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Predicting radiation doses in nuclear power plants is a challenging problem for
maintaining the radiation safety of workers whilst ensuring that high exposures do not
occur. These radiation doses can be predicted using different sensors, measurements
or by manually reviewing the dose history of personnel. However, in this study, a
previously unexplored visit-based machine learning approach for predicting radiation
doses was developed. This approach utilises time relational data on personnel visits
to the controlled area of OL1 and OL2 (Olkiluoto Unit 1 and 2) nuclear power plants,
including radiation doses measured during these visits. This allows us to predict
visits for different interval classes depending on the radiation dose received.
To provide a comprehensive foundation for machine learning modeling, we also
examined the regulations governing current activities and analysed the nature of
radiation exposure in nuclear power plant environments, including the origins and
effects of radiation. Finally, we evaluated the prerequisites and considerations for
deploying a comparable application in a production environment.
Through a combination of literature and experimental analysis, a basis for machine
learning analysis was established, adopting five different models: 1) Random Forest,
2) Balanced Random Forest, 3) XGBoost, 4) LightGBM and 5) Easy Ensemble with
AdaBoost. Among the models tested, LightGBM achieved the most promising results,
however, its performance fell short of expectations due to the inherent imbalance and
lack of descriptiveness in the dataset. While the models demonstrated an ability to
learn from the data, this learning was insufficient to effectively distinguish between
all class intervals. These limitations emphasise the value of integrating additional
contextual information, such as the specific work tasks completed during visits, to
enhance the dataset’s descriptiveness and improve the model’s performance.
By addressing these limitations, this study highlights the broader potential for
data-driven modelling and further research. Specifically, we demonstrate that the
descriptiveness and contextual relevance of data are as, if more, important as
its quantity, as the mere existence or abundance of data does not guarantee its
applicability to similar data-driven methods.

Keywords: machine learning, ml, radiation exposure, occupational exposure, radi-
ation dose, radiation, as low as reasonably achievable (ALARA), nuclear power
plant, npp, nuclear energy, crisp-dm
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1 Introduction

Radiation is a phenomenon that has always occurred naturally on Earth in two

distinguishable forms: ionising and non-ionising. The defining characteristic of

ionising radiation is its ability to remove electrons from atoms or molecules, thereby

producing ionisation, whereas non-ionising radiation does not have enough energy to

achieve this [1]–[3]. These types of radiation occur in nature as so-called background

radiation due to cosmic rays and terrestrial radiation [1]. Although the general

understanding is that radiation is perceived as harmful, it is often employed in

healthcare settings for a variety of diagnostic and therapeutic procedures, as well as

in other applications, such as nuclear power production [4]. This is referred to as

man-made radiation [1].

The focus of this study is Teollisuuden Voima Oyj (TVO), the operator of three

nuclear power plants (NPPs) in Olkiluoto, Finland. These NPPs account for one

third of Finland’s electricity production, the first of which has been in operation

since 1979 and the latest since 2023 [5]. To operate these NPPs, TVO must comply

with the laws, decrees, decisions and regulations laid down in Finnish legislation,

which are affected by the decisions of the Council of Europe [6]. The Radiation and

Nuclear Safety Authority (STUK) oversees nuclear safety and radiation monitoring

in Finland, and therefore sets regulations that need to be followed [6], [7].

This study focuses on man-made ionising radiation from fission reactions, resulting

in fission products, to which personnel are exposed in the nuclear power plant
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environments. This exposure may be referred to as occupational exposure [8]. TVO

has a legal obligation to maintain and manage radiation dose data from their NPPs

in order to monitor personnel’s exposure [6]. The objective of this study is to utilise

this data to predict the radiation dose of personnel during site visits using machine

learning. At present, this prediction is carried out manually based on past experience

and work history. This study therefore seeks to assess whether such prediction can

be achieved through the application of machine learning, which can be defined as

the teaching of an algorithm with historical data, thereby enabling it to adapt and

make accurate predictions based on past experiences [9], [10]. More precisely, this

problem will be approached through classification, which means that the radiation

dose is predicted with a finite number of possible outcomes, even if the dose is a

continuous value, but this problem is solved by dividing the value of the dose into

interval classes [11].

The current manual method for predicting radiation doses achieves a Mean

Absolute Error (MAE) of 111.9 man-mSv and a Mean Absolute Percentage Error

(MAPE) of 18.76% for annual maintenance cycles completed between 2012 and 2023.

This means that the average difference between the predicted and actual radiation

doses is 111.9 man-mSv and the percentage error relative to the actual dose is 18.76%

[10]. In the light of these metrics, the term man-Sievert (man-Sv) is used to describe

the collective dose received by a group of people. It represents the sum of the

individual doses within some population.

The data used in this study for the machine learning modelling was collected

from the same period as the initial (MAE and MAPE) benchmarks, spanning from

2012 to 2023. The MAE and MAPE values are calculated from the total accumulated

dose and dose predictions for both OL1 and OL2 at the annual maintenance level.

In this sense, the machine learning model is assumed to have at most the same

MAE and MAPE values predicting the total dose. This study therefore sets as a
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success criterion that the value obtained by machine learning prediction should be

at least as accurate on the annual cycle level as that obtained by manual prediction.

These maintenances may include either a nuclear fuel change or maintenance that

includes a nuclear fuel change. These take place alternately at OL1 and OL2. At the

same time, the maintenance includes any necessary repair of malfunctions, possible

modifications and, if necessary, preparation for the next year’s maintenance. The

necessity for annual maintenance represent a significant aspect of the operational life

cycle of the plant units [5].

The following research questions are formed with the intention of modelling the

effects of ionising radiation on humans in nuclear power plant environments. This will

provide a basis for the processing of radiation dose data. The processing of the data

must take into account the legal regulations and the operating environment. Finally,

the most suitable machine learning model for the given problem will be identified,

and the potential integration of such a model into a network information system

solution will be explored. The study makes use of the CRISP-DM (CRoss-Industry

Standard Process for Data Mining) process model.

• Research question 1: What is the impact of radiation on individuals in

nuclear power plant environments?

• Research question 2: Which machine learning model is the most suitable

for predicting occupational radiation exposure during a site visit?

• Research question 3: How can the machine learning model implemented in

this research be integrated into real-world nuclear power plant operations?

The succeeding paragraphs present the general information on the subject of the

study, which is essential for comprehending the overall context. This will enable the

reader to understand the fundamental principles of nuclear power plant operation,

radiation sources, and radiation monitoring activities that underpin nuclear and
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radiation safety with the focus on individual monitoring, meaning the making and

interpretation of measurements related to occupational exposure [8]. This will provide

an overview that will guide the reader towards a more in-depth understanding of

Chapter 3.

As previously stated, TVO operates three nuclear power plants, OL1, OL2 and

OL3 (Olkiluoto Unit 1, 2 and 3). The first two plants are identical and each has

a net electricity output of 890 MW (megawatt) [5]. In contrast to the preceding

units, the third nuclear power plant, OL3, operates on a different principle, with the

capacity to generate electricity with a net electricity output of 1600 MW [12]. This

study will focus on OL1 and OL2. This choice is based on the fact that these sites

have been in production use for a considerable length of time compared to OL3 and

thus have well established work procedures and significantly more data available.

In principle, nuclear energy counts as thermal energy, and the OL1 and OL2

plants operate on this principle, using Boiling Water Reactors (BWRs), or more

generally, Light Water Reactors (LWRs) [5]. BWRs operate by circulating water

between the fuel rods within the reactor core, which results in the heating and

vaporisation of the water [5]. In the case of TVO, the resulting steam is then directed

through four main steam pipes to the high-pressure turbine, which directs the steam

to be reheated with intermediate heater, before finally reaching the four low-pressure

turbines that work in parallel [5]. These turbines drive the generator. The power

of the reactor is controlled by control rods and main circulation pumps [5]. The

reactors use uranium dioxide (UO2) pellets as fuel, with the primary process being

the neutron-induced fission of uranium-235 isotopes [3], [5]. This fission reaction,

among others, releases ionising radiation, such as neutrons and gamma rays, and the

necessary non-ionising radiation, heat [3], [5]. The BWR system of the OL1 and OL2

reactors is illustrated in Figure 1.1. A detailed overview of the operational aspects

of the reactor is not within the scope of this study.
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Figure 1.1: OL1 and OL2 BWR system overview [3], [13]

In consideration of the various radiation sources, the most significant is ionising

radiation emitted from the reactor. However, this has been considered in the design

of the NPPs and the fuel pellets utilised in the reactor already serve as the initial

barrier against the dissemination of radiation [5]. The second layer of protection

is the metallic shell of the fuel rods, which contain the fuel pellets [5]. The third

layer of protection is the reactor pressure vessel, which is protected by a containment

building that acts as fourth layer [5]. The final layer of protection is the reactor

building [5]. These constitute a series of nested protective zones.
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Despite the above-mentioned protective measures, radiation doses to personnel

still occur, and the highest doses occur during the mandatory annual maintenance

of plants, as this is when a lot of work is carried out near radiating objects. It

should be noted that the plants emit more radiation during power operation, but in

this case there is not as much work being carried out on the radiating systems as

during maintenance, if any, so there is no increase in the dose of the personnel [5].

In this instance, the source of radiation is the contamination of water that comes

into contact with the reactor. This water contains radioactive impurities due to the

activation of elements like oxygen that transform into nitrogen-16 (16N), which emits

gamma radiation. These impurities accumulate in various systems, including on the

surfaces of pipes. However, during a reactor shutdown when the maintenance is done,

the radioactivity of the water decreases as short-lived isotopes like nitrogen-16 decay,

reducing the overall radiation levels.

The radiation in question is produced as a consequence of radioactivity, whereby

unstable atomic nuclei undergo a spontaneous change in state, emitting particles or

electromagnetic radiation, in order to achieve stability [1], [2]. The aforementioned

stability thus gives origin to ionising radiation, which can be classified into four

distinct categories: 1) α (alpha) particles, 2) β (beta) particles, 3) γ (gamma)

rays, 4) X-rays (X-rays) and 5) n (neutrons) [1]. Of these categories, gamma and

X-ray radiation is discussed in detail in Chapter 3.2.2, as these are measured by

the electronic dosimeters and forms the basis of the dose in the available data. It

should be noted that TVO is also capable of measuring other types of radiation, but

gamma radiation (and similarly, X-rays, due to their similar electromagnetic nature)

is always measured in due of penetration capability and thus, the significance.

The basis of radioactivity lies in the atomic nucleus, which is composed of protons

and neutrons, with protons exhibiting a charge magnitude comparable to that of

electrons but opposite in sign, and neutrons remaining neutral as they bind these
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protons [2]. Radionuclides with an unfavourable neutron-proton ratio undergo decay,

thereby losing energy and becoming other nuclides or isotopes with different atomic

numbers (Z) or mass numbers (A) [2]. The atomic number Z represents the number

of protons present in an atom, while the mass number A is the sum of protons

and neutrons [2]. A nucleus is considered stable when its neutron-to-proton ratio is

approximately equal to one [2]. In general, nuclei with an atomic number greater

than 83 are unstable, such as uranium (Z=92), which is often used fuel in NPPs [2],

[5].

The process by which atomic nuclei seek equilibrium, resulting in the release of

radiation, is invisible to the human eye and cannot be directly observed by humans

[2]. However, radiation can be measured using dosimeters or with radiometers, which

provide a quantifiable reading of the radiation levels. Before doing so, however, it

must be understood that the amount of radioactivity is measured by the activity,

which is the number of disintegrations of a radionuclide per unit time, which is

measured in Becquerel (Bq) or reciprocal seconds (s−1), where 1 Bq = 1 s−1 [3].

The reciprocal second refers to the frequency of events or decays in seconds in a

radioactive material [3]. This can be further discussed in terms of absorbed dose,

which is the amount of energy transferred by ionising radiation to a substance, i.e.

a unit of mass [2], [3]. This is measured in Gray (Gy), where the unit is the joule

per kilogram (J.kg−1), where 1 Gy = 1 J.kg−1 represents the absorption of 1 joule of

radiation energy per kilogram of matter [3]. Unlike absorbed dose, Sievert (Sv) takes

into account the biological effects of radiation on different human tissues [2]. This is

achieved by assigning different types of radiation a radiation weighting factor (wR)

[2]. The weighted values are then summed to calculate the equivalent dose, where

the unit is J.kg−1 [2]. Table 1.1 shows these weighting factors and their respective

continuous functions for neutron radiation as a function of energy.
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Radiation type Radiation weighting factor (wR)

Photons (γ and X-rays) 1

Electrons (β) 1

Alpha particles (α) 20

Neutrons (n) A continuous function of neutron energies:

wR =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
2.5 + 18.2 · e−[ln(En)]

2/6

5.0 + 17.0 · e−[ln(2En)]
2/6

2.5 + 3.25 · e−[ln(0.04En)]
2/6

En < 1 MeV

1 MeV ≤ En ≤ 50 MeV

En > 50 MeV

Table 1.1: Radiation types and weight factors defined by ICRP (International
Commission on Radiological Protection) in 2007 [2]

This brings us to the effective dose, which takes into account the radiation

weighting factor as well as the varying sensitivity of different tissues and is again

expressed in Sieverts [2], [3]. This is calculated by weighting the equivalent dose

for each tissue or organ by the tissue weighting factor (wT ), whereby the sum of all

tissue weighting factors for the body would be one, and then summing the result.

Table 1.2 shows these weighting factors. Equivalent and effective doses cannot be

calculated directly but are assessed using radiation dose quantities and modeled with

computational phantoms, which are computer models of human anatomy composed

of numerous voxels [2]. Each voxel is assigned a specific tissue type and organ identity

based on gender. [2]. These phantoms simulate how radiation distributes in the body

and are created using computational geometry or 3D imaging [2].
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Tissue or organ wT

∑︁
wT

Bone marrow, colon, lung, stomach, breast, and remainder tissues 0.12 0.72

Gonads 0.08 0.08

Bladder, esophagus, liver and thyroid 0.04 0.16

Bone surface, brain, salivary glands skin 0.01 0.04

Table 1.2: Tissue types and weight factors defined by ICRP in 2007. Remainder
tissues include adrenals, nasal and oral passages, pharynx, larynx, gall bladder, heart,
kidneys, lymphatic nodes, muscle, oral mucosa, pancreas, prostate, small intestine,
spleen, thymus, uterus and cervix [2]

For operational calculations, there are definitions of internal and external exposure,

of which this study only considers external exposure, as the data collected for this

study only covers the external exposure of personnel. Internal exposure occurs when

radioactive substances enter the body by ingestion, inhalation or absorption, for

example, through wounds or breathing [2], [3]. External exposure, on the other hand,

occurs when the body is exposed to external radiation from particles emitted by a

radioactive source as we have previously discussed [2].

External exposure can be measured in ambient dose equivalent (H ∗ (d)) for area

monitoring and personal dose equivalent (Hp(d)) for individual monitoring [2]. This

study focuses on the personal dose equivalent as it is central to personal monitoring

of occupational exposure. Hp(d) is measured at a depth d of 10mm for the effective

dose or 0.07mm for the skin dose, i.e. Hp(10) is suitable for measuring the deeper

penetrating dose (which is usually derived from personal dosimeters) and Hp(0.07) for

measuring the shallower penetrating dose [2]. Thus, Hp(10) is sufficient to simulate,

for example, the neutron or gamma dose as these penetrate deeper into the tissues,

while Hp(0.07) is more suitable for measuring, for example, the beta dose as it does

not have the same penetration capability [2]. For this reason, TVO uses Hp(10),

as radiation dose measurements with electronic dosimeters are intended for gamma
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radiation in particular. It should be mentioned that, in addition to these reasons,

the beta dose is also more difficult to measure due to its local penetrating capability,

so that, also in the case of TVO, a chest dosimeter may not detect a radiation source

located, for example, at the level of the foot.

As a result of radiation in the power plant environments and the subsequent need

for the monitoring and control of radiation doses for both the environment and the

personnel in that environment, the power plant sites are divided into three areas: 1)

controlled area, 2) supervised area, and 3) an unclassified area [14]. The classification

of these areas is determined by estimating radiation exposure and the potential risk

to personnel [15], [16]. This estimation relies on measuring dose rates and evaluating

radionuclide concentrations in the air, as well as surface contamination levels (activity

coverage) [6]. In particular, the classification of controlled and supervised areas must

consider the nature of the work being carried out in the area and the magnitude of

the radiation risk that is inherent to that work [16]. This can be accomplished, for

example, with different measurements.

Controlled area is defined as any area where either the dose rate exceeds 3 µSv/h,

or where spending 40 hours per week in the area could result in a dose greater than 1

mSv per year [6], [14]. In this instance, the work necessitates measures to safeguard

against ionising radiation, due to the potential risks of radiation or contamination

[16]. Supervised area is defined as an area where a personnel’s effective dose may

exceed 1 mSv per year, or where the equivalent dose to the lens of the eye could

exceed 15 mSv per year [16]. Additionally, the equivalent dose to the skin, hands,

arms, feet, or ankles may exceed 50 mSv per year in such an area [6], [16]. The

area situated beyond the aforementioned zones is classified as unclassified and, as a

consequence, is not considered significant in terms of radiation protection [6].

Subsequently, the controlled area should be subdivided into at least three distinct

zones, employing the same estimations utilized for the initial zoning [6]. In the case of
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TVO, the aforementioned zones are designated as green, orange, and red, respectively

[5]. The corresponding dose rates for these zones are illustrated in Figure 1.2. This

study focuses exclusively on the work carried out in the controlled area.

Figure 1.2: OL1 and OL2 controlled area divided into distinct zones [5]

The Figure 1.2 shows the controlled area of the plants during power operation,

when the plant is supplying electricity to the national grid. However, this changes

as follows when the power plant is in shutdown: areas 1 turn green and areas 2

turn orange. It is essential to state that the data covers work performed during the

maintenance periods when these rules apply.

In the event that the work is conducted within a green area, no restrictions are

in place and the work may be carried out in accordance with the traditional working

hours of 40 hours per week [17]. However, when working in the orange zone, it is

needed to plan the work in advance and work areas need to be secured or supervised

[17]. Similarly, work in the red zone must be planned and, in addition, carried out
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in a short-term manner [17]. It also requires specific dose assessments and detailed

planning [17]. Additionally, the work area must be secured or controlled [17].

In the controlled area, the dose and dose rate of individuals are continuously

monitored using thermoluminescent dosimeters (TLD) and electronic dosimeters

[17], [18]. Electronic dosimeters collect data on a visit-by-visit basis, whereas the

data from TL dosimeters are cumulative over a period of time [17], [18]. This means

that electronic dosimeters measure the dose for the whole visit and TL dosimeters

measure the cumulative dose per month. This latter figure is also reported to STUK

as required by law. This study focuses on electronic dosimeters and the data available

from them, as this is a more applicable representation of the data in the context of

this study.

TVO uses a variety of instrumentation for the quantification of radiation exposure.

As was stated, the focus of this study is the electronic dosimeters in use for personal

radiation exposure monitoring. In this process, TVO uses Mirion Technology products,

the DMC2000S and DMC3000 models [19], [20]. These dosimeters must operate

in accordance with STUK regulations, which are based on the provisions required

by the Radiation Act (859/2018) [21]. These regulations state that for personal

dose monitoring, the unit of measurement is the personal dose equivalent, which we

have already discussed, with a maximum measurement uncertainty of 42% [21]. The

minimum response range for TLD and electronic dosimeters, specifically for photon

radiation (including gamma rays and X-rays), is shown in Table 1.3.

Radiation type Response range R

Photon radiation (γ and X-rays) Eph > 10 keV 0.71
[︂
1− 2·H0/1.33

H0/1.33+Href

]︂
≤ R

Photon radiation (γ and X-rays) Eph ≤ 10 keV 0.5
[︂
1− 2·H0/1.5

H0/1.5+Href

]︂
≤ R ≤ 2

Table 1.3: Response range for photon radiation with energy greater than 10 keV
(kiloelectronvolts), and those with energy less than or equal to 10 keV [21]
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In this context, the response R of the dosimeter is expressed as R = G
Href

, where

G is the dose determined by the dosimeter, and Href is the true dose. The parameter

H0 refers to the registration threshold, which represents the minimum dose that

the dosimeter records [21]. The symbol Eph in the table refers, in this case, to

the mean energy of photon radiation, typically denoting gamma or X-ray radiation.

Kiloelectronvolt is a measure of energy, where 1 keV equals 1000 electronvolts. This

illustrates the dose response and behavior of dosimeters.

In terms of the electronic dosimeters used, the DMC2000S detects gamma and

X-ray radiation fields between 60 keV and 6 MeV and operates in the range 1µSv - 10

Sv; 10µSv/h - 10 Sv/h, while the DMC3000 is more accurate and detects radiation

fields between 15 keV and 7 MeV and operates in the range 1µSv - 10 Sv; 0.1µSv/h

- 20 Sv/h [22]–[25]. However, it is also possible to go outside the measuring ranges

up to a certain point, as accuracy deteriorates.

Both of these dosimeters measure the personal dose equivalent Hp(10), as men-

tioned previously and required by the regulations [21]–[23]. In addition, the dosimeters

measure the corresponding dose rate [22], [23]. The measurement uncertainty of

these dosimeters is also within the limits required by the regulations, ensured by

calibration, testing and keeping the internally defined limits below the limits required

by the regulations, which in the case of TVO is ± 15% [24], [25]. Furthermore,

modules for measuring beta and neutron doses are available for the dosimeters,

although beta modules are not in use at TVO. Neutron modules are only used when

required by the work [23].

These dosimeters also have personal or work dose and dose rate limits that can

be used to detect abnormal dose trends at an early stage [26], [27]. These are set via

the radiation management system to the lowest visit dose limit from a range of work,

daily, monthly and annual dose limits, based on radiation personnel class, gender

and work dose code, and if the daily, monthly or annual dose limit is exceeded, the
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personnel is prevented from entering the controlled area [26], [27]. Alarm limits are

discussed in more detail in Chapter 3.2.1.

Dosimeters are therefore a way of controlling the work and the resulting radiation

dose, and also a way of warning the personnel of the dose or dose rate, based on

legal requirements and also on economic objectives, since the radiation dose received

can also be measured in monetary terms outside the health risk. In this case, the

organisation does not need to hire and train additional staff if the radiation dose

can be kept as low as reasonably achievable. In the 1990s, it was estimated in the

USA that avoiding one millisievert of radiation exposure could save between $20 and

$2600, depending on the work task [28]. In a 2002 survey in Finland, the value of

one man-Sv was estimated to be 77.21 euros, based on the recommended value from

1991 [2].

The aforementioned policies and protection measures are founded upon the

premise that work involving occupational exposure should be covered by a system

of protection for practices [8]. Consequently, STUK has also defined the previous

specifications as requirements in its YVL C.2 regulation, which is in compliance

Finnish legislation [6]. The following principles should apply to such work: 1)

justification of practices, 2) optimization of protection, and 3) use of dose constraints

[1], [8]. The justification ensures that activities involving radiation are only performed

if the benefits outweigh the risks [1]. Optimization of protection balances protection

levels with economic and social factors, aiming to keep doses As Low As Reasonably

Achievable (ALARA), ensuring personnel exposure remains minimal during justified

work [1], [2], [8]. Finally, dose constraints serve as reference points, typically a

fraction of the total dose limit, to prevent excessive exposure. At TVO, this is

applied through the ALARA program with set reference levels [1], [27]. Discussion

of these methods at TVO is provided in Chapter 3.1.
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On the basis of these guidelines, therefore, it must be assumed that radiation

doses will accumulate for personnel in any case, because the work and maintenance

would be too expensive if no doses were to accumulate for personnel at all. Therefore,

planning, design and work should always be based on the ALARA principle of keeping

the doses as low as reasonably achievable [3].

The ALARA principle, like the other policies on which TVO bases its operations,

is not unique to the power plants operated by TVO, but many, if not all, operators in

the nuclear industry base their policies on the same scientifically proven policies, such

as the ALARA policy created by the ICRP (formerly IXRPC) in the 1977, which

is based on the policies created by the IXRPC (International X-Ray and Radium

Protection Committee or Commission) in 1928 [29], [30]. For example, the 1994

US regulations on the application of ALARA guide the ALARA regulations to the

corporate policy level, which is supported in practice by the Radiation Protection

Manual [28]. In addition, the use of RWP (Radiation Work Permit) has long been

recognised as a way of controlling procedures during work, such as working time

and protective equipment [28], [31]. ALARA is also used to assign responsibilities,

whereby the role of the radiation protection manager in an organisation is to enable

the practical application of ALARA principles by the engineering organisation [28].

These same policies are also in use at TVO, although their application is at a different

level.

In addition to TVO, STUK monitors radiation doses based on TVO’s data. Figure

1.3 shows the collective radiation doses received by personnel at Olkiluoto since plant

operations began, as reported by STUK [32]. These doses are measured using TL

dosimeters and have significantly declined since the early 2000s, thanks to improved

technical and radiation protection measures. TVO also monitors environmental

radiation and emissions around the plant, though this falls outside the scope of this

study [33].
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Figure 1.3: Annual collective radiation doses at TVO NPPs [32]

In the following Chapters, this study will focus on external exposure to ionising

electromagnetic radiation (γ and X-rays) within the controlled area. This is because

the data available for analysis exclusively concern dose data from these types of

radiation. However, the biological effects of radiation are treated as a whole, so other

types of radiation are discussed here in terms of these effects.

This study builds on the foundations laid in this Chapter, examining the effects of

radiation discussed in Chapter 3, and finally reviewing the current radiation-related

machine learning applications used in the nuclear power industry. This review forms

the basis of the experimental section in Chapter 4, the results of which are discussed

in more detail in Chapter 5, which also includes a discussion of the implementation

of an appropriate model through to production as part of a network information

system solution. The study concludes with Chapter 6, which provides a summary of

the research findings. Chapter 3 addresses research questions one, while Chapter 4

addresses research question two. Finally, Chapter 5 answers research question three.



2 Research process

The material for this study was obtained during the final two quarters of 2024

through the utilisation of the Volter database, belonging to the University of Turku, in

conjunction with the PubMed and Web of Science databases. Furthermore, legislative

publications were sourced from the Finlex and Stuklex websites. In addition, this

study has also utilised internal sources of TVO, which are not publicly accessible.

The aforementioned sources are indicated as unpublished in the bibliography with

the specific annotation "unpublished".

In the case of non-refined manual searches, the titles, keywords and abstracts

of the materials were targeted, which included books, conference proceedings and

articles. The methodology used for the search was comprehensive rather than narrow

in order to reach as many relevant publications as possible related to the research

topic. The publications were limited to those in English and Finnish and were not

restricted by the publisher’s Impact Factor (IF) or by publication date, as this would

not have had the desired effect due to the historical dependence of the topic.
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Most publications were retrieved from the Web of Science database using either

an advanced keyword search or a manual match search. A total of 80 publications

(N=80) were found for use in this study, most of which were found using search terms

related to radiation, its effects, machine learning and regulations. These publications

were assessed for their usefulness, but the study did not take a position on whether

the publications were peer-reviewed. The high-level search process, inclusion and

exclusion criteria are shown in Figure 2.1.

Figure 2.1: Search results that includes a breakdown of sources (manual search
results can be from any source)

This research uses existing knowledge, secondary data, to establish the necessary

context for experimentation, as no prior implementations of this specific machine

learning problem were found in the literature. Consequently, a survey of similar

methods applied to machine learning and radiation prediction was conducted, as

discussed in Chapter 3.3. The experimental data used in this study is proprietary to

TVO and will not be publicly shared.

This study aims to follow the CRISP-DM methodology already mentioned. This

process model consists of six steps, the first of which aims to achieve a project

understanding, in which it is understood what is being done and with what objective

[11]. We have already defined this in Chapter 1. It should be noted that this study

is based on a more technical approach than that of a study with an economic or

social objective. The steps of CRISP-DM are shown in Figure 2.2.
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Figure 2.2: CRISP-DM process flow overview [11]

If the flow of this study is compared to the introduced flowchart of CRISP-DM,

Chapter 1 corresponds to understanding the project, Chapter 3 to understanding

the data, Chapter 4 to data preparation, modelling and evaluation. Chapters 5 and

6 continue with evaluation and introduce deployment as a new aspect.

The CRISP-DM process model was selected because it is the industry-independent

de facto standard, despite being published over 20 years ago [34]. Overall, this process

model is iterative and flexible, which also means that CRISP-DM follows a natural

flow rather than forcing the flow of projects [35]. It is evident that CRISP-DM

is not directly intended for machine learning as it fails to consider the fact that

machine learning models degrade over time [35], [36]. Consequently, post-deployment

operations must also be taken into account, as discussed in more detail in Chapter

5.2 [36].



3 Radiation and machine learning

This research adopts a exploratory approach to understand the data and the issues

associated with it. The meaning and origins of the data are discussed from the

perspective of what policies and regulations they are based on, i.e. why something is

done as it is done. In addition to creating understanding, we establish the foundation

for these policies and regulations, one of which is to minimise the health risks

associated with radiation. The analysis of these health risks represents a significant

aspect of this study, which will also facilitate the reader’s comprehension of the

sensitivity of the data and the subject matter.

The following Chapters will address the data, subsequently examining the nuclear

power plant environment and the processes through which data is formed. We then

proceed to analyse the effects of radiation doses, before concluding with a discussion

of the current applications of machine learning in a similar context, along with the

general understanding of machine learning and the models utilised in this study.

3.1 Legislative approach to dose regulation

As previously noted, TVO’s operations are subject to numerous radiation-related

regulations and directives, which are overseen by STUK [6]. Similarly, in radiation

protection and radiation-related work, the principles are set forth in the Radiation

Act (859/1987), the Nuclear Energy Decree (161/1988), the Nuclear Energy Act

(990/1987), the Government Decree on Ionising Radiation (1034/2018), and the
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Ministry of Social Affairs and Health Decree on Ionising Radiation (1044/2018) [15],

[16], [37]–[39]. In terms of this study and in accordance with YVL C.2 regulation,

STUK oversees the practical safety measures on radiation protection of personnel

and monitoring of radiation exposure in nuclear facilities [6]. It is important to

note that while STUK now enforces radiation safety protocols, the original design

and operation of nuclear power plants in Finland were based on US requirements

from the 1970s [40]. Over time, these requirements evolved through national and

international cooperation via laws and regulations [40]. For instance, early safety

requirements did not mandate preparedness for severe accidents [40].

Under the Radiation Act (859/1987), radiation protection is based on the prin-

ciples of justification, optimisation and protection of the individual [6]. These can

be seen as an interpretation of the way in which we have already discussed the

protection of work that may involve ionising radiation, using a system of protection

for practices [27]. TVO applies these policies by defining an ALARA programme, of

which this study focuses on OL1 and OL2 and dose limits [27]. For occupational

doses, TVO has set an internal limit of 10 mSv per year, which acts as a maximum

annual dose instead of the 20 mSv limit stipulated by law, for effective doses received

by personnel [27].

TVO has identified in its ALARA programme a number of ways to reduce

doses, such as preventing and controlling fuel leaks, source term minimisation,

decontamination, work planning and development of work methods, daily dose limits

and work codes in the work dosimetry system, a risk-based rate control programme,

contamination control and annual maintenance [27]. Of these, this study addresses

the data-driven quantifiable attributes which are the daily dose limits and work codes

of the occupational dosimetry system. Other methods are directly reflected in the

resulting doses through the implemented practices.
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The legislation and the resulting STUK regulations limit the intake of radiation

doses so that the annual effective dose does not exceed 20 millisievert (mSv) per

personnel [6], [7], [38]. In practice, it is not possible to get anywhere near such a

dose, in part because of the lower dose limits in force. The aforementioned dose limit

is also affected by the radiation classification of a personnel exposed to radiation, i.e.

class A and B [6], [7], [41]. For a personnel classified as class A, the effective dose may

exceed six millisieverts per year (15 mSv for the eye and 150 mSv for the hands and

feet) [6]. If this is not the case, the personnel falls into class B [41]. Typically, class

A workers are employed in roles such as radiation protection technicians or reactor

operators [41]. For example, the threshold for considering a change in personnel

classification from B to A class is 3.5 mSv among other requirements [6]. In addition

to these dose limits, TVO has defined its own period and work-specific limits, as

previously referenced. These limits are overseen by the radiation management system,

with the work dose code (WDC) serving as a central component of this management

mechanism. These limits will be discussed in the Chapter 3.2.1 and represent a

significant component of the data set analysed.

3.2 Nuclear power plant setting

From the point of view of this study, data collection starts as soon as the required

work have been defined for a given annual maintenance. In this case, at the specified

time, the personnel enters the controlled area of either the OL1 or OL2 plants

(site visit) to carry out the work. Before doing so, the personnel logs in with their

electronic dosimeter using the work dose code assigned to the work. The personnel

will then carry out the work on the defined system. In this case, as soon as the work

itself, whether completed in one visit or not, have been completed, the personnel

leaves the controlled area and signs their electronic dosimeter out. This constitutes a
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single site visit, which always has one dose as measured by the electronic dosimeter.

A single site visit may therefore include several different work tasks under the WDC.

The data used in this study span over annual maintenances from April 4, 2012

to May 22, 2023. The starting date of 4 May 2012 was chosen because, in the two

years prior, the outputs of the OL1 and OL2 plants were each increased by 20 MW.

Additionally, the plants were upgraded with new low-pressure turbines, generator

cooling systems, seawater pumps, and internal isolation valves for the main steam

pipes [5]. The final data sample was obtained on 31 May, 2023 as the year 2024

was left out for testing purposes. Overall, between 2012 and 2023, there have been

hundreds of thousands of site visits during the annual maintenance periods, with

each visit representing a single data point from a raw data perspective. The use of

automated and access-management-dependent data collection processes has resulted

in the near complete data set, with the exception of a few observations, which are

addressed in the next Chapter 3.2.1.

3.2.1 Site visit formation

As previously stated, the dose received by personnel is subject to constraints de-

pending on different time intervals. To further illustrate this point, a male A-class

personnel may receive a dose of 1.5 mSv per day during the annual maintenance

period, for example, assuming the annual internal limit of 10 mSv is not exceeded [26].

It should be noted that this calculation does not take into account any additional

constraints, such as those specified by the WDC, which limits the dose by a per-visit

dose limit. WDC is required to enter the controlled are of the plants and is a key

element of data and radiation dose monitoring. Personnel uses this code to log in to

the controlled area to carry out their work.

WDC is made up of three parts: 1) plant ID, 2) system ID and 3) project ID.

WDC is therefore given in the form XYYYZZ, referring to the previous structure [42].
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For example, in the case of the Olkiluoto 1 plant, system 100 and project 01, the

code would be 110001. Using this system, the dose limit can be set on a work basis,

thereby allowing for better dose control [42]. This is further complemented by a dose

rate limits, which can also be utilised to alert the personnel if the predetermined

limit is exceeded. If no maximum dose or dose rate limit is set for the WDC, the

default values are used [26], [42].

In this thesis, the associated dose and alarm limits will be treated as features, with

WDCs being parsed in order to identify the specific plant and system being worked

on, as well as the corresponding project. In addition to visit-related data, this study

utilises information regarding the personnel involved. This includes the personnel’s

radiation class, the completion status of mandatory radiation work training (e.g.

entry-level and advanced training when required), and whether the personnel is

employed as a subcontractor or not. Each site visit to a controlled area is linked

to a specific time, thus enabling the dataset to be observed as a time series. The

time spent on each visit can be derived from these time-stamped records. We will be

discussing more about the data and how it can be processed for the machine learning

task in Chapter 4.1.

3.2.2 Radiation phenomena and dosage

As briefly touched upon previously, electromagnetic radiation is a collective term for

a group of radiation types, which includes γ (gamma) and X-ray (X-ray) radiation.

Unlike other forms of radiation, these are measured on a per-visit basis when entering

the controlled area at NPPs using electronic dosimeters and are therefore examined

in this study. This Chapter will provide a more detailed discussion of these types of

radiation, which will then be used as a point of reference in the next Chapter when

exploring the biological effects of radiation and the reasons behind its detrimental

effects on the human body.
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Ionising radiation can be classified into two main categories: charged particles and

neutral radiations [3]. The latter group includes gamma rays, X-rays and neutrons, of

which neutrons are not considered in this study because this is not measured in terms

of the data used. Unlike charged particles, neutral radiations do not directly ionise

matter through Coulombic interactions, meaning the repulsive forces between two

charged particles based on the distance and electric charges between them, as neutral

radiations lack the needed electric charge (energies in question are limited to a few

MeV) [3]. Instead, they interact with matter primarily through indirect processes,

including: 1) Compton effect, 2) photoelectric effect and 3) pair production [2], [3].

These result in indirect ionising radiation [2].

The Compton effect, also referred to as photon-electron scattering, represents a

process whereby a photon of energy equal to its rest mass energy, E = hν, interacts

with an electron of rest mass me, where E represents the energy of the photon, h

Planck’s constant and ν the frequency of the photon [2], [3]. Despite the electrons in

an atom being bound to the nucleus, their binding energy is considerably less than

that of typical gamma rays. As illustrated in Figure 3.1, the photon is deflected and

loses energy in the collision, becoming a photon of new energy E ′ = hν ′ and the

electron gains energy and moves away from the atom leaving it ionised [2], [3]. This

collision depends on the photon scattering angle θ and the principles of conservation

of energy and momentum [3]. In this process, the greatest energy loss by the photon

occurs when it is scattered backwards (at an angle of 180°) [3]. In the event that E

is considerably greater than the rest energy of the electron, the final photon energy,

designated as E ′, is approximately half of the initial energy [3]. Compton effect is

the most dominant at energy range of 0.1 MeV to 10 MeV [2].
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Figure 3.1: The Compton effect: photon scattering results in energy transfer to an
electron, with the photon losing energy and being deflected. The atom is left ionised
[2], [3]

Photoelectric effect (photon–electron) is an interaction, whereby a photon transfers

all of its energy to an electron, which is then ejected from the atom and loses its

energy, leaving a positively charged ion and ionising the medium [2], [3]. In this

instance, the photon is absorbed, resulting in the ejection of an electron, which is

known as a photoelectron (Figure 3.2) [2], [3]. This photoelectron gets ejected with

and energy of Ee
K = Eγ − I, where Eγ is photon’s energy, I is the potential for

ionisation of the electron to the atom [3]. The photoelectric effect is dominant at

lower photon energies and is only possible in the energy ranges of tens to hundreds

of kiloelectronvolts (keV) [2]. Both the photoelectric and Compton effect processes

may provide electrons with sufficient energy to ionise other atoms [3]. Additionally,

following the ejection of an electron, light emission or X-ray production may occur

[3].
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Figure 3.2: Photoelectric effect: energy is transferred from a photon to an electron.
This results in the ejection of the electron from the atom as a photoelectron, and
the creation of a positively charged ion [2], [3]

In pair production and annihilation the photon energy is converted into mass,

typically in the vicinity of a nucleus due to the presence of a strong electromagnetic

field [3]. This only occurs when the photon energy exceeds 1.022 MeV [2]. In pair

production, a photon interacts with the Coulombic field of a nucleus, resulting in

the creation of an electron (negatron) and a positron (Figure 3.3) [3]. The energy of

the photon is transformed into mass, with the total mass equalling the combined

mass-energy of the electron and positron, which is 1.022MeV [3]. Any photon energy

in excess of 1.022 MeV is distributed as kinetic energy to the electron and positron,

in accordance with the equation Epair
K = Ee+

K + Ee−
K = Eγ − 2Ee

0, where Eγ is the

photon energy, Ee+

K and Ee−
K are the kinetic energies of the positron and electron,

and Ee
0 is the rest mass energy of the electron [3].

Once the positron has lost its kinetic energy, it rapidly combines with a nearby

electron in a process known as annihilation [3]. This process results in the complete

annihilation of both particles, accompanied by the emission of two gamma photons,
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each with an energy of 0.511 MeV [3]. The emission of these photons occurs in

opposite directions, resulting in the conservation of momentum through the transfer

of photon energy [3].

In both pair production and annihilation, high-energy particles, such as electrons

and positrons, possess sufficient energy to ionise atoms by ejecting electrons from

their outer shells as they traverse matter [2]. This process results in the production

of ionising radiation, which can subsequently cause further ionisation events as

the particles lose energy through collisions [2]. The gamma rays emitted during

annihilation also contribute to the overall level of ionising radiation, as they can

interact with matter through indirect processes, as previously outlined, which further

displace electrons from atoms and lead to ionisation [2].

Figure 3.3: Pair production and annihilation: an photon interacts with a nucleus,
producing an electron and positron. The positron eventually annihilates with an
electron, releasing two 511 keV gamma photons in opposite directions to conserve
momentum [3]

Due to these indirect processes, as well as the ability of other types of ionizing

radiation to disturb molecular bonds, the following bonds are most affected, in

order: 1) metallic bond (least), 2) ionic bond and 3) covalent bond (most) [3]. Of

these bonds, covalent bonds are the most abundant in biological tissues and are

therefore the most vulnerable to ionizing radiation [3]. This can lead, among other

things, to direct damage to cellular molecules, such as DNA, and indirectly through
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chemical reactions that can further damage biological structures [3]. Electronic

dosimeters therefore measure these effects and model the quantifiable radiation dose

to the human body. In the data, the resulting radiation dose, the predicted value in

classified form, is expressed in microsieverts µSv.

3.2.3 Biological effects of radiation

Radiation can have a wide range of biological effects, which are typically classified

into two main categories: 1) deterministic and 2) stochastic effects [8], [43]. In

addition to these, physiological effects can be classified as 1) somatic, 2) genetic

and 3) teratogenic [3]. These are combined in that deterministic effects are rapidly

apparent in cell death or malfunction in clinical manifestations, while stochastic

effects are irregular or statistical in nature, with somatic differentiation referring to

the body or its condition, genetic referring to genes that enable gene inheritance,

and teratogenic referring to fetal and embryonic development [2], [3], [8], [43]. From

the perspective of this study, we are examining the genetic effects from a stochastic

standpoint, as these are the most relevant in the context of a nuclear power plant

environment. These stochastic effects are expressed in the ways shown in Figure

3.4, either through carcinogenic cell division or errogenous repair, possibly affecting

offspring through chromosomal mutations [8]. While the effects of radiation can also

be deterministic, this is not within the scope of our focus, as it is not a probable

occurrence, despite the theoretical possibility. However, as a reference value, a sudden

dose of 0.2 Sv (200 mSv) does not show a somatic clinical effect, but a dose over 4 Sv,

for example, is likely to result in death without treatment [3]. For example, at the

time of the Chernobyl nuclear accident, approximately 134 workers and firefighters

received doses of 0.7 Sv (700 mSv) to 13.4 Sv (13400 mSv), resulting in a reported

28 deaths from direct exposure [44].
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Figure 3.4: Overview of the stochastic effects of ionising radiation (not including
deterministic effects) [2], [43]. Icons emptycell-3d-2 and emptycell-3d-3 by Servier
are licensed under CC-BY 3.0 Unported

The literature has identified a correlation between radiation dose and an increased

risk of chromosomal and chromatid abnormalities [45]. These abnormalities act as

early markers of stochastic genetic effects, such as cancer [45]. It has been evidenced

that DNA damage responses in individual cells are significant for the development of

cancer cells, in addition to gene and chromosomal mutations, even at low doses [43].

In particular, it has been identified that high dose and dose rate positively correlate

also with non-cancer mortality [46]. Chromosome analyses have demonstrated that

chromosomal defects, particularly in individuals exposed to long-term low-dose

radiation (LDR), are associated with increased genomic instability [45], [47]. Studies

have also shown that occupational exposure to LDR (a few hundred mSv) can result

in chromosomal aberrations especially in shorter-term [45]. The LDR in question

represents, in some cases, the typical dose received by personnel in their lifetime in

the context of nuclear power plants (NPPs) [4], [45]. Nonetheless, it has been found

that even when the effective doses do not exceed the permissible limit of 20 mSv

per year, personnel in nuclear power plants exposed to ionising radiation exhibit

https://smart.servier.com/
https://creativecommons.org/licenses/by/3.0/
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significantly higher levels of chromatid and chromosome aberrations compared to

control groups [45].

Additionally, a statistically significant correlation has been identified between

radiation dose and non-cancer mortality, particularly in relation to cardiovascular

disease [46]. There has also been reports of radiation exposure and a link to

general circulatory diseases [46]. This indicates that cancer is not the sole risk

factor, although it is frequently associated with the stochastic effects of radiation.

Furthermore, elevated levels of stress, anxiety, and post-traumatic stress disorder

(PTSD) have been observed among personnel and civilians following nuclear accidents

[48]. Such psychological stress may indirectly increase susceptibility to stochastic

effects.

Furthermore, it has been found that in radiation-exposed family triads where

father was occupationally exposed to radiation (mean lifetime gonadal dose from

gamma radiation 1.65 ± 0.08 Sv) experienced heightened mutation frequency, evi-

denced by an increased frequency of chromosomal abnormalities [47]. It is important

to acknowledge that these effects cannot be fully assessed in isolation, as lifestyle

factors also contribute to the overall picture. However, the existing literature tried

to account for these variables.

As previously stated, LDR remains a concern for plant personnel with regard

to genetic and epigenetic alterations, even at relatively low doses. In South Korea

between 2012 and 2021, despite average individual doses remaining well below

regulatory limits, approximately 0.39 mSv per year, a fraction of personnel received

higher doses in specific work tasks [49]. It is additionally noteworthy that typically

majority of personnel receive a minimal radiation dose, if any, but a small number

receive significantly higher doses in certain occupations [49], [50]. This highlights the

importance of the issue in certain work settings and the data imbalance that should

be considered when processing the data for this study [49]. However, the results of
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all studies are not directly comparable, because for example, Korea had an annual

effective dose limit of 50 mSv in 2023 compared to Finnish 20 mSv per year [6], [49].

At this time, taking into account the literature, it must be stated that there is an

insufficient amount of data available to conduct a comprehensive statistical analysis

of the effects of radiation, although we can identify chromosomal abnormalities [2], [3],

[47]. This is due to the ethical concerns associated with deliberately exposing humans

to harmful radiation levels for experimental purposes. The majority of available

data are derived from incidents and medical or occupational exposures, which are

insufficient for comprehensive statistical analysis [3]. A substantial proportion of

the historical data is drawn from the aftermath of the nuclear bombings in Japan in

1945 [2], [3].

However, as stated in the 2007 ICRP publication, even with exceptions, the

cellular processes and dose-response data support the premise that within low-dose

ranges (below approximately 100 mSv), the likelihood of cancer or heritable effects

increases in direct proportion to the equivalent dose in relevant organs and tissues,

even though there is an absence of direct evidence that radiation exposure leads to

heritable diseases in offspring [43]. Nevertheless, the ICRP has reached the conclusion

that there exists compelling evidence to suggest that ionising radiation can result in

heritable effects in experimental animals [43].

In the context of radiation effect models, the Linear No-Threshold (LNT) model

is regarded as the most conservative approach. LNT model assumes that the risk of

cancer or other harmful effects increases in a linear fashion with dose, even at very

low exposure levels, extrapolating to zero exposure [2], [3]. This model is also in use

at TVO. However, this model has been the subject of considerable criticism on the

grounds that it lacks direct empirical evidence, particularly in relation to low-dose

exposures [3]. Alternative models, such as hormesis suggest that there may be a

certain level of exposure below which radiation might not cause harm [3]. However,
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these models are also controversial and lack scientific consensus. Therefore, it is

generally assumed that no specific threshold exists below which radiation can be

considered entirely harmless, while there is some estimates that doses under 500 mSv

does not cause genomic instability over generations [2], [3].

Figure 3.5: Radiation effect to dose models. Available data does not conclusively
support effects in the low-dose range [3]

3.3 Related studies and machine learning

This Chapter discusses the various machine learning implementations in nuclear

power plant environments that can be found in the public literature because, as

mentioned, no similar implementation of radiation monitoring using machine learning

could be found in the perspective of this study. The purpose of this Chapter is to

establish an understanding of what implementations exist, what models have been

used and what methods have been used to evaluate them. This provides the context

for the following Subchapter, 3.3.2, which outlines the definition of machine learning,

the steps involved and the machine learning techniques used in this study.
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First, however, it is important to note that machine learning differs significantly

from the current, more traditional way of predicting received radiation doses. Current

manual prediction requires expert knowledge and manual work, which is also based

on trends and dose results from previous work, which can be difficult to process due

to the large amount of data. Machine learning, on the other hand, is more efficient

at handling large amounts of data and can detect non-linearity between variables,

meaning it can uncover complex patterns and relationships that traditional methods

may miss, leading to more realistic predictions. This is also reflected from the fact

that the MAPE value already mentioned was 18.76% since the last power increase

in 2012. A sufficiently accurate model can therefore reduce the human tendency to

make mistakes in a data-driven way.

3.3.1 Present-day applications

This study will review seven existing studies that have used machine learning to

predict radiation levels, although the implementations of these studies are not directly

comparable to the approach taken in this study. These seven studies focus primarily

on nuclear power, as these were selected based on the relevance to this research.

However, there are also examples of radiation prediction using machine learning in

the hospital and pharmaceutical industries.

The studies in question address either the reactor itself or the reactor building,

in addition to environmental radiation monitoring utilising machine learning. The

most closely aligned approach to the subject of this study was the estimation of the

personal dose equivalent using photon energies measured by TL dosimeters, which

was also successfully accomplished [51]. Other applications of machine learning have

been utilised, for instance, in the aftermath of the Fukushima disaster to predict

the ambient dose rate and in Germany for anomaly detection using the gamma

dose rate, taking into account environmental conditions [52], [53]. Additionally, in
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the field of reactor engineering, stress intensity in reactor pressure vessels and the

impact of radioisotopes in primary coolant loops have been modelled to examine

the influence of corrosion products, with the objective of predicting and minimising

radioactive corrosion levels and, consequently, reducing radiation dose levels at the

reactor shutdown [54]–[56]. An alternative approach was the implementation of a

monitoring system utilising machine learning to monitor radioactive materials in

nuclear facilities. This system employed a sensor network to model the tracking

of radioactive sources and identify nuclide types. This system could be used, for

instance, in storage facilities for the protection of waste in the event of theft [57].

It is worthy of note that existing machine learning solutions do not inherently

utilise data that is linked to personnel working in NPPs. Therefore, the methodology

proposed in this study, which entails modelling radiation doses in a site visit oriented

manner based on the nature of the visit, represents a distinctive approach to predicting

the radiation doses associated with occupational activities. In exploring suitable

machine learning models for this methodology based on the reviewed studies, we

observed that Decision Trees (D-Tree), Random Forests (RF) and Artificial Neural

Networks (ANN) were the most common models used [51]–[53], [57]. In addition to

these, modelling was also done with Gaussian Bayesian Networks (GBN), Gaussian

Processes (GP) and Light Gradient Boosting Machines (LightGBM) [54]–[56]. A

detailed explanation of the models used in this study can be found in Chapter 3.3.2,

and therefore, they will not be discussed in this Chapter.

Approximately half of the studies discussed applied some form of cross-validation

for evaluation purposes [54], [56], [57]. In particular, regression-type problems were

evaluated using Root Mean Squared Error (RMSE) or Negative Log-Likelihood

(NLL) in several cases [52], [55], [56]. In other instances, accuracy and a type of

confusion matrix implementation were common [51], [53], [54], [57]. Additionally,
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hyperparameter optimisation was utilised for the purpose of optimising the model’s

performance, for example, through the use of grid search [54].

In conclusion, the available literature demonstrates a number of different applica-

tions of machine learning in the context of nuclear power, specifically in the prediction

of radiation levels and doses. However, there is a notable absence of methods that

incorporate data directly linked to personnel activities in NPPs. This study addresses

this gap by introducing a distinctive site visit based modelling strategy to predict

radiation doses associated with site visits.

3.3.2 Overview of machine learning

In addition to the supervised machine learning models already mentioned, it should

be noted that supervision is one of the main approaches of machine learning, along

with unsupervised learning and reinforcement learning [9]. This study specifically

focuses on supervised machine learning (hereafter referred to as machine learning).

This differs from other machine learning approaches in that the training data contains

the correct answers (targets) to some input data, in the case of (xi, tj), where xi

are the inputs and tj are the targets indexed by i, j [9]. Input i runs from 1 to the

number of input dimensions m ja target j runs from 1 to the number of output

dimensions n [9]. The point of the output y (yj, where j runs from 1 to the number

of output dimensions) in this case is to produce predictions based on the input data,

which is then compared to the target values to assess the model’s accuracy [9]. This

leads to the main purpose of machine learning, which is to generalise, i.e. to create

sensible outputs from inputs that have not been observed before. In the case of

classification, we consider input vectors, from which we decide to which, in this case

discrete class N, the vector belongs [9].

Comparing the data preparation, modelling and evaluation phases of CRISP-DM

presented in Chapter 2, these phases can be described in more detail from the
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perspective of the machine learning classification system shown in Figure 3.6. It is

important to note that these stages are not independent, but rather interrelated, and

that some methods combine these stages, for example, feature selection and classifier

design can occur together [58]. In the following sections, we will provide a detailed

discussion of these steps and explain what typically happens in practice, helping the

reader gain a clearer understanding of the overall process.

Figure 3.6: Design stages of a machine learning classification system [58]

In this study, the term data refers to our time-series bound features (input and

targets) discussed in Chapters 3.2.1 and 4.1. Once the data has been collected, we

want to further refine it by modifying it into new features that are more compact and

informative than the original features, often through mathematical transformations,

domain-specific knowledge or combining features [58]. This is called feature generation.

This will usually lead to a reduction in dimensionality and increase the overall quality

of the data, even though no feature selection has been made [58]. Overall, feature

generation makes the machine learning algorithms identify relevant patterns more

effectively and reduces the computational complexity [58].

The objective of the next phase, feature selection, is to select the most important

of these generated features in order to reduce the dimensionality of the input, while

ensuring that the input retains as much of its class discriminatory information

as possible [58]. The aim is to obtain features that exhibit a large between-class

distance and a small within-class variance [58]. This implies that the between-class

values should be as distant as possible, while the within-class values should be as
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close to each other as possible. This objective, along with the most informative

features, is achieved through the data preparation techniques and model feature

importances outlined in Chapters 4.1 and 4.3 respectively. Explicit feature selection

is not a prerequisite for the tree-based models used in this study and thus it is

not implemented, given these models are inherently capable of selecting the most

informative features. Nevertheless, most informative features will be assessed during

the evaluation process.

The next step is choosing and designing the classification algorithm (classifier),

which depends on the available data [11], [58]. In this study, we use a multi-

class classifiers because the target features have more than two possible outcomes.

Optimizing the model’s hyperparameters, which are specific to each model, is also

important [11]. For example, a hyperparameter could be the maximum depth of a

decision tree. These hyperparameters affect how the model learns from the data and

how it behaves. In the Chapter 4.2, we will apply these machine learning techniques

to the collected and preprocessed data.

Finally, one of the most important steps is model evaluation, which determines

whether the model has actually learned from the data. This objective can be achieved

through the implementation of three different methods: 1) the resubstitution method,

2) the holdout method, and 3) the leave-one-out method [58].

In this study, holdout method is used. This approach was chosen because the

amount of data applicable in this study would be too computationally expensive to

cross-validate. In this study, we used the holdout method to divide the data into

three parts: 1) the training data, 2) the validation data and 3) the test data in a

60/20/20% split [59]. In contrast, the leave-one-out method would have allowed us

to use the entire dataset for both training and testing, but this would not have been

feasible in terms of the time required to train and test the models [58]. It is evident

that the holdout method’s limitations are twofold. Firstly, it restricts the amount
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of training and test data that can be utilised, as these cannot be mixed, which can

effect the models capacity to generalise [59]. Secondly, it is challenging to determine

the optimal split between the training and test sets. Allocating a higher proportion

of the data to the training set may enhance model accuracy by reducing excess mean

error and variance associated with finite datasets [58], [59]. However, this can result

in a reduced test set, which can compromise the reliability of evaluation metrics due

to increased variability in error estimates [58]. Alternatively, a larger test set may

provide more accurate performance estimates, but at the expense of reduced training

data, which can potentially increase the classifier’s overall error probability [58], [59].

In the following discussion, the models utilised in this study will be outlined,

along with the reasoning behind their selection. These models are presented in Table

3.1. A subsequent general overview will be provided of the theoretical basis of each

model, together with an outline of their principles, features, and their relevance in

addressing the challenges of this study. These include the already mentioned data

skewness, resulting in a low number of data points in high dose rates, and the fact

that the problem definition is a multiclass task.

Model Type Algorithmic approach

Random Forest Classifier Ensemble of Decision Trees

Balanced Random Forest Classifier Ensemble of Decision Trees

LightGBM Classifier Gradient Boosted Trees

XGBoost Classifier Gradient Boosted Trees

Easy Ensemble Classifier AdaBoost Ensemble

Table 3.1: Overview of models used in this study, classification types and algorithmic
approaches [60]–[64]

Random Forest is an ensemble learning method that builds more traditional Deci-

sion Trees and combines their outcomes through majority voting into a single result

[62]. These trees are built by randomly sampling the data through bootstrapping
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and introducing only a subset of features at any given sample, allowing the remaining

data to be used for Out-of-bag (OOB) sample model estimation [62]. The model

also allows the importance of features to be examined by examining how much a

given feature reduces impurity across all trees by measuring Gini impurity, which

quantifies how much classes are mixed within a given tree node [62]. Random Forest

model was selected as the primary model for this study due to its ease of use and

the fact that the Law of Large Numbers (LLN) dictates that the model consistently

converges and does not lead to overfitting issues [62]. Consequently, the predictions

of the Random Forest model are known to stabilise as the number of trees increases,

thereby ensuring consistent results [62]. This characteristic, when combined with

capacity to manage large datasets makes Random Forest a suitable option for our

initial modelling. Random Forest’s high-level logic is presented in Figure 3.7.

Figure 3.7: Random Forest simplified. Majority vote of decision trees decides the
class for the data instance [62]
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The Random Forest model was further explored through the application of the

Balanced Random Forest (BRF) model, which, while aligning with the principles of

the Random Forest, features an alternative approach through the implementation

of bootstrap sampling for the minority class with replacement sampling the same

number of samples from a majority class as bootstrapped from the minority class

[63]. In vanilla Random Forest bootstrapping there is no special consideration for

class balance [62]. This approach was taken to address our data imbalance.

Extreme Gradient Boosting (XGBoost) is used in this study because, as an

ensemble learning method, which builds a strong classifier from an ensemble of

weaker classifiers aligns well with the imbalance and size of our dataset [60]. By

sequentially building decision trees where each tree corrects the errors made by the

previous ones and with the use of a gradient descent approach to minimize the loss

function, leveraging both the first and second derivatives of the loss for efficient

optimization, XGBoost suits well to our data imbalance challenges [60]. During the

model’s training, XGBoost computes a weighted score for each tree split based on a

gain metric, selecting the best splits for use and uses a level-wise tree growth strategy,

where trees are expanded level by level to maintain balance and improve efficiency

[60]. Regularisation is used to smooth out the latest learned weights, shrinkage

to scale new weights and subsampling, which is also used in the more traditional

Random Forest to prevent overfitting [60]. This makes XGBoost very sophisticated

method for a such machine learning problem, but at the same time requires more

computing power. XGBoost’s level-wise growth strategy is presented in Figure 3.8.
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Figure 3.8: XGBoost’s level-wise growth strategy visualised. Black indicates terminal
nodes, leaves, while grey indicates the node selected to grow next

LightGBM is an advanced version of gradient boosting, building on the strengths

of ensemble methods such as Random Forest mentioned before [61]. The LightGBM’s

leaf-wise growth strategy differs from the building of decision trees from Random

Forests in that LightGBM uses an implementation of Gradient Boosting Decision

Trees (GBDT), which build decision trees sequentially by exploiting the residual

errors of previous decision trees by fitting the negative gradients using Gradient-Based

One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) techniques [61],

[62]. In contrast, Random Forest trees are determined without iterative refinement

and XGBoost builds trees by expanding these level by level [60], [62]. In LightGBM,

GOSS prioritises data instances with larger gradients in order to maintain efficiency

in downsampling while preserving important information [61]. Meanwhile, EFB

organises features into groups, ensuring that only a limited number of features are

considered at any given time, without compromising the quality of the model by

their contributions [61]. Consequently, LightGBM is well-suited for modelling our

large-scale dataset and outperforms the previously discussed XGBoost in terms of

computation time and memory usage [61]. LightGBM’s leaf-wise growth strategy is

presented in Figure 3.9.
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Figure 3.9: LightGBM’s leaf-wise growth strategy visualised. Black indicates terminal
nodes, leaves, while grey indicates the node selected to grow next

Easy Ensemble (EE), similarly to Balanced Random Forest, is an ensemble

learning method that generates balanced sub-problems but instead uses Adaptive

Boosting (AdaBoost) classifiers to solve the given problem [64]. AdaBoost is then a

boosting algorithm that combines weak classifiers sequentially to correct errors made

by the previous classifiers by changing weights related to the misclassified instances

[64]. Easy Ensemble has been developed to handle data imbalance by undersampling

subsets of the majority class to train multiple classifiers, thus ensuring that no data is

lost as occurs with traditional undersampling methods [64]. These different classifiers,

given a subset of the majority class, are given all minority classes to achieve balanced

training data, and the previously mentioned AdaBoost algorithm is used for training

these classifiers [64]. The results of these classifiers are combined into a single output

[64]. A notable distinction between Easy Ensemble and Balanced Random Forest

lies in their utilisation of balanced bootstrap samples [63], [64]. While Balanced

Random Forest utilises these samples for training decision trees in a random manner,

Easy Ensemble utilises them to generate boosted ensembles [64]. Easy Ensemble’s

high-level logic is presented in Figure 3.10.
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Figure 3.10: AdaBoost with balanced bootstrap samples used to create Easy Ensemble
classifier [64]



4 Machine learning approach

This research uses the Python programming language (version 3.12) to process data,

model and evaluate these models. Libraries such as SciPy (v1.14.1), Scikit-learn

(v1.5.2), NumPy (v2.1.2), pandas (v2.2.3) and Matplotlib (v3.9.2) are also used in

support of this research [65]–[69].

In the following subchapters, the discussion will proceed as follows: firstly, the data

will be explored, and the processes that were utilised in its handling will be described.

This will build on the features and data labels that have been previously mentioned.

Subsequently, we proceed to the modelling stage, followed by the presentation of the

modelling results.

4.1 Data

The data utilised in this study was obtained from an internal database regarding

the aforementioned radiation management system currently employed at TVO. The

processing of this data, collected from 2012 onwards at the time of the annual

maintenance periods, was initially started through database queries, mainly from the

radiation database. Additional data from other relevant databases, such as personnel,

skills management and time management databases, were then added to enrich the

dataset. The data was retrieved from the database as a CSV file, which was then

processed in a separate virtual environment. The initial data and its features are

presented in Table 4.1.
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Raw Data Variables

IDENT 123456789

EXT_WORKER 0

ORG_NAME Teollisuuden Voima Oyj

COURSE_ENTRY 1

COURSE_ADVANCED 1

WORK_START_DATE 24.05.2023 10:51

WORK_END_DATE 24.05.2023 11:15

TIME_USED_MINUTES 24

WORK_DOSE_CODE 200000

PLANT 2

SYSTEM 0

PROJECT 0

WORKER_CLASS B

RADIATION_DOSE 0

DOSE_ALARM 300

DOSE_RATE_ALARM 250

INFO OL2 reaktorirakennus, yleiset työt (engl. OL2

reactor building, general work)

Table 4.1: Example data instance (here as randomly generated) after the initial data
query. INFO relates to the according WORK_DOSE_CODE

During the preliminary data processing, it was observed that while the data

exhibited excellent quality, it did contain some anomalous values, including visits to

plants that were inordinately lengthy. Consequently, all data points that exceeded

the 13-hour visit limit were removed. The 13-hour limit was selected as this is the

duration at which the electronic dosimeter issues an alert regarding the visit length.
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The data was then scanned for duplicates and these were removed as a precaution.

The total number of data points removed was a few thousand. In addition to these

anomalies, the data lacked personnel classification information for approximately

100 plant visits. This was resolved by calculating the doses of the personnel in

question and comparing it with the legal regulations, thereby providing a rationale

for the categorisation of the personnel who made the visit as either category A or

B. Category A personnel can receive a maximum effective dose of 20 mSv per year

and category B personnel can receive a maximum effective dose of 6 mSv per year

[6], [16]. In addition to these preprocessing steps, the timestamps of the plant visits

were tested to ensure that the exit time could not be prior to the entry time. No

such erroneous visits were found.

Upon closer inspection of the preliminary filtered data, it was confirmed that the

radiation dose data deviated from a normal distribution, with a bias towards lower

doses. This is because most occupations do not involve high levels of exposure to

ionising radiation. This skewness can be observed in Figure 4.6, which shows the

classed radiation doses after data preparation.

The data were further processed, involving the transformation of variables into

either categorical or continuous types, among the variables, only ’dose alarm’ and

’radiation dose’ were defined as continuous, while the remainder were set as categorical.

The rationale behind setting the ’dose alarm’ as continuous is due to its dynamic

nature, whereby it is adjusted based on the characteristics of each individual’s visit

and the specific dose threshold, as previously outlined in this study. The radiation

dose was used to construct classes for the machine learning classification task, as

discussed later. After the type conversions, we proceeded to outlier detection, which

is the removal of data points that are significantly different from the rest of the data

[70]. This was done because the aim of the study was not to model anomalies, but

specifically the visits and their respective typical doses. We used the Interquartile
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Range (IQR) proximity rule in this task because the radiation doses were not normally

distributed [70]. IQR is defined as the range of values between the first and third

quartiles of a data set. That is to imply that if a data point differs from the lower

limit of the 25th quantile by -1.5 times the IQR and from the upper limit of the 75th

quantile by +1.5 times the IQR, then the data point is classified as an outlier [70].

IQR can be calculated as follows:

x < Q1 − 1.5× (Q3 −Q1) or x > Q3 + 1.5× (Q3 −Q1)

The identification of these outliers using the IQR method resulted in the removal

of tens of thousands of instances of data. The majority of these deleted instances, or

site visits per WDC, were for the generic WDCs: 100000 and 200000. These WDCs

accounted for more than half of the total number of instances that were deleted. This

suggests that the generic codes are being misused because of their ease of use. In this

case, the personnel does not need to remember or know the exact WDC required for

the work, or that there is no specific WDC in use that would be needed to exclude

these outliers from the rest. Removing these outliers significantly improved the

performance of the machine learning models, which we discuss further in Chapter 4.2.

Figure 4.1 shows the percentage distribution of outlier counts per year for both sites.

This figure also demonstrates how the type of annual maintenance (fuel change and

maintenance and fuel change only) varies from year to year and affects the outlier

amounts.
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Figure 4.1: Outliers yearly from the total percentage of outliers. Grouped by general
WDCs and rest are bundled together by plant (OL1 or OL2)

The raw data and the visualisations derived from them are not presented

in this study, and all the Statistics, Figures and Tables from this point

onwards have been derived from preprocessed data.

Once the outliers have been identified and removed, the data can be examined in

greater detail for the published part of this study. Following the removal of outliers,

the size of the dataset remains in the hundreds of thousands. Firstly, the objective

is to visualise the trend between the time and dose. As demonstrated in Figure 4.2,

an increase in visit time does not appear to have a significant impact on the dosage,

with the high-dose work being completed promptly. The heatmap representation

further reveals that the data is heavily skewed towards lower doses, which are also

more proportional to the time spent. The absence of prolonged high-dose visits is

evident in the heatmap, as there are no data points to model such visits.



4.1 DATA 50

Figure 4.2: Heatmap presentation of visit length and the according radiation dose in
a logarithmic scale

At TVO, personnel undergo training in radiation work through two distinct

courses: firstly, there is a compulsory entry-level course, and secondly, there is an

advanced course, which is not compulsory but is attended when necessary. Figure

4.3 illustrates the compulsory and advanced courses in their respective boxplots.

However, the interpretation of these plots is complicated by the fact that the doses

received by both groups are very close to zero. To provide a more meaningful inter-

pretation, logarithmically scaled plots were created, which revealed that personnel

who completed the advanced course received equivalent low-level radiation doses

compared to the personnel who only completed the entry-level course, yet at higher

doses, those who completed the advanced course received fewer doses. This is further

supported by the statistical analysis which showed that the mean dose received

by personnel who had only completed the entry-level course was approximately

2µSv higher than the mean dose received by personnel who had also completed the

advanced course.
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Figure 4.3: Boxplot of radiation doses and courses completed by personnel. For data
that was normally undistributed and relational, the Wilcoxon signed-rank test was
used to show whether there were differences in doses. A p-value of 0.0 indicates a
significant difference between radiation doses between the groups

We then sought to determine whether any of the work dose codes exhibited a

high degree of significance with respect to doses. As illustrated in Figure 4.4, it was

evident that the general codes (X10000) for the containment building and the work

with the actuators for the control rods (WDC X22100) had the highest accumulated

doses since 2012, particularly for the OL1 plant. The generic codes were expected to

become over-represented in this statistic, as can be seen particularly for the OL2

plant.
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Figure 4.4: Accumulated doses for WDCs visualised since 2012 annual maintenances

However, if we separate the system from the WDCs, we can see from Figure 4.5

that, in common between OL1 and OL2 plants, the cooling system of the shutdown

reactor has produced the highest doses (321), also more than the general codes. We

can see that systems 221, 331, 313 and 200 in particular produce the highest doses,

if we exclude 321 mentioned before, and the general systems 100 and 0. From the

general codes, it is not possible to deduce more specific reasons for the visits, which

is challenging for this study and for doses gathered, as interpretability is reduced.

Therefore, an analysis of the variation in such doses was conducted, which revealed

a significant amount, suggesting potential misuse of the codes.
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Figure 4.5: Accumulated doses for OL1 and OL2 plant systems since 2012 annual
maintenances. System is parsed from the WDCs, for example 132100 would mean
OL1 321-system, which is the cooling system of the shutdown reactor

After exploring the data, we wanted to use feature generation to add informa-

tiveness through domain-specific knowledge [58]. Therefore, we decomposed parts of

WDCs into their own features as we already demonstrated earlier. We also added a

variable for the type of annual maintenance (fuel change and maintenance or fuel

change only) and added a feature based on the time spent on the visit to indicate

whether the visit was short, medium or long (less than 2h, less than or more than

8h). We also removed the variables related to organisations, WDC info, dates and

IDs because we thought that it would be dangerous to teach the model to predict

doses based on these variables, let alone by date or ID. We then created a discrete

class distribution from the dose, removing the continuous radiation dose from the

data to prevent data leakage. This continuous value (expressed in microsieverts)

was classified into four distinct classes, labels 0 to 3, with their respective intervals

specified in Table 4.2. The classification intervals were determined through a com-
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bination of domain expertise and random search, with the objective of maximizing

the informative value of the labels. This approach entailed randomly shifting the

interval boundaries while maintaining proximity to the initially domain-knowledge

described intervals.

Class label Class interval* Ratio**

0 [0, 5) 53.8

1 [5, 25) 9.31

2 [25, 75) 2.45

3 [75, 546] 1.0

Table 4.2: Class labels and their respected intervals and ratios from 0 to max dose
of 546µSv
* = expressed in microsieverts (µSv)
** = relatively scaled each class count by normalizing it against the smallest class
size to highlight skewness after data preparation

Based on the ratios presented in Table 4.2, it is clear that the distribution of

radiation doses is highly skewed. The mean dose is substantially higher than the

median and the standard deviation of 21.29µSv further indicates variability in the

data, with doses ranging from a minimum of 0µSv to a maximum of 546µSv. The

75th percentile of the doses falls below the 4µSv threshold, suggesting that higher

values have a significant impact on the overall distribution.

Subsequently, given the skewed and time-series related nature of the temporal

data, we split these into the training, validation and testing sets (60/20/20) as

mentioned earlier. This split was done so that the oldest data instances ended up

in the training data and the most recent ones in the testing data, to avoid data

leakage from the past to the future and to use historical data to present how doses

have evolved through time [71]. The training data included data points from 2012 to

2018, validation from 2018 to 2021 and test data from 2021 to 2023. This analysis

would be seasonal if we used all the data available, but we removed this aspect by
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modelling only the periods associated with annual maintenance [72]. Skewed dose

classes after splitting are illustrated in Figure 4.6.

Figure 4.6: Skewed radiation dose classes after train/validation/test split

As a result of these data processing steps we have features that are delineated in

Table 4.3. Categorical variables were one-hot encoded before assigning the features

to be trained. Normalisation of continuous variables was not performed due to the

models employed. As a result, we ended up with a few hundred features.
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Variable Description Data Type

External Boolean indicating if the personnel is external Categorical

Entry-course Boolean indicating if the course is completed Categorical

Advanced-course Boolean indicating if the course is completed Categorical

Time in minutes Site visit length Continuous

Work dose code Code for entry to controlled area Categorical

Plant Plant that is entered Categorical

System System inside the plant Categorical

Project Project for the specified system Categorical

Personnel class Radiation work classification Categorical

Dose alarm Dose alarm used for the entry Continuous

Dose rate alarm Dose rate alarm used for the entry Categorical

Time category Low, medium or long visit time Categorical

Outage Type of the annual maintenance Categorical

Table 4.3: Variables feature engineered from the raw data

4.2 Applying machine learning

Moving forward, we will utilise the data that has been preprocessed and the models

that have been presented in order to proceed with the machine learning. The models

presented in Table 3.1 were trained using training data with different parameters.

These models with different parameters were then evaluated using validation data,

with the test set being kept truly separate from the training and validation phases

throughout this process. Just under 500 different parameter combinations were

validated between the models, and the best combination per model was selected

based on the results obtained. These best-performing models with the respected
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parameters were then tested using test data. The models and their validated

parameters are presented in Table 4.4.

Model Hyperparameters

Random Forest max_depth: 3, 5, 7

n_estimators: 800, 1200, 1400, 1600

max_features: ’sqrt’, None

min_samples_leaf: 1, 3, 10, 15

Balanced Random Forest max_depth: 3, 5, 7

n_estimators: 800, 1200, 1400, 1600

max_features: ’sqrt’, None

min_samples_leaf: 1, 3, 10, 15

XGBoost n_estimators: 800, 1200, 1400, 1600

learning_rate: 0.01, 0.05, 0.1

max_depth: 3, 5, 7

subsample: 0.8, 1.0

min_child_weight: 1, 2, 5

LightGBM n_estimators: 800, 1200, 1400, 1600

learning_rate: 0.01, 0.05, 0.1

bagging_fraction: 0.8, 1.0

feature_fraction: 0.8, 1.0

Easy Ensemble n_estimators: 10, 20, 30, 50, 100

Table 4.4: Hyperparameters for the different models validated in this study

While validating these parameters, it was found that the imbalance of the classes,

and in particular the limited number of data instances in the minority classes, resulted

in challenges in predicting them, as would be expected. The problem was addressed

by rebalancing the minority classes inversely proportional to their frequencies, which
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resulted in improved validation results. These weights were imposed on all models

except Easy Ensemble and Balanced Random Forest, as their internal structures

are capable of handling the balancing [63], [64]. For the remaining models, internal

balancing was not used because they did not produce significantly different results.

Instead, these models were given weighted classes with the data.

An attempt was made with a data centered approach to resolve the said data

imbalance by using naive down- and oversampling methods for the training data, such

as randomisation, but these did not yield better results [73]. Rather, these worsened

the results because downsampling removes informativeness by removing data points

and oversampling produces noise to the dataset and can lead to overfitting [73]. More

advanced approaches also exist, but these were not pursued with this study.

In the next Chapter 4.3 we will address the metrics used in this study to find the

most optimal parameters obtained through validation. The same metrics are also

used for testing that is achieved by combining the training and validation data and

re-training the models using this data. The models will then be tested against the

test data and analysed to identify the areas of success and the areas that require

further development in Chapter 5.

4.3 Evaluation

In this study, Area Under the Receiver-Operating Characteristic (ROC AUC) and

Weighted F1 scores were selected as the validation and testing metrics. The definitions

of these metrics can be found in Table 4.5. In addition to these metrics, the ROC

and Precision-Recall curves (PR-curves) were analysed as well as Confusion Matrices,

alongside hyperparameter validation and final testing.
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Metric Definition

ROC AUC Score

TPR (True Positive Rate) =
TP

TP + FN

FPR (False Positive Rate) =
FP

FP + TN

ROC AUC =

∫︂ 1

0

TPR(x) d(FPR(x))

where TP is True Positives, FP is False Positives,

TN is True Negatives and FN is False Negatives

Weighted F1 Score

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1weighted =
N∑︂
i=1

wi · 2
Precisioni · Recalli
Precisioni + Recalli

where wi =
ni

N
, ni is the number of instances in

class i, and N is the total number of instances

Table 4.5: ROC AUC and Weighted F1 metrics and their respective definitions [9],
[74]

The metrics selected were based on the premise that the dataset displayed

significant imbalance, a situation in which traditional accuracy metrics may prove

to be misleading due to the dominance of the majority classes [9], [75]. ROC AUC

metric was selected as it offers a balance between the True Positive Rate and the

False Positive Rate (the larger the ROC AUC the better, 0.5 signifies random and

1.0 perfect chance) [11], [74], [75]. In imbalanced datasets ROC AUC remains
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informative due to its independence from the changes in the class distribution [74],

[75]. ROC-curves, on the other hand, can visualise the performance of classifiers

regardless of class imbalance [75]. AUC is therefore the probability that the classifier

will rank a randomly selected positive instance higher than a randomly selected

negative instance [74], [75]. Conversely, the F1 score considers both Precision and

Recall [9]. Precision ensures that the model does not misclassify negative instances

as positive, while Recall ensures that the model detects positive instances as many

as possible, meaning in that high Precision means low FPR and high Recall low

FNR (False Negative Rate) [9]. The Weighted F1 score functions similarly but adds

the weights for each class based on the number of true instances in that class, thus

reflecting performance more accurately for minority classes. Table 4.6 shows the

validation results for the best hyperparameters selected by ROC AUC score.
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Model and Results Selected Hyperparams

Random Forest

Results:

ROC AUC: 0.8434

F1 Weighted: 0.7607

max_depth: 7

n_estimators: 1600

max_features: ’sqrt’

min_samples_leaf: 1

Balanced Random Forest

Results:

ROC AUC: 0.8447

F1 Weighted: 0.7603

max_depth: 7

n_estimators: 800

max_features: ’sqrt’

min_samples_leaf: 1

XGBoost

Results:

ROC AUC: 0.8997

F1 Weighted: 0.7708

n_estimators: 1200

learning_rate: 0.05

max_depth: 7

subsample: 0.8

min_child_weight: 5

LightGBM

Results:

ROC AUC: 0.9009

F1 Weighted: 0.7674

n_estimators: 1600

learning_rate: 0.01

bagging_fraction: 0.8

feature_fraction: 0.8

Easy Ensemble

Results:

ROC AUC: 0.7706

F1 Weighted: 0.6458

n_estimators: 10

Table 4.6: Validation results for the models used, including hyperparameters and
performance metrics ROC AUC and Weighted F1 score

From the validation results in Table 4.6, it is clear that LightGBM produces the

best results, which is also reflected in the ROC AUC score for the minority classes.

There is also not much difference between Balanced and traditional Random Forest
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models, except for the predictions of class 3. However, it is already evident that the

models are struggling to accurately predict the minority classes. The best validation

result obtained with LightGBM was most affected by the change in learning rate,

which is visualised in Figure 4.7 using different metrics.

Figure 4.7: LightGBM learning rate parameter and its effect on respected metrics

According to the validation results, in the tree-based models, a trend was identified

that suggests a positive relationship between tree depth and the ROC AUC score,

along with a variable impact on the Weighted F1 score. However, the number of

trees alone exhibited minimal influence on model performance, with the exception

of XGBoost. Notably, LightGBM demonstrated a decline in performance with

increasing tree depth when this parameter was considered independently. Among

the models examined, Easy Ensemble exhibited significantly poorer performance

compared to the other models, as reflected also in its weaker performance in majority

class classification.



5 Results

After acquiring the test results, it can be determined, as in the validation, that

the LightGBM model demonstrates the most optimal performance in terms of our

classification task, despite encountering challenges. These challenges relate to the

model’s inability to effectively differentiate between minority classes. Consequently,

the majority class (0 − 5µSv) can be distinguished from the other classes with a

high degree of confidence, while the higher doses (above 75µSv) can be distinguished

with a medium degree. However, the intermediate classes 1 and 2 remain challenging

to distinguish with the available data. This can also be seen in the PR-curve

behaviour shown in Figure 5.1. PR-curve visualises Precision-Recall tradeoff at

different thresholds [75]. The models were also found to be considerably more

effective after combining training and validation data prior to testing against test

data.

With the exception of LightGBM, the interpretation of other models via the

PR-curves and Weighted F1 results has been shown to be equally effective in the

classification of classes 1 and 2. Random Forest (also balanced) performed better in

the classification of class 3 at the expense of classification of the class 0.
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Figure 5.1: LightGBM Precision-Recall curve

The models were also validated and tested without general WDCs due to the noise

they contain, yet this did not result in a positive impact on the models performances.

However, their incorporation did result in an increase in the mean ROC AUC and

Weighted F1 score by approximately 20% on average. Furthermore, a scenario was

created in which outliers were not removed, which resulted in a substantial decline

in performance, both with and without the generic WDCs.

In comparison to other models, LightGBM and XGBoost achieved higher correct

classification rates for instances within classes 1 and 2. However, their performance

was suboptimal for class 3 predictions. The Confusion Matrix of LightGBM is

presented in Figure 5.2. In contrast, Random Forests showed a 10% decrease in the

correct classification rates for classes 1 and 2, yet exhibited almost a 15% increase
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in class 3 predictions. For the class 0 classification, Random Forest demonstrated a

comparable performance to LightGBM and XGBoost, as illustrated by the Confusion

Matrix in Figure 5.3. However, no significant differences were observed between the

balanced and traditional Random Forest models. The classification performance

achieved by the Balanced Random Forest with classes 0 and 1 was marginally better

than that of the Random Forest.

Figure 5.2: LightGBM Confusion Matrix
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Figure 5.3: Random Forest Confusion Matrix

However, when solely interpreting Confusion Matrices, it can be observed that

only classes 0 and 3 achieve usable results while the results of classes 1 and 2 are

comparable to a random chance. It can be observed that the models predict larger

classes on average, which suggests that the models are not able to distinguish between

classes, especially for the higher classes.

As is evident, interpreting numerous classifications poses a challenge in managing

the entirety of the output space. When considering a classification of only four classes,

the Confusion Matrix transforms into an n× n matrix, comprising n2 − n potential

error classifications [75]. In our case, 42 − 4 = 12. This approach, however, is not

without its limitations. The prediction of classes in this case is based on argmax,

where the highest probability between the classes is taken, a method that may not

always be correct, especially if the probabilities are close to each other as a result of

imbalance. This is a weakness of the Confusion Matrices, as it is a threshold-specific

metric. To address these limitations and the resulting complexity, we created ROC
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curves for each class using a One-vs-the-Rest (OvR) approach, where we designate

one class as positive and the others as negative [75]. This approach was also used

to estimate the AUC score [75]. Due to the imbalance, their average was estimated

by micro-averaging, a method that treats each class as binary and aggregates the

average of the contribution of each class. Therefore, the ROC AUC curves are used

to examine the model’s ability to distinguish between classes [75]. Through the

comparison of all of the metrics, it is possible to address the model’s capacity to

differentiate between classes and translate that ability into predictions at the decision

level. The ROC AUC curves for LightGBM and Random Forest are presented in

Figures 5.4 and 5.5, respectively.

Figure 5.4: LightGBM ROC AUC curves, AUC and micro-average AUC scores

As can be seen, LightGBM achieves higher AUC values at all thresholds, which

is also reflected in the micro-average AUC value. In particular, LightGBM improves

significantly for class 0 and class 2. For both models, class 3 is the easiest to

distinguish. Similar behaviour can be observed for the other models considered, among

which Easy Ensemble stands out significantly with its weaker ranking capabilities.
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Furthermore, when Confusion Matrices are taken into account, LightGBM achieves

a better balance across classes, while Random Forest relies heavily on its strong

performance for class 3. Based on these metrics, including Weighted F1 scores, it

can be concluded that LightGBM has more consistent performance across classes,

while Random Forest has class-specific strengths.

Figure 5.5: Random Forest ROC AUC curves, AUC and micro-average AUC scores

However, these findings suggest that by restructuring the experimental approach

as a binary task, with a exclusive focus on predicting extreme values, the performance

of the models could be significantly improved. While the current approach does not

yield optimal results, there is nonetheless considerable value in the prediction of

extreme outcomes.

In the follow-up analysis, the feature importances are assessed to understand

which features the models prioritise to achieve these results. As illustrated in Figure

5.6, the feature importances of LightGBM reveal its significant reliance on time

spent, which is reasonable given that longer visit times result in a lower average

dose, while shorter visit times potentially lead to a higher dose on average (high-
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dose work is completed promptly). It is noteworthy that the dose limit and worker

classification hold considerable importance, with the high-dose systems also impacting

the predictive outcomes as we saw with the data analysis. A particularly noteworthy

feature is the presence of an OL2 plant, which may imply that the doses at the OL2

deviate from those at the OL1, despite both being identical. The presence of external

personnel may indicate that such contractors could be exposed to higher doses than

regular personnel due that their specialized knowledge is often required for specific

work tasks which can result in higher doses.

Figure 5.6: LightGBM feature importances

However, Random Forest places importance on different features compared to

LightGBM. While both models prioritize the time spent on a visit as the most

significant feature, Random Forest distributes its reliance more evenly across other

features, as shown in Figure 5.7. Nevertheless, LightGBM and Random Forest

share the same systems as most important features, but this was also the case

with other models. Balanced Random Forest favours almost identical features

compared to traditional Random Forest, a result that was to be expected. In

contrast, XGBoost places significant emphasis on workload code 100001 and project
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01, although this is distributed more uniformly across all features when compared

with LightGBM. However, LightGBM consistently achieves optimal results across

all metrics, suggesting that time is the most significant predictor and the personnel

dose limit and category are of considerable importance. The presence of the OL2 in

the most important features necessitates further observation, as it is an outlier that

other models fail to identify.

Figure 5.7: Random Forest feature importances

In summary, LightGBM achieves the best ROC AUC and micro-averaged scores,

while XGBoost achieves the best Weighted F1 score. The Random Forests achieved

comparable scores, while Easy Ensemble performed significantly worse in all metrics.

LightGBM achieves the most optimal results, demonstrating that it is the most

efficient model in this comparison. However, it falls short of delivering the level of

performance required for the classification task at hand. A summary of the results

can be found in Table 5.1. From the point of view of achieving the objective of this

study, we can conclude that this could not be achieved with the available data.
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Model Test Results

Random Forest ROC AUC: 0.8460,

Weighted F1: 0.7325

Balanced Random Forest ROC AUC: 0.8454,

Weighted F1: 0.73088

XGBoost ROC AUC: 0.8931,

Weighted F1: 0.7532

LightGBM (Most optimal) ROC AUC: 0.8938,

Weighted F1: 0.7519

Easy Ensemble Classifier ROC AUC: 0.7705,

Weighted F1: 0.6168

Table 5.1: Overall test results with ROC AUC and Weighted F1 scores

5.1 Evaluation analysis

In addition to the prior data extraction in Chapter 4.1, an attempt was made to

integrate the work order system data with the radiation data. However, this proved

to be a particularly challenging task, which would have enabled a significantly more

accurate assessment of the scope of the visits. The system associated with each

site visit is known from the radiation database, however, integrating data from the

work order system would have provided more detailed insights into the specific tasks

performed to the component level during each site visit. Unfortunately, the attempt

to link the data by personnel ID and the time of the visit and the work proved to

be unsuccessful. This was due to the fact that a single personnel may have had

multiple work activities in progress simultaneously, which resulted in the inability

to determine the precise scope of the site visit. This would have resulted in the

generation of numerous false positives, amounting to several million.
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This serves as a reminder that the quality and informativeness of data is not

always sufficient for machine learning. In this particular instance, it can be concluded

that the radiation data lacks the necessary level of detail to generate reliable and

informative results. The lack of integration between different databases, which would

have been essential in this case, highlights an opportunity for future improvements

to enhance the informativeness of the data.

In addition to the issue of data informativeness, it may also be necessary to

consider more advanced methods for data over and downsampling, especially if the

classification task is to be made more precise by reducing the size of the class intervals.

At present, this is a highly challenging task, as obtaining data for all classes and

splits may not be possible due to time dependencies in the data. This is due to the

fact that, at higher doses, the necessary data points simply do not exist.

The situation is made even more complicated by the fact that the model in

question is meant to be used in a field that’s critical to safety and health. This makes

the performance expectations for the model extremely high, and unfortunately, these

requirements weren’t met.

However, it is important to acknowledge that this was the first experimental

setting for such a problem, which also provided valuable insights into the limitations

and possibilities of applying machine learning to similar tasks or in a broader context.

Moreover, the limitations and findings of this study offer a important source of

insight for similar tasks at TVO.

5.2 Operational use

In practice, however, the implementation of machine learning and related approaches

does not function on a create and forget basis, yet rather demands continuous

development and monitoring. Figure 5.8 below illustrates the life cycle of an ML-

enabled software system. It is important to note that these stages do not necessarily
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follow a waterfall pattern, as they can also occur in different orders or in parallel

[76]. The figure then illustrates the essential steps required to deploy and upkeep

the ML solution in production.

Figure 5.8: Lifecycle of ML-enabled software system [76], [77]

In our case, if a similar, however, better performing machine learning model were

to be put into production use, the readiness and suitability of the data must first be

assured, which requires, as in this case, domain expertise [78]. It is also important to

ensure that even if the data is suitable, that this corresponds to operational realities,

for example, whether we can always use certain features in the prediction [78].

Nevertheless, machine learning, its interpretability, the data and its processing

represent only a fraction of the entire system that requires consideration. At this

point in the research, we will focus on the steps following the model evaluation in

its broader context. It has previously been demonstrated that the quality of the

modelling itself is dependent on the data and its respective issues and as such, these

will not be revisited. However, it is still important to acknowledge the existence of
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additional limiting factors associated with modelling, in addition to what we have

already described in this study, including computational resources, complexity, and

regularisation problems [76].

In this context, model deployment includes the integration, monitoring and

maintenance of the models [76], [77]. The next phase of cross-cutting concerns brings

broader ethical, legal, trust and security issues into the picture [76]. These will be

briefly discussed below.

Integration means creating the infrastructure and interfaces for the model, but

also the workflow itself, where it is important to involve the people who created the

model with those who maintain the runtime environment, which helps to deliver

benefits in terms of quality and speed of product delivery [76].

This brings us to the next stages of monitoring and maintenance, where we can

ensure that the model is actually functioning as it should and is not deviating from

normal and expected behaviour [76]. This means that, over time, models may deviate

as data no longer aligns with their original training. [76]. These are so-called concept

drifts, where, for example, an external event affects the input data over time [76].

This enables continuous learning, allowing retraining as the model’s shortcomings

emerge [76], [77].

In the process of analysing the cross-cutting aspects of the operational use, it

becomes visible that ethical concerns result from biases that are embedded in the

training data, which in turn can lead to unintended discrimination [76]. Conversely,

legal challenges stem from the necessity for regulatory frameworks, such as the

General Data Protection Regulation (GDPR), which are designed to protect sensitive

data, but often lag behind the rapid pace of AI development [76]. In the context

of building trust with end-users, it is important to emphasise transparency, clear

communication, and the interpretability of models that are tailored to specific use

cases [76], [79], [80]. Also the use of applied black-box models should also be
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considered, as these are very difficult, if not impossible, to interpret [79]. Security

concerns, such as adversarial attacks including data poisoning, model stealing and

model inversion, must be addressed when deploying such models [76].

In the case of TVO, this signifies that in the future, the implementation of a

comparable AI solutions will require the dedicated infrastructure and computational

resources. This emphasises the need for not only proficient personnel in infrastructure

administration but also specialised knowledge in data analysis and the field of AI. It

is also important to address the role of model monitoring in ensuring the reliability of

future predictions, a matter with direct consequences for the quality of the predictions.

The use of models, particularly deep learning models, calls for cooperation with

information security, even if the models are run on the intranet due to the previously

mentioned issues. However, it is apparent that the most significant initial step is the

recruitment of skilled personnel to carry out similar projects in the future.



6 Conclusions

The objective of this study was to address radiation and its effects in the nuclear power

plant environment according to current standards and ultimately to predict radiation

doses during personnel visits to OL1 and OL2 plants. Furthermore, we considered

from a holistic perspective what such modelling would require for production use.

The study demonstrated that, in terms of the data used, doses measured by

electronic dosimeters at the time of visits are suitable for analysis. Specifically,

the radiation types measured in this context are γ (gamma) and X-ray (X-ray)

radiation, which are collectively measured in microsieverts and classified as neutral

radiations, on which the modelling was consequently based. These types of radiation

are considered as indirect processes, meaning they do not directly ionise matter.

The study found that the resulting accumulation of radiation doses can be

considered from a stochastic point of view, especially in terms of genetics. The

assessment of radiation effects at low doses, however, poses significant challenges due

to a lack of data. Partly because of these potential effects, the whole process, from

the measurement of the doses themselves to the actual visit, is closely controlled and

regulated by both TVO and STUK.

The data analysed in this study proved to be of a high quality, with the exception

of a few weaknesses, but nevertheless not sufficiently informative to provide reliable

predictions. Consequently, it was determined that the data requires further refinement

from alternative data sources. To this end, five different machine learning models
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were considered: 1) Random Forest, 2) Balanced Random Forest, 3) XGBoost,

4) LightGBM and 5) Easy Ensemble with AdaBoost. Of these, LightGBM and

Random Forest emerged as the most effective models. However, each model had its

limitations, with LightGBM demonstrating better overall performance and Random

Forest indicating class-specific strengths.

The findings of this study indicate a need for further research, particularly in

the area of data collection. It has been observed that enhancing the data might be

feasible, though this can be quite challenging in certain instances. Additionally, it

would be beneficial to explore a more comprehensive layout that incorporates data

also from other than the annual maintenance periods. In such cases, the utilisation

of deep learning systems could be a relevant approach. The use of real-time data

for model maintenance is another essential aspect that, due to the study’s limited

time and scope, was not able to be explored. This highlights the complex nature

and significant time demands of the subject.

However, the OL3 plant is in the process of generating similar data, and due

to the plant’s design, the accumulated doses will be lower, resulting in reduced

variability. Theoretically, this should allow prediction at smaller class intervals

without manipulating the data. In particular, it would be beneficial to develop a

model that compares the OL3 data with that generated at OL1 and OL2, with the

objective of achieving better results. However, this is only a future possibility, as at

the time of writing, there is only data from the first year of operation.

This research highlights the key problem with AI solutions, which is data depen-

dency. The emphasis is on quality over quantity, data must tell a story and not just

repeat itself. In similar projects, the first step is always to identify the needs and

the capabilities to meet those needs, because an AI solution can only be as good as

the data applied to it.
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