
Implementation of a Pick-and-Place
Robotic System Using Franka Arm and

Vision-Based Object Detection

Technical Report - 2025

Azeez Jimoh
Ahmad Reza Zarei

Juha Plosila
Hashem Haghbayan

Department of Computing
University of Turku
February 11, 2025

Abstract

This report presents the design, implementation, and evaluation of a pick-and-place
robotic system using the Franka Emika robotic arm and a Stereolabs ZED2 camera for ob-
ject detection and localization. The system employs 3D depth sensing through the ZED2
camera, mounted on the robot’s end-effector, to provide real-time 3D position data of
the target object. These coordinates are transformed into the robot’s base frame using a
calibrated transformation matrix, enabling precise manipulation. The motion planning
is executed using the Robot Operating System (ROS) framework, ensuring smooth and
collision-free trajectories. The system dynamically updates the object’s position during
the pick-and-place sequence, allowing for accurate handling even in cases of displacement.
Experimental results demonstrate the system’s capability to execute high-precision pick-
and-place tasks, highlighting its suitability for advanced applications such as precision
assembly, warehouse automation, and medical robotics.

Keywords: Pick-and-Place Automation,3D Object Detection, Real-Time Localization,
Robotic Manipulation.

Contents

1 Introduction 2
1.1 Objectives . 2
1.2 Significance . 3
1.3 Scope . 4

2 System Hardware 5
2.1 Franka Emika Arm . 5
2.2 Franka Hand . 6
2.3 Workstation PC . 7
2.4 ZED2 camera . 7
2.5 ZED Box Orin . 8

3 Implementation 9
3.1 Hardware System Integration . 9
3.2 Software Components . 9
3.3 Calibration Process . 10
3.4 Object Detection . 12
3.5 Overview of the Pick-and-Place Process 13

4 Result 15

5 Conclusion 18

Appendix 19
.1 Code for Pick and Place with Franka arm and Zed2 Camera 19
.2 Objects Information Publisher . 22
.3 Reasons for Client-Host Communication 23

1

Chapter 1

Introduction

The advancement of robotics and automation has led to significant breakthroughs in tasks
that require precision, adaptability, and efficiency. Among these, pick-and-place opera-
tions hold a crucial place in a wide array of applications, ranging from manufacturing
and logistics to laboratory automation. The Franka Emika Arm (Figure 1.1), a robotic
manipulator designed for versatility and precision, features 7 degrees of freedom (DOF)
that enable it to perform complex tasks requiring a high level of dexterity and control.In
the experimental setup, the robot arm is situated on a Husky unmanned ground vehi-
cle(UGV). This report focuses on the development and evaluation of a pick-and-place
robotic system that integrates the Franka Emika arm with a vision-based detection sys-
tem. Leveraging the capabilities of the Stereolabs ZED2 camera, the system achieves
accurate object localization and manipulation.

1.1 Objectives

The primary goal of this project is to design, implement, and evaluate a pick-and-place
robotic system that integrates advanced manipulation and vision-based detection tech-
nologies. The following objectives outline the key steps undertaken to achieve this goal:

1. Development of Pick-and-Place Robotic System: Design and implement a robotic
system by integrating the Franka Emika robotic arm with a vision-based object detec-
tion system using the Stereolabs ZED2 camera. This includes ensuring accurate object
localization and seamless manipulation.

2. Transformation Matrix Calibration: Establish and calibrate the transformation
matrix between the camera frame and the robot’s base frame to enable precise mapping
of object positions for manipulation.

3. Motion Planning and Execution: Implement motion planning using the ROS to
generate smooth, collision-free trajectories for the pick-and-place task.

4. Dynamic Object Position Updating: Develop a real-time system to track and
update the object’s position dynamically during the pick-and-place sequence, ensuring
reliable operation in cases of object displacement.

5. System Testing and Validation: Test and validate the system’s performance in a
controlled environment to ensure accurate and repeatable pick-and-place operations.

2

Figure 1.1: The Husky UGV with the Franka Emika Panda Arm.

1.2 Significance

Pick-and-place operations are integral to a variety of industries, offering the potential to
enhance efficiency, accuracy, and automation. By utilizing the Franka Emika arm and
vision-based detection, this project demonstrates how integrating robotic manipulators
with real-time perception systems can overcome challenges such as object misalignment
or movement during the process. The system’s adaptability and precision make it a
valuable solution for applications such as automated assembly lines, warehouse sorting,
and laboratory sample handling. Furthermore, the project contributes to the growing
field of collaborative robotics, showcasing how robots can perform complex tasks safely
and reliably alongside human operators.

3

1.3 Scope

The scope of this project encompasses the following:
1. Component Integration: Integration of the Franka Emika robotic arm and the

Stereolabs ZED2 camera to develop a functional pick-and-place robotic system.
2. Transformation Matrix Calibration: Calibration of the transformation matrix be-

tween the camera frame and the robot base frame for accurate object localization.
3. Motion Planning and Execution: Development of collision-free motion trajectories

using the ROS to perform precise pick-and-place operations.
4. System Testing and Validation: Testing and validation of the system in a controlled

environment to evaluate its accuracy, reliability, and potential for real-world applications.

4

Chapter 2

System Hardware

2.1 Franka Emika Arm

The Franka Emika Panda, also referred to as the Franka Emika Research 3, is an ad-
vanced robotic system that includes a 7-degree-of-freedom manipulator arm equipped
with torque sensors at each joint, providing precise force measurements. The arm is
designed with exceptional industrial-grade pose repeatability, achieving ±0.1 mm accu-
racy. Its innovative design and capabilities make it a versatile tool for both industrial
and research applications, offering force sensitivity and unparalleled precision for complex
robotic tasks.[2]

The system is enhanced by the Franka Control Interface (FCI), which facilitates a
fast and direct low-level bidirectional connection to the arm and gripper via an external
workstation connected through Ethernet. As illustrated in Figure 2.1, the FCI enables
real-time control with a frequency of 1 kHz through multiple interfaces, allowing gravity
and friction-compensated torque commands, joint position or velocity commands, and
Cartesian pose or velocity control. It also provides access to detailed robot status data,
such as joint positions, velocities, externally applied forces, and collision information,
alongside the robot model library for forward kinematics, Jacobian matrices, and dy-
namic properties. Moreover, the Franka-ROS package integrates the robot with the ROS
ecosystem, enabling advanced visualization, kinematic simulations, and gripper control
via MoveIt.[2]

To effectively run the FCI and ensure seamless operation with the robot, specific
system and network requirements must be met. The workstation PC must operate on
Linux with a PREEMPT-RT patched kernel or Windows 10 (experimental) and include a
network card supporting 100BASE-TX for high-speed Ethernet communication. To min-
imize latency, configurations such as disabling CPU frequency scaling are recommended,
alongside other optimizations tailored to the system. The workstation must connect di-
rectly to the LAN port of the Control, avoiding intermediaries like switches, as these can
introduce delay, jitter, or packet loss, significantly impacting performance. To maintain
optimal performance, the total time for the round trip between the PC and FCI, the mo-
tion generator or control loop execution, and robot data processing must remain under
1 ms. Exceeding this constraint leads to packet drops, and if more than 20 consecutive
packets are lost, the robot will halt with a communication error. Direct LAN connec-
tions and pre-measuring network performance, including bandwidth, delay, and jitter,
are essential to ensure reliable and precise operation.[1]

5

Figure 2.1: Schematic overview of the interaction between franka-ros and FCI for con-
trolling the Franka arm. [2]

2.2 Franka Hand

The Franka Hand, shown in Figure 2.2 , is a highly versatile and fully integrated two-
finger parallel gripper developed by Franka Emika, making it an essential component for
this project’s manipulation tasks. With a continuous grasping force of 70 N, a maximum
force of 140 N, and a travel stroke of 80 mm, the Franka Hand can securely grip a
wide range of objects with precision and reliability. The Hand’s 3 kg payload capacity
and lightweight design (0.7 kg) ensure compatibility with various grasping scenarios. In
this project, the Franka Hand is crucial for enabling precise and adaptable pick-and-
place operations, as its sensitive gripping capabilities allow it to handle diverse object
geometries and weights effectively, aligning with the project’s goal of achieving reliable
and accurate robotic manipulation.

Figure 2.2: Franka Hand.

6

2.3 Workstation PC

The workstation PC used for control and communication with the Franka arm is an
AAEON UPX-TGL01 board from the UP Xtreme Series by Intel As illustrated in figure
2.3, a platform designed to combine flexibility, performance, and scalability for edge
computing applications. This host device is powered by an 11th Gen Intel® Core™ i7-
1185GRE @ 2.80GHz × 8 processor, Mesa Intel® Xe Graphics (TGL GT2), 16GB of
SO-DIMM memory, and a 250GB Samsung V-NAND SSD. It operates on Ubuntu 20.04.4
LTS, with a kernel compiled specifically for real-time communication with the FCI.[6]

Figure 2.3: AAEON UPX-TGL01 board.

2.4 ZED2 camera

The Stereolabs ZED2 camera, shown in Figure 2.4, is a critical component of this project,
enabling precise object detection and tracking. Utilizing its dual-lens setup and trian-
gulation, the ZED2 provides a three-dimensional understanding of the observed scene,
including the real-time 3D position of detected objects. This spatial awareness is essen-
tial for generating accurate trajectories for the robotic arm to grasp objects effectively.
Powered by the ZED SDK, the camera employs optimized algorithms for depth percep-
tion, tracking, and spatial AI, ensuring reliable performance in dynamic environments.
Additionally, the ZED2 stands out for its versatility and ease of integration, supporting
a wide range of platforms from desktop PCs to embedded systems.[5]

Figure 2.4: Zed 2 Camera

7

2.5 ZED Box Orin

To handle computationally intensive tasks such as object detection and tracking, this
project employs the ZED Box Orin™ NX 8GB, shown in Figure 2.5, as the computer
vision platform. The ZED Box is specifically designed to process the outputs of the
ZED2 camera in real time, enabling applications such as object detection, tracking, and
depth estimation. In this project, the ZED Box performs object detection and tracking,
processing the camera’s output and sending critical information, including the class name
and 3D position of detected objects, to the workstation PC. This data is then used by the
workstation to generate precise trajectories for the pick-and-place operations. Powered by
a 1,024-core NVIDIA Ampere GPU with 32 Tensor Cores and a 6-core Arm® Cortex®-
A78AE CPU, the ZED Box delivers 70 TOPS of AI performance, ensuring reliable and
efficient processing for real-time applications.

Figure 2.5: Zed Box Orin.

8

Chapter 3

Implementation

3.1 Hardware System Integration

A host-client communication protocol is implemented to integrate the hardware compo-
nents of the pick-and-place system (see Figures 3.1 and 3.2). The primary reason for
adopting the host-client communication protocol is discussed in Appendix 3. The host
device, an AAEON UPX-TGL01 from the Intel UP Xtreme series, is directly connected
to the Franka Emika Arm via the Franka Control Interface (FCI). The client system
comprises a ZED Box Orin and a ZED2 camera, which are responsible for performing
real-time object detection and tracking.

The ZED2 camera captures the scene, and the ZED Box processes the camera’s output
to detect objects and determine their class and 3D coordinates. This information is
transmitted to the host device using a ROS Node. On the host device, the trajectory for
the pick-and-place task is generated and subsequently sent to the Franka Arm through the
libfranka API for execution. This setup ensures seamless integration and communication
between components, enabling precise and efficient pick-and-place operations.

3.2 Software Components

The project utilizes the ROS as the primary framework for communication and coor-
dination among the components. Key libraries include libfranka and franka-ros, pro-
vided by Franka Emika, which facilitate low and high-level control of the Franka arm.
These libraries enable GUI-based control through ROS Rviz for motion visualization and
trajectory planning, as well as API-based control for specifying target coordinates and
trajectories directly in code. This flexibility allows precise manipulation and seamless
integration of the robotic arm into the pick-and-place system.

The ZED ROS wrapper, developed by Stereolabs, integrates the ZED2 camera with
the ROS ecosystem, providing access to features such as object detection, depth estima-
tion, and spatial AI. It retrieves critical object information, including 3D positions and
classifications, which are used for trajectory planning and manipulation. Additionally,
the hand calibration package is employed to perform eye-in-hand calibration between
the ZED2 camera and the Franka Arm, using joint data, camera images, and an ArUco
marker to calculate the transformation matrix between the camera frame and the arm’s
coordinate frame. This calibration ensures accurate alignment of object positions with
the robot’s base frame, enabling precise pick-and-place operations.

9

Figure 3.1: Diagram of hardware integration

3.3 Calibration Process

Calibration is a critical process in robotics to ensure accurate mapping between different
coordinate frames, such as the camera, robot, and object frames. It includes intrinsic
calibration, extrinsic calibration, and specific setups like eye-in-hand and eye-to-hand
calibration, which are essential for precise object detection, localization, and manipula-
tion. Intrinsic calibration determines the internal parameters of a camera that affect how
it projects 3D points onto a 2D image plane. These parameters include the focal lengths
(fx, fy), the principal point (cx, cy), and lens distortion coefficients. The camera intrinsic
matrix is represented as:

K =

fx 0 cx
0 fy cy
0 0 1

Where:

• fx, fy: Focal lengths of the camera.

• cx, cy: Coordinates of the principal point.

Lens distortions are corrected using coefficients for radial distortion (k1, k2, k3) and tan-
gential distortion (p1, p2). These parameters are estimated by capturing images of a
known pattern (e.g., a checkerboard) and using algorithms such as those provided by
OpenCV. Extrinsic calibration involves determining the transformation between the cam-
era frame and an external reference frame, such as the robot base or end effector. This

10

Figure 3.2: Real world hardware integration.

transformation is expressed as:

Text =

[
R T
0 1

]
Where:

• R: A 3× 3 rotation matrix representing the orientation.

• T : A 3× 1 translation vector representing the position.

Extrinsic calibration ensures that the coordinates of objects detected by the camera
can be accurately mapped into the robot’s workspace, enabling precise manipulation. In
an eye-in-hand setup, the camera is mounted on the robot’s end effector, moving with
the gripper or tool. The goal of eye-in-hand calibration is to compute the transformation
Thand cam between the camera frame and the end-effector frame. This is critical for object
detection relative to the gripper. The transformation is determined by observing a known
target, such as an ArUco marker, from various end-effector poses:

Thand cam = T−1
hand baseTcam base

Where:

• Thand base: Transformation from the robot base to the end-effector.

• Tcam base: Transformation from the robot base to the camera.

By moving the robot to various poses and recording the target’s position in the camera
frame, the transformation Thand cam can be calculated.

In an eye-to-hand setup, the camera is mounted in a fixed position, and the transfor-
mation Tbase cam between the robot base frame and the camera frame is calculated. This

11

calibration enables mapping object positions in the camera’s coordinate frame into the
robot’s base frame. The transformation is expressed as:

Tbase cam = Tbase objT
−1
cam obj

Where:

• Tbase obj: Transformation from the robot base to the object.

• Tcam obj: Transformation from the camera to the object.

By observing a known target from different robot poses, this relationship is computed to
align the camera’s observations with the robot’s workspace.

For calibration, the MoveIt Calibration package is utilized, offering plugins and a
graphical interface for performing hand-eye camera calibration. This tool supports both
eye-to-hand calibration, where the camera is rigidly mounted to the robot base frame,
and eye-in-hand calibration, where the camera is attached to the robot’s end effector
[3]. Successful calibration requires a camera with accurate intrinsic parameters and a
well-defined coordinate frame. The Stereolabs ZED2 camera used in this project comes
pre-calibrated with precise intrinsic parameters, eliminating the need for manual intrinsic
calibration. Additionally, the ZED ROS wrapper package provided by Stereolabs sup-
plies the coordinate frames required for integration with ROS, further simplifying the
calibration process.

The calibration process begins with the MoveIt GUI to create a distinctive target,
such as an ArUco marker, featuring a known pattern and size. This allows the pose of
the target in the camera’s coordinate frame to be estimated [3]. The target is printed and
placed under the camera (see Figure 3.2), which is mounted on the end effector of the
robotic arm. Frames, including the camera frame, robot base frame, end-effector frame,
and target frame, are linked using ROS, with each device publishing its respective topics.
During calibration, the robotic arm is moved to various positions, ensuring the target
remains visible to the camera at all times. Once the target is detected, samples are taken,
and the process is repeated at least five times, with higher accuracy typically achieved
after 12 to 15 samples. This iterative approach ensures accurate transformation values,
critical for aligning the camera and robotic frames for precise pick-and-place operations.

As detailed in Appendix 1 (final Code for Pick and Place with Franka arm and Zed2
Camera), the function calculate-object-position-robot first determines the transformation
of the object position from the camera frame to the hand (gripper) frame. Subsequently,
this result is used to calculate the transformation of the object position from the hand
frame to the robot base frame. These transformation values are then used to generate
a trajectory for the robotic arm, enabling it to perform the pick-and-place task with
precision and reliability.

3.4 Object Detection

The ZED Software Development Kit (SDK) utilizes AI and neural networks to identify
objects present in both the left and right images captured by the ZED2 camera. It
computes the 3D position of each object and their bounding boxes using data from the
depth module. Additionally, the SDK provides object tracking capabilities, allowing
objects to be tracked over time even when the camera is in motion. The distance of an

12

object from the camera is calculated in metric units (e.g., meters) and is measured from
the back of the left lens of the camera to the object in the scene.[4]

The ZED SDK can detect various objects, including people, vehicles, animals, elec-
tronics, and fruits/vegetables. In this project, the fruit class was selected to detect specific
fruits, such as apples, oranges, and bananas, for pick-and-place tasks. Figure 3.3 shows
the results of fruit detection using the ZED SDK along with the 3D positions of the
detected objects. The code for detecting these objects and publishing their positions in
real time to the host device is provided in Appendix 2. The detected object’s position is
transformed from the camera frame to the robot base frame, enabling precise pick-and-
place operations. If the object’s position changes, the updated position is published in
real time, allowing the host device to dynamically generate a new trajectory, ensuring
precision and adaptability.

Figure 3.3: Fruit detection and 3D position estimation using the ZED SDK.

3.5 Overview of the Pick-and-Place Process

The pick-and-place system begins with the ZED2 camera capturing the scene, providing
real-time stereo vision data. This data is processed using the ZED SDK, which identifies
the object’s class, bounding box, and 3D position within the camera’s coordinate frame.
The object detection step ensures that the system can identify specific objects of interest,
such as fruits, and accurately determine their location in the environment. The overall
workflow of this process is illustrated in Figure 3.4, which provides a detailed view of
each step involved in the pick-and-place operation.

Once the object’s 3D position is published in the camera frame, it undergoes a coor-
dinate transformation to map its position into the robot base frame. This transformation
aligns the detected object’s location with the robot’s base frame, enabling precise ma-
nipulation. Based on the transformed position, the system generates a trajectory for the
Franka Arm to execute the pick-and-place operation. The trajectory planning ensures
smooth and collision-free movements, facilitating efficient object handling.

During the execution phase, the robotic arm attempts to grasp and place the object
at the specified destination. If the object’s position changes due to external factors, the

13

system dynamically updates the position using real-time data from the ZED2 camera.
These updates allow the trajectory to be recalculated, ensuring the system adapts to
changes and maintains precision. After releasing the object at the target position, the
arm returns to its designated home position. Both the home position and destination
position can be set to any reachable position within the robot’s workspace, as detailed
in Appendix 1. The implementation of object detection, tracking, and pick-and-place
operations is further described in Appendix 1 and Appendix 2. This approach ensures
accuracy, reliability, and efficiency, even in dynamic and unstructured environments.

Raw Images

Object Detection

Publish 3D Position of Detected Objects

Transform to Robot Base Frame

Generate Motion Plan

Object Picking Execution

Go to Destination Position

Object Grasped?

Place Object at Destination Position

Move to Home Position

End of Task

No

Yes

Figure 3.4: Flowchart of the pick-and-place process.

14

Chapter 4

Result

This chapter presents the step-by-step process and results of the pick-and-place operation
performed using a robotic arm equipped with an ZED2 camera. The operation demon-
strates the integration of object detection, trajectory planning, and motion execution in a
dynamic environment. Each step, from initializing the system to detecting, picking, and
placing the object, is detailed to provide a comprehensive understanding of the workflow
and the robotic system’s capabilities.

Figure 4.1 illustrates the sequence of the pick-and-place operation for fruit, show-
casing the robotic arm’s stepwise functionality. The process begins with the starting
position (Figure 4.1a), where the robotic system is idle and ready to detect objects
within its workspace. At this stage, the ZED2 camera scans the environment to identify
any detectable objects, such as fruits. Once an object is detected, the system transitions
to the gripper initialization phase (Figure 4.1b). Here, the detected 3D position of the
object in the camera’s reference frame is transformed into the robot’s base frame using a
calibrated transformation. Simultaneously, the gripper is opened to prepare for grasping.

In the picking phase (Figure 4.1c), the robotic arm generates a trajectory based
on the transformed position of the object and moves toward it. If the object’s position
dynamically changes during this phase, the camera detects the updated position, and the
trajectory is recalculated in real time, ensuring accurate alignment with the new position.
Once the arm reaches the object, the gripper closes to secure the grasp. The system then
transitions to the moving phase (Figure 4.1d), where the robot generates a new trajectory
to transport the object to the destination. After reaching the target location, the gripper
opens to release the object (Figure 4.1e). Finally, the arm returns to its home position
(Figure 4.1f), resetting the system for the next pick-and-place operation. This process
showcases the robotic system’s adaptability and precision in dynamic environments.

Figures 4.2 and 4.3 illustrate key aspects of the robotic arm’s performance during a
repetitive pick-and-place operation conducted four times. Figure 4.2 displays the joint
movement graphs, highlighting significant variations in certain joints, such as joints 4 and
6, which play critical roles in orienting the end-effector for precise object manipulation.
In contrast, in some joints, for example, joint 2, the transitions are smoother and more
moderate, reflecting their relatively stable contributions to the motion. The periodic
nature of the joint movement graphs confirms the consistency and repeatability of the
operation.

Figure 4.3 depicts the end-effector’s trajectory, starting consistently from a fixed
initial position, moving to different pick locations, and transitioning to a deterministic
end position. The repetitive nature of the trajectory across all operations demonstrates

15

(a) Starting position (b) Gripper initialization (c) Picking the object

(d) Moving to the destina-
tion position

(e) Placing the object at the
destination position

(f) Returning to home posi-
tion

Figure 4.1: Sequence of the pick-and-place operation for fruit. Subfigures illustrate the
key steps of the process, from starting position to object placement and return to home
position.

16

Figure 4.2: Joints position over time.

the system’s reliability and precision in executing dynamic pick-and-place tasks.

Figure 4.3: Trajectory of end-effector for pick and place.

17

Chapter 5

Conclusion

This project successfully developed and implemented a pick-and-place robotic system
that integrates the Franka Emika Arm with a vision-based detection system using the
ZED2 camera. The system leverages real-time object detection, tracking, and coordinate
transformation to enable precise manipulation and trajectory planning. By utilizing ROS
as the communication framework, the system seamlessly integrates hardware and software
components, including the ZED Box Orin for image processing and the AAEON UPX-
TGL01 for managing high-frequency communication with the robotic arm. The iterative
calibration process and dynamic updates to object positions significantly enhanced the
system’s accuracy, ensuring reliable pick-and-place execution in dynamic environments.

The outcomes of this project highlight its potential for applications in automated
manufacturing, logistics, and laboratory operations. The system’s ability to dynamically
adapt to changes in object positions and its modular design make it highly versatile
for various use cases. Future work could focus on integrating more advanced AI-based
algorithms for enhanced detection accuracy, expanding the range of detectable objects,
and optimizing the scalability of the system. These improvements would further solidify
the system’s applicability in real-world robotic automation tasks, providing a robust
foundation for continued innovation in autonomous manipulation technologies.

18

Appendix

.1 Code for Pick and Place with Franka arm and

Zed2 Camera

DEPENDENCIES

#!/ usr/bin/env python3

import sys
import rospy
import moveit_commander
import tf2_ros
import numpy as np
import csv
from scipy.spatial.transform import Rotation as R
from geometry_msgs.msg import Pose , PoseStamped
from tf2_geometry_msgs import do_transform_pose
from sensor_msgs.msg import JointState
import actionlib
from franka_gripper.msg import GraspAction , GraspGoal , MoveAction , MoveGoal

Global variables for logging
joint_states = []
last_pose = None
threshold = 0.05 # Movement threshold to trigger the robot motion

######### FUNCTIONS #################

CSV Writers
def init_csv_writers ():

global joint_writer , ee_writer , event_writer
joint_file = open("joint_states.csv", "w", newline="")

joint_writer = csv.writer(joint_file)

Write headers
joint_writer.writerow (["Time", "Joint1", "Joint2", "Joint3", "Joint4", "Joint5", "

Joint6", "Joint7"])

Log data
def log_joint_states(msg):

timestamp = rospy.get_time ()
joint_writer.writerow ([timestamp] + list(msg.position))
joint_states.append ((timestamp , list(msg.position)))

Callback to record joint states
def joint_state_callback(msg):

log_joint_states(msg)

Home Position
def home_pos ():

destination_pose = Pose()
Set position values
destination_pose.position.x = 0.2987534986896804
destination_pose.position.y = 0.0009212556053579501
destination_pose.position.z = 0.6157771379931122
Set orientation values
destination_pose.orientation.x = -0.924961916293293
destination_pose.orientation.y = 0.37960735831204023
destination_pose.orientation.z = -0.016490071471464182
destination_pose.orientation.w = 0.008472571348736812
return destination_pose

19

def move_robot_to_home(position):
group = moveit_commander.MoveGroupCommander("panda_arm")
group.set_pose_target(position)
success = group.go(wait=True)
group.stop()
group.clear_pose_targets ()
if success:

rospy.loginfo("Robot successfully moved to the home position.")
else:

rospy.logwarn("Robot failed to reach the home position.")

Destination Pose
def get_destination_pose ():

destination_pose = Pose()
destination_pose.position.x = -0.007743033245198012
destination_pose.position.y = -0.5606458367899725
destination_pose.position.z = 0.614265142713894
destination_pose.orientation.x = -0.9247894103805966
destination_pose.orientation.y = 0.38005733197149827
destination_pose.orientation.z = -0.014763964167281547
destination_pose.orientation.w = 0.010148705566830401
return destination_pose

def move_robot_to_destination(position):
if position is None:

rospy.logerr("Cannot move the robot: Position is None.")
return

group = moveit_commander.MoveGroupCommander("panda_arm")
group.set_pose_target(position)
success = group.go(wait=True)
group.stop()
group.clear_pose_targets ()
if success:

rospy.loginfo("Robot successfully moved to the destination.")
else:

rospy.logwarn("Robot failed to reach the destination.")

Gripper control functions
def open_gripper ():

client = actionlib.SimpleActionClient(’/franka_gripper/move’, MoveAction)
client.wait_for_server ()
goal = MoveGoal(width =0.08 , speed =0.1)
client.send_goal(goal)
client.wait_for_result ()
rospy.loginfo("Gripper opened successfully.")

def close_gripper ():
client = actionlib.SimpleActionClient(’/franka_gripper/grasp’, GraspAction)
client.wait_for_server ()
goal = GraspGoal(width =0.05, force =20.0 , speed =0.1)
client.send_goal(goal)
client.wait_for_result ()
rospy.loginfo("Gripper closed successfully.")

def calculate_object_position_robot(x, y, z):
camera_to_hand_translation = np.array ([-0.0362371 , -0.0622288 , 0.0630396])
camera_to_hand_quaternion = [0.684326 , 0.00118371 , 0.729135 , 0.00771406]

object_position_camera = np.array([x, y, z])

Transform object position from camera to hand frame
camera_to_hand_rotation = R.from_quat(camera_to_hand_quaternion).as_matrix ()
camera_to_hand_transformation = np.eye (4)
camera_to_hand_transformation [:3, :3] = camera_to_hand_rotation
camera_to_hand_transformation [:3, 3] = camera_to_hand_translation

object_position_camera_homogeneous = np.append(object_position_camera , 1)
object_position_hand = np.dot(camera_to_hand_transformation ,

object_position_camera_homogeneous)

Transform object position from hand to base frame
tf_buffer = tf2_ros.Buffer ()
tf_listener = tf2_ros.TransformListener(tf_buffer)

try:
rospy.loginfo("Waiting for panda_hand to panda_link0 transform ...")
transform = tf_buffer.lookup_transform("panda_link0", "panda_hand", rospy.Time

(0), rospy.Duration (5.0))

hand_to_base_translation = np.array([
transform.transform.translation.x,
transform.transform.translation.y,

20

transform.transform.translation.z
])
hand_to_base_quaternion = [

transform.transform.rotation.x,
transform.transform.rotation.y,
transform.transform.rotation.z,
transform.transform.rotation.w

]

hand_to_base_rotation = R.from_quat(hand_to_base_quaternion).as_matrix ()
hand_to_base_transformation = np.eye (4)
hand_to_base_transformation [:3, :3] = hand_to_base_rotation
hand_to_base_transformation [:3, 3] = hand_to_base_translation

object_position_hand_homogeneous = np.append(object_position_hand [:3], 1)
object_position_base = np.dot(hand_to_base_transformation ,

object_position_hand_homogeneous)

return object_position_base [:3]
except Exception as e:

rospy.logerr(f"Failed to get transform: {e}")
return None

Move to target position
def move_robot_to_object(position):

if position is None:
rospy.logerr("Cannot move the robot: Position is None.")
return

group = moveit_commander.MoveGroupCommander("panda_arm")
target_pose = Pose()
target_pose.position.x = position [0] + 0.06
target_pose.position.y = position [1]
target_pose.position.z = position [2] + 0.1
target_pose.orientation.x = 0.0
target_pose.orientation.y = 1.0
target_pose.orientation.z = 0.0
target_pose.orientation.w = 0.0
group.set_pose_target(target_pose)
success = group.go(wait=True)
group.stop()
group.clear_pose_targets ()
if success:

rospy.loginfo("Robot successfully moved to the target object.")
else:

rospy.logwarn("Robot failed to reach the target object.")

Post -action sequence: Drop object , return home , and look for another object
def post_action_sequence ():

open_gripper ()
home = home_pos ()
move_robot_to_home(home)

Callback for object detection
def callback(msg , args):

move_group , tf_buffer = args
global last_pose
detected_pose = msg.pose
rospy.loginfo("Received detected pose: Position (x: %f, y: %f, z: %f)",

detected_pose.position.x, detected_pose.position.y, detected_pose.
position.z)

if last_pose is None or np.linalg.norm(
np.array ([last_pose.position.x, last_pose.position.y, last_pose.position.z]) -
np.array ([detected_pose.position.x, detected_pose.position.y, detected_pose.

position.z])
) > threshold:

last_pose = detected_pose
object_position_robot = calculate_object_position_robot(

detected_pose.position.x, detected_pose.position.y, detected_pose.position.z
)
if object_position_robot is not None:

move_robot_to_object(object_position_robot)
close_gripper ()
destination_pose = get_destination_pose ()
move_robot_to_destination(destination_pose)
post_action_sequence ()

else:
rospy.loginfo("No significant movement detected , skipping.")

Listener setup
def listener ():

21

moveit_commander.roscpp_initialize(sys.argv)
move_group = moveit_commander.MoveGroupCommander("panda_arm")
tf_buffer = tf2_ros.Buffer ()
tf_listener = tf2_ros.TransformListener(tf_buffer)
rospy.Subscriber("/detected_object_position", PoseStamped , callback , (move_group ,

tf_buffer))
rospy.spin()

MAIN EXECUTABLE

if __name__ == "__main__":
rospy.init_node("pick_and_place_node")
init_csv_writers ()
rospy.Subscriber("/joint_states", JointState , joint_state_callback)
open_gripper ()
listener ()

Listing 1: Python code for pick and place operation

.2 Objects Information Publisher

#!/ usr/bin/env python

import rospy
from zed_interfaces.msg import ObjectsStamped
from geometry_msgs.msg import PoseStamped

def object_list_callback(msg):
"""
Callback function to process detected objects and publish their positions .
"""
global object_pub
rospy.loginfo("Received object list with {} objects.".format(len(msg.objects)))

for obj in msg.objects:
Skip invalid detections
if obj.label_id == -1:

continue

rospy.loginfo(
f"Object: {obj.label} [{obj.label_id}], Position: [{obj.position [0]:.2f}, {

obj.position [1]:.2f}, {obj.position [2]:.2f}]"
)

Prepare PoseStamped message
object_pose = PoseStamped ()
object_pose.header.stamp = rospy.Time.now()
object_pose.header.frame_id = "camera_frame" # Change to appropriate frame ID

Set position
object_pose.pose.position.x = obj.position [0]
object_pose.pose.position.y = obj.position [1]
object_pose.pose.position.z = obj.position [2]

Default orientation (identity quaternion)
object_pose.pose.orientation.x = 0.0
object_pose.pose.orientation.y = 0.0
object_pose.pose.orientation.z = 0.0
object_pose.pose.orientation.w = 1.0

Publish the object position
object_pub.publish(object_pose)

def main():
global object_pub

Initialize the ROS node
rospy.init_node("zed_object_publisher", anonymous=True)

Subscribe to ZED2 detected objects topic
rospy.Subscriber("/zed2/zed_node/obj_det/objects", ObjectsStamped ,

object_list_callback)

Create a publisher for object positions
object_pub = rospy.Publisher("/detected_object_position", PoseStamped , queue_size

=10)

22

rospy.loginfo("ZED object publisher node started. Waiting for object data ...")
rospy.spin()

if __name__ == "__main__":
main()

Listing 2: Python code for object detection and publishing

.3 Reasons for Client-Host Communication

The Franka Emika Arm operates at a 1 kHz signal transmission frequency, which is es-
sential for receiving commands such as joint positions, Cartesian poses, and gravity- and
friction-compensated joint-level torque commands. This high-frequency communication
enables the arm to provide real-time joint data, including joint positions, velocities, ex-
ternally applied torques, and forces. Additionally, the system offers detailed information
about collisions and contact events, ensuring precise and safe operation during manipu-
lation tasks [2]. To facilitate this communication, the board used for the project initially
required kernel compilation to enable real-time scheduling. The ZED Box Orin was the
original choice for this role, but it did not support kernel compilation, a limitation con-
firmed by the board’s manufacturer.

This restriction necessitated a switch to a host-client protocol, where the AAEON
UPX-TGL01 was configured as the host device. The kernel of the AAEON UPX-TGL01
was successfully compiled to achieve real-time scheduling and enable 1 kHz communica-
tion with the arm. However, the AAEON UPX-TGL01 could not be used as the sole
board for the entire project, as the ZED2 camera required CUDA (Compute Unified
Device Architecture) for proper operation—a feature unavailable on the AAEON UPX-
TGL01 due to its Intel-based architecture. As a result, the ZED Box Orin was utilized
as the client system for handling image processing tasks, while the AAEON UPX-TGL01
was dedicated to managing communication with the Franka Arm.

23

Bibliography

[1] Franka Emika. Minimum System and Network Requirements. Accessed: January 7,
2025. n.d. url: https://frankaemika.github.io/docs/requirements.html.

[2] Franka Emika. Franka Emika Robot Arm - Overview. Accessed: 2024-09-05. 2024.
url: https://frankaemika.github.io/docs/overview.html.

[3] MoveIt. MoveIt calibration. 2025. url: https://github.com/moveit/moveit_
tutorials/blob/master/doc/hand_eye_calibration/hand_eye_calibration_

tutorial.rst.

[4] StereoLabs. Object detection. Accessed: 2025-01-07. 2025. url: https : / / www .

stereolabs.com/docs/object-detection.

[5] StereoLabs. Zed 2 Camera. Accessed: 2025-01-07. 2025. url: https://www.stereolabs.
com/en-fi/store/products/zed-2.

[6] Up Xtreem. Up xtreem board. Accessed: 2025-01-06. 2024. url: https://www.aaeon.
com/en/product/detail/up-series-developer-board-up-xtreme-lite.

24

https://frankaemika.github.io/docs/requirements.html
https://frankaemika.github.io/docs/overview.html
https://github.com/moveit/moveit_tutorials/blob/master/doc/hand_eye_calibration/hand_eye_calibration_tutorial.rst
https://github.com/moveit/moveit_tutorials/blob/master/doc/hand_eye_calibration/hand_eye_calibration_tutorial.rst
https://github.com/moveit/moveit_tutorials/blob/master/doc/hand_eye_calibration/hand_eye_calibration_tutorial.rst
https://www.stereolabs.com/docs/object-detection
https://www.stereolabs.com/docs/object-detection
https://www.stereolabs.com/en-fi/store/products/zed-2
https://www.stereolabs.com/en-fi/store/products/zed-2
https://www.aaeon.com/en/product/detail/up-series-developer-board-up-xtreme-lite
https://www.aaeon.com/en/product/detail/up-series-developer-board-up-xtreme-lite

	Introduction
	Objectives
	Significance
	Scope

	System Hardware
	Franka Emika Arm
	Franka Hand
	Workstation PC
	ZED2 camera
	ZED Box Orin

	Implementation
	Hardware System Integration
	Software Components
	Calibration Process
	Object Detection
	Overview of the Pick-and-Place Process

	Result
	Conclusion
	Appendix
	Code for Pick and Place with Franka arm and Zed2 Camera
	Objects Information Publisher
	Reasons for Client-Host Communication

