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ABSTRACT

The widespread adoption of ubiquitous healthcare enhances the accessibility, qual-
ity, and efficiency of healthcare; however, the risk of data privacy breaches is also
increasing due to third party service providers. According to Cisco’s annual report
(2018–2023), 94% data processing on cloud servers and continuous tracing of per-
sonal data create privacy vulnerabilities. To deal data privacy challenges, recent
studies integrate edge computing with distributed ledger-based technologies (DLTs)
such as blockchain, but optimization of privacy requirements is still needed. There-
fore, this study is conducted to minimize the existing gaps related to data privacy
by proposing edge-intelligence (lightweight machine learning/deep learning) based
distributed system EdgeBot. Specifically, our framework aims to optimize data pri-
vacy, fine-grained access control, and data ownership rights of real-time healthcare
systems in time sensitive scenarios.

Initially, we proposed computing model of EdgeBot, formulate on/off chain se-
cure communication and fine-grained data access scheme for processed health mon-
itoring data. Thereafter, we constructed resource-efficient one directional convo-
lutional neural network (1D-CNN) for multiclass arrhythmia detection in real-time
health monitoring system. Bayesian optimization algorithm is embedded within the
network to adaptively select the optimal combination of hyperparameters. We em-
ployed 2-channel ECG system using AD8232 along with STM32F427 and raspberry
pi boards as edge gateways. To ascertain the precision and credibility of AD8232
based ECG system, a comparison of HR and RR interval measurement was obtained
from Polysomnography (PSG) device. Comparative analysis of our proposed 1D-
CNN shows average of 97.4% accuracy while utilizing significantly fewer resources.
Average ECG processing time along with data sharing on private ethereum requires
only 150ms and 143ms respectively.

Secondly, P2P trustless data trade system is formulated utilizing edge gateways
(pi 3, model B+), and STM32F427 (M3,M4 and M7) as lightweight nodes, leverag-
ing ethereum. Results of employing ECDSA and ECIES on M3,M4 and M7 shows
an average of 17.253s, 1.462s and 1.156s execution time respectively, while aver-
age power consumption by M3 and M4 was 200mW, whereas M7 uses an average
of 290mW. Results indicate the superior performance of M4 cortex microcontrollers
while consuming less resources. Resource and performance analysis shows less than
40% of average computing resources were utilized during transaction handling; it is
remarkable that TRD requires only 34.6ms, VTR 36ms, and TCT 73.6ms on aver-
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age. FobSim simulator was utilized to check the scalability of the proposed scheme
and results shows that gossip protocol decreases 35% latency during parallel trans-
actions ranging from 5 to 500. EdgeBot post-quantum resistant extension was im-
plemented, and results were compared with other lightweight KEMs. Latency and
memory efficiency of Kyber512 KEM with other lightweight KEMs was compared
on STM32F427 and it required 22-25 bytes of memory. Moreover, Kyber512 was
found to be the best performer, balancing energy consumption and memory usage.
Results of performance analysis shows EdgeBot, a viable option for fortifying data
trade, data ownership, and exchange through edge gateways.

Thirdly, we presented the implementation and evaluation of real-time data shar-
ing and tracing among trusted stakeholders while preserving transparency using saw-
tooth on a linux platform, leveraging AWS EC2 instances for server communication.
We propose service optimization in sawtooth, a mathematical foundation for de-
termining the most efficient combination of databatch size, transactions per second
(tps), resource utilization and network resources while ensuring the reliability of
transaction commitment. Furthermore, performance evaluations were conducted on
both AWS and local PCs, utilized cAdvisor for docker containers and cloudWatch
for AWS metrics. Results indicated significant spikes in CPU and network usage
during transaction processing, with the system successfully managing 82% of 1,000
parallel statements. Overall, results analysis shows high scalability and reliability of
EdgeBot while utilizing less resources as compared to recent studies, particularly for
large-scale operations and seamless integration with diverse underlying DLTs.

KEYWORDS: Ubiquitous Healthcare, Artificial Intelligence, Blockchain, Edge Com-
puting, Data privacy, Data Trade
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TURUN YLIOPISTO
Teknillinen tiedekunta
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Tekniikan tohtoriohjelma
Helmikuu 2025

TIIVISTELMÄ

Ubiikin terveydenhuollon laajamittainen käyttöönotto parantaa terveydenhuollon saavutet-
tavuutta, laatua ja tehokkuutta; kuitenkin, tietosuojaloukkausten riski kasvaa myös
kolmannen osapuolen palveluntarjoajien vuoksi. Ciscon vuosiraportin (2018–2023)
mukaan 94% tietojenkäsittelystä tapahtuu pilvipalvelimilla, ja henkilötietojen jatkuva
jäljitys luo tietosuojahaavoittuvuuksia. Tietosuojahaasteiden ratkaisemiseksi uusissa
tutkimuksissa yhdistetään reunalaskenta ja hajautettuun tilikirjatekniikkaan (DLTs),
kuten lohkoketjuun, mutta tietosuojavaatimusten optimointia tarvitaan edelleen. Siksi
tämä tutkimus on tehty minimoimaan nykyisiä tietosuojaan liittyviä puutteita ehdot-
tamalla edge intelligenceen (kevyt koneoppiminen/syvällinen opovpiminen) perustu-
vaa hajautettua järjestelmää EdgeBot. Erityisesti kehyksemme pyrkii optimoimaan
tietosuojaa, hienojakoista pääsynhallintaa ja tietojen omistusoikeuksia reaaliaikai-
sissa terveydenhuoltojärjestelmissä kiireellisissä tilanteissa.

Aluksi ehdotimme EdgeBotin laskentamallia, muotoilimme on/off-chain suo-
jatun viestinnän ja hienojakoisen tietojen pääsynhallinnan terveysseurantatiedolle.
Sen jälkeen rakensimme resurssitehokkaan yhden suunnan konvoluutiohermoverkon
(1D-CNN) moniluokkaiseen rytmihäiriöiden tunnistamiseen reaaliaikaisessa terveysseu-
ranta järjestelmässä. Bayesin optimointialgoritmi on upotettu verkkoon mukautu-
vasti valitsemaan hyperparametrien optimaalisen yhdistelmän. Käytimme 2-kanavaista
ECG-järjestelmää käyttäen AD8232 yhdessä STM32F427 ja raspberry pi korttien
kanssa reunaportteina. AD8232-pohjaisen EKG-järjestelmän tarkkuuden ja uskot-
tavuuden varmistamiseksi verrattiin HR ja RR välimittausta polysomnografialait-
teesta (PSG). Ehdottamamme 1D-CNN vertailuanalyysi osoittaa keskimäärin 97.4%
tarkkuuden samalla kun käytetään huomattavasti vähemmän resursseja. Keskimääräinen
EKG käsittelyaika sekä tietojen jakaminen yksityisessä Ethereumissa vaativat vain
150ms ja 143ms vastaavasti. Toiseksi, P2P-luottamukseton tietokauppajärjestelmä muo-
toiltiin hyödyntämällä reunaportteja (pi 3, mallia B+) ja STM32F427 (M3, M4 ja
M7) kevyinä solmuina, hyödyntäen Ethereumia. ECDSA ja ECIES käyttämisen tu-
lokset M3ä, M4ä ja M7ä osoittavat keskimäärin 17.253s, 1.462s ja 1.156s suoritu-
saikaa vastaavasti, kun taas M3 ja M4 keskimääräinen virrankulutus oli 200mW, kun
taas M7 käytti keskimäärin 290mW. Tulokset osoittavat M4 Cortex -mikrokontrollereiden
ylivoimaisen suorituskyvyn samalla kun resursseja kulutetaan vähemmän. Resurssi-
ja suorituskykyanalyysi osoittaa, että alle 40% keskimääräisistä laskentaresursseista
käytettiin tapahtumien käsittelyn aikana; on huomionarvoista, että TRD vaatii keskimäärin
vain 34.6ms, VTR 36ms ja TCT 73.6ms. FobSim simulaattoria käytettiin ehdote-
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tun järjestelmän skaalautuvuuden tarkistamiseen, ja tulokset osoittavat, että gossip-
protokolla vähentää 35% viivettä rinnakkaisten tapahtumien aikana, jotka vaihtel-
evat 5ä 500. EdgeBotin kvanttivastustuskykyinen laajennus toteutettiin, ja tulok-
sia verrattiin muihin kevyisiin KEM. Kyber512 KEM ja muiden kevyiden KEM
viive ja muistitehokkuus vertailtiin STM32F427, ja se vaati 22-25 tavua muistia.
Lisäksi Kyber512 todettiin parhaaksi suorittajaksi, tasapainottaen energiankulutuk-
sen ja muistinkäytön. Suorituskykyanalyysin tulokset osoittavat EdgeBotin olevan
varteenotettava vaihtoehto tietokaupan, tietojen omistusoikeuden ja vaihdon vahvis-
tamiseen reunaporttien kautta.

Kolmanneksi esitimme reaaliaikaisen tietojen jakamisen ja jäljityksen toteutuk-
sen ja arvioinnin luotettujen sidosryhmien kesken säilyttäen avoimuuden, käyttäen
Sawtoothia Linux-alustalla ja hyödyntämällä AWS EC2 -instansseja palvelinviestintään.
Ehdotamme palveluoptimointia Sawtoothissa, matemaattista perustaa tehokkaimman
yhdistelmän määrittämiseksi tietopakettikoolle, tapahtumia sekunnissa (tps), resurssien
käyttöä ja verkkovaroja samalla kun varmistetaan tapahtumien sitoumuksen luotet-
tavuus. Lisäksi suorituskykyarvioinnit tehtiin sekä AWS ä että paikallisilla tietokoneilla,
käyttäen cAdvisoria Docker-konteille ja CloudWatchia AWS-mittareille. Tulokset
osoittivat merkittäviä piikkejä suorittimen ja verkkokäytön aikana tapahtumien käsit-
telyssä, ja järjestelmä hallitsi onnistuneesti 82% 1000 rinnakkaisesta lausunnosta.
Kokonaisuutena tulosanalyysi osoittaa EdgeBotin korkean skaalautuvuuden ja lu-
otettavuuden samalla kun se käyttää vähemmän resursseja verrattuna viimeaikaisiin
tutkimuksiin, erityisesti suurissa operaatioissa ja saumattomassa yhteensopivuudessa
moninaisten hajautettujen tilikirjojen (DLTs) kanssa.
ASIASANAT: Ubiikki terveydenhuolto, tekoäly, lohkoketju, reunalaskenta, tieto-
suoja, tietokauppa
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1 Introduction

The widespread adoption of digital health monitoring (dHealth) and ubiquitous health-
care (uHealth) systems empowers users with handheld devices and embedded sen-
sors, enabling a diverse array of healthcare services. Ubiquitous healthcare refers to
a system where healthcare is easily accessible and available to everyone, regardless
of their location or situation [1]. It revolves around the continuous collection, trans-
mission, and analysis of health-related data through digital devices. These devices,
which could range from wearable fitness trackers to sophisticated medical sensors,
monitor vital signs, physiological parameters, and various health metrics [2]. The
collected data is then transmitted to healthcare professionals or centralized systems
for analysis and interpretation. Real-time monitoring empowers medical practition-
ers to detect anomalies or changes in a patient’s health status promptly, allowing for
timely interventions and personalized treatment plans [3].

Ubiquitous healthcare enhances patient engagement and involvement in their
healthcare and enables healthcare providers to deliver proactive and personalized
care, leading to improved health outcomes and more efficient healthcare services. Pa-
tients need to engage in self-management activities to understand their disease better,
enhance their communication with their doctors, and increase their self-confidence
[4]. This approach has significantly reduced geographical barriers, enabling individ-
uals to access healthcare services regardless of physical location [5]. It leverages
communication technologies, such as video calls and remote monitoring devices, to
bridge the gap between patients and healthcare providers, thereby enhancing the ac-
cessibility and availability of medical assistance [6]. Health parameters monitoring
plays a crucial role in remote health services, particularly in detecting health dete-
rioration among individuals with acute or chronic diseases [7]. This monitoring is
in high demand for remote locations and the elderly population, given the increased
vulnerability and health challenges associated with ageing [8].

Nonetheless, ubiquitous healthcare systems encounter significant challenges re-
lated to data security and privacy that must be effectively addressed to enhance the
prevalence of these technologies. The security and privacy of data collected, pro-
cessed, and stored by ubiquitous healthcare applications and systems have become
increasingly concerning. Breaches in the security and privacy of healthcare infor-
mation systems can have severe negative consequences for the individuals involved,
ranging from embarrassment and reputational harm to various forms of discrimina-
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tion. It can adversely impact the rights, freedoms, and physical and mental well-
being of individuals. Given that security and privacy concerns have emerged as
the most critical challenges for healthcare information systems, it is imperative to
thoroughly understand and address these issues with urgency. Figure 1 shows the
year-wise personal health information (PHI) data breaches in different domains.
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Figure 1: Breaches in Data Privacy and Security of Personal Health information
(PHI) [9]

1.1 Motivation
According to the department of health and human services office for civil rights
(OCR), in the United States, 4,419 health data breaches of 500 or more records were
reported between 2009 and 2021, which led to the loss, theft, exposure, or impermis-
sible disclosure of 314,063,186 healthcare records [10]. That equates to more than
94.63% of the 2021 population of the United States [11]. A general upward trend
has been seen with increasingly ubiquitous IoMT devices. Ubiquitous healthcare de-
vices are scarce computing devices highly dependent on third-party services for their
computing and resource management requirements. In traditional structures, cloud
services are utilized to provide several services to these scarce computing devices,
such as Infrastructure as a Service (IaaS) [12], Software as a Service (SaaS) [13], and
Platform as a Service (PaaS) [14]. A few popular names are Amazon’s Elastic Com-
pute Cloud (EC2) [15], Microsoft Azure [16], and IBM [17]. Cloud services have
traditionally been used to analyze, aggregate, and store data acquired by end devices.
Because of the firm reliance of the digital world on third-party cloud services, a wide
range of concerns have been raised regarding the security of data and the protection
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of privacy [18].

Table 1: Data Breaches in Healthcare domain

Year Organization Effected Individuals

2023 Florida Health Sciences Cente 2.4m individuals affected
2022 Broward Health Data Breach Around 1.3m individuals affected
2022 Shields Healthcare Group More than 2m patients affected
2021 Universal Health Services 4.5m patients affected
2020 US med collection Agency More than 20m patients affected
2020 Teladoc Nearly 20m patients affected
2019 LabCorp More than 7m individuals affected
2019 Quest Diagnostics Nearly 12m patients affected
2018 Aetna Nearly 20m individuals affected
2017 Equifax 143m individuals affected
2016 Community Health Systems More than 4.5m individuals affected
2015 Anthem Inc. More than 80m individuals affected

A sustainable ubiquitous healthcare system is required to consider personal data
privacy and security implications. However, current systems are vulnerable to data
privacy and security [19]. In Table 1, we summarize a few examples of the health
data breaches that have occurred in the healthcare industry over the past few years.
Even with the significant impact and the efficient services third-party applications
have provided, there are still security and privacy concerns relating to how the providers
handle users’ data. Problems associated with insecure cloud computing platforms
such as web-based outsourcing, mobile cloud computing, and service-oriented ar-
chitectures (SOA) are security and privacy issues of personalized data [20; 21; 22].
Significant shifts and optimization in edge computing lead to better network usability
and significant reductions in the network load [23]. However, these changes in the
machine-to-machine topologies come with new sets of vulnerabilities related to the
privacy of data producers [24]. Due to server failure and privacy-related vulnera-
bilities during transmission, the edge computing paradigm shifts the data processing
closer to the point where it is being generated [25; 26].

Recent developments in distributed ledger technologies (DLTs), particularly
blockchain have revolutionized ubiquitous healthcare and digital health monitoring
systems. Blockchain’s decentralized and secure architecture offers significant bene-
fits, enhancing the effectiveness and efficiency of these systems. One of the primary
advantages of blockchain in healthcare is its ability to store data securely, includ-
ing patient records and diagnostic results, on a decentralized ledger. This ensures
data integrity, privacy, and accessibility by eliminating the need for a central author-
ity. Moreover, blockchain facilitates secure interoperability and data sharing among
healthcare stakeholders, empowering patients with fine-grained access control and
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promoting innovation through incentivized data sharing. Blockchain integration with
fog and edge computing opens new opportunities for P2P security and authorization
[27; 28]. Permissioned DLTs are particularly appealing due to their customization
using smart contracts, which are scripts that are validated as part of a transaction on
the blockchain [29]. As a result, it secures and gives control access to health data by
utilizing the inherent security provided by smart contracts.

1.2 Edge computing in ubiquitous healthcare systems
Edge computing is a process in which multiple sources of information are combined
efficiently and makes it easier to perform operations at the edge devices (Internet
of Medical Things (IoMT)) or send data using network technologies [30]. Edge
computing consists of sensors, communication protocols, and software that connects
technology-based systems utilizing online computer networks [31]. This approach
can reduce latency and improve the responsiveness of systems, as well as reduce the
amount of data transmitted over the network and reduce the load on centralized data
centres. Additionally, it also increases privacy and security by allowing data to be
processed locally, rather than being transmitted to centralized locations where it may
be vulnerable to hacking or other security breaches. In other words, edge computing
is a distributed computing paradigm in which data is processed and analyzed at edge
gateways, closer to the data generating devices [2]. The goal of edge computing is
to bring computing power closer to the devices and sensors that are generating the
data, rather than relying on data being transmitted over a network to centralized data
centres or cloud computing environments for processing and storage [32]. In [33],
authors present an IoMT-based data processing and analysis framework through a
series of network layers, extending a cloud-centric architecture. In addition to reduc-
ing network latency, moving computation to the edge of the network also reduces
network load. Moreover, it is not always necessary to store raw data in many ap-
plications, as the results of the analysis are stored [25]. This means that all data
need not be transmitted to the cloud servers. It is possible to use edge computing
and fog computing to increase the security of personal data in certain scenarios, such
as healthcare IoT [34]. Furthermore, the addition of intermediate layers between
IoMT devices, cloud servers, and end-user applications means that there are more
risks of security vulnerabilities, malicious code injection, and cyberattacks. A com-
bination of edge computing and embedded intelligence offer artificial intelligence
mechanisms at the edge using machine learning models to process and analyze data
locally on edge gateways with limited resources [35].

With the increasing penetration of third-party services, security vulnerabilities,
and cyber attacks become more prevalent in health monitoring applications [36]. In
light of this, it is evident that a more secure method of exchanging and trading per-
sonal information and ensuring privacy is needed [37]. Recently, in [38], Peng et
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al. presented a secure and efficient mobile healthcare system called Edgecare, which
combines edge computing with a stackelberg optimization algorithm to achieve fair
data trading by providing a hierarchical distributed architecture to manage and ensure
healthcare data privacy. In another study [39], Lin et al. investigate how edge-AI can
be used to convert sensory data into commercially valuable information. Toward the
development of a knowledge market, the authors propose a proof-of-trade consen-
sus mechanism and a non-cooperative game-based optimal knowledge approach. A
recent review by Krittanawong et al. [40] gives a brief overview of the opportu-
nities and challenges associated with integrating blockchain and AI to develop per-
sonalized medicine for cardiovascular disease. According to the authors in [41], the
AI blockchain combination could provide a boost to the availability of reliable data
for personalized medicines; nevertheless, the privacy of patients and data producers
must be considered. Edge computing is employed for remote monitoring of patients
at home through the process of ubiquitous healthcare. With continuous health mon-
itoring, patients are not required to visit a hospital or a doctor’s office every time
they are unsure of their health status or if their condition changes. However, secure
communication, the cost of service, handling, and many other types of costs should
be addressed. This can be particularly valuable for people with chronic conditions,
as it enables healthcare providers to track their progress and adjust treatment plans
as needed [42]. For example, a patient with diabetes may wear a continuous glu-
cose monitor that wirelessly transmits data to their healthcare provider, who can then
adjust the patient’s insulin dosage accordingly.

Healthcare providers are becoming increasingly concerned about the security of
sensitive data that flows through the IoMT, such as confidential health information
[43]. However, continuously generated data also raises concerns about privacy and
security and the need for new regulations and standards to ensure data is used eth-
ically and responsibly [44]. Moreover, users and governmental bodies are highly
concerned about securing sensitive data, such as confidential health information, that
flows through IoMT. [43]. Individuals’ physiological data contains a great deal of
personally sensitive information. Privacy is a major concern for healthcare appli-
cations, especially if IoT sensors and body area networks are integrated into the
solutions [41].

Edge computing can improve privacy and security by allowing healthcare data to
be processed locally, rather than being transmitted to centralized data centres where
it may be vulnerable to hacking or other security breaches [45]. This concept intro-
duces edge-intelligent systems by integrating lightweight machine and deep learning
models at the edge layer to process data locally. This is particularly important in the
healthcare sector, where patient data is highly sensitive and confidential. Because of
the sensitivity and confidentiality of healthcare data, technologies handling health-
care data are subject to additional limitations and networks are appealing targets for
cyber attacks due to their sensitive nature[46].
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1.3 Core components of Edge Computing
There are three primary components of the edge computing ecosystem, including
data acquisition, communication gateways, and server layer [47]. An overview is
provided of the functional and structural characteristics of each of the layers in an
edge-computing architecture [48; 49].

Data Preprocessing

Format Conversion

Quick Notification

Data flow Management

Enc/Decryption

Data Analysis

API Management

Application 
Domain

Business
Domain

Cloud Storage

Data Acquisition Layer Edge Gateways Cloud/Server Layer

Third Party Services

Figure 2: Core components of Internet of Medical Things

1.3.1 Data Acquisition Layer:

The data acquisition layer consists of biosensors, which consist of electro-mechanical
devices that are used to acquire biological signals. These signals tend to be low am-
plitude contaminated with noise and require pre-processing and digitization. Pre-
processing operations include amplification and filtration. If information is not well
preserved and not lost during the data collection process, incorrect decisions may be
made during diagnosis. By connecting people with healthcare systems, biosensors
can transform traditional healthcare systems significantly and are capable of generat-
ing and transmitting a tremendous amount of data. Moreover, biosensors can speed
up diagnostic procedures by automating data processing, and users can monitor their
health. The data acquisition layer performs two major tasks before sending this gen-
erated data to the gateway layer[50].

6



Introduction

1. Pre-processing: Biological signals are commonly weak and noisy, making
processing challenging, therefore, amplifiers are used to amplify. The typi-
cal amplifier consists of an electronic circuit that produces a high-amplitude
output signal when provided with a weak signal. The amplifier increases the
signal frequency without changing other parameters, such as its morphology or
frequency. A typical amplifier circuit uses a resistor, a conductor, and a tran-
sistor. The term ”single-stage amplifier” refers to an amplifier that includes
a single transistor, and the term ”multi-stage amplifier” refers to one that in-
cludes multiple transistors. A multi-stage amplifier is widely employed in
practical applications. An amplifier’s gain can be used to determine how much
amplification it provides [51]. In the post-amplification process, filtering re-
moves unwanted parts from the signal. The filtering process employs a variety
of different types of filters. High-pass, low-pass, band-block, and band-pass
filters are all distinct types of filters. When a signal is subjected to a high-pass
filter, the low-pass filter is employed to attenuate the signal’s low-frequency
components.

2. A/D conversion: Analog to digital conversion is achieved through A/D con-
verters. Numerical values comprise the digital version of a recorded signal.
Computers of today can store and process numerical values easily. Sampling
and quantization are the main components of A/D conversion. Continuous
time is converted to discrete-time by sampling. During sampling, the signal’s
value is measured at certain intervals of time. This procedure is called sam-
pling [52].

1.3.2 Edge gateway:

Edge gateways connect sensors, smart devices, cloud systems and transport data from
a local system to a cloud server or from a local computer to the cloud. Consequently,
edge gateways serve as a communication link between connected intelligent objects
in the field. Firstly, it does data normalization as a variety of sensors collect data in
different formats. This stage is designed to minimize and filter the quantity of data
that must be uploaded to the cloud. Pre-processing data minimizes the quantity of
information that must be delivered, processed, and stored.

A sensor has the bare minimum capability of being interconnected to the inter-
net. Unlike more expansive networks such as wide area networks (WAN), they can’t
be directly connected to them. As a result, the edge gateway provides connectivity
to external networks over mobile data, BLE, wi-fi, or some other means of commu-
nication [53].

7



Anum Nawaz

1.3.3 Server/cloud Layer:

As part of the edge ecosystem, servers are responsible for detecting abnormal ac-
tivities and performing analyses. Following the acquisition and preliminary analysis
of signals from the sensor nodes, the data is sent to the servers or cloud for analy-
sis. Data mining is used in the IoMT field to classify bio-signals according to their
important characteristics. For cloud servers, data processing involves signal identi-
fying, enhancing, and separating features, followed by analysis of results. Typically,
the data collected from sensors is time-domain data, which accumulates over a pe-
riod of time. The time-domain signal contains data on the amplitude over a certain
period. Signal-to-noise ratio measurements and event detection can be performed
based on time and amplitude information [54].

A frequency-domain representation of time-domain signals is also possible. A
frequency-domain representation of time-domain signals contains details about their
power at various frequencies. For determining the amplitude of each frequency, a
fourier transform is commonly used. The frequency-domain signal may be analyzed
for several features, including central frequency, sub-band energy, and spectral band-
width. Cloud servers work on data mining after analyzing and creating results based
on that analysis. It plays an essential role in early diagnosis and ongoing monitoring
of patients. Recommendation systems involve systematically extracting information
from large sets of biodata and identifying patterns within the data. To construct a
model that may aid in diagnosing some conditions, algorithms are applied to acquire
available information [55].

Two broad classifications of data mining are supervised and unsupervised mod-
els. A supervised model is created by training an algorithm on labelled data and
then using it to categorize unlabeled data. Labelled data is data in which each input
variable has a corresponding output variable. On the other hand, no labelled data
are available in unsupervised models. To identify relationships between the data, an
unsupervised classification algorithm groups them into subgroups [56].

1.4 Ubiquitous Healthcare Systems and Blockchain

In recent years, distributed ledger-based technology (DLT), Blockchain, has led to
significant advancements in the development and implementation of ubiquitous health-
care and digital health monitoring systems [57; 58]. In addition to its decentral-
ized and secure nature, blockchain technology offers several benefits to ubiquitous
healthcare systems that can improve their effectiveness and efficiency. Loopholes in
centralized cloud systems turned the interest towards decentralized and distributed
blockchain systems [59]. The tracing and transparent capabilities of blockchain rep-
resent a novel manifestation of privacy and security solutions. It constitutes a tempo-
rally sequenced series of blocks systematically arranged by the computational enti-
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ties of diverse participants [60]. Within the blockchain framework, the immutability
of blocks containing the transactional history among nodes in a P2P network is en-
sured by applying hash functions [61; 62]. Blockchain technology can be integrated
as an embedded web layer to facilitate various functionalities, including but not lim-
ited to payment processing, currency exchange, token reception and distribution,
digital asset transfers, and the execution of smart contracts [63]. In particular, dis-
tributed ledger technologies provide improved control of data by providing increased
data transparency using blockchain [64], privacy by utilising distributed technolo-
gies [65], ownership incorporation by enabling blockchain-based solutions [66], and
leveraging blockchain as a security measure [67].

Thus, Blockchain technologies can counter falsified transactional activities through
increased traceability of goods [68]. However, distributed-based solutions encounter
challenges related to high variability in structural requirements [69]. DLTs based
scalability challenges were address with pegged sidechains [70], hierarchical trees
[71], cross chains [72], and DAG [73].

For ubiquitous healthcare systems, blockchain technology offers the advantage
of securely and immutably storing data. With the help of blockchain technology,
healthcare data such as patient records, medical histories, and diagnostic results can
be stored in a decentralized ledger. By encrypting and distributing the data across a
network of computers, it ensures the data’s integrity, privacy, and accessibility. Data
breaches and unauthorized access are reduced by eliminating the need for a cen-
tral authority in decentralized storage. Furthermore, the immutability of blockchain
records ensures that healthcare data is accurate and tamper-proof, enhancing trust and
reliability. In ubiquitous healthcare systems, blockchain technology facilitates inter-
operability and data sharing, another essential aspect. The blockchain allows health-
care data to be securely shared among stakeholders, including healthcare providers,
researchers, and patients while maintaining data integrity and privacy. By utilizing
smart contracts based on blockchain technology, patients can enable fine-grained ac-
cess control, allowing authorized parties to access specific data [74]. As a result
of this interoperability and data-sharing capability, collaboration can be enhanced,
comprehensive patient care can be provided, and medical research and innovation
can be supported.

In ubiquitous healthcare systems, blockchain technology also addresses issues
of data provenance and auditability. A blockchain-based audit trail is created by
timestamped, digitally signed, and linked transactions, creating an immutable record
of all transactions recorded on the blockchain. With this feature, stakeholders can
track healthcare data origins, modifications, and access histories, ensuring data ex-
change transparency and traceability. An auditable blockchain-based system en-
hances accountability, facilitates regulatory compliance, and enables quality assur-
ance in ubiquitous healthcare. Further, blockchain technology can be utilized in
ubiquitous healthcare systems to incentivize and monetize healthcare data. Patients
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can receive rewards, tokens, or customized healthcare services by sharing anony-
mous health data with researchers, pharmaceutical companies, or other entities in
exchange for sharing their anonymized health data [75]. A blockchain-based token
or cryptocurrency can be used to encourage data sharing, promote medical research,
and foster innovation in healthcare. As a result of this economic model, patients are
more likely to engage in treatment, data sharing is encouraged, and new treatments
are developed more quickly.

1.5 Privacy Concerns
Ensuring the security and privacy of personal data is crucial for maintaining trust
and safeguarding sensitive information. However, traditional systems often struggle
to adequately protect patient data, resulting in potential breaches and compromises
in security and privacy. The NIST computer security handbook defines privacy as
”a term associated with confidentiality, ensuring that individuals maintain control
over, or possess influence over, the collection, storage, disclosure, and access to
information concerning themselves and their affairs” [76].

In the realm of ubiquitous healthcare systems, DLTs bring promising solutions
to the security and privacy of patient data to maintain trust and safeguard sensitive
information. Blockchain’s inherent tamper-resistant nature and its ability to facil-
itate transactions without intermediaries present it as a viable solution to various
challenges in IoMT ecosystem to provide ubiquitous healthcare. Blockchain is in-
creasingly utilized in healthcare applications to ensure the security, transparency, and
immutability of data records through autonomous contracts. However, when dealing
with private and confidential data, the issue of transparency and privacy requires
further consideration. This is a critical aspect of integrating blockchain into our re-
search. DLTs inherit the capabilities of security and privacy. However, some of the
areas highlighted in table 2 show the need for improvement in terms of privacy.
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Table 3: Privacy-Concerned surveys from 2013 to 2019

Reference Data Usage Location

[80] × × ✓
[87; 88; 89] ✓ × ✓
[90] ✓ × ✓
[91] ✓ ✓ ×
[92] ✓ × ✓
[93] ✓ × ×
[94] ✓ ✓ ×
[95] ✓ ✓ ×
[96] ✓ ✓ ×
[97] ✓ ✓ ×
[98],[99] × × ×

According to the findings of a comprehensive global survey on blockchain tech-
nologies [77], a notable percentage of Chinese data owners (62%) expressed appre-
hension regarding privacy issues when considering the adoption of blockchain tech-
nologies. Similarly, both Malaysia and the USA exhibited a similar level of concern,
with 51% of business owners sharing these apprehensions. Moreover, among the
surveyed companies across twelve different countries, 50% believed that blockchain
should be exclusively utilized for private or internal purposes. These insights high-
light the necessity of integrating the concept of data protection by design, which has
recently emerged as a means of enhancing privacy [77], into blockchain systems.
Previous research, such as the studies conducted in [78; 79], has explored the po-
tential of blockchain technology in ubiquitous healthcare, demonstrating its capacity
to enhance data security and privacy. Despite the predominantly human-centric na-
ture of edge computing-enabled solutions [80], the concept of privacy within such
systems remains insufficiently defined. Privacy provision poses a significant chal-
lenge for edge/fog developers [81; 82] due to various major barriers, including het-
erogeneity, mobility concerns, limited control over open-air transmission mediums,
and complex business relationships within multi-owned scenarios. Based on authors
in [83], privacy is typically categorized into three principal types: data privacy, us-
age privacy, and location privacy. Some studies consider identity privacy as a fourth
type, while others include it as part of data privacy. Table 3 shows privacy-concerned
survey studies in the last few years and their focused areas. Drawing from several
references focused on privacy and edge/Fog Computing [84; 85; 86], we can define a
private edge/fog system as ”a system capable of maintaining and preserving edge/fog
properties while ensuring data privacy, usage privacy, and location privacy”.
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1.6 Research Objective
Privacy and confidentiality is an ancient and well-warranted social value. Kay

Redfield Jamison

Based on the above discussion the core objective is to optimize privacy, fine-grained
access control, and data ownership rights of healthcare data producers in real-time
health monitoring. The main design ideas pursued are edge computing and dis-
tributed ledger technologies for ubiquitous healthcare systems, where timely data
sharing is crucial. The following are the key objectives of this study. Figure 3 in-
cludes the main contributions of this thesis to achieve our objectives.

• Develop and implement a privacy-preserving healthcare framework: To
design and implement the EdgeBot framework, focusing on creating a ubiq-
uitous healthcare system which integrates machine learning and deep learning
algorithms at the edge device level, ensuring patient privacy and data security
in time-critical scenarios.

• Formulate and optimize a secure communication and fine-grained data
access scheme: To formulate and evaluate a hybrid on-chain and off-chain
secure communication and data access scheme, utilizing private distributed
ledger technologies and quantum-based security protocols, with a focus on
scalability, interoperability, and resource efficiency.

• Deploy and evaluate machine learning algorithms for real-time healthcare
applications: Develop and test resource-efficient models, formulate and im-
plement resource-optimized 1D-CNN for multiclass arrhythmia classification
on edge devices with two-channel ECG systems for rapid anomaly detection
and real-time health monitoring. The proposed method should be efficient,
fast (real-time classification), non-complex and simple to use (combined fea-
ture extraction and selection, and classification in one stage).

• Design trustless peer-to-peer data trade system: To design and implement a
peer-to-peer trustless data trade flow system, utilizing lightweight communica-
tion and fine-grained exchange schemes on edge gateways leveraging private
ethereum network.

• Optimize scalable real-time data sharing and tracing system: To develop
and optimize a resilient and scalable real-time healthcare data sharing and
tracing system among trusted stakeholders. Propose service optimization in
hyperledger sawtooth, a mathematical foundation for determining the most ef-
ficient combination of databatch size, transactions per second (tps), resource
utilization and network resources while ensuring the reliability of transaction
commitment.
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Figure 3: Technical Route map of contributions and objectives of this thesis

14



2 Preliminaries

2.1 Distributed ledger technologies for ubiquitous health-
care systems

Distributed ledger technologies (DLTs), such as blockchain, have the potential to
revolutionize ubiquitous healthcare by providing secure, decentralized, and tamper-
proof storage of health data. The first successful DLT application was bitcoin, which
manages digital assets to solve problems of double spending and anonymity issues
[100]. One of the key benefits of DLTs in ubiquitous healthcare is the ability to cre-
ate a shared, interoperable health record that can be accessed by authorized parties
in real-time [101]. This can enable a more efficient and effective healthcare system
by reducing data silos and ensuring that all stakeholders have access to the same in-
formation. Another key benefit of DLT is the ability to improve data security and
privacy. It can provide end-to-end encryption of health data and enable secure shar-
ing of data with authorized parties, such as healthcare providers and owners. This
can help to prevent data breaches and protect patient privacy [102]. In addition, DLT
can enable new business models and revenue streams. For example, DLT-based plat-
forms can be used to enable secure sharing of health data among owners, researchers
and drug developers, which can lead to faster and more effective health monitoring
and drug development. Table 4 provides a perspective mapping of blockchain as an
entity of solution for security, privacy and tracking of operations.

Finally, DLT can enable ”smart contracts/chain codes” which are self-executing
codes that can automate the process of sharing health data and other healthcare-
related processes such as reimbursement, traceability and clinical trial management.
Debe et al. [43] explores a decentralized IoT-based trust model that consists of fog
nodes that possess a reputation based on the public availability of the fog nodes.
The trust level is maintained by using feedback from existing users and interac-
tions, which allows for a more transparent and reliable reputation management sys-
tem compared to existing third-party-based systems. In another recent research
work [103], Mazzei et al. developed a trustless industrial solution that enables in-
dustrial IoT to be integrated into the virtual world of digital twins. An interoperable
tracking system for industrial applications is provided by this blockchain-based so-
lution. To the best of our knowledge, our proposed architecture is generic compared
to this and other solutions available, and we have therefore focused on a system-level
view rather than on specific integrations, which will be the focus of our future work.
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Cha et al. [104] developed a robust method of securely securing IoT device pri-
vacy preferences on a blockchain. As part of a comprehensive survey, Yang et al.
[97] addressed several important challenges related to the integrated implementa-
tion of blockchain-based edge computers, including security and privacy, function
integration, scaling, and resource management. Also, the authors provided use-case-
based scenarios to describe state-of-the-art solutions and explore the technologies
applicable to the blockchain-based edge computing domain. Bergquist et al. [105]
introduced the concept of blockchain technology combined with smart contracts for
use in building privacy-sensitive application

Edge computing based on blockchain presents another significant challenge such
as scaling. Teutsch et al. [106] introduces a scalable decentralized autonomous
blockchain solution based on edge computing, which can update billions of state
updates in a second.

In addition to efficiently matching hierarchical ledger topology, it provides fixed
withdrawal delays to ensure scalability by minimizing damage. Transaction handling
is performed in an asynchronous manner. It was suggested that a similar approach be
used, namely ziliqa [107], sharding to provide scalability. They divided the load into
smaller shards so that transactions could be processed in parallel. Furthermore, a new
scripting language for smart contracts and an execution environment were proposed
as an underpinning architecture, along with sharding. In the context of high-scale
parallel transactions, this makes a significant difference in the computation platform
used. The tree-based distributed ledger has been proposed in [108], as a substitute
for the chain framework in a similar research work. These researchers investigated
the effects of network delay on double-spending. The GHOST protocol enhances
the security of a transaction by reducing the confirmation time of transactions by
modifying the Bitcoin protocol.

Table 4: Perspective mapping of Blockchain as an Entity of solution for security,
privacy and tracking of operations

Sr.
No

Entity Relation Entity Perspective

1 Blockchain consists of Blocks Distributed Ledger
2 Blocks contain Header Chain Records
3 Blocks contain Body Transactional Records
4 Blocks contain Reference Distributed Trust
5 Blockchain maintains Historical Record Timestamped Blocks
6 Historical Records preserves Record Irreversibility Provenance
7 Record Irreversibility maintains Transparency Reliability
8 Transparency uses Pseudonimityy Anonimity
9 Blockchain includes Shared Database Distributed Trust
10 Shared Database secures P2P Transmission Validity
11 P2P Transmission includes Encrypted Transmission Integrity

However, despite these potential benefits, some challenges need to be addressed
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before DLT can be widely adopted in d/u healthcare. These include issues related to
scalability, regulatory compliance, and data governance. Nevertheless, DLT has the
potential to revolutionize d/u healthcare and bring about a new era of patient-centred,
data-driven healthcare. Key components of blockchain modelling include consensus
mechanisms, distributed ledger-based technologies and applications [109].

2.1.1 Permissionless versus Permissioned Networks

Blockchain-enabled solutions leverage different DLT frameworks, and some of them
are designed for specific domains. Some frameworks are good for applications re-
quiring permissionless architectures, and a few are specifically designed for permis-
sioned networks. Permissionless blockchain solutions are publicly available for ev-
eryone to join, which creates scalability and performance issues [110]. For example,
the transaction rate of bitcoin is limited to 7 transactions per second, which makes
it incompetent to handle high-frequency trades. Furthermore, in permissionless net-
works, the transaction confirmation rate increases exponentially as the network ex-
pands. Along with the performance, it creates transaction cost issues. Due to the
above-mentioned issues, many observers believe permissionless networks are un-
suitable for large-scale non-financial applications [111].

In contrast to permissionless networks, permissioned blockchain networks iden-
tify each node, and administrator nodes are capable of removing malicious nodes [112].
These network models improve performance throughput by using more adaptive con-
sensus protocols like practical byzantine fault tolerance [113], side chains [114],
and blockchain-based edge-computing solutions [115]. In recent years, researchers
proposed various permissioned blockchain frameworks such as ethereum [116],
EOS [117], hyperledger [118], and ripple [119]. Permissioned blockchain networks
are highly suitable for domain specific solutions and can be customized according
to business needs and requirements. They support transactional-level privacy and
network-level transparency.

However, it’s worth noting that each framework may have its strengths and weak-
nesses according to specific domain requirements. For instance, ethereum is focusing
on Layer 2 rollups, a technique that can support many transactions per second. In
[120], ethereum blockchain is utilised along with off-chain storage to make tracking
products easier in the pharmaceutical supply chain. The proposed method ensures the
origin of data, removes the need for middlemen, and provides a secure, unchange-
able history of transactions for everyone involved. Dwivedi et. al [121] proposed
and developed a smart contract algorithm using directed graphs with six states and
six actions. In addition to performing strong key management in smart contracts, it
also achieves reasonable performance in terms of computation and communication
overheads. The proposed protocol was robust and achieved reasonable performance
regarding smart contract performance. Authors in [122] proposed a framework and
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smart contracts to ensure data accuracy and authenticity within supply chains requir-
ing highly accurate and authentic data. The proposed framework has yet to be tested
in an industrial setting. Transaction and maintenance costs were not analyzed on
the blockchain network. In [123], authors optimize data sharing among participat-
ing stakeholders using restricted blockchain using edge computing concept. They
proposed a blockchain-based architecture and enabled a flexible configuration to se-
curely share and access medical data between healthcare organizations, enabling the
detection of probable epidemics, remote monitoring of patients and quick response
times.

The tracing capabilities of blockchain represent a novel manifestation of DLTs.
It constitutes a temporally sequenced series of blocks systematically arranged by the
computational entities of diverse participants [60]. Within the blockchain frame-
work, the immutability of blocks containing the transactional history among nodes
in a P2P network is ensured by applying hash functions [61; 62].

Blockchain technology can be integrated as an embedded web layer to facilitate
various functionalities, including but not limited to payment processing, currency
exchange, token reception and distribution, digital asset transfers, and the execu-
tion of smart contracts [63]. In particular, DLTs provide improved control of data
by providing increased transparency [64], privacy by utilising distributed technolo-
gies [65], ownership incorporation by enabling blockchain-based solutions [66], and
leveraging blockchain as a security measure [67].

However, distributed-based solutions encounter challenges related to high vari-
ability in structural requirements for each involved entity [69]. Scalability and reli-
ability issues due to complex requirements and large-scale implementations [124],
integration with existing conventional solutions based on dispersed technologies and
interoperability challenges.

2.1.2 Modular Distributed Ledge Technologies

Hyperledger frameworks, on the other hand, offer a modular design, allowing for
extensive customization. Authors in [125] present hyperledger fabric-based appli-
cation for drug discovery. The proposed application allows organizations to upload,
update, view, and verify their contributions. Each contribution is given a unique iden-
tifier using a secure hash algorithm, and the design also allows regulatory authorities
to issue certificates confirming the ownership of contributions. Uddin et.al [126]
investigated tracking related challenges and proposed hyperledger fabric-based solu-
tion, but their proposed solution lacks any kind of implementation test-beds which
leads to the feasibility of the proposed framework. Work of [127] proposed hyper-
ledger fabric-based agricultural supply chain to enhance the trust between the end
consumer and the product they are purchasing, proposed solution ”grainchain” en-
ables the tracking of the grain from the farmer to the retailer. Authors in [128] present
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an IoT-based seafood supply chain by leveraging hyperledger sawtooth framework.
Consumers can track seafood and notify drivers through a seafood supply chain when
the container temperature exceeds a specified level. The authors recorded the ship-
ment log as a blockchain transaction by connecting the application, the devices, and
the blockchain database. Another study is proposed [129] as generic ownership and
traceability of products using hyperledger sawtooth. The proposed system can pre-
vent counterfeit goods from entering the supply chain.

A comparison of ethereum with hyperledger fabric and sawtooth is presented in
table 5. Hyperledger is seen as one of the most advanced technologies for creating
consortium chains. Unlike other blockchain technologies, hyperledger is designed to
help build applications that meet the standards of businesses. It stands out because
of its unique way of managing permissions, its ability to control access very pre-
cisely, its flexibility with different consensus algorithms, and its speed in processing
transactions. This makes hyperledger particularly useful for systems in healthcare
facilities, where its features can enhance the sharing and tracking of information.
Hyperledger sawtooth’s event system can potentially lead to more efficient and ef-
fective operations in permissioned domain specific business logic while ethereum
platforms perform well in private permissionless domains. Hyperledger sawtooth’s
broadcasting and relaying of events across the network enables real-time updates and
actions. Due to its modularity, each participating entity can define its business logic
and interact through transaction families. Transaction families work similarly, such
as smart contracts in ethereum.

Table 5: Comparison of Hyperledger Sawtooth, Hyperledger Fabric and Ethereum

Hyperledger Hyperledger
Feature Sawtooth Fabric Ethereum

Ledger Type Permissioned Permissioned Permissionless
Smart Contract
Functionality

Transaction Processors Chaincode Ethereum Virtual Ma-
chine

Consensus Algorithm Pluggable Framework Pluggable Framework Proof of Stake
Governance Linux Foundation Linux Foundation Public

2.1.3 Symmetric and Asymmetric Key cryptography

Cryptography is the science of securing communication and data through the use of
mathematical techniques, ensuring confidentiality, integrity, authenticity, and non-
repudiation of information.

Symmetric key encryption techniques, or shared key cryptography, are encryp-
tion schemes based on a single shared secret between communication parties. A
symmetric key algorithm allows a single party (the encryptor) to encrypt a message
𝑥 with a key 𝑘, resulting in a ciphertext 𝑦 = 𝑒𝑘; (𝑥). By applying the inverse op-
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Figure 4: Building blocks of Blockchain.

eration to the ciphertext y, a second party (the decryptor) can decrypt it and recover
the message 𝑥 = 𝑑𝑘; (𝑦). Without access to the key 𝑘 in a network controlled by an
adversary, recovering the original message x is computationally impossible.

Stream algorithms and block algorithms are two types of symmetric encryption
algorithms. In streams, each bit of plaintext is encrypted individually using a key
stream. Even though block algorithms encrypt entire blocks at a time with the same
key, block sizes range from 64 to 256 bits (for example, DES, AES, and Blowfish).
According to their mode of operation, block algorithms can provide different levels
of security. The message can only be guaranteed to be confidential when a block
cypher algorithm is employed in a cypher block chaining mode, for example. They
reduce the complexity of encryption and are very secure and highly effective. How-
ever, they have many disadvantages:

• Key distribution: In symmetric encryption, the security of the key determines
the degree of security. It is considered best practice for key exchange to take
place over a secure channel or through a secure key exchange protocol. The
use of a secure channel or a secure key exchange protocol for key exchange
is considered best practice. Through key-distribution protocols, it is possible
to create a safe channel between two users who do not ordinarily share a se-
cret, but the protocol needs the parties to rely on a secure channel to a central
provider.

• Key management: Managing just a few keys can significantly reduce man-
agement overhead. It becomes extremely challenging to manage and distribute
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keys on a large scale when there are many users.

• No protection against cheating: Two parties get the same level of capability
when sharing a key. Therefore, both can identify messages between each other.
However, neither of them could prove to a third party that the other had deliv-
ered a particular message because they might both generate it. Asymmetric
cryptography can be used to achieve this attack against non-repudiation.

Asymmetric key cryptography differs from symmetric-key cryptography in that
it employs a separate set of principles for encryption and decryption. In asymmetric
key algorithms, there are two sorts of keys: the encryption key, also known as the
public key, which is used just for encryption and does not need to be kept secret, and
the decryption key, sometimes known as the private key, which is needed for decryp-
tion. Asymmetric key cryptography, in comparison to symmetric key cryptography,
is a completely new concept that was only developed in the 1970s to address some
of the flaws of symmetric cyphers.

The cryptography provided by asymmetric algorithms can offer several capa-
bilities, including the establishment of shared keys, non-repudiation, integrity, and
identification of messages. Asymmetric cyphers are secure due to the difficulty of
solving a mathematical problem, such as solving one-way functions, for example.
One-way functions are simple to compute for any input but complex to reverse for
any image corresponding to a random input. The function is generally used in this
context to produce the key pair and related security settings. The discrete logarithm
problem and integer factorisation problem are the two most common one-way func-
tions in asymmetric cryptography. According to the problem of integer factorisation,
the composition of two large prime products is reasonably easy to calculate. How-
ever, decomposing that product is incredibly difficult. A cryptographic scheme based
on Rivest-Shamir-Adleman is RSA. When the parameters are very large, discrete log-
arithms become more difficult to compute modulo a prime.

Diffie-Hellman Key-Exchange (DHKE) was the first asymmetric-key scheme to
be published, and it was based on a discrete logarithmic issue. DHKE, an algorithm
extensively used in encryption protocols such as Transport Layer Security (TLS) and
Secure Shell, solves a key distribution problem (SSH). Its goal is to use the Diffie-
Hellman algorithm to allow two parties, Alice and Bob, to share secret keys for
a symmetric cypher via an insecure communication channel. The premise behind
DHKE is to compute the value 𝑘 and use it as the joint secret value.

𝑘 = 𝑔𝑎𝑏(𝑚𝑜𝑑 𝑝) = (𝑔𝑎)𝑏(𝑚𝑜𝑑 𝑝) = (𝑔𝑏)𝑎(𝑚𝑜𝑑 𝑝) (1)

The following steps are included in the protocol.

1. In order for Alice and Bob to cooperate, they must determine the domain pa-
rameters 𝑝 and 𝑔, where 𝑝 is a huge prime and 𝑔 is a primitive root modulo 𝑝,
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also known as common parameters.

2. Alice calculates A = 𝑔𝑎(mod p) and sends it to Bob as a secret large random
number 𝑔.

3. Bob decides a secret random number 𝑏, and then computes 𝐵 = 𝑔𝑏(mod p),
which he used to sends to Alice.

4. According to Alice, k = 𝐵𝑎(mod p) = (𝑔𝑏)𝑎(mod p) is her shared secret.

5. Using the formula 𝑘 = 𝐵𝑏(mod p) = (𝑔𝑎)𝑏(mod p), Bob plots the shared secret
𝑘.

6. A secure communication channel can be established between Alice and Bob
using 𝑘 now.

2.1.4 Post Quantum Cryptography

Public-key cryptography is a cryptographic system that relies on mathematical prob-
lems that are conjectured to be hard to solve. The most widely used examples of
public-key cryptography are RSA, which is based on the integer factorization prob-
lem, and elliptic curve cryptography (ECC), which is based on the discrete logarithm
problem. However, both RSA and ECC are vulnerable to polynomial-time attacks
using a quantum computer.

To defend against this threat, research is focusing on post-quantum cryptography
(PQC), which aims to develop cryptographic algorithms that are resistant to attacks
by quantum computers. The Kyber protocol is an IND-CCA2 secure key encapsu-
lation method (KEM) designed to resist cryptanalytic attacks with future powerful
quantum computers. It allows two communicating parties to establish a shared se-
cret without an IND-CCA2 attacker in the transmission system being able to decrypt
it. The protocol is constructed by applying a Fujisaki-Okamato style transforma-
tion on InnerPKE, which is the underlying IND-CPA secure Public Key Encryption
scheme. The 𝐼𝑛𝑛𝑒𝑟𝑃𝐾𝐸 private key is a vector 𝑠 over 𝑅 of length 𝑘, which is small
in a particular way. The public key in the Kyber protocol consists of two values:
a 𝑘-by-𝑘 matrix 𝑥, which is sampled uniformly at random 𝑡, which is calculated as
𝑡 = 𝑥 * 𝑠 + 𝑒, where 𝑒 is a suitably small masking vector.

To ensure the security of its operations, Kyber uses cryptographic primitives
such as pseudorandom functions (𝑃𝑅𝐹 ), extendable output functions (𝑋𝑂𝐹 ), key
derivation functions (𝐾𝐷𝐹 ), hash functions (𝐻), and generators (𝐺). These crypto-
graphic primitives play a crucial role in maintaining the integrity and confidentiality
of the shared secret.

• Modular Lattice Error Learning (MLWE): The security of Kyber hinges on
the Module Learning With Errors (MLWE) problem. The special structure of
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the matrix 𝑥 contributes to the security of the key generation process in a sig-
nificant way. It provides three variants of kyber512,Kyber768 and Kyber1024
and their matrix structures are explained below:

(︃
𝛼1,1 𝛼1,2
𝛼2,1 𝛼2,2

)︃
(2)

⎛⎜⎝ 𝛼1,1 𝛼1,2 𝛼1,3
𝛼2,1 𝛼2,2 𝛼2,3
𝛼3,1 𝛼3,2 𝛼3,3

⎞⎟⎠ (3)

⎛⎜⎜⎜⎝
𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4
𝛼2,1 𝛼2,2 𝛼2,3 𝛼2,4
𝛼3,1 𝛼3,2 𝛼3,3 𝛼3,4
𝛼4,1 𝛼4,2 𝛼4,3 𝛼4,4

⎞⎟⎟⎟⎠ (4)

In Kyber512, the matrix 𝑥 is a negacirculant matrix. This means that each row
of the matrix is a cyclic shift of the previous row, and the first element of each
row is the negative of the last element of the previous row. The special form of
this matrix means that the matrix multiplication is consistent with the multi-
plication when performed modulo 𝑋256 + 1. This allows the MLWE problem
to be represented as a matrix equation over the ring 𝑍[𝑋]/<𝑞, 𝑋256 + 1>,
which effectively increases the complexity of the problem, making it harder
for an attacker to solve it where each 𝛼𝑖,𝑗 is a negacirculant matrix of the form.

• An element 𝑥 ∈ Z𝑞 is converted to an 𝑑-bit integer by Compress𝑞(𝑥, 𝑑). An
𝑑-bit integer 𝑥 is converted to a Z𝑞 element by Decompress 𝑞(𝑥, 𝑑). They are
defined as follows:

Compress𝑞(𝑥, 𝑑) =
⌈︁(︁

2𝑑/𝑞
)︁
· 𝑥
⌋︁

mod 2𝑑,

Decompress𝑞(𝑥, 𝑑) =
⌈︁(︁

𝑞/2𝑑
)︁
· 𝑥
⌋︁

where ⌈𝑎⌋ is the closest integer to 𝑎. When each function is applied to a poly-
nomial (or a vector/matrix of polynomials), it is applied to each coefficient
individually.

Moreover, a polynomial (or a vector/matrix of polynomials) is serialized to
byte arrays by using Encodeℓ() function, where ℓ is the bit-length of each
coefficient. On the other hand, Decodeℓ() is the inverse of Encodeℓ(), and it
deserializes the byte arrays to polynomials. Lastly, Parse ( ) converts a byte
stream to the NTT representation of a polynomial in 𝑅𝑞.
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• The noise is sampled from a centered binomial distribution 𝐵𝜂 for 𝜂 = 2
or 𝜂 = 3. For a sample (𝑎1, . . . , 𝑎𝜂, 𝑏1, . . . , 𝑏𝜂) ← {0, 1}2𝜂, the output is
computed as

𝜂∑︁
𝑖=1

(𝑎𝑖 − 𝑏𝑖)

The possible outputs are {−2,−1, 0, 1, 2}when 𝜂 = 2, and {−3,−2,−1, 0, 1, 2, 3}
when 𝜂 = 3, respectively.

Using 𝐵𝜂, a polynomial 𝑓 =
∑︀255

𝑖=0 𝑓𝑖𝑋
𝑖 in 𝑅𝑞 can be sampled by sampling

each coefficient 𝑓𝑖 deterministically from 512𝜂-bit output (𝛽0, . . . , 𝛽512𝜂−1) of
a pseudo-random function:

𝑓𝑖 =
𝜂−1∑︁
𝑗=0

(𝛽2𝑖𝜂+𝑗 − 𝛽2𝑖𝜂+𝑗+𝜂) 𝑖 = 0, 1, . . . , 255.

For this purpose, Kyber uses a function namely CBD𝜂, which takes 512𝜂-bit
input and outputs the corresponding polynomial.

2.1.5 Digital Signatures and Hash Functions

Digital signature’s goal is to guarantee message integrity and authentication, also
known as data origin authentication, as well as non-repudiation. To accomplish this,
public key cryptography is used. Public key cryptography is used to create digital
signatures, which are created by utilizing a secret key 𝑠𝑘 to sign the message and a
corresponding public key 𝑝𝑘 to validate the signature. In essence, the signature is
made up of a big integer number using two operations 𝑠𝑖𝑔𝑛(−)𝑠𝑘 and 𝑣𝑒𝑟(−)𝑝𝑘 that
can only be generated by the owner of the private secret key 𝑠𝑘.

The following are the properties of the keys:

• It is impossible to compute the private signing key 𝑠𝑘 given the public signa-
ture verification key 𝑝𝑘.

• There is a digital signature function 𝑠𝑖𝑔𝑛(−)𝑠𝑘 that provides a signature 𝑠𝑖𝑔𝑛(𝑥)𝑠𝑘

from a message 𝑥 and a private signing key 𝑠𝑘.

• The signature verification function 𝑣𝑒𝑟(−)𝑝𝑘 takes the signature 𝑠𝑖𝑔𝑛(𝑥)𝑠𝑘 and
the public verification key 𝑝𝑘 and returns TRUE if the signature was success-
fully computed with 𝑠𝑘 and FALSE otherwise.

Data integrity is protected by hashing, or simply by utilising the hash function.
Hash functions are linear-time methods that can be used to generate a fixed-size
digest or hash value from a collection of variables or data. A secure hash function
satisfies the following requirements: Deterministic—the same input always produces
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the same output—and efficient—the output is computed promptly.
Distributed- uniformly dispersed across the output range, implying that similar data
should not be associated with similar hashes.
Ore-image-resistance- it must be physically impossible to locate the input 𝑠𝑘 using
the hash value h(x) and collision resistance, no two distinct inputs 𝑥 and 𝑦 must
produce the same hash.

ℎ(𝑥) = ℎ(𝑦)⇒ 𝑥 = 𝑦 (5)

Implementation of a digital signature requires the use of a hash function. The mes-
sage needs to be signed by the hash, as it is considered a unique representation of the
message. Security and performance will be enhanced as a result, as:

• Digital signatures perform cryptographic operations very slowly when com-
pared to symmetric cryptography.

• A digital signature is a way to encrypt a document without using the public
key. Because the signature is the same length as the message, it is referred to
as a digital signature.

In general, the hash value computed over a document is unique; another document
can’t have the same hash value, so a hash that is signed is equivalent to signing the
document in its entirety.

2.2 Deep Learning Techniques in ubiquitous Health-
care

Machine learning algorithms encounter challenges when dealing with unstructured
and high-dimensional inputs, such as raw spatial or temporal information. To deal
with such problems deep learning algorithms have emerged as a powerful tool. [130;
131]. At the core of deep learning is the concept of neural networks. Neural networks
are mathematical models that are designed to mimic the behaviour of neurons in the
brain. They consist of interconnected layers of artificial neurons, known as nodes or
units, which process and transmit information. The behaviour of neural networks can
be described using mathematical equations that capture the relationships between the
inputs, outputs, and parameters of the network [132].

The training process involves feeding the neural network with labelled exam-
ples and updating its parameters based on the errors it makes. This iterative process
continues until the network achieves a satisfactory level of accuracy. These equa-
tions allow us to understand and analyze the behavior of the network, and to make
predictions about its performance. In the limit, even a single fully-connected (FC)
hidden layer of such neurons is capable of learning any input function [133]. Con-
sequently, such models are frequently regarded as universal function approximators
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[132]. Each node receives input from the previous layer 𝑏 using learned weights 𝑤𝑖

applies an activation function to the input, and passes the output to the next layer:

𝑓neuron = 𝜑

(︃∑︁
𝑖

𝑤𝑖𝑥𝑖 + 𝑏

)︃

One commonly used mathematical model in deep learning is the backpropagation
algorithm. This algorithm uses the chain rule of calculus to compute the gradients
of the network’s parameters concerning a given loss function. These gradients are
then used to update the parameters in a way that minimizes the loss function, thereby
improving the performance of the network. Another important mathematical concept
in deep learning is optimization. Optimization algorithms, such as stochastic gradient
descent, are used to find the values of the network’s parameters that minimize the
loss function. These algorithms iteratively adjust the parameters in the direction of
steepest descent, gradually reducing the error until convergence is achieved.

Availability, 
Accuracy 
and 
Structural
Format of 
Data

i. To Analyze Vast Clinical 
Data

ii. Covert Clinical Data to 
Computer
Manageable Format

iii. Assist Clinical Decisions
iv. Identify Critical Patients
v. Classify Diseases and 

Disorders

1.Extraction of
Important 
Facts from 
Text
2.Classificat-
ion of 
Information
3.Opinion 
Mining

Data 
Collection 

and 
Selection 

Preprocess 
the data

multiclass

Two Classes Create word 
embeddings

Model 
training

word2vec

LSTM

CNN

LLMS

GloVe

DBN

Model 
Testing

i. Radiology & Oncology
ii. Cardiology
iii. Dermatology
iv. Funduscopy
v. Lab Tests Automation
vi. Patient Monitoring

1.Object
Detection
2.Object
Classification
3.Object
Localization
4.Object 
Analysis

i. Automatic Diagnosis of
Respiratory and 
Pulmonary
Diseases

ii. Diagnosis of Cardiac 
Diseases

iii. Measuring Pain in 
Neonates

iv. Detecting Depression

1.Sound
Detection
2.Sound
Classificatio
n
3.Audio
Spectrum 
Analysis

Privacy
Violation 
and
Security 
Breaches

Biased 
Models
/ Lack of 
Trust in 
Learned
Model

Secure
Resource
Sharing

Privacy
Preserved
Knowledge
Sharing within
Research and
Clinical 
Experts

TE
XT

 IN
PU

T

APPLICATIONSPROCESSING TASKS CHALLENGES

IM
AG

E 
IN

PU
T

AU
DI

O
 IN

PU
T

Figure 5: Artificial Intelligence in Healthcare

Deep learning techniques have emerged as a powerful tool in the field of ubiq-
uitous healthcare systems. Deep learning techniques, a subset of machine learning,
have shown great potential in analyzing large amounts of healthcare data and extract-
ing meaningful insights. One of the key applications of deep learning in ubiquitous
healthcare systems is in the analysis of medical images. Deep learning algorithms
can be trained to detect and diagnose diseases from medical images such as X-rays,
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MRI scans, and CT scans. By analyzing patterns and features in these images, deep
learning models can provide accurate and timely diagnoses, helping healthcare pro-
fessionals make informed treatment decisions. Another area where deep learning
techniques are being applied in ubiquitous healthcare systems is in the analysis of
physiological signals. Wearable devices such as heart rate monitors, electrocardio-
grams (ECGs), and electroencephalograms (EEGs) generate vast amounts of data
that can be used to monitor a person’s health condition. Deep learning algorithms
can be used to analyze these signals and identify patterns that may indicate the pres-
ence of certain health conditions or abnormalities. This can enable early detection
and intervention, leading to improved patient outcomes.
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In addition to medical image analysis and physiological signal analysis, deep
learning techniques are also being used in other aspects of ubiquitous healthcare sys-
tems. For example, natural language processing techniques, which are a branch of
deep learning, can be used to analyze patient records and extract relevant informa-
tion for diagnosis and treatment. Deep learning models can also be used to predict
patient outcomes, such as the likelihood of readmission or the risk of developing
complications, based on various patient factors [146].

Despite the promising applications of deep learning in ubiquitous healthcare sys-
tems, there are still challenges that need to be addressed. One of the main challenges
is the need for large amounts of labelled data to train deep learning models effec-
tively. Healthcare data is often sensitive and confidential, making it difficult to collect
and share. Additionally, the inter operability of deep learning models is a concern,
as they are often considered black boxes that make predictions without providing ex-
planations. Deep learning techniques offer great potential for enhancing ubiquitous
healthcare systems. From medical image analysis to physiological signal analysis
and beyond, deep learning algorithms can provide valuable insights and improve pa-
tient care. Table 7 describes some recent integrated studies of deep learning and
blockchain for ubiquitous healthcare systems. However, further research is needed
to address challenges related to data privacy, availability and model interpretabil-
ity. With continued advancements in deep learning, we can expect more innovative
applications in the field of ubiquitous healthcare systems in the future.

2.2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of deep learning algorithms that
are specifically designed for processing structured grid data, such as images or time
series data. CNNs have been widely used in computer vision tasks, such as image
classification, object detection, and image segmentation. The key idea behind CNNs
is to leverage the local spatial correlations present in the input data. Unlike traditional
neural networks, which treat the input data as a vector and process it using fully
connected layers, CNNs use convolutional layers to extract local features from the
data. This allows CNNs to capture the hierarchical structure of the input data and
learn meaningful representations. In a CNN, the input data is typically represented
as a multi-dimensional grid, where each element corresponds to a pixel or a time step
[147].

The first layer of a CNN is a convolutional layer, which applies a set of learnable
filters to the input data. Each filter is a small matrix that is convolved with the
input data, producing a feature map. The filters are learned through a process called
backpropagation, where the network adjusts the filter weights to minimize a given
loss function. After the convolutional layer, CNNs often include pooling layers,
which downsample the feature maps by taking the maximum or average value in a
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neighbourhood. This helps reduce the dimensionality of the data while preserving
the important features. The pooled feature maps are then passed through additional
convolutional and pooling layers to extract more abstract features.

𝑓feature (𝑡) =
𝑎max∑︁

𝑎=𝑎min

𝑥(𝑎)𝑤(𝑡− 𝑎)

The final layers of a CNN are typically fully connected layers, which take the flat-
tened feature maps as input and output the desired predictions. These layers are
responsible for making the final decision based on the learned features. The output
layer is usually a softmax layer, which produces a probability distribution over the
different classes in a classification task. One of the main advantages of CNNs is their
ability to automatically learn hierarchical representations from the data [148]. By
stacking multiple convolutional layers, CNNs can capture increasingly complex fea-
tures, which allows them to achieve state-of-the-art performance on various computer
vision tasks. Additionally, CNNs can handle input data of different sizes, thanks to
the use of convolutional operations that are translation invariant. CNNs are a power-
ful class of deep-learning algorithms that have revolutionized computer vision tasks.
By leveraging the local spatial correlations in the input data, CNNs can learn hierar-
chical representations and achieve impressive performance on image classification,
object detection, and other related tasks [131].

The key layers of a typical CNN structure are:

• Convolutional layer: This layer performs a convolution operation on the input
image to extract features. It uses a set of learnable filters (also known as kernels
or weights) to detect patterns in the input data. The filters are moved across
the input image and perform element-wise multiplication with the values in
the input image and sum them up. The output of the convolution operation is
a feature map that represents the detected features.

• Activation layer: After the convolution operation, the activation layer is used
to introduce non-linearity into the model. The activation function, such as
ReLU, applies an element-wise activation function to the output of the convo-
lution operation.

• Pooling layer: The pooling layer performs a down-sampling operation on the
feature maps to reduce the spatial dimensions and computational complexity.
It also helps to make the features invariant to small translations. Commonly
used pooling operations are max pooling and average pooling.

• Fully connected layer: The fully connected layer takes the output from the
previous layers and performs a final classification or regression. The output
from the previous layers is flattened and connected to one or more neurons,
which perform the final prediction.
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1D Convolutional Neural Networks (1D CNNs) and 2D Convolutional Neural Net-
works (2D CNNs) are types of CNNs that operate on 1-dimensional and 2-dimensional
data, respectively. 1D CNNs are used for processing sequential data such as audio
signals, text data, and time-series data. They operate on 1-dimensional signals and
convolve over time to extract features. The filters used in 1D CNNs have a width of
1 and a height equal to the number of time steps.

2D CNNs, on the other hand, are used for image classification and object recog-
nition tasks. They operate on 2-dimensional images and convolve over both height
and width dimensions to extract features. The filters used in 2D CNNs have a width
and height greater than 1, and can detect patterns in both spatial dimensions. Bidi-
rectional Convolutional Neural Networks (2D-CNNs) are a type of 2D CNNs that
process input data in both forward and backward directions. They are used for se-
quential data processing tasks where the context from both past and future is impor-
tant for making a prediction. In a bidirectional 2D CNN, the input data is processed
in two separate branches, one processing the input data in the forward direction and
the other processing it in the reverse direction. The outputs from both branches are
then concatenated and used as the input for the next layer. In table ??, characteristic
comparison of 1D, 2D and Multi-dimensional CNNs is presented.

Table 8: Comparison of 1D, 2D, and multi-dimensional networks

Feature 1D CNN 2D CNN 3D CNN (Multi-
dimensional)

Input Data time-series, signals images, spectro-
grams

video, volumetric data

Conv Filters along 1 axis along 2 axes along 3 axes
Comp Complexity Low Medium High
Spatial Context local dependencies

in 1 dims
local dependencies
in 2 dims

spatio-temporal depen-
dencies across 3 dims

Data Structure 1D arrays 2D matrices 3D tensors
Memory Require-
ments

Low Moderate High

Training Time Fast Moderate Slow
Common Applica-
tions

Signal process-
ing (e.g., ECG,
speech), NLP

Image classifica-
tion, face recogni-
tion

Video action recogni-
tion, 3D object classifi-
cation

Advantages Simple, efficient for
1D data

Effective for image-
related tasks

modeling complex data
structures

Disadvantages Limited to 1D rela-
tionships

Cannot handle tem-
poral or volumetric
data

High computational
cost, complex to imple-
ment
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2.2.2 Long Short Term Memory Networks

Long short term memory (LSTM) networks are a type of recurrent neural network
(RNN) that are designed to address the vanishing gradient problem in traditional
RNNs. LSTM networks are widely used in the field of natural language processing,
speech recognition, and various other sequence learning tasks. The vanishing gradi-
ent problem occurs when the gradients in a traditional RNN become extremely small,
making it difficult for the network to learn long-term dependencies [149; 150]. This
is especially problematic when dealing with sequences that are several steps long,
as the information from earlier steps can quickly diminish and become irrelevant.
LSTM networks overcome this issue by introducing memory cells and gating mech-
anisms. The memory cells allow the network to store and access information over
long periods, while the gating mechanisms control the flow of information within the
network.

The key components of an LSTM network are the input gate, forget gate, memory
cell, and output gate. The input gate determines which information from the current
input should be stored in the memory cell. The forget gate decides which informa-
tion from the previous memory cell should be discarded. The memory cell stores
information over time and is responsible for maintaining long-term dependencies.
Finally, the output gate determines which information from the memory cell should
be outputted as the final prediction. The gating mechanisms in LSTM networks are
implemented using 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 and 𝑡𝑎𝑛ℎ activation functions. Sigmoid functions are
used to control the flow of information, with values ranging from 0 to 1. A value
of 0 indicates that the gate is closed, while a value of 1 indicates that the gate is
open. 𝑇𝑎𝑛ℎ functions are used to regulate the values in the memory cell, allowing
for the storage and retrieval of information. During training, LSTM networks learn to
adjust the weights and biases of their gates and memory cells to optimize their perfor-
mance on a given task. This is done using backpropagation through time, where the
gradients are propagated backwards through the network to update the parameters.
By introducing memory cells and gating mechanisms, LSTM networks address the
vanishing gradient problem and have become a popular choice for various sequence
learning tasks in the field of machine learning [151].

2.2.3 Scaled-Dot-Product Attention and the Transformer Archi-
tecture

In the previous section, it was mentioned that RNNs, including LSTMs, can face
the vanishing/exploding gradient problem which can hinder learning. This problem
becomes even more pronounced when processing long sequences with long-term
dependencies. However, this problem has been addressed in the field of NLP, partic-
ularly in machine translation, through the use of encoder-decoder architecture. This
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architecture consists of two LSTMs, the encoder and decoder, which turn the input
sentence into a feature vector and then use it to produce the output sentence, re-
spectively. In 2014, Bahdanau et al. [152] introduced an attention mechanism that
allowed the decoder to focus on the most relevant parts of the input. Authors in
[153] proposed a new architecture, the transformer, that relied solely on the attention
mechanism and eliminated the limitations of RNNs. The transformer has since been
adapted and forms the basis of modern machine translation models like BERT and
roBERTa and language-based general intelligence models like GPT-2 and GPT-3.

Transformer is powered by the multi-head attention layer that uses scaled-dot-
product attention and takes three matrices as input and projects them into a subspace
through learned matrices to obtain the matrices Q, K, and V. The scaled-dot-product
attention mechanism performs a differentiable dictionary lookup using the dot prod-
uct as a similarity measure between the query and key. In Scaled-Dot-Product Atten-
tion, the relevance or similarity between two tokens is computed by taking the dot
product of their respective feature vectors. However, to ensure numerical stability
during training, the dot product is scaled by the square root of the dimension of the
feature vectors. The attention weights are then obtained by applying a softmax func-
tion to the scaled dot products. These weights indicate how much attention should
be given to each token in the sequence. The tokens with higher attention weights are
considered more relevant. The Transformer architecture is built upon the concept of
self-attention, where each token in the sequence attends to all other tokens. This al-
lows the model to capture long-range dependencies between tokens, which is crucial
for tasks such as machine translation and text summarization. In the Transformer
architecture, multiple attention heads are used to compute attention independently.
Each attention head focuses on different aspects of the input sequence, allowing
the model to capture different types of relationships. After computing the attention
weights, a weighted sum of the input tokens is computed, taking into account their
respective attention weights. This weighted sum, along with the original input token,
is then passed through a feed-forward neural network to generate the final output.
The use of self-attention in the Transformer architecture has several advantages. It
allows the model to capture both local and global dependencies, making it effective
for tasks that require an understanding of long-range relationships. Additionally,
the parallel nature of self-attention makes it highly efficient for training on modern
hardware accelerators. The Transformer architecture, built upon self-attention, has
achieved state-of-the-art performance in various natural language processing tasks
and has become a cornerstone in the field.

2.3 Summary
This chapter briefly discussed some preliminary technologies, key characteristics,
and working mechanisms. Additionally, it incorporated some latest state-of-the-art
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studies related to the proposed techniques by summarizing their main contributions
and limitations. With the emergence of ubiquitous healthcare systems based on
edge computing using distributed ledger technologies refers to healthcare infrastruc-
ture and real-time healthcare services while protecting the reliability and integrity
of available information. In recent years, the realm of edge intelligence provides
promising solution to privacy and security risks associated to ubiquitous healthcare
systems. This chapter covers blockchain technologies and their cryptographic primi-
tives. It also provides initial studies on machine learning and deep learning protocols
which we are going to use in our proposed framework.
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3 Development of Framework as
Research Environment

3.1 Overview
This chapter presents a detailed ubiquitous healthcare framework ”EdgeBot”. This
framework is a topology based on edge intelligence (implementation of machine
learning and deep learning algorithms on edge devices) leveraging private distributed
ledger technologies. To enhance the experience of ubiquitous healthcare, the frame-
work emphasizes early warning systems in critical situations, continuous monitor-
ing, and personal data storage to build patient history, enabling privacy and peer-
to-peer data sharing without using a third party. This hybrid ubiquitous healthcare
system based on edge gateways allows the extension of a private ethereum network
to resource-constrained edge devices. Edge gateways work as a bridge to provide
interaction between different layers of the network. Moreover, edge gateways can
define access control rules for their data, such as data trades and sharing with third
parties. Its versatility, scalability, and capacity to accommodate a wide range of
healthcare applications make ”EdgeBot” a competitive solution in the line of ubiq-
uitous healthcare. It is a real-time ubiquitous healthcare system that encompasses
healthcare providers, healthcare professionals (doctors), and patients. Specifically,
in-home continuous monitoring is explored from a user-centric perspective, focusing
on the growing tendency of online and quick medical care and edge-based intelli-
gence. Additionally, it focuses on data producers’ ownership rights and data owners’
privacy. The main contributions of this chapter include the following:

• We propose a ubiquitous healthcare framework, EdgeBot while preserving pa-
tients’ privacy and data security. It is a topology of edge device-level intelli-
gence (implementation of machine learning and deep learning algorithms on
edge devices).

• We construct a hierarchical architecture and computing model based on the
MAPE-K framework.

• Formulation of privacy-preserved hybrid on-chain and off-chain secure com-
munication and data access scheme.

• Utilize private distributed ledger technologies as service framework
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3.2 Proposed Framework of EdgeBot
3.2.1 Enhanced MAPE-K Model

Our proposed computing model leverages MAPE-K (Monitor-Analyse-Plan-Execute
over a shared Knowledge) [154] as an established framework to facilitate automated
management and self-adaptive behavior originally introduced by IBM [155]. The
base model consists of four distinct computing components, all with access to a
shared knowledge base. Our proposed model is an extension of the base model with
an addition to edge intelligence component. The base model is illustrated in figure
6, and the enhanced MAPE-K model is depicted in figure 7. Components of the
proposed model are described in Table 9.

Table 9: Computing Components

Component Explanation

Monitor This component, located closest to the sensing tier, is respon-
sible for acquiring and aggregating data from various sources.

Analyse The Analyse component processes and models the acquired
data, extracting meaningful insights and patterns.

Plan Based on the analysis performed by the previous component,
the Plan component constructs a procedure or strategy for
the system to follow.

Execute The Execute component is responsible for implementing the
planned procedure and executing necessary changes in the
system to achieve the desired outcome.

Edge Intelligence The Edge intelligence component takes real-time input from
monitor component, implements trained AI algorithms to
plan and execute commands according to user requirements.
It helps to automate the whole process of action by analyzing
the components. is responsible for implementing the planned
procedure and executing necessary changes in the system to
achieve the desired outcome.

The MAPE-K model facilitates efficient automated management and adaptive be-
haviour within distributed systems by incorporating these components and enabling
access to shared knowledge. The hierarchical IoT architecture uses the four com-
puting components to enable its functionality. We propose an additional component
called edge intelligence to the computing model using EGs-based intelligence to im-
plement a closed-loop technique. The role of the edge-intelligence component is to
dynamically reconfigure the system’s settings based on feedback received from the
user’s condition. The hierarchical structure of the enhanced computing model is ex-
plained in section 3.3. The perception layer encompasses the Monitor component,
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Figure 6: MAPE-K base model initially proposed by IBM [157]

which operates as an intermediary bridging the sensors and other computational en-
tities.

The gateway layer comprises three distinct components: Plan, designated for
localized decision-making; Execute, aimed at configuring system behaviour accord-
ing to pre-decided situations; and System Management, dedicated to refining system
configurations. This entity is responsible for training an inference model, referred to
as a hypothesis function, derived from user-generated data.

The Plan component implements local decisions and establishes the system’s
procedures. The initial step involves processing the streaming data received from the
system management module, including feature extraction. The Execute component,
on the other hand, is in charge of actuating the system and providing feedback to
other units. Upon detection of any abnormalities, users are promptly notified. These
notifications are also dispatched to patients and healthcare providers as part of this
process. Subsequently, the execute command proceeds to update the system man-
agement component. This allows the system’s configuration to be adjusted based on
the user’s current state. In conclusion, the computing component provides feedback
to the analysis component, such as a report on local decisions. This feedback is used
to retrain the classifier.

Distributed ledger scheme ethereum [156] is utilized at EGs level along with
its turing complete language to incorporate user instructions at EG level. Smart
contracts convey terms and conditions based on situation and threshold values. Side
chains [114] are utilized along with a private ethereum network for data storage
to enhance data reliability. Side chains work at EGs and save only hashes of data
blocks and metadata at a local level. In contrast, complete blocks are stored only in
distributed data storage locations in an encrypted form using public key encryption.
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Figure 7: Enhanced MAPE-K model by utilizing edge intelligence unit

3.3 Architecture of EdgeBot
Our proposed framework EdgeBot extends the blockchain paradigm by incorporating
side chains at edge gateways (EGs), thereby obviating the necessity for multiple net-
work layers. This approach empowers resource-constrained computing devices by
enabling them to make autonomous decisions and process data at the edge, conse-
quently eliminating the requirement for intermediaries in decision-making processes
and data processing. In addition, along with the continuous monitoring system, it
incorporates an early warning system of patients’ health; it has a process for storing
information about medical history efficiently by storing raw and processed informa-
tion to use as patient history. In practice, the data generated by sensors is filtered
before being written into the blockchain. Thus, we can reduce the blockchain size
and be able to run on gateway devices. System decision-making, threshold limits,
and agreements are incorporated by utilizing turing complete ethereum smart con-
tracts. Using smart contracts, after a specified time interval 𝑇 data is sent to EGs,
processed, and predicted using the edge-intelligence unit of our computing model
previously explained in Figure 7. In case of an emergency or unusual patterns, trig-
ger an alert to specified devices through alert notification, hospital, or any pre-defined
entity to ensure prompt treatment.

The layered architecture of EdgeBot comprises the Perception (bio-sensors), edge
gateways (single board computers, SBCs), and Application layers. The discrete func-
tions and roles of these computational components embedded within three layers are
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elucidated in figure 8.
As EdgeBot utilizes a P2P interaction topology, the devices are fully autonomous,

enabling them to interact directly with third parties and exchange data directly. Smart
contracts are used to implement policies governing data exchange, access policies
and ownership rights. It is possible to scale a system using side chains for parallel
transactions. By doing so, they also limit the bandwidth and power edge gateways
used when updating the blockchain. To secure data, the devices use an elliptic curve
integrated encryption scheme (ECIES), which generates a unique key for every saved
batch of data by utilizing a child key derivation function (CKD). Our solution also
provides double authentication for devices sending requests frequently, which makes
our solution resistant to such attacks. To share these unique keys, we have imple-
mented an elliptic curve digital signature algorithm (ECDSA) for communication.
The proposed EdgeBot architecture serves as a generic model to secure IoT data
ownership rights while preserving users’ privacy. It can be implemented in smart
home devices, the industrial internet of things (IIoT), smart health applications (in-
cluding precision medicine, clinical trials, or accuracy diagnosis), knowledge-based
systems, or developing different IoT products. The components and functionalities
of each layer are explained in the next sections.

3.3.1 Perception Layer

Perception layer includes individual sensors, cameras, actuators, or other light nodes
that possess too little computational capabilities to participate in a network for data
processing, trade, and participation in the blockchain network directly. While the
term ”perception layer” is not commonly used in IoT architecture literature, it likely
refers to the specific devices within the perception layer that are responsible for cap-
turing and interpreting data from the environment. For instance, in uHealth, sensors
might measure vital signs like heart rate, blood pressure, or oxygen levels. They
are designed to interact with the physical world and convert those interactions into
digital signals that can be processed by the system. This layer is essential because it
provides the initial input that informs higher levels within the framework. As a re-
sult, sensor nodes rely on the EGs they are connected to, which act as intermediaries
between the perception and application layers.

3.3.2 Edge Gateways

EGs consist of a local network (BLE, radio access points, wifi) and single-board
computers such as Raspberry Pis or Intel UPs with sufficient computing power to
run algorithms designed for devices with limited resources. EGs incorporate differ-
ent roles, such as miner nodes and manager nodes (in terms of blockchain network),
which work as arbitrators, regulatory authorities, and transaction and data handlers
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Figure 8: Proposed Computing Model of EdgeBot

for the ethereum blockchain. The manager nodes represent most of the network
nodes that are autonomously operated (pre-defined smart contracts or scripts), as
well as cloud services and applications running on other high-performance comput-
ing platforms. Due to their large number of parallel operations, they require higher
computational capabilities. EGs provide the final link between the perception layer
and the application layer. EGs can connect to local networks and are located at the
edge of every sidechain. A private ethereum network, TESTRPC, has been used to
verify the proposed smart contract. These edge gateways in sidechains store data
hash as records of previous data batches and validation records. The Analyze com-
ponent of the computing model describes them in detail. To reduce the vulnerability
of data compromise, sensor nodes are connected to only one edge gateway. An ad-
versary may only be able to gain access to one particular edge gateway if one sensor
node has been compromised. In this way, single encrypted connections provide in-
creased levels of data security, ensuring the right to access and own data and adding
sensor nodes to the backbone chain of EdgeBot’s network. On the other hand, the
manager nodes can communicate without any external supervision with any other
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manager nodes in the network in an entirely autonomous manner. The nodes can
also be configured to act as customized access control points.

3.3.3 Blockchain Layer

The blockchain layer works as a service layer at EGs and the application layer.
Ethereum private network is created at the application level, and side chains are in-
corporated at EGs level. Sidechains are separate blockchains that run parallel to the
main network, connect to it through a two-way bridge, and are designed for efficient
transaction processing. Sidechains work independently, having different histories,
development roadmaps, and design considerations. Validator nodes on sidechains
verify and process transactions, produce data blocks, broadcast block hashes, and
store the network state. They are also responsible for maintaining consensus across
the network and securing it against malicious attacks. Sidechains are an effective way
to increase the capacity of the ethereum network, offering efficient and cheap transac-
tion processing. However, they do involve trade-offs. While they help scale the net-
work, they sacrifice some of the decentralization and security inherent to ethereum.

The process of adding new transactions to the blockchain is governed by the con-
sensus process. Various consensus algorithms have been utilized by researchers and
explained previously in Chapter 2. We employ ’proof of stake’ (PoS) in our proposed
architecture to update the blockchain. The process begins with network participants
generating transactions with the collected data to form a block. Next, nodes sign the
transaction using a private key and broadcast it to the network. When the network
receives a block, trusted nodes locate the source public key to verify the signature.
Following successful signature verification, the trusted nodes assess the media ac-
cess control (MAC) address and compare it to the received one for a second round of
evaluation. After successful authentication, the trusted nodes broadcast the validated
blocks with PoS identification. Then, individual network users verify the PoS infor-
mation to add blocks to the chain. Upon accepting a valid block, the user calculates a
hash value to link the next block and retrieves the previous block’s hash value to store
in the current block. The PoS approach adheres to a traditional blockchain working
model with lightweight block verification. It eliminates the reverse hash function
used in the PoW approach, making the transaction process lighter. As a result, the
ethereum network can be efficiently integrated with resource-constrained devices in
EdgeBot.

3.3.4 Application Layer

A top-level layer of the architecture is the application layer. Data owners, buyers, and
health professionals are provided with different interfaces. It refers to the data access
layer for third parties and the data storage infrastructure employing the blockchain
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and an IPFS network. Our method suggests a fully distributed architecture that elim-
inates centralized third parties needing to handle or store patient data. However, due
to the high cost, storing all health data on the blockchain is not feasible. As a result,
we have opted to use a distributed storage system like IPFS for most health data stor-
age. The data stored in IPFS is identified by its hash, which is permanently stored
in the blockchain’s smart contract. Users who need the data can refer to the smart
contract, find the hash, and request the corresponding health record from IPFS, en-
suring secure and immutable data storage. Blockchain is a database that is shared,
append-only, fault-tolerant, and distributed. It keeps a collection of records or blocks
that are transparent and accessible to all nodes in the blockchain. However, these
blocks are immutable and cannot be deleted.

In the system proposed, the blockchain network serves four purposes: (1) it ver-
ifies the authenticity of health professionals through a smart contract, (2) it records
patients’ health records metadata and ensures they are only accessible to authorized
healthcare professionals, (3) it provides resilience against data breaches and avail-
ability failures, and (4) it provides peer-to-peer data exchange and trade topologies
and gives a complete right of transaction policies to the owner of data. The InterPlan-
etary File System (IPFS) is a protocol for storing distributed data in a peer-to-peer
network. Files stored in an IPFS-based network are referenced by a unique hash
calculated from their content. These files are immutable, meaning if a file is altered,
IPFS treats the altered file as a new object and calculates a new hash. The IPFS
network is utilized here due to the high financial cost of storing large files on the
blockchain. In this scenario, the IPFS network stores the health records, while the
blockchain only stores the data hash and metadata.

The data users are those who have been granted appropriate authorization by the
patient, such as doctors, dentists, nutritionists, specialized clinics, and others. Data
buyers refer to the entities that buy some portion of data for research and develop-
ment purposes without knowing the identities of data owners. In terms of commu-
nication, processing, and data dealing, the ethereum network is used as a service
platform for running smart contracts. Generating a genesis file enables the creation
of a private ethereum blockchain network. As part of the device addition process, a
pair of public and private keys are generated, which are then used to identify each
edge gateway in the network.

3.3.5 Proposed Access Scheme

To implement secure communication based on TLS 1.3, we incorporate the Ky-
ber512 [158] key encapsulation method and dilithium3 [159] as the digital signa-
ture algorithm for a robust and secure approach to sharing private keys of encrypted
data blocks. This scheme leverages the strengths of cryptographic techniques to
ensure the confidentiality, integrity, and authenticity of private keys while allowing
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authorized nodes to access them when needed. Kyber is known for its post-quantum
security and plays a pivotal role in this access scheme by encapsulating private keys.
When a node wants to access a private key, Kyber generates a secure encapsulation,
which is transmitted over the network. The encapsulation process ensures that even
if an eavesdropper intercepts the communication, it cannot derive any meaningful
information about the private key without the appropriate decryption key, which re-
mains securely stored on the target node.

Dilithium3, on the other hand, is employed as the digital signature algorithm to
authenticate the access request. When a node seeks access to a private key, it sends
a request accompanied by a digital signature generated using dilithium3. This sig-
nature serves as proof of the authenticity and authorization of the request, making it
highly resistant to forgery or tampering. Upon receiving the request and the associ-
ated dilithium signature, the recipient node can verify the signature’s validity using
the corresponding public key. If the signature is valid, the requestor is authorized to
access the private key encapsulated by Kyber. Only then is the encapsulated private
key decrypted and made available by the requesting node. This combined use of Ky-
ber and dilithium ensures a multi-layered security approach. Kyber safeguards the
confidentiality of the private key during transmission, while dilithium guarantees the
authenticity and authorization of the access request. The scheme provides a robust
solution for securely sharing private keys within a networked system, even in the
face of potential threats, thereby bolstering the overall security and integrity of the
network.

Data is encrypted using AES-128 [160] along with its child derivation keys
(CKD) [161] before storing in some storage place. This randomly generated mas-
ter key from AES128 serves as the foundation of the encryption scheme. Once the
master key is established, the system proceeds to derive a child key, which is used
specifically to encrypt the data batch. To do this, we employ HMAC-based Key
Derivation Function (HKDF) [162] to incorporate additional contextual information,
such as a unique identifier for the data batch or other relevant details. This combined
input is hashed using a secure hashing algorithm, creating a new, distinct child key
unique to the data batch. This child key derivation process ensures that each data
batch is encrypted with its key, enhancing security.

With the derived child key, the system encrypts the data batch symmetrically
using the AES encryption algorithm after a defined time interval 𝑇 . This involves
cypher Block Chaining and a randomly generated Initialization Vector (IV). The data
is also padded to match the AES block size and then encrypted with the child key
and IV. The resulting ciphertext, along with the IV, is stored together. This approach
ensures that even if one child key is compromised, the security of other data batches
remains intact, as each batch is encrypted with a unique and derived child key. This
encrypted data can now be safely stored on a distributed storage device. We use
python libraries 𝑐𝑟𝑦𝑝𝑡𝑜, ℎ𝑚𝑎𝑐 and ℎ𝑎𝑠ℎ𝑙𝑖𝑏 to implement our proposed data access
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scheme.

3.4 Summary
This chapter introduces EdgeBot, a comprehensive framework for ubiquitous health-
care, focusing on edge intelligence, which involves deploying machine learning and
deep learning algorithms on edge devices. The framework leverages private dis-
tributed ledger technologies to enhance early warning systems, continuous monitor-
ing, and personal data storage, enabling patient history creation and secure peer-to-
peer data sharing without intermediaries. EdgeBot extends a private ethereum net-
work to resource-limited edge devices, using edge gateways to facilitate interaction
between network layers and define data access controls. The system supports real-
time healthcare, particularly in-home continuous monitoring, aligning with the in-
creasing demand for online medical care and edge-based intelligence. The chapter’s
key contributions include proposing the EdgeBot framework, establishing a hierar-
chical architecture based on the MAPE-K model, and developing a privacy-preserved
hybrid communication scheme using private distributed ledger technologies. This
framework emphasizes patient privacy, data security, and ownership rights, offering
a scalable and versatile solution for diverse healthcare applications.
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health monitoring system

This chapter presents the implementation of our proposed framework EdgeBot as a
continuous monitoring system of individuals along with edge-level intelligence for
quick medical aid. It uses methods with minimal computational demands suitable
for patient self-monitoring and preventive healthcare utilizing IoT devices. More-
over, this implementation includes the storage of processed medical information of
individuals utilizing a private blockchain network, ethereum, for patient history. This
medical information can be shared with legal guardians of patients, personal doctors,
and for research purposes in an anonymous way while protecting individuals’ pri-
vacy.

The system utilizes a range of bio-sensors, including a heart rate sensor, temper-
ature & humidity sensor, and an ECG monitoring system for detecting abnormalities
and identifying arrhythmias. Contextual sensors are strategically placed throughout
the home to observe the patient’s surrounding environment and physiological sig-
nals. The integration of advanced technologies in smart monitoring systems and the
continuous generation of data is crucial for promoting health and independence, par-
ticularly in the context of the growing elderly population and remote inhabitants. It
is widely acknowledged that chronic diseases become more prevalent with age, and
a significant proportion of individuals with chronic ailments are aged over 65 years.
Initially, a linear Support Vector Machine (SVM) approach is employed to execute
abnormality detection via simple binary classification on the signal. In a separate
scenario, resource-efficient 1-directional convolutional neural network is proposed
and employed as a deep learning algorithm to identify various arrhythmias, consti-
tuting a multi-class classification task. The main contributions of this chapter include
the following:

• Machine learning algorithms deployed at the edge device level for rapid anomaly
detection.

• We propose a resource-efficient 1-directional convolutional neural network
(1D-CNN) for multiclass classification of arrhythmia.

• Implementation of real-time anomaly detection and arrhythmia classification
using 2-channel ECG systems.

46



Edge-Intelligence to secure privacy in health monitoring system

• Ethereum based private blockchain network integration at edge gateways level.

• Extensive set of experiments are carried out to authenticate the efficiency of
our proposed system.

4.1 Proposed Optimized 1DCNN
We proposed resource-optimized one directional convolutional neural network (1D-
CNN) architecture for the ECG Arrhythmia classification at the edge device level.
This architecture comprises two main components: the extraction phase and the
classification phase. The extraction phase encompasses batch normalization, con-
volution, activation, and max-pooling layers, while the classification phase is char-
acterized by flattened, fully-connected, and softmax layers.

The 1D-CNN architecture accepts an input matrix of dimensions 𝑀 *𝑁 , where
𝑀 represents the length of the time window under consideration, and 𝑁 denotes
the number of ECG channels. The initial step involves applying a batch normaliza-
tion layer, which aims to standardize the input data by minimizing internal covariate
shifts. Each 1D convolutional layer employs a kernel of variable dimensions 𝑄 *𝑁 ,
where 𝑄 signifies the temporal window that the filter covers. These kernels move
exclusively along the elements of a single dimension of the input pattern. In the one-
dimensional convolution layer, each neuron is connected to a local window from the
preceding layer, referred to as the receptive field, which shifts along the time axis
and shares synaptic weights. The mathematical representation of a 1D convolutional
layer is as follows:

𝑦𝑟 = 𝑓

⎛⎝ 𝑄∑︁
𝑞=1

𝑁∑︁
𝑛=1

𝑤𝑞𝑛𝑥𝑟+𝑞,𝑟+𝑛 + 𝑏

⎞⎠ (6)

where 𝑦𝑟 is the output of unit 𝑟 of the filter feature map of size 𝑅 (R equals to M
in the case where stride=1), 𝑥 is the two-dimensional input portion overlapping with
the filter, 𝑤 is the connection weight of the convolutional filter, 𝑏 is the bias term, and
𝑓 is the activation function of the filter, which in this case is 𝑟𝑒𝐿𝑢.

This model facilitates the reduction of the number of weights and aids in the
generalization process. The neurons oriented vertically represent the evolution of
the input data over time, which is dependent on the receptive field and delay values.
The number of neurons along the horizontal axis can be manually defined, enabling
the transformation of input features into a higher-order sequence. For each neuron,
the rectified linear unit function (reLu) is applied to return the weighted sum of the
input data if it is positive and zero otherwise.

To calculate the dimension of the filter feature map after the convolution opera-
tion (𝑅), the following formula can be utilized:
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Figure 9: Resource efficient 1-D Convolutional neural network

𝑅 =
[︂

𝑀 − (𝐾 − 1) + 2
𝑆

]︂
(7)

𝑆 is the stride (the number of positions skipped by each shift of the filter during
convolution).

The overall features of the CNN architecture are depicted in figure 9. Batch nor-
malization (BN) is applied, which involves normalizing the input to the next layer,
typically leading to a significantly increased learning speed and notable regulariza-
tion effects that enhance the network’s generalization. BN operates differently during
training and testing. During training, BN normalizes and zero-centers the input based
on the entire batch, allowing the model to learn the optimal scaling of the input.

To normalize and zero center, the input BN estimates the parameter dependent
mean 𝑚𝑢 and variance 𝑠𝑖𝑔𝑚𝑎2 computed over the batch. The zero-centered nor-
malized value ℎ𝑎𝑡𝑋(𝑖) for each instance is computed as 𝑥𝑖 = 10−5 to avoid zero
divisions. BN adds a further step during training, using trained parameters, to further
scale and offset the values as needed.

During testing, the mean 𝜇 and variance 𝜎2 parameters cannot be computed based
on the batch, so the algorithm uses the values computed with a moving average
during training.

𝜇 = 1
𝑏

𝑏∑︁
𝑖=1

X(𝑖)

𝜎2 = 1
𝑏

𝑏∑︁
𝑖=1

(︁
X(𝑖) − 𝜇

)︁2
(8)

In the context of batch normalization (BN), the number of instances in the batch
is denoted by 𝑏, and each instance is represented by 𝑋(𝑖). Following the computa-
tion of the zero-centered normalized value �̂�(𝑖) for each instance, BN introduces an
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additional step during training. This step utilizes trained parameters to further scale
and offset the values as required.

�̂�
(𝑖) = 𝑋(𝑖) − 𝜇√︀

𝜎2 + 𝜉
. (9)

The element-wise multiplication, denoted by ⊗, involves multiplying each input
value by the corresponding scaling parameter, denoted by 𝛾. The offset parameters,
denoted by 𝛽, are also learned during training. This process allows for the optimal
scaling and shifting of the normalized values, enhancing the network’s performance
by adjusting the distribution of inputs to fall within a specific range, thereby facili-
tating more effective training.

z𝑖 = 𝛾 ⊗ �̂�
(𝑖) + 𝛽 (10)

The second convolutional layer is with the same parameters as the first convolu-
tional layer. Pooling is crucial for CNNs to reduce the input size, and decrease the
required computation, and the number of network parameters.

Furthermore, this size reduction tends to make the representation space invari-
ant concerning small translations of the input, allowing the network to recognize
specific patterns at different locations within the feature map. A one-dimensional
max-pooling layer is applied to preserve, for each activation map, the neuron with
the higher value. The classification part is analogous to a multi-layer perception.

𝑦
(𝑙)
𝑗 = 𝑓

(︃
𝐼∑︁

𝑖=1
𝑤

(𝑙)
𝑗𝑖 · 𝑥

(𝑙−1)
𝑖 + 𝑏

(𝑙)
𝑗

)︃
(11)

This is followed by a flattened layer that reshapes the matrix input into a vector
to support the processing of the subsequent non-spatial layers. The flattening layer
consists of converting the data of the extraction part into a 1D-vector format. One
hidden layer with the dropout function is implemented, and the neurons of the output
layer correspond to the classes of heartbeats disease. Each unit activation 𝑦𝑗(𝑙) is
computed as follows:

𝑓(𝑥) =
{︃

𝑥, if 𝑥 > 0
0.01 · 𝑥, otherwise

. (12)

𝑦𝑖 = argmax
(︃

𝑒𝑦𝑖∑︀5
𝑖=1 𝑒𝑦𝑖

)︃
. (13)

In the simplest case, each unit is retained with a fixed probability 𝑝 independent
of the other units. The output layer nodes of the proposed model represent 5 different
heartbeat groups as specified by the Association for the Advancement of Medical
Instrumentation (AAMI) standard.
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4.1.1 Hyperparameters Optimization

The optimization of hyperparameters is crucial in determining both the efficiency
and effectiveness of a model. In the proposed classification framework, a one-
dimensional convolutional neural network (1D-CNN) architecture is utilized after
its hyperparameters optimization. This architecture, a variant of the CNN, operates
with neurons represented as queues, facilitating the exchange of positive and negative
”signals” or ”particles.” Unlike other neural network models, CNNs are grounded in
a rigorous mathematical framework, supported by extensive theoretical results that
describe their behavior. To optimize the performance of the CNN model, several
key hyperparameters must be carefully fine-tuned. We utilise bayesian optimization
(BO), a probabilistic technique designed to globally minimize a black-box objec-
tive function for hyperparameters optimization. The BO framework consists of three
essential components: a surrogate model update, a Bayesian update process, and
an acquisition function. The surrogate model approximates the objective function
based on all evaluated points and is iteratively updated using the Bayesian process
after each new evaluation. The acquisition function then guides the next evaluation.

Let 𝑓 : 𝒳 → R be the objective function we aim to minimize (or maximize),
where 𝒳 ⊂ R𝑑 is the space of hyperparameters.

The surrogate model 𝑓 approximates the true objective function 𝑓 based on a set
of observed data points 𝒟𝑡 = {(x𝑖, 𝑦𝑖)}𝑡

𝑖=1, where x𝑖 are hyperparameter settings
and 𝑦𝑖 = 𝑓 (x𝑖) + 𝜖𝑖 are the corresponding noisy observations (with 𝜖𝑖 ∼ 𝒩

(︀
0, 𝜎2)︀

).
BO can employ various surrogate models, such as Gaussian Processes (GP) or

sequential optimization using decision trees, alongside different acquisition func-
tions, including Expected Improvement (EI), Lower Confidence Bound (LCB), and
Probability of Improvement (PI). In this study, GP is used as the surrogate model and
EI is the acquisition function.

• Gaussian Processes (GP): GP is a widely recognized and powerful proba-
bilistic model, valued for its descriptive power and analytical tractability. GP
assumes that any finite set of random variables follows a multivariate normal
distribution. Specifically, GP posits a priority that the probability distribution
𝑃 (𝑓 (𝑥1) , 𝑓 (𝑥2) , . . . , 𝑓 (𝑥𝑛)) for a finite collection of points 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈
R𝑑 follows a multivariate normal distribution with a mean function 𝜇(𝑥) and a
covariance function 𝑘 (𝑥, 𝑥′), where 𝑘 is a positive definite kernel, such as the
squared exponential, rational quadratic, or Matern kernel.

• Expected Improvement (EI): The El acquisition function balances the trade-
off between exploration and exploitation, determining the next evaluation point
for optimization. El is defined as 𝐸𝐼(𝑥) = E [max (0, 𝑓(𝑥)− 𝑓 (𝑥+))], where
𝑓 (𝑥+)is the best-observed value and E[𝑓(𝑥)] represents the expected function
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values at 𝑥. The improvement is 𝑓(𝑥)− 𝑓 (𝑥+)if it is positive; otherwise, it is
zero.

4.1.2 Performance evaluation metrics

The performance evaluation of the proposed multi-class classification model is un-
dertaken using a comprehensive set of assessment metrics, including accuracy, pre-
cision, recall, F1 score, computational capacity, resource utilization, and latency. By
employing this diverse array of evaluation criteria, the study achieves a detailed un-
derstanding of the model’s effectiveness.

• Accuracy (AC): Accuracy measures the proportion of correctly classified in-
stances across all five arrhythmia classes within the dataset. It represents the
percentage of instances where the model correctly identifies the type of ar-
rhythmia. Accuracy is mathematically represented as:

AC = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

• Precision (PR): Precision calculates the proportion of correctly identified in-
stances of a particular arrhythmia class relative to the total number of instances
classified as that class. For each class, precision provides insight into the
model’s ability to avoid false positives. Precision is mathematically repre-
sented as:

PR = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃

• Recall (RC): Recall determines the ratio of correctly identified instances of a
specific arrhythmia class to the total number of actual instances of that class
(true positives plus false negatives). Recall provides a measure of the model’s
ability to capture all relevant instances for each class. Recall is mathematically
represented as:

RC = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁

• F1 Score: The F1 score computes the harmonic mean of precision and recall
for each arrhythmia class, offering a balanced measure that considers both
false positives and false negatives. This metric is particularly useful when
dealing with imbalanced class distributions. The F1 score is mathematically
represented as:

F1 = 2× PR × RC
PR + RC
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• Macro Average: Macro averaging calculates the average performance metric
independently for each class and then takes the arithmetic mean of these indi-
vidual metrics. In this approach, each class is treated equally, regardless of its
size. - Macro Precision (Macro PR): The arithmetic mean of precision values
across all classes.

Macro PR = 1
𝑁

𝑁∑︁
𝑖=1

PR𝑖

- Macro Recall (Macro RC): The arithmetic mean of recall values across all
classes.

Macro RC = 1
𝑁

𝑁∑︁
𝑖=1

RC𝑖

- Macro F1 Score (Macro F1): The arithmetic mean of F1 scores across all
classes.

Macro F1 = 1
𝑁

𝑁∑︁
𝑖=1

F𝑖

Where 𝑁 is the number of classes, and PR𝑖, RC𝑖, and F 1 are the precision,
recall, and F 1 scores for class 𝑖, respectively.

• Weighted averaging accounts for the different class sizes by computing a weighted
mean of the performance metrics, where the weight of each class is propor-
tional to the number of true instances in that class. Weighted Precision: The
weighted mean of precision values across all classes, with weights proportional
to the number of instances in each class.

Weighted PR =
𝑁∑︁

𝑖=1
𝑤𝑖 × PR𝑖

Weighted Recall: The weighted mean of recall values across all classes, with
weights proportional to the number of instances in each class.

Weighted RC =
𝑁∑︁

𝑖=1
𝑤𝑖 × RC𝑖

Weighted F1 Score: The weighted mean of F1 scores across all classes, with
weights proportional to the number of instances in each class.

Weighted F1 =
𝑁∑︁

𝑖=1
𝑤𝑖 × F𝑖

Where 𝑤𝑖 is the proportion of instances belonging to class 𝑖 in the entire
dataset, calculated as:

𝑤𝑖 = Number of instances in class 𝑖

Total number of instances in the dataset
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4.2 Experimental Setup

To monitor vital signals like heart rate and pulse, we use the Photoplethysmogra-
phy sensor MAX30100 along with ESP8266-12E WiFi module. It employs a pair
of LEDs (red and infrared) and a photodetector, complemented by optimized op-
tics and low-noise analogue signal processing techniques, to detect pulse oximetry
and heart rate signals. It uses 1.8V or 3.3V power supplies and features a pro-
grammable power-down mode, which allows for negligible standby current. This
feature offers the convenience of maintaining a constant power supply connection.
The MAX30100 is commonly found in fitness assistant devices, medical monitor-
ing devices, and other wearable technology. Its integrated LEDs, photo sensor, and
high-performance analogue front end make it straightforward and user-friendly. Its
compact form factor (5.6mm x 2.8mm x 1.2mm 14-Pin optically enhanced system-
in-package) renders it suitable for wearable devices.

To optimize power management and facilitate energy savings, this system in-
corporates programmable settings for sample rate, LED current, and an ultra-low
shutdown current, typically resting at 0.7𝜇A. Additional standout attributes encom-
pass a high signal-to-noise ratio (SNR), integrated ambient light cancellation, and a
capability for high sample rates. The experiments are conducted on 18 individuals
aged 20 to 52 years in a room with multiple readings. RR and HR values from a
random sample of 25 minutes recording with 500 Hz are depicted in figure 10. The
infrared module and DHT11 sensor are used for environment monitoring. Figure
11 illustrates the pin configuration of the MAX30100, infrared sensor and DHT11
sensor.

Figure 10: RR and HR values from random sample of 25 minutes ECG recording
with 500 Hz sampling rate and 12 bits resolution
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Figure 11: Sensors Experimental Setup: PPG, Infrared Sensor, and DHT11 Sensor

4.2.1 ECG monitoring

Cardiac signal surveillance plays a critical role in the early diagnosis and prevention
of cardiovascular diseases, with electrocardiography (ECG) being a key tool for such
identification. This technique records the heart’s electrical activities during a cardiac
cycle, the resultant bioelectrical activity leads to variations in the skin’s electrical po-
tential, detectable via specialized instruments called electrocardiographs. Electrodes
are thoughtfully positioned on the skin to capture this phenomenon. The output,
termed an ECG, is a visualization of these potential discrepancies, a cornerstone
of cardiological evaluations conducted by medical professionals. ECG monitoring
systems are categorized based on electrode count, yielding designations like 3-lead,
5-lead, and 12-lead ECG systems. Widely employed in healthcare centres, these non-
invasive devices capture vital cardiac information. Pre-hospital settings commonly
use 3-lead systems, while hospitals prefer systems with additional leads for more
comprehensive data.

Figure 12 section (c) depicts a representative ECG cycle comprising distinct
waves – Q, R, S, P, T, and U. Each wave signifies specific cardiac events, with Q, R,
and S being consistently prominent, while the U wave’s appearance may vary.
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Figure 12: Raw and Processed HR fragments

To assess our proposed architecture, we examined real-time arrhythmia detection
via continuous monitoring of cardiovascular patients. The framework includes an
early warning system and an arrhythmia classification system. We compared two
distinct testbeds against the baseline ECG system using PSG and its electrodes for
reference.

4.2.2 First Testbed

In our first testbed, a 2-channel ECG system is employed, with the perception layer
anchored by the AD8232, a specialized signal conditioning block tailored for elec-
trocardiogram (ECG) and heart rate monitoring. The EGs consist of Arduino UNO,
STM32F427, and Raspberry Pi 3. The sensor node AD8232 captures data and trans-
mits it to the edge gateway node. An ECG feature extraction service is implemented
within the edge gateway to derive crucial parameters like heart rate, P wave, and T
wave from the ECG signal. This service follows the structure outlined in Figure 13,
progressing through several stages: movement artifact removal, wavelet transforma-
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tion, threshold estimation, and P wave and T wave detection.

a


c


b


d


Figure 13: ECG Extraction Cycle

The movement artifact removal phase employs band-pass and moving average
filters to counter environmental noise (e.g., 50 Hz power-line noise). The filtered data
then enters the wavelet transformation, where the Daubechies-4 wavelet is chosen
due to its efficiency in extracting P-wave and T-wave components without excessive
computational delay. Thresholds for identifying R, P, and T waves are determined
based on the wavelet transformation results, with R wave thresholds generally higher
in millivolts compared to P and T waves. For instance, 1 mV might be set as the R
peak threshold in the lead I, while thresholds of 0.08 mV and 0.1 mV are used for
P and T waves in the lead II, respectively. These values can vary depending on the
specific ECG leads utilized. The heart rate is computed using the R-R interval infor-
mation derived from these thresholds, applying the formula:

𝐻𝑒𝑎𝑟𝑡𝑟𝑎𝑡𝑒 = 60/𝑅−𝑅𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
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Figure 14: ECG sample collection

The proposed ECG feature extraction, driven by wavelet transformation, effi-
ciently employs network bandwidth. The complete ECG feature extraction cycle is
shown in figure 13. At each discrete wavelet transform level, the data sample count
is halved. Instead of storing the raw ECG data, emphasis is placed on preserving
data following the wavelet transformation and the associated coefficient values. This
approach significantly conserves network bandwidth between 40% and 80%, contin-
gent on the wavelet transformation types and levels, while potentially introducing a
minor uptick in system latency. The selection of wavelet transform types and lev-
els should be carefully calibrated based on specific application needs to minimize
potential errors in the inverse transformation process.

In essence, deploying the ECG feature extraction service within EGs, employing
the outlined template and wavelet transformation methods, facilitates accurate real-
time monitoring of vital parameters while resourcefully optimizing network assets.

Second Testbed Figure 14 illustrates our proposed testbed system configuration,
outlining the component arrangement and person’s positioning during ECG data col-
lection. The setup encompasses an ECG front end, an embedded software module,
and additional elements on the right side. Three electrodes, the positive electrode,
negative electrode, and driven right leg (DRL) to detect electro potential changes due
to cardiac electrical activity.

The ADS1292r serves as the electric signal converter for capturing the ECG
signal in this system. The hardware is equipped with two 32-bit microcontrollers
(MCU), namely the STM32F401CCU6 and STM32F103C8T6 from ST Electron-
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ics. Additionally, it incorporates digital-to-analogue converters (DAC) MCP4921,
general-purpose operational amplifiers (OPAMP) LF353, and a wye resistor network.
The STM32F401CCU6, belonging to the ARM Cortex-M4 Cores family, operates at
84 MHz, offering a balance of cost-effectiveness and high performance. It features
standard communication peripherals such as SPI, I2C, USB, USART, and CAN. The
MCU includes a single-precision floating-point unit for rapid calculations, digital
signal processing instructions, and two analog-to-digital converters. The DACs are
configured to operate with an external voltage reference, receiving clock signals up
to 20 MHz from the MCU. A stable DC supply powers the DACs, providing the
necessary external voltage reference of +5 V.

To minimize noise impact on signal integrity, a bypass capacitor is introduced.
ECG waveforms with amplitudes tenfold larger than real ECG amplitudes, including
offset levels simulating baselines, are generated. The converter outputs undergo a
non-inverting amplifier stage to ensure physiologically consistent amplitudes. This
amplifier, comprising general-purpose operational amplifiers and resistors (R1, R2,
Rg, and Rf), produces differential output signals with low offset voltage and mini-
mal noise. The design generates ECG waveforms within the 0.5 mV to 4 mV range,
exhibiting low noise and limited offset effects. Data transmission from the module
occurs via the serial peripheral interface (SPI) and is sent to EGs. Three electrodes
are strategically positioned: the positive electrode on the left arm, the negative elec-
trode on the right arm, and the DRL on the right arm, with a horizontal separation of
about 5 cm. The RLD electrode enhances the common mode rejection ratio (CMRR)
by transmitting the common mode signal of the two sensing electrodes back to the
user’s body. The analogue front end integrates the ADS1292, a programmable gain
amplifier (PGA), an analogue-digital converter (ADC), and an RLD circuit.

Post-acquisition, data is transmitted to data transmission modules via SPI. The
MCU and Wi-Fi module then transmits signals via Wi-Fi to the user interface. A
xiaomi power bank supplies power to the hardware system, utilizing the ESP32’s
built-in WiFi module for communication. During measurements, some subjects were
supine and instructed to relax muscles, minimizing muscular artefacts and evaluating
pure ECG quality. High-pass and low-pass filters with cutoff frequencies of 0.1 Hz
and 200 Hz were implemented in the measurement electronics. After digitization at
an 800 Hz sampling frequency, notch filters at multiples of 50 Hz were used to elim-
inate power line interference. Expectedly, movement introduces diverse movement
artefacts in the ECG signal, particularly muscular artefacts and baseline shifts. How-
ever, these can be mitigated effectively through digital signal-processing techniques.

Data collection duration varied based on participant age groups, dividing data
into chunks of 10 minutes for young individuals and 5 minutes for elderly partici-
pants. Collection was conducted in shorter segments of 2, 5, and 10 minutes each.
Figure 15 shows an example of the ECG cycle collected through the second testbed
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Figure 15: ECG extracted cycles (a) Extracted ECG using PSG Device (b) Extracted
ECG using proposed system

ECG collection process.

4.2.3 Performance Analysis

Analyzing ECG signals for cardiovascular health assessment relies on crucial pa-
rameters like heart rate (HR) and RR intervals. HR, quantified in beats per minute
(bpm), is deduced by measuring the time between consecutive R peaks in an ECG
signal. On the other hand, the RR interval signifies the time span between successive
R peaks. It verifies the regularity of the heart’s rhythm, highlighting irregularities
such as arrhythmia. Figure 16 shows raw signals, processed signals, ECG wave and
RR interval of the extracted ECG cycle.

To ascertain the precision and credibility of the proposed ECG device, a com-
parison of HR and RR interval measurements against those obtained from a standard
Polysomnography (PSG) device [163] is crucial. PSG monitors a spectrum of phys-
iological aspects, including ECG, to present a comprehensive health snapshot. The
robust alignment between measurements from the cost-effective home-based ECG
collection system and those from the PSG device validates the accuracy and depend-
ability of the proposed system in HR and RR interval monitoring. The accuracy and
precision of derived measurements can be influenced by the duration of ECG data
collection. The optimal data collection duration hinges on the specific application or
context in which the information is being acquired. Figure 17 shows HR non-linear
analysis of non-linear dynamics of heart rate intervals over 25 minutes of sampling.

59



Anum Nawaz

a


c


b


d


Figure 16: (a) Raw signals, (b) Processed signals, (c) ECG wave and (d) RR interval
of the extracted ecg cycle.

It is used to detect abnormalities over abnormal autonomic regulations and makes it
easier to spot deviations from normal heart behaviour. It provides a statistical sum-
mary of heart rate variability, helping clinicians assess short- and long-term dynam-
ics, detect abnormalities, and understand the complex interactions of the autonomic
nervous system with heart function.

A comparative evaluation was conducted between the proposed system and a
baseline configuration employing a conventional observe decide act (ODA) control
strategy [164]. Data was gathered within the perception layer in the baseline setup
and subsequently transmitted to a cloud server for analysis and decision formulation.
The resultant decision vector and notifications were then relayed to the end-user. The
computational load in this baseline architecture centred on the cloud server, with
the gateway device primarily serving as a communication conduit between the two
distinct layers. Moreover, we extended the proposed model as edge intelligence by
implementing lightweight machine algorithms for efficient and secure information
management and privacy protection in healthcare data.
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Figure 17: Poincaré plot to represent HR Non linear analysis

4.3 Early warning system

The real-time push notification service serves to promptly notify designated indi-
viduals (e.g., guardians) of detected abnormalities, ensuring swift responses such as
immediate first-aid interventions. This service triggers notifications upon detecting
abnormal heart rates or ECG signals (e.g., prolonged P waves or elevated T wave
amplitude). Additionally, notifications are dispatched if the internal temperature of
a smart gateway surpasses a predefined threshold or if the gateway ceases to receive
incoming data from sensor nodes over a specified period. The content and priority
level of push messages vary based on specific events. For instance, a heart rate ex-
ceeding 80 bpm triggers a priority level 1 message, while a heart rate above 120 bpm
prompts a priority level 3 message. Depending on the application, push notifications
can be executed and activated at the gateway level.
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Figure 18: Confusion Matrix for Abnormality Detection using ECG signal process-
ing (a) Abnormality Detection Accuracy using SVM (b) Abnormality De-
tection Accuracy using Naive Bayes

In the proposed systems, the push notification service harnesses binary classifi-
cation, distinguishing normal and abnormal beats in the initial stage to prompt first
aid actions.

To validate the system’s effectiveness, the model was trained using physiobank
databases [165], and real-time testing using collected data samples utilising python
libraries such as scikitlearn [166] and biosppy [167]. Real-time decision-making
regarding a user’s health condition is enabled through the utilization of the linear
support vector machine (SVM) method and naive bayes due to their less complexity
and fast response rate. Figure 18 depicted that SVM shows better results in terms of
accuracy as compared to naive bayes. This proposed method classifies incoming sig-
nals as either normal or abnormal. SVM has a higher precision of 95.15% compared
to naive bayes 85.71%. This shows SVM makes fewer false positives, meaning it’s
better at predicting abnormal heart conditions when they truly exist.

We collected 2 hours of ECG signals from healthy individuals and cardiovascular
issues. The perception layer divides the chunks of 10 seconds of signals and sends
them to EGs where data pre-processing is handled and labels the signal as normal
or abnormal. These features encompassed QRS complex duration, T wave duration,
RR interval, PR interval, and ST segment (refer to figure 16). During runtime,
incoming test data were locally classified, with the decision vector sent to the Execute
component for actuation. Test data included ECG signals with random arrhythmia
points added to normal ECG data to simulate emergency scenarios. These scenarios
were tested on data from four new users.
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Table 10: Comparison of 1 Minute HR values of Male(Y) and Female(X) individuals
using single channel proposed(Prpsd) HR monitoring vs PSG device.

Ind X Prpsd X PSG Y Prpsd Y PSG

Ind1 72 71 70 71
Ind2 73 70 67 66
Ind3 69 70 71 70
Ind4 72 72 70 70
Ind5 73 71 68 69
Ind6 71 69 70 69
Ind7 70 70 70 69
Ind8 71 69 71 71
Ind9 72 71 70 69

Table 10 shows the evaluation results of HR values of Male(Y) and Female(X)
individuals using a single channel proposed HR monitoring system versus baseline
PSG device. In table 11, we measure the RR interval difference using 1 Minute
RR intervals of Male(Y) and Female(X) individuals using a single channel pro-
posed(Prpsd) ECG Monitoring system versus baseline PSG device.

4.4 Arrhythmia Classification
Abnormal cardiac rhythms, referred to as arrhythmias, can be detected and classified
by analyzing their deviations from a normal heartbeat pattern. Each type of arrhyth-
mic beat follows a distinctive structure, making it feasible to develop machine learn-
ing algorithms that automate the detection and classification of electrocardiogram
(ECG) signals. Most contemporary approaches to this task employ either convolu-
tional neural networks (CNNs) or long short-term memory networks (LSTMs).

Although existing research has demonstrated the effectiveness of CNNs and
LSTMs in the automated detection and classification of arrhythmias, the primary
focus has been on achieving high accuracy, often at the expense of considerations
related to the computational resources and time required for prediction. In con-
trast, this thesis investigates the feasibility of deploying these networks in real-time,
resource-constrained environments, such as single-board computers. By enabling
real-time classification, physicians could obtain long-term electrocardiograms that
are pre-annotated, which typically necessitates the patient remaining in the hospi-
tal to use a bulky and expensive ECG machine. Additionally, this approach offers
the advantage of alerting the wearer immediately if an abnormal heart rhythm is de-
tected. In this study, we worked on five-class arrhythmias classification, depicted in
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Table 11: Comparison of 1 Minute RR intervals of Male(Y) and Female(X) individu-
als using single channel proposed(Prpsd) ECG Monitoring system vs PSG
device.

Ind X Prpsd X PSG Y Prpsd Y PSG

Ind1 0.8225 0.8200 0.9565 0.9465
Ind2 0.8371 0.82345 0.8840 0.8654
Ind3 0.8526 0.85102 0.8393 0.8346
Ind4 0.9414 0.93400 0.8469 0.8297
Ind5 0.8428 0.84012 0.8205 0.8567
Ind6 0.9617 0.9514 0.8740 0.86634
Ind7 0.8790 0.8507 0.8511 0.8391
Ind8 0.8504 0.8497 0.9391 0.9240
Ind9 0.8445 0.8363 0.8494 0.8329

figure 19.
To tackle time and resource utilisation challenges, we proposed resource-efficient

1D-CNN 4.1. This proposed model is initially trained using MIT-BIH [165] ECG
fragments and later tested on our real-time raw data. Table 12 depicted the number
of samples against each heartbeat class during model classification.

Figure 19: MIT-BIH Arrhythmia heartbeats with 5 classes. 0=Normal, 1=Fusion of
paced and normal, 2=Premature ventricular contraction, 3=Artial Prema-
ture , 4=Fusion of ventri and normal

4.4.1 Hyperparameters Tunning

This approach first establishes a general network architecture integrating a 1D-CNN
feature extraction module with a multi-layer perceptron decision module. Through
extensive testing, the range of hyperparameters is determined. During model opti-
mization, the Bayesian optimization algorithm is embedded within the network ar-
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Table 12: Number of samples against each class of heartbeat

Class Assigned
number

Training
Samples

Testing
Samples

Normal N 72471 18118
Fusion of paced and normal FPNs 2223 556
Premature ventricular contrac-
tion

PVCs 5788 1447

Artial Premature AP 641 160
Fusion of ventri and normal FVNs 6431 1608

Table 13: Hyper-parameters Tuning

Hyper-parameter Range Best value

Batch size [16, 32, 64, 128] 64
Learning rate [0.01, 0.001, 0.0001] 0.001
Optimizer [Adam, Adagrad, Nadam] Adam
Activation function [seLu, reLu] reLu

chitecture to adaptively select the optimal combination of hyperparameters.
Based on the fundamental structure of the convolutional neural network, a set of

𝑛 hyperparameter elements, including both structural and training hyperparameters,
is defined to form the set 𝑥. Structural hyperparameters include the number of con-
volutional layers, the number of filters per layer, kernel size, stride, the number of
pooling layers, pooling kernel size, padding, the number of fully connected layers,
the number of neurons, batch normalization layers, dropout parameters, and the acti-
vation function. Training hyperparameters include the optimizer, learning rate, batch
size, and the ratio of training to test data. The search range for all hyperparameters
is determined based on related research and empirical testing.

The initialized parameter set 𝐷 is obtained through model training, assuming it
satisfies the surrogate model 𝑀 . Using the prior distribution and known parameter
set 𝐷, the posterior distribution 𝑝(𝑦 | 𝑥, 𝐷) is computed, and the acquisition function
𝑆 is constructed. This acquisition function is then used to select the next hyperpa-
rameter set 𝑥𝑖 for network training, and the corresponding evaluation output 𝑦𝑖 is
obtained. After 𝑇 iterations, an approximately optimal hyperparameter combination
is identified.

By utilizing gaussian processes alongside acquisition functions, bayesian opti-
mization effectively navigates the hyperparameter space, striking a balance between
exploration and exploitation to identify the optimal configuration for neural network
training. The hyperparameter configuration for the proposed model is outlined in
table 13.
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4.4.2 Model Training and Testing

Edge-gateways receive raw data from the sensor nodes. Raw ECG signal data is
pre-processed and normalized. The extraction includes batch normalization, con-
volution, activation, and max-pooling layers. The flattening, fully connected, and
softMax layers constitute the classification part. Input is standardized using a batch
normalization layer to reduce the internal co-variate shifts. Each neuron is connected
to the local window from the previous layer, known as the receptive field, which
shifts according to timestamps and shares synaptic weights. By using this approach,
we can reduce the number of weights, which facilitates the generalization process.
A Rectified linear unit function (ReLu) is applied to return the weighted sum of the
input data. After this, a one-dimensional maxpooling layer is applied to preserve the
neurons of each activation layer. However, the classification part is the same as with
multi-layer perceptron. Table 14 presents the CNN network configuration used to
train and test arrhythmia classification.

Table 14: 1D-CNN Network configuration

Network Part Description

Extraction part Block 1,2

319 Neurons

Input Layer

Conv-1D
Kernels: 64
Receptive field: 2
Stride: 1

Activation reLu
Dropout Probability: 0.4
Max-pooling Pool size: 2

Classification part
FC layer 512 neurons
Dropout: Probability: 0.2
Output layer: 5 neurons

The baseline LSTM model [168] is also used to train and predict the raw data
at the edge gateways to compare its computational efficiency with our proposed 1D-
CNN. Usually, LSTM is preferred for edge-based systems due to its lower resource
consumption and better fit for sequential data. LSTM enables the system to forget
about unnecessary information from the previous outputs, which makes it suitable
for scarce computing devices. After this, new input 𝑋(𝑡) is decided, and apply the
sigmoid function to decide the updation of the next value. A 𝑡𝑎𝑛ℎ layer creates the
vector of all possible values from the upcoming input. The sigmoid layer decides the
part of the information that will go to the final layer. The trained hypothesis function
was subsequently transmitted to the edge gateways devices, enabling the classifica-
tion of incoming ECG signals into five classes: 0=Normal, 1=Fusion of paced and
normal, 2=Premature ventricular contraction, 3=Artial Premature, 4=Fusion of ventri
and normal.
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Table 15: Average Performance measures of proposed 1D-CNN

Class Category Accuracy Precision Recall f1 score

N 0.996 0.991 0.996 0.994
FPNs 0.981 0.992 0.997 0.991
PVCs 0.990 0.989 0.991 0.994
AP 0.989 0.997 0.996 0.990
FVNs 0.998 0.986 1.000 0.999
macro avg 0.9908 0.991 0.996 0.9938
weighted avg 0.9904 0.9852 0.9911 0.9895

4.4.3 Performance Analysis

This section presents and discusses the results of the experiments as well as the
performance of the proposed model. In particular, the classification results were
assessed using standard evaluation metrics, including accuracy (Acc), sensitivity
(SEN), recall, and F1-score for each model.

The average performance measures of 1D-CNN are described in Table 15 and an
average performance matrix of LSTM is described in Table 16. From the compari-
son results in table 15 and table 16, it can be concluded that the proposed 1D-CNN
performs better in comparison to the baseline LSTM model while utilising the same
resources and time. A comparative analysis of our proposed 1D-CNN with simi-
lar studies demonstrates an average accuracy of 97.4%, while utilizing significantly
fewer resources than other studies.

Results of the confusion matrix in figure 20 demonstrate high accuracy of 1D-
CNN, with most predictions correctly placed on the diagonal, indicating strong per-
formance and minimal misclassifications using a balanced dataset. The limited off-
diagonal values suggest that the model rarely confuses one class with another. In con-
trast, the LSTM model, while still performing well, has slightly more off-diagonal
values, indicating a higher number of misclassifications. This is reflected in its
slightly lower precision and recall compared to the 1-D CNN, with the confusion
matrix showing a bit more spread, indicating that the LSTM is less certain in its
predictions.

The results demonstrate that the 1D-CNN significantly outperforms the LSTM
model in the classification of arrhythmias across all evaluated performance metrics.
The 1D-CNN achieves notably higher accuracy, with category-specific accuracies
nearing 1.000, and superior precision and recall values, particularly excelling in the
identification of false positives and ventricular non-sustained arrhythmias (FPNs and
FVNs). The F1 score, a measure of the balance between precision and recall, fur-
ther underscores the 1D-CNN’s robustness, with values consistently above 0.990. In
contrast, the LSTM model, while still performing adequately, exhibits lower accu-
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Table 16: Average Performance measures of baseline LSTM [168]

Class Category Accuracy Precision Recall f1 score

N 0.94 0.96 0.94 0.94
FPNs 0.96 0.95 0.97 0.96
PVCs 0.96 0.98 0.97 0.96
AP 0.97 0.98 0.96 0.96
FVNs 0.94 0.94 0.95 0.93
macro avg 0.9908 0.9910 0.9960 0.9923
weighted avg 0.9953 0.9906 0.9960 0.9209

Figure 20: Confusion Matrix of proposed 1D-CNN and LSTM baseline model

racy, precision, recall, and F1 scores, particularly in the detection of normal (N) and
ventricular non-sustained arrhythmias (FVNs), suggesting that it may struggle with
maintaining the balance between precision and recall.

These findings indicate that the 1D-CNN is a more effective and reliable model
for real-time arrhythmia classification, particularly in scenarios where the accurate
and timely detection of irregular heart rhythms is critical. CNN operations can be ap-
plied across the entire sequence simultaneously, leading to faster processing times.
This efficiency is crucial for real-time applications where quick decision-making
is essential. While, sequential nature makes LSTMs computationally more inten-
sive and slower compared to CNNs, particularly when dealing with long sequences,
which can be a limitation in real-time scenarios.

To assess the performance of the proposed network, we compared it to some
state-of-the-art methods in the literature. We record the performance of the proposed
network model (in bold) and some recent arrhythmia classification using the MIT-
BIH arrhythmia database in table 17 .From table 17, it is evident that our proposed
1D-CNN achieved good performance while utilising less resources.

68



Edge-Intelligence to secure privacy in health monitoring system

Table 17: Comparison between the related work and the proposed 1D-CNN model

Ref. Year Classification Tech-
nique

Resource
Cnsmptn

No. of
Layers

No. of
Classes

Accuracy

[169] 2021 Neural network High 15 5 99.31%
[170] 2021 Transfer Learning High 18 2 90.42%
[171] 2022 STFT-CNN Moderate ...... 5 99.0%
[172] 2023 H-PSOCNN Moderate ..... 5 98.0%
[173] 2023 CNN,DAE +

Transformer
Moderate 5 5 97.66%

[174] 2024 CNN,Attention +
Transformer

High 8 5 99.58%

[175] 2024 1D-CNN+LSTM Moderate 11 9 98.24%
[176] 2024 CAD-

Net(1D-CNN)
Moderate ... 5 99.54%

[177] 2024 1DCNN-BiLSTM Low 7 5 93.7%
This
Study

2024 Proposed 1D-
CNN

Low 2 5 97.4%

4.4.4 1D-CNN Comparison against different class configurations

The performance metrics of the resource-optimized 1D-CNN model for arrhythmia
classification across unbalanced, oversampled, and undersampled datasets reveal dis-
tinct trade-offs associated with each data sampling strategy. Table 18 depicts the per-
formance metrics of 1D-CNN for different diagnostic classes across various model
configurations.

Using an unbalanced dataset, the model demonstrates strong overall performance,
with high accuracy (ranging from 0.975 to 0.998), precision, and recall across all di-
agnostic classes. The F1 scores are also consistently high, indicating a well-balanced
performance. For example, the recall for FPNs (0.995 ± 0.0140) and FVNs (0.997
± 0.0080) is particularly impressive, suggesting that the model is adept at correctly
identifying positive instances even with an unbalanced dataset.

In an oversampled dataset, the model generally maintains high performance, but
there are some notable changes. Precision tends to increase slightly, especially in the
N class (from 0.983 to 0.995), suggesting that oversampling helps the model to re-
duce false positives. However, there is a drop in recall for some classes, such as FPNs
(from 0.995 ± 0.0140 to 0.9455 ± 0.0080), indicating that while the model becomes
more precise, it may miss more positive instances when trained on oversampled data.
The F1 scores reflect this trade-off, with minor increases in classes where precision
improves and decreases in those where recall drops.

Using an undersampled dataset, the model shows a mixed performance when
trained on undersampled data. While accuracy remains consistent, precision gener-
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Table 18: 1D-CNN Performance metrics for different diagnostic classes across vari-
ous model configurations

Diagnostic
Class

Metric Unbalanced Oversampled Undersampled

N

Accuracy 0.975 ± 0.0030 0.973 ± 0.0030 0.951 ± 0.0035
Precision 0.983 ± 0.0030 0.995 ± 0.0030 0.975 ± 0.0030
Recall 0.9915 ± 0.0030 0.960 ± 0.0030 0.983 ± 0.0030
𝐹1 score 0.982 ± 0.0030 0.995 ± 0.0020 0.973 ± 0.0020

FPNs

Accuracy 0.992 ± 0.0030 0.990 ± 0.0025 0.984 ± 0.0025
Precision 0.992 ± 0.0105 0.990 ± 0.0085 0.962 ± 0.0085
Recall 0.995 ± 0.0140 0.9455 ± 0.0080 0.975 ± 0.0080
𝐹1 0.980 ± 0.0085 0.990 ± 0.0060 0.980 ± 0.0060

PVCs

Accuracy 0.998 ± 0.0025 0.979 ± 0.0025 0.962 ± 0.0025
Precision 0.990 ± 0.0115 0.990 ± 0.0075 0.980 ± 0.0075
Recall 0.97 ± 0.0095 0.995 ± 0.0090 0.985 ± 0.0090
𝐹1 0.9840 ± 0.0075 0.998 ± 0.0060 0.973 ± 0.0060

AP

Accuracy 0.998 ± 0.0015 0.991 ± 0.0025 0.962 ± 0.0015
Precision 0.988 ± 0.0040 0.985 ± 0.0025 0.978 ± 0.0035
Recall 0.995 ± 0.0015 0.991 ± 0.0030 0.985 ± 0.0030
𝐹1 0.990 ± 0.0020 0.980 ± 0.0020 0.980 ± 0.0020

FVNs

Accuracy 0.997 ± 0.0020 0.997 ± 0.0020 0.968 ± 0.0020
Precision 0.989 ± 0.0050 0.991 ± 0.0055 0.974 ± 0.0055
Recall 0.997 ± 0.0080 0.992 ± 0.0075 0.984 ± 0.0075
𝐹1 0.997 ± 0.0045 0.998 ± 0.0050 0.988 ± 0.0050

ally decreases, as seen in the PVCs class (from 0.990 ± 0.0115 to 0.939 ± 0.0075),
indicating a higher rate of false positives. Conversely, recall remains relatively stable
or even improves in some cases, such as in the N class (from 0.9915 ± 0.0030 to
0.993 ± 0.0030). This results in F1 scores that are generally stable or slightly lower
compared to the unbalanced scenario, indicating that undersampling may help the
model focus more on detecting positives but at the cost of precision.

The results demonstrate that while the 1D-CNN model performs robustly across
all sampling strategies, trade-offs are depending on the data configuration. The un-
balanced dataset provides the best overall performance with a good balance between
precision and recall. Oversampling improves precision at the expense of recall, while
undersampling can enhance recall but may reduce precision. The choice of sampling
strategy should therefore align with the specific goals of the arrhythmia classifica-
tion task, whether prioritizing the reduction of false positives or the capture of true
positives.
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4.4.5 Resource, Time and Cost Analysis

The performance of a proposed system in terms of resource utilization and time
is investigated through raspberry pis and STM32 M4-cortex microcontrollers. The
raspberry pi devices run raspbian, based on linux kernel version 4.14.52-v7+, with
1GB of RAM and 4-core ARM processors (BCM2837 @ 1.4GHz). The STM32
family relies on a linux system. Communication between different edge-gateways
and their perception layer is facilitated through a local Wi-Fi network. Raspberry
Pi 3 Model B+ and STM32 M4-cortex microcontrollers are utilized at edge-gateway
layer as manager nodes. Lightweight nodes are implemented using ardiuno and less-
computational powered bio-sensors. For simulating the application layer, desktop
computers with an intel core i7 processor and 16GB of RAM are employed. The
proposed approach is trained and investigated using the MIT-BIH dataset and real-
time ECG signals collected from 18 individuals aged 18- 52 years.

Ethereum, a private network is leveraged as a service layer. To implement var-
ious components of the system, we utilize the Go programming language (golang),
solidity for smart contracts, and a suite of web technologies (Node.js®, HTML5,
CSS3, jQuery) for the front-end application. Smart contract deployment is accom-
plished using the Remix IDE. Metamask, a browser extension facilitating parallel
transaction flows during experiments, generates data requests and transactions to and
from third-party cloud services. Proof-of-stake consensus is used for block confir-
mation and gossip protocol to ensure fast, and attack-resilient message propagation
for transaction handling, keeping nodes synchronized and avoiding forks. Complete
implementation of EdgeBot system is described in section 5.1.

The proposed model demonstrates significantly lower resource consumption and
implementation costs compared to recent studies. As shown in Table 17, the model
effectively classifies multiclass arrhythmia using only two convolutional layers, op-
timized for deployment on single-board computers. Its implementation with biosen-
sors, integrated with raspberry pi and STM-based boards, offers a cost-effective so-
lution for home monitoring applications. This makes it a practical complement to
large-scale ubiquitous healthcare systems, contributing to medical history documen-
tation and enabling real-time responses in time-sensitive scenarios.

Table 19: Average Loading time of the different Arrhythmia classification require-
ments

Execution Time

Loading Numerical Libraries 960 ms
Loading Tensorflow and Keras 1478 ms
Loading Trained Model 6683 ms
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In table 19 we illustrates the average loading time corresponding to the nu-
merical libraries, deep learning libraries (Tensorflow and Keras), and the model at
edge gateways. Figure 21 shows the execution times of the different processes.
The following steps are listed in order of importance: the extracting of data (ECG),
arrhythmias classification (ARR), time to retrieve data (TRD), transaction confirma-
tion time (TCT), and response time (RT). Complete data sharing and access scheme
is described in section 3.3.5.

ARR ECG RT TCT Process TRD
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Figure 21: Execution time of the different processes in miliseconds

4.5 Summary
This chapter details the implementation of the proposed framework, EdgeBot, which
functions as a continuous monitoring system for individuals, incorporating edge-
level intelligence for rapid medical intervention. The system is designed to facilitate
patient self-monitoring and preventive healthcare through the use of IoMT devices,
employing computationally efficient methods. Processed medical data is securely
stored using a private ethereum network, allowing for the sharing of anonymized
information with legal guardians, healthcare providers, and researchers, while safe-
guarding patient privacy. The edge layer based on a single board computer is capable
of processing privacy-critical sensitive information at the edge node. It ensures the
user’s privacy by discarding the raw data and only saving the processed information.

Firstly, SVM is employed for simple binary classification of abnormal signals.
Additionally, a resource-efficient 1D-CNN is proposed for the multi-class classifi-
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cation of arrhythmias. The chapter’s key contributions include the deployment of
machine learning algorithms at the edge device level for rapid anomaly detection
and real-time detection and classification of arrhythmias using a two-channel ECG
system. The system integrates various biosensors, including heart rate, temperature
and humidity sensors, and an ECG monitoring system, to detect abnormalities and
identify arrhythmias. This technology is particularly beneficial for promoting health
and independence among the elderly and remote populations, where chronic diseases
are increasingly prevalent. An extensive set of experiments and their detailed com-
parative analysis shows the viability of our proposed resource-optimized 1D-CNN in
time-critical scenarios.
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5 Peer-to-Peer Trustless Data Trade and
Fair Access using Ethereum Platform

This chapter proposes and validates methods of peer-to-peer (P2P) trustless data
trade using a private ethereum network. Transaction and network topologies are im-
plemented through smart contracts, which operate as self-executing contracts and fa-
cilitate seamless and conflict-free transactions, trade agreements, and access policies.
In the realm of personal medical data, Edgebot presents the opportunity to grant data
owners (data producers) comprehensive control over their electronic health records
(EHRs) by providing complete authority over access permissions and mitigates the
risk of unauthorized individuals and organizations accessing personal health infor-
mation. Furthermore, the private ethereum network acts as a secure repository for
a patient’s complete record, safeguarded by encryption through the patient’s private
key, thereby enhancing security beyond prevailing systems. The main contributions
of this chapter include the following:

• We formulate and construct trustless peer-to-peer data trade flow system uti-
lizing a private etherem network.

• We proposed a lightweight secure communication and data exchange scheme
using ECDSA and ECIES along with it’s implementation on single-board com-
puters (raspberry pi and STM32F427 boards).

• We conduct a security, performance, and scalability analysis to demonstrate
the efficiency and reliability of our proposed fine-grained access scheme.

• We proposed extension of EdgeBot, as a post-quantum-resistant solution for
edge gateways. We integrate a resource-optimized, quantum-based secure data
access scheme.

5.1 System Implementation
We implement P2P data trade policies of our proposed framework using the real-
time health monitoring data at edge gateways (from chapter 4) as sample data as
well as accelerometer, temperature and humidity data. Raspberry Pi 3 model B+
minicomputers are used as edge gateways (manager nodes of ethereum network) and
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Manager Node

Light weight Node

Figure 22: Manager nodes and lightweight nodes after initialization

lightweight nodes are implemented using STM32F427 development boards (low-
power ARM Cortex M4 processors), which are used for high-speed implementation
of asymmetric cryptographic algorithms. The elliptic curve digital signature algo-
rithm (ECDSA) is used to generate public and private keys, and device authentication
mechanisms. The STMicroelectronics X-CUBE-CRYPTOLIB library is utilized to
implement several standard cryptographic algorithms with the ARM Cortex-M series
processors.

For the implementation of the different parts of the system, the Go programming
language (golang), Solidity for the smart contracts, and a suite of web technologies
(Node.js®, HTML5, CSS3, jQuery) for the front-end application are used. We run
raspbian based on linux kernel version 4.14.52-v7+ in the raspberry pi, which has
1GB of RAM and 4-core ARM processors (BCM2837 @ 1.4GHz). A local wi-fi
network has been used to enable communication between different edge gateways
and its data acquisition layer. We simulate the application layer with desktop com-
puters that are equipped with an intel core i7 processor and 16GB of RAM and smart
contracts are deployed using the Remix IDE. Metamask, a browser extension is used
to enable parallel flow of transactions during the experiments, generates data requests
and transactions to and from third-party cloud services. Proof-of-stake consensus is
used for block confirmation and gossip protocol to ensure fast, attack-resilient mes-
sage propagation for transaction handling, synchronizing nodes, and avoiding forks.
Figure 22 shows Manager nodes and lightweight nodes after initialization.

The experimental setup is divided into six processes, as described below. Each
process is accompanied by a short pseudo-code algorithm, which describes the dif-
ferent steps. 𝑆𝐶 is used to refer to smart contracts. The complete implementation of
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Figure 23: System sequence diagram depicting a sequential picture of complete net-
work

system sequences is depicted in figure 23.

1. System initialization: The process of setting up a private ethereum network in-
volves several steps. Encryption parameters and genesis file is generated 25, and
the network is initialized. During this phase, clients and their devices are registered
to the network, a necessary step for re-authentication. The registration process is
split into two parts: user registration and device registration. In the user registra-
tion phase, a system administrator creates a unique 𝐼𝐷 for a client. This 𝐼𝐷 is then
sent to the blockchain node as a transaction proposal. The node checks the network
for the existence of this 𝐼𝐷 using a smart contract. If the 𝐼𝐷 is already in use, the
transaction is rejected, and the admin is notified. The smart contract approves the
transaction if the 𝐼𝐷 is not in use. Following the execution of the proof of stake
(PoS) mechanism, a new block is created and shared with all the blockchain nodes.
If the user registration is successful, the blockchain generates a user 𝐼𝐷 certificate
with its private key and sends it to the admin. Admins can then extract the certificate
information using their private keys.
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Figure 24: Sequential diagram to elaborate on possible scenarios to settle down trans-
action requests

The device registration phase is handled by edge gateways and the device registration
request as a new transaction proposal. A smart contract checks the device 𝐼𝐷 and
executes the transaction on the deployed network. Once the PoS process is finished,
a new block is created and shared with all the nodes present in the network. All
sensors and actuators are registered to the network with a unique 𝐼𝐷, following the
same process.

The generation of encryption parameters, creation of the genesis file, and initializa-
tion of the ethereum blockchain are performed through smart contracts. Through
the implementation of smart contracts, terms of usage, certificates, and policies are
defined. A new device/buyer registration process is also implemented.

2. Generation of encryption keys: Each connected device generates its key pair
of secret and public keys (𝑠𝑘, 𝑝𝑘). The secret key is randomly generated, and then
the private key and child secret keys are derived from it. Each child’s secret key
is used to encrypt one data batch. For example, each child’s secret key is used to
encrypt a specific batch of data. The complete encryption process, along with key
encapsulation and digital signature algorithm, is described in the section proposed
access scheme 3.3.5.
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Algorithm 1:
Result: System set up
ECDSA parameters:

𝑇 = (𝑃, 𝑎, 𝑏, 𝐺, 𝑛, 𝐻)
Encryption keys length: 𝜅;
Blockchain genesis block, Hash function 𝐹ℎ;
Smart contract codes 𝑆𝐶;

Algorithm 2:
Result: Generation of encryption keys
Unique secret/public key pair (𝑠𝑘, 𝑝𝑘)

Secret key: 𝑠𝑘 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝜅);
𝑝𝑘 = [𝑠𝑘]𝐺;
Child secret keys 𝑐𝑠𝑘0, . . . , 𝑐𝑠𝑘𝑛;

3. Data processing, encryption, and storage: Edge gateways divide the acquired
data segments into data batches after every time 𝑇 and implement embedded edge AI
algorithms. If edge gateways do not have enough resources to process huge block of
data, this specific data block is saved as raw data. After encryption, devices call
the smart contract function. NewDataBatch function to add a transaction to the
blockchain and includes the data hash, the encrypted AES encryption key, the time-
stamp of the storage operation, the type and size of stored data, and the price. Each
batch is sent to storage after encryption and broadcasting the hash and metadata.

4. Transaction Initialization: On each data request, a smart contract function
called LookUpBatch is used to query available records for a data batch. The buyer
can initiate trade requests for its selected data batches after pre-defined deposit agree-
ment. To perform this action, the smart contract must call the Deposit function,
through which the secured channel builds and sends a secret key after the key encap-
sulation method and digital signature algorithm. It consists of its address or identifier
and the batch identifier.
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Algorithm 3:
Result: Data processing, encryption, and storage
while True do

Data batch 𝑑𝑏;
𝑑𝑎𝑡𝑎 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐸𝑑𝑔𝑒𝐴𝐼(𝑑𝑏);
ℎ𝑎𝑠ℎ = Fℎ(𝑑𝑎𝑡𝑎 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠);
𝑑𝑏𝐸 = AES encrypt(𝑑𝑓𝑐𝑠𝑘);
𝑑𝑏𝑗𝑠𝑜𝑛 = json(𝑑𝑏𝐸);
𝑢𝑖𝑑 = cloud store(𝑑𝑏𝑗𝑠𝑜𝑛);
𝑑𝑏 𝑖𝑛𝑓𝑜 = {

𝑢𝑖𝑑,
ℎ𝑎𝑠ℎ,
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝,
𝑑𝑎𝑡𝑎 𝑡𝑦𝑝𝑒,
𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒,
𝑝𝑟𝑖𝑐𝑒,

};
𝑆𝐶.NewDataBatch(𝑑𝑏 𝑖𝑛𝑓𝑜);
delay 𝑇1;

Algorithm 4:
Result: Transaction Initialization
Data type: 𝑑𝑎𝑡𝑎 𝑡𝑦𝑝𝑒;
Maximum buying price: 𝑚𝑎𝑥 𝑝𝑟𝑖𝑐𝑒;
Data batches for sale: 𝑑𝑏𝑠 = [];
Time window lower limit: 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒;
Time window upper limit: 𝑒𝑛𝑑 𝑡𝑖𝑚𝑒;
Buyer’s public encryption key: 𝑏𝑝𝑘;
𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑆𝐶.LookUpBatch(𝑑𝑎𝑡𝑎 𝑡𝑦𝑝𝑒,

𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒, 𝑒𝑛𝑑 𝑡𝑖𝑚𝑒);

foreach (𝑎𝑑𝑑𝑟, 𝑑𝑏 𝑖𝑛𝑓𝑜) in 𝑟𝑒𝑠𝑢𝑙𝑡 do
if 𝑑𝑏 𝑖𝑛𝑓𝑜.𝑠𝑒𝑙𝑙𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒 < 𝑚𝑎𝑥 𝑝𝑟𝑖𝑐𝑒 then

𝑑𝑏𝑠.append({𝑑𝑒𝑣 𝑎𝑑𝑑𝑟, 𝑑𝑏 𝑖𝑛𝑓𝑜}) ;

foreach (𝑎𝑑𝑑𝑟, 𝑑𝑏 𝑖𝑛𝑓𝑜) in 𝑑𝑏𝑠 if
meetsBuyingConditions(db info) do

Buying price: 𝑝𝑟𝑖𝑐𝑒 < 𝑚𝑎𝑥 𝑝𝑟𝑖𝑐𝑒;
Timestamp: 𝑡𝑠;
𝑠𝑖𝑔𝑛 = 𝑝𝑟𝑖𝑐𝑒 ⊕ 𝑑𝑏 𝑖𝑛𝑓𝑜.𝑢𝑖𝑑 ⊕ 𝑎𝑑𝑑𝑟 ⊕ 𝑡𝑠;
𝑆𝐶.Deposit(𝑝𝑟𝑖𝑐𝑒, 𝑢𝑖𝑑, 𝑎𝑑𝑑𝑟, 𝑏𝑝𝑘, 𝑠𝑖𝑔𝑛);

5. Transaction Confirmation: This process runs periodically, requesting any Data-
Batch requests that are present and depositing the requested data. Edge gateways
encode the csk with the buyer’s public key using the key encapsulation method and
confirm the Deal if any deposit meets the pre-defined conditions for the type of data
in the requested batch. A combination of AES and ECDSA is used and the process
is automated using turing complete capability of smart contracts. Figure 26 depicts
the real-time transaction confirmation.

6. Finalization of data transfer: When a receiver receives an encrypted data batch
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AES key, it uses the ECIES decryption algorithm to obtain the AES batch key. Then,
it queries the storage provider with the batch address and decrypts it to obtain the
information. The data transfer, or purchase, is done if a buyer is satisfied. If the
receiver is unsatisfied with the received data batch, it will ask for a refund. The edge
gateways will resolve a dispute by cross-checking the batch details. After getting
the results, gateways will respond accordingly. The complete process of transaction
confirmation and finalization of data transfer is depicted in figure 24.

Algorithm 5:
Result: Transaction Confirmation
while True do

𝑟𝑒𝑠𝑢𝑙𝑡𝑠 = 𝑆𝐶.LookUpDeal(𝑑𝑒𝑣𝑖𝑐𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠);
foreach 𝑟𝑒𝑠𝑢𝑙𝑡 in 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 if
meetsSellingConditions(result) do

𝑐𝑠𝑘𝐸 = ECIES encrypt(𝑐𝑠𝑘, 𝑟𝑒𝑠𝑢𝑙𝑡.𝑏𝑠𝑘);
𝑎𝑑𝑑𝑟 = cloud address(𝑟𝑒𝑠𝑢𝑙𝑡.𝑢𝑖𝑑);
𝑆𝐶.Deal(𝑟𝑒𝑠𝑢𝑙𝑡.𝑏𝑠𝑘, 𝑐𝑠𝑘𝐸 , 𝑢𝑖𝑑, 𝑎𝑑𝑑𝑟);

delay 𝑇2;

Algorithm 6:
Result: Finalization of Data Transfer
𝑟𝑒𝑠𝑢𝑙𝑡 =
SC.LookUpDeposit(bsk, uid)
if result.done is True then

𝑐𝑠𝑘 = ECIES encrypt(𝑟𝑒𝑠𝑢𝑙𝑡.𝑐𝑠𝑘𝐸);
𝑑𝑎𝑡𝑎𝐸 = cloud request(𝑟𝑒𝑠𝑢𝑙𝑡.𝑎𝑑𝑑𝑟);
𝑑𝑎𝑡𝑎 𝑏𝑎𝑡𝑐ℎ = AES decrypt(𝑑𝑎𝑡𝑎𝐸 , 𝑐𝑠𝑘);

T revert;

5.2 Data and communication security
Our proposed access scheme is used along with the widely used Elliptic Curve Inte-
grated Encryption Scheme (ECIES), Child Key Derivation function (CKD), and the
Elliptic Curve Digital Signature Algorithm (ECDSA) are cryptographic techniques
to ensure secure data storage and communication. ECIES works by independently
deriving a bulk encryption key and a MAC key from a common secret. The data
is first encrypted under a symmetric cipher, and then the ciphertext is authenticated
under an authentication scheme. Finally, the common secret is encrypted under the
public part of a public/private key pair. The CKD function is used for managing
data in batches; child key derivation functions are used in hierarchical determinis-
tic wallets (HD wallets). It helps in generating a tree of keys from a single master
key, which can be very useful for managing multiple keys in a secure and system-
atic way. ECDSA is a digital signature algorithm that is used for secure key sharing
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for both data and communication. The ECDSA ensures that the data and commu-
nication are coming from the stated sender (authenticity), have not been altered in
transit (integrity), and repudiation by the sender can be disputed (non-repudiation).
Implementing ECIES, CKD, and ECDSA in this proposed system provides a robust
framework that ensures secure data storage and communication. The ECIES offers
a strong encryption scheme for data protection, the CKD provides an efficient way
to manage data in batches, and the ECDSA guarantees secure key sharing and data
authenticity.

5.2.1 Results and Analysis

We have conducted a performance evaluation of three different types of STM32F427
M series processors within the framework of asymmetric cryptography. We utilized
the X-CUBE-CRYPTOLIB library to implement the ECDSA. To ascertain the sta-
tistical error of the results obtained over the number of executions, we calculated the
mean, standard deviation, and standard error using the appropriate equations.

The execution time was determined, which encompasses the total time required
for key generation, encryption, and decryption using ECDSA. To identify the op-
timal execution time of ECDSA, we examined the records of different numbers of
executions for each processor. The execution time for each processor for ECDSA
is visually represented in figure 27. For a comprehensive analysis, the execution
time was calculated in terms of mean, standard deviation, and standard error for each
processor.

The estimated execution time of ECDSA for processor M3 is 26.352 s ± 0.002s,
and the execution time for M4 processor is 1.451s ± 0.007s and 1.167s ± 0.002s for
M7. Based on the results, the average execution times of M3 processors are 17.253
seconds, while the execution times for processors M4 and M7 are 1.462 seconds and
1.156 seconds, respectively. The data suggests that the M4 and M7 processors exhibit
superior performance in executing ECDSA. These time measurements facilitate easy
planning and adjustments to determine the delay tolerance in the network.

Power consumption is an important parameter of microcontrollers, we determine
power utilization during the execution of cryptographic algorithms. The power con-
sumed was determined by measuring the voltage across a shunt resistance R. The
current consumption of the processors was calculated using ohm’s law. To determine
the average power consumption, ECDSA was executed for 15 runs and a comparison
of power consumption is presented in figure 28. The average power consumption
by M3 and M4 was ± 200mW, whereas M7 used an average of ± 290mW. Results
indicate the superior performance of M4 cortex microcontrollers are best fit while
consuming fewer resources.

Table 20 illustrates how different security measures have been taken into account
utilizing Edgebot, such as service attacks, denial of service (DDoS), and man-in-the-
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Table 20: Security Measures

Parameter Implementation

Authorization Public key cryptography to encrypt CSK
Confidentiality Public key cryptography and proof of authority
Integrity Broadcast hash of each data batch
Availability Achieved by limiting number of requests
Anonymity Discard raw data and store only processed information

middle (MITM). By limiting requests from the edge gateways to bio-sensors, regis-
tered users, and vice versa. Our proposed system tackles DoS and time-delay attacks.
Edgebot can combat attacks on its security by using different encryption schemes and
system elements. The elliptic curve integrated encryption scheme (ECIES) [178] is
used in the project to ensure that data is saved securely. ECIES is used in the key
encapsulation mechanism combined with the data encapsulation mechanism, which
is used to secure an edge gateway’s public key and send encrypted data to a central
management node. ECC requires fewer keys to provide the same degree of security
as Rivest-Shamir-Adleman (RSA), the more widely used cryptosystem. However,
ECC usually does not require as many computational and memory resources, which
makes it ideal for computing devices with limited resources. A public key is estab-
lished in practice when data transfers occur in a unidirectional fashion or when data
is encrypted and stored using the public key.

A deterministic wallet is used for CKD functions to determine a child’s key from
a parent’s key. Using this technique, each batch of data to be encrypted in the device
is given a unique secret key [179]. The 512-bit hash is calculated according to the
parent’s public key (public and private keys are 256 bits) and the desired child index.
It is impossible to deduce the original parent key from the n𝑡ℎ-child key because of
the one-way hashing used in the process. This process appears to generate random
numbers due to the additions modulo n.

While the elliptic curve digital signature algorithm (ECDSA) [180] is used to
share the unique key for both the data and communication. After the same buyer
makes three requests per minute, double authentication is required. Buyers obtain
encrypted data from manager nodes (edge gateways) that are maintained on a third-
party storage service, e.g., the cloud. Instead of sending the requested data batch
directly to the buyer, the manager node transmits the encryption key of the requested
data batch, along with its address on the cloud. In addition to reducing bandwidth re-
quirements and computational workloads for edge gateways, this scheme also avoids
storage limitations. The Edgebot uses a sophisticated encryption scheme (AES) for
storing private data, cloud services, and other third-party data storage solutions. The
ability to store data securely in an encrypted is particularly important for minor nodes
in the network with insufficient resources for local storage after data processing. We
use asymmetric encryption to transfer the child secret key securely, csk, to the buyer.
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If 𝑐𝑠𝑘𝑁 is the key to the data batch 𝑁 , then it is the key for the data batch. This will
be followed by the node encrypting 𝑐𝑠𝑘𝑁 with the buyer’s public key, which will de-
crypt at the receiving end by the buyer’s secret key. The encrypted payload contains
information regarding the location of the stored information, as well as 𝑐𝑠𝑘𝑁 , if the
buyer did not already know this information.

5.3 Resource and performance Analysis
Resource consumption analysis is conducted based on its performance during trans-
action initialization, handling and committing on ethereum ethereum. A comparison
of the percentage consumption of RAM and CPU is shown in Figure 29. At idle,
RAM usage is approximately 17%, and during transactions, the percentage of RAM
usage increases by 10% to 15% with an average of 24.31%, which does not signifi-
cantly impact overall system memory usage during a transaction. Nevertheless, there
are sharp peaks in CPU utilization; in idle mode, only 8% of the CPU resources are
consumed on average, while during a transaction, it can consume up to 45% with an
average of 16.47%.

The edge gateway measures and divides the time needed to complete a transac-
tion into three sections: Time to retrieve data (TRD), time for checking the transac-
tion (VTR), and time for confirming the transaction (TCT). Figure 30 presents the
results of the measurements. Based on the available resources, it is impressive that
TRD requires only 34.6 milliseconds on average, VTR 36 milliseconds on average,
and TCT 73.6 milliseconds on average. Additionally, it is essential to note that TCT
also relies on the network, which in this experiment was adversely affected by our
shared Wi-Fi’s slow response time, causing the time to be extended overall.

end-to-end delay = request initialization by interested buyer + time to retrieve
metadata
+ response time by manager nodes + time to confirm one transaction

Figure 31 illustrates that increasing concurrent transaction requests leads to in-
creased end-to-end delays. This study’s results demonstrate the proposed model’s
effectiveness for autonomously implementing data trade in information-critical sys-
tems. Using this trustless structure, data trade becomes more reliable and transpar-
ent. We have concluded that single-board computers can act as data and transaction
managers, with no need for third-party cloud services, as the necessary computation
makes space for other edge services and data processing processes to run simultane-
ously. However, a parallel number of transactions will cause a significant delay.

5.3.1 Scalability Analysis

Edge gateways based DLTs offer several benefits but also face inherent limitations
in terms of scalability, which limit their application range. Nevertheless, EdgeBot
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handles this challenge using the side chains concept, gossip protocol, and PoS con-
sensus. FoBSim simulation tool1 is utilized to check the scalability of the proposed
model. Manager nodes ranging from 5 to 500 were used to check the performance
matrix of the proposed model and measure the total time required to complete the
request procedure at edge gateways versus at the cloud layer. Figure 32 shows
that cloud layer utilises around double the time as compared to edge gateways to
complete transaction requests during concurrent transactions starting from 5 to 100
transactions at a time.

The impact of the gossip protocol on the total elapsed time at edge gateways was
evaluated to demonstrate its scalability enhancement. Figure 33 illustrates the im-
proved scalability of the proposed access scheme when utilizing the gossip protocol,
as compared to transactions conducted without it. Block confirmation time was also
measured using different numbers of manager nodes, and the average time is illus-
trated in the figure for proof of stake versus two famous consensus algorithms PoW
and PoA 34. EdgeBot does not present a scalability issue due to the fact that it works
in a private P2P network that can be segmented into side chains. It does not require
edge gateways to process many requests per minute. The manager nodes must check
whether new requests for data have been received after every time 𝑇 . If it has a queue
of requests, the manager nodes will respond to each request one at a time.

5.4 Post-Quantum Cryptographic Communication Pro-
tocol

We extend our proposed model EdgeBot as a post-quantum resistant framework.
With the advent of quantum computers, coupled with Shor’s algorithm, resource
constrained devices can potentially compromise their communications and data ex-
change process that depend on traditional cryptosystems. We demonstrate the fea-
sibility of integrating post-quantum key encapsulation and key exchange methods
along with digital signatures to ensure the integrity of data for ubiquitous healthcare
systems. We consider algorithms currently participating in the NIST competition
for post-quantum encryption standards and integrate them in EdgeBot to assess the
impact on device resource consumption in real-time scenarios.

One of the key candidates for post-quantum cryptography is the Kyber protocol
for resource-constrained devices, which is a lattice-based key algorithm. The Kyber
protocol has several advantages in the selection of post-quantum algorithms and is
likely to become the standard algorithm for public key encryption.

1https://github.com/sed-szeged/FobSim
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5.4.1 System Seutp

Initially, we configured Mosquitto MQTT broker by setting up server certificates and
adjusting the 𝑚𝑜𝑠𝑞𝑢𝑖𝑡𝑡𝑜.𝑐𝑜𝑛𝑓 file to incorporate security certificates, and specifying
both TLS version and port number. For handling multiple parallel ports, a linux sys-
tem is employed, with static IP addresses assigned to different ports. This is achieved
through the use of multiple containers in docker. In the real-time implementation, an
LM75A temperature sensor is interfaced with an Arduino board to read sensor data
and its transmission to the Mosquitto MQTT broker over a TLS 1.3-secured connec-
tion. Arduio Uno is used to get real-time data samples from client nodes.

To create an MQTT client on the Arduino, the 𝐴𝑟𝑑𝑢𝑖𝑛𝑜𝑀𝑞𝑡𝑡𝐶𝑙𝑖𝑒𝑛𝑡 library is
utilized for publishing and subscribing to MQTT topics. The LM75A sensor oper-
ates via the I2C communication protocol, which uses the SDA and SCL pins on the
Arduino to measure ambient temperature. The Arduino code’s loop function is mod-
ified to read the temperature data from the sensor, convert the reading into a string
format, and publish this string to a topic on the MQTT broker.

5.4.2 key encapsulation mechanism (KEM)

KEM combines the kyber key encapsulation algorithm with the kyber public-key en-
cryption algorithm. The process of encryption and decryption of messages using the
kyber encryption algorithm involves several steps which are explained in algorithms
7,8 and 9. In these pseudo algorithms, 32-octet cpaseed is used as input for the key
generation process. 𝑐𝑝𝑎𝑃𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦, 𝑐𝑝𝑎𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦, ℎ, and 𝑧 are variables repre-
senting the components needed to derive the private key. The publicKey is derived
directly from 𝑐𝑝𝑎𝑃𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦, while the privateKey is derived from a combination
of 𝑐𝑝𝑎𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦, 𝑐𝑝𝑎𝑃𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦, ℎ, and 𝑧. To ensure the security of its opera-
tions, kyber uses cryptographic primitives such as pseudorandom functions (𝑃𝑅𝐹 ),
extendable output functions (𝑋𝑂𝐹 ), key derivation functions (𝐾𝐷𝐹 ), hash func-
tions (𝐻), and generators (𝐺). These cryptographic primitives play a crucial role in
maintaining the integrity and confidentiality of the shared secret.
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Algorithm 7: Key Generation
Input : 32-octet cpaseed
Output: Public Key, Private Key

Function Kyber512KeyGeneration( Seed) :
PublicKey← cpaPublicKey;
PrivateKey←
cpaPrivateKey,cpaPublicKey,h[32],z[32];

return PublicKey, PrivateKey;

Call the Key Generation function:
Seed← 32-byte seed;
PublicKey, PrivateKey←
Kyber512KeyGeneration(cpaSeed);

Output the generated keys:
Public Key: public key;
Private Key: private key;

Algorithm 8: Kyber512 Encapsulation
Input : Public Key
Output: Ciphertext, Shared Secret

Function Kyber512Encapsulation( PublicKey) :
SharedSecret← GenerateRandomValue();
Ciphertext← Encrypt(SharedSecret, PublicKey);
return Ciphertext, SharedSecret;

Call the Encapsulation function:
PublicKey← your public key here;
Ciphertext, SharedSecret←
Kyber512Encapsulation(PublicKey);

Output gen ciphertext and shared secret:
Ciphertext: ciphertext;
Shared Secret: shared secret;
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Algorithm 9: Kyber512 Decapsulation
Input : Private Key, Ciphertext
Output: Shared Secret

Function Kyber512Decapsulation( PrivateKey,
Ciphertext) :

SharedSecret← Decrypt(Ciphertext, PrivateKey);
return SharedSecret;

Call the Decapsulation function:
PrivateKey← private key;
Ciphertext← ¡ciphertext;
SharedSecret←
Kyber512Decapsulation(PrivateKey, Ciphertext);

Output the generated shared secret:
Shared Secret: shared secret;

5.4.3 Dilithium3

Dilithium3 is a lattice-based learning with errors (LWE) problem, which is believed
to be resistant to attacks by quantum computers. It offers a high level of security by
relying on the hardness of the LWE problem. It has been extensively analyzed by
cryptographers and proven to be resistant to various cryptographic attacks. Despite
its strong security guarantees, it is designed to be efficient in terms of computation,
memory usage, and bandwidth requirements. This makes it suitable for a wide range
of applications, including resource-constrained devices and high-performance sys-
tems. It is one of the leading candidates for post-quantum secure digital signatures,
and it has been submitted to the National Institute of Standards and Technology
(NIST) for standardization. Its inclusion in the NIST post-quantum cryptography
competition demonstrates its credibility and potential for widespread adoption. The
process of signature verification using dilithium3 involves several steps which are
explained in algorithms 10,11 and 12.
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Algorithm 10: Key Generation
Data: Predefined parameters
Result: Public key (𝑝𝑘), Secret key (𝑠𝑘)
Parameter Setup:;
parameters← predefinedParameters();
Generate Secret Key:;
𝑠1, 𝑠2← generateSecretPolynomial(parameters);
seed← generateRandomSeed();
𝑠𝑘 ← (𝑠1, 𝑠2, seed);
Generate Public Key:;
𝐴← generateRandomPolynomial(parameters);
(𝑇1, 𝑇0)← generateCommitment(𝐴, 𝑠𝑘);
𝑧 ← generateNoise(parameters);
𝑇 ← 𝑇1 + 𝑇0 + 𝑧;
spk← generateRandomSeed();
hpk← hashPublicSeed(spk);
𝑝𝑘 ← (𝑇, spk, hpk);
return (𝑝𝑘, 𝑠𝑘);

Algorithm 11: Sign and Verify

function sign message:
sk, msg

Input : Secret key 𝑠𝑘, message 𝑚𝑠𝑔

Output: Signature
𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒← sign message with secret key
(hash message(msg), sk)
return 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒;
𝑠𝑒𝑐𝑟𝑒𝑡 𝑘𝑒𝑦 ← generate secret key();
𝑚𝑒𝑠𝑠𝑎𝑔𝑒← generate random message();
𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒← sign message(𝑠𝑒𝑐𝑟𝑒𝑡 𝑘𝑒𝑦, 𝑚𝑒𝑠𝑠𝑎𝑔𝑒);
if verify signature(public key, 𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒)
then

print(”Signature is valid”);

else
print(”Signature is invalid”);
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5.4.4 Performance Analysis:

In the design process, memory is a crucial factor to consider, especially for resource-
constrained devices. Efficient memory management is crucial to balance the trade-
offs between computational speed, energy consumption, and security. Moreover, the
optimization of memory usage is essential to mitigate the risks of side-channel at-
tacks and ensure the overall performance and security of cryptographic operations in
such devices. To check the memory efficiency of our implemented KEM, kyber512,
we consider other lightweight KEMs lightsaber, NTRU, and frodoKEM640 for com-
parison analysis. In figure 36, maximum amount of memory (bytes) used during
encapsulation method is depicted. kyber512 requires around 22-25 bytes of memory
while it is implemented on STM32F427 (M4 cortex).

Based on the study conducted, the best-performing KEMs for resource-constrained
devices are Kyber512 and LightSaber. These mechanisms strike a balance between
energy consumption and memory storage. However, it is important to note that there
is a trade-off between the security level and computational resources required. While
choosing KEMs with lower security levels may result in smaller key sizes and re-
duced computational resources, it is crucial to ensure that the chosen mechanisms
still offer sufficient security.

Another important consideration in resource-constrained devices is latency dur-
ing key generation, encryption, and decryption process of KEMs and digital signa-
tures. Figure 37, shows the latencies (ms) we got using kyber512 and dilithium3
using TLS-based secure communication over wi-fi. Results ensure that resource-
constrained devices can leverage post-quantum cryptosystems effectively without
compromising security or consuming excessive computational resources and time.

5.5 Summary
Ethereum based P2P trustless data trade is proposed and implemented using Pi as
edge gateways, while STM32F427 development boards act as lightweight nodes for
the high-speed execution of asymmetric cryptographic algorithms. ECDSA is em-
ployed for key generation and device authentication using X-CUBE-CRYPTOLIB
library. Implementation results on M3,M4 and M7 show various execution times for
ECDSA, with the M3 taking an average of 17.253 seconds, while the M4 and M7
perform significantly faster, at 1.462 and 1.156 seconds, respectively. Power con-
sumption is also measured, with M3 and M4 consuming around 200 mW and M7
using approximately 290 mW. These results highlight the superior performance of
M4 processors, which offer a balance between efficiency and lower resource con-
sumption, making them the best fit for this implementation.

Resource consumption analysis shows only a maximum of 26% and 45% of
RAM and CPU usage during ethereum transaction handling, respectively. The time
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required to complete transaction modules shows an average of 34.6ms, 36ms and
73.6ms for TRD, VTR, and TCT respectively. The FoBSim simulator2 is used to
assess the scalability of the proposed model, with manager nodes ranging from 5 to
500. Results show that cloud processing takes roughly double the time compared to
edge gateways during concurrent transactions. The use of the gossip protocol reduces
latency by about 35% and block confirmation using POS exhibits minimal latency
even with 500 concurrent transactions, outperforming POW and POA.

EdgeBot is extended as a post-quantum resistant framework and the system was
configured using a mosquitto MQTT broker. The memory efficiency of Kyber512
KEM was tested against other lightweight KEMs like LightSaber, NTRU, and
FrodoKEM640 on an STM32F427 microcontroller. Kyber512 required 22-25 bytes
of memory. The study found Kyber512 and LightSaber to be the best-performing
KEMs, balancing energy consumption and memory usage. However, there is a trade-
off between security and computational resources, where lower security levels reduce
resource demands but must still ensure adequate protection.

2https://github.com/sed-szeged/FobSim
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a

b

Figure 25: (a)Genesis file creation at the start of the network (b) Genesis file after
initialization of few nodes
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Figure 26: Transaction confirmation using etherem

Figure 27: Execution time during ECDSA implementation using STM32F427 M se-
ries processors
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Figure 28: Average power consumption during ECDSA implementation using
STM32F427 M series processors

Figure 29: Consumption of CPU and RAM during randomly selected transactions
and idle time in between.
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Figure 30: Latencies to retrieve mata data (TRD), transaction validation time (VTR)
needed for single transaction request, and time required to confirm one
transaction (TCT).

Figure 31: Impact of concurrent transactions on end-to-end transaction latency.
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Figure 32: Impact of concurrent transactions on end-to-end transaction latency on
EdgeBot versus cloud services
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Figure 33: Impact of concurrent transactions on end-to-end transaction latency using
gossip protocol versus without gossip protocol
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Figure 34: Average Block Confirmation Time using PoS, PoW-10, and PoA

Figure 35: System Setup using Mosquitto MQTT broker and LM75A temperature
sensor

96



Peer-to-Peer Trustless Data Trade and Fair Access using Ethereum Platform

LightSaber Kyber512 NTRU-HPS FrodoKEM-640
Key Encapsulation Method

0

2

4

6

8

10

M
em

or
y 

(K
B

)

Figure 36: Maximum amount of memory, in bytes, that each KEM uses
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Figure 37: Latency in (ms) for kyber512 and dilithium3 proccess
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6 Real-time Data sharing and tracing
while preserving transparency using
Hyperledger sawtooth

This chapter proposed sawtooth based real-time data sharing and tracing among
trusted stakeholders (hospitals, healthcare service providers, and regulatory author-
ities) while offering robust solution to large-scale applications. A highly modular
framework addresses scalability and simplifies the integration process with existing
technologies, thereby facilitating a smoother transition as well as an adaptive design
to accommodate various forms of healthcare scenarios and their compliance require-
ments. The main contribution of this chapter includes:

• We construct a sawtooth-assisted real-time data sharing and tracing system
among trusted stakeholders while preserving transparency.

• We propose service optimization in sawtooth, a mathematical foundation for
determining the most efficient combination of databatch size, transactions per
second (tps), resource utilization and network resources while ensuring the
reliability of transaction commitment.

• The Proposed scheme resolves scalability issues by providing a robust foun-
dation capable of supporting large-scale operations by utilizing a highly mod-
ular structure of hyperledger sawtooth. Moreover, it addresses interoperability
challenges by fostering a cohesive and collaborative environment among the
diverse stakeholders in healthcare ecosystem.

• We conduct security and performance analysis, which demonstrates the effi-
ciency and reliability of our scheme.

6.1 Hyperledger Sawtooth Framework
Under the broad spectrum of open-source hyperldeger frameworks, hyperledger saw-
tooth is a private permissioned network proposed and built by the linux founda-
tion [181]. Intel designed this distributed ledger specifically for highly modular
business logic where governance bodies must customize rules and regulations in a
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run-time environment while maintaining immutability and privacy. Its modularity
separates its core system and the application domain. Therefore, each participating
entity can define a set of rules according to its requirements without knowing the
underlying business logic of the core system.

In sawtooth, business decisions take place on the transaction processing layer,
where transaction families work as models to handle low-level functions like sets
of permissions, policies, and storing block states and logs. Transactions are ex-
plained by the ”transaction family” through which a transaction state changes. Cor-
responding transaction processors are bonded to the transaction’s execution by each
entity. This modular structure can handle several consensus protocols such as Prac-
tical Byzantine Fault Tolerance (PBFT) [113], RAFT [182], Proof of Elapsed Time
(PoET) and PoET simulator [183].

Core Modules of hyperledger sawtooth are described in detail:

6.1.1 Consensus Protocol

A procedure in which all participating nodes of a network endorse or reject some
transactional state is known as a consensus protocol. Several options with different
attributes like throughput, finality, size, latency, threat model, censorship resistance,
and failure model are available. Distributed technologies build trust among untrusted
members through these algorithms. After facing many drawbacks in proof-of-X pro-
tocols, PBFT, RAFT and PoET consensus protocols are proposed with hyperledger
sawtooth. The PBFT consensus engine is preferable to maintain fault tolerance and
resolve issues in the original chain. Raft is a leader-based consensus protocol that
is preferable for a small number of participating nodes. Intel has presented proof of
elapsed time (PoET) [183], a promising, novel consensus protocol, and their SGX
hardware as a trusted environment.

Nevertheless, PoET can also be used without Intel hardware support by using
the PoET simulator with hyperledger sawtooth. This protocol stands out for many
reasons. It is considered one of the most robust implementations of the proof-of-
X protocol and comes as a part of the sawtooth project. Furthermore, it is highly
parameterizable, unlike the bitcoin protocol. Moreover, it is a currency-independent
protocol, which makes it best suited for use cases without financial transactions. As
it comes as a suit with a sawtooth, its working environment follows the sawtooth
structure:

• Validator node requests for a waiting time from an enclave (trusted module).

• Enclave assigns waiting time randomly to each validator.

• Leader is elected by checking the validator with the shortest wait time ”Create-
Timer” function creates a timer which guarantees the creation of transaction
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blocks by an enclave.

• Validator can claim leadership after finishing the allocated waiting time.

6.1.2 Data Model

The architectural design of the data model incorporates a sequentially arranged col-
lection of transactions, logs for transactional activities, and a distributed framework
for data storage to maintain the resultant states. The management of transaction
serialization is facilitated by deploying a radix merkle tree structure [184]. Each
participating node is equipped with a transaction processor and is allocated a dis-
crete namespace for implementing its proprietary business logic. Within a sawtooth
ecosystem, a transaction processor functions analogously to smart contracts within
the ethereum platform. The serialization schema offers considerable adaptability
and can leverage decentralized storage mechanisms, both on-chain and off-chain, to
preserve batches of committed transactions chronologically. Each data batch com-
prises multiple transactions, a timestamp, the index hash of the previous batch, and a
merkle root to authenticate the integrity of the batch data. The aggregation of trans-
actions into a single data batch occurs at arbitrary intervals. Upon the amalgamation
of several data batches, a data block is constructed, with the timing parameters be-
ing determined by the business logic. Each participating entity is free to select any
decentralized storage system, such as Firebase [185], filecoin [186], or the Interplan-
etary File System (IPFS), based on their specific business requirements.

Every stakeholder has the option to integrate their individual off-chain storage
solution. Sawtooth’s utilization of off-chain storage systems offers distinct benefits
and provides cost-effective scalability and efficient data processing for less sensi-
tive information. This bifurcation allows for the secure submission and validation
of requests, maintaining the confidentiality of transactional data while catering to
the specific needs of various stakeholders. Moreover, the approach aids in adhering
to sawtooth’s business rules functionality, ensuring a robust, scalable and flexible
solution.

6.1.3 Execution Model

The highly flexible structure of hyperledger sawtooth supports the running and com-
pilation of code as docker images. Docker images are simply chain codes which can
interact hyperledger’s back-end via pre-defined interfaces. It supports parallel exe-
cutions of chain codes and transactions in each node. The transaction processor must
verify each state and transaction before adding it to the data batch. Moreover, each
participating node can connect to other miners, validators, and light nodes via some
RPC-like mechanisms. Third-party interfaces and applications are built on top of
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the chain and can connect the application domain to the core-level module and vice
versa. The REST API allows the client to communicate with the core system module
”Validator” using HTTP/JSON standards. This pragmatic RESTful API provides a
simple, language-neutral interface to submit transactions and read/write requests. It
works as a lightweight layer on top of sawtooth’s internal ZMQ communication, so
it doesn’t require any authentication and passes the message requests to the validator
for signature verification. It uses the validator component as a black box, which can
only send requests and get the required result without knowing the internal system
logic.

6.2 Proposed System
In this section, we describe the extended proposed system, EdgeBot, in detail by
highlighting its system flow, and deployment to enable a secure and reliable way to
share and track real-time healthcare data by leveraging hyperledger sawtooth. We
extended our proposed model to use with trusted groups like hospitals, healthcare
services, regulatory authorities, and governmental bodies. Furthermore, it provides
a flexible model to connect with other underlying technologies and provide on-chain
governance to the participating stakeholders. It provides central authoritative con-
trols and offers better scalability, transaction efficiency, immutability, interoperabil-
ity, highly modular, fine-grained traceability, and run-time upgradation of the con-
sensus protocol. It provides on-chain governance by using dynamic consensus proto-
cols and provides permissioning features. Each stakeholder possesses its transaction
processor and can run its business logic via chain codes, side-chain decentralized
storage, and consensus protocol. Our proposed framework uses PoET consensus
protocol which elects the individual nodes to execute requests at a prescribed tar-
get rate. It is similar to proof of work but replaces huge computation with a cheap
random wait.

To create a trusted network, we use a P2P network of manager nodes (validator
nodes in terms of sawtooth), which provides journal block management and identity
management system services. It manages User ID and authenticates all participat-
ing nodes (modules) by issuing registration certificate. The high-level architectural
diagram of the extended proposed framework EdgeBot is depicted in Figure 38 high-
lighting all the major system modules involved. Each node represents one complete
module (stakeholder) of a system. The number of compulsory and optional compo-
nents involved in the constitution of each node. Compulsory items are P2P sawtooth
environment, transaction processor, consensus engine, validator, and REST API ser-
vices to interact with the system. Optional items include side chains, storage sys-
tems, client applications and their inter-communication protocols. A highly modular
structure consists of stakeholders, a sawtooth core system module, an application
domain, a distributed storage system, and clients. The REST API develops commu-
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Figure 38: System flow diagram of Hyperledger sawtooth

nication between core system modules and application domains. Each stakeholder
node represents some node category:

• Validator node: Each stakeholder is represented as a validator node. It is
responsible for authorizing transaction requests related to it after getting ap-
proval from the transaction processor. It doesn’t need to participate in other
network transactions (other stakeholders’ transactions).

• Leader node: The leader node is responsible for committing a batch of autho-
rized transactions after random time interval t.

• Client node: Clients can submit read requests. They can track all sorts of
information from the origin to the point.

Chain codes handle and deploy regulations, business logic, and transactions. These
are the central and essential components for handling P2P networks and managing
the complete system flow. Moreover, accessibility roles are different for each stake-
holder, defined and executed via chain codes.

6.2.1 Proposed service Optimization in Sawtooth

In this section, we introduce our research problem in the context of service optimiza-
tion. EdgeBot, represents a data exchange system which comprises 𝛼𝑥 individual
participating nodes. The number of parallel transactions generated by each partici-
pating node will be blocked together in databatches (𝑑𝑏), and the size of databatch is
denoted as 𝑆𝑡𝑥𝑛 (𝑑𝑏).
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Each transaction within a blockchain databatch encompasses multiple attributes
that collectively determine its size and can be expressed as follows:

𝑆txn (𝑑𝑏) = 𝛾flag + Σ𝑡elapsed
𝑡=𝑡initial

(𝑐𝑛𝑡in + 𝑐𝑛𝑡out )

+𝑡elapsed + 𝛼

where 𝛼 is network id of registered entity node, 𝛾flag is flags data, 𝑡initial is initial
time, cnt in is initial count of input values, cnt out is output count list, and 𝑡elapsed is
total elapsed time. If the number of transactions in a databatch 𝑑𝑏 are 𝑛𝑡𝑥𝑛 (𝑑𝑏), then
the total size of transaction data in a databatch can be given as:

𝑆𝑡𝑥𝑛 (𝑑𝑏) = 𝑛𝑡𝑥𝑛 (𝑑𝑏) · 𝑆𝑡𝑥𝑛 (𝑑𝑏)

Each databatch, in addition to the transaction data, also carries some metadata. This
metadata includes elements like a databatch header, the network id of the registered
entity node, a random wait time, elapsed time, merkle tree, and a time stamp. As
such, the size of a databatch can be determined based on these factors.

𝑆hdr (𝑑𝑏) = ℎ (𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑏𝑙𝑜𝑐𝑘) + ℎ (𝛼) + ℎ (𝑚𝑒𝑟𝑘𝑙𝑒𝑡𝑟𝑒𝑒)

+ℎ (𝑡𝑜𝑡𝑎𝑙𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑡𝑖𝑚𝑒) + ℎ (𝑟𝑎𝑛𝑑𝑜𝑚𝑤𝑎𝑖𝑡𝑡𝑖𝑚𝑒) + ℎ (𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)

In this context, ℎ symbolizes the hash function employed in the hyperledger sawtooth
framework. The term ’previous databatch’ pertains to the hash value of the databatch
preceding the current one in the network. ’Merkle tree’ signifies the hash value
encapsulating all the transactions in the databatch. The ’target formula’ is applied
to compute the target value required for mining a fresh databatch. ’Nonce’ is an
acronym for ’Number Only Used Once’, while ’timestamp’ marks the precise time
the databatch was generated. Consequently, the comprehensive size of the metadata
for databatch 𝑑𝑏 can be defined as:

𝑆𝑚𝑑 (𝑑𝑏) = 𝑆ℎ𝑑𝑟 (𝑑𝑏) + 𝑆𝑐𝑡𝑟 (𝑑𝑏) ,

where 𝑆𝑐𝑛𝑡 (𝑑𝑏) signifies the size of transaction counts. Every databatch in a net-
work encompasses both transaction data and its corresponding metadata. Hence, by
utilizing the previous four equations, the cumulative size of the databatch 𝑑𝑏 for the
network 𝛽𝑖 can be expressed as:

𝑆 (𝑑𝑏, 𝛽𝑖) = 𝑆𝑡𝑥𝑛 (𝑑𝑏) + 𝑆𝑚𝑑 (𝑑𝑏) ,

As previously explained, a databatch is composed of numerous transactions. The
duration required for a network to achieve consensus on a specific databatch is con-
tingent on the complexity of the consensus along with network latencies. Where a
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databatch 𝑑𝑏 is published, it undergoes a propagation period within the 𝛽𝑖. Conse-
quently, the propagation delay for transmitting a databatch 𝑑𝑏 on network 𝛽𝑖 can be
characterized by:

𝑡𝑝 (𝑑𝑏, 𝛽i) = 𝑡𝑐 (𝑑𝑏, 𝛽i) + 𝑡𝑝𝑟 (𝑑𝑏, 𝛽i) + 𝑡𝑞 (𝑑𝑏, 𝛽i)

Where, 𝑡𝑐 (𝑑𝑏, 𝛽𝑖) = network delay, 𝑡𝑝𝑟 (𝑑𝑏, 𝛽𝑖) = execution delay, and 𝑡𝑞 (𝑑𝑏, 𝛽𝑖) =
wait delay. In addition to the turnaround delay, the total elapsed time taken for a
databatch to complete includes propagation delay time, contributing to the overall
delay before confirmation. This turnaround delay, 𝑡𝑠 (𝑑𝑏, 𝛽i), can be represented by:

𝑡𝑠 (𝑑𝑏, 𝛽i) = 𝑡𝑐𝑠 (𝑑𝑏, 𝛽i) + 𝑡𝑜𝑡 (𝑑𝑏, 𝛽i) .

Where 𝑡𝑐𝑠 (𝑑𝑏, 𝛽𝑖) denotes the encryption plus consensus processing time, and 𝑡𝑜𝑡 (𝑑𝑏, 𝛽𝑖)
represents other potential delays, such as synchronization delay or network delay.
Consequently, employing the equations mentioned above, the comprehensive net-
work latency 𝑇 (𝑑𝑏, 𝛽𝑖) required for the generation of a data batch can be formulated
as follows:

Where, 𝑡𝑐𝑠 (𝑑𝑏, 𝛽i) denotes the encryption plus consensus processing time, and
𝑡𝑜𝑡 (𝑑𝑏, 𝐵i) represents other potential delays, such as synchronization delay or net-
work delay. Consequently, employing the equations mentioned above, the compre-
hensive network latency 𝑇 (𝑑𝑏, 𝛽𝑖), for a databatch to be generated can be given by:

𝑇 (𝑑𝑏, 𝛽i) = 𝑡𝑝 (𝑑𝑏, 𝛽i) + 𝑡𝑠 (𝑑𝑏, 𝛽i) .

Consequently, to attain optimal performance within a network, the mathematical rep-
resentation of the optimization problem can be expressed as follows:

min 𝑇 (𝑑𝑏, 𝛽𝑖) & max 𝑆 (𝑑𝑏, 𝛽𝑖)

Thus, this optimization technique provides a mathematical foundation for determin-
ing the most efficient combination of databatch size, transactions per second (tps),
resource utilisation and network resources while ensuring the reliability of transac-
tion commitment.

6.2.2 Core System module

The core system module consists of a validator node, which includes a single valida-
tor, REST API service, consensus engine, state database, P2P network, and one or
more transaction processors. The transaction handling module is inside the valida-
tor node, which handles messages, transaction batches and blocks, validation, and
publishing after getting approval from the appointed transaction processor.

One data batch consists of a random number of transactions, and one datablock
consists of databatches created at a specified time 𝑇 . Multiple transactions work as an
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atomic unit in a batch, hence, the validator rejects the complete transaction batch by
rolling it back to the previous state, even if a single transaction failed to complete the
validation process. Transaction batches are wrapped in batch lists and allows parallel
transaction execution and validation. Furthermore, the validator is also responsible
for P2P communication with other validator nodes (stakeholders) on the network.
Moreover, REST API services are used to communicate with transaction processors
and clients.

6.2.3 Application domain

The client is responsible for creating and signing transactions, combining them into
batches and blocks, and submitting them to the validator through the REST-API mod-
ule. The client application uses node.js based application, which provides a web user
interface for the user to interact with. Furthermore, transaction families are responsi-
ble to (i) write business logic and policies, (ii) separate transaction rules and content
of core functionalities, and (iii) updating state of a system using chain codes. The
transaction processor and client use the same data model, serialization, and address-
ing scheme. Setting transaction families enables participants to agree on prescribed
network policies. While transaction families authorize the transaction requests from
validator and client nodes autonomously, a client can creates a transaction and submit
it to the validator node for authorization. The validator then authorizes it after getting
approval from the transaction processor. Each node is assigned one authorized key,
which is used by the validator to authorize each requested transaction. After getting
consensus approval, any validator node can act as a leader to approve a transaction
batch.

6.2.4 System Flow

To track and trace patient histories and continuously generated data via bio-sensors,
our proposed system flow is described in two ways: track forward and backward.
Each stakeholder works as a validator node, which defines its working policies in-
dependently without leaning on the core system. To join a network, every stake-
holder must implement online system requirements and write transaction policies
based on their business logic. Furthermore, a stakeholder can start their validator
node and associated components after getting approval from the health regulatory
bodies (Leader).

However, to achieve traceability, it is essential to have two separate and asyn-
chronous transaction flows. Transaction flow describes temporal traceability and the
associated information flow going from one stakeholder to another. Using Track
backward flow, participants can access the transaction record at any time, ensuring
the process’s accuracy, integrity, and transparency. To track backwards, rules and
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regulations are defined for each stakeholder, depending on the proportionality of in-
formation revealed. Access control transaction rules are implemented and regularize
throughout the system through transaction families. Access control methods define
the attributes of transparency for each stakeholder in a system. While the transaction
families are used to implement access control methods via smart contracts managed
by leader nodes. Transaction rules are implemented in a modular approach based on
the nature of tasks, such as registration, transactions, tracing, and tracking.

6.3 Implementation and Performance analysis
To evaluate the performance, two separate testnets are deployed and specifications
are elaborated in table 21. A Permissionless PoET consensus engine in dev modes
is used along with a client application to implement the application layer. Nodejs is
used as the client-side execution engine and docker containers for the server side.

Table 21: Hardware and Software Specifications

Component Description

Framework Hyperledger Sawtooth
Operating System Ubuntu 18.04.6 LTS x64
Server Specification PC Core i5-6300U @ 2.5GHz
AWS Server specs EC2 instance: t2.Large
Client Application Nodejs Server
Runtime Environment Docker-compose v.1.29.2

In our testnets, the complete hyperledger sawtooth system is installed and initi-
ated on a linux system as a local host communication. EC2 instances of AWS are
used for separate server communications. Each component of sawtooth, including
transaction processors, events, chain codes, and nodes are launched as docker con-
tainers. Sawtooth is implemented using python embedded in docker images. Each
node is only responsible for validating transactions related to it and committing them
in batches after validation by the validator. In addition to the REST API, transaction
processor, validator, and data from blocks and states, every validator node has several
containers.

The application interface for each stakeholder depends on the rights it owns,
however, leader nodes can access every module and update the entire system. Each
validator node can prescribe its own set of rules and define roles for its sub-system
modules and off-chain settings. Interfaces can add transactions, accept inputs, re-
trieve transactions, and log information. Transaction processors are server-side pro-
grams that store operations and process transaction submissions according to busi-
ness logic. Validators run all the validation processes that happen in a node. They
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manage everything from business logic validation by the transaction processor to
consensus validation by the consensus manager.

A genesis batch, the first block of the chain, was created by the first validator
node. Upcoming data batches append this chain by adding new batches. Any val-
idator node can start the genesis node if it doesn’t acquire any extra authority. All
authoritative protocols, terms, and conditions can be added later at any time during
the running system via chain codes. To determine the business logic for the trans-
parent system, two transaction processors (TPs) are used, namely 𝑠𝑡𝑎𝑘𝑒ℎ𝑜𝑙𝑑𝑒𝑟 −
𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑇𝑃 and 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 − 𝑇𝑃 , and the PoET development
mode consensus is used. Successful transaction requests are combined into data
batches as shown in Figure 39. Multiple transaction batches are combined to make
one block.

 �
{ �
   - data:   [ �
        -  { �
             - header:  { �
                  signer_public_key: "0382hed971ws109h87h0bh491dgfe0578fd08ews97c489s34k841deaj1gr480ae", �
                 -  transaction_ids:  [ �
                      "83hf0735ow74926cbsj736scg3920al109deh261dbw0ok32bc103cjsoebb863mdn284bhs39fhe0osm283clenwoek30dhr57sbza0917sx0olqwn172owndslp" �
                   ] �

           },            �
header_signature:"4oeh3764bdkw483gmaq0183hfeoncow901k183uqw3bem65041e5abcfad29306462c1f8d2bc2bb980b0ab1ae5bc04d39457e95abfb60a7e645d�
09d4d592f97f6ee538b1". �

          trace: false, �
        - transaction: [ �
              - { �
                 - header:  { �
                         batcher_public_key: "0382hed971ws109h87h0bh491dgfe0578fd08ews97c489s34k841deaj1gr480ae", �
                         dependencies: [  ], �
                         family_name:  "transaction_request" �
                      -  input:  [ �
                               "6a0cd88919ee9e9305c5fc7ef277bf805195cf8fc583deb428a32f7f3d6883b76ea4b7255f7dd998cef79518d016eb", �
                         nonce:  "0x1.73dowu09niq12d478op23+30", �
                      -  outputs:  [ �
                               "6a0cd88919ee9e9305c5fc7ef277bf805195cf8fc583deb428a32f7f3d6883b76ea4b7255f7dd998cef79518d016eb" �
                         ], �

payload_sha512:"2208940ab214e0d4543fa1c087a46015081d067af87eb5be86f359da92a6e608798812582c2606a4853ac6a63ccb6c24a91161f8b390c4a�
1d3e4b89f78b78b8f50fdb7efe53e", �

                        signer_public_key: "0382hed971ws109h87h0bh491dgfe0578fd08ews97c489s34k841deaj1gr480ae" �
                   }, �

Figure 39: Data batches created after transaction

6.3.1 Impact of TPS and Blocksize on Latency

Firstly, we evaluated the impact of blocksize by varying the transaction rate (trans-
action per second, tps) in terms of transaction latency. Transaction rate refers to the
number of transactions processed by the sawtooth network within a specific time pe-
riod 𝑇 . Latency is defined as the time gap between the transaction submission and
completion. The latency 𝐿𝑡 is calculated as follows.

𝐿𝑡 = 1
𝑛

𝑛∑︁
𝑖=1

(𝑡𝑥𝑖 − 𝑡𝑦𝑖)
1
𝑇𝑖

Here, 𝑡𝑥𝑖 and 𝑡𝑦𝑖 represent the transaction completion and submission times, respec-
tively, of the 𝑖th experiment and 𝑇𝑖 denotes the total number of transactions submit-
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ted for the 𝑖th experiment. It measures the rate at which transactions are submitted to
and executed by the network. Transaction latency decreased linearly by decreasing
the parallel number of transactions, which can be seen clearly in Figure 40.

Figure 40: Transaction latency (sec) increases linearly by increasing transactions per
second (tps)

With a low transaction rate, it’s easier for the network to process and confirm
transactions quickly. Latency tends to be lower in such cases, as there is less compe-
tition for block space, and transactions can be included in blocks sooner. However,
a high transaction rate means many transactions are being submitted simultaneously.
This can lead to increased competition for block space, potentially causing delays in
transaction confirmation. Higher transaction rates may result in higher latency due
to the time it takes to accumulate and validate transactions for block inclusion.

Proper network optimization and scaling can help mitigate the latency impact of
varying block sizes and transaction rates. Techniques such as load balancing, par-
allel processing, and optimized consensus algorithms are helpful to maintain lower
latency even as the blockchain network faces increased traffic. The availability of
network resources, such as computing power, memory, and bandwidth, plays a role
in determining how well a sawtooth network can handle different block sizes and
transaction rates. Networks with abundant resources can handle larger blocks and
higher transaction rates more efficiently, resulting in lower latency. We need dy-
namic adjustment of block size and other network parameters. This adaptability can
help balance the trade-off between throughput, block size, and latency in response to
changing network conditions.
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6.3.2 Impact of Transaction rate on Throughput

The transaction rate directly and significantly impacts throughput in sawtooth net-
work. Throughput measures the system’s ability to process a certain number of
transactions within a specified time period. To validate our proposed model, we cre-
ate three categories of blocksizes and run parallel transactions per second. Figure 41
depicts that transaction throughput increases rapidly by increasing the transaction
rate until it reaches 120-130 tps while using blocksize-20, at which point it stops
increasing significantly, and only a slight difference can be seen. These results indi-
cate that bigger blocksizes show better performance throughput until they reach their
maximum throughput per block size. As an average, transaction throughput is higher

Figure 41: Impact of blocksize and transaction rate on throughput

in blocksize-20 than in 5 and 50, which shows that the more often the consensus al-
gorithm runs, the more often it decreases the overall efficiency of the system, but
we need to set the limit dynamically according to the availability of the resources.
The impact on throughput also depends on the available network resources, such as
bandwidth. If limited, increasing the transaction rate may not significantly increase
throughput. The transaction rate increases significantly when we move towards 5 to
100 transactions per second and then increases in a non-significant style. Latency
can also be decreased by increasing the number of transactions per block. In the
case of blocksize-5, the average transaction rate was 306.89 ms, which increased
to 270.47 ms by increasing the blocksize to 20 transactions per block. The trans-
action latency decreases further by increasing the size to 50 transactions per block,
the transaction rate comes to 198.68 ms average. The experimental results depict
that transaction throughput increases rapidly by increasing the transaction rate until
it reaches 100 tps, at which point it stops increasing significantly and only a slight
difference can be seen. These results indicate that bigger blocksize show better per-
formance throughput until they reach their maximum throughput per block size. As
an average, transaction throughput is higher in blocksize-50 than in 5 and 20, which
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shows that the more often the consensus algorithm runs, the more often it decreases
the overall efficiency of the system.

6.3.3 Security and communication Analysis

For on-chain communication, sawtooth’s internal ZMQ based communication model
doesn’t require any authentication and passes the message requests to the validator
for signature verification. Validator nodes send and receive data within the network
through the use of chain codes independently. Moreover, participating entities can
autonomously update their terms and conditions without requiring the involvement
of other network members.

To facilitate off-chain communication within the network, we propose the imple-
mentation of a secure communication infrastructure based on transport layer security
(TLS) for encrypted data sharing. This approach incorporates post-quantum essential
encapsulation methods to ensure the security of private keys and employs digital sig-
nature algorithms for authentication purposes. Kyber512 is utilized as a key encapsu-
lation method for sharing crypto keys over the network and dilithium3 for digital sig-
natures. Dilithium3 is employed in communication to ensure messages’ confidential-
ity, authenticity, and integrity. Section 5.4.4, shows complete process and implemen-
tation of kyber512 and dilithium3. Kyber key encapsulation algorithm (KEM) with
the Kyber public-key encryption algorithm is implemented using 32-octet cpaseed
as input for the key generation process. 𝑐𝑝𝑎𝑃𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦, 𝑐𝑝𝑎𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦, ℎ, and 𝑧

are variables representing the components needed to derive the private key. The pub-
licKey is derived directly from 𝑐𝑝𝑎𝑃𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦, while the privateKey is derived from
a combination of 𝑐𝑝𝑎𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦, 𝑐𝑝𝑎𝑃𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦, ℎ, and 𝑧. In terms of resource
utilization, the performance of post-quantum key encapsulation mechanisms (KEMs)
can be compared against elliptic curves implemented in the 𝑂𝑝𝑒𝑛𝑆𝑆𝐿 cryptography
library. The results show that, in general, the elliptic curves perform similarly to
the post-quantum KEMs, indicating the need for further optimizations to make them
more suitable for devices with low resources.

6.3.4 Network Reliability Analysis

More than 1000 parallel statements were initialized and tracked to test the system’s
reliability; as shown in Figure 42, the system could handle 82 percent of the state-
ments and miss only 179 requests with limited computational resources. These sets
of statements include different kinds of commands and events, but missed statements
are network-bound only. Node.js based client was responsible for initiating and de-
ploying a different number of transactions by using Int-key transaction processor.
These transactions are then sent to the validator through the REST-API module. P2P
nodes, as well as client applications, use RESt-API to communicate between them
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Figure 42: Total number of successful commits

and google protocol buffers were used to make communication easier, and curl sends
data from HTTP to RESt-API. Int-key transaction processor was used to sign each
transaction and combine these transactions into batches and a number of batches are
combined to publish one block on the network.

CPU and network utilization performance test marks were recorded and analyzed
for Amazon AWS instances and personal computer systems. Hardware specifications
are described in detail in table 21. To collect the matrices of PC, cAdvisor (Con-
tainer Advisor) is used, and a running daemon is used to collect the analytics against
each running container separately. 11 virtual cores were used to start the network.
To track the performance metrics of AWS cloud instances, cloudWatch was used.
Furthermore, we aggregate these performance parameters of running containers and
their impact on CPU and network consumption in charts. Figure 43 describes the
CPU utilization in terms of CPU percentage, which shows sudden spikes overtime
during the parallel number of transaction commits.

However, sawtooth is mainly a network-bound protocol, figure 44a and 44b
shows the network packet count used during transaction requests and event handling
using AWS EC2 instance. Sudden spikes show the network usage during transac-
tions and event handling is spiked upto 15%. The following analysis demonstrates
that the suggested system effectively maintains privacy and scalability, without in-
troducing any disturbances in the areas of traceability and transaction confirmation.
Moreover, the integration of privacy measures does not significantly influence the
system’s performance.
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Figure 43: CPU Utilization in terms of CPU percentage

6.4 Summary

The hyperledger sawtooth system was implemented on a linux system as a local host,
with AWS EC2 instances used for server communications. Node.js-based clients ini-
tiated transactions via the int-key processor, which were sent to the validator through
REST-API using google protocol buffers. System performance was tested on AWS
and local PCs, with cAdvisor used to collect metrics from docker containers and
CloudWatch for AWS instances. Sawtooth components, including transaction pro-
cessors, chain codes, events, and nodes, were launched in docker containers. CPU
and network usage showed spikes during transaction handling, with the system man-
aging 82% of 1,000 parallel statements. Despite spikes in CPU and network uti-
lization, the system maintained performance, with network-bound operations high-
lighted as a factor affecting performance.

Based on our results discussed in previous sections, we have completed a com-
parison study of results and analysis in table 22 with recent studies. Our comparison
analysis shows the reliability and sustainability of utilizing EdgeBot in real-time
ubiquitous healthcare systems. The framework addresses scalability challenges by
providing a solid foundation to support large-scale healthcare operations in a mod-
ular manner, catering to each participating stakeholder. Additionally, it streamlines
the integration with existing systems, even those utilizing different technologies, en-
suring a smoother transition to distributed ledger technologies (DLTs).

We evaluated the performance of the proposed framework using AWS services
by testing key parameters, including the effect of block size on latency with vary-
ing transaction rates per second, as well as the combined impact of block size and
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Table 22: Comparison of our results and analysis with existing studies

Properties This
Study

[187] [188] [189] [190]

Impact of blocksize
on TPS

Medium Medium Medium Medium Medium

Impact of transaction
rate on TPS

Medium High Medium Medium High

Scalability High Medium Medium High Medium
CPU utilization Low Low Low × ×
Network utilization Medium Medium × × ×
Transaction Latency Medium Medium Medium × Medium
Network Reliability High × × × ×
On & off chain Secu-
rity

High × × Medium ×

transaction rate on throughput. Additionally, network consumption analysis indi-
cates that bigger block sizes enhance system efficiency by reducing the frequency of
consensus algorithm execution, but dynamic limits should be set based on available
network resources like bandwidth. Experimental analysis shows that transaction la-
tency increases with higher transactions per second (TPS), and throughput—the sys-
tem’s ability to process transactions also increases but plateaus at 120-130 TPS with
blocksize-20. Larger blocksizes improve throughput until they reach their maximum
capacity. As blocksize increases, transaction latency decreases, showing better per-
formance with blocksize-50 than smaller blocks. Enabling traceability and tracking
all transactions provide a complete picture of each transactional data, including date,
time, location, and stakeholders involved in the operation.
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Figure 44: (a)Received number of Network Packet count and (b) Outgoing Network
traffic Packet count

(a) Received number of Network Packet count

(b) Outgoing Network traffic Packet count
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7 Conclusion and Future Perspective

This study proposed optimized privacy protected techniques leveraging consortium
and private blockchain framework as a service for ubiquitous healthcare systems in
time-sensitive environments. Our main objective was to address fine-grained access
control and privacy concerns related to data transmission, sharing, and trading in
edge computing environments among peers by proposing resource-optimized ML
algorithms service optimization, and sharding techniques. EdgeBot guarantees the
availability of information, respects ownership rights, and protects data trading rights
using fine-grained access control scheme.

First, in Chapter 4, we designed a continuous physiological signal monitoring
system incorporating edge-level intelligence and ethereum to ensure privacy and se-
curity of processed information. We proposed resource-optimized 1D-CNN for mul-
ticlass arrhythmia detection, moreover, bayesian optimization algorithm was embed-
ded within the network architecture to adaptively select the optimal combination of
hyperparameters. Experiments were conducted under two main testbed configura-
tions and a variety of bio-sensors, including a heart rate sensor, temperature, humid-
ity sensor, and an ECG monitoring system. The first configuration collected 400
heart rate samples by utilizing photoplethysmography sensor MAX30100 in con-
junction with the ESP8266-12E WiFi module. We employed 2-channel ECG system
using AD8232 along with STM32F427 (32 bit microcontrollers) and raspberry pi
3 as edge gateways. It also includes digital-to-analog converters (DAC) MCP4921,
general-purpose operational amplifiers (OPAMP) LF353, and a Wye resistor net-
work. During ECG measurements, some subjects were positioned supine and in-
structed to relax their muscles to minimize muscular artifacts and assess pure ECG
quality. High-pass and low-pass filters with cutoff frequencies of 0.1 Hz and 200
Hz were implemented and after digitization at an 800 Hz sampling frequency, notch
filters at multiples of 50 Hz were used to eliminate power line interference. To ascer-
tain the precision and credibility of AD8232 based ECG system, a comparison of HR
and RR interval measurements was obtained from polysomnography (PSG) device.

Initially, for quick abnormality detection, the support vector machine (SVM)
technique and naive bayes algorithm are implemented and experimental results show
that SVM outperforms naive bayes in terms of accuracy for real-time scenarios. The
presented approach effectively categorizes incoming signals as either normal or ab-
normal. Furthermore, we deployed our proposed resource optimized 1D-CNN and
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base LSTMs for identifying multi-class arrhythmias and the results demonstrate that
our proposed light weight 1D-CNN shows better results while comparing to base
LSTMs and other related studies. The correlation results of 1D-CNN highlight the
high accuracy of the 1D-CNN, with the majority of predictions correctly positioned
along the diagonal, reflecting robust performance and minimal misclassifications. A
comparative analysis of our proposed 1D-CNN with similar studies demonstrates an
average accuracy of 97.4%, while utilizing significantly fewer resources than other
studies. Average ECG processing time along with data sharing on ethereum requires
only 150ms and 143ms respectively.

Using ethereum and artificial intelligence at the network’s edge (edge gateways),
users’ privacy is improved significantly. With edge intelligence, firstly, it enables
processing of raw data at the local network level, hence, mitigating the risk of raw
data leakage. As a result of its application to manage access control to processed
data and features, the blockchain allows end-users to have complete control over
their data while allowing third parties access only to data that has already been pro-
cessed. As raw data is never stored, nor is it transferred outside of the local network
when analyzed directly at the edge layer, we inherently avoid breaches of sensitive
information.

Second, in Chapter 5, we proposed trustless P2P data trade protocol based on
edge gateways (raspberry pi 3, model B+), and STM32F427 (M3,M4 and M7) as
lightweight nodes, leveraging ethereum as a service layer. Employing ECDSA for
communication and data security is fortified through ECIES using X CUBE CRYP-
TOLIB library, generating unique keys via a child key derivation function (CKD) for
every data batch. Results show an average of 17.253s, 1.462s and 1.156s execution
time of M3, M4, and M7 respectively, while average power consumption by M3 and
M4 was ± 200mW, whereas M7 uses an average of ± 290mW. Results indicate the
superior performance of M4 cortex microcontrollers are best fit while consuming
fewer resources.

Resource consumption analysis during P2P data trade shows that average com-
puting resources utilized remained notably below 40 percent. RAM usage is approx-
imately 26% during transaction, and 45% of CPU is utilized. The time needed to
complete a transaction is divided into three stages: retrieving metadata (TRD), veri-
fying the transaction (VTR), and confirming the transaction (TCT), it is remarkable
that TRD requires only 34.6ms , VTR 36ms, and TCT 73.6ms on average. FobSim
simulator was utilized to check the scalability of the proposed model. Results show
that gossip protocol decreases 35% latency during parallel transactions ranging from
5 to 500. EdgeBot Post-quantum resistant extension was implemented and results
were compared with other lightweight KEMs. Latency and memory efficiency of
Kyber512 KEM with other lightweight KEMs were compared on STM32F427 mi-
crocontroller. Kyber512 required 22-25 bytes of memory, moreover, Kyber512 was
found to be the best performer, balancing energy consumption and memory usage.
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Results of performance analysis show EdgeBot, a viable option for fortifying data
trade, data ownership and exchange through edge gateways.

Third, in Chapter 6, real-time data sharing and tracing among trusted stakehold-
ers (hospitals, healthcare service providers and regulatory authorities) is proposed
while preserving transparency using hyperledger sawtooth. Sawtooth system is set
up on a linux platform with local host communication, while Amazon Web Services
(AWS) EC2 instances handle server communication. Each component of Sawtooth,
such as transaction processors, chain codes, and nodes, runs as docker containers.
Implemented in Python, the system validates and commits transactions in batches.
Node.js clients are responsible for initiating transactions, which are processed by
the Int-key transaction processor and communicated via REST-API. The system’s
performance is tested on both AWS and local machines, using tools like cAdvisor
for tracking container analytics and cloudWatch for monitoring AWS performance
metrics. The results show spikes in CPU and network usage during heavy transac-
tion loads. Despite these spikes, the system maintains data privacy without affecting
traceability or performance significantly.

We demonstrated the performance of the proposed framework using AWS ser-
vices and by testing various significant parameters, which include the impact of
blocksize on latency by varying the transaction rate per second and the impact of
blocksize and transaction rate on throughput. Experimental analysis shows that trans-
action latency increases with a higher transaction rate (TPS), affecting throughput,
which measures how many transactions are processed in a certain period. Experi-
mental results reveal that larger block sizes generally improve throughput, although
network resource limitations like bandwidth can cap performance. The throughput
improvement reaches a limit after approximately 120-130 TPS with blocksize-20.
The study also finds that increasing transactions per block reduces latency, with a
notable improvement when using blocksize-50 over smaller blocksizes. Experimen-
tal results show that transaction latency decreases linearly by increasing the block-
size and transaction rate (tps). Network bandwidth and CPU consumption metrics
show that there is not much change during transaction handling or in idle condi-
tions. However, sudden spikes in network packet count have been observed during
transaction processing, and idle state systems do not require significant bandwidth,
making sawtooth network protocol network-bound rather than CPU-bound. The ex-
perimental results and analysis with related studies demonstrated that our proposed
model offers reliable and real-time traceability capabilities while ensuring scalability
in large-scale ubiquitous healthcare systems.

To summarize, we successfully achieved the principal objective of this thesis to
research, develop, and evaluate the development of such an access-control, privacy-
preserved framework in various ubiquitous health aspects. However, direct im-
plementation of a ubiquitous healthcare system is not always feasible. The inter-
variability of biosignals due to individual differences poses a significant challenge
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for accurately detecting each individual. Pre-trained deep learning models may ex-
perience substantial performance degradation in certain patients. Moreover, person-
alizing models in deep learning still demands significant manual effort and domain
expertise to label a sufficient number of patient-specific data samples, which is im-
practical in some scenarios due to the high labor costs and specialized knowledge
required. Additionally, access to personal health data is highly restricted in health
monitoring applications, making it difficult to obtain the necessary data for model
personalization, thereby complicating the process further.
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