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The microbiome holds significant potential as a predictor of biological processes,
including age, due to its dynamic interaction with human health. This study ad-
dressed the challenge of predicting age using microbiome data by benchmarking
tree-based machine learning models such as Random Forest (RF), Gradient Boost-
ing Machine (GBM), and Extreme Gradient Boosting (XGBoost), in addition to the
IntegratedLearner method. In this study, the LifeLines DEEP dataset was utilized,
incorporating relative abundance, marker abundance, and pathway abundance data
to predict age. Both single-omic and multi-omics models were developed, focusing
on evaluating the impact of data integration on predictive performance. The re-
sults demonstrated that multi-omics models outperformed single-omic models, with
GBM trained on multi-omics data sets and the stacked model used by the Integrat-
edLearner method achieved the highest predictive accuracy. Functional data sets,
particularly pathway abundance, exhibited stronger correlations with age compared
to taxonomic dataset, underscoring their significance for age prediction. Despite
challenges posed by sparse, zero-inflated data and limited microbial diversity, the
findings suggest that multi-omics integration enhances model performance and pro-
vides valuable insights into age-related biological processes.
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1 Introduction

Microbes are microscopic organisms that inhabit the human body for varying peri-

ods of time, playing critical roles in health, disease, and overall human physiology.

Recent studies have highlighted the uniqueness of the human microbiome and rec-

ognized the influence of microbes residing in the body as a potential biomarker for

diverse applications in medicine and healthcare. For instance, microbial patterns in

the human body have been found to be as distinctive as fingerprints, enabling possi-

bilities for human identification and personalized medical interventions [1]. However,

the exploration of these patterns for predictive modeling remains a computationally

demanding task, requiring the application of advanced data science methodologies.

The field of microbiome research has undergone a rapid transformation, driven

by technological advancements in genomics and bioinformatics. Early approaches,

such as 16S rRNA gene sequencing, provided taxonomic insights into microbial

communities, while whole-genome shotgun sequencing enabled more comprehen-

sive functional analyses. Recent methodologies like integrated multi-omics analysis,

single-cell multi-omics, and spatial transcriptomics have further expanded the scope,

offering exceptional resolution to microbial ecosystems and their interactions with

the host [2]. However, these advancements have also led to the generation of high-

dimensional, sparse, and compositional data sets, which present unique challenges

for data preprocessing, feature selection, and predictive modeling.

From a data science perspective, microbiome data sets are particularly intrigu-
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ing. Their compositional nature indicates that the features (e.g., relative abundance

of microbial taxa) are expressed as proportions of a whole, making traditional sta-

tistical methods unsuitable without appropriate transformations. Furthermore, the

high sparsity of the data due to the absence of certain microbes in many samples

intensifies the difficulty of analysis. These characteristics demand specialized com-

putational approaches, such as log-ratio transformations, dimensionality reduction

techniques, and advanced machine-learning models capable of handling complex

data structures.

Despite the challenges, microbiome data offers significant opportunities for pre-

dictive modeling. One promising application is the prediction of human age, which

involves identifying patterns in microbial communities that correlate with the aging

process. While individual omics data sets, such as relative abundance, marker abun-

dance, and pathway abundance, have been utilized for specific applications, research

comparing the predictive capabilities of these data sets within a unified framework

is limited. Additionally, the integration of multi-omics data into predictive mod-

eling using tree-based machine learning models and the IntegratedLearner method

remains insufficiently explored, particularly in contexts such as age prediction. In-

terestingly, the ability to predict age using a sparse and compositional dataset like

relative abundance data alone highlights the compelling potential of microbial omics

in advancing predictive modeling efforts.

This thesis addresses these research challenges by systematically evaluating the

predictive capabilities of various microbial omics data sets and their integration for

age prediction. Employing advanced machine learning techniques and comprehen-

sive biological analyses, this work aims to provide deeper insights into the relation-

ship between the human microbiome and aging while contributing to developing

more accurate microbiome-based predictive models. Overall, this thesis highlights

the convergence of microbiome research and data science, emphasizing the role of
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computational methodologies in addressing biological challenges.

1.1 Research Objectives

The focus of this thesis is to explore the potential of microbial omics data sets for

predicting age and to compare the predictive performance of various data sets in

this context. The study utilizes species relative abundance data from the LifeLines

DEEP dataset and a multi-omics dataset that combines relative abundance, marker

abundance, and pathway abundance data. A comprehensive approach is adopted

to analyze the data, beginning with descriptive, taxonomic, and correlation anal-

yses to gain deeper insights into the relationships between microbial features and

age. The effectiveness of these features is then evaluated in predictive models us-

ing advanced machine learning techniques, including Random Forest(RF), Extreme

Gradient Boosting (XGBoost), and Gradient Boosting Machine (GBM), along with

the IntegratedLearner method. By assessing the predictive performance across data

sets and analyzing the underlying biological patterns, this research aims to provide

an understanding of the relationship between the human microbiome and age while

contributing to the development of more accurate models for microbiome-based age

prediction.

1.2 Thesis Structure

The thesis begins with an exploration of the microbiome and its significance in

understanding human health, providing a theoretical foundation for the study. It

inspects the prior research on the relationship between microbiome composition and

age, identifying gaps that motivate the present work. The discussion then extends

to the packages, tools, and methodologies utilized in microbial community analysis,

such as curatedMetagenomicData, mia, and caret, along with advanced techniques
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like Indicator Species Analysis, Shannon Diversity, Beta Diversity, and methods for

feature importance analysis.

The analysis begins with an overview of the LifeLines Deep dataset, presenting

insights into the structure and its relevance for this thesis. Data exploration follows

descriptive, taxonomic, and diversity analyses to uncover patterns and characteris-

tics of the microbiome data. Indicator Species Analysis and correlation analysis are

employed to identify relationships within the data, providing a deeper understanding

of the dynamics between microbiome features and age.

Building on this groundwork, the modeling workflow outlines the process of

preparing and preprocessing the data for machine learning models. Techniques are

developed to predict age using models such as RF, GBM, and XGBoost. Model

performance is evaluated using metrics like R² and MAE, while model-based feature

ranking highlights the most influential microbial features in predicting age. The

results of the modeling efforts are then presented, focusing on the accuracy and

reliability of predictions and the identification of significant features. These findings

are examined based on the random baseline and the significance of the model’s

performance.

Finally, the thesis discusses and interprets the results in relation to the research

objectives, compares the performance of different models, examines the implica-

tions of the findings for microbiome research and age prediction, and highlights the

limitations of the study while suggesting future directions for research to improve

microbiome-based predictive models.



2 Literature Review

2.1 Microbiome Research

A microbe is an organism which is minuscule (smaller than 100 µm) to the unaided

human eye and periodically it can be a single cell, a cluster of cells, or some of the

microbes can also be multicellular. Microbes can be a wide variety of organisms,

including fungi, bacteria, algae, protozoa, plants such as green algae, and small

animals such as rotifers and planarians, and some scientists even consider viruses

as non-living microbes [3]. Human bodies contain trillions of microbes, ten times

more than the number of human cells. Microbes are present in almost every part of

the human body, including the skin, stomach and the nose [4]. Between the years

1665 and 1678, the first to formulate the concept of microbes were Robert Hooke

and Antoni van Leeuwenhoek [5].

The term microbiome is formulated from the words "microbe" and "biome"

referring to the complete biotic environment like residents, ecosystem, and genes.

Whipps and his colleagues introduced the term "microbiome" in 1988 to charac-

terise how a group of microbes interacts in a certain environment [6]. A human

microbiome is consistently linked with the phrases "microbiome" and "microbiata".

Fundamentally, "microbiota" refers to a taxonomy of the microbes associated with

humans, while the term "microbiome" is the collection of those organisms and their

genes [7]. Microbes living within the human body show significant influences on
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human physiology [8]. These influences can be both favourable and harmful. It

makes up a diverse and unique ecosystem that adapts seamlessly to the environ-

mental conditions of each habitat across various body regions, including the skin,

mucous membranes, intestinal tract, respiratory system, urogenital tract, and even

the udders [8].

The human microbiome constantly changes state in response to host factors

such as age, nutrition, lifestyle, hormonal changes, inherited genes, and underlying

diseases [9]. The human gut is colonized by microbes from birth. The intestines of

an infant is considered sterile or containing minimal microbes, but the colonization

of microbes occurs shortly after the child birth, exposed from the mother’s vagina

[10]. It is assumed that the number of microbial cells in the human microbiota

varies between 10 trillion and 100 trillion. This estimation is obtained from the

total number of bacterial cells found in the colon, the largest intestine, which has

the highest bacteria concentration of any body organ and containing approximately

38 trillion bacteria [11]. The colon is a part of the Gastrointestinal (GI) tract,

which encircles a big part of the human body. A huge number of Bacteria, Archaea,

Eukarya, and Viruses inhabit in the gut and among them 98% of the bacterial phyla

are Firmicutes, Bacteroides, Proteobacteria, and Actinobacteria [12].The gut of the

human body can be considered as the main reservoir of the microbiome.

The gut microbiota has numerous functional effects on human health and psy-

chology. For instance, gut microbiota is referred as the "second brain", which con-

trols anxiety, emotion, cognition, and pain through the gut-brain axis (GBA) [13].

The gut-brain axis acts as a dynamic communication network, bridging the brain’s

emotional and cognitive functions with the digestive system, which integrates the

Central Nervous System (CNS) with the Enteric Nervous System (ENS) through a

combination of biochemical signals and physical interactions.[14]. The CNS acts as

the body’s control center, by gathering and processing information from all regions,
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and regulating a broad spectrum of activities to maintain the proper functioning of

the organisms. [15]. However, the ENS is a complex network of neurons existing

exclusively within the GI tract, playing a vital role in regulating and controlling key

functions of GI physiology [16]. The interaction between the gut microbiota and the

ENS is influenced by the Autonomic Nervous System (ANS), which regulates the

essential functions of the GI tract and builds a link between the gut and the brain

by triggering the responses of the nervous system. [17].

Most of the health disorders, and problems in the digestive system, such as al-

lergies, obesity and disorders related to the central CNS, are found to be related to

dysbiosis (an imbalance in bacterial composition) of the gut microbiota [18]. The

gut microbiome is essential to health and disease through several mechanisms, most

of which are associated with immune functionality, metabolic processes, and the pro-

tection against pathogens (infectious agents or germs). The relationship between the

intestinal microbiota, the epithelial lining of the intestines, and the mucosal immune

system is a highly intricate and dynamic process, acknowledging the fact that 70-

80% of the body’s immune cells reside in the gut [19]. The interaction between the

intestinal microbiome and the host’s immune system plays a pivotal role in the de-

velopment of normal gut and systemic immune responses. Thus, the disruption may

lead to a spectrum of diseases ranging from gastrointestinal to systemic immune-

mediated illness [20]. Moreover, about 20% of all cancers are related to dysbiosis

of the gut microbiota. The healthy gut microbiota (commensal microbiota) helps

in the activation of inflammasomes, proteins that protect the health and integrity

of host’s cells and gut, so an imbalance in the gut microbiota can lead to tumor

development or even cancer [21]. Additionally, the gut microbiota is capable of gen-

erating resistant carbohydrates that support intestinal barrier strength, metabolism,

immune regulation, and blood pressure [22]. Therefore, a healthy gut microbiota is

essential in maintaining proper immune functionality, supporting overall metabolic
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health, and providing adequate protection against infections of all types. On the

other hand, it may severely aggravate many diseases if the balance is disrupted.

2.1.1 Previous Studies on Microbiome and Age

Recently, numerous studies were conducted regarding microbiome and age. Stud-

ies showed that the human microbiome constantly changes as the age progresses.

Studies like gut-age clock (gAge) and chronological age predictions established that

a person’s age can be predicted effectively based on their microbial abundance. The

results of the gut-age clock (gAge) study revealed that there are strong association

between gut microbiome, and human health profiles and particular microbial mark-

ers can represent an individual’s health status, frailty level, and health condition

[23]. Moreover, a study by the American Society of Microbiology described that it

is possible to predict an individual’s age within an average of four years solely based

on the microbes of skin [24].

Starting from early adulthood, the diversity and the advancement of the hu-

man microbiome start to evolve, and the stability of the development declines until

65. The shrink of the microbiome dynamics is more noticeable after the age of

80 [25]. Based on various taxonomic compositional studies, Akkermansia was one

of the most consistent abundances among the older population. While, bacteria

like Faecalibacterium, Bacteroidaceae, and Lachnospiraceae reduced relatively with

age [26]. Another study showed that in phylum level distribution Firmicutes, Bac-

teroidetes, and Actinobacteria exhibited consistency in both the young and old age

groups. While, Euryarchaeota, Synergistetes, and Proteobacteria had higher con-

sistency among centenarians and Bacteroidetes had higher consistency among the

young age group [27].

The gut microbiome is linked with various diseases related to age, such as, expo-

sure to various health conditions, disruption of the immune system, weakness, type-2
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diabetes (insulin antagonism), cancer, and Alzheimer’s [26] [12]. The microbial im-

balance or dysbiosis occurring after a certain age can be stated as a significant reason

for these types of diseases. Moreover, certain species like Akkermansia muciniphila

have a crucial role in maintaining the virtue of the intestines and reducing inflam-

mation. So, the loss of these functional species, along with some useful genera like

Bifidobacterium and Faecalibacterium can raise the risk of inflammation and chronic

diseases inside the body [28]. The biological changes occurring due to age make a

surrounding change inside the human body (e.g. the GI tract), which increases the

growth of microbial pathogens causing the decline of beneficial microbes [29].

Numerous factors of aging can cause an imbalance in microbial composition.

Diet plays a crucial role in maintaining the development of healthy microbes. For

older adults often the dietary plan changes from healthy food to low-fiber, high-

sugar, fat food, which significantly influences the composition of gut microbiota [30].

Moreover, due to different health conditions aged people might have to consume nu-

merous medications. Medication (e.g. antibiotics, inhibitors) is another reason that

can transform the diversity of microbes, leading to dysbiosis [31]. As age progresses

humans tend to lead lives inactively and the body undergoes immunosenescence

(declined immune system), causing the vulnerability to uphold microbiome balance

[30].

2.2 Machine Learning Models

Predicting continuous variables, such as age, from microbiome data requires the

use of machine learning approaches that can effectively address the distinct chal-

lenges inherent in microbiome data sets, including high dimensionality, sparsity, and

compositionality among features. Tree-based models, including RF, GBM, and XG-

Boost, are among the most commonly used methods for this purpose. For instance,

there are studies that have predicted chronological age from microbiome data across
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various body sites using Random Forest, while gradient boosting methods, such as

GBM and LightGBM, have also been employed to predict chronological age from gut

microbiome data, demonstrating their strong performance [24] [32]. Similarly, XG-

Boost has been applied to predict age using both gut microbiota and urine metabo-

lites, showing strong predictive accuracy [33]. These studies collectively underscore

the robustness and versatility of tree-based models in addressing the complexities

of microbiome data and highlight their significant potential for advancing predictive

research in this domain.

In addition to tree-based models, deep-learning approaches have been applied

to analyze highly complex microbiome data sets, leveraging their ability to capture

intricate patterns and interactions. However, these models typically require care-

ful hyperparameter tuning and larger datasets to mitigate the risk of overfitting,

which can be a limitation in microbiome research where data availability may be

constrained. For example, a study has demonstrated the potential of host-based

deep neural networks (DNN) for age prediction using gut microbiota, highlighting

the ability of these models for comprehensive analysis [34].

Furthermore, multi-source learning approaches, like the IntegratedLearner frame-

work, have been explored for combining predictions from individual models trained

on separate omics data sets, such as metabolites, biomarkers, and species abun-

dances. By integrating these diverse data sources, methods like IntegratedLearner

have improved predictive performance and revealed novel insights into microbial

ecosystems and their relationships with host phenotypes [35]. These advancements

underline the growing importance of robust and versatile ML models in microbiome

research, which continues to contribute significantly to the understanding of human

health and disease.
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2.3 Microbiome Data Science

Data science plays a crucial role in discovering the complex interactions between

microbial communities and their environments by combining biology with compu-

tational tools. This section provides a description of the key resources and tools

in microbiome data analysis, including numerous Bioconductor packages, Indicator

Species Analysis methood, Shannon diversity, Beta diversity, and an overview of the

curatedMetagenomicData package and the LifeLines DEEP dataset. Additionally, it

highlights microbiome-specific data science frameworks and discusses the integration

of machine learning techniques to derive actionable insights from complex microbial

datasets.

2.3.1 R and Bioconductor

R is recognized as a crucial programming language for bioinformatics. It is compat-

ible with analyzing complex microbiome data sets, applying statistical methods and

testing, machine learning modeling, and data visualizations. Numerous tools and

packages are used in R to cater the requirements of bioinformatics, which makes it

the most widely used programing language in this field. R and Bioconductor are

powerful tools in the field of bioinformatics and computational biology, working in

combination to provide robust solutions for analyzing microbiome data.

Bioconductor [36] is an open-source project built on R that enhances bioinfor-

matics capabilities by providing a curated collection of packages designed for the

analysis and interpretation of genomic, transcriptomic, and microbiome data. Key

packages such as mia [37] and phyloseq [38] are widely used for extracting valu-

able insights from microbiome datasets, supporting comprehensive and reproducible

data analysis. Additionally, Bioconductor facilitates genome-scale analysis of high-

throughput data, integration with biological metadata from databases like GenBank,

PubMed, and curatedMetagenomicData [39] and offers powerful visualization tools
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for data exploration and visualization.

2.3.2 Available Databases

There are numerous microbiome data sets available for research and practical uses,

such as the curatedMetagenomicData package, which provides manually curated,

regulized human microbiome data sets [39]. The dataset used for this thesis was

collected from the curatedMetagenomicData package. Curated metagenomic data

package provides either TSV files or well documented TreeSummarExperiment ob-

jects, including human-processed metadata . The data sets in the curatedMetage-

nomicData package use whole-metagenome shotgun sequencing instead of 16S rRNA

gene sequencing, which offers much broader coverage of microbial communities by

capturing genetic material from bacteria, fungi, archaea, and viruses [39]. 16S rRNA

sequencing is the general approach for studying bacterial species and microbial di-

versity. While, this technique has a limited number of applications, because other

types of taxa, such as viral or fungal, are not considered in this technique and it

does not contain high-quality functional information [40].

Each of the datasets from curatedMetagenomicData package includes six dif-

ferent categories of dataset, including relative abundance, marker abundance, and

marker presence produced by MetaPhlAn3 and gene families, pathway coverage,

and pathway abundance produced by HUMAnN3 with the UniRef90 database [39].

Moreover, these data sets contain detailed sample metadata across various cate-

gories, such as health condition, age, gender, nationality and BMI. Each of these

data types provides unique insight into the microbiome, puting together a more

complete and complex picture of the microbiomes.
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LifeLines DEEP Dataset

In curatedMetagenomicData package [39], there are 93 microbiome data sets in to-

tal, and this thesis will focus on the LifeLines DEEP dataset [41]. LifeLines DEEP

dataset is a Dutch population based study comprising stool specimens collected from

1,179 individuals, with 44 samples excluded due to low read counts [42]. Similar to

any other dataset of the curatedMetagenomicData package, the LifeLines DEEP

dataset contains all the taxonomic and functional profiling data types. This thesis

will focus on the species, pathways, and marker-specific abundance data sets of the

LifeLines DEEP study. In total, these data types contain more than one hundred

thousand omics information. Considering each data type, 646 predictive features

are identified in the relative abundance data, 23,085 in pathway abundance data,

and 78,698 in marker abundance data, which makes it well-suited for conducting

multi-omics microbiome analysis. Moreover, the sample metadata of this dataset

contains information like age, BMI, antibiotic usage, gender, age-category and dis-

ease condition.

2.3.3 Microbiome Data Science Frameworks

The mia package

The mia package [37] provides tools to explore microbiome data sets, including vi-

sualization, data simulation, summarization, community index estimation, and time

series analysis, with integration into related packages like miaViz, miaSim, and mi-

aTime. Moreover, this package contains various data sets of different microbiome

studies as TreeSummarizedExperiment objects. By identifying key features, such as

dominant phyla, and adjusting numerous parameters, users can gain insights into

microbial ecology and community composition. The package also supports numer-

ous data transformations and visualization tools for abundance across taxonomic
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ranks or sample groups. Additionally, it enables the estimation of species preva-

lence based on taxonomic ranks and sample types. These capabilities facilitate a

deeper understanding of microbiome dynamics, allowing researchers to explore vari-

ations across conditions, identify microbial patterns, and refine data interpretation

for more accurate ecological assessments.

Diversity and Indicator Species

In 1972, Robert Harding Whittaker introduced the concepts of alpha, beta, and

gamma diversity. According to Whittaker’s foundational model, alpha diversity

measures the variety of species within a single habitat, beta diversity measures the

difference in species composition between different habitats, and gamma diversity

measures the overall variety of species across multiple habitats in a specific area [43].

Alpha diversity measures species richness, evenness, and overall diversity, with

certain indices also providing insights into species dominance. Depending on differ-

ent aspects, numerous indices are utilized to assess the alpha diversity. For example,

commonly used indices to assess alpha diversity include the Shannon Diversity In-

dex, which considers both species richness and evenness; the Simpson Index, which

measures the likelihood that two randomly chosen individuals belong to different

species; the Chao1 and Fisher’s indices, which estimate total species richness, in-

cluding unobserved species; and the Berger-Parker Index and Simpson Dominance

Index (Inverse Simpson Index), which quantify the dominance of the most abundant

species. [44].

On the other hand, the fundamental index for estimating beta diversity is Whit-

taker’s Beta diversity index, which is defined as the ratio of total species richness

(Alpha Diversity) to the mean species richness across samples (Gamma Diversity)

[43]. Similar to alpha diversity, beta diversity uses various indices to measure differ-

ences between species samples. Commonly used beta diversity indices include the
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Jaccard dissimilarity index, which calculates the proportion of species absent from

one sample; the Sorensen dissimilarity index, which also considers absent species

but gives more weight to shared ones; the Bray-Curtis dissimilarity index, which

compares the abundance of shared microbes between samples; and the Euclidean

dissimilarity index, which measures the straight-line distance between samples in

multidimensional space based on species abundances or relative proportions. [45]

[46].

In addition to these diversity measures, Indicator Species Analysis (ISA) [47],

developed by Dufrêne and Legendre, is a statistical method used in ecology to assess

the relationship between species and specific groups or clusters (e.g., age categories).

[48]. ISA is performed by calculating the indicator values, which are the product of

"specificity" and "fidelity". Whereas, specificity is the indicator that compares the

quantity of the species in a certain group and fidelity calculates the prevalence of the

species in a certain group comparing to the other available groups [49]. Moreover,

in this method permutation test is conducted to check the statistical significance of

these relationships [48].

Specificity,

Aij =
x̄ij∑︁
j x̄i·

Fidelity,

Bij =
nij

n·j

Indicator Value,

IVij = Aij ×Bij

Where,

• x̄ij ;mean abundance or presence of certain species i in a group j.

•
∑︁

j x̄i· ;sum of the mean abundance or presence of certain species i in all the
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groups j.

• nij ;number of samples in group j inhabited by species i.

• n·j ;total samples in group j.

[49]

Correlation Analysis

Correlation analysis is an essential technique for identifying key features within a

dataset. Methods such as Pearson correlation, Spearman correlation, and Kendall’s

Tau are used to assess the relationships between features and the target variable. For

instance, in a microbiome study, functional features that show a strong correlation

with the target variable can be prioritized for modeling, while less relevant features,

such as taxonomical ones with low correlation, may be excluded. This approach

helps to filter less important features, reducing dimensionality and enhancing model

performance. Furthermore, using correlation analysis as a preprocessing step ensures

a more focused dataset, which is especially valuable for tasks that require efficient

feature selection and interpretation.

2.3.4 Machine Learning Frameworks

Machine Learning is a powerful approach in microbiome analysis that leverages com-

putational algorithms to extract meaningful insights from complex microbial com-

munity data. Numerous machine learning algorithms like logistic regression [50],

random forest[51], support vector machines [52], lasso regression [53],XGBoost [54]

and gradient boosting machines[55] can be used in microbiome analysis to uncover

the functional relationships between microbial communities and the demographic

variables. Machine learning frameworks are used for a structured approach in train-

ing, and deploying machine learning models. There are numerous frameworks that
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offer in-built functions, algorithms, and utilities that simplify the development pro-

cess of the models. In this research, the caret and IntegratedLearner packages were

utilized to streamline model training and integration, providing a robust foundation

for the analysis.

The caret package

The caret package [56] is a model-building and evaluating package for classification

and regression tasks. It contains numerous models like random forest[51] ,XGBoost

[54] and gradient boosting machines [55] . The caret package directly gives ac-

cess to features like data splitting, data pre-processing, feature selection, feature

importance, model tuning, parallel processing, and visualization [57]. The main

purposes for using the caret package in this research were, the simple workflow of

machine learning models, effective tools to use cross-validation in hyperparameter

tuning, showcasing the features that impacted the model predictions significantly,

and variation of in-built model evaluation on train set. The caret package along

with the specific algorithm (XGBoost, GBM, RF) packages makes it more flexible

to customize the hyperparameters to enhance the performance of the models.

The IntegratedLearner package

Similar to the caret package, IntegratedLearner [35] is also an open-source R pack-

age that serves as a unified machine learning framework for multi-omics prediction,

utilizing data from both longitudinal and cross-sectional multi-omics studies. In-

tegratedLearner method generates results for each omics layer through a two-stage

learning approach that begins with Bayesian additive regression trees (BART) [58]

as base learners for each omics layer, followed by a meta-learning approach in the

second stage to evaluate the weights of the layers based on the unseen data predic-

tions from the first stage. Along with the BART, it also supports multiple machine
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learning algorithms like Linear Mixed Effects models, Non-negative Least Squares,

and Rank Loss Minimization for both base and meta-learners. In addition, the

IntegratedLearner package incorporates over 50 machine learning algorithms from

the SuperLearner package, along with several data analysis utilities, offering a wide

range of model selection options within a robust estimation framework [35].



3 Methods

In this research, a comprehensive model pipeline was developed to predict the age

using two data sets, the microbial relative abundance dataset, and the concatenated

dataset combining relative abundance, marker abundance, and the pathway abun-

dance. This section provides a detailed explanation of the pipeline and describes

the key stages, including data preprocessing, model training, hyperparameter opti-

mization, and performance evaluation.

3.1 Data Preparation

The microbiome data sets were prepared after obtaining the TreeSummarizedEx-

periment (TSE) objects from the curatedMetagenomicData package, which pro-

vided a standardized and structured format for microbiome data analysis. The

taxonomic relative abundance data, along with the pathway and marker abundance

data sets, were extracted from the TSE object as assay-type data and converted

into a dataframe for analysis.

Given the compositional nature of the relative abundance dataset, a Centered

Log Ratio (CLR) [59] transformation was applied as a preprocessing step. CLR

transformation addresses compositional data challenges by managing composition-

ality and high sparsity, ensuring the analysis focuses on relative differences between

components, with a pseudocount applied to zero values to enable log transformation

while preserving component ratios [60]. For the pathway abundance and marker
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abundance data sets, a log10 transformation was applied. This transformation han-

dled highly skewed distributions by compressing large values and expanding smaller

values, effectively standardizing the distributions [60]. These data transformation

processes were integral in facilitating improved model training and ensuring a bal-

anced contribution of features during the machine learning process. Preparing three

distinct data sets, this process ensured compatibility with predictive modeling and

allowed for meaningful comparative analysis.

For this study, two types of data sets were utilized for the machine learning

models, single-omic data, comprising only microbial relative abundance data, and

multi-omics data, combining relative abundance, pathway abundance, and marker

abundance data sets. The single-omic dataset contained microbial relative abun-

dance data for 646 features across 1135 samples. A filtering step based on the

coefficient of variation (CV) was employed for the relative abundance dataset to re-

duce the dimensionality and retain the informative features of the dataset. To focus

on features with meaningful variability, a CV threshold of 0.1 was applied. By con-

ducting this preprocessing step, the number of features significantly reduced from

646 to 91, retaining only the most variable and informative features were retained

for subsequent analysis.

For the multi-omics dataset, the relative abundance, pathway abundance, and

marker abundance data sets were filtered to retain only the most relevant features for

modeling, with the original data sets containing 646 features for relative abundance,

23,085 for pathway abundance, and 78,698 for marker abundance. Unlike the single-

omic data, coefficient of variation (CV) filtering was not applied to the multi-omics

data sets because it retained a large number of features, which would make the

process computationally expensive. Instead, the Spearman correlation was applied

to each dataset, with a correlation threshold of 0.16 to select the features that

showed meaningful correlations with the target variable (age). After this process
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the number of the features were reduced to 547, resulting in a substantial reduction

in dimensionality. The three filtered data sets were then combined to create the

multi-omics dataset.

Moreover, the IntegratedLearner model integrates data differently by creating

three data sets: a feature table containing concatenated multi-omics features, with

features as rows and samples as columns; a sample metadata table, which includes

sample-specific metadata with columns for unique identifiers and target variables;

and a feature metadata table, which contains feature-specific metadata along with

unique identifiers and feature types [35]. Considering the heterogeneous nature of the

data, the preprocessed multi-omics dataset was selected for the IntegratedLearner

method and integrated accordingly to the model.

3.2 Development of the Models

In microbiome analysis research, tree-based models stand out for their significant

performance, offering powerful insights and accurate predictions. [61]. In this re-

search, three different tree-based machine learning models were devised to conduct

a comprehensive performance analysis for the age prediction. To achieve this, re-

gression models, such as RF, GBM, and XGBoost were selected. These models are

well-suited for analyzing microbial omics data, which is often high-dimensional and

sparse. By aggregating weak learners, tree-based models enhance predictive accu-

racy and reduce overfitting. Moreover, all of these models possess the capability to

rank feature importance, offering valuable insights into critical predictors, which is

key for microbiome analysis. Hence, these attributes made RF, GBM, and XGBoost

particularly well-suited for this research.

The data sets (single-omic and multi-omics) utilized in this study, were split

into 80% training split and 20% for testing split. For the further validation of

the model’s robustness, a 10-fold cross-validation was implemented, which split the
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training set into 10 smaller sets. In each iteration, 9 folds were used to train the

model while the remaining fold was used to test it. This process was repeated

for each model, ensuring a comprehensive evaluation across different subsets of the

data and enabling the selection of the best hyperparameter combination based on

cross-validated performance metrics.

Building on this cross-validation approach, the RF model was implemented using

the training set, configured with 400 trees to ensure a diverse ensemble capable of

capturing complex patterns in the data. Hyperparameter tuning was performed by

adjusting the number of variables considered at each split to optimize the model

performance. In parallel, the XGBoost model was trained using a hyperparameter

grid that included parameters such as the number of boosting rounds, maximum

tree depth, learning rate, and regularization factors, all of which were fine-tuned to

enhance the boosting process. For comparison, the GBM model was also trained

with specific tuning parameters that controlled tree depth, the number of trees, the

learning rate, and the minimum number of observations in a node, ensuring a fair

comparison of model performance across different algorithms. All the three models

(RF, XGBoost, and GBM) were trained on both single-omic and multi-omics data

sets.

On the other hand, the IntegratedLearner method was employed exclusively for

the multi-omics dataset. IntegratedLearner represents a new generation of integra-

tive model designed to incorporate multiple omics data sets or layers. The Integrat-

edLearner model was developed by combining information from multiple sources,

including features, sample characteristics, and metadata about the features. The

model utilized Bayesian Additive Regression Trees (BART) [58] as the base learner

and Non-Negative Least Squares (NNLS) [62] as the meta learner (both sourced

from the SuperLearner package) to capture relationships within the data and make

predictions. The model was trained using cross-validation, dividing the dataset into
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folds to iteratively evaluate and enhance its performance, ensuring robustness in its

predictions. After training, all tree-based models and the IntegratedLearner model

were evaluated on the test set to assess their performance, allowing for a comparison

of the predictive power of the models across each dataset for age prediction.

3.3 Evaluation and Model-based Feature Ranking

The evaluation process involves 10-fold cross-validation to assess the performance

of the regression models for predicting age. The data is divided into 10 folds, and

in each iteration, one fold serves as the test set while the model is trained on the

remaining nine folds and generates predictions for the test fold. The Mean Absolute

Error (MAE) and R-squared (R²) values are calculated for each fold and averaged

across all folds to evaluate the model’s performance on the test set. Additionally, the

actual and predicted values are compared to further assess the model’s predictive

performance. This approach provides a robust evaluation by considering variations

in predictions across different subsets of the test data.

Furthermore, feature ranking reveals the role of individual features in enhancing

the predictive performance of the machine learning models. Analyzing the impor-

tance scores generated by the models’ built-in mechanisms allows for identifying

features with the greatest influence on age prediction. In this thesis, the native

functions of the machine learning models RF, GBM, and XGBoost were utilized to

determine feature importance based on their contribution to the predictive accuracy

of the models.



4 Results

This chapter presents the findings of the study, containing both data exploration

and model performance results. The data exploration results include a descriptive

analysis of the dataset, providing an overview of the target variable, features, and

their distributions. Taxonomic analysis highlights the relative abundance and preva-

lence of microbial taxa. Additionally, the age category-based analysis is discussed,

featuring the Indicator Species Analysis, which identifies taxa strongly associated

with specific age groups, and diversity analysis, which includes Shannon Diversity

and Beta Diversity, focusing on metrics that capture microbial community richness

and evenness.

Moreover, this chapter also describes the evaluation of the performance of the

machine learning models, detailing key metrics used to assess their effectiveness. A

statistical comparison of the models is conducted to determine the significance of

differences in their performance. Furthermore, the analysis explores the important

features identified by each model, shedding light on their contribution to predicting

the target variable. The aim is to provide a comprehensive assessment of model per-

formance while identifying the features that most significantly influence predictions.

4.1 Descriptive Analysis Results

This section contains a brief description of the demographics of participants in the

LifeLines DEEP study. In total, the dataset comprises 1,135 participants, where 58%
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(661 individuals) of the population were female, and 42% (474 individuals) of the

population were male. Among the participants, there were 92% (1,040 individuals)

adults , 1% were school-aged children, and rest (7.4% ) of the population were

seniors. LifeLines DEEP dataset involved a wide range of samples, age varying from

18 to 81 years. The interquartile range (IQR) of the age was 34 to 54, showcasing a

wide range of the middle-age population group. The median age of the population

was 45 and the median value of the BMI was 24.6 kg/m². Most of the population

participated in this study had a normal to slightly overweight body weight, with a

BMI interquartile range (IQR) of 22.4 to 27.2 kg/m².

Summary of the LifeLines DEEP Dataset

Characteristic Value

Age (Median, IQR) 45 (34, 54)

Gender

Female 661 (58%)

Male 474 (42%)

BMI (Median, IQR) 24.6 (22.4, 27.2)

Age Category

Adult 1,040 (92%)

School-age 11 (1.0%)

Senior 84 (7.4%)

Country Netherlands

Table 4.1: Summary of the dataset, including the percentage (%), and median (IQR)

for continuous variables such as age, BMI, and age category distribution.

The Figure 4.1 depicted the age distribution of the samples of the LifeLines

DEEP study. The age distribution of the study showed skewness, with a standard

daviation of 13.6 and a mean age of 45.07 years (pointed by the red dotted lines).
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Figure 4.1: Age Distribution of the LifeLines DEEP Dataset.

Figure 4.2 depicted the distributions of features from the Pathway Abundance,

Marker Abundance, and Relative Abundance data sets, each represented by three

histograms. Across all datasets, the features exhibited right-skewed distributions,

with most values concentrated near zero and a few outliers showed higher abun-

dances. This pattern is characteristic of microbiome data, where certain taxa, mark-

ers, or pathways were rare and present in trace amounts, while others dominated in

a subset of samples. The Relative Abundance dataset, in particular, reflected the

compositional nature of microbiome data, where proportions were constrained and

sparse. The observed skewness in all data sets highlighted the need for appropriate

data transformations, such as logarithmic or CLR, to normalize the distributions

and enhance the interpretability of downstream analyses. This visualization high-

lighted the challenges in analyzing microbiome data sets and the importance of

preprocessing, to address sparsity and compositionality.
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Figure 4.2: Distribution of selected features from the Pathway Abundance, Marker

Abundance, and Relative Abundance datasets.

4.2 Taxonomic Analysis Results

In the LifeLines DEEP dataset, the relative abundance data contained information

about 646 species. These species can be divided into three main groups of microbes

or microorganisms, which can be classified into 13 taxonomic phyla. The majority of

the species identified in this dataset were prokaryotic microbes like, Bacteria (638),

and Archaea (6), and the remaining species can be classified as eukaryotes, which

are more complex organisms than prokaryotes.

Identifying the dominant phyla and comparing the microbial composition helps
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Figure 4.3: Different microbial groups in the LifeLines DEEP Dataset.

to understand the microbial diversity of the samples. Figure 4.4 depicted the mi-

crobial phyla composition over the collected samples based on their relative abun-

dance. Overall, 13 phyla were identified in the LifeLines DEEP dataset, out of which

Firmicutes were the most abundant (60.5%) phylum. Along with Firmicutes, Acti-

nobacteria showed good consistency over the samples. In contrast, Euryarchaeota,

Verrucomicrobia, and the rest of the phyla had shown low relative abundance.
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Figure 4.4: Top phyla based on relative abundance across the samples from the

LifeLines DEEP dataset.

Figure 4.5 depicted the top prevalence of microbial species across samples. Fae-

calibacterium prausnitzii had the highest prevalence; the presence was more than

93% across samples. Where Collinsella aerofaciens and Dorea longicatena had simi-

lar prevalence around 87%. Other species, namely Eubacterium hallii, Coprococcus

comes, and Bifidobacterium longum, had about 75% presence across the samples.

While species like Akkermansia muciniphila, Methanobrevibacter smithii, and Bac-

teroides vulgatus showed much lower prevalence rates across the samples. Notably,

among the top 20 species, the top three showed a prevalence of more than 85%,

and the bottom three had a prevalence of less than 35%. So, it can be stated that

the distribution of the microbial species underlines the scarcity of the microbiome

dataset and there are a significant number of species that had a lower presence over

the samples.
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Figure 4.5: Top species based on prevalence across samples from the LifeLines DEEP
dataset.

4.3 Indicator Species Analysis Results

Indicator Species Analysis can estimate the changes in the composition of the mi-

crobial community based on age category, offering valuable insights into the rela-

tionship between microbiome diversity and human health. By identifying specific

microbial associations unique to different age groups, such analyses provide a foun-

dation for understanding age-specific physiological or dietary factors that shape the

microbiome.

This approach revealed distinct microbial associations for age categories such as

adults, school-age individuals, and seniors. For adults, Eubacterium eligens emerged

as the most strongly associated species, indicating its potential role in middle-aged

individuals with an indicator value of 0.336 and a p-value of 0.037. Additionally,

species such as Blautia obeum and Slackia isoflavoniconvertens were identified as

significant contributors to the adult microbiome. Notably, Gordonibacter pame-
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laeae displayed high significance in this group, underscoring its relevance to this age

category. These findings highlighted the distinct microbial composition in adults,

which may reflect age-specific physiological or dietary factors (Table 4.2).

For the school-age population, Gordonibacter pamelaeae, Eggerthella lenta, and

Bacteroides fragilis demonstrated the strongest associations, characterized by indi-

cator values surpassing 0.5 and highly significant p-values below 0.005, suggesting

their prominence during the developmental years. Other species, including Blautia

obeum and Actinomyces sp. ICM47, also showed significant associations, suggesting

a unique microbial profile characteristic at this stage of life (Table 4.3).

Among seniors, species such as Slackia isoflavoniconvertens, Oscillibacter sp.

CAG 241, Eubacterium eligens, Actinomyces oris, and Methanobrevibacter smithii

were dominant, reflecting a diverse microbial community. The elevated indicator val-

ues of these species suggested their potential role in age-related biological processes

in the senior population (Table 4.4).

Several species were identified across multiple age categories, demonstrating dis-

tinct variations in their indicator values. For instance, Slackia isoflavoniconvertens

and Actinomyces oris were found in both adults and seniors, showing stronger asso-

ciations in the senior group. Similarly, Gordonibacter pamelaeae appeared in both

adults and school-age individuals but was more prominent in the school-age popula-

tion. Blautia obeum, on the other hand, was present across all age groups, reflecting

its versatile potential functionality.
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Top Species among the Adult Population

Species Indicator Value P Value

Eubacterium eligens 0.336 0.037

Blautia obeum 0.256 0.030

Slackia isoflavoniconvertens 0.254 0.010

Oscillibacter sp. CAG 241 0.249 0.014

Methanobrevibacter smithii 0.217 0.038

Gordonibacter pamelaeae 0.197 0.002

Clostridium disporicum 0.131 0.033

Actinomyces oris 0.113 0.017

Denitrobacterium detoxificans 0.098 0.024

Actinomyces sp. ICM47 0.092 0.049

Table 4.2: Indicator Species Analysis for the adult population based on their indi-

cator values and statistical significance (p-values). While p-values, computed using

the in-built permutation tests.

Top Species among the School Age Population

Species Indicator Value P Value

Gordonibacter pamelaeae 0.610 0.002

Eggerthella lenta 0.598 0.003

Bacteroides fragilis 0.502 0.004

Blautia obeum 0.451 0.030

Actinomyces sp. ICM47 0.365 0.049

Bacteroides clarus 0.291 0.012

Actinobaculum sp. oral taxon 83 0.234 0.017

Streptococcus sanguinis 0.233 0.033

Streptococcus mitis 0.221 0.035

Escherichia albertii 0.181 0.001

Table 4.3: Indicator Species Analysis for the school-age population based on their

indicator values and statistical significance (p-values). While p-values, computed

using the in-built permutation tests.
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Top Species among the Senior Population

Species Indicator Value P Value

Slackia isoflavoniconvertens 0.553 0.010

Oscillibacter sp. CAG 241 0.543 0.014

Eubacterium eligens 0.445 0.037

Actinomyces oris 0.401 0.017

Methanobrevibacter smithii 0.360 0.038

Clostridium disporicum 0.359 0.033

Streptococcus gordonii 0.344 0.002

Denitrobacterium detoxificans 0.312 0.024

Mogibacterium diversum 0.278 0.037

Blautia obeum 0.277 0.030

Table 4.4: Indicator Species Analysis for the senior population based on their indi-

cator values and statistical significance (p-values). While p-values, computed using

the in-built permutation tests.

4.4 Diversity Analysis Results

Figure 4.6 depicted the distribution of the Shannon Diversity Index across three age

categories adult, school-age, and senior. The Shannon diversity index is a measure

that accounts for both species richness and evenness within microbial communities.

The Shannon diversity index increased from the school-age group to the senior group.

Whereas, the adult group showed intermediate diversity. The adult and school-

age groups showed a lack of significance. Hence, these age categories have similar

levels of microbial diversity. The LifeLines DEEP study includes individuals aged

from 18 to 81. Hence, the school-age population also represents an adult group,

but comparatively young adult group. The similarity in diversity between these

two groups could be explained by the fact that both groups represent adults of

different life stages, sharing similar environmental exposures, lifestyle factors, and
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microbiome characteristics. However, a significant increase in diversity was observed

in the senior group compared to both the adult and school-age groups. Indicating

that the microbial communities in older individuals tend to be more diverse.

This pattern suggested that age-related changes in the human microbiome result

in a more diverse abundance of microbial species as individual’s age progresses. The

increased diversity in seniors could be related to various factors, such as lifestyle

changes, diet, or immune system alterations associated with aging. The significant

difference between the school-age and senior groups might reflect development and

age related shifts in the microbiome occurring throughout the lifespan.

Figure 4.6: Boxplot showing Shannon diversity index values across different age
categories, highlighting the variation in microbial diversity. The Shannon diversity
index was computed for each sample based on species abundance data. Pairwise
comparisons between age categories were performed using Dunn’s test with Bonfer-
roni adjustment. Significance levels are annotated with asterisks, indicating differ-
ences in microbial diversity between age groups (* p < 0.05, ** p < 0.01), while
’NS’ denotes statistically not significant.

The PCoA plot 4.7 and PERMANOVA results 4.5 depicted interpretation of
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beta diversity in the dataset. The PCoA plot showed a high degree of overlap and

lack of distinct clustering between the samples from different age categories (adult,

school-age, and senior). Suggesting that the microbial communities are relatively

similar across these age groups. The wide spread of points indicated variability in

microbial composition. The PERMANOVA test results also comply with the inter-

pretation of figure 4.7. The R² value (0.00375) showed a fraction of the variation

in species composition explained by age. However, the significant p-value (0.001)

indicated that age still had an effect on microbial composition. While the statisti-

cal significance suggested subtle differences between age groups, but the microbial

compositions were relatively similar across the age categories.

PERMANOVA results

Sum of squares R² P Value

0.83 0.00375 0.001

Table 4.5: PERMANOVA results based on age categories, showing the sum of

squares, R², and p-value. The p-value indicates the statistical significance of the

variation observed between age groups.
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Figure 4.7: Beta diversity analysis illustrating community similarity in microbiome

samples across different age categories.

4.5 Correlation Analysis

Figure 4.8 depicted a comparison of the correlation distributions of three microbiome

data sets, Marker Abundance, Pathway Abundance, and Relative Abundance with

the target variable, age. The boxplots illustrated the range and central tendency of

correlation values for each dataset. Both Marker Abundance and Pathway Abun-

dance exhibited weak but generally positive correlations with the target variable,

suggesting a moderate and consistent association that may contain predictive infor-

mation. In contrast, the Relative Abundance dataset showed a broader distribution

of correlations centered around zero, including numerous negative values, indicating
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a more variable and less stable relationship with the target variable.

Statistical significance markers between each pairwise comparison revealed that

the differences in correlation distributions among the data sets were statistically sig-

nificant. Specifically, the correlation distributions of Marker Abundance and Path-

way Abundance were significantly higher and more consistent than those of Relative

Abundance, suggesting that these data sets may provide more reliable predictive in-

formation.

These findings implied that the Marker and Pathway Abundance data sets may

be more suitable for predictive modeling of the target variable due to their higher

and more stable correlations. The Relative Abundance dataset, with its weaker and

more variable correlations, may contribute less effectively to predictive accuracy.

Therefore, prioritizing Marker and Pathway Abundance data sets in feature selection

and model development could potentially enhance model performance in predicting

age. This analysis highlighted the importance of selecting data sets with higher

correlations to improve the reliability and interpretability of models in microbiome-

based age prediction studies.
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Figure 4.8: Boxplot comparing the distribution of feature correlations with age

across three datasets: Relative Abundance, Marker Abundance, and Pathway Abun-

dance. Each box represents the spread of correlation values within a dataset. Pair-

wise Wilcoxon rank-sum tests with Bonferroni correction were used to assess the

significance of differences between datasets, with significance levels denoted by as-

terisks (* p < 0.05, ** p < 0.01, *** p < 0.001).

4.6 Model Performance

Figure 4.9(A) compared the performance of the machine learning models in both the

single-omic and multi-omics data sets based on the R-squared (R²) values. Models

trained on multi-omics data sets (e.g., Combined RF, Combined XGB, Combined

GBM, IL concatenated, and IL stacked) showed better performance, with higher R²

values compared to those trained on individual data sets. Among these models, the

Combined GBM model stands out with the highest mean R² value, showing com-
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parable results to the stacked, concatenated configuration of the IntegratedLearner

method. Additionally, the Combined GBM and Combined XGB models demon-

strated smaller interquartile ranges (IQR) in R² values, indicating greater consis-

tency in explaining the variance in the target variable. In contrast, models trained

on individual data sets, such as GBM, RF, and XGB, exhibited greater variabil-

ity in R², reflecting less stable performance. Notably, the model trained with the

marker abundance dataset in the IntegratedLearner method outperformed some of

the models trained on multi-omics data sets. Furthermore, the GBM model demon-

strated enhanced performance, highlighting its effectiveness compared to RF and

XGB when applied to single-omic configurations.

Additionally, Figure 4.9(B) presented a comparison of the models’ performance

based on MAE values. Overall, the findings indicated that the use of multi-omics

dataset enhances the predictive accuracy of the models, as reflected in the perfor-

mance metrics.
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[A]

[B]

Figure 4.9: Performance comparison of machine learning models trained on single-

omic (RF, XGB, GBM, IL species, IL pathway, and IL biomarker models) and multi-

omics (Combined RF, Combined XGB, Combined GBM, IL concatenated, and IL

stacked models) dataset evaluated on a test set using 10-fold cross-validation. Figure

4.9(A) shows the performance comparison of the models based on R-squared (R²)

values, while Figure 4.9(B) shows the comparison based on Mean Absolute Error

(MAE) values.
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The models were evaluated against a randomized baseline generated through

permutation testing. In this approach, the target labels were randomly permuted,

and the models were trained and tested on these permuted data sets. This baseline

serves as a reference for assessing whether the models capture meaningful patterns

or merely overfit to noise. All models, including single-omic (RF, XGB, GBM) and

multi-omics (Combined RF, Combined XGB, Combined GBM), consistently outper-

formed the randomized baseline. This indicated that the models effectively captured

meaningful patterns in the data, performing significantly better than random pre-

dictions.

Figure 4.10 depicted the relationship between actual and predicted ages using

Gradient Boosting Machine (GBM), Random Forest (RF), and XGBoost models.

The combined models aligned more closely with the diagonal line, indicating com-

paratively better predictive performance, while individual models showed variations

in performance.

Moreover, figure 4.11 depicted the predictive performance of the IntegratedLearner

models using different feature sets including biomarker, concatenated, pathway,

species, and stacked models. The pathway and species models showed reasonable

alignment with the diagonal line, suggesting moderate predictive performance. The

concatenated and biomarker layers demonstrated good predictive performance, while

the stacked model outperformed all of the models by achieving higher predictive

performance, highlighting the effectiveness of integrating predictions from multiple

layers in multi-omics analysis.
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Figure 4.10: Jitter plots comparing actual and predicted ages for single-omic dataset

trained models, GBM, RF, and XGBoost (bottom row) and multi-omics dataset

models, Combined GBM, Combined RF, Combined XGBoost (top row). The diag-

onal line represents the standard prediction alignment.

Figure 4.11: Jitter plots comparing actual and predicted ages across different

layers (biomarker, concatenated, pathway, species, and stacked) of the Integrat-

edLearner method. The concatenated layer represents the multi-omics dataset, while

the stacked layer serves as the meta-learner model, combining predictions from in-

dividual layers for improved accuracy. The diagonal line represents the standard

prediction alignment.
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Figure 4.12 evaluated the performance of the predictive models using R² values

as a measure of their explanatory power. The scatter plot depicted the distribution

of R² values across different models, including single-omic models (e.g., GBM, RF,

IL species, IL pathway), and multi-omics models (e.g., Combined RF, IL stack,

Combined GBM). Notably, models such as IL concatenated, Combined GBM, and

IL stack achieved consistently higher R² values, suggesting these approaches were

better suited for capturing the variance in the data. In contrast, models such as

the IL species and the IL pathway exhibited lower R² values and greater variability,

indicating limited predictive performance in this context.

Figure 4.12: Scatter plot of R² values across Predictive Models. The plot compares

the predictive performance of various models using R² values, with higher values

indicating better model fit. Combined GBM and IL stack demonstrated superior

performance compared to all the other single-omic and multi-omics model.

Table 4.6 and 4.7 presents the results of pairwise t-tests performed on the R²

values of single-omics and multi-omics machine learning models. The table highlights

p-values to assess statistical significance.
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Pairwise t-test Results

Group 1 /
Group 2

RF XGB GBM RF
(multi-
omics)

XGB
(multi-
omics)

GBM
(multi-
omics)

RF - 0.7840 0.7709 0.1330 0.5874 0.0258*

XGB 0.7840 - 0.5756 0.0794 0.4566 0.0147*

GBM 0.7709 0.5756 - 0.2292 0.7474 0.0489*

RF(multi-
omics)

0.1330 0.0794 0.2292 - 0.5738 0.3257

XGB
(multi-
omics)

0.5874 0.4566 0.7474 0.5738 - 0.2274

GBM
(multi-
omics)

0.0258* 0.0147* 0.0489* 0.3257 0.2274 -

Table 4.6: Pairwise t-test results comparing R² values across different machine learn-
ing models, including single-omics models (RF, XGB, GBM) and multi-omics models
(RF, XGB, GBM with multi-omics integration). The table displays the p-values for
each pairwise comparison, with (* p < 0.05) indicating statistically significant re-
sults.

4.7 Important Features

The tables presented the results of feature importance rankings derived from three

machine learning models Random Forest, XGBoost, and Gradient Boosting Machine

(GBM) for single-omic and multi-omics data sets. These results highlighted the

features that were most influential in predicting the target variable across the data

sets.

Table 4.8 showed the feature importance rankings using the Random Forest

model, measured by the Increased Node Purity metric. In the single-omic dataset,

the top feature was Clostridium disporicum with the highest Increased Node Purity

of 5579.825, followed by Slackia isoflavoniconvertens and Firmicutes bacterium CAG

94. For the multi-omics dataset, pathway features such as PWY-5913 (5639.836)
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Pairwise t-test Results

Group 1 /
Group 2

RF
(multi-
omics)

XGB
(multi-
omics)

GBM
(multi-
omics)

Integrated
Learner
(stacked)

Integrated
Learner
(concate-
nated)

RF(multi-
omics)

- 0.2207 0.2954 0.1205 0.1619

XGB
(multi-
omics)

0.2207 - 0.5117 0.1205 0.1619

GBM
(multi-
omics)

0.2954 0.5117 - 0.5117 0.6495

Integrated
Learner
(stacked)

0.1205 0.1205 0.5117 - 0.8551

Integrated
Learner
(concate-
nated)

0.1619 0.1619 0.6495 0.8551 -

Table 4.7: Pairwise t-test results comparing R² values across different machine learn-
ing models, including single-omics models (RF, XGB, GBM) and multi-omics models
(RF, XGB, GBM with multi-omics integration). The table displays the p-values for
each pairwise comparison, with (* p < 0.05) indicating statistically significant re-
sults.

and PWY0-1586 (2168.797) dominated the rankings, reflecting the importance of

functional pathways when multiple omics data are combined. The difference in

top features between the single-omic and multi-omics data sets suggested that the

integration of data types shifted the model’s focus to metabolic pathways and specific

protein annotations.

Table 4.9 showed feature importance rankings for XGBoost using three metrics

Gain, Cover, and Frequency. For the single-omic dataset, Slackia isoflavonicon-

vertens showed the highest Gain (0.0449), indicating its significant contribution

to improving model accuracy. Features like Firmicutes bacterium CAG 94 and



4.7 IMPORTANT FEATURES 46

Clostridium disporicum were also highly ranked across all metrics. In the multi-

omics dataset, pathways such as PWY-5913 and protein annotations like 418240

C6J849 ERS852478 02462 ranked highly in Gain, reflecting their strong influence

on predictions. Similar to the Random Forest results, the feature ranking of the

XGBoost model for the multi-omics dataset also highlighted a greater influence of

pathway and marker abundance features compared to microbial taxa.

Table 4.10 provided feature rankings based on the GBM model, measured by

Relative Influence. For the single-omic dataset, Slackia isoflavoniconvertens had the

highest influence (5.5274), followed by Firmicutes bacterium CAG 94 and Clostrid-

ium disporicum. This estimation also aligned with the RF and XGBoost results,

showing consistency in identifying important taxa. In the multi-omics dataset, path-

way PWY-5913 was the top feature, with a Relative Influence of 2.7094. Other

influential features included protein annotations such as 418240 C6J849 ERS852478

02462 and PWY0-1586.

In summary, all three models consistently identified key features for both single-

omic and multi-omics data sets. This suggests that functional attributes, such as

metabolic pathways and specific biomarkers, played more significant role in pre-

dicting the target variable, potentially reflecting their closer association with age.

Moreover, Slackia isoflavoniconvertens, Firmicutes bacterium CAG 94, and Clostrid-

ium disporicum appeared as the top common features across all model results in the

case of single-omic analysis.
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Feature Ranking by Random Forest Model

Single-omic Multi-omics

Feature Increased
Node Purity

Feature Increased
Node Purity

Clostridium dis-
poricum

5579.825 PWY-5913 5639.836

Slackia
isoflavoni-
convertens

5241.173 PWY0-1586 2168.797

Firmicutes bac-
terium CAG 94

4888.641 28116 C3QQN3
CUY 4207

2117.562

Bifidobacterium
adolescentis

4012.824 1261 D3MR67
SAMN05660467
01650

2109.406

Bacteroides ova-
tus

3409.038 2108523
A0A2P2F5G5
LAWASA 1244

1985.166

Escherichia coli 3302.729 FERMENTATION-
PWY

1891.353

Roseburia faecis 3276.720 418240 C6J849
ERS852478 02462

1881.355

Bacteroides cac-
cae

3115.153 PWY-6168 1872.308

Adlercreutzia
equolifaciens

2946.564 Bilophila wadswor-
thia

1796.306

Agathobaculum
butyricipro-
ducens

2714.370 78257
A0A087CUE0
BSAE 1156

1762.814

Table 4.8: Feature ranking based on increased node purity using the Random For-
est model for both single-omic and multi-omics datasets. The table lists the top
features from each dataset, with their corresponding node purity values. The single-
omic dataset includes individual microbiome species, while the multi-omics dataset
features pathways and other related biomarkers.
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Feature Ranking by XGBoost Model (single-omic dataset)

Feature Gain Cover Frequency

Slackia isoflavoniconvertens 0.0449 0.0374 0.0240

Firmicutes bacterium CAG 94 0.0437 0.0261 0.0254

Clostridium disporicum 0.0374 0.0382 0.0225

Ruminococcus torques 0.0323 0.0392 0.0314

Adlercreutzia equolifaciens 0.0323 0.0251 0.0210

Bacteroides ovatus 0.0305 0.0169 0.0225

Bifidobacterium adolescentis 0.0305 0.0239 0.0210

Bifidobacterium bifidum 0.0261 0.0219 0.0165

Agathobaculum butyricipro-
ducens

0.0239 0.0232 0.0150

Roseburia faecis 0.0236 0.0195 0.0150

Feature Ranking by XGBoost Model (muti-omics dataset)

Feature Gain Cover Frequency

PWY-5913 0.0314 0.0157 0.0102

418240 C6J849 ERS852478 02462 0.0263 0.0184 0.0139

PWY-6385 0.0202 0.0034 0.0015

Bilophila wadsworthia 0.0173 0.0136 0.0117

28116 C3QQN3 CUY 4207 0.0172 0.0095 0.0066

2108523 A0A2P2F5G5 LAWASA
1244

0.0167 0.0213 0.0154

Streptococcus gordonii 0.0161 0.0063 0.0029

1262989 R6ZBG1 BN815 00721 0.0160 0.0058 0.0029

PWY0-1586 0.0160 0.0137 0.0095

1261 D3MR67 SAMN05660467
01650

0.0145 0.0170 0.0154

Table 4.9: Feature ranking based on the XGBoost model for both single-omic and
multi-omics datasets. The table lists the top features from each dataset along with
their corresponding gain, cover, and frequency values. Gain represents the impor-
tance of the feature in terms of the improvement it brings to the model, cover
indicates the relative coverage of the feature in the dataset, and frequency shows
how often the feature was used across all trees in the model.
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Feature Ranking by GBM Model

Single-omic Multi-omics

Feature Relative Influ-
ence

Feature Relative Influ-
ence

Slackia
isoflavoni-
convertens

5.5274 PWY-5913 2.7094

Firmicutes bac-
terium CAG 94

5.3900 418240 C6J849
ERS852478 02462

2.3130

Clostridium dis-
poricum

5.2963 28116 C3QQN3
CUY 4207

1.6770

Agathobaculum
butyricipro-
ducens

3.9971 Bilophila wadswor-
thia

1.6323

Bacteroides ova-
tus

3.9785 2108523
A0A2P2F5G5
LAWASA 1244

1.6322

Roseburia faecis 3.7288 1261 D3MR67
SAMN05660467
01650

1.5623

Escherichia coli 3.6968 PWY0-1586 1.4915

Bifidobacterium
adolescentis

3.4419 78257
A0A087CUE0
BSAE 1156

1.4451

Adlercreutzia
equolifaciens

3.3813 PWY-7383 1.4295

Ruminococcus
torques

3.1246 PWY-6168 1.3394

Table 4.10: Feature ranking based on the GBM model for both single-omic and
multi-omics datasets. The table presents the top features from each dataset along
with their corresponding relative influence values. Relative influence measures the
importance of each feature in predicting the target variable, with higher values
indicating greater importance. The table compares single-omic and multi-omics
datasets, showing the most influential features in both contexts.



5 Discussion

The goal of this thesis was to evaluate and compare the predictive performance of

the tree-based machine learning models, such as Random Forest (RF), Gradient

Boosting Machine (GBM), and Extreme Gradient Boosting (XGBoost) using both

the single-omic and multi-omics data sets, along with the multi-omics specialized

IntegratedLearner method, for age prediction using the LifeLines DEEP dataset.

This study further investigated whether single-omic dataset or multi-omics inte-

gration provided superior predictive performance, with particular emphasis on the

capabilities of the IntegratedLearner models for multi-omics data analysis. All the

models trained on multi-omics data sets, including RF, GBM, XGBoost, and the

IntegratedLearner model, outperformed those trained on single-omics data sets.This

suggested that the multi-omics integration enhanced the predictive performance of

the models. While, the performance of RF, GBM, and XGBoost trained with multi-

omics data was comparable with the IntegratedLearner model.

The LifeLines DEEP dataset posed several challenges for prediction due to the

inherent characteristics of microbiome data. Across all data sets, the features ex-

hibited right-skewed distributions, with most values concentrated near zero and a

few outliers displayed higher abundances. This pattern reflects the compositional

and sparse nature of microbiome data, where certain taxa, markers, or pathways

are present in trace amounts, while others dominated only in specific samples. The

relative abundance dataset, in particular, highlighted these challenges, as its com-
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positional structure constrained the data, making it difficult for models to capture

meaningful patterns or associations with age. Additionally, the diversity of microbial

communities, measured by the number of distinct taxa, may influence the predictive

power of the models. A higher microbial community diversity often correlates with

richer biological information, potentially leading to more accurate predictions in cer-

tain contexts [63]. In this study, the Shannon diversity index revealed that microbial

diversity increased with age, while the senior age group exhibited the highest diver-

sity compared to the adult and school-age groups. However, the Beta diversity and

PERMANOVA test indicated that there were subtle differences in microbial com-

position across age groups, the microbial communities were largely similar across

these categories. Hence, the limited diversity observed in the LifeLines DEEP study

may partially explain the challenges in accurately predicting age, underscoring the

importance of microbial diversity in such analyses.

Microbiome research often emphasizes taxonomic and functional profiling of mi-

crobial communities, with functional profiling generally considered more effective

for understanding human-microbe interactions [64]. In this study, the correlation

analysis revealed that species relative abundance, representing taxonomic data, ex-

hibited a nominal association with age. Conversely, functional data sets, specifically

pathway abundance and marker abundance, showed stronger correlations with age.

Functional data, which represents the biochemical activities and metabolic pathways

of microbes, are inherently more stable across microbial communities, as multiple

microbial species can perform similar functions. This stability enhances their ro-

bustness and reliability for predictive modeling, while taxonomic data often display

significant variability and reduced consistency between different data sets or envi-

ronments [64].

This disparity was further reflected in the predictive performance of the mod-

els developed in this study. Models trained exclusively on the relative abundance
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dataset demonstrated lower predictive accuracy compared to those utilizing the func-

tional data sets. However, integrating functional data sets (pathway abundance and

marker abundance) with the relative abundance dataset to create a multi-omics

dataset significantly enhanced model performance. Moreover, the results obtained

using the IntegratedLearner method further validated the advantages of multi-omics

integration for improving predictive performance.

The predictive performance of the tree-based models varied depending on the

type of data set. For models trained on the multi-omics dataset, GBM achieved

the highest performance (R2 = 0.330, MAE = 9.66; see Table A.1), followed by

RF (R2 = 0.279, MAE = 9.92; see Table A.1) and XGBoost (R2 = 0.239, MAE

= 10.2; see Table A.1). A similar trend was observed for single-omic data sets,

where GBM (R2 = 0.214, MAE = 10.4; see Table A.1) consistently outperformed

RF (R2 = 0.198, MAE = 10.5; see Table A.1) and XGBoost (R2 = 0.182, MAE =

10.4; see Table A.1). These results highlighted the consistent strength of GBM in

predictive modeling, particularly when leveraging multi-omics data. Notably, the

GBM model trained on the multi-omics dataset significantly outperformed (p-value

< 0.05) the models trained on single-omic data sets, including GBM, RF, and XG-

Boost. This distinguished performance of the GBM model can be attributed to its

ability to capture complex, non-linear relationships, iterative boosting that reduces

overfitting, and effective feature prioritization, making it particularly well-suited for

high-dimensional and sparse microbiome data [65] [66]. RF showed strong perfor-

mance, especially when compared to XGBoost model. Its strength lies in its ability

to handle high-dimensional data and its straightforward approach to hyperparam-

eter tuning [67]. Similar studies on microbiome analysis have shown that RF can

outperform XGBoost, although XGBoost is a more complex model [68].

Furthermore, the IntegratedLearner model evaluated individual omics layers, in-

cluding Relative Abundance, Pathway Abundance, and Marker Abundance, while
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leveraging their integration through a stacked layer as well as their combined rep-

resentation. Among these layers, the stacked layer achieved the highest predictive

performance (R2 = 0.311, MAE = 9.87; see Table A.1). This result highlighted

that training separate models for each data type and subsequently combining their

outputs through a second layer effectively enhances model performance. Moreover,

the concatenated layer (R2 = 0.299, MAE = 9.76; see Table A.1) and the biomarker

layer (R2 = 0.308, MAE = 9.89; see Table A.1) demonstrated comparable perfor-

mance, although both were outperformed by the stacked layer.

Lastly, the feature ranking analysis of the models revealed distinct patterns be-

tween single-omic and multi-omics data sets. For single-omic data sets, microbial

species such as Clostridium disporicum, Slackia isoflavoniconvertens, and Firmicutes

bacterium CAG 94 consistently ranked among the top features, highlighting their

strong association with age prediction. In contrast, multi-omics data sets identi-

fied metabolic pathways and specific markers as critical predictors, reflecting the

added complementary information provided by multi-omics integration. Notably,

pathways such as PWY-5913 and PWY0-1586 emerged as significant contributors,

emphasizing their key roles in age prediction. Beyond pathways, microbial taxa and

specific markers also demonstrated substantial importance. For example, Bilophila

wadsworthia, a microbial species, consistently appeared among the top-ranked fea-

tures, underscoring its relevance in predictive models. Similarly, markers such as

"28116 C3QQN3 CUY 4207" were repeatedly ranked among the top features, indi-

cating a strong predictive significance.

The findings of this study highlighted the diverse contributions of taxa, path-

ways, and markers to age prediction, emphasizing the importance of multi-omics

integration in capturing complex patterns. Furthermore, the incorporation of func-

tional data sets, which provide a more stable and robust representation of microbial

activities, improves predictive modeling and offers a deeper understanding of the
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relationship between the microbiome and age.



6 Conclusion

This research aimed to predict age using the LifeLines DEEP dataset, incorporating

Relative Abundance, Marker Abundance, and Pathway Abundance through machine

learning and statistical methods. Pathway abundance showed the strongest corre-

lation with age, highlighting its ability to capture age-related biological processes

more effectively than other data sets. Diversity and indicator species analyses iden-

tified taxa linked to specific age categories, emphasizing their biological relevance

and utility for predictive modeling.

The machine learning models demonstrated varying levels of predictive capabil-

ity. While, GBM emerged as the most effective model, achieving superior accuracy

and robustness, particularly when trained with the multi-omics dataset. While the

IntegratedLearner stacked model achieved performance comparable to the GBM

model (trained with the multi-omics dataset). Moreover, the result of the bench-

mark comparisons with a random baseline confirmed the statistical significance of

the models, validating the feasibility of age prediction using microbiome data.

Despite the contributions, the study faced notable challenges. High sparsity and

zero-inflated data sets posed significant hurdles for model training and prediction

accuracy. Additionally, low correlations between certain features and the target

variable, combined with limited diversity in age categories, constrained the predic-

tive power of the data sets and impacted the generalizability of the findings. These

limitations suggested avenues for improvement in future research. Expanding the
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dataset quality and diversity will enhance generalizability, while adopting advanced

techniques, such as deep learning with optimized hyperparameter tuning methods

(e.g., grid search or Bayesian optimization), could further refine feature extraction

and improve predictive accuracy.

In conclusion, this research demonstrates the potential of microbiome data for

age prediction through machine learning and data analysis, providing a robust frame-

work for this kind of study. By addressing current limitations and exploring innova-

tive approaches, advancements in microbiome research can open the door to novel

applications in personalized medicine, aging science, and beyond.
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Appendix A Appendix

Model Performance Metrics

Model R2 MAE

GBM (multi-omics) 0.330 9.66

IntegratedLearner (stacked) 0.311 9.87

IntegratedLearner
(biomarker)

0.308 9.89

IntegratedLearner (concate-
nated)

0.299 9.76

RF (multi-omics) 0.279 9.92

XGB (multi-omics) 0.239 10.2

IntegratedLearner (species) 0.215 10.8

GBM 0.214 10.4

RF 0.198 10.5

IntegratedLearner (path-
way)

0.184 10.65

XGB 0.182 10.4

Table A.1: Model performance metrics for predicting age, sorted by R2 values in
descending order.



Appendix B Appendix

The code for this thesis can be found on GitHub at this link.

https://github.com/ShadmanIshraq/Predicting-Age-from-Microbiome-Data-Benchmarking-Multi-Source-Machine-Learning-Methods
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