017).  
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Innate immune responses from PBMCs towards RV infection differ between 
asthmatic and healthy controls (Hosseini et al., 2021). Crucially, in atopic patients, 
epithelial cells within distal airways exhibit a predisposition towards type 2 immune 
responses indicated by the release of epithelial alarmins such as TSLP, IL-31, 
Eotaxin-3 (CCL26), IL-25, and IL-33, triggering a localised type 2 immunity-
associated response characterised by cytokines such as IL-4, IL-5, IL-9, IL-13, IL-
25, IL-33, along with an elevation in the number of eosinophils upon activation (Frey 
et al., 2020; Hosseini et al., 2021). Furthermore, a recent meta-analysis has shown 
that IL-25 and IL-33 contribute to the enhancement of type 2 immunity and the 
expression of type I, and III IFNs were significantly impaired in individuals with 
asthma following RV infection (Hosseini et al., 2021; Liew et al., 2022). Moreover, 
when compared with RSV, RV infection has the potential to modify the microRNA 
profile by boosting the NFκB-signalling pathway, leading to increased expression of 
IL-10 and IL-13 (Hasegawa et al., 2018b). Interestingly, while IL-10 levels increase 
during RV-induced asthma exacerbations and decrease during convalescence, the 
role of IL-10 as a biomarker in early RV-induced wheezing has not been fully 
explored (Busse et al., 2005). 

Although RV RNA is commonly detected in both symptomatic and 
asymptomatic children, only symptomatic RV infection triggers a strong and 
consistent host response, demonstrated by the elevated expression of transcription 
profiles linked to innate immunity and reduced expression of those associated with 
adaptive immunity (Heinonen et al., 2016). 

Interestingly, following allergen exposure, fractalkine expression is increased in 
the lungs of patients with allergic asthma, potentially aiding in the recruitment of 
circulating Th cells (Rimaniol et al., 2003). Furthermore, RV infections have been 
shown to amplify house dust mite-induced fractalkine expression, which may play a 
role in the synergistic interaction between viral infection and allergen exposure, 
contributing to asthma exacerbations (Loxham et al., 2018). 

Elevated levels of thymus- and activation-regulated chemokine (TARC) have 
been observed in NPAs of asthmatic patients infected with RV compared to non-
asthmatic controls (Hansel et al., 2017). Furthermore, RV infections have been 
shown to promote increased expression of macrophage-derived chemokine (MDC) 
in NPA samples, as well as an enhanced response in vitro in epithelial cells from 
asthmatic donors and in vivo mouse models Interestingly, although no difference in 
MDC levels was observed between asthmatic and healthy controls, RV infections 
have been associated with a significant increase in MDC levels specifically in 
asthmatic individuals (Nikonova et al., 2020; Williams et al., 2021). 

RV infection has been linked to increased expression of vascular endothelial 
growth factor (VEGF) in both in vivo and in vitro studies (Kuo et al., 2011; Leigh et 
al., 2008). Additionally, asthmatic children exhibit higher sputum VEGF levels 
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compared to healthy controls, with VEGF expression rising significantly during 
acute asthma exacerbations. Remarkably, in asthmatic children, VEGF levels seem 
to remain elevated even during periods of complete symptom remission (Hossny et 
al., 2009). The levels of regulated upon activation, normal T cell expressed and 
secreted (RANTES) have been noted to be more pronounced in RV infections 
compared to other viral agents, including RSV infections (Chun et al., 2013). 
Furthermore, heightened levels of RANTES are more commonly detected in 
respiratory secretions of asthmatic patients compared to non-asthmatic controls 
(Conti et al., 2001).  

The levels of tumour necrosis factor (TNF) α increase during RV infections and 
are particularly elevated in wheezing infants (Balfour-Lynn et al., 1994; Gern et al., 
1996). Moreover, TNF-α and RV infection synergistically enhance chemokine 
responses in epithelial cells, such as IL-8 and epithelial-derived neutrophil-activating 
peptide 78 (ENA-78), at least in vitro (Newcomb et al., 2007). Additionally, RV-
infected asthmatics show higher levels of ENA-78 in nasal secretions compared to 
healthy controls (Donninger et al., 2003). Furthermore, in a murine model, inhibition 
of ENA-78 in RV-induced asthma exacerbation has been linked to reduced 
hyperactivity of airways, mucus secretion and collagen disposition (Sokulsky et al., 
2020). 

In children with acute respiratory symptoms, monocyte chemoattractant protein 
(MCP) 3 is elevated in NPAs relative to asymptomatic peers (Santiago et al., 2008). 
Additionally, macrophage inflammatory protein (MIP) 1β, which is linked to the 
recruitment of eosinophils in the respiratory tract, shows a positive correlation with 
symptoms of lower respiratory tract infections (Kobayashi et al., 2019; Lewis et al., 
2012). Moreover, children with recurrent wheezing have been found to exhibit 
higher levels of both MIP-1α and MIP-1β compared to those without recurrences 
(Sugai et al., 2016). 

Genetics 

CDHR3 is responsible for encoding a transmembrane protein belonging to the 
cadherin family, which is expressed in epithelial cells within the airways, and 
crucially, the entry of RV C into the epithelial cell is facilitated by CDHR3 (Bochkov 
et al., 2015). Importantly, in RV infections, variations in the CDHR3 gene are 
associated with childhood asthma (Bønnelykke et al., 2014). Moreover, variations in 
the 17q21 locus, particularly in RV infections, are associated with the severity of the 
wheezing illness and an increased risk of asthma (Çalışkan et al., 2013; Jartti et al., 
2019). Significantly, the association between asthma and these genes is 
predominantly observed in children with a history of RV-induced wheezing illness, 
further highlighting a distinct subgroup of bronchiolitis. 
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2.5.2 RSV 
During the typical time frame of RSV infection, the respiratory tract is still under 
development (DenDekker et al., 2018; Hislop et al., 1986). Hence, the respiratory 
tract of an infant may be susceptible to long-term pathological changes, as suggested 
by a study observing a murine model, in which alveolar and bronchial development 
was impaired as a result of viral infection, leading to impaired pulmonary function 
(Castleman et al., 1988). Furthermore, a prospective study on children with RSV 
bronchiolitis, showed an impairment in pulmonary function at 6 years of age (Zomer-
Kooijker et al., 2014).  

Although risk of hospitalisation is elevated in recognised high-risk groups for 
RSV bronchiolitis, in contrast to RV bronchiolitis, the majority of infants (up to 
85%) hospitalised with RSV bronchiolitis are not born prematurely and lack known 
predisposing risk factors for severe RSV infection (Hall et al., 2009; Murray et al., 
2014). However, the reduced rates of hospitalisation due to bronchiolitis among 
certain high-risk groups might be attributed to the utilisation of monoclonal RSV 
antibodies, such as palivizumab (Blanken et al., 2013; Simoes et al., 2007; Yoshihara 
et al., 2013). A recent study indicated that the incidence of hospital admissions and 
the number of hospitalisation days among children with RV bronchiolitis are 
approximately 68% and 51%, respectively, compared to those with RSV 
bronchiolitis, and unlike the seasonal burden of RSV infection, the impact of RV 
infection is distributed throughout the year (Horvat et al., 2024). 

Crucially, not every child infected with RSV develops bronchiolitis, and 
similarly, not all children with RSV bronchiolitis develop subsequent recurrent 
wheezing or asthma. These findings suggest that other factors, such as genetic and 
environmental factors, contribute to the pathophysiology. In support of this, 
intriguingly, Treg cells are able to display phenotypic plasticity, potentially losing 
their suppressive capabilities in inflammatory settings by adopting alternative 
phenotypes such as resembling a type 1 immunity. Notably, this alteration can be 
reversed by using blocking antibodies against the inflammatory cytokines 
(Dominguez-Villar et al., 2011). These findings are supported by a prior study 
performed on a murine model showing that repeated early RSV infections in 
ovalbumin-tolerised mice resulted in GATA3 expression and type 2 immunity-
associated cytokine secretion in FOXP3 Treg cells, compromising the suppressive 
activity of pulmonary Treg cells and skewing towards type 2 associated immunity 
(Krishnamoorthy et al., 2012).  

Biomarkers (cytokine, chemokines etc.) 

The association between RSV bronchiolitis and poorer long-term prognosis has been 
observed to depend on the severity of the acute illness, with a stronger link to 
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subsequent asthma being evident in cases of more severe disease (Carroll et al., 
2009). Moreover, the likelihood of experiencing more severe RSV infections has 
been associated with the skewed balance between type 1 and type 2 immune 
responses. Infants with more severe RSV infection have shown a reduced IFN-γ 
response from PBMCs (Aberle et al., 1999). In addition, reduced IFN-γ responses at 
the time of acute bronchiolitis have been shown to be associated with subsequent 
impairment of pulmonary function (Renzi et al., 1999). Furthermore, elevated IL-4 
levels and reduced IFN-γ levels (IL-4/IFN-γ ratio) have been shown to exacerbate 
the severity of RSV bronchiolitis in infants, suggesting that in infants with more 
severe disease, the immune response is more skewed towards type 2 immunity 
(Caballero et al., 2015).  

A study comparing children with RSV bronchiolitis, and age-matched controls 
found that in the NPAs, increased levels of RANTES were associated with RSV 
infection compared to controls. Furthermore, recurrent wheezing was linked to 
higher RANTES expression among RSV bronchiolitis patients, but notably, the 
RANTES levels played no part in the severity of illness (Chung et al., 2002). 
Moreover, another study comparing children with RSV bronchiolitis and age-
matched controls observed increased levels of IL-3, IL-4, IL-10, and IL-13, but also 
elevated levels of IL-1β, IL-6, TNF-β, MCP-1, MIP-1α and IL-8, in bronchoalveolar 
lavage fluid (BALF) compared to asymptomatic controls. Furthermore, along RSV 
infected children, elevated expression of IL-3 and IL-12p40 in BALF were 
associated with recurrent wheezing. Additionally, elevated gene expression of IL-33 
was observed in infants with family history of atopy, suggesting a predisposition to 
atopy (Bertrand et al., 2015). Interestingly, in children affected by RSV, higher viral 
genome loads, increased expression of genes linked with IFN and plasma cells, along 
with reduced expression of genes linked with inflammation and neutrophils, have 
been linked to less severe illness (Heinonen et al., 2020). 

RSV infection has previously been shown to associate with an increase of 
expression of multiple chemokines such as of I-309 and TARC, RANTES, MCP-1, 
MDC, and MIP-1α and MIP-1β from basal epithelial cells (Zhang et al., 2001). 
Moreover, upregulation of I-309 has also detected in BALF from asthmatics 
compared to non-asthmatic patients (Mutalithas et al., 2010). Additionally, RSV 
infection has been linked to both acute and sustained long-term increases in VEGF 
expression, as observed in vivo and in vitro studies (Moreno-Solís et al., 2015; 
Oldford et al., 2018; Pino et al., 2009). 

Furthermore, the increased severity of RSV bronchiolitis has been associated 
with increased viral load (Luchsinger et al., 2014; Uusitupa et al., 2020),  and 
variations in levels of IL-33 (NPA) (Saravia et al., 2015), IL-8 (Plasma, NPA) (Brand 
et al., 2013; Brown et al., 2015; Choi et al., 2010; Díaz et al., 2015; Tabarani et al., 
2013), TSLP (NPA) (García-García et al., 2017), periostin (NPA) (García-García et 
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al., 2017), IL-6 (blood, plasma, serum, NPA) (Brown et al., 2015; Díaz et al., 2015; 
McNamara et al., 2004; Tabarani et al., 2013), and IFN-α (blood) (Do et al., 2017; 
Tabarani et al., 2013; Zhang et al., 2016). 

Genetics 

Several studies have been concentrating on the identification of RSV bronchiolitis-
associated gene variations that influence susceptibility to both the acute disease and 
subsequent recurrent wheezing and asthma. Interestingly, pre-term infants may be 
genetically predisposed to RSV infection, as demonstrated by the higher risk for 
RSV bronchiolitis in premature infants with the ADAM33 polymorphism. 
Moreover, in pre-term infants affected by RSV, single nucleotide polymorphisms 
(SNP) in genes associated with IL-10, nitric oxide synthase 2A (NOS2A), surfactant 
protein C (SP-C), matrix metalloproteinase 16 (MMP16), and vitamin D receptor 
(VDR) genes have been linked to heightened chronic respiratory morbidity. 
Furthermore, SNPs in genes associated with MMP16, NOS2A, SP-C, and VDR have 
been linked to reduced pulmonary function at 12 months of age (Drysdale et al., 
2014). In addition, polymorphisms of IL-10, IL-13, TLR4, VDR, CCR5, and 
ADAM33 genes have been associated with RSV bronchiolitis and increased risk for 
development of asthma (Larkin et al., 2015). 

One study demonstrated significant associations with SNPs in IL19, IL20, 
MUC5AC, TNFRSF1B, C3, CTLA4, CXCL9, IL4R and IL7 genes, and wheezing 
at 15 months after RSV-induced lower respiratory tract infection (Ermers et al., 
2011), of which genes C3, CTLA4 and IL4R overlap with variants identified with 
asthma (Inoue et al., 2008). Additionally, in another study, after 6 years of follow-
up, a functional SNP in IL13 gene was identified to be associated with wheezing 
after RSV-infection (Ermers et al., 2007). 

An increase in cilia-related gene expression has been linked to a prolonged 
duration of hospitalisation in children with severe RSV bronchiolitis requiring 
intensive care treatment (Koch et al., 2022). This finding is not unexpected, 
considering that RSV predominantly infects and replicates within ciliated epithelial 
cells (Zhang et al., 2002). Following RSV bronchiolitis, both polymorphism and 
excessive expression of RANTES have been associated with recurrent wheezing 
(Tian et al., 2009).  

2.5.3 HBoV1 
Though HBoV1 is commonly detected in coinfections, and the exact relationship 
between the acute illness and the identification of coinfecting HBoV1 using 
conventional PCR is uncertain, the signs and symptoms of sole HBoV1 infection 
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vary significantly (Allander et al., 2007). Importantly, HBoV1 infection can lead to 
severe illness (Liao et al., 2022; Moesker et al., 2015). Moreover, a high genome 
load of HBoV1 is associated with more severe illness characterised by a longer 
duration of respiratory symptoms and hospitalisation (Deng et al., 2012). A study 
comparing the incidence of recurrent wheezing in hospitalised children showed 
marked, but not significant, differences between RV and HBoV1 aetiologies (40% 
vs 60%, respectively) (Lukkarinen et al., 2014). While in chronic tonsillar disease, 
HBoV1 is commonly identified, HBoV1 infection has been associated with 
inhibition of transcription factors crucial for T cell differentiation, RORγt (type 1 
immunity) and FOXP3 (Treg-associated immunity), and an increased genome load 
leading to poorer expression of type 3 IFN (IL-28 and IL-29) and IL-13 (Ivaska et 
al., 2021).  
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3 Aims 

The primary aims of this study were: 

1. To assess the short- and long-term efficacy of inhaled β2-agonist with and 
without the use of systemic corticosteroid treatment on severe first-time 
wheezing in children with RV (Study I) 

2. To study the differences in cytokine responses and their respective effects on 
short- and long-term prognosis between RV and RSV infected children 
suffering from severe first-time wheezing (Study II). 

3. To examine the effects of HBoV1 coinfection on cytokine responses in first-
time wheezing in children with RV (Study III) 

4. To determine whether cytokine responses are associated with the need for 
hospital admission for first-time wheezing children infected with RV (Study 
IV). 
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4 Materials and Methods 

The details of materials and methods are presented in the original publications. 

4.1 Patients and study populations 
The study population for Study I was derived from two randomised controlled trials: 
Vinku (n=293, NCT00494624) and Vinku2 (n=125, NCT00731575, EudraCT 2006-
007100-42). In contrast, Studies II, III, and IV used participants from Vinku2 only. 
Both Vinku and Vinku2 were double-blinded, placebo-controlled, randomised 
controlled trials that compared the efficacy of oral prednisolone (2 mg/kg/d for three 
days) to a placebo in the first wheezing episode. In the Vinku study, the participants 
were randomised regardless of the viral agent, resulting in a post hoc design, while 
in the Vinku2 study, the participants were randomised only after a positive RV PCR 
test, making it prospective in design. Both studies used a uniform weight-based 
dosing for salbutamol and study drugs, and identical sampling and follow-up 
procedures, including daily symptom diaries for 2 months and follow-up visits 
(defined below). Guardians were also instructed to bring their child to the physician 
if breathing difficulties occurred. 

For the Vinku study, patients were recruited between September 2000 and May 
2002, and for the Vinku2 study, from June 2007 to March 2010. In Studies II-IV 
(Vinku2), 20% of participants were recruited from an outpatient clinic and 80% from 
the paediatric infectious ward at Turku University Hospital, while Study I included 
inpatients only. 

In all studies, the identical inclusion criteria were patient aged 3-23 months, born 
after 36 weeks of gestation, experiencing first wheezing episode (validated through 
parental report and confirmed by medical records), and the detection of RV in an 
NPA sample by PCR. Further, identical exclusion criteria for all studies comprised 
the use of systemic or inhaled corticosteroids prior to study entry, the presence of 
chronic non-atopic diseases, and a requirement for intensive care. 

In addition, in Study I, the inclusion criteria included hospitalisation and RV 
detected in NPA by PCR. In Study II, the inclusion criteria also required having a 
sole, steroid-naïve RSV or RV infection detected in an NPA sample via PCR, with 
exclusion criteria including the detection of a non-RSV or non-RV viral agent in the 
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NPA sample. In Study III, the inclusion criteria included having either a sole RV 
infection or a coinfection with RV and HBoV1, as indicated by the detection of viral 
RNA/DNA in an NPA sample via PCR and confirmed by serology for HBoV1, with 
exclusion criteria including the detection of a non-RV or non-HBoV1 viral agent in 
the NPA or serology sample. In Study IV, the inclusion criteria also encompassed 
having a sole RV infection detected by PCR, with exclusion criteria including the 
detection of a non-RV viral agent in the NPA sample. 

In all studies, written informed consent by a parent or guardian was provided 
beforehand. 

4.2 Protocols 
In both original studies, at study entry, after the clinical evaluation and 
interviewing of the parents or guardians according to the standardised surveys on 
host and environmental risk factors of recurrent wheezing and asthma, peripheral 
blood and NPA samples were obtained. Next, the participants were randomised to 
prednisolone and placebo groups (in Vinku at entry, and in Vinku2 after a positive 
RV PCR test). Both the recruitment to the studies, and the subsequent follow-up 
visits at 2 weeks, 2 months, 12 months, 4 years in Vinku2 only, and 7 years were 
conducted by study physicians. The patients were prospectively followed up to 7 
years.  

4.3 Definitions 
Atopy (i.e. sensitisation) was referred to as positive IgE levels (exceeding 0.35 
kU/L) against any of the measured common allergens (listed below). Aeroallergen 
sensitisation was referred to as positive allergen-specific IgE levels against cat, 
dog, horse, birch, mugwort, timothy, Cladosporium herbarum, and 
Dermatophagoides pteronyssinus. Furthermore, the presence of positive IgE 
antibodies to dog, cat, or Dermatophagoides pteronyssinus was considered to as 
perennial aeroallergen sensitisation. Food allergy was referred to as positive 
allergen-specific IgE levels against cow’s milk, egg, peanut, soybean, wheat, and 
codfish (Jartti et al., 2015). Blood eosinophilia (i.e. elevated levels of peripheral 
blood eosinophils, B-Eos) was defined as eosinophil count exceeding 0.4 x 109 
cells/L. Atopic eczema was defined by typical signs and symptoms such as 
pruritus, chronicity of illness, and typical morphological findings as well as 
evidence of sensitisation (Jartti et al., 2010).  
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4.4 Sample processing and analyses 

4.4.1 Viral diagnostics 
In Studies I-IV, NPA samples were collected using a standardised procedure 
(Allander et al., 2007; Jartti et al., 2004), stored at +4°C and analysed within 3 days 
of collection. Nucleic acids were extracted using either the High Pure Viral Nucleic 
Acid Kit (Roche Diagnostics, Mannheim, Germany) or the NucliSens EasyMag 
automated extractor (bioMérieux, Boxtel, The Netherlands). If not analysed 
promptly, nucleic acids were preserved at -70°C. 

The detection of RV was conducted via in-house PCR assay. The primers were 
developed from the highly conserved 5’ noncoding region of the picornavirus 
genome, ensuring detection capability across nearly all RV and enterovirus (EV) 
genotypes (Halonen et al., 1995; Lönnrot et al., 1999). The forward primers (positive 
strand) used were 5' –CGGCCCCTGAATGCGGCTAA-3', and the reverse primers 
(negative strand) were 5'-CGCCCCCTGAATGCGGCTAA-3'. 

The Vinku study used an RT-PCR hybridisation method (Lönnrot et al., 1999). 
For PCR cycling, a DNA Thermal Cycler (Perkin-Elmer, Cetus Corp., Norwalk, CT) 
was used. The amplification process involved an initial incubation at +94°C for 3 
minutes, followed by 40 cycles of denaturation +94°C for 30 seconds, annealing 
+53°C for 45 seconds, and extensions +72°C for 60 seconds. Discrimination between 
RV and EV amplicons was achieved through liquid-phase hybridisation using 
specific probes marked with lanthanide chelates. These probes were designed with 
maximum homology within EVs- and RVs, as well as intra-genus homology, with 
maximum differentiation between EVs and RVs. The specific probes used were RV 
5'-TAGTTGGTCCCITCCCG-3', EV 5'-TAITCGGTTCCGCTGC-3', and EV-RV 
5'- AAAGTAGTIGGTICC-3' (Lehtinen et al., 2007). 

The PCR test employed in the Vinku2 study underwent an upgrade to a real-time 
format, utilising SYBR Green as a double-strand DNA dye. The PCR cycling was 
facilitated by using a Rotogene 3000 instrument (Corbett Research, Qiagen). The 
amplification process involved an initial incubation at 95°C for 15 minutes, followed 
by 45 cycles of denaturation at 95°C for 15 seconds, annealing at 65-55°C for 30 
seconds, and extension at 72°C for 40 seconds. A melting curve analysis was used 
to discriminate between EVs and RVs (Jartti et al., 2015; Österback et al., 2013).  

 In Vinku study, for the detection of presence of adenovirus, hMPV, influenza 
viruses (A and B), parainfluenza virus (types 1–4), polyomaviruses (WU and KI), 
RSV, and RV, PCR, time-resolved fluoroimmunoassay antigen detection methods, 
and virus culture were used (Jartti et al., 2004, 2015; Lehtinen et al., 2007; Turunen 
et al., 2014). Furthermore, in the Vinku2 study, the analysis of coronaviruses, 
including 229E, NL63, OC43, and HKU1, by PCR was added (Jartti et al., 2015; 
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Turunen et al., 2014). Acute HBoV1 infections were assessed using PCR and 
serology (IgM and IgG in paired sera (Kantola et al., 2011; Söderlund-Venermo et 
al., 2009). To ascertain the genotype specificity of HBoV1 IgG, serum samples were 
treated with HBoV2 and HBoV3 antigens (Kantola et al., 2011). 

B-Eos and serum levels of allergen-specific IgE were analysed using routine 
diagnostics at the Central Laboratory of Turku University Hospital. Serum 25-
hydroxyvitamin D measurements were performed by liquid chromatography-tandem 
mass spectrometry at Massachusetts General Hospital (Boston, MA, USA). 

4.4.2 PBMC isolation, processing and analysis 
In Studies II-IV, samples of peripheral whole blood for PBMCs were collected 
during the acute illness and convalescence (after 2 weeks). During both time points, 
the blood sample was stored on a rocking shaker at room temperature, and PBMC 
isolation from the samples were performed on the same day using density gradient 
centrifugation (Ficoll-Paque™ PLUS, GE Healthcare, Amersham, UK) following 
the manufacturer's instructions. Subsequently, PBMCs (with over 95% viability) 
were stimulated with anti-CD3/anti-CD28 for 24 hours. Following stimulation, the 
supernatants were gathered, centrifuged, and stored in a -80°C freezer until analysis. 
Afterwards, the supernatants were transported in dry ice containers to the Swiss 
Institute of Allergy and Asthma Research (SIAF) in Davos, Switzerland. Upon 
arrival, the samples remained frozen and were stored at -80°C until analysis.  

Immediately prior to analysis, the samples were thawed and analysed using 
HCYTOMAG-60K-36 and HCYP2MAG-62K-20 assays (Merck KGaA, Darmstadt, 
Germany) on the Bio-Plex 200 System, operated with Bio-Plex Manager 6.0 
Software (Bio-Rad, Cressier, Switzerland) for quantitatively assess 56 different 
cytokines. The internal quality controls indicated satisfactory performance across all 
analytes. 

However, due to the limitations of quantitative multiplex ELISA profiling, in a 
minor subset of samples, the fluorescence was not observed within the quantitative 
limit of detection. Consequently, cytokines detected within the limit of quantification 
in over half of the samples (29 out of 56, 52%) were included in subsequent analyses. 
For those cytokines, samples below the detection limit were assigned a value 
equivalent to half of the assay's lower threshold, and samples that exceeded the limit 
were assigned the assay's upper threshold. 
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4.5 Outcomes 

4.5.1 Efficacy of inhaled salbutamol with and without oral 
prednisolone (I) 

The primary outcomes of Study I were to compare: 

o The duration of time necessitating hospitalisation (i.e. time until 
deemed ready for discharge based on clinical scoring). 

o Occurrence of a new physician-confirmed wheezing episode within 
2 months post-discharge.  

o Time to a new physician-confirmed wheezing episode within 2 
months post-discharge. 

Secondary outcomes of Study I were to compare: 

o Duration of wheezing and coughing post-discharge. 

o Incidence of and time to a new physician-confirmed wheezing 
requiring hospitalisation within a 2-month follow-up period. 

o The number of bronchodilator doses within the 2 weeks post-
discharge. 

4.5.2 Association of cytokine responses and the short- and 
long-term prognoses between RV- and RSV-induced 
wheezing (II) 

The primary outcomes of Study II were to compare: 

o The cytokine responses from PBMCs stimulated with anti-
CD3/anti-CD28 between RV- and RSV-associated first wheezing 
episodes in children during both the acute phase and the 
convalescent phase (after 2 weeks). 

o Cytokine responses related to different RV species (A, B and C). 

o Whether cytokine responses are associated with the RV genome 
load. 

o Whether cytokine responses are associated with new physician-
confirmed wheezing episodes (at 2- and 12-month follow-up) and 
the development of asthma by 4 years of age. 
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4.5.3 Immune suppression by HBoV1 on RV-induced first 
wheeze in young children (III) 

The primary outcomes of Study III were to compare: 

o The overall cytokine responses of anti-CD3/anti-CD28-stimulated 
PBMCs during severe first wheezing in children, specifically 
comparing those infected with both RV and HBoV1 to those with 
RV alone. 

o Whether cytokine responses are associated with the disease severity 
(i.e., duration of hospitalisation). 

o Whether cytokine responses are associated with the occurrence of 
recurrences (within the subsequent 2-months follow-up) and the 
development of asthma by 4 years. 

4.5.4 Association between cytokine responses and the initial 
disease severity in the RV-associated wheezing (IV) 

The primary outcomes of Study IV were to compare: 

o Overall cytokine responses from anti-CD3/anti-CD28-stimulated 
PBMC of children affected by severe first-time wheezing and 
treated as outpatients with those treated as inpatients. 

o Whether cytokine responses are linked to the occurrence of 
recurrences (at 2- and 12-month follow-up) and asthma by 4 years. 

4.6 Statistical methods 
In Studies I, II, III, and IV the differences in baseline characteristics between the 
study groups were analysed by using the two-sample t-test for normally distributed 
and the Mann-Whitney U-test for non-normally distributed data. When appropriate, 
the normality of distribution was assessed by the Kolmogorov-Smirnov or Shapiro–
Wilk test. Due to the skewness of the data, cytokine levels were log10 or x² 
transformed when appropriate. Categorical variables were analysed using the χ2 test 
or Fisher’s exact test.  

Additionally, in Study I, logistic regression, negative binomial regression, and 
Cox regression were used when appropriate. The difference in duration of 
hospitalisation was analysed in two phases with negative binomial regression. Since 
in the Vinku2 study the original study drug (oral prednisolone or placebo) was 
initiated only after a positive RV PCR test and in the Vinku study at entry, there was 
a time delay in the administration of the study drug between the on-
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demand/prednisolone and high-dose/prednisolone groups. Hence, the analyses were 
conducted in two phases. First, in the stringent analysis, between placebo study 
groups only (high-dose/placebo and on-demand/placebo). Second, in the loose 
analysis, between high-dose/prednisolone and placebo groups while excluding the 
on-demand/prednisolone group. The group×treatment interaction effect was 
included in models and if a statistically significant interaction was found, group 
effect (salbutamol high-dose vs on-demand) was estimated separately in the 
prednisolone and placebo groups. If the interaction was not statistically significant, 
the effects on the group and treatment were estimated from the main effects model.  

In Study II, III, and IV. For other statistics, when appropriate, the two-sample t-
test, Mann-Whitney U test, χ2 test, Fisher’s exact test (when cell counts < 5), and 
multivariable linear model analysis (using the backward stepwise method to adjust 
for the baseline differences, only statistically significant variables (P < .05) were 
included in the final model), Kruskal–Wallis H test, and negative binomial 
regression were used. 

A two-sided P value < .05 was considered statistically significant. Data analyses 
were performed using JMP software (version 13.1.0, SAS Institute, Cary, NC, USA) 
and SAS System for Windows (version 9.4, SAS Institute, Cary, NC, USA). 

4.7 Ethics 
All studies followed the ethical guidelines outlined in the Declaration of Helsinki 
and Good Clinical Practice. Approval for the studies was granted by the Ethics 
Committee of Turku University Hospital, and initiation occurred solely after 
securing informed written consent from the parents or the guardians. 
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5 Results 

5.1 Study population and patient characteristics 

5.1.1 Study I 
The study population of Study I was derived from the Vinku and Vinku2 studies, 
initially enrolling 293 and 125 children, respectively. Of these, 323 children did not 
meet inclusion criteria for analysis, primarily due to age (>24 months, n = 118), non-
RV-associated illness (n = 108), or prior history of wheezing (n = 63). Thus, 95 
children were eligible for further analysis: 35 (37%) children from Vinku receiving 
high-dose salbutamol regularly, and 60 (63%) children from Vinku2 using 
salbutamol on-demand. A total of 88 (93%) children completed the 2-month follow-
up (Figure 4). 

 
Figure 4.  Study flow chart of Study I. ICU, intensive care unit; int, interval; d, day. Modified from 

Study I. 

The study subjects, with median age of 13 months (interquartile range (IQR) 8-
17 months), included 73% males, with 32% showing sensitisation and 43% having 
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atopic eczema. Viral coinfection was present in 43% of children overall. Treatment 
groups differed in sex, prior antibiotic use, and both non-RV-viral and bocavirus 
coinfection, aeroallergen and perennial sensitisation, and serum levels of 25-
hydroxyvitamin D and D3. Subsequent analyses revealed that only viral coinfection 
was associated with predefined outcomes. Notably, upon analysing the prednisolone 
and placebo groups, all patient characteristics were evenly distributed. 

5.1.2 Study II, III, and IV 
Studies II-IV utilised data exclusively from the Vinku2 study, which initially 
enrolled 125 eligible children. After 12 children declined to continue, a total of 113 
children participated in the clinical follow-up. 

In Study II, of the originally enrolled 113 children, 50 were excluded due to sole 
non-RV or sole non-RSV aetiology along with those with viral coinfections. 
Additionally, PBMC samples were absent for 7 children during the acute phase, 
resulting in available cytokine data for 56 children (RV n = 47, RSV n = 9). In the 
convalescent phase, 26 children were excluded (22 due to prednisolone treatment 
and 4 due to sample absence), leaving 30 children for cytokine analyses. Clinical 
data were available for 30 children at subsequent follow-up points (2 and 12 months 
later) (Figure 5). 

 
Figure 5. Study flow chart of Study II. ICU, intensive care unit; PBMC, peripheral blood 

mononuclear cell; RSV, respiratory syncytial virus; RV, rhinovirus. From Study II. 
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The children had a median age of 12.5 months (IQR 7.4-15.9). Among them, 
69% were boys, 80% required hospitalisation, 29% were sensitised, and 20% had 
atopic eczema. Upon entry into the study, compared to those in the RSV group, 
children in the RV group were older, had higher body weight and B-Eos, and showed 
a reduced occurrence and duration of preceding symptoms like wheezing, cough, 
rhinitis, and fever. 

In Study III, out of the originally enrolled 113 children, 52 were excluded due to 
non-RV and non-RV-HBoV1 aetiology, as well as those with viral coinfections. 
Additionally, 5 cytokine samples from the RV group were absent, leaving data from 
56 children (RV n = 47, RV-HBoV1 n = 9) for cytokine analysis during the acute 
phase. During randomisation, 33 children received prednisolone and were excluded 
from the convalescent phase analyses. Ultimately, cytokine samples from 24 
children were analysed during the convalescent phase. Clinical data were available 
for 25 children at the 2-month follow-up from the acute phase and 24 from the 
convalescent phase (Figure 6). 

The patients had a mean age of 14.3 months (standard deviation (SD) 5.6), with 
73% of the study subjects being males. Furthermore, 75% required hospitalisation, 
30% were sensitised, and 24% had atopic eczema. Notably, children infected with 
RV were of younger age and presented with fewer preceding signs and symptoms, 
including wheezing, cough, and fever. 

 
Figure 6.  Study flow chart of Study III. HBoV1, human bocavirus-1; ICU, intensive care unit; 

PBMC, peripheral blood mononuclear cell; RV, rhinovirus. From Study III. 
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In Study IV, of the originally enrolled 113 children, children with viral 
coinfection (n = 42), and non-sole RV infected children (n = 17) were excluded, 
leading to 61 study subjects continuing. Furthermore, 5 children were excluded from 
the further analyses, due to the absence of cytokine samples, resulting in available 
cytokine data from 37 inpatients and 10 outpatients for further analyses (Figure 7). 

The patients had a mean age of 17 months (SD 6), with 74% of the study subjects 
being male. Additionally, 79% required hospitalisation, 33% were sensitised, and 
22% had atopic eczema. Upon study entry, the hospitalised children exhibited lower 
oxygen saturation and elevated C-reactive protein (CRP) levels. Moreover, in 
hospitalised children, the occurrence of atopy and allergic sensitisation to food 
allergens as well as the prevalence of parental allergies was significantly more 
common to non-hospitalised children (all P < .05). 

 
Figure 7. Study flow chart of Study IV. ICU, intensive care unit; PBMC, peripheral blood 

mononuclear cell; RV, rhinovirus. From Study IV. 

5.2 Efficacy of inhaled salbutamol with and without 
oral prednisolone (I) 

In Study I, the study population comprised data from Vinku and Vinku2 studies. In 
Vinku study, randomisation to prednisolone or placebo groups occurred at study 
entry, whereas in Vinku2 study, randomisation occurred after a positive RV test. 
This difference in study protocols led to approximately a 45-hour delay in 
administering the study drugs (prednisolone or placebo) in Vinku2. Consequently, 
the duration of hospitalisation was analysed in two phases: first, as a stringent, and 
second, as a loose analysis. In the stringent analysis, study groups with 
administration of prednisolone were excluded, while in the loose analysis, only the 
on-demand/prednisolone group was excluded. The study effect (group effect) 
statistically accounted for the delay in other outcomes. Hence, on other primary and 
secondary outcomes, all study groups were included. 
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5.2.1 Duration of hospitalisation 
As stated before, the duration of hospitalisation was analysed in two phases. In the 
stringent analysis (prednisolone treatment arm excluded), there was no statistically 
significant difference in the duration of hospitalisation between the salbutamol high-
dose/placebo and the salbutamol on-demand/placebo groups (risk ratio (RR) 0.71, 
95% confidence interval (CI) 0.46-1.09, P =.12). However, in the loose analysis 
(salbutamol on-demand/prednisolone group excluded only), the salbutamol high-
dose/ prednisolone group was showed a shorter hospitalisation time when compared 
to the salbutamol on-demand/placebo group (RR 0.58, 95% CI 0.38-0.87, P = .008). 
Unfortunately, due to the exclusion of study groups in both analysis methods, 
interaction between the treatment groups could not be estimated (Figure 8).  

 
Figure 8. Duration of hospitalisation. In the loose analysis, while excluding salbutamol on-

demand/prednisolone group excluded only, the salbutamol high-dose/prednisolone was 
characterised by a shorter hospitalisation time compared to the salbutamol on-
demand/placebo group (B2 High / Pred vs. B2 on-demand / Placebo, P = .01). However, 
no statistically significant differences were found in the stringent analysis (B2 High / 
Placebo vs. B2 on-demand / Placebo P = .12). Pred, prednisolone; B2 high, high-dose 
salbutamol; On-demand, on-demand salbutamol. Modified from Study I. 

5.2.2 The occurrence of and the appearance of to a new 
physician-confirmed wheezing episode 

The different effect of salbutamol in prednisolone and placebo groups was indicated 
by significant interactions between the group effect (salbutamol high-dose vs on-
demand) and the treatment effect (prednisolone vs placebo) that observed on both the 

P = .12 

P = .01 
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occurrence of and time to a new physician-confirmed wheezing episode (both 
group×treatment P = .02). The salbutamol high-dose group was characterised by fewer 
new wheezing episodes than the on-demand group in the prednisolone arm (OR 0.15, 
95% CI 0.03-0.87, P = .03), but no difference was seen in the placebo treatment arm 
(OR 1.97, 95% CI 0.56-6.94, P = .29) (Figure 9). Moreover, when analysing the time 
to recurrences, the salbutamol on-demand group had shorter time to new physician-
confirmed wheezing episode than the high-dose group (HR 0.22, 95% CI 0.05-0.98, P 
= .047), but no difference was seen in the placebo treatment arm (HR 1.72, 95% CI 
0.68-4.35, P = .26). Importantly, the interactions were not affected by viral coinfection, 
since the interactions remained significant after adjustments (P = .02, and P = .04), but 
no statistically significant differences were detected in the prednisolone or placebo arm 
(all P > .05) (Figure 10). Of note, the majority (32/35, 91%) of the post-discharge 
relapses were confirmed at the study clinic. 

 
Figure 9.  A new physician-confirmed wheezing episode. The interaction between salbutamol 

group and prednisolone treatment on new physician-confirmed wheezing episode was 
significant (group × treatment p = .02) (left). Salbutamol high-dose group had fewer 
wheezing episodes than on-demand group in prednisolone arm (p = .03), but no 
difference was seen in placebo treatment arm (p = .29). The group × treatment 
interaction effect on new physician-confirmed wheezing as inpatient was not significant 
(p = .30) (grey). Prednisolone treatment arm had less new physician-confirmed 
wheezing as inpatient than placebo arm (salbutamol group adjusted main effect of 
treatment p = .03). Pred, prednisolone; B2 high, high-dose salbutamol; On-demand, on-
demand salbutamol. 
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Figure 10.  Time to a new physician-confirmed wheezing. The interaction between salbutamol 

group and treatment on a time to new physician-confirmed wheezing episode during the 
2-month follow-up was significant (group × treatment p = .02). Salbutamol on-demand 
group had shorter time to new physician-confirmed wheezing episode than high-dose 
group (p = .047), but no difference was seen in placebo treatment arm (p = 0.26). Pred, 
prednisolone; B2 high, high-dose salbutamol; On-demand, on-demand salbutamol. 
From Study I. 

 
Figure 11.  Duration of cough. Data are presented as medians (interquartile ranges). The group × 

treatment interaction effect on duration of cough was not significant (p = .46). High-dose 
group had shorter duration of cough than on-demand group (treatment adjusted main 
effect of salbutamol group p < .001). Pred, prednisolone; B2 high, high-dose salbutamol; 
On-demand, on-demand salbutamol. From Study I. 
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5.2.3 Duration of cough, and other secondary outcomes  
The salbutamol on-demand group had a longer duration of cough than the salbutamol 
high-dose group (treatment-adjusted main effect of salbutamol group P < .001) 
(Figure 11), and the prednisolone treatment arm showed fewer new recurrences as 
inpatients than the placebo arm (salbutamol group-adjusted main effect of treatment 
P = .03) (Figure 10). Other secondary outcomes showed no statistically significant 
interactions or differences. 

5.3 Association of cytokine responses and the 
short- and long-term prognoses between RV- 
and RSV-induced wheezing (II) 

5.3.1 Cytokine response differences between the RV and 
RSV groups 

In the acute phase, cytokine responses differed significantly between the RV and the 
RSV groups. After adjusting for baseline differences, the RV group showed lower 
levels of IL-1RA (97 vs. 240 pg/mL), IL-1β (3.5 vs. 30 pg/mL), and MCP-1 (6900 
vs. 7500 pg/mL), but higher levels of Eotaxin-2 (740 vs. 350 pg/mL), TARC (3.9 vs. 
1.8 pg/mL), and ENA-78 (900 vs. 210 pg/mL) compared to RSV (all P < .05) (Figure 
12). Differences in IL-6, I-309, and Eotaxin-3 were notable but not statistically 
significant (all P > .05). 

During convalescence, the RV group had higher levels of fractalkine than the 
RSV group (median 8.3 vs. 15 pg/mL, P =.02), but no other significant differences 
were found in the convalescent phase (Figure 13).  

When analysing the change in the cytokine responses during the 2 weeks 
(between the acute and the convalescent phases), the RV group showed heightened 
levels of fractalkine (1.1 vs. -4.6 pg/mL) and IL-1β (5.0 vs. -6.8 pg/mL), while in the 
RSV group the levels were reduced (all P < .03). Additionally, the RV group showed 
decreased levels of I-309 (-8.4 vs. 10 pg/mL) and TARC (-0.96 vs. 1.4 pg/mL), 
whereas in the RSV group the levels were increased (all P < .05) (Figure 13). 
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Figure 12. Differences in cytokine expression levels at study entry. Data are presented as medians 

(the lower (Q1) and upper (Q3) quartiles, and data falling outside the Q1–Q3 range are 
plotted as outliers). Cytokine concentrations are presented as pg/mL. Modified from 
Study II. 
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Figure 13. Differences in cytokine expression levels at convalescent phase and the difference over 

the study points. Data are presented as medians (the lower (Q1) and upper (Q3) 
quartiles, and data falling outside the Q1–Q3 range are plotted as outliers). Cytokine 
concentrations are presented as pg/mL. Modified from Study II. 

5.3.2 Association of viral aetiology and cytokine responses 
and their effect on the severity of the illness 

Analysis of the duration of hospitalisation revealed significant interactions between 
the viral group and the cytokine responses (all P < .04), indicating that the impact of 
cytokine responses from PBMCs on hospitalisation duration varied between the RV 
and the RSV groups. In the RSV group, higher levels of IFN-γ, MDC, IL-1RA, and 
VEGF were linked to shorter hospitalisation duration (all P < .02), whereas these 
associations were not significant in the RV group (all P > .05). Although a significant 
interaction between the viral group and IL-6 expression was noted, IL-6 levels were 
not associated with hospitalisation duration in either of the groups (all P > .05). 
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5.3.3 The occurrence of a new physician-confirmed 
wheezing episode during the 12-month follow-up 

Though, the occurrence of a new physician-confirmed wheezing episode during the 
following 2 and 12 months differed between the RV and the RSV groups (52% vs. 
11%, P = .02, and 81% vs. 22%, P = .002, respectively), the precise cytokine 
response driving these differences remained obscure due to the limited number of 
relapses in the RSV group. 

Nonetheless, in the RV group, lower levels of I-309 (CCL1) and TARC during 
the acute illness were associated with the occurrence of recurrences within 2 months 
(median, relapse vs. no relapse, 21 vs. 48, P =.049, and 3.0 vs. 7.0, P =.03, 
respectively). Furthermore, during the acute illness, higher levels of IL-13 (6.0 vs. 
1.5) and lower levels of I-309 (CCL1, 24 vs. 65) were associated with the occurrence 
of a new physician-confirmed wheezing episode during the following 12 months (all 
P <.05) (Figure 14). Overall, due to the scarcity of children in both the RV and RSV 
groups, the relationship between cytokine expression and asthma could not be 
evaluated at 4-year follow-up. 

No statistically significant differences were observed in cytokine expression 
between different RV species or based on the RV genome loads. 

 
Figure 14. Association between cytokine expression and severity of acute illness (duration of 

hospitalisation). Data are presented as medians (the lower (Q1) and upper (Q3) 
quartiles, and data falling outside the Q1–Q3 range are plotted as outliers). Cytokine 
concentrations are presented as pg/mL. From Study II. 
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5.4 Immune suppression by HBoV1 on the RV-
induced first wheeze in young children (III) 

Significant differences in cytokine responses were noted between RV and RV-
HBoV1 patients during both study points. During the acute illness, the RV-HBoV1 
group was characterised by decreased levels of IL-1β (1.6 vs. 3.5 pg/mL), MIP-1β 
(92 vs. 210 pg/mL), RANTES (110 vs. 300 pg/mL), TNF-α (33 vs. 65 pg/mL), 
TARC (1.9 vs. 4.4 pg/mL), and ENA-78 (150 vs. 900 pg/mL) compared to the RV 
group (all P < .05) (Figure 15). 

 
Figure 15. Association between cytokine expression and severity of acute illness (duration of 

hospitalisation). Data are presented as medians (the lower (Q1) and upper (Q3) 
quartiles, and data falling outside the Q1–Q3 range are plotted as outliers). Cytokine 
concentrations are presented as pg/mL. From Study II. 
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During convalescence, the RV-HBoV1 group was characterised by decreased 
levels of fractalkine (9.9 vs. 15 pg/mL), MCP-3 (10 vs. 300 pg/mL), and IL-8 (240 
vs. 840 pg/mL) compared to the RV group (all P < .05). Differences of IL-6 and 
MIP-1β between the study groups were notable but not statistically significant (all P 
< .05). No significant change in cytokine expression during the time interval between 
acute and convalescent phases was observed between the groups (all P > .05) (Figure 
16). 

The severity of acute illness (i.e., duration of hospitalisation) was linked to viral 
aetiology and cytokine responses. This association was demonstrated by two 
significant interactions between viral groups and cytokine responses when analysing 
the duration of hospitalisation (all P < .04), indicating that the effect of cytokine 
response on the duration of hospitalisation differed between the two viral groups. 
Interestingly, higher levels of epidermal growth factor (EGF) and MIP-1β were 
associated with the shorter hospitalisation in the RV-HBoV1 group (all P < .03), but 
not in the RV group (all P < .11).  

 
Figure 16. Differences in cytokine expression levels at convalescence phase. Data are presented 

as medians (the lower (Q1) and upper (Q3) quartiles, and data falling outside the Q1–
Q3 range are plotted as outliers). Cytokine concentrations are presented as pg/mL. 
From Study III. 
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5.4.1 The occurrence of a new physician-confirmed 
wheezing episode during the 12-month follow-up. 

The occurrence of relapses within 2 and 12 months after the infection seemed 
similar and did not reach significance between the RV and RV-HBoV1 groups 
(52% [11/21] vs. 0% [0/4], P > .10, and 81% [17/21] vs. 25% [1/4], P =.053, 
respectively). Regrettably, the scarcity of children in the RV-HBoV1 group 
prevented us from assessing the association between cytokine expression and the 
occurrence of recurrent wheezing and the development of asthma at later study 
points. 

5.5 Association between cytokine responses and 
the initial disease severity in RV-associated 
wheezing (IV) 

Following stimulation with anti-CD3/CD28, several significant differences in 
cytokine responses from PBMCs were observed between the hospitalised and non-
hospitalised children. The non-hospitalised children exhibited higher levels of IFN-
γ (median 24 vs. 1.6 pg/mL), IL-10 (110 vs. 13 pg/mL), MIP-1α (440 vs. 42 pg/mL), 
RANTES (1300 vs. 290 pg/mL), and TNF-α (810 vs. 52 pg/mL), and lower 
expression of ENA-78 (120 vs. 1400 pg/mL) compared to the hospitalised children 
(all P <.05) (Figure 17). The expression levels of IL-1β and IL-6 were notable but 
did not reach statistical significance (all P > .05). 

Due to a scarcity of children in the non-hospitalised group, the assessment of 
differences in cytokine expression during convalescence and both the association 
between cytokine expression and the occurrence of recurrent wheezing at 2 and 12 
months later, as well as the development of asthma during further follow-up points, 
could not be conducted. 



Pekka Hurme 

 72 

  

  

  
Figure 17. Differences in cytokine expression levels at the study entry (Inpatient vs. Outpatient, all 

P < .05). Data are presented as median, the lower (Q1) and upper (Q3) quartiles, and 
data falling outside the Q1–Q3 range are plotted as outliers. Cytokine concentrations 
are presented as pg/mL. In IFN-γ, for better visualisation, one sample from both study 
groups were excluded from the figure but included in the analyses [inpatient (5200pg/ml) 
and outpatient (2900 pg/ml)]. Modified from Study IV. 
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6 Discussion 

6.1 The efficacy of inhaled salbutamol and oral 
corticosteroids in the first-time wheezing 
children infected with RV (I) 

The first aim of this thesis was to assess the efficacy of salbutamol and prednisolone 
in treatment of RV-associated bronchiolitis, focusing on both short-and long-term 
prognoses. The previous studies, which most have found no efficacy, have not 
evaluated RV-associated disease alone, a distinct novel subgroup within the common 
definition of bronchiolitis (Anil et al., 2010; Chavasse et al., 2000; Dobson et al., 
1998; Fox et al., 1996; Gadomski et al., 1994; Ipek et al., 2011; Karadag et al., 2008; 
Orlowski et al., 1991; Patel et al., 2002; Ralston et al., 2005; Schweich et al., 1992; 
Wang et al., 1992). Unlike most previous studies, we observed several beneficial 
differences in both short- and long-term outcomes when both interventions were 
used, especially with the regular administration of high-dose salbutamol with oral 
prednisolone compared to on-demand salbutamol with placebo. This may be 
attributed to different bronchiolitis endotypes, indicated by increasing evidence, 
suggesting that bronchiolitis is beginning to be viewed as a spectrum, with viral 
aetiology playing the most crucial role (Jartti et al., 2019; Makrinioti et al., 2022). 
These bronchiolitis endotypes may potentially exhibit various clinical and 
immunological characteristics. Hence, if possible, a clear need for better 
management of bronchiolitis remains evident. 

Despite advances in viral diagnostics and more modern supportive care, the 
overall morbidity and mortality, as well as the short- and long-term prognoses of 
bronchiolitis, have remained relatively stable (Holman et al., 2003; Meissner, 2016). 
However, in our data, children receiving both high-dose salbutamol and oral 
prednisolone showed the lowest occurrence of randomisation within 2-month 
follow-up compared to other study groups. Further, significant interaction between 
the both interventions (high-dose salbutamol and prednisolone) was observed, 
indicating a beneficial interplay between the two treatment arms in young RV-
induced bronchiolitis cases. Moreover, when assessing the hospitalisation time, and 
when the loose analysis was applied, the children receiving salbutamol on-demand 
combined with placebo were characterised by poorer short-term prognosis, indicated 
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by longer duration of hospitalisation when compared to the children receiving high-
dose salbutamol and prednisolone. Nevertheless, the loose analysis was also 
influenced by the protocol differences, in which the children in the salbutamol on-
demand/prednisolone group were excluded due to the delay in administration of the 
original study drugs (prednisolone and placebo). Furthermore, the regular 
administration of a β2-agonist and a systemic corticosteroid showed additional 
beneficial effects, evidenced by a shorter duration of post-discharge cough and fewer 
recurrences requiring readmission, respectively. These beneficial findings could be 
explained by the shared clinical and underlying pathophysiological changes between 
RV-associated bronchiolitis and asthma exacerbation (Jartti et al., 2019). In line with 
our findings, although most previous studies have not identified benefits from 
administering either β2-agonists or corticosteroids, a few studies have found positive 
consequences. In these studies, the group that experienced the most benefit has been 
characterised by a history of atopy (Ipek et al., 2011), which was also prevalent 
among our study groups. Moreover, at least two recent cluster analyses on the 
heterogeneity of bronchiolitis have revealed that history of atopy is strongly 
associated with RV aetiology of bronchiolitis (Dumas et al., 2016, 2019). 

The two earlier studies, on which the current study (Study I) population is based, 
demonstrated the efficacy of oral prednisolone in reducing the duration of 
hospitalisation and respiratory symptoms, particularly in severe episodes with high 
RV genomic load (Jartti et al., 2006, 2015; Lehtinen et al., 2007). Moreover, oral 
prednisolone was observed to lower the occurrence of regular asthma control 
medication initiation by 30% over the subsequent 4 to 7 years (Lukkarinen et al., 
2013). The current trial partially reaffirms these findings on the effectiveness of 
prednisolone, but notably indicates that the most promising response occurs when a 
high dose of nebulised β2-agonist is combined with prednisolone. Moreover, while 
numerous prior trials indicate that oral corticosteroids lack efficacy in treating 
bronchiolitis, in contrast to our study, they neglect to differentiate between various 
bronchiolitis endotypes. Consistent with this, additional RCTs have demonstrated 
that the optimal treatment response might be attained through the combination of 
systemic corticosteroids and adrenergic agonists in children with bronchiolitis 
(Alansari et al., 2013; Plint et al., 2009). 

Furthermore, our data suggest that although the short-term primary outcome, 
time to discharge, points to a possible clinical benefit of high-dose β2-agonist 
treatment, long-term primary outcomes, such as randomisation and time to 
randomisation within 2 months, highlight the advantages of both high-dose 
salbutamol and oral corticosteroids. Additionally, the intermediate-term secondary 
outcome, duration of cough during following 2 weeks, supports the beneficence of 
both treatments. Interestingly, a disparity was discovered when comparing types of 
relapses (inpatient vs. outpatient). However, this disparity was only observed in the 
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salbutamol on-demand/placebo group, suggesting that relying solely on high-dose 
β2-agonist without prednisolone may lead to an increase in randomisation. While the 
exact mechanism remains unclear, this discrepancy could be attributed to increased 
bronchial hyperreactivity or β2-agonist tolerance (Da Silva Sena et al., 2021; Haney 
et al., 2005; Larj et al., 2002). Corticosteroids have been noted to mitigate this 
adverse effect, suggesting that combining corticosteroid and β2-agonist treatments 
could yield the highest efficacy (Aksoy et al., 2002). Our findings could be due to 
early asthma-like inflammation, which may explain the observed effectiveness. In 
addition, our findings are encouraging for a short course of systemic corticosteroids 
with possible concomitant trial of high-dose short-acting β2-agonists for 
bronchiolitis cases induced by RV. 

6.2 Association of cytokine responses and the 
short- and long-term prognoses between 
different viral aetiologies (II and III) 

6.2.1 Differences between the RV- and RSV-induced first 
wheezing (II) 

The second aim was to evaluate whether immune responses from first-time wheezing 
children infected by RV and RSV differed, and whether the cytokine responses were 
associated with short- and long-term prognoses. As stated before, at least two recent 
cluster analyses on the heterogeneity of bronchiolitis have revealed that history of 
atopy is strongly associated with RV aetiology of bronchiolitis (Dumas et al., 2016, 
2019). Moreover, RV- and RSV-associated bronchiolitis appear to influence long-
term outcomes in different ways (Jartti et al., 2019; Makrinioti et al., 2022). 
Importantly, we were able to show significant differences in cytokine expression 
between the RV and the RSV groups, indicating that RV and RSV-associated 
bronchiolitis differ, not only clinically, but also in molecular level. Interestingly, the 
difference was broader at the study entry and more balanced in the convalescent 
phase at 2 weeks later. While overall cytokine responses were similar in both viral 
groups, the cytokine response in the RV group seemed to exhibit more characteristics 
of a type 2 immune response, whereas the RSV group showed similarities with a 
type 1 immune response. These differences in cytokine responses could play a 
significant role in the variations in long-term outcomes between the study groups. 

At entry, the RV group exhibited higher expression levels of Eotaxin-2 and 
TARC; the former is associated with facilitating the chemotaxis of eosinophils to the 
respiratory tract (Provost et al., 2013), and the latter is associated with activation of 
type 2 immune responses via binding selectively to C-C chemokine receptor type 4 
(CCR4) on the cell surface of Th2 cells, ILC2, and eosinophils (Catherine et al., 
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2021), and both associated with type 2 immunity. Unexpectedly, the expression of 
ENA-78, which primarily facilitates the chemotaxis of neutrophils, was also higher 
in the RV group (Guo et al., 2021). Moreover, in contrast to the RV group, the 
children in the RSV group had higher expression of the type 1 and the type 3 
immunity-associated cytokines, including IL-1β and its antagonist IL-1RA (Van Den 
Eeckhout et al., 2021). Moreover, the levels of MCP-1 were higher in the RSV group. 
MCP-1 is characterised as a pleomorphic cytokine, capable of inducing various 
immune responses in a variety of different cells. In the respiratory tract, damage to 
alveolar cells triggers the secretion of MCP-1, which in turn promotes the 
chemotaxis of both profibrotic macrophages and fibrocytes, as well as neutrophils. 
Additionally, MCP-1 plays a role in the polarisation of T cells (Gschwandtner et al., 
2019; Yadav et al., 2010; Yang et al., 2020). However, the effects of MCP-1 are 
reported to depend on multiple factors such as the microenvironment, respective 
tissue, type of inductive pathogen and time of induction, and furthermore, the effects 
of MCP-1 can be associated with both type 1 and type 2 immune responses 
(Gschwandtner et al., 2019; Singh et al., 2021). Notably, the MCP-1-C–C chemokine 
receptor type 2 axis plays a pivotal role in controlling macrophage polarisation, and 
disruption of MCP-1 may induce the upregulation of genes linked to M1 polarisation 
(Gschwandtner et al., 2019; Sierra-Filardi et al., 2014). As allergic asthma is 
primarily associated with type 2 immune responses, the type 2-skewed cytokine 
expression observed in RV-affected first-time wheezing children may explain the 
increased risk of subsequent recurrences and the development of asthma later in 
childhood compared to those affected by RSV. 

During convalescence (after 2 weeks), most of former disparities between study 
groups seemed to diminish. However, in the RV group an increased expression of 
fractalkine, which induces lymphocyte chemotaxis and has antiviral properties 
(Upton et al., 2017), was observed compared to the RSV group. Overall, these 
findings align with those of earlier studies conducted on NPAs and serum samples 
(Díaz et al., 2015; Jartti et al., 2009b; Sastre et al., 2020). Moreover, in terms of 
alterations in cytokine response between the study points, compared to the RSV 
group, the RV group exhibited a decreasing tendency of expression in type 2 
immunity-associated profile (I-309 and TARC) and an increasing tendency of 
expression in type 1- and type 3-immunity-associated cytokines (fractalkine and IL-
1β, respectively). While previous studies (utilising nasal swabs) have demonstrated 
variations in IFN-γ and IL-10 expression between children infected with RV and 
RSV (Aberle et al., 2004), a recent study indicated that this discrepancy diminishes 
when RV and RSV bronchiolitis coincide with wheezing (Roh et al., 2017). This 
discovery aligns with our findings. 

Interestingly, in the RV group, cytokine expression did not associate with the 
severity of illness when compared to the RSV group. However, in the RSV group, 
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increased levels of IFN-γ, MDC, IL-1RA, and VEGF were linked to a shorter 
hospitalisation time. Notably, lower IFN-γ expression has previously been linked to 
a more serious clinical outcome (Li et al., 2020). Intriguingly, these cytokines belong 
to different subtypes of immunity, suggesting a complex and nuanced interplay 
between them. For example, IFN-γ and MDC can be categorised under type 1 and 
type 2 immunities, respectively. Moreover, IL-1RA is associated with type 3 
immunity, and VEGF is linked to Treg responses. Of note, certain cytokines, such 
as MDC, exhibit properties that overlap across type 1 and type 2 immunities as well 
as Treg responses (Richter et al., 2014).  

While data on the association between cytokine expression and long-term 
prognosis in young wheezing children are limited, a study indicated that an increase 
in MIP-1α expression was linked to subsequent recurrences (Sugai et al., 2016). 
However, in this study, the viral aetiologies were not differentiated. Further, a study, 
focusing on severe wheezing children infected with RSV, found that reduced 
expression of TNF-α was associated with recurrences (Kitcharoensakkul et al., 
2020). Nevertheless, the study subjects were significantly younger (mean age 4.2 
months). Thus, the direct comparison between earlier studies with different study 
protocols with ours is difficult. Nevertheless, in our dataset, heightened I-309 
(CCL1) and TARC expression in the RV group associated with less randomisation 
within the following 2 months. Moreover, diminished IL-13 expression and 
increased I-309 (CCL1) expression were associated with less randomisation during 
the subsequent 12-month period. Notably, alterations in cytokine responses between 
the study points were also associated with relapses within 2 months, specifically 
IFNa2, and 12 months, including granulocyte colony-stimulating factor (G-CSF), 
fractalkine, IL-1RA, IL-1β, IL-6, and MCP-1, indicating that inappropriate timing 
of cytokine response could impede the successful resolution of acute viral infection. 
Regrettably, in the latter (12-month follow-up), the sample size in the non-recurrence 
group was rather limited, and consequently, the corresponding result should be 
regarded as hypothesis-generating in nature. Furthermore, while previous studies 
have noted variations in cytokine responses between RV serotypes or RV genome 
loads (Nakagome et al., 2014), in this study, the discrepancy remained obscured. 
This may be due to differences in factors such as stimulation methods, procedural 
protocols, or the age-dependent relationship between virus load and illness severity 
(Brenes-Chacon et al., 2021). 

The link between severe RSV illness and worse long-term prognosis is suggested 
to be related to the direct disruption and destruction of pulmonary tissue and the 
subsequent remodelling process. In this sense, RSV may be considered more of an 
active perpetrator compared to RV (Fujiogi et al., 2022; Jartti et al., 2019). On the 
other hand, RV aetiology is more strongly associated with poorer long-term 
prognosis, and it is also more firmly connected with allergic sensitisation, atopic 
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eczema and other asthma-like characteristics (Dumas et al., 2016; Jartti et al., 2019; 
Lukkarinen et al., 2017; Makrinioti et al., 2022; Rubner et al., 2017). Our results 
may, at least partly, explain these differences between RV- and RSV-affected 
children. 

6.2.2 The impact of HBoV1 coinfection during the RV-
induced first wheezing (III) 

The third aim was to determine whether coinfections influence the overall cytokine 
expression, and more specifically, examine the levels of cytokines and chemokines 
in stimulated PBMCs from young children during their first episode of wheezing, 
both during and after infection with either RV alone or a combination of RV and 
HBoV1. 

Interestingly, although both study groups showed similar overall cytokine 
responses during the acute phase of illness, children with concurrent RV and HBoV1 
infections exhibited a more significant decline across all subtypes of cell-mediated 
immunity (types 1, 2, and 3), as indicated by decreased expression of IL-1β, MIP-
1β, RANTES, TNF-α, TARC, and ENA-78 compared to singleton RV infection. IL-
1β and TNF-α, both commonly associated with type 3 immunity, are essential 
components of the host defence against injuries and infecting pathogens and are 
involved in the induction of proinflammatory proteins and the promotion of the 
differentiation of naïve CD4+ T cells into Th17 effector cells (Acosta-Rodriguez et 
al., 2007; Altieri et al., 2022). Moreover, in murine models, TNF-α has been 
associated with the regulation of type 1 immune responses (Zganiacz et al., 2004). 
MIP-1β and RANTES are typically identified as chemokines associated with type 2 
immunity, recognised for their role in the chemotaxis of eosinophils, particularly in 
the respiratory tract (Kobayashi et al., 2019, 2022). However, recent studies have 
proposed broader functional capabilities for the latter (Li et al., 2021b). Furthermore, 
in individuals affected by RV infection, RANTES has been linked to chemotaxis of 
bronchial smooth muscle cells, potentially contributing to airway remodelling 
(Shariff et al., 2017). TARC is characterised by the ability to selectively bind to 
CCR4, which induces type 2 immune responses through the activation of ILC2s, Th2 
cells, and pulmonary eosinophils (Catherine et al., 2021). ENA-78 predominantly 
serves as chemoattractant for neutrophils during respiratory tract infections, and the 
increased levels of ENA-78 were observed in the sole RV group when compared to 
children infected with RV-HBoV1 coinfection (Guo et al., 2021). 

During convalescence, the earlier disparities observed at the study's entry were 
no longer evident. However, during the convalescent phase, children with RV-
HBoV1 coinfection exhibited reduced expression of fractalkine, MCP-3, and IL-8 
compared to children infected with RV only. Fractalkine serves as a crucial 
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chemokine and adhesion factor that is linked to both type 1 and type 2 immune 
responses (Bazan et al., 1997; D’Haese et al., 2010). It effectively triggers the 
chemotaxis of CX3CR1+ monocytes, NK cells, and CD4+ T cells (Fujimoto et al., 
2001). The expression of fractalkine from RV stimulated PBMCs has been reported 
to be higher in the asthmatic patients compared to non-asthmatic, but notably, the 
exact role may be different between asthmatic and non-asthmatic patients (Upton et 
al., 2017). The binding of MCP-3 to CCR2 and CCR3 induces the chemotaxis of 
neutrophils and eosinophils, respectively, but it is also a potent chemoattractant for 
monocytes and macrophages in the respiratory tract (Santiago et al., 2008). MCP-3, 
produced by airway epithelium and macrophages, is typically induced by viral 
infection or cell injury, and MCP-3 promotes profibrotic state (Choi et al., 2004). In 
a murine model of asthma, blocking MCP-3 decreases the migration of neutrophils 
and monocytes to the respiratory system, although it does not seem to affect airway 
hyperreactivity (Girkin et al., 2015). In the respiratory tract, IL-8 promotes robust 
chemotaxis of neutrophils and activates various inflammatory cells via the 
recruitment of both innate and adaptive immune cells (Cambier et al., 2023). 
Moreover, IL-8 is suggested to participate in airway remodelling (Beigelman et al., 
2015; Charrad et al., 2017; Wang et al., 2017). In addition, in paediatric acute 
respiratory distress syndrome, higher levels of IL-8 are associated with more severe 
disease and increased mortality, but this may be differentiated by the causative 
pathogen (Flori et al., 2019). 

Though the cytokine response showed no association with the disease severity 
in the children infected with RV, the heightened levels of EGF and MIP-1β were 
linked to reduced length of hospital stay in the children with concurrent RV and 
HBoV1 infections. The former cytokine is crucial for the upkeep of the mucosal 
homeostasis (Tang et al., 2016), and decreased levels of circulating (serum and 
plasma) EGF have been suggested to be associated with greater risk of exaggerated 
IgE-mediated immune responses (Reinert-Hartwall et al., 2022). Consequently, 
children who contract concurrent RV and HBoV1 infection may be able to resolve 
the infection more effectively than those solely infected with RV. MIP-1β is linked 
to type 1 immune responses, and in adults with asthma, elevated levels of MIP-1β 
have been associated with diminished responses to anti-IL-5 therapy (Suzukawa et 
al., 2020). Furthermore, a prior investigation involving adult asthmatic individuals 
demonstrated reduced intracellular response of MIP-1 β from CD4+ and CD8+ T 
cells following in vitro stimulation compared to non-asthmatic controls, which 
suggest a shift in immunity polarisation away from type 1 immunity (Grob et al., 
2003). These findings suggest that HBoV1 coinfection may shift the immune 
response more toward a type 1-dominated immunity. 

The frequent co-detection of HBoV1 with other respiratory viruses arises from 
the prolonged persistence of HBoV1 DNA. Consequently, identifying an acute 
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HBoV1 infection should involve serology, quantitative PCRs, detection of viral 
mRNA, or identification of high DNA copy number in respiratory samples or serum 
(Christensen et al., 2019; Xu et al., 2017). In relation to HBoV1 infection, previous 
data on nasal swabs and samples from tonsil tissue have indicated reduced immune 
responses mediated by T cells (Ivaska et al., 2021). Moreover, B and T cells along 
with monocytes in tonsillar germinal centres have been found to harbour HBoV1 
DNA, the consequences of which remain unknown (Xu et al., 2021). Furthermore, a 
prior study using serum samples observed that HBoV1 influences the immune 
response associated with RV infection in wheezing children (Lukkarinen et al., 
2014). 

While coinfections in respiratory tract diseases like bronchiolitis are frequent, 
there is relatively limited data on the potential interactive effect of multiple viruses 
in RV-induced bronchiolitis. This scarcity arises primarily from past study protocols 
that integrated coinfections into their analyses (Jartti et al., 2019). Therefore, the 
influence of viral interaction in specific coinfections has remained ambiguous in this 
context. Remarkably, a recent study illustrated an interaction between RSV and 
influenza A virus, resulting in the creation of hybrid virus particles, signifying 
reciprocal influence between the viral agents (Haney et al., 2022). One can speculate 
that these hybrid particles may function as immunomodulators. 

Our study supports the growing hypothesis that HBoV1 coinfection may reduce 
cytokine expression during severe first wheezing episodes in children induced by 
RV, as indicated by changes in the overall cytokine and chemokine profiles. The 
data also suggest that viral proteins are likely to serve as potentially effective 
immunomodulators. 

6.3 Association of cytokine responses and the 
severity of illness in first-time wheezing 
children infected with RV (IV) 

The fourth aim was to assess the relationship between the cytokine responses and the 
risk for hospital admission in children experiencing a severe first-time wheezing 
episode infected with solitary RV infection. Remarkably, when the children treated 
as outpatients were compared to those treated as inpatients, significant differences 
in cytokine responses were found. Unexpectedly, children treated as outpatients, 
were found to elicit a more robust cytokine response (type 1 and type 2), but 
importantly, also showed a more pronounced concurrent anti-inflammatory cytokine 
response (Treg) compared to those treated as inpatients. 

Although the cytokine responses in both study groups showed general similarity, 
hospitalised children displayed a more pronounced trend of decline in both pro- and 
anti-inflammatory cytokines. This difference was reflected in the reduced levels of 
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IFN-γ, IL-10, MIP-1α, RANTES, and TNF-α, coupled with increased expression of 
ENA-78 in the inpatient group compared to those treated as outpatients. 
Conventionally, IFN-γ and TNF-α are both recognised as cytokines associated with 
pro-inflammatory responses. IFN-γ is recognised as a pivotal immune system 
effector, renowned for its participation in both host defence and immune 
surveillance. It is known to possess immune-regulatory abilities, countering viral 
infections by inhibiting viral replication (Castro et al., 2018). In addition, IFN-γ 
serves as a significant stimulator for proliferation of CD8+ T cells (Curtsinger et al., 
2012). TNF-α, on the other hand, plays a critical role in host defence against 
infections and injuries, inducing the production of proinflammatory proteins and 
promoting the differentiation of Th17 cells (Altieri et al., 2022). 

MIP-1α, a chemokine predominantly originating from macrophages, is 
recognised for its pro-inflammatory properties, including the attraction of 
eosinophils, macrophages, and lymphocytes through chemotaxis (Maurer et al., 
2004). Notably, both MIP-1α and RANTES are additionally linked to the 
proliferation of smooth muscle within the airways, contributing to remodelling of 
the airways (Halwani et al., 2011; Shariff et al., 2017). Further, heightened levels of 
MIP-1α during acute bronchiolitis have been linked to illness severity, prolonged 
duration of oxygen therapy, and randomisation (García et al., 2012; Garofalo et al., 
2001; Sugai et al., 2016). Nevertheless, the latter discovery was specifically observed 
in hospitalised children without comparison to outpatient treatment. 

RANTES, recognised for its role in attracting eosinophils, basophils, monocytes, 
and lymphocytes, is commonly identified as a chemokine associated with type 2 
immune responses (Castan et al., 2017; Zhang et al., 2020b). Yet, recent studies have 
suggested that it may possess a more pleiotropic role in cell-mediated immunity. For 
instance, a recent study observed a reduced expression of RANTES from PBMCs 
after RV infection in asthmatic children compared to non-asthmatic children (Li et 
al., 2021b). ENA-78 is primarily recognised for its role in neutrophil chemotaxis, 
especially during the initial phases of infection (Liang et al., 2020). Additionally, the 
levels of ENA-78 are indirectly implicated in B cell chemotaxis through CXCL13 
(Guo et al., 2021). 

Notably, the children receiving outpatient care were characterised a more 
dominant anti-inflammatory response indicated by higher levels of IL-10 compared 
to those requiring hospital admission. IL-10 is crucial for countering the 
proinflammatory activity of type 1, 2 and 3 immune responses by downregulating 
the inflammatory effects. Nevertheless, data regarding the properties of IL-10 in 
bronchiolitis have remained inconsistent. For instance, increased levels of IL-10 
have been linked to recurrent wheezing (Schuurhof et al., 2011), but conversely, 
decreased levels of IL-10 have been associated with more profound disease severity 
(Leahy et al., 2016). Furthermore, conversely, IL-10 has also been reported to play 
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no role in the disease severity (Mella et al., 2013). Intriguingly, IL-10 might have a 
dualistic effect on the severity of illness, particularly in RSV infection, indicated by 
attenuation in the acute phase but suggesting a potentially additive effect in the later 
phase, implying that the levels and impact of IL-10 are time-dependent (Sun et al., 
2013). Additionally, a previous study examining cytokine responses from ILC2s 
demonstrated lower levels of IFN-γ and IL-10 in children with recurrent wheezing 
compared to those with viral bronchiolitis (Sastre et al., 2021). 

Surprisingly, the children treated as outpatients exhibited a more pronounced 
pro-inflammatory response compared to hospitalised children, as indicated by higher 
levels of IFN-γ, TNF-α, and MIP-1α. This may suggest that a well-regulated balance 
of both pro- and anti-inflammatory responses is necessary to effectively resolve the 
initial infection, resulting in a less severe illness. Significantly, the dysregulation of 
Treg cells has been linked to more pronounced type 2-skewed immune responses, 
which may contribute to the development of asthma (Zhang et al., 2022b).  

Our study supports the growing evidence that bronchiolitis represents a spectrum 
of varying endotypes. Our findings also suggest that strong and well-regulated 
cytokine and chemokine responses are necessary to prevent the need for 
hospitalisation. Our study also identifies potential new biomarkers for early asthma 
events in high-risk groups, specifically children experiencing their first episode of 
wheezing caused by RV infection. However, as demonstrated by Studies II and III, 
various viral agents are associated with distinct immune profiles in bronchiolitis, 
affecting their presentation during acute episodes. 

6.4 Strengths and limitations 
The strengths of the current thesis included thorough viral diagnostics, precise 
characterisation of the subjects, a detailed prospective follow-up in the original trials 
(in Study I both Vinku and Vinku2, and in Studies II-IV Vinku2 only), and in Studies 
II-IV, extensive analyses of cytokine profiles.  

In Study I, the study design, which combined data from two previous 
prednisolone intervention trials, offered increased statistical power. However, 
crucially, the β2-agonist treatment regimens varied between the two studies. There 
were also a few limitations. A statistical power analysis for the intervention with 
salbutamol was not conducted, and the relatively small sample size limited the ability 
to perform optimal analyses in a multivariable model. However, in the adjusted 
analyses, the significant interactions persisted, and the alignment of many outcomes 
suggested that they are unlikely to be false positives. Furthermore, the findings of 
Study I may not be applicable to non-hospitalised patients, as all subjects were 
hospitalised. Additionally, due to variations in study protocols (a prospective RCT 
design in Vinku2, and a post hoc design in Vinku) the duration of hospitalisation was 
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not fully harmonious in relation to prednisolone treatment. In the Vinku2 study, 
prednisolone was given only after a positive RV PCR test, causing a delay in 
administration of prednisolone or placebo relative to other study groups. For other 
outcomes, the 45-hour delay in prednisolone administration was statistically adjusted 
for by the study effect (group effect). 

In Studies II-IV, the initial hypothesis aimed to distinguish the study groups from 
each other, which resulted in the absence of a "control" group. Moreover, statistical 
power analyses were not performed, and the rather small sample size did not permit 
optimal analyses in the multivariable model. However, in all studies (II-IV), the 
study groups were composed of carefully characterised novel bronchiolitis 
subgroups. However, Studies II-IV do have some limitations. 1) Although a power 
calculation was performed in advance to evaluate our primary hypothesis, no power 
calculation was done for these specific analytic designs, and the fairly limited sample 
size restricted the use of optimal multivariable model analyses. No corrections for 
multiple comparisons were applied, and therefore, there is a possibility of an 
increased risk of Type I error due to testing multiple hypotheses. However, the 
probability of a Type II error increases with adjusted p-values, and since the sample 
size was already fairly small, we aimed to minimise that risk. Despite this, all study 
groups were drawn from novel bronchiolitis subgroups. 2) The limited volume of 
culture medium created difficulties in performing the dilution series, causing the 
fluorescence of several cytokines to exceed the upper limit of quantification, which 
in turn complicated the analysis of these cytokines. However, the number of affected 
cytokines was minimal. 3) While different RV serotypes can display unique 
behaviours and activate the immune system through varying mechanisms, the cases 
in our study were predominantly RVA- or RVC-positive, without RVB infections 
detected. Nonetheless, since both RVA and RVC are linked to more severe illness, 
this may account for the absence of variations between the serotypes. 4) Flow 
cytometry was not conducted, leaving open the possibility that variations in cytokine 
responses could, at least in part, be due to differences in the proportion of PBMCs 
that are T cells between the study groups. However, counter to this concern, the 
differences were not consistent across all cytokines, and in 80% of the analyses, no 
significant differences were observed between the groups, suggesting that cytokine 
expression was largely comparable. Additionally, cytokine responses from PBMCs 
stimulated with anti-CD3/CD28 might differ from those observed in other body 
regions, such as within the airways. 5) Finally, although early wheezing induced by 
RV in children has a stronger association with the risks of future recurrences and 
asthma compared to other viral agents, the small sample size in Studies III and IV 
limited our ability to evaluate the long-term prognoses. 
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7 Conclusions and Future Prospects 

First, in our data, high-dose regularly administered β2-agonist appears to be more 
beneficial compared to on-demand administration in treating the novel 
subpopulation of bronchiolitis, specified as severe first-time wheezing children 
infected with RV, and the effect is further enhanced with concomitant use of oral 
corticosteroids, indicating a potential underlying synergistic effect between the two 
treatments. In these selected cases of bronchiolitis, the findings further elucidate the 
heterogeneity of bronchiolitis and support the use of a short course of systemic 
corticosteroids with at least a therapeutic trial of high-dose short-acting β2-agonist. 

Second, the immune responses, as well as their association with short- and long-
term prognoses, differ between the viral agents in bronchiolitis, specifically RV- and 
RSV-associated bronchiolitis. 

Third, our findings support that coinfections may alter immune responses during 
the severe first-time wheezing episode. This is demonstrated by the effect of HBoV1 
infection, which, when coinfecting with RV, has immunosuppressive capabilities, as 
evidenced by alterations in cytokine response and short-term prognosis. Our data 
also indicate new biomarkers for early events of asthma, particularly in these selected 
cases, and suggest that viral proteins can exhibit immunomodulatory potential. These 
findings further support the emerging assumption that bronchiolitis is a spectrum. 

Fourth, the cytokine responses differ between non-hospitalised and hospitalised 
severe first-time wheezing children infected with solitary RV. Our data support, that 
both robust and highly controlled cytokine and chemokine responses are required to 
evade hospitalisation, and that impaired immune responses may drive the 
requirement for hospitalisation. Our data also indicate potential new biomarkers for 
the requirement of hospitalisation, specifically in first-time wheezing children 
infected with RV. 

In conclusion, bronchiolitis is a spectrum encompassing different endotypes that 
may benefit from more personalised treatment according to the associated viral 
agent. The underlying immunopathology differs between the viral illnesses, and thus 
should be considered in future research as individual entities. 
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