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Abstract

This thesis deals with a hardware accelerated Java virtual machine, named
REALJava. The REALJava virtual machine is targeted for resource con-
strained embedded systems. The goal is to attain increased computational
performance with reduced power consumption. While these objectives are
often seen as trade-offs, in this context both of them can be attained simulta-
neously by using dedicated hardware. The target level of the computational
performance of the REALJava virtual machine is initially set to be as fast
as the currently available full custom ASIC Java processors. As a secondary
goal all of the components of the virtual machine are designed so that the
resulting system can be scaled to support multiple co-processor cores.

The virtual machine is designed using the hardware/software co-design
paradigm. The partitioning between the two domains is flexible, allowing
customizations to the resulting system, for instance the floating point sup-
port can be omitted from the hardware in order to decrease the size of
the co-processor core. The communication between the hardware and the
software domains is encapsulated into modules. This allows the REALJava
virtual machine to be easily integrated into any system, simply by redesign-
ing the communication modules. Besides the virtual machine and the re-
lated co-processor architecture, several performance enhancing techniques
are presented. These include techniques related to instruction folding, stack
handling, method invocation, constant loading and control in time domain.

The REALJava virtual machine is prototyped using three different FPGA
platforms. The original pipeline structure is modified to suit the FPGA envi-
ronment. The performance of the resulting Java virtual machine is evaluated
against existing Java solutions in the embedded systems field. The results
show that the goals are attained, both in terms of computational perfor-
mance and power consumption. Especially the computational performance
is evaluated thoroughly, and the results show that the REALJava is more
than twice as fast as the fastest full custom ASIC Java processor. In addition
to standard Java virtual machine benchmarks, several new Java applications
are designed to both verify the results and broaden the spectrum of the tests.
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Chapter 1

Introduction

With the rising popularity of wireless systems, there is a proliferation of
internet-enabled embedded devices, most notably PDAs and mobile phones.
In this context Java is emerging as a standard execution environment due
to its security, portability, mobility and network support. Java technology
allows easy access to utilities like calendars, planners and email clients as
well as entertainment like media players and games. The applications can
be installed to the device over a wireless internet connection or with a data
cable provided by the manufacturer. However the limitations in both stor-
age space and computational power cause certain Java execution techniques,
such as just in time compilation (JIT), to be unusable in this application
domain. Yet the consumers demand faster systems with more capabilities
and longer battery lifes. This conundrum has sparked several methodologies
to reduce the overheads in Java execution.

The overheads are due to the fact that Java applications are not writ-
ten, nor compiled, for any given hardware device. In fact they are written
and compiled for a virtual machine, the Java virtual machine (JVM). The
Java applications are executed by emulating the Java virtual machine on the
host system. Clearly the extra emulation layer causes overheads, but it also
provides opportunities for several improvements, like increased security and
platform independent programming models. Also power management can
be included at the virtual layer, by using slower but more energy efficient
routines when the battery is running low.

Java provides a rich standard library, which includes methods for net-
work access and wireless communication. The library is included in the
virtual machine, so the actual user application does not have to copy the
code imported from the library. This keeps the deployable size of a given
Java application quite small, a feature well suited for portable devices with
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limited storage capacity and communication bandwidth. The richness of
the standard library also increases programmer productivity, by reducing
the need to “reinvent the wheel”.

Java is very popular and portable, as it is a write-once run-anywhere
language. This enables coders to develop portable software for any plat-
form. Java code is first compiled into bytecode, which is then run on a Java
Virtual Machine. The JVM acts as an interpreter from bytecode to native
microcode, or more recently uses JIT to affect the same result a bit faster
at the cost of increased memory usage. This software only approach is quite
inefficient in terms of power consumption and execution time. These prob-
lems rise from the fact that executing one Java bytecode instruction requires
several native instructions. For instance, the research of Radhakrishnan et
al. [44] showed that a single Java bytecode instruction translated to approx-
imately 25 native instructions on the SPARC processor architecture used in
that study. Also the fact that the Java virtual machine instruction set archi-
tecture (ISA) is stack based causes inefficiencies when executed on current
processors, which typically have register based ISAs. Another source for
inefficiency is the cache usage. As the JVM is the only part of software run-
ning natively, it occupies the instruction cache, whereas the Java bytecode
is treated as data for the JVM, hence being located in the data cache. Also
the actual data processed by the Java code is assigned to the data cache.
This clearly causes more memory accesses missing the cache.

When the execution of the bytecode is performed on hardware many of
the problems in the software approach are avoided and the overall amount of
memory accesses is reduced. Some of the performance gain comes from the
inherent parallelism available in the hardware domain. For instance, when
using hardware, the Java program counter can be updated in parallel with
the execution of an instruction, while in software these steps would have
to be performed sequentially. The hardware can update most of the inter-
nal registers in similar fashion. Also the addition of a relatively small local
memory to the hardware domain reduces the system wide physical memory
accesses by removing unnecessary cache misses and keeping the temporary
data locally cached. The cache performance is further improved by keeping
the Java bytecode in the local memory, freeing the data cache for the actual
data to be processed.

Since the Java virtual machine has the extra layer between software
and hardware, it often is not suitable for low level hardware control, device
drivers and hard realtime parts of a given embedded system. Using a full
standalone Java processor in the system would be likely to require a general
purpose processor for the low level accesses. This would make system in-
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tegration both difficult and expensive. The solution proposed in this thesis
is to take the best parts from both the full software and the full hardware
approaches. This is done by using a co-processor for the execution of the
Java applications. The co-processor approach provides easy integration with
existing systems, with the execution speed of a standalone hardware Java
virtual machine. The resulting system needs no special concerns related
to accessing I/O devices and other services, since they are provided by the
general purpose host processor. The integration is easier than in the stan-
dalone solutions since there is no need for sharing resources between two
fully autonomous processors.

1.1 Objectives

The main objective in this thesis has been to design and prototype an ef-
ficient hardware accelerated Java virtual machine targeted for embedded
systems. The secondary objective has been to develop understanding of us-
ing hardware in Java execution and behavior of Java virtual machines in
embedded context. The efficiency of the resulting REALJava virtual ma-
chine is evaluated in terms of execution time and power consumption for a
given application. Initially the computational performance is targeted to be
at least as fast as the currently available full custom ASIC Java processors.
No specific performance or timing requirements are set, since the REALJava
is not designed for any predefined Java application, but rather for use as a
general purpose Java virtual machine. The hardware acceleration is hidden
inside the virtual machine so that both the Java programmers and the end
users running the Java applications are left unaware of the acceleration, save
for the increased performance. The research problems to be solved include:

1. Partitioning of the virtual machine. In order to use a hard-
ware acceleration scheme the Java virtual machine is partitioned so that
the platform specific parts are implemented in software while as much as
possible of the actual Java bytecode execution is implemented in hardware.
The partitioning has an impact on the number of communications between
the two domains as well as on the overall efficiency of the resulting virtual
machine.

2. Communication between the hardware and the software.
The communication medium and protocol have a significant impact on the
efficiency of the system. Thus the communication subsystem needs to be
carefully tuned to avoid bottlenecks. The communication is to be separated
from the rest of the virtual machine, both in hardware and software do-
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mains, so that the virtual machine can be easily ported to new systems by
redesigning only the communication modules.

3. Software partition. The virtual machine requires a software par-
tition with support for the hardware acceleration. Besides the co-processor,
this partition also controls the data structures to be kept in the memory
region of the main CPU. Garbage collection and I/O also fall into the soft-
ware domain, since they are highly platform1 dependent.

4. Hardware partition. An efficient stack based hardware architec-
ture is required in order to provide sufficient performance. The hardware
partition is designed initially targeting asynchronous ASIC technologies, but
it is prototyped using FPGA technology. The transition from one technol-
ogy to the other requires several paradigm shifts, since the FPGAs have
very different characteristics when compared to ASICs and especially asyn-
chronous systems.

5. Performance issues. Once the virtual machine has been built from
the previous parts, it needs to be analyzed and evaluated. The observations
made here will be reflected back to the previous problems and they are fine
tuned accordingly. The measurement data gathered will also be used to
show the feasibility of the chosen strategies and technologies.

All of the above mentioned problems are to be solved using techniques
that allow system level scaling in the future. This design choice is motivated
by the current trend towards multicore processor systems and even more so
by the inherent multithreading support in Java. Since the Java program-
ming language supports multithreading readily at the language level, it is
reasonable to integrate several co-processor cores into a single system. Each
of these cores can then execute a Java thread of their own, in a truly parallel
fashion.

The research presented in this thesis is a part of the REALJava project,
which aims to design a Java co-processor that is easily integrated to various
systems. Asynchronous techniques have been chosen for this project because
that allows the virtual machine to achieve good performance with reason-
able power consumption and very easy integration with existing systems,
since no clock limitations need to be considered. Asynchronous self-timed
circuit technology [50], where timing is based on local handshakes between
circuit blocks instead of a global clock signal, provides a promising platform

1The platform refers to the underlying system, upon which the Java applications are
to be executed. This includes the operating system and all of the hardware components
in the system.
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for obtaining a highly modular low-power and low-noise Java virtual ma-
chine implementation. The conceptual model of the REALJava is entirely
based on the asynchronous design paradigm, both internally and externally.
However, since prototyping is done using FPGAs, the prototypes use syn-
chronous techniques. This is due to the inherent synchrony of the FPGA
technology. Asynchronous systems prototyped with FPGAs would suffer sig-
nificant performance penalty for artificial synchronization between modules.

1.2 List of Publications and Research Contribu-

tions

The research towards this thesis has been partly included in the following
papers (in chronological order):

(1) T. Säntti and J. Plosila, Communication Scheme for an Ad-
vanced Java Co-Processor, In Proc. Norchip 2004, Oslo, Norway,
November, 2004

(2) T. Säntti and J. Plosila, Architecture for an Advanced Java Co-
Processor, In Proc. ISSCS 2005, Iasi, Romania, July, 2005

(3) T. Säntti and J. Plosila, Instruction Folding for an Asynchronous
Java Co-Processor, In Proc. 2005 International Symposium of System-
on-Chip, Tampere, Finland, November, 2005

(4) T. Säntti and J. Plosila, Real Time Flow Control for an Ad-
vanced Java Co-Processor, In Proc. Norchip 2005, Oulu, Finland,
November, 2005

(5) T. Säntti, J. Tyystjärvi and J. Plosila, Java Co-Processor for Em-
bedded Systems, In Processor Design: System-on-Chip Computing
for ASICs and FPGAs, J. Nurmi, Ed. Kluwer Academic Publishers /
Springer Publishers, ch. 13, pp. 287-308, 2007

(6) T. Säntti, J. Tyystjärvi and J. Plosila, FPGA Prototype of the
REALJava Co-Processor, In Proc. 2007 International Symposium
of System-on-Chip, Tampere, Finland, November, 2007

(7) T. Säntti, J. Tyystjärvi and J. Plosila, A Novel Hardware Accel-
eration Scheme for Java Method Calls, In Proc. ISCAS, Seattle,
Washington, USA, May, 2008
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The general principles of the REALJava virtual machine have been de-
veloped by the author. All of the hardware units presented in (1-7) have
been designed by the author. The supporting software presented in (5-7)
has been implemented by Joonas Tyystjärvi, save for the communication
routines, which have been developed by the author. The research related
to the software/hardware co-design issues has been carried out jointly by
the author and Joonas Tyystjärvi. The same division of labor has also been
used for the parts of the research that are not published in (1-7). All of the
hardware and software components of the REALJava virtual machine have
been designed completely from scratch, instead of modifying any previously
existing systems. The only deviation from this is the Java standard library,
for which the GNU Classpath [92] is used.

The research carried out for this thesis resulted in the following contri-
butions (listed in the order they appear in this thesis):

• Conceptual model of a hardware accelerated Java virtual ma-
chine. The model outlines the basic mechanisms required for execu-
tion of Java applications using a co-processor to enhance the perfor-
mance. The model is loosely based on the principles presented in [36],
and it has been further improved by the author while knowledge of
the behavior of the hardware assisted virtual machine has increased.

• Asynchronous stack based co-processor architecture. The ar-
chitecture is designed for asynchronous environments, and it includes
a modified pipeline structure tailored to suit the execution of Java
bytecode. The architecture is based on the author’s observations on
the properties of the Java bytecode and general purpose processor ar-
chitecture presented in several textbooks, including [23].

• Asynchronous instruction folding unit. The instruction folding
as a concept is developed from the approach used in [19]. The structure
of the folding unit and the instruction classification are results of the
author’s research.

• Software partition of the co-designed virtual machine. The
software partition is designed form scratch, without any reference de-
sign. The architecture and functionality of the software is based on the
Java virtual machine specification [38] and the additional commentary
in [41]. Most of the work related to this partition has been done by
Joonas Tyystjärvi, while the author’s involvement has been mainly on
the hardware/software co-design issues and the communication proto-
col and routines.
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• FPGA prototypes. The prototypes are completely designed by the
author, save for the board design. The prototypes are based on the ar-
chitecture mentioned earlier, but they required modifications in order
to make them suitable for the FPGA environment. All of the research
and design here is the work of the author, save for the internal struc-
tures of the units implemented with the Xilinx CoreGenerator.

• Java applications for identifying performance hindrances. Sev-
eral small Java applications were developed by the author with support
from Joonas Tyystjärvi. Most of these applications simply measure
the time taken for a given instruction or a class of instructions. The
data gathered from the prototypes of the REALJava and other execu-
tion engines was then analyzed to find the instructions with relatively
weak performance. Deeper analyses on the execution of those instruc-
tion resulted in discovery of most of the performance enhancements
that follow. The analyses were performed by the author.

• Stack caching and data transport architecture. The stack in
the prototypes was not cached using a ring buffer. Instead a new
cache architecture was designed by the author. The cache is more
efficient in terms of hardware resources on an FPGA and provides
good performance, as shown in 5.2.

• FPGA compatible pipeline structure. The pipeline structure
designed for asynchronous environments is not usable as such in the
FPGA domain. The modifications to the architecture were designed
by the author, and most of the reasons for the modifications were
obtained from the Xilinx documentation and the general properties of
FPGA devices.

• Partial instruction folding. Since the folding unit was initially
designed for asynchronous environments, it was left out from the pro-
totypes. The benefits of the data loading parts of the folding are
obtained with the new stack cache mentioned previously, leaving the
data saving parts so far unhandled. The partial folding addresses
these, and provides the in effect the same results. This technique was
discovered and designed by the author.

• Method invocation acceleration. The method invocation acceler-
ator is entirely based on the research of the author. The additional
benefits were discovered during the analyses of the invocations that
are not cacheable.

• Constant caches. The constant caches are also based on the author’s
analyses on the execution of Java applications. Identification of the
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instructions suitable for this and the structures needed for the caches
are results of the author’s research.

• Time control mechanisms. The basic ideas behind using hard-
ware timers came from the author, while the application of timers in
the thread time slicing was a result of hardware/software co-design
by the author and Joonas Tyystjärvi. The timers were designed by
the author, with influences taken from the timer structures found in
Microchip’s [91] PIC line of microcontrollers.

• Control register bank with additional functionality. The added
functionalities in the control register bank are results of the author’s
research. The purpose for designing most of the additions was to
reduce the communication between the host CPU and the co-processor,
while others provide enhanced debugging capabilities.

• Multicore Java virtual machine. While the multicore support
in the REALJava virtual machine is still rudimentary, the research
has from the start been carried out with the requirements of adopt-
ing a multicore approach in mind. The software support required for
the multicore version was developed by Joonas Tyystjärvi, while the
hardware was designed by the author. The adoption of a multicore
approach was motivated by the current trends of using several cores
instead of one very powerful core. The execution model is based on
the research of the author with the properties and limitations of the
multithreading model used in Java.

• Java applications for performance evaluation. Several Java ap-
plications were designed jointly by the author and Joonas Tyystjärvi
to validate the results of publicly available benchmarks and to expand
the application spectrum used for the performance evaluations. The
author also ported some of these to be suitable for execution on a mo-
bile phone. This was done in order to get yet another reference system
for the comparisons.

These contributions should be usable in the design of Java hardware
assisted executions engines, regardless of whether they are co-processors or
standalone Java processors. The suitability of a given technique is heav-
ily dependent on the surrounding architecture, the provided services and
the logical layout of the various data segments inside the virtual machine.
The stack cache architecture can be used in any stack based architecture,
possibly requiring modification to the depth of the cache depending on the
instruction set of the target architecture. The Java applications used for
tests and analyses are readily usable for similar testing of any Java virtual
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machine, since the applications are standard Java applications without any
customizations or modifications. The contributions are also expected to
survive the increase in memory sizes of embedded devices caused by low-
ering memory prices. This can be justified by assuming that as memory
sizes grow, the relationship between the memory sizes of desktop computers
and embedded systems will remain. Also the Java applications will become
larger as the amount of memory in desktop computers is increasing. These
two assumptions together suggest that embedded systems will remain mem-
ory limited in the foreseeable future. Additionally the multicore approach
will scale the performance to allow the REALJava and it’s subsystems be
viable far in to the future, even with heavier applications.

1.3 Overview of the Thesis

After having a look at the related work, the rest of the thesis is organized as
follows. In Chapter 2 the structure of a generic Java virtual machine and the
basics of the Java programming language are described. Chapter 3 describes
the REALJava virtual machine at a conceptual level. Both the hardware
based co-processor and the software partition of the virtual machine are
presented. Chapter 4 presents the details of the FPGA prototypes of the
REALJava virtual machine. Based on the analyses on the performance of
the FPGA prototypes, modifications to the architecture are presented in
Chapter 5. Measurement data of the performance of the REALJava virtual
machine is presented in Chapter 6, with comparisons to existing Java sys-
tems. Finally, in Chapter 7 conclusions are drawn and future efforts related
to the REALJava virtual machine are discussed.

1.4 Related Work

This section discusses various approaches that can be deemed relevant for
and related to the research presented in this thesis. First a brief glance
is directed at the software only solutions. Then some hardware based ap-
proaches are discussed. In the listings of both the software and hardware
solutions only a representative selection is given, showing a wide spectrum
of approaches. The representatives for the approaches are chosen by the au-
thor based on the commercial success or the number and quality of scientific
data available, for commercial products and research projects respectively.
Finally, a hardware/software co-designed Java virtual machine with a rel-
atively similar approach to the REALJava virtual machine is discussed in
detail.
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1.4.1 Software Solutions

Java virtual machines are usually implemented in software only. This ap-
proach is currently dominant in the embedded application domain as well
as in the desktop computer domain. In the embedded systems domain the
Java virtual machine must cope with two major challenges: limited mem-
ory resources and power consumption. This renders the most advanced
and aggressive techniques of dynamic compilation unsuitable in most cases.
However there is still some room for optimization and light weight recom-
pilation at the run time. The most notable implementation in this field is
the J2ME from Sun, but other implementations for embedded environments
do exist. As examples, a few software based Java systems are introduced
next. The first complete Java virtual machine that used the GNU Classpath
was Japhar 2 [93]. It has been built from the ground up without consult-
ing Sun’s sources, and thus qualifies for “cleanroom status”. Open source
solutions have also been provided by corporate entities, such as the Open
Runtime Platform (ORP) [94] and the Jikes RVM [2] initially developed
by Intel and IBM, respectively. Both of them are currently maintained as
SourceForge [95] projects. Academic research has produced several Java
virtual machines, with varying target focuses. One of the many interesting
systems is the SableVM [16, 96], which is designed especially to be portable
and easy to extend for research purposes.

Maybe the most well known and best documented free software Java
Virtual Machine is the Kaffe [97]. It has been used as a reference design
in several studies related to JVMs, including topics like JIT optimization
and garbage collection. As examples Latte [63] and Jessica [39] can be men-
tioned. Also multitasking inside the Java virtual machine has been studied
based on the Kaffe architecture, in the KaffeOS [4, 5] and Janos [60] projects.

1.4.2 Hardware Solutions

It is currently unrealistic to consider implementing an entire embedded soft-
ware project in Java. For one thing, Java does not include a mechanism
for directly accessing memory or hardware registers. This means that for
instance the GSM communication of a mobile phone is hard (or even impos-
sible in some cases) to implement using purely Java based software. Fur-
thermore the execution speed and the unpredictability in time domain make
Java quite unsuitable for hard realtime applications, such as handling the

2Also known as the Hungry Programers’ Java VM.
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data streams over GSM. So there will always be a need for device drivers
and other pieces of supporting software written in C/C++ or assembly. This
kind of low-level software might either be called from Java, in which case it
is said to be a native method, or run as a separate thread of execution, in
parallel with the Java runtime environment.

There are two main solution types for hardware acceleration in a Java
virtual machine. The first one is designing the whole processor with Java
bytecode instruction set, resulting in a system that needs no other processor.
This solution is referred to as standalone solution and the PicoJava [19] de-
veloped by Sun Microsystems is a well known example of this approach. The
other solution is to use a general purpose processor as the CPU and to add
a co-processor to boost the performance when Java execution is required.
The work in this thesis uses this approach, as does for instance the Jiffy [1].
Virtual machines based on both strategies have been researched to some ex-
tent, and full commercial solutions are also available. The research problems
presented in Section 1.1 Are not directly to any of the solutions presented
here, due to the differences in the approaches. One research project exists
with closely matched approach, and it is given a deeper look to highlight
the similarities and differences to REALJava. The analysis can be found in
Section 1.4.3.

Standalone Java Processor Solutions

The processors in this group usually are limited in their instruction set, or
support only a subset of the bytecodes. Also the classpath support may be
limited. A list of the most notable representatives is presented in Table 1.1.
The commercial solutions selected for this table are Picojava, AJile, Cjip,
Lightfoot and TINI. In the research field the representatives are Fem-
toJava [28], focusing on minimizing the size of the Java processor, JOP
[48], which focuses on realtime performance and SHAP [64], focusing on
the security aspects of Java.

Co-Processor Approach

The co-processor approach can be further divided into two categories, namely
the hardware interpreters and execution co-processors. The hardware inter-
preters take in Java bytecode stream and give a native instruction stream
to the CPU. The executing co-processors actually perform the instructions
in the Java bytecode stream. Some examples are listed in Table 1.2. The
commercial representatives are Jazelle and JSTAR. In the research field
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Processor Implementation Notes

PicoJava FPGA J2SE, never entered production

AJile ASIC J2ME

Cjip ASIC J2ME

Lightfoot ASIC & FPGA Available as IP core, J2ME

FemtoJava FPGA Subset with 16-bit ALU

TINI ASIC Enhanced 8051 running SW JVM

JOP FPGA Subset, requires precompilation

SHAP FPGA Realtime, subset,
requires precompilation

Table 1.1: A short list of standalone type Java processors.

the selected projects are REALJava, the topic of this thesis focusing on
performance and scalability, Hard-Int, which focuses on the on chip trans-
lation and JIFFY, focusing on JIT-like optimizations during the on chip
translation.

Processor Implementation Notes

REALJava FPGA The topic of this thesis

Hard-Int Simulation only Translator

JIFFY FPGA Translator, JIT on FPGA

Jazelle ASIC Subset, ARM architecture only

JSTAR ASIC J2ME

Table 1.2: A short list of co-processor type Java processors.

1.4.3 Co-Designed Java Virtual Machine

A co-designed Java virtual machine has been proposed by Kent et al. in
[32, 40]. The architecture they suggest is based on the co-processor ap-
proach, but it is targeted at desktop computers. The PCI bus has been
adopted as the communication medium, limiting the usability of the vir-
tual machine to systems with PCI support. The architecture is based on
recognizing sequences of the Java application bytecode that are suitable for
execution on the co-processor, and adding instructions to transfer the exe-
cution to the hardware. This is done during the class loading. At the same
time instructions are added for returning the execution to the software, at
the end of the hardware sequences. In their architecture the storage size of
a Java method is further increased by alignment of the Java bytecodes. The
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software partition of their virtual machine implements the complete instruc-
tion set of Java, and thus causes the executable file to be larger than in the
REALJava virtual machine, which only implements a subset of instructions
on software. The partitioning between hardware and software is also differ-
ent. The most critical difference is that the local variables are handled in the
software, whereas the REALJava system keeps them in the hardware. Since
the transfers between the local variables and the stack top are very common
in Java, locating them both to the hardware has a huge impact on the per-
formance. Also the way methods are invoked and returned from is different.
Their architecture executes all of the method changes in software while the
REALJava performs most of these in hardware. As the good programming
practices outline, most of Java applications are composed of a large number
of relatively small methods. This causes the method invocation subsystem
to have a major impact on the overall performance of the virtual machine.
As a consequence of the method handling, their system has access to only
one method’s bytecode at a time. When the method is changed the hardware
needs to retrieve the code segment again. In the REALJava the bytecode
segments of the previously used methods are kept in the co-processors local
memory, thus greatly reducing the amount of communication required for
transferring data from the CPU to the co-processor. Finally the REALJava
is both smaller in terms of LUTs used on the FPGA implementation and
faster in terms of clock speed. In light of the publications related to their
work with the Java virtual machine [20, 22, 29, 30, 31, 32, 40], it seems that
the research has not led to an actual running virtual machine with hardware
support. Rather than measuring actual performance, all of the data in the
publications is obtained from simulations, and furthermore they often ignore
the impact of communication between the co-processor and the host system.
As a result no real performance metrics are available and this system is not
used as a reference in the comparisons in Chapter 6.

1.4.4 History and Current Trends

This section reflects the authors personal views on the field of hardware
accelerated Java execution. It is provided in order to shed light on the
general history of the field, and also to try and predict the trends effecting
the future of the field. In the past the efforts in the hardware acceleration
of Java virtual machines have mainly been focusing on desktop computers
and standalone Java chips or CPU specific co-processors on the embedded
systems. The hardware acceleration in the desktop environment is rather
challenging, mainly due to the fact that the raw number crunching perfor-
mance of the CPUs is currently good enough to give very good results with
software only solutions. Also the memory sizes in the desktop computers
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are sufficient for JIT and other techniques to usable. Hardware accelerators
running on FPGAs at mere hundreds of megahertzs are no mach for the
CPUs running at several gigahertzs. In the embedded systems domain the
Java chips are limited by their poor ability to be integrated into existing
systems, causing the device manufacturers to prefer software solutions if a
CPU specific co-processor is not available. The fact that the PicoJava Java
processor never was produced commercially may also have dampened the
research activities. If a major company in the field of Java virtual machines
fails with their hardware implementation, how could smaller operators do
better? The commercial success of the CPU specific co-processors on the
other hand is very tightly coupled to the success of the CPU. Also being
CPU specific naturally decreases usability across different platforms. The
most successful CPU specific co-processors are designed by the CPU man-
ufacturers, and they are closely integrated to the core of the CPU. The
interest in the embedded system domain has not been a focus area in Java
virtual machine development for more than about six to eight years, and of
that time definitely most has been spend on the software only solutions and
refining the J2ME specification.

The factors mentioned before have kept the academic interest towards
the hardware acceleration of Java virtual machines relatively low, but now
the efforts in the field are expected to rise. This is true especially in the
embedded systems domain. This is partly motivated by the user device
manufacturers, who are starting to move towards highly modular systems
composed of several functional units and accelerators besides the main CPU.
Like the desktop computers have done during the past few years, the embed-
ded systems are also moving towards multicore platforms. The difference
between the desktop computers and the embedded systems is that the mul-
ticore approach in desktop domain is currently homogeneous, using several
identical CPUs, while the embedded systems domain is moving towards
heterogeneous multicore systems, composed of several different processing
elements. This trend was clearly presented in the NoTA conference [98], aim-
ing to agree on a unified way to integrate, communicate and define module
interfaces in embedded devices. The presentations, such as [27], were often
motivated by statements that multicore technologies are now emerging in
the embedded systems domain. Several of the case studies presented also
contained highly specialized co-processors or functional units. This trend
validates the field of the research presented in this thesis, and also shows
that the industry is also starting to move towards that direction.
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Chapter 2

Java Virtual Machine

Technology

This chapter provides essential background information of the Java program-
ming language and the Java virtual machine. The chapter also provides
context for the work. Emphasis is given to the Java virtual machine spec-
ification, and some implementation techniques are also discussed. Finally
the use of hardware to enhance the execution of Java applications is briefly
touched.

2.1 Advantages of Virtual Machines

One of the most important reasons to use a virtual machine is that the code
is write-once run-anywhere. This means that the code needs to be compiled
only once, then it can be run on any platform, even over a network con-
nection. Another important advantage is that new devices need only a new
virtual machine implementation to run all existing software. This reduces
the development cost of a new generation of devices, as well as time to mar-
ket.

Even though the reasons listed above are very attractive, especially to
industry, if not the consumer, they are not the only reasons to use virtual
machines. Virtual machines provide improved security features: the addi-
tional layer between the code and the executing hardware can be used to
increase security. While making it hard for you to shoot yourself in the
foot, it also makes it harder for others to shoot you in the foot. Software
downloaded from the internet can be verified to ensure it is original and not
malevolent.
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The security advantages are also present in some fully interpreted lan-
guages, such as TCL and JavaScript. The difference here is in the execution
speed. Virtual machines get some kind of precompiled input files (Java
bytecode for example), and thus they need less run-time interpreting and
manipulation of the source code resulting in better performance. According
to [41] TCL has been (informally) measured to be up to 200 times slower
than fully compiled C++, where as precompiled languages fall in the range
of 10 to 20 times slower than C++. With modern technologies, such as
JIT (Just In Time compilation), the difference is dropping below “only” 5
times slower. The performance is still significantly below C++, due to the
fact that a C++ compiler can optimize register allocation, whereas a JIT
compiler has to work starting with Java bytecode operating on a stack.

2.2 Motivation for Choosing Java

Although platform independence has been hailed as Java’s greatest strength,
it is equally important to note that it is easier to produce bug-free software in
Java than in C or C++. Java has been designed from the ground up to pro-
duce code that is simpler to write and easier to maintain. Even though the
developers of Java based the language on the syntax of C, they eliminated
many of that language’s most troublesome features. These features some-
times make C hard to understand and maintain, and they frequently lead
to undetected programming errors. Here are just a few of the improvements:

1. All of Java’s primitive data types have a fixed size. For example, an
integer is always 32 bits long in Java. Other languages for embedded
systems have different assumptions based on the architecture.

2. Automatic bounds-checking prevents the programmer from writing or
reading past the end of an array. Typically operating systems limit
memory accesses to the threads allocated space, but they make no
guarantees on the object accessed.

3. All test conditions must return either true or false. Common mistakes
in languages with C/C++ like syntax, such as if (x = 0) {. . . } 1, are
detected at compile-time, thus eliminating an entire set of bugs.

4. Built-in support for strings and string manipulation allows statements
like ”Hello, ” + ”world!”.

1Using syntax like in C/C++, x = 0 is an assignment, while a condition testing should
be x == 0.
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In addition, Java is an object-oriented language similar to C++. This
forces software developers to structure their data and functions into logical
units called classes. Encapsulation, polymorphism, and inheritance are all
available and are used extensively in the built-in class libraries. Java sim-
plifies inheritance by eliminating multiple inheritance and replacing it with
interfaces. It also adds many new features that are not available in C++,
most notably:

1. Automatic garbage collection simplifies dynamic memory management
and eliminates memory leaks.

2. Built-in thread library makes applications written in Java more portable
by providing a consistent thread and synchronization interface across
all operating systems and target devices.

3. An integrated exception mechanism organizes software exceptions into
a logical class hierarchy and does not allow programmers to ignore
them.

Finally, Java is extensively used in teaching of object oriented program-
ming. This gives rise to a very large base of programmers who are familiar
with the language. With so many coders well versed in the Java language,
both industry and academia can start new software projects based on the
Java technology and feel confident in the fact that a team with the necessary
skill level can be hired easily.

2.3 Java Language

Java has become very popular lately. Some of the main features that have
contributed to the success of Java are listed below.

• Portability: The application source code is compiled into bytecode
format, which is architecture neutral. This is the “native” format of
the Java Virtual Machine. Since the bytecode format is not platform
dependent it makes write-once run-anywhere possible.

• Object oriented: Java is quite a simple language, with the look and feel
of C/C++, resulting in easy transitioning for programmers familiar
with C/C++. The object model of Java is simplified by allowing
only single inheritance of implementation (ie. a subclass can be the
extension of only one superclass). However a class can implement
multiple interfaces, providing a mechanism for multiple inheritance.
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• Standard library: A Java runtime system provides a rich standard
library, called the Classpath. This helps to increase the productivity
of programmers. It also keeps the code size of applications small since
the routines from the classpath are not included in the executables,
but are referenced from the classpath.

• Multithreading: Java supports multithreading at the language level.
The system provides synchronization methods and the standard li-
braries are designed to be thread safe.

• Safety: Java systems perform safety and sanity checks on the classes
while they are loaded. Memory leaks are largely avoided due to the
garbage collection and the omission of pointer type protects the system
from dangling pointers. The array indices are checked to be valid in
runtime, making sure that no accesses outside of the actual array are
allowed. The extra layer of software between user application and
operating system also provides additional security.

• Availability: Java runtime environment is available for several target
platforms at no cost. Also the compiler tools are free, and some more
sophisticated development environments can also be found. There are
several open-source projects focusing on Java virtual machine imple-
mentations, and they can form a good starting point if the intended
target platform is not supported by the major commercial Java virtual
machines.

2.4 Java Variants

Java systems are currently divided into three major categories, as depicted
in Figure 2.1. The largest of these is the Java Enterprice Edition (J2EE)
[104], which is targeted for large systems running server software in Java.
The Java runtime system found in normal desktop computers is known as
Java Standard Edition (J2SE) [105]. Te Java Micro Edition (J2ME) [106]
is designed for embedded devices and other resource constrained environ-
ments. One more Java variant is the Java Card technology [107], which
enables smart cards and other devices with very limited memory to run
small Java applications.

The J2ME is further broken down by two criteria, based on the config-
uration and profile used for a given device. The configurations define the
minimum subset of Java implemented by a device, while the profiles can
add some functionality to a given configuration. A Java ME configuration
only defines a minimum complement or the “lowest common denominator”
of a given Java technology. All the features included in a configuration must
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Figure 2.1: An overview of the variants for a Java virtual machine.

be generally applicable to a wide variety of devices. This means that the
scope of a configuration is limited and often incomplete for any given real
target devices. Additional features specific to a certain device, or category
of devices, are defined in a profile specification.

2.4.1 Configurations and Profiles in J2ME

Currently there are two commonly used configurations. These are known
as the Connected Device Configuration (CDC) and the Connected Limited
Device Configuration (CLDC).

Connected Device Configuration is a framework for building a Java vir-
tual machine suitable for 32-bit RISC/CISC/DSP microprocessors and a
few megabytes of working memory. The applications on embedded devices
range from pagers up to set-top boxes and high end PDAs. Three profiles
are based on the CDC:
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• Foundation Profile

– Java SE-like application programming interface (API)

– No graphical user interface (GUI)

• Personal Basis Profile

– Extension to Foundation Profile

– Lightweight GUI support

• Personal Profile

– Extension to Personal Basis Profile

– Full AWT (Abstract Window Toolkit) and applet support

– Easy to port PersonalJava-based applications

This configuration is intended to be used by devices requiring a complete
implementation of the Java virtual machine, and an API set that may, via
the addition of profiles, include the entire J2SE API. Typical implemen-
tations use some subset of that API depending on the profiles supported.
Two commonly used versions are 1.0b and 1.1.2. The CDC 1.0b API [67] is
based primarily on the J2SE 1.3 API and it includes all of the Java language
APIs defined in the Java ME CLDC 1.0 specification. The CDC 1.1.2 API
[68] is based primarily on the J2SE 1.4.2 API and it includes all of the Java
language APIs defined in the CLDC 1.1 specification.

The Connected Limited Device Configuration [69] defines a Java virtual
machine suitable for 16-bit or 32-bit RISC/CISC microprocessors with a few
hundred kilobytes of available memory. Typical applications include mobile
phones and lower end PDAs. There are currently three versions available,
numbered 1.0, 1.1 and 1.1.1. The first one is the most limited and it has no
floating point support. The classes float and double are completely removed
from the specification. This causes all of the bytecode instructions operating
on those data types to be redundant, so they are also removed with support-
ing libraries. The CLDC version 1.1 adds the floating point data types and
bytecode instructions as well as the supporting library methods in the class-
path. The minimum memory budget is grown from 162kb to 190kb. This
is mainly due to the added floating point support. Also some classes have
been modified to be more compatible with J2SE, including Thread, Calen-
dar, Date and TimeZone. The version 1.1.1 is only a maintenance release,
and it adds only little to the 1.1 specification. The main difference is the ad-
dition of support for certain features of the Java technology security model,
to provide a common base of Permission classes. Also some arithmetic func-
tions have been added to java.lang.Math2, such as sin, acos, atan and atan2.

2The capitalization is correct, however strange it may seem.
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Only one profile is currently available for the CLDC. It is called “Mo-
bile Information Device Profile” (MIDP). Currently, two versions of the
MIDP are available, 1.0 and 2.0, with a third version in planning stage.
The MIDP profile adds the following characteristics to the CLDC configu-
ration: a display with minimum screen-size of 96x54 pixels (which should
be approximately square), a keyboard or a touch screen, at least 256 kb
of non-volatile memory for the MIDP implementation, 8 kb of non-volatile
memory for application-created persistent data and 128 kilobytes of volatile
memory for the Java runtime (e.g., the Java heap), networking with limited
bandwidth and sound capabilities. This is the minimum set of requirements.
Typically mobile phones with a Java virtual machine support this set and
often even surpass the requirements.

2.4.2 History

The Java programming language was originally a part of a research project
to develop software for network devices and embedded systems. In the be-
ginning of the ’90s, Javas predecessor, known as Oak, was created for a
device called *7. The *7 was a small SPARC based device with a tiny
operating system, much like an early version of a modern PDA. The *7
never made its way to a consumer device, but Oak, renamed to Java, was
released in 1995. Java was then intended to be a new language for the Inter-
net, and to be integrated into Netscape’s browser. In 1997 Sun announced
the PicoJava processor architecture. The PicoJava was supposed to be a
standalone Java engine using dedicated hardware, but Sun never actually
manufactured these processors. Since then Java has been expanding the
application domain steadily, including areas like desktop applications, web
servers and server applications. The diverse requirements and capabilities
of these application domains caused the separation of the Java standard edi-
tion (J2SE) and the enterprise edition (J2EE) in 1999. Every new release
brought new features to the standard library, thus increasing the size of the
runtime system. The growth in the portable device market, ushered by the
mobile phone industry, revived Sun’s interest in the embedded systems. Sun
defined different subsets of Java for embedded systems and collected them
into Java micro edition (J2ME) in 2000. In order to broaden the application
domain even further, the Real-Time Specification for Java (RTSJ) [6] was
approved in 2002. Since the origins of Java lie in embedded systems and
current trends have moved Java to that specific field, one might say that
Java is coming home.
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2.5 Generic Java Virtual Machine Architecture

The Java virtual machine is a definition of an abstract computing machine
that executes bytecode programs. The JVM specification has three major
components, namely:

1. Instruction set, called the bytecodes, and their functionality

2. Binary format, known as the class file, containing bytecode segments,
symbol table and other ancillary data

3. Verification algorithm, used to verify that a class file contains valid
programs

Several properties of the virtual machine are not specified, but rather
suggested or left up to the implementors judgment. For instance the garbage
collection is left to the implementor to choose. Similarly the execution engine
is not specified, just the functionality of the instructions. All this freedom
leaves the implementors with room for design decisions that suit the prop-
erties of the target device while still maintaining full compatibility with the
JVM specification.

2.5.1 Lifespan of the Java Virtual Machine

The Java virtual machine is started when the user requests a Java appli-
cation to be started. At this time the virtual machine is created, and it
performs a boot sequence, much like typical desktop computers. During the
boot sequence the virtual machine initializes it’s data areas and sets system
values, such as the current time and the time zone. After all these prepara-
tions are completed, the virtual machine loads and verifies the main class of
the application requested by the user. Then the execution of the application
starts. While executing, user interaction may be required. The execution
of a Java application usually involves invoking more than just the main
method. When a new method is invoked, it is loaded and verified before
the execution resumes in the new method. Finally, when the application is
completed, the virtual machine performs shutdown. This last phase releases
all of the memory areas reserved during the lifespan of the virtual machine.
Also open files are closed and, if the virtual machine uses them, locks on
resources are released. Then the virtual machine sends an exit code to the
underlying system, and is destroyed. A Message Sequence Chart (MSC) of
the sequence is shown in Figure 2.2.
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Figure 2.2: A MSC of the lifespan of a Java virtual machine.

2.5.2 Data Placement Inside a JVM

The data inside a JVM is typically placed in different areas depending on the
type of the data. This is done in one part to make the structure clearer and
in another part to ease the garbage collection process. When different areas
are used for the various data types present, only the heap area needs to be
collected. The following classification is a typical implementation, several
aspects can be varied at the implementors discretion. Figure 2.3 shows the
data areas and the software components of a typical implementation of the
Java virtual machine.
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Class data is an area dedicated for storing class specific information,
such as the constant pool data. It also contains the field data for the class.
This area is shared between all the threads running in the JVM.

Method area is also shared among the threads. It contains the bytecode
implementations of the methods loaded to the JVM. This area provides the
instruction streams during the execution of a Java application.

Native method area is similar to the method area, but instead of storing
bytecode segments it stores platform dependent native code segments. Like
the method area, this area is also shared between the threads.

Java heap is the last shared memory area, and it is used for storing the
objects created during the runtime of the Java application. This includes
all of the arrays and the other objects. The garbage collector clears any
unnecessary objects from this area.

Java stack is private to each thread running on the JVM. In essence this
means that every thread has a separate stack instance. A Java stack con-
tains stack frame information, actual operand stack and the local variable
area of the currently executing method. These items can be placed in any
order. The specification does not dictate anything regarding the layout of
the data. The operand stack is accessed very frequently during execution,
so it should be fast.

Methods
Native Java

Heap
Class
Data

Native
Interface

Class
Loader

Memory
Management Scheduler

Thread

Area
Method

Execution
Engine

Stacks
Java

System Memory

Host CPU

Figure 2.3: An overview of the data areas and the software components in
a Java virtual machine.
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2.5.3 Bytecode Instruction Set

The bytecode instruction set contains 201 instructions. All of the Java vari-
ants use the same instruction set, save for the smallest ones, which omit the
floating point instructions. The bytecode instructions can be grouped into
eight categories. Most virtual machine implementations also provide fast
versions of some of the instructions. These are typically instructions that
might cause a class to be loaded. When the class in question has already
been loaded, the instruction will be replaced with the fast version, which
does not check whether the class needs to be loaded. These are not part of
the standard Java bytecode instruction set. Typically the fast versions are
assigned bytecodes above 202. The bytecode instruction set is listed in the
Appendix A, followed by the extended instructions used in the REALJava
virtual machine.

The load and store category contains instructions that transfer data
from local variables to the stack (load) or in the other direction (store).
This category contains all together 70 instruction, but many of them have
the same implementation. This is caused by the fact that the instructions
contain type information of the data being transferred. For instance the
iload and the fload both transfer a 32-bit data item, and the type of the
data item has no significance other than making verification possible. The
large number of instructions in this group is an indication of their frequency
in Java applications.

The arithmetic-logical category contains data manipulation instruc-
tions. These operate on the data found in the Java stack. Usual cycle is
to pop the top two elements of the stack, perform an operation on them
and then store the result back to the top of the stack. These instructions
are also typed, and here the type information is actually meaningful. For
instance the addition of two integers, iadd, and the addition of two floats,
fadd, are completely different in implementation point of view. Even though
the JVM supports types shorter than 32 bits (byte, short and char), there
are no arithmetic-logical instructions for them. Instead they are calculated
using operations for integers and then the result must be explicitly con-
verted to the correct type. The Java compiler includes these conversions
automatically, and the programmers do not need to consider it 3. Oddly,
the comparisons that take floating point data types or long integers as inputs
are part of this category. Those instructions pop the values to be compared,
and then push an integer whose value tells the result of the comparison.

3Of course the additional conversion has an effect on the performance, but the func-
tionality will be correct.
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The type conversion category provides means for converting data
items to different types. When converting integers to shorter types, such
as bytes, the conversion is done simply by dropping the high-order bits and
then sign extending the result back to the 32 bit data type, which is used
internally. This can cause the sign of the result to be incorrect. Converting
longs to integers is done in the same fashion. Also the conversions to and
from floating point types exist.

The object and array category includes instructions used for cre-
ating and accessing objects and arrays. The data access instructions for
objects are not typed, but the array access instructions contain the type
information. The instructions used for finding or checking the class of an
object belong to category also.

The stack manipulation category contains instructions that remove,
copy or move data items in the top of the stack. These instructions are not
type specific, but separate versions for 32-bit and 64-bit data items are in-
cluded.

The branch category has the instructions for both conditional and
unconditional branches. The branching always happens inside the current
method and remains in the current stack frame. The conditional branches
compare either the top element of the stack to zero or the two top ele-
ments to each other. The conditional branches use integer data types in the
comparisons, for comparisons with floating point types or long integers the
testing needs to be done separately. Object references can also be tested to
find out whether the reference is null or not.

The method category provides instructions used for invoking methods
and returning from methods. There are four different invocation instruction,
which differ mainly in the way the actual target method is found. The re-
turn instructions can pass a return value to the calling method, and the data
can be 32-bit or 64-bit. If a single return value is not sufficient for a given
method, the return data must be placed in an object, and the reference
to the object can be returned. The instructions in this category change the
stack frame, either to a new frame in case of an invocation or to a previously
used frame in case of a return.

Finally, the miscellaneous category is used for the rest of the in-
structions. These include instructions operating on monitors, throwing an
exception and index widening instructions. The monitors are used for syn-
chronization between threads.
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In order to analyze the instruction set, the Kaffe [97] virtual machine was
modified4. The modified version produced an output file of the executed in-
structions. This file was then analyzed to find the dynamic frequencies of
the bytecode instructions during the execution of selected Java applications.
The analysis showed that the load and store category is the most common
in real applications, amounting around 50% of all instructions on average.
The arithmetic and object groups are quite neck to neck for the second place
with around 16% each. The branch and method categories take roughly 8%
each, while the rest total up to 2% when counting all together. Similar re-
sults have been measured by others, including [51].

The code segment of a method consists of the instruction bytecodes, and
some instructions have parameter data attached. This parameter data is
placed directly after the related instruction, effectively becoming part of the
instruction stream. As an example, the iload instruction is followed by one
byte index to the local variable array of the current method. All instructions
do not have parameter data attached, and the length of the parameter data
varies. The amount of parameter data for each instruction can be found in
Appendix A.

2.5.4 Java Methods

The methods in Java are roughly equivalent to functions or procedures in
other languages. Terminologically methods are invoked whereas functions
and procedures are called. There is no difference between invoking and
calling, save for the naming. In the Java bytecode the methods are invoked
using one of the following instructions:

• Invokestatic, a class method 5 is invoked. The method being invoked
does not depend on the type of the object. Finding the actual method
to be invoked is a simple constant pool lookup.

• Invokevirtual, invokes a virtual method, based on the type of the ob-
ject on the top of the stack. This requires virtual method resolution
in order to find the correct method for a given object.

• Invokeinterface, an interface method is invoked. The interfaces provide
means for multiple inheritance in Java. Finding the actual method can

4The Kaffe was used, because at this time the REALJava virtual machine was still in
the planning stage. Later the facilities required for similar analysis were included to the
REALJava.

5A method that is declared static in the source code
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be a complex procedure, if several interfaces are implemented in the
application.

• Invokespecial, is used on special cases. These include methods in the
superclass of this6, private methods of this and the instance initial-
ization method, <init>.

Java applications tend to perform a lot of method invocations. This is
because of the structure of the classpath, at least the GNU implementa-
tion [92] of it, and the fact that many programming courses teaching Java
programming promote the use of small methods. The small methods are
considered to be good programming practice and also help to make the code
more reusable. Object oriented programming style often involves several
small routines used to access data in the object fields. These facts make it
very important to have an efficient method invocation subsystem.

2.5.5 Classes, Class Files and Class Loading

An application program written in Java language is first compiled into the
Java bytecode. During compilation all the methods used in the program
are compiled separately, and stored in class files. This does not include the
methods imported from the standard library. They are just referenced, and
the virtual machine links them in during the execution. A single class can
contain, and they usually do, several methods. The class files contain also
other data, most importantly the constant pool. The constant pool is used
for storing constant values and strings as well as for storing method names.

During the initialization a virtual machine first sets some internal prop-
erties, usually related to the underlying operating system, current time and
so on. After this the virtual machine loads the starting method, usually the
main(), of the user application.

The Class File Format

The classes that make up an application are delivered in the class file for-
mat, described in the Java Virtual Machine Specification [38] and shown in
Figure 2.4. The class files are similar to object files generated by normal
compilers (for example GCC). A class file contains several critical pieces of

6Java uses “this” to refer to the object being operated on.
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data, such as the bytecode segments that make up the methods in the class,
a reference to the superclass of this class, a list of the fields defined by the
class, the constant pool of this class and other data required by the virtual
machine.

All valid class files start with a magic number 0xCAFEBABE. This is
followed by version information of the class. Then the tables containing the
constant pool, methods and other data items are defined. The last table is
for the attributes of the class, and it can contain arbitrary definitions. If
the virtual machine running the application does not understand some of
the defined attributes, they are simply ignored.

The constant pool of a class is used to store a mixture of data items.
These include names of the methods and the fields, the numerical constant
values and the string constants belonging to the class. The method invoca-
tions in Java use the class and method names stored in the constant pool
to find the required method. Since the constant pool is used frequently, it
is important that the virtual machine can access it efficiently.

The class files are often packaged into “Java archives” (JAR). As a de-
ployment form, the JAR file format provides many benefits over distributing
the class files separately. Most notable benefits include:

• Security: The contents of a JAR file can be digitally signed. If a
virtual machine recognizes the signature, it can then optionally grant
the application security privileges it would not otherwise have.

• Compression: The JAR format allows the compression of the class
files for efficient storage.

• Decreased download time: If an application is bundled in a JAR
file, the class files and associated resources can be downloaded in a
single transaction without the need for opening a new connection for
each file. Naturally, the compression also reduces the download time.

• Package sealing: Packages stored in JAR files can be optionally
sealed so that the package can enforce version consistency. Sealing
a package within a JAR file means that all classes defined in that
package must be found in the same JAR file.

• Package versioning: A JAR file can hold data about the files it
contains, such as vendor and version information.
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Figure 2.4: The structure of a Java class file.

Besides the actual class files, the JAR file contains metadata defining
the main method of the application. The JAR file may also contain other
pieces of data, such as an icon for the application, audio and images. The
support for the zip packing is optional in the specification, but most virtual
machine implementations include it.

Class Loading (and Unloading)

When a virtual machine starts to execute an application it first loads the
main class of the application. Loading is the process of retrieving the data
that defines a class. Classes can be loaded from any source, including (but
not limited to) ROMs, disks and network connections. All further classes
are loaded when they are needed.
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The specification defines two mechanisms for class loading. The more
important one is system class loader, which is a built-in class loader used
for the standard classes in the classpath and also for the classes of the
user application. The other mechanism uses a user defined instance of the
ClassLoader. The latter is sometimes disabled for security reasons, since
it would enable malevolent programmers to load and execute arbitrary Java
code via web browsers etc.

After a class has been loaded it is not ready to be executed. It requires
further processing steps. The next step is linking, which may cause new
classes to be loaded recursively in order to find all the necessary super-
classes. This step also performs verification of the previously loaded class.
Some virtual machines omit the verification completely while others verify
only some of the classes. A virtual machine may well believe that its own
standard classes are safe and thus they are not necessarily verified.

After the verification the class is prepared. During preparation the static
fields are given their initial values. This is followed by initialization, when
the virtual machine first checks that all of the required superclasses have
been initialized. Then the static initialization methods defined in the class
are invoked. At this point the methods contained in the class are ready to
be used.

The specification allows also the removal of previously loaded classes.
This is done if the virtual machine wants to perform garbage collection on
the loaded classes. The functionality is not defined in the specification, but
if a finalizer method exists in the class, then it will be invoked before unload-
ing of the class. This functionality is not present in all of the Java virtual
machine implementations.

2.5.6 Exception Handling

In Java exceptions are used to signal errors that occur during the execution
of an application. Like C++, Java uses the try/catch model for exceptions.
If an exception is thrown within a “try-catch” block, execution branches
abruptly from the current instruction to the corresponding catch clause.
The catch clause is used to create an exception handler. If there is no
matching handler, the current method terminates abruptly, and the excep-
tion is thrown in the calling method. Similarly, if the calling method does
not define a matching handler, the exception propagates up the call stack
until either a matching handler is found or there are no more stack frames.
If no handler is found, the exception is considered to be unhandled. Unhan-
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dled exceptions terminate the current thread. An exception can be raised
directly by executing a throw statement or indirectly as a side effect of exe-
cuting a bytecode instruction or runtime operation. For instance, any array
load instruction can throw an exception if the array index is out of bounds.
Similarly, attempts to dereference a null pointer result in a null pointer
exception. It is worth reminding, that Java does not provide arithmetic
exceptions for overflows or underflows. Arithmetic exceptions are available
only for division by zero, and even those are limited to integer types. There
are no arithmetic exceptions for floating point data types.

2.6 Java Virtual Machine Implementations

A typical Java runtime environment for embedded systems contains the fol-
lowing components:

1. A Java Virtual Machine to translate Java’s platform-independent byte-
codes into the native machine code of the target processor and to
perform dynamic class loading. This usually takes the form of either
a simple interpreter or a just-in-time compiler (JIT). The execution
strategy is left entirely up to the implementor.

2. A standard set of Java class libraries, in the bytecode form. If the
used applications do not reference any of these classes, then they are
not strictly required. However, most Java runtime environments are
designed to conform to one of Sun’s standard API’s. Several non-
commercial Java virtual machine projects use the GNU Classpath as
the standard library because it is open source. The GNU Classpath is
not quite complete, but most of the methods required in the embedded
systems domain are present.

3. Any native methods required by the class libraries or virtual machine.
These are functions that are written in some other language, precom-
piled, and linked with the Java virtual machine. They are primarily
required to perform functions that are either processor-specific or un-
able to be implemented directly in Java.

4. A multithreading support system to provide the internal implemen-
tation of Java’s threading and thread synchronization mechanisms.
Often the operating system’s native threading mechanisms are used,
but if the underlying operating system does not support threads, then
the virtual machine must implement a thread handler of its own.
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5. Garbage collection. The garbage collector runs periodically, or when-
ever the pool of dynamic memory is unable to satisfy an allocation
request, to reclaim memory that has been allocated but is no longer
being used by the application. The collection can also be started by an
user application, when the application invokes the System.gc method.

The components of such a system are shown in Figure 2.5. The Figure
shows the logical hierarchy of a Java runtime system, from the Java appli-
cation all the way down to the operating system level.
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Figure 2.5: An overview of a Java runtime system.

The traditional way to implement the execution engine of a Java Virtual
Machine is to use a software interpreter. This approach takes the precom-
piled Java bytecode methods and executes them by interpreting one instruc-
tion at a time. The execution speed of this way is rather poor, partly due to
stack emulation and partly because each bytecode instruction is processed
using an indirect jump from the main loop to the implementation of a given
instruction with the current instruction as a key. The most positive feature
of an interpreter is the portability. An interpreter doe not require any assem-
bler optimization, and it can be implemented using only portable structures.
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Direct threading is an improvement over the basic interpreter. It was first
used for accelerating Forth execution [14], but has also been applied to Java
execution. For instance the SableVM [96] uses this as one of the optional
execution engines. Direct threading reduces the speed penalty caused by
the instruction dispatch by preprocessing the bytecode during class loading.
The preprocessing replaces the instruction opcodes with the addresses of the
interpreter’s case statements implementing the instructions. The execution
is then transformed to simple jumps directly to the corresponding native
implementations. The preprocessing is not very complex, so direct thread-
ing can be useful on fairly simple devices. The most notable drawback is
that since all jumps in Java are relative, all of the offsets for the jumps must
be recalculated. Direct threading is also fairly portable, as it requires no
assembler optimization. However the addresses are retrieved one at a time,
just like the opcodes in an interpreter, causing the fetching to use a lot of
time.

In order to reduce time used for instruction fetching, it is necessary to ex-
ecute multiple instructions with a single fetch. Certain segments of bytecode
instructions can be replaced by joining the blocks of native code that im-
plement the instructions in the segment. This replacement process is called
inlining [43]. Like direct threading, inline threading can be implemented
mostly using portable structures. However, during the implementation of
the inline threaded execution engine for the SableVM, it has been found that
the only practical way to find out which instructions are inlinable is to test
each instruction carefully on the exact target architecture, severely cramp-
ing portability. Although the basic idea of instruction inlining is simple,
implementing it in practice is much more complicated than implementing
direct threading. For instance besides recalculating the jump offsets, the
inlining engine must ensure that none of the original jump targets are in-
side a segment to be inlined. Replacing instructions with the fast versions
mentioned earlier after class initialization also becomes more difficult with
inline threading, because many sequences of instructions can be inlined only
after the instruction replacement.

Recent developments in the area of execution engines have led to use of
just in time compilation (JIT) [11], which means that the software execut-
ing bytecode takes pieces of the code and compiles them to the underlying
hardware’s native instruction set. The most advanced systems using this
approach do not recompile or optimize everything, but focus more attention
on code segments that are used often (loops etc.). These segments are often
called hotspots. Virtual machines using JIT are not easily portable to new
systems, since they typically require heavy assembler optimization. In [49]
Smith et al. stated that retargeting a hotspot aware JIT based Java virtual
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machine to Irix/MIPS platform took about 5 man-years of engineering ef-
fort. Comparing that to the mere minutes taken for an interpreter written
in standard C/C++, it is clear that the performance obtained from JIT
comes with added problems in the portability. JIT is not suitable for re-
source limited environments, as the recompiled code segments require extra
memory space at run time, and the dynamic compiler required for the JIT
takes both memory space and permanent storage space. Another downside
of JIT is the unpredictability of execution time, one (usually) cannot know
in advance if a given code segment is already compiled or not. Also resource
limited systems might purge old precompiled segments out of the memory
to make room for new segments. In [42] Nicolaescu and Veidenbaum studied
the behavior of JIT compilers and interpreters running on modern high-end
superscalar CPU with Out-Of-Order execution. They found out that both
the data and instruction caches generate more misses when JIT is used.
Also the branch prediction misses more often, when compared to interpret-
ing. They concluded the study with an interesting remark: “One interesting
implication of these results is that improvements from JIT compilation are
likely to be noticeably lower in embedded systems...” Their reasoning is
based on the poor cache coherence and branch prediction, and also on the
fact that they discovered that a large share of the performance gained with
JIT is due to the processors ability to increase instruction level parallelism
(ILP). The features needed for ILP are not currently available in the em-
bedded domain. Similar results have been reported by Radhakrishnan et al.
in [45, 46]. Figure 2.6 shows possible paths for developing systems based on
the Java language and also using other input languages with the systems.
Both interpreting and JIT compiling run on the highest path in the figure.
The other paths will be discussed next.

Java bytecode can also be transformed to some other virtual machine
architecture (XVM) using a transcoder. This transcoding can be done at
execution time or during software download. The execution time transcod-
ing moves along the highest path in Figure 2.6 breaking down at the last
fork, whereas the download time option breaks down at the previous fork.
This approach also allows other languages to be compiled for the same XVM,
even all the way from the source code. However there are drawbacks, such
as increased storage space requirements to store the original code and the
XVM code, longer download delays for non-local software that needs to be
transcoded and successive optimizations performed by compilers with dif-
ferent target architectures producing inefficient code. This inefficiency is
clear in case when the first optimization has been performed targeting a
stack based architecture, such as Java, and the second round targets regis-
ter based architecture, which would include practically all major processor
implementations currently available. Another drawback, when storing the
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applications in transcoded form, is that the application cannot be directly
transferred to a different device.

The REALJava virtual machine discussed in this thesis is of the first
type. It is 100% Java bytecode compatible, but it transfers the execution
away from the CPU to a co-processor designed to execute simple Java byte-
code instructions. The CPU still maintains control of all system specific
operations (such as filesystem, network, I/O), complex instruction (class
loading and verifying) and memory management (especially garbage collec-
tion). This partitioning provides easy integration to multiple systems, since
the underlying host architecture is irrelevant to the co-processor. The user
executing a Java application does not need know that the execution is per-
formed on a co-processor, since that happens inside the virtual machine.
The use of a co-processor can be seen as implementing the highlighted part
of JVM in Figure 2.6 using dedicated hardware.
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Figure 2.6: Possibilities to develop the Java virtual machine.

2.6.1 Using Hardware Systems in Virtual Machine Imple-

mentations

A stand-alone solution implements the whole virtual machine in hardware,
and thus needs no CPU. As mentioned in Section 1.4, examples of this
approach include Sun’s PicoJava, JOP and aJile. With this strategy the
complex instructions (for instance instructions requiring class loading) and
garbage collection are hard to implement, and the resulting virtual machine
is not easily integrated to an existing system. Out of these three example
systems only PicoJava implements the full J2SE (standard edition of Java)
[100]. The other two implement J2ME (micro edition for small systems)
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[101] and for instance the garbage collection is completely left out from
JOP, due to real time performance goals set for the system.

Using a co-processor for the execution of Java bytecode provides easier
integration to existing systems, as platform dependent features, such as the
GSM communication for mobile phones and I/O devices, can be coded in
easily portable software for the CPU. Also the physical size of the processor
core is reduced, as the complex functionality is performed in the CPU, leav-
ing the co-processor to deal with the instructions that are suitable for direct
hardware implementation. This approach has been used with the inSilicon
JVXtreme, the CCL Java co-processor and the REALJava virtual machine.
The Jazelle [103] co-processor by ARM is also an example of this approach,
even though it is more tightly coupled to the CPU than most Java execution
co-processors.

Co-processors typically use either autonomous or parallel execution model.
The parallel model is similar to Intel x87 floating point unit architecture,
where each instruction is routed to both the CPU and the co-processor and
the unit whose instruction set a given instruction falls into executes it. On
the other hand in autonomous execution model the CPU just configures
the co-processor and lets it handle execution on its own. During this time
the CPU is free for other tasks. The REALJava co-processor uses a semi-
autonomous model. This model is similar to the autonomous model. The
difference is that in the semiautonomous model the co-processor can ask for
CPU support on the instructions it can not handle. It should be noted, that
the semiautonomous model allows using several co-processors in parallel, un-
like the other hardware schemes presented here. Using several co-processors
in a JVM is well justified, as Java supports multithreading at language level.

Solutions using a hardware interpreter have also been used. These are
exclusively targeted to a certain CPU, as the interpreter translates the byte-
code instructions to the CPU’s native instruction set. The Jiffy [1] men-
tioned earlier in Chapter 1 is a very interesting example of this approach.
The Jiffy performs JIT on the FPGA to optimize the resulting native code.

Some studies, like [9, 10, 35], have also focused on mitigating the in-
efficiencies in Java execution by moving part of the workload to a remote
server. In this approach the user device is expected to have a permanent
connection to the server, usually a wireless connections are assumed. For
instance, the research by Chen et al. [9] focused on selectively transferring
some of the JIT compilation and method execution to a remote server. The
requirement of a continuous connection to the server naturally increases the
power consumption by forcing the radio subsystem to remain active all of
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the time. The time used for the transfers was not considered in that study,
only the impact on power consumption.

2.7 Chapter Summary

An overview of the Java technology was given in order to provide required
background information and context for the design of the REALJava virtual
machine. The topics covered in this chapter included the Java programming
language, the Java virtual machine specification and generic Java virtual ma-
chine architecture. The variants of Java were described, with a glance at
the history of Java. Implementations were shortly discussed, with focus on
the hardware assisted systems currently available.
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Chapter 3

Conceptual Model of the

REALJava Virtual Machine

This chapter details the conceptual model of the REALJava virtual machine.
The chapter begins with a description of the execution model and moves on
to explain the partitioning between the hardware and the software. Then
the structure of the co-processor is detailed. The software partition is also
shortly discussed in order to give context for the hardware and provide a
fully functional virtual machine implementation. Finally the logical data
structures inside the virtual machine are presented.

3.1 Execution Model

The execution model used for the REALJava virtual machine is “semiau-
tonomous”. This means that the co-processor has full control over the ex-
ecution once the control is transferred there, but the co-processor can not
initiate processing by itself. In the REALJava execution model the Java
bytecode instruction stream is first loaded to the co-processor, which is sub-
sequently commanded to start execution of the stream. At this point the
CPU can do something else, if required, or simply go to idle mode until the
co-processor sends an interrupt request (IRQ) to notify the CPU that some
assistance is required. This execution model frees the CPU to other tasks
in the system and also makes it possible to use several co-processors, since
the instruction streams in each co-processor do not interact in any way. A
MSC of the model is shown in Figure 3.1.
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Figure 3.1: A MSC of the execution model for the REALJava. The high-
lighting in the vertical bar shows the unit responsible for the execution at a
given time.

3.1.1 Other Execution Models for Co-Processors

The execution model is different than the models used for floating point
unit in the Intel x86 architecture and the model used for decoding media
streams. The original Intel x86 floating point unit strategy is quite simple,
both the CPU and the co-processor receive all instructions. If the instruc-
tion falls in the co-processors instruction set the CPU performs NOPs while
the co-processor executes the instruction. If the instruction falls in the
CPUs instruction set the co-processor executes NOPs until the next float-
ing point instruction arrives. The other often seen execution model is used
for streaming media and other applications with similar dataflow. In this
model the co-processor does not receive instruction per se, but rather it is
first configured to suitable settings and the CPU sends a data stream to
the co-processor. The co-processor performs some function on the stream,
for instance decoding a mp3 music stream, and possibly sends the result-
ing stream straight to the output device. Also the 3D engines in modern
graphics cards use this approach, even though they also receive individual
commands to be executed. An example of an individual command could be:
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draw a line from one point to another. Still, most of the 3D rendering is
performed independently.

3.2 Partitioning

The tasks of a virtual machine are divided between the hardware and soft-
ware based on their complexity and need for access to the various resources
of the system. As presented in [56], all of the most complex tasks are as-
signed to the software. The selection is partly motivated by the fact that
the software is easier to modify to fit to the specific details of the underlying
host platform. These complex tasks include memory management (not the
stack) , I/O access, class loading and of course native method interface. The
hardware is assigned the execution engine and stack management. Some of
the instructions are not executed in the co-processor, since they require ac-
cess to the heap memory or class loading. Also instructions operating on
data belonging to the double or long types are handled by the software. The
64-bit data types are omitted from the co-processor as the intended applica-
tion domain of embedded systems is unlikely to make extensive use of them.
The support for them is provided via software, so as to stay compatible
with the Java specification. Large amounts of arithmetics using the 64-bit
data types slows the resulting system down, but the Java applications run
correctly and the full J2SE specification is met.

Some of the instructions can be dynamically reprogrammed. This ap-
proach is often used in software implementations of the Java virtual ma-
chine. For instance the class loading instructions can be reprogrammed to
fast versions after the required class is loaded. The subsequent executions of
the reprogrammed instruction do not need to load the class again. Besides
speeding up the execution of the reprogrammed instructions, this strategy
makes it possible to move some functionality to the hardware domain after
the prohibitive parts have already been performed. This effectively moves
the original instruction from the software partition to the hardware.

The power consumption of a Java virtual machine has been studied from
several perspectives. In [33, 34] Lafond and Lilius showed that during the
execution of a Java application the memory accesses dominate the power
consumption. The power consumption has also been studied using pocket
computer. The findings in [15] also indicate that the memory subsystem is
responsible for a large share of the energy consumed during the execution of
a given Java application. The REALJava approach eliminates a large share
of the memory accesses by placing the stack locally inside the co-processor.
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The amount of accesses is also reduced because the execution engines run-
ning on software need to maintain the internal registers as variables residing
in the memory. At minimum any virtual machine needs registers for storing
the current program counter and the stack top. In the REALJava virtual
machine these are maintained in the hardware, thus eliminating unneces-
sary memory accesses as well as the extra clock cycles needed to update the
registers.

3.3 Structure of the Co-Processor

The architecture of the REALJava is shown in Figure 3.2. The figure shows
also the two domains, the host system and the co-processor. The local mem-
ory, which is used for the stack and the method area, is marked inside the
co-processor with a dotted line because it does not have to reside physically
inside the co-processor. External memory can be used for the local mem-
ory, but accessing it would naturally be slower and consume more energy.
The structure of the execution pipeline of the Java co-processor differs from
the structure normally used for general purpose processors, as presented in
[53]. This is due to the fact, that normally the instruction set of a processor
is engineered with hardware implementation in mind, but this is not the
case for Java. The Java bytecode has been designed to be executed in soft-
ware, resulting in several significant differences. Additionally the bytecode
instructions are based on a stack, instead of the normal RISC approach of
using several general purpose data registers. This calls for optimizations not
seen in modern general purpose processor design.

3.3.1 General Purpose Processor Pipeline Architecture

The text book strategy for pipelining a general purpose processor involves
5 stages, namely:

1. instruction fetch

2. instruction decode / register access

3. execute / ALU

4. memory access

5. write back

This approach has been used in several processors and is also presented
in several text books, such as the DLX processor presented in [23]. This
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Figure 3.2: The architecture of the REALJava virtual machine.

strategy is based on the assumption that the processor has internal regis-
ters for temporary or working data storage. Usually these registers can be
accessed in parallel, and there are several registers available. As an example
the DLX processor has 32 32-bit general-purpose registers. Some processors
also include separate registers for storing floating point numbers. The DLX
processor provides 32 32-bit floating point registers, which can be used as
even-odd pairs to hold 16 64-bit double-precision values. Several register
access optimization strategies have been developed, including operand for-
warding and splitting register accesses to writes in the first half of the clock
cycle and reads in the second half. These strategies are not directly appli-
cable to a Java virtual machine, since there are no internal data registers.

3.3.2 The Modified Architecture for the Java Co-Processor

The Java Virtual Machine Specification [38] states that the JVM has no
internal data registers, instead the temporary and working data is stored
in a stack. Normally the software coder can improve performance by re-
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ordering the register accesses to keep the pipeline flowing, but in Java this
is not possible, since all instructions manipulate data which is located at
the top of the stack. This situation is somewhat comparable with a normal
processor architecture with only one register available to the programmer,
or the old accumulator architecture. This would keep the pipeline stalled for
a large portion of the time, because of unavoidable data dependency issues.
To keep the pipeline in effective use, the normal pipelining strategy has been
modified to better suit the stack based operation.
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Figure 3.3: A structural view of the pipeline. The handshake signals are
omitted for clarity.

As shown in Figure 3.3, the modified architecture begins with instruc-
tion fetching. A fifo is placed inside this unit to provide the folding unit
with fast access to the instruction stream. The instruction decoder is the
next unit. A technique called instruction folding, which will be explained in
more detail in Section 3.3.7, is used to reduce unnecessary stack accesses.
The folding is included in the decoder stage. After that is an intermediate
buffer level to store the folded instructions before execution. This buffer
also performs minor operations, such as extending data items to 32 bits.
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The next stage performs operand fetching, if necessary. Then comes the
ALU, which contains the write back stage. The write back stage is included
into the ALU because the bytecode instructions are based on the stack. One
might wonder what this has to do with selecting the pipeline stages, but the
answer is rather simple. In Java bytecode the instructions take the operands
from the stack and write the result back to the stack. This would cause the
“traditional” pipeline structure to generate excessive stalls to move the data
to and from the stack. Thus the execution in the ALU would be often halted
while the data is moved back and forth. Actually, two other methods to al-
leviate this problem will be presented later in Sections 3.3.5 and 3.3.7.

3.3.3 Shared Resources

Several pipeline stages need to access shared resources. These include the
stack, the control registers and the program counter. Access to these re-
sources is controlled by similar handshakes as the data flow through the
pipeline. The main difference is, that since several units need to access
these resources, they must provide mechanisms to prevent simultaneous ac-
cesses and to guarantee the correct ordering of events.

The pipeline control unit can also be seen as a shared resource, as it
is connected to the pipeline stages. The pipeline control unit sends a halt
command to all pipeline stages upon receiving an external halt command
or a halt request from the fold and decode unit. The fold and decode unit
is required to have halt access to facilitate pipeline halting when a software
handled instruction is encountered. After the whole pipeline is idle, the
pipeline control sends an IRQ to the host processor. Note, that these two
methods of halting differ in their reaction speed. If the halt is requested by
the CPU, it is performed as soon as possible. When the halt is caused by
a trapped instruction, the halt is performed when all previous instructions
have been fully processed.

The last shared resource is the local memory. The local memory is used
to house the stack and local variables in the data side and bytecode segments
of the methods to executed on the instruction side. This local memory is
local logically, which means that it can be implemented as an external mem-
ory region assigned to the Java processing unit (JPU) or as a real, physically
local memory placed inside the JPU module. In case of a physically local
memory the caches can be small or even omitted. Our tests have shown that
relatively small local memory space is required. According to [48] 98.75%
of static methods in the runtime library are under 512 bytes in length, and
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our own studies have shown that the stack frame for one method rarely ex-
ceeds 10 words (40 bytes), which totals to about 1 kilobyte, including the
local variables. Naturally larger is better, as invoking a method or returning
from a method back to the calling one is much faster if the memory is large
enough to contain the stack frames and code segments for several methods
at the same time.

3.3.4 Instruction Preprocessing

This block starts after the instruction cache. The cache handles all com-
munication with the local memory, regardless of whether the memory is
physically local or external. This partitioning of responsibilities allows us-
ing different memory technologies without modifications to the instruction
fetching unit. The physical addresses to the local memory are generated at
the instruction fetching buffer, using the program counter (PC) and code
offset (CO) registers. The code offset register holds the starting address
of the current code segment in the local memory. The actual address of
the instruction to be executed is obtained by simply adding the code offset
and the program counter together. After the fetching, the instructions are
checked for folding in the fold and decode stage. The details of the instruc-
tion folding process are described later in Section 3.3.7.

As shown in Figure 3.4, the pipeline control unit is connected to the
folding and decoding unit with two way communication. The folding unit
needs to request a halt when it encounters an instruction to be handled
in software. Of course the pipeline control unit must be able to stop the
processing in this segment, so there needs to be bidirectional channel. The
control unit also connects to all other pipeline stages, with a halt signal.
The CPU can also request a halt, for thread switching or setting new values
to internal registers.

The folding and decode unit has two communication channels to the in-
struction buffer, one for actual instructions and one for literal data. After
an instruction has been decoded and folded, the VLIW (very long instruc-
tion word) is sent to the fifo in the main pipeline. The instruction folding
unit is covered in more detail in Section 3.3.7. The fifo is only a few levels
long and provides timing margin for folding and performs sign extension.
The sign extension is used for extending data items that are shorter than
32 bits. These include constants loaded with bipush and sipush instructions
and indexes used in local variable manipulation instructions like iload.
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Figure 3.4: The instruction preprocessing pipeline.

3.3.5 Operand Access, ALU and Result Storing

The operand access unit takes care of providing the ALU with the actual
operands, which may come from the local variable area, the stack or as lit-
eral data from the bytecode stream. The operand access unit has two read
channels to the top of the stack, one read channel to the local variable area
and one bypass channel to the end of the ALU. This bypass channel reduces
unnecessary traffic to and from the stack. This can be demonstrated with an
example of an addition followed by a multiplication. In the straightforward
method the operations would be carried out as follows. First the addition
is performed and the result stored to the stack, then the stack is read out
to perform the multiplication. The result of the addition is consumed by
the multiplication and does not remain in use. The improved method elim-
inates the consecutive write and read functions and replaces them with a
straight connection from the result of the ALU to the operand access unit.
This solution provides better performance in terms of execution time and
power consumption. Note that the bypass method provides similar benefits
as instruction folding and they address the same shortcoming of Java byte-
code. The difference between these two methods is that folding can be done
in advance and is performed on load-calculate-store sequences, whereas by-
passing takes place after the first instruction is completed and is performed
on consecutive calculate type operations. It is also worth noticing that the
bypass method is quite similar to operand forwarding in the register banks
of general purpose processors.
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Figure 3.5 shows the data connections in the execution part of the
pipeline. The request and acknowledge signals are not shown, in order to
keep the figure readable. The result of the ALU usually goes to the top of
the stack. In some cases the result is directed to a local variable. The third
possibility is to intercept the result and direct it straight to the operand
access unit. This happens when the current instruction in the ALU would
push its result to the top of the stack and the next instruction would pop
it away. The state of the stack remains as if the first result had never been
pushed. The interception thus saves power and time, at the cost of slightly
more complex logic.

3.3.6 Caches, Stack and Registers

The JPU contains two caches, namely the data cache and the instruction
cache. The instruction cache is (quite naturally) read-only, whereas the
data cache can be written and read. The instruction cache is less complex
also because it is connected to only one unit, namely the instruction buffer.
The data cache, on the other hand, is connected to the stack and to the
local variable control. The writing to the data cache is implemented using
the write-through strategy, in order to keep the memory consistency during
traps and context switches easier to manage. Both caches also give state
information to the pipeline control unit, to notify the controller when the
current operations are finished.
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The stack is implemented as a ring buffer with memory roll-back. The
buffer holds the top of the stack. When the buffer is close to full, the bot-
tom of the ring is rolled to the memory via data cache. Naturally if the
buffer is close to being empty more data is retrieved from the memory. The
stack performs these transactions automatically, and no direct commands
are required during normal execution. However a command for flushing the
stack to the memory is required, since jumping to a method causes a new
stack-frame to be initialized, with its own local variables and return infor-
mation.

The internal registers of the JPU are all addressable from the CPU. This
is required in order to be able to configure the JPU in the beginning of the
execution as well as during thread switching. There are four internal regis-
ters, which are shown in Table 3.1. The registers are not general purpose
data registers used for temporary data storage, but control registers used
for controlling the execution. In addition to the PC and the CO presented
earlier, the register bank contains a pointer for both the top of the stack
(ST) and the beginning of the local variable area (LV). The pointers as well
as the CO register are direct addresses in the local memory region of the co-
processor. The internal register bank also contains configuration data from
the JPU to the CPU. The most important piece of information delivered
here is the size of the local memory. The REALJava virtual machine also
supports multiple instruction sets so the instruction set of the co-processor
needs to be delivered to the software. Currently two instruction sets have
been defined, one with floating point instructions in hardware and one with
software emulation. Other subsets of the Java bytecode can be defined, in
order to suit the needs of a specific target device and application.

Address Name Function

0 PC Program counter

1 ST Pointer to the top of the stack

2 CO Code offset

3 LV Pointer to the local variable area

Table 3.1: The internal control registers.

3.3.7 Details of Instruction Folding

Instruction folding [54] is performed in order to remove unnecessary cycles
in ALU and also to minimize redundant stack accesses. These performance
hindrances are caused by bytecode instructions first pushing a value to the
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stack and immediately popping it out for processing. The folding proce-
dure removes these two (or more) instructions, and replaces them with one
instruction carrying the value and the processing instruction to the ALU
in one cycle. This eliminates some of the completely unnecessary memory
accesses, thus reducing power consumption and improving performance in
time domain. Memory accesses dominate the power consumption of a JVM,
according to [33, 34] around 70% of the energy is consumed in memory ac-
cesses. The results are gathered using a software based Java virtual machine
running on ARMulator, an emulator for the ARM7TDMI processor. It is
reasonable to assume, that the power consumption of the REALJava virtual
machine will follow same trends.

LV A local variable load or a constant load

OP1 An operation that uses the topmost element of the stack
and pushes a one word result to the top of the stack

OP2 An operation that pops the top two entries of the stack
and pushes a one word result to the top of the stack

OP1 B An operation that uses the topmost element of the stack
and breaks the group

OP2 B An operation that uses the top two entries of the stack
and breaks the group

MEM A local variable store

NF Non-foldable instructions

TRAP An instruction which is trapped by the hardware
and is executed in software instead

Table 3.2: Instruction folding classes

With the classes presented in Table 3.2, folding of the instructions can
be performed in the patterns shown in Table 3.3. These patterns all produce
a very long instruction word (VLIW) with up to two literal data elements,
an opcode and a destination identifier. It can be noticed that the maximum
length of folding is four instructions. This, however, does not mean “only”
four bytes in the original bytecode stream. The original stream may have
had some literal data included, and these are also placed in the VLIW, as
shown later in Figure 3.6. The folding classes and the amount of parameter
data for the bytecode instructions can be found in Appendix A. After iden-
tifying the possible folding patterns, a preliminary analysis was performed.
According to the analysis the reduction in the number of executed instruc-
tions was between 26.8% and 33.3%. In stack accesses the reduction varied
between 39.3% and 51.2%. This analysis was run on a modified version of
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SableVM [96], which was equipped with a dummy folding unit that pro-
duced the foldings according to the rules but still executed the instructions
as they were in the original stream.

Pattern Instructions

LV LV OP2 MEM 4

LV LV OP2 3

LV LV OP2 B 3

LV OP2 MEM 3

LV OP1 MEM 3

LV OP1 2

LV OP1 B 2

LV OP2 2

LV OP2 B 2

LV MEM 2

OP1 MEM 2

OP2 MEM 2

Table 3.3: Possible folding patterns

The fact that the whole co-processor is asynchronous helps the folding
process. In asynchronous circuits the blocks can run at independent speeds.
This means that the folding unit can perform for instance a maximum of n
foldings per second, whereas the ALU may be significantly slower, say n/2
operations per second. The negative effects of independent speed, such as
waiting for one long operation halting all other pipeline segments, can be
reduced using an intermediate fifo. The timing marginal for folding is in-
creased because with asynchronous techniques all units exhibit average case
performance. This means that the ALU may complete some instructions
(bit-wise OR, etc.) in very short time, whereas some instructions (32-bit
multiplication) take a lot more time. Since folding may produce new VLIW
instructions at the rate of 1/1 to 1/4 in comparison to the original bytecode
stream, the fifo balances the effects of both folding and the average case
performance of the ALU. In this architecture the fifo also performs minor
tasks, such as sign extension and address calculation for local variable ac-
cesses. These tasks would otherwise have to be preformed in an additional
pipeline stage, so the buffer serves a computational purpose besides the bal-
ancing of the execution rates.

The folding unit receives data from the instruction buffer. The instruc-
tion cache handles the actual memory accessing, so the instruction buffer
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needs only to access the cache. The physical address in the local memory
is generated at the instruction buffer. The folding and decode unit has two
communication channels to the instruction buffer. This is required because
instructions may be followed by data, such as a literal operand or an address.
The amount of data can be found out only by decoding the instruction first.
After the decoding is completed, the correct amount of data bytes is read
in parallel. The amount of data is between 0 and 4 bytes. If it is 0 bytes,
no request is sent to the data read port. Since the data items are read in
parallel to the fetch data module shown in Figure 3.6, the instruction buffer
can move the next instruction to the output stage of the buffer without un-
necessary delays.

After the instruction has been decoded and the data related to that in-
struction is read in, the next instruction is checked to see if it can be folded
with the previous one. If it can be, then the procedure is repeated to see if
the third instruction can be folded. If at any point the instructions cannot
be folded together, the previously folded instructions are sent out, and the
procedure starts over with the current instruction as a tentative base for a
new folding.
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Figure 3.6: The internal structure of the folding unit.

Figure 3.6 shows the internal structure of the folding unit. The FSM
stands for Finite State Machine, which controls the operation of the unit.
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The ROM table approach is chosen, because Java bytecode is not optimized
for hardware decoding. The instructions of Java bytecode are just listed in
seemingly random order and given the order number as an opcode. This
would lead to a very complicated decoder, if implemented directly using
standard logic elements. The ROM approach is also further validated by
the fact that microcode and other metadata can be easily stored in the
same table, as well as the instruction classes and the number of literal data
bytes related to a given instruction. This keeps our FSM simple and fast. All
the entries in the ROM table are coded with one-hot scheme and the table
is implemented as a precharged MOS NOR ROM matrix. The precharging
is done when request is low, so the response time is minimal. The response
time of the ROM is critical for the performance of the whole folding unit,
since every instruction needs to be decoded and classified by the data from
the ROM.

The output format register stores partial foldings until they are com-
pleted. If a folding pattern is not terminated with a valid instruction for
that pattern, the partial folding is executed one by one, and folding of the
next instruction will be attempted. The register keeps record of which fields
in it are valid at any given time. When a pattern is completed, the register
pushes its contents to the fifo in the main pipeline, and prepares for a new
folding autonomously.

3.4 Software Partition

Because the co-processor executes only a subset of the instructions in the
Java virtual machine instruction set, executing actual Java programs with
it requires supporting software written for a general-purpose CPU. This
supporting software needs to do most of the things that a generic virtual
machine does, like class loading and garbage collection, but it also needs to
control the bytecode execution and the local memory of the co-processor.
In this Section, the most important functions of the software partition of
the REALJava virtual machine are described. The software components re-
quired to support a co-processor are discussed in more detail than the parts
found in typical software Java virtual machines. The software coding tech-
niques are left out as they fall outside the scope of this thesis, and only the
high level functionality is presented. More details of the software partition
can be found in [62], which deals with the initial version of the software
partition.
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3.4.1 Virtual Machine Software

A typical Java virtual machine implemented purely in software loads Java
classes, manages resources such as memory and threads, provides an inter-
face to the virtual machine for native code, and most importantly, controls
the bytecode execution. The part of a virtual machine that executes byte-
code is called its execution engine. This is the part that typically uses the
largest amount of CPU time during the execution of a Java application.

The simplest software implementation of a bytecode execution engine is a
bytecode interpreter. In an interpreter, the software fetches one instruction
at a time, then branches according to the opcode and finally executes the
native instructions implementing the Java bytecode instruction in question.
This loop is continued until the interpreter encounters an instruction that
requires special processing. For example, a method invocation instruction
may require calling a native function or loading a new class to the virtual
machine.

Although an interpreter is simple to implement, it is not very efficient.
Since the Java virtual machine is entirely stack-based, interpreting bytecode
requires a large amount of memory accesses even for relatively simple opera-
tions. For example, the following sequence of instructions, which multiplies
a local variable by 10, requires six stack accesses:

iload_0 ; push 1

bipush 10 ; push 1

imul ; pop 2, push 1

istore_0 ; pop 1

The source code for the example could be x = x * 10;. Besides the
stack accesses, the code segment also accesses the local variable area two
times, once for the first load and another time for the last store. This makes
the total number of data side accesses to the memory eight. For the in-
struction side, the number of accesses in this example is five. That number
is composed of the four opcodes and the parameter data for the bipush in-
struction. Since the data and the instruction stream are likely to be placed
in the same physical memory, the total number of accesses is 13, and this
still does not include the house keeping, such as updating the PC and the
top of the stack.

There is also a per-instruction overhead in an interpreter caused by the
pointer access used to fetch the instruction and by the instruction dispatch
itself. Many optimizations have been developed to reduce this overhead.
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Direct-threading and inline-threading [16] seek to reduce the instruction
fetch and instruction dispatch time by converting opcodes into the corre-
sponding native instructions before execution. Just-in-time-compilation [11]
further optimizes the generated code and reduces stack accesses as well by
using the host CPUs registers to store intermediate results. Because the
Java instructions are replaced with native instructions, these optimization
strategies also remove the bytecode program counter.

The structure of the execution engine needs to be changed to support a
bytecode co-processor. Rather than executing the bytecode instructions in
software, the virtual machine loads the required method’s code segment to
the local memory of the co-processor and sets the internal registers to appro-
priate values. Then the execution is continued on the co-processor until it
encounters an instruction that it cannot execute or the software commands
it to halt. The execution in the co-processor can also be suspended because
the current thread has used its time slice. The thread scheduling algorithm
is discussed later in Section 3.4.3.

Since most of the processing is done on the co-processor, many improve-
ments to the software part of the execution engine become unnecessary and
impractical to implement. Because the virtual machine needs to be able
to update the stack and the internal registers of the co-processor when the
execution is transferred from one domain to the other, optimizations that re-
duce stack accesses or replace the program counter become unusable as such.
However, they also become largely unnecessary, because the co-processor
takes care of most of the menial stack manipulation and the program counter
and stack pointer are updated in parallel to the actual execution in the co-
processor, utilizing the inherently parallel nature of hardware.

The software partition of the REALJava virtual machine is implemented
in C++. The virtual machine supports JNI [99] and the standard edition of
the Java 2 platform [100]. Currently the REALJava virtual machine runs in
Windows and Linux on x86 computers or in Linux on PowerPC based sys-
tems. Since the software is coded in C++ with no assembler optimizations,
porting the software to new architectures and operating systems should be
relatively easy. The virtual machine also contains a simple emulator of the
hardware’s capabilities, and can be used for testing new functionality on
software.

The structure of the REALJava virtual machine is shown in Figure 3.7.
Like a generic Java virtual machine, it contains a native interface, a heap
memory manager and a class loader. The execution engine of the REALJava
virtual machine, however, is split between the software and the co-processor.
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The software partition of the virtual machine also manages the local memory
of the co-processor for java stack and method code segments and implements
a simple thread scheduler for allocating threads to the co-processor.

MethodSwap
SpaceData

Class
Heap
JavaNative

Methods Area

RegistersALU

Execution Engine

Scheduler
Thread

Management
Memory

Host CPU

Loader
Class

Interface
Native

System Memory

Stacks
Java
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Figure 3.7: Logical layout of the REALJava Virtual Machine. The left side of
the figure is the host CPU’s domain, while the right side is the co-processor’s
domain. On both sides the upper part represents the computational loads
and the lower part shows the memory regions.

3.4.2 Bytecode Execution and Method Invocation and Re-

turn

The virtual machine needs to do some preparation before it starts executing
a bytecode segment on the co-processor. First, it has to acquire the lock on
the co-processor. Co-processor locking is discussed in section 3.4.3. Second,
it has to check that the current thread’s stack frame and the current method
are loaded in the co-processor’s local memory. Memory management is dis-
cussed further in section 3.4.4. Finally, it has to update the internal registers
of the co-processor. While the co-processor is executing bytecode, the soft-
ware is free to do other tasks. For example, it could optimize methods
by converting instructions to “fast” versions in advance or load and verify
classes that will be needed soon.

When the virtual machine calls a new method on the co-processor, it
has to do some extra work on the stack. First, it checks if there is enough
space to initialize a new stack frame in the currently allocated stack page.
If there is not, or a stack page is not currently allocated for the thread,
it allocates a new stack page on the co-processor. Once there is enough
space for the stack frame, the method parameters are popped from the orig-
inal stack and passed to the new stack frame. This involves no actual data
transferring, the data is moved logically, not physically. Then the current

56



registers are pushed to the new top of the stack. These values are used when
returning from the invoked method. The details of stack behavior during
method invocation are further discussed in Chapter 5. If the previous stack
frame was swapped out by the allocation or there is none, a magic number
(a bit pattern of all ones is used) is pushed instead of the current program
counter. After the registers have been pushed, the local variable pointer
is set to the previous method’s stack top pointer (after logically removing
the parameters), the new stack top pointer is incremented by the amount
of local variables and the return information size, and the program counter
is initialized to zero. Once these operations have been completed, the new
frame is initialized and the execution can proceed on co-processor. When a
method has already been successfully invoked, the required data is already
available to the co-processor. This can be used to accelerate future invoca-
tions of the same method, as discussed later in Chapter 5. A simplified view
of the procedure is shown in Figure 3.8.

Sometimes, a return from a function must be executed in software when
a method returns in the bytecode. For example, when calling a Java method
from native code, the software needs to be able to return to the proper native
function after the call. For this reason, the software must be able to force
a trap in the return instructions. The most significant bit of the program
counter register is used for this purpose. A limitation in Java’s exception
handler implementation practically limits the Java program counter to 16
bits [38], so the upper 16 bits can be used to store data required by the vir-
tual machine. If a software return is required, the bit is set to 1 when storing
the registers of the previous stack frame. When a return instruction traps,
the software handles it like the co-processor would, except it also clears the
most significant bit of the program counter and also performs one return in
the software thread.

The virtual machine also needs to be able to handle traps from the co-
processor. Most of the time this means simply executing code for the instruc-
tion that caused the trap. As an example, when an iaload instruction causes
a trap, the CPU reads the required parameters from the co-processor, fetches
the data from the heap memory, pushes the data to the co-processors stack
and signals the co-processor to continue execution. A simple interpreter is
used to execute the bytecode instructions in software. The interpreter is
based on a “switch” statement, with a “default” branch that transfers the
execution back to the co-processor. This way, the instructions that can be
handled on the co-processor are never executed in software. This simplifies
the switch and also reduces the size of the software.
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Figure 3.8: A MSC of a method invocation.

3.4.3 Co-Processor Allocation with Multithreading

In a single-threaded environment, controlling the co-processor usage is sim-
ple. Since there is only one thread using the co-processor, no locking or
pre-empting is necessary. When the thread needs to execute code on the co-
processor, it always knows that the co-processor remains in the state that
it was when it made the last interrupt request. Therefore, it can send “con-
tinue” commands to the co-processor any time without additional checks.

In a multithreaded environment, the software partition of the virtual
machine must control co-processor usage for two reasons. First, to prevent
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invalid behavior, multiple threads must be prevented from accessing a single
co-processor simultaneously. For this reason, each co-processor is required to
have a lock that the threads acquire before using it. Second, a single thread
must be prevented from holding the lock on a co-processor indefinitely, be-
cause it could lead to starvation and possibly deadlocks in the other threads.

A simple time slice-based pre-empting system is implemented in the
software. To implement pre-empting, each thread’s “resume” routine occa-
sionally polls the virtual machine’s access control system to see if the thread
has exceeded its time slice. If it has, a “halt” command is send to the co-
processor. This stops the execution and after that the thread releases the
lock on the co-processor. Once the thread can acquire the lock again, it
can resume execution. The access control system is also polled whenever
the co-processor sends an interrupt request. Another way to implement
pre-empting, which requires hardware support, is to have the hardware trap
after a predefined number of clock cycles has passed since the last thread
switch. This removes the need for active polling. The hardware assisted
thread scheduling strategy is further discussed in the Chapter 5.

A thread must also release its lock on a co-processor if it does something
that could potentially take a long time without needing the co-processor.
Otherwise, other threads might starve or even become deadlocked. The most
common possibly lengthy operations during normal execution are monitor
acquisitions and native method invocations. For monitor acquisitions, it is
usually possible to atomically test whether a monitor can be acquired and
acquire it if possible. In this case releasing the lock of the co-processor is
only necessary if the monitor is held by another thread, causing the current
thread to wait for the monitor.

Native methods, on the other hand, are essentially “black boxes” for the
virtual machine, since it cannot know what a dynamically loaded chunk of
native code will do or how long it will take to execute the code. A native
function might, for example, initiate a native I/O operation and block until
the input arrives. Therefore, for most of the native method calls, the lock
on the co-processor must be released. As an exception, certain known “safe”
functions in the standard library can be assumed to execute quickly. The
method Math.sin, for example, takes a constant, short amount of time to
execute regardless of input, and therefore should not require releasing the
lock. A simple list of such methods is implemented in the software partition
of the REALJava virtual machine to avoid unnecessary release-acquire cy-
cles.
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3.4.4 Co-Processor Memory Management

In the REALJava virtual machine the local memory on the co-processor is
used for two purposes: the thread stacks and the method bytecode segments.
Memory on both is allocated in a similar way.

The local memory of the co-processor is logically split to a stack region
and a method region when the virtual machine starts. The available mem-
ory is initially split simply in half, but the division point may move during
execution. In practice, the amount of memory required for stacks is not
very large. Programs that do not use heavy recursion usually do not require
stacks larger than 10 kilobytes [16].

Memory is allocated in fixed-size pages. This makes reclaiming and
swapping out memory easier. The software partition of the virtual machine
must swap out the memory contents from the co-processor if it runs out of
memory allocated for stack pages. Methods are never swapped out, because
they are also stored in the memory region of the host CPU. If the virtual
machine has to allocate a new method page, it simply overwrites the least
recently used page.

The software stores some information for each page. First, it uses a bit
vector in which a one indicates a page that is currently in use. Second,
it uses an array to store the time that the page was last used and certain
information used when swapping out pages. The time is updated every time
the page is used by the software.

In order to allocate a page, or multiple pages, the virtual machine first
checks if there is an unused page in the region required. If there is, this
page is returned. Otherwise, the virtual machine finds the least recently
used page, swaps it out to the host CPUs memory if it is a stack page,
and returns that. A simple “sliding window” algorithm is used to allocate
multiple pages.

If a stack page refers to another page that gets swapped out, the refer-
ring page must be updated to prevent return statements from returning to
a page used by another thread. Therefore, if there is a stack frame with a
pointer to the swapped out page, the previous frame’s program counter in
that frame is set to the magic number mentioned in Section 3.4.2. When
this return is executed, an interrupt is generated by the co-processor and
the software partition swaps the page back into the local memory. Swapping
out method pages is easier, because the only thing that needs to be done is
to remove the mapping from the swapped out methods to the pages.
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3.4.5 Garbage Collection

Garbage collection means finding the set of objects that are reachable and
reclaiming the memory used by unreachable objects. Reachable objects are
ones that are referred to from the thread stacks, the local variables, the
static member variables or the other reachable objects. Most Java virtual
machines implement garbage collection to ensure that the virtual machine
will not run out of memory.

Although the garbage collector can be modified to run in parallel with
normal execution, the rest of the system is usually stopped for garbage col-
lection. This is known as stop-the-world collection. Garbage collection is
started when the virtual machine runs out of heap memory or by a request
from the user application. Since the virtual machine is often running mul-
tiple threads, the garbage collector has to wait until all of the threads have
stopped running. The individual threads therefore need to poll the garbage
collector at certain points during execution to check if garbage collection is
starting. These points typically include method invocations and backwards
jumps. Polling at backwards jumps is important because without it, an in-
finite or very long loop could prevent garbage collection and stall the whole
virtual machine.

When the bytecode execution is performed on a co-processor, polling
for garbage collection at backwards jumps becomes impractical and time-
consuming. However, since the co-processor thread scheduler, discussed in
more detail in Chapter 5, is guaranteed to halt the execution at some point
after the thread’s time slice runs out, this is not a problem. Polling can be
done every time when a thread releases the lock on the co-processor allo-
cated to the thread. This way, every thread is guaranteed to stop at some
point when garbage collection has to be started. If so desired, the software
can also set the thread slice timers to a very small value, for instance 10
clock cycles, in order to cause threads stop faster.

The virtual machine also needs to be able to locate the current stack
frames for garbage collection. A simple array is used to store information
for each stack page. This array contains data on whether the page is loaded
in the local memory of the co-processor, what its hardware address is, and if
it is swapped out, where the contents are stored. All stack frames are found
by traversing backwards from the top stack frame until the bottom of the
stack is reached.
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The actual garbage collection is implemented using a tracing garbage
collection algorithm. This is implemented in three phases. In the first phase
the root references are collected. The root references are object references
stored in the stack and in the static variables of loaded classes. The second
phase traces all the reference paths from the root set, marking all reached
objects as live. This marking phase uses Dijkstra’s [13] three color model.
Finally, in the third phase, the live objects are compressed, in order to de-
fragment the memory region.

The third phase is implemented in two variants. The first variant is used
when the system memory has limited free space available. This variant uses
simple mark-sweep-compact algorithm to compress the live objects. This
means that all of the live objects are moved to a new location inside the
already reserved memory space, one after another so that no empty space is
left between objects. The other variant is used when the free space in the
system memory is sufficient. This variant reserves a new, larger, memory
space, copies all of the live objects to the new space and finally releases the
original memory space. The latter is faster, but since the REALJava virtual
machine is primarily targeted at embedded devices, it is reasonable to as-
sume that the memory available to the virtual machine will be limited, thus
forcing the system to use occasionally the slower but more memory efficient
algorithm.

3.4.6 Porting the Software

The software partition of the REALJava virtual machine was originally im-
plemented using Microsoft VisualStudio. This was done under the Windows
XP operating system with an x86 compatible processor. At this time the
REALJava virtual machine supported two modes, pure software execution
and co-processor execution using the XESS1 board connected via parallel
port. Later the whole REALJava was ported to the Linux environment
with GNU compiler tools. Also the Linux system was based on an x86 com-
patible processor architecture. The virtual machine has the same two modes
also in this environment. The transition from Windows to Linux was rela-
tively simple, since most of the code for the software partition is platform
independent. Most of the differences are in the communication module. The
hardware is exactly the same for these two versions. The last environment
was the PowerPC 405 based Linux system. This was implemented using the
ML310 and ML410 demonstration boards from Xilinx. The PowerPC ver-
sion has two modes, one for software only execution and one for accelerated
execution with a co-processor and communication via PLB bus. Details of

1For descriptions of the XESS, ML310 and ML410 boards, see Chapter 4.
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the systems are presented later in Chapter 4. Finally a rudimentary multi-
core support is added to the PowerPC version. This is briefly discussed in
Chapter 6. The multicore version is not implemented on the x86 architec-
ture, since the co-processor connects to the host system via parallel port,
and computer systems usually have only one parallel port available.

3.5 Data Structures

The REALJava virtual machine has three main data structures, namely the
bytecode, the stack and the heap. All of these have a unique structure, and
the heap is also subject to the garbage collection. Each of the data struc-
tures is placed in a location of their own, both logically and physically. The
bytecodes are stored to the method area, located in the upper half of the
co-processor’s local memory, with the stack in the lower half. The heap is
stored in the system memory.

3.5.1 Bytecode Storage Model

The bytecode segment for the method to be executed is stored to the local
memory of the co-processor. Besides the actual code, two custom fields are
stored before the code. These items are the method id, used by the soft-
ware partition to identify the currently running method, and the constant
pool pointer, used to locate the constant pool of the current method. The
latter provides significantly better performance for accessing the constant
pool since no symbolic resolution is required. The constant pool address is
a direct pointer to the host CPU’s memory, and accessing a specific constant
simply requires adding the offset of the constant to the pointer. Without
this custom field the software partition would have to perform a lookup to
find out the current methods descriptor, then find the constant pool address
in the descriptor and finally continue as in the strategy described before.

The code segments are allocated starting from the top of the co-processor
memory space. New methods are always added below the previous ones,
growing the method area of the co-processor from the top of the memory
towards the bottom. The amount of methods that can be stored in the co-
processors memory is not limited to any fixed number, but rather depends
on the amount of memory available and the amount of stack space required
by the application. If required, the software partition is responsible for re-
moving unused methods from the memory or performing page swap on the
method area.
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3.5.2 Stack Layout

The layout of the data in stack is not defined by the Java specification. The
specification does, however, define the way parameters to a method invoca-
tion are arranged. The calling method loads the parameters to the top of
its own stack, and once the method is being called, the parameters become
the local variables of the new method. At the same time the parameters
are removed from the stack of the calling method. This clearly suggests
that placing the local variables at the bottom of the stack frame and the
operand stack at top of the frame avoids unnecessary copying of the parame-
ter data. Since the stack frame also contains return information, it is natural
to place that information in between the other two components as shown in
Figure 3.9. With this arrangement only one dynamically changing pointer
is needed, pointing to the stack top (ST). The local variables are accessed
using offsets from the local variable pointer (LV). The return information
is accessed by adding the total number of the local variables in the current
method to the local variable pointer.

ST

LV

Local
Variables

Return
Info

Stack

Figure 3.9: The layout of data items in the stack frame.

When the REALJava virtual machine is started the stack pointer is ini-
tialized to the bottom of the co-processor’s local memory. The stack then
naturally grows from the bottom towards the top of the memory space. The
maximum amount of stack space is not limited. When the stack space of
the co-processor is becoming full, an interrupt is generated and the software
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partition performs swapping of the stack pages, as mentioned in Section
3.4.4. The swapping is expected to take a relatively long time, depending
on the bus connecting the CPU and the co-processor and of course on the
speed of the CPU. Overall, the swapping mechanism is not intended for
heavy use, as it would slow the system down seriously, much like swapping
the main memory to a hard drive in typical desktop computers. The mech-
anism is provided for completeness and also in order to facilitate different
local memory sizes in the future. With the stack growing in this direction
and the method area growing in the opposite direction the memory can be
used efficiently for cases when either the stack or the method area grows
faster than the other.

3.5.3 Heap Management

Objects and arrays, which are handled as ordinary objects in heap manager,
are allocated in the heap memory. The software partition controls the heap
memory, taking care of allocation, data access and freeing unused mem-
ory via garbage collection. Thus, the heap memory region is placed in the
memory of the CPU. The REALJava virtual machine starts by allocating a
relatively small amount of memory for the heap, and growing it if necessary.

The garbage collection has some practical requirements for the heap
manager. Since the heap memory is subjected to the collection, and this
means that the objects in the heap may be relocated during the garbage
collection, it is necessary to provide a mechanism that allows referring to
objects without using their actual physical memory addresses. If physi-
cal addresses were used as references in the virtual machine, the references
would have to be updated every time the garbage collection algorithm moves
the object. This would be very hard to do, since the references may reside in
other objects or anywhere in the stack. To avoid this problem, a two-tiered
referencing system is adopted. All the references stored in the objects or
the stack are actually indices to a global reference table. This table in turn
contains the addresses of the actual objects in the physical memory space
of the CPU. When an object is moved, only the entry in the reference table
is updated, and all of the references stored elsewhere remain as they were.
The referencing is shown in Figure 3.10.

When an object is deemed to be garbage and subsequently removed, the
address in the reference table is marked as free. The next new instruction
that allocates a new object receives the first free reference location from the
reference table. The address of the newly created object will be placed into
that location, and the reference returned to the Java application is the index
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Figure 3.10: An example of the reference table during garbage collection.
Object 2 is found to be garbage, thus it is removed. The other objects are
compacted, but the references to them remain as before in the stack, only
the pointer in the reference table is modified.

to the reference table. As a result the order of the objects in the memory
is not related to the index number of the reference. The allocation strategy
chosen for the new references being inserted to the table also renders the in-
dex number in the reference table meaningless as an indicator of the objects
lifetime.

3.5.4 Other Data Structures

Besides the three main data structures, the REALJava has six additional
data structures. All of these are stored in the system memory, and are thus
controlled by the software partition. They will be described next. (1) The
reference table mentioned above, used for referencing to the Java objects
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in the heap. (2) The static member area, used for storing the static
members of classes. The data items here are initialized when a new class is
loaded. (3) The class area, which is used for storing the methods and the
constant pools of loaded classes. (4) The string area. It is used for storing
unique strings, such as “Hello world!” and so on. (5) The code segment
area. This area contains the executable native code of the software partition
and also the required libraries for I/O and native interfaces. (6) The swap
area, which will be created if the co-processors local memory is full, and
needs to be swapped to the system memory. This area is initialized only if it
is required. The run time sizes of the areas are highly application dependent.
Since all of the areas, save for the code segment area, can grow when needed,
the sizes can be set to any values that are seen as suitable for a given system.
There are no actual limits posed by the REALJava, except that the pointers
to the regions are 32 bits long, causing the maximum total amount for all
areas to be 4 Gb. This should be more than sufficient for embedded systems.

3.6 Chapter Summary

In this chapter the REALJava virtual machine was described at a conceptual
level. The execution model used in the research for this thesis was shown.
The hardware software partitioning was defined, followed by the structure
of the hardware partition. The software partition was also discussed shortly,
with the emphasis being on the components related to the co-processor. Fi-
nally, the details of the internal data structures were specified.
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Chapter 4

Prototyping the REALJava

Virtual Machine

The Java virtual machine presented in Chapter 2 was partitioned in Chapter
3. In this chapter FPGA technology is used in the prototyping of the result-
ing REALJava virtual machine. The prototypes have also been presented
in [57]. The assumptions made during the partitioning and structural spec-
ification are replaced by ones fitting to the target technology. This chapter
begins with details of the major changes required to meet the FPGA spe-
cific constraints. The FPGA platforms used for the prototypes are shortly
described, along with the properties of the PowerPC 405 embedded proces-
sor integrated in the larger FPGA platforms. The FPGA specific tools and
techniques are outlined next. The physical size of the co-processor core is
also evaluated with comparison systems spanning from Java co-processors
to full general purpose processors. Finally, the communication subsystems
for all of the platforms are presented.

4.1 Major Changes from the Conceptual Model to

the FPGA Implementation

The first and possibly the most drastic change is the instruction folding unit,
which was dropped from the design. The folding was not included because
the FPGAs in use do not have fast ROMs, which were specified in Section
3.3.7 to be a prerequisite. Also the fact that the FSM inside the folding unit
would have to be synchronous, and thus run at the same speed as the rest of
the system, is clearly prohibitive. Since the folding was left out some other
measures had to be taken in order to keep the execution rate high enough.
To this end the data flow between the stack and the ALU was modified. All
the data in the stack goes through a cache and is automatically forwarded
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to the ALU. The ALU maps the data items as operands using predefined
rules obtained from the Java bytecode instruction set. The rules state for
instance that in integer subtraction the topmost entry of the stack is sub-
tracted from the second entry. Since the Java compilers produce code that
minimizes the number of stack locations used, most of the code produced
follows the lines of load, load, compute, store. This means that the top two
locations of the stack are generally loaded from the local variable area just
before an arithmetic operation, causing the data items to be in the cache
and thus readily presented to the ALU. A partial version of folding is per-
formed at the output of the ALU. If the result is going to be moved into
a local variable, then it is written directly there. In the straight forward
implementation the result would be first written to the top of the stack, and
immediately moved to the local variable. This form of instruction folding
needs only to check whether the next instruction is a local variable store.
This check is easy to implement, since the instruction fetch unit provides
the instruction stream parameters to the ALU. The parameters are located
after the related instruction, so reading the parameter data during the exe-
cution of an instruction that does not require parameters actually provides
the next instruction.

The last changes were made to the control register bank. The method
invocation module described in Section 5.5 required two additional registers
to be implemented into the co-processor. These registers provide the ALU
with the number of local variables and the number of parameters required
by the Java method to be invoked. Since both of these numbers are 16
bits long, they were combined into a single 32-bit register location, which is
named LO. Also a set of other addresses were added, in order to minimize
unnecessary communications between the CPU and the co-processor. These
additions will be presented later in Chapter 5.

4.1.1 Changes in the SW Partition

The software partition required only minimal changes from the conceptual
view, and most of the changes were brought on by new acceleration strate-
gies applied to the co-processor. Since the execution model was not changed,
only the instruction set supported by the co-processor caused major mod-
ifications. Even those were limited to selection of which instruction was
to be implemented in which partition. The changes in the communication
protocol were not really changes in the software partition, since the commu-
nication scheme for each platform is encapsulated in its own module. This
allows the same routines to be used throughout the software regardless of
the platform used for the implementation.
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4.2 Description of the FPGA Platforms

Xilinx FPGAs have been chosen for the prototypes, since they provide
CPU(s) embedded into the same chip with the FPGA logic. Xilinx uses
PowerPC 405 processors as the embedded CPU(s). Two such CPUs are
integrated on the Virtex II Pro chip found on the ML310 demonstration
board and also on the Virtex4FX on the ML410. The XESS 3S1000 does
not provide an embedded CPU, and the duties of the CPU have to be per-
formed off-board.

4.2.1 XESS XSA-3S1000

The smaller prototype is implemented on a XESS XSA-3S1000 board [75].
This board provides a Xilinx Spartan3 1000 [77, 78] FPGA chip and a 32 MB
memory chip. The FPGA runs at 100 MHz and the memory is an SDRAM
with 70 ns access time. The board also has a Xilinx XC9572XL CPLD
device, which is used as a bootloader. The CPLD is programmed with a
communication system that accepts the bit stream for FPGA configuration
from the parallel port. After the FPGA has been correctly programmed, the
CPLD gives the FPGA chip full control over the parallel port connection.
A simple seven segment display shows the current state of the parallel port
connection when the FPGA device is being loaded. Further details of the
board can be found in the datasheet [75].

Since the Spartan3 series does not have an embedded PowerPC pro-
cessor, a standard desktop computer is used as the CPU for the virtual
machine. The communication between the co-processor and the CPU is
implemented using a parallel port (in standard LPT mode). This solution
allows great platform independency, but provides only a slow link between
the co-processor and the CPU. The communication subsystem was measured
to have a bandwidth of about 80 kilobytes per second when running Win-
dows XP, and about 200 kilobytes per second when running Linux (Kernel
2.6.18). This difference is most likely due to the fact that in Windows the
communication uses a separate software device driver, while in Linux the
communication is implemented as direct memory mapped I/O. The main
reason for designing and maintaining this prototype is the time it takes to
synthesize and implement a design. The whole cycle takes less than 15 min-
utes on an Intel Core2Duo running at 2 GHz, while the larger system takes
about 2 hours. This allows fast paced iterative co-design of the software and
hardware partitions. The XESS board also eases debugging, as the board
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Figure 4.1: The XESS XSA-3S1000 board with the XStend 3.0 add-on
board.

provides general purpose leds, which are used to show state information
from within the co-processor.

Figure 4.1 1 shows both of the XESS boars connected together. The
XSA 3S1000 board is placed on top of the XStend 3.0 board. The FPGA
chip is located at the center of the XSA board, just above the “XESS” logo.
Below that is the SDRAM chip. Above the FPGA chip are the flash RAM
and the CPLD chip, in that order. The power to the system is supplied from
a standard ATX power supply, the cabling can be seen on the top right hand
corner. The parallel port cable used for configuring the FPGA and for the
communication between the co-processor and the CPU can be seen in the
top of the figure. When the photograph was taken, the system was config-

1For those reading this thesis as an electric copy, please zoom in to the photograph.
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ured to show the currently executed instruction on the double seven segment
displays. In the figure they show a hexadecimal value of 0xB1, which stands
for return. The instruction in question is always the last instruction of any
Java application that terminates normally.

The XESS 3S1000 is extended using XStend 3.0 add-on board [76]. This
board provides a wide spectrum of enhanced capabilities to the system. The
added functionality includes a network controller, an USB controller (1.1,
slave only), buttons and switches, seven segment displays and various con-
nectors. The USB was considered as the communication medium, but since
USB 1.1 is not considerably faster that the parallel port, and the drivers for
accessing the USB port on the host side would be much more complicated, it
was not adopted. Also the network controller was rejected, due to the packet
based communication model used in the ethernet. The communication in the
REALJava virtual machine consists of scattered small transmissions rather
than few larger packets. The switches are used to select the source of debug
data to be shown on the seven segment displays. These allow debugging of
each of the subsystems in the co-processor without resynthesis.

The first versions of the REALJava virtual machine were implemented
only on this platform. The co-processor originally used the 32 megabytes ex-
ternal memory chip as the local memory of the co-processor. It soon became
clear that the size of the local memory is not as important as the speed, and
the external memory was replaced with the internal BRAMs of the Spar-
tan3. The memory size was reduced to 49152 bytes, but that has been found
to be sufficient to run all of the applications used for the tests and analyses
without the need for swapping the stack pages or the method pages to the
memory space of the CPU. As a curiosity it is worth mentioning that the
first version of the REALJava virtual machine with hardware support and
a minimal co-processor implementation on the XESS board took about six
hours to run the Fibonacci test, which is described in Section 6.2. The final
system Running on the ML410 takes only 433 milliseconds for the same task.

4.2.2 Xilinx ML310 and ML410

The larger prototype was in the beginning based on a Xilinx ML310 demon-
stration board [79]. This board provides all the features and services one
might expect of a desktop computer, such as a network controller, an IDE
hard drive controller, PCI busses and so on. The FPGA chip is a Vir-
tex2Pro30 [80, 81], which includes two PowerPC CPUs. The co-processor
is connected to the CPU via the Processor Local Bus (PLB) as shown in
Figure 4.2. This setup improved the communication speed to about 12
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Figure 4.2: Bus structure and co-processor placement on the Virtex 2Pro.
The structure is similar on the Virtex4, with the addition of the network
controller on the PLB bus.

megabytes per second, including the time to fetch or store the data at the
CPU. The maximum peak transfer rate without the fetching and storing was
measured to be around 30 megabytes per second. The Virtex2Pro offers two
other busses, and they were considered also. The On-Chip Peripheral Bus
(OPB) was discarded as it is slower than the PLB (OPB runs at 33 MHZ,
compared to 100 MHz for the PLB). The OPB is subordinate to the PLB,
making it obvious that the transfer rates must be inferior. The Device Con-
trol Register (DCR) was a bit harder to ignore, as it provided a maximum
peak transfer rate of 170 megabytes per second. This speed was attained
by placing the measurement loop inside the kernel driver required to access
the DCR. When the measuring loop was placed in a user mode code section,
the transfer rate dropped radically. This drop was introduced because the
operating system had to switch to the kernel mode before every transfer,
and back to the user mode right after completion. The visit to the kernel
mode was measured to cost about 700 clock cycles. As the communication
pattern between the co-processor and the CPU was already characterized
using the smaller board, it was easy to see that the relatively small bursts
of data would not warrant the use of higher bandwidth at the cost of the
added latency. Similar analysis is required, when selecting a communication
medium for a completely new system. Especially if the new system is going
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to use one of the currently popular network-on-chip (NoC) approaches, the
characteristics of the data traffic should be carefully considered.

In later versions, starting from version 2.00, the ML310 board was re-
placed by a newer version, namely the ML410 [82]. This board provides
basically the same resources as the ML310, but the FPGA chip is a Vir-
tex4FX60 [83, 84]. The newer FPGA chip provides twice the amount of
lookup tables (LUT), and the board has a faster external memory module.
The ML310 has a DDR type memory module while the ML410 has DDR2
type memory. The increased memory bandwidth can clearly be seen in the
results for the REALJava versions 1.01 and 2.00, which have no other dif-
ferences save for the upgraded platform. The results for Kaffe also show the
impact of the faster memory. Naturally the impact is slightly smaller in the
hardware assisted execution engine, since the amount of memory accesses
targeting the physical system memory is reduced when the co-processor is
used.

The actual core of the co-processor is almost exactly the same as in the
smaller prototype. The only difference is in the integer multiplication, which
takes one clock cycle for the Virtex FPGAs and requires two cycles when
implemented on the Spartan3. In the versions of the REALJava virtual
machine starting from 1.01 the co-processor cores are identical. This was
achieved by reducing the clock rate for the XESS board. Both of the Virtex
based systems run the core at 100 MHz, while the Spartan3 was configured
to run the core at 66MHz. The PowerPC CPUs in the ML310 and the
ML410 run at 300 MHz. One of the CPUs runs Linux 2.4.20 as the op-
erating system providing services (network, filesystem, etc.) to the virtual
machine and also the software partition of the REALJava virtual machine.
The other PowerPC CPU core is not connected to the rest of the system,
and remains idle.

The ML310 and ML410 boards contain a Xilinx ACE-controller, which
is used to select the device configuration when the board is powered up.
This controller communicates with the outside world via a serial port, and
upon receiving a valid configuration number it loads the specified ace-file.
An ace file typically contains a bit-file used to configure the FPGA device
on the board and executable software which is stored to the main memory.
The ace-files are stored to a CompactFlash memory card connected to the
ACE-controller. The CompactFlash card is partitioned to have a FAT type
partition as the first partition. This partition contains a directory structure
which is used to select the ace-file for each configuration. The ace-files in
that partition can be updated using any normal CompactFlash card reader
or by running a configuration with Linux and support for the ACE-controller

75



and then updating the data from the Linux running on the same board. The
latter approach is used, as it allows new configurations to be entered without
removing the CompactFlash card.

Figure 4.3: The ML410 board.

Figure 4.3 shows the ML410 board placed in a standard ATX casing.
The Virtex4 FPGA is located at the top of the photograph, covered by a
heat sink and a fan. Below that, and slightly to the left, is a chip with the
“ALi” logo. That is the ALi M1535D+ south bridge [88]. It provides all the
services found in the south bridge of a typical desktop computer, including
an IDE controller. In the lower right hand corner is the SiliconDrive com-
pact flash card containing the configurations and the root file system for
the Linux. The ACE controller is located to the left of the memory card.
The hard drive is located at the right of the photograph, and it is used for
user file system. This data area could have been placed on the compact
flash card, but to facilitate several parallel versions of the software and to
provide several hundreds of megabytes of storage space for traces and log
files, the physical hard drive was chosen. Finally, the DDR2 memory module
is located above the PCI Express connectors, left of the FPGA chip. The
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memory is 256 megabytes in size. When the ML410 is configured with the
system containing the REALJava virtual machine and the software com-
ponents required for the Linux operating system, it is a fully autonomous
embedded system. The communication with the system is established via
ethernet, using simple telnet connection over ethernet. The user logs in to
the system, just like to any desktop computer running Linux, and is the able
to start the REALJava virtual machine from the command line. Both the
hardware accelerated and the software only versions are available. Also the
Kaffe virtual machine can be used to execute Java applications. This setup
makes running comparisons very easy and provides meaningful benchmarks,
since the underlying system for all three virtual machines is exactly the same.

The PowerPC 405 CPU Core

As mentioned before, the CPU integrated on the Xilinx devices is a PowerPC
405 [70]. The CPU provides a well rounded set of features one might expect
to find in the CPU of a modern embedded system. These features include
caches for both the data and the instructions, memory management unit
capable of providing virtual addresses for the software and moderate length
pipeline with five stages. While running at 300 MHz, the performance of the
CPU is roughly of the same level as the CPUs found in embedded systems
currently.

The PowerPC 405 CPU can be implemented in various configurations.
The parameters listed here are the ones used in the Xilinx implementation.
Since the CPU is implemented as a dedicated hardware block, most of these
parameters cannot be changed, only some of the functionality can be dis-
abled via internal control registers in the CPU core. The caches, for both
the data and the instructions, are 16 kilobytes in size with two way set as-
sociative structure. The cachelines are eight words long (word being 32 bits
long). The caches are non-blocking during line fills (both) and flushes (data
cache only). Static branch prediction is included in the CPU. The pipeline
is five stages long, with single cycle execution of most instructions, including
loads and stores. The pipeline stages are fetch, decode, execute, write-back,
and load write-back. The CPU also provides hardware multiply and divide
for faster integer arithmetics (4 cycles for a multiplication, 35 cycles for a
division), but it does not provide floating point arithmetics in hardware.
The lack of floating point arithmetics applies to both single and double
precision instructions. All of the floating point arithmetic instructions are
preformed via software emulation. Two addressing modes are supported,
real and virtual. The virtual mode allows addressing up to 4 Gb (32-bit
address space limit). The CPU has a single-issue execution unit containing
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the general-purpose register file (GPR), arithmetic-logic unit (ALU), and
the multiply-accumulate unit (MAC). The GPR consist of thirty-two 32-bit
registers that are accessed by the execute unit using three read ports and
two write ports. During the decode stage, data is read out of the GPR for
use by the execute unit. During the write-back stage, results are written to
the GPR. The CPU also offers a variety of tracing and debugging facilities,
but since they have not been used during the implementation of the REAL-
Java virtual machine, they are not discussed in detail.

4.3 FPGA Techniques and Tools Used

The co-processor core has been designed using Xilinx ISE tool set [85, 86].
Versions of the ISE have ranged from 7.1i to 9.1i during the design of the
system. The ISE is also used for the full implementation of the XESS based
system. The ML310 and ML410 boards require more attention in order to
get all the features and services properly configured and the Linux kernel
running on the PowerPC CPU core. The flow starts with generating a netlist
of the co-processor core in the ISE. Then this netlist is imported to the EDK
tool [87], with all the other required IP-blocks, such as the PLB bus and the
Xilinx ethernet controller for the ML410. All of the blocks are connected
and their address ranges specified inside the EDK. Also the PowerPC pro-
cessors receive their startup programs in this phase. Both of the PowerPC
cores are assigned a bootloop, which basically keeps the processor in a tight
loop in order to stop the processors from executing invalid code while the
memory is being initialized. The EDK tool invokes ISE for the synthesis
and for the place and route to generate a netlist and placement information
for all of the logic in the system. Then a bit-file is produced for configuring
the FPGA device. This is updated to contain the instruction streams of
the bootloops for both PowerPC cores. Finally the file is merged with the
executable Linux kernel to produce the ace-file which is transferred to the
board. As mentioned earlier, the Xilinx ACE-controller is used for actually
loading the required data to the FPGA and to the memories.

The co-processor is designed using “good coding style”, as presented
in [65, 66]. This means that there are no latches in the design and all of
the signals that are delivered to several subsystems are registered. FPGA
technology is in general suited for synchronous design only, and latches, on
the other hand, are more commonly found in asynchronous designs. Also
no VHDL variables are used as they tend to cause problems in synthesis.
The documentation of Xilinx tools and several Xilinx white papers, such as
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[8, 18] 2, also provided coding style tips. These coding techniques provide a
more stable and predictable implementation on an FPGA.

Some of the subsystems were generated automatically using the Xilinx
CoreGenerator. This method was applied to the memories, which were im-
plemented using BlockRAMs, and to a few arithmetic units. All of the
implemented floating point operations were included as generated cores.
Also the integer division was implemented using the CoreGenerator. The
amount of local memory in the Spartan3 based version is limited to 12288
32-bit words. This uses 22 of the 24 BlockRAMs available. In the versions
with Virtex FPGAs the amount of memory is increased to 32768 words,
which uses 58 out of the 232 3 available BlockRAMs.

The integer multiplication was implemented using the dedicated multi-
pliers in Xilinx FPGAs. In the Spartan3 and the Virtex2Pro the multiplier
module is called MULT18X18, which performs 18 bits wide multiplication,
while in the Virtex4 the dedicated multiplication module is called DSP48
and it includes support for multiply-accumulate structures, with otherwise
the same functionality. The DSP48 units are used in compatibility mode,
ignoring the added functionality. The imul instruction requires 3 dedicated
multipliers to produce a 32-bit result from two 32-bit inputs. It is worth
noting that Java specifies the instruction to produce 32-bit result, so that
the lowest 32 bits are returned and the rest are ignored without a warning or
any kind of overflow signal or exception. Four more of the multiplier units
are used for the floating point multiplication (fmul). All together seven
multiplication units are required.

4.3.1 Size of the Co-Processor Core

This section provides details on the physical size of the REALJava co-
processor core. The statistics are split into subsections to provide insight
into the distribution of logic resources in the various subsystems. The size
is compared with several other execution engines, including full processors
and co-processors, some targeting Java and others being general purpose
processors.

2These two white papers contributed to the design by suggesting that as few as possible
of the registers are connected to the global reset and that the global reset should be
synchronous. All the other white papers that provided insight to the Xilinx specific coding
styles are not referenced, they can be found at the Xilinx website [108].

3There are 232 BRAMs in the Virtex4FX60 and 136 in the Virtex2Pro30.
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Logic and Resource Utilization

All together 8357 LUTs are used for the REALJava co-processor when im-
plemented on the Spartan3 1000 FPGA chip found on the XESS board.
Besides the co-processor core, this includes the communication module, re-
set and clock generation and supporting logic used for resetting the auxiliary
chips on the boards. The debugging registers and counters were temporar-
ily removed to evaluate size of the core. The debugging facilities include
the drivers for the seven segment displays and several counters and timers.
These counters keep track of the stack usage, the method space size, live
time of the co-processor, the number of traps and four previously executed
instructions. The reduction in the amount of LUTs achieved by the removal
of the debug logic was relatively small, just under 300 LUTs.

Besides the LUTs, the system also requires other resources, which are
listed in Table 4.1. The BRAMs row refers to the BlockRAMs mentioned
earlier, while the MULT18X18s row reports the number of the multiplication
modules. The amount of multiplication units used is the same for all three
FPGAs used, even though the Virtex4 series uses the newer architecture
for the units. The GCLKs row lists the number of the global clock buffers.
Finally the DCMs row tells the number of the digital clock managers used
by the design. The DCM is used to generate clock signals, while the GCLKs
are used to deliver the signals to the logic cells that require it. In the XESS
board version the DCM is used to divide the incoming 100 MHz clock signal
by three and then multiply it by two, resulting in the 66 MHz clock used
internally.

Resource Used Utilization

Flip Flops 4782 31%

4 input LUTs 8357 54%

as logic 8095

as route-thru 172

as shift registers 90

BRAMs 22 91%

MULT18X18s 7 29%

GCLKs 2 25%

DCMs 1 25%

Table 4.1: FPGA resource usage of the REALJava co-processor. The uti-
lization shows the percentage of the resources available on the Spartan3
1000.
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The size is reasonable, in comparison with other co-processors and pro-
cessors implemented with FPGAs. The co-designed Java virtual machine
from Kent et al. [22] is the first reference system. The authors have not
named their system, so it will be referred to as the Kent system. The co-
processor requires a minimum of 26898 logic elements when implemented on
an Altera Stratix FPGA. The co-processor achieves around 25 MHz clock
frequency with small variance due to the configuration of the co-processor.
The Altera tools report a logic element count, which is similar to the LUT
count reported by Xilinx tools. Altera logic element contains one LUT
and associated register and support circuitry. The jHISC [59] is a stan-
dalone processor optimized for object oriented operations. The processor
core uses 15573 LUTs and runs at 30 MHz. The Milk [7] is a floating point
co-processor which is reported to require 20000 logic elements when imple-
mented on an Altera Stratix FPGA. In that configuration the co-processor
runs at 67MHz. The Tensilica Xtensa customizable processor [71] is reported
to use between 6166 and 14811 slices when implemented on a Virtex-II series
device. Here, the comparison to the REALJava is hard to make, because
even though it is known that one slice contains two LUTs, things are not
quite so straight forward as multiplying the number of slices by two. This
is because the Xilinx tools do not use both LUTs in a slice unless the two
LUTs are deemed to be related logic. A LUT without a related pair occu-
pies a slice all by itself, unless the device is too full. Only in that case the
tools start packing unrelated logic to the slices. It is safe to say that the
Xtensa takes at least 6166 LUTs (minimum configuration and no related
logic at all) and at maximum 29622 LUTs (Maximum configuration and all
slices contain related logic). The PowerPC 405 can be implemented as a
soft core, and in that case it uses 33840 LUTs. The performance is very
limited, since the soft core version can only run at 25 MHz. Xilinx also has
a smaller soft core processor, the MicroBlaze, which takes only 2120 LUTs
on a Virtex-II device, while running at 100 MHz. LEON2 [73] is a 32-bit
processor core with SPARCV8 architecture, using from 5000 up to 15000
LUTs. The LUT counts and clock frequencies for these systems and the
REALJava co-processor are shown in Table 4.2. The data for the Xtensa
variants, the PowerPC and the MicroBlaze are from [72]. The data for the
LEON variants is from [3] and [17]. In general the comparison of sizes based
on LUTs, logic elements and slices is far from accurate, as the metrics are
not uniform and the scores depend highly on the implementation options
and also on the routing. Thus the numerical values are to be taken as rough
estimates rather than strict facts.
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(Co-)Processor LUTs MHz

REALJava 8389 100

Kent system (small) 26898 25.18

Kent system (large) 34471 23.78

jHisc 15573 30

Milk 20000 67

Xtensa (small) 12332 33

Xtensa (large) 29622 29

PowerPC 33840 25

MicroBlaze (+FPU) 2120 100

LEON2 (small) 5000 60-80

LEON2 (large) 15000 60-80

Table 4.2: FPGA logic usage of various processors and co-processors.

Logic Distribution Among Subsystems

The various subsystems in the REALJava co-processor were declared as
“partitions” in the Xilinx ISE in order to find out their individual logic
usages. The results are listed in Table 4.3. The total number of LUTs
clearly exceeds the number presented earlier. This is caused by the parti-
tion declarations, which rule out optimization across partition barriers. The
partitioning was done along design units, namely the VHDL files that pro-
vide the code for the various blocks. This means that the partitions are not
pipeline stages and partitions can contain code for non-consecutive pipeline
stages. As an example, the memory controller unit mentioned here contains
the logic needed for stack handling, instruction stream fetching and local
variable access. The ALU contains also the decode stage of the pipeline and
the partial folding mentioned earlier. The registers, method invoker and
constant caches are discussed in detail in Chapter 5.

4.4 Communication

This section describes the communication schemes used in the FPGA plat-
forms. The communication modules in hardware partition of the virtual
machine have exactly the same internal interface for each of the platforms.
This allows porting of the virtual machine to new environments and bus
structures so that only the communication module needs to be redesigned.
A communication module and protocol [52] were designed for the pipelined
bus [37] by Liljeberg et al. also, but since that platform is not used with the
prototype, it is not discussed further. Technically, a communication module
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Unit LUTs % of the total

Memory controller 1523 16

ALU 2897 30

+ Integer division 500 5

+ Shifters 459 5

+ Floating point unit 1303 13

Registers 1111 11

Method invoker 494 5

Constant caches 612 6

Communication 527 5

Clock, reset and I/O 358 4

Total 9784 100

Table 4.3: FPGA logic usage by subsystems.

can be easily designed for any bus or network-on-chip structure. The physi-
cal communication subsystem is required to satisfy two conditions, namely:
1) the datagrams must arrive in their destination in the same order that
they were sent, and 2) the datagrams arriving from two different sources to
a same destination must be identifiable. The first property can be achieved
with a lower level network protocol, like the ATM adaptation layer 5 (AAL5)
[26] used for internet protocol (IP) communication, or by the physical struc-
ture of bus. If the communication protocol is responsible for the order of
the datagrams, the actual data can arrive to the module in any order, and
the data items are reordered before passing them to the co-processor. The
second property is quite natural, and should be present in all communica-
tion solutions, either in the structure or as a part of the protocol.

4.4.1 XESS Board with Parallel Port Communication

The XESS board uses standard parallel port as the communication medium.
The data channel from the CPU to the co-processor is 8 bits wide while the
channel from the co-processor to the CPU is 4 bits wide. Both of these chan-
nels are synchronized to a bus clock signal produced by the host computer.
This is not the fastest possible way to communicate over the parallel port,
but this provides good enough performance for the testing purposes stated
previously. The protocol is quite simple, with three data types defined. The
types are command, address and data. The commands are 8 bits long, and
the meaning of each bit is listed in Table 4.4. Communication starts with
the CPU sending a command, and if the command is a data transfer (read
or write) then the address. If the command is a write, then the data is trans-
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ferred to the device, and in case of a read, the data is transferred from the
device. If the burst mode bit is set, then the address in the communication
module is automatically incremented, and the next data item is transferred
without sending the new address. Since the addresses used here are defined
to be 24 bits long, the burst mode saves three bytes for each transfer oper-
ation. Considering that the data items to be transferred are always 32 bits
long, the 8 bits long commands and the communication channel widths, the
total number of communication cycles per transfer is eight for a write and
12 for a read without the burst mode and five and nine with the burst mode,
in the same order.

Bit Command Description

0 Burst Enables burst mode

1 SingleStep Execute only one command at a time

2 IrqReply Signals the JPU that the IRQ has been handled

3 JPU/#MEM Target address in JPU register space

4 Write Write data

5 Read Read data

6 Halt Place the JPU in halt mode

7 Continue Enable execution

Table 4.4: Communication command bits.

Naturally the communication scheme for the XESS board is the same
whether Windows or Linux is used as the host operating system. The only
differences are in the software communication module, which calls different
functions to physically access the parallel port. The protocol is exactly the
same, and the co-processor does not even need to know which operating
system is used in the host computer.

4.4.2 ML310 and ML410 with PLB Communication

The ML310 and ML410 boards use the processor local bus (PLB) as the com-
munication medium. The PLB is part of the CoreConnect [114] standard
developed by IBM. The CoreConnect is a microprocessor bus architecture
for SoC designs. It is designed to ease the integration and reuse of proces-
sor, system and peripheral cores within standard and custom SoC designs.
Elements of this architecture include the processor local bus (PLB), the
on-chip peripheral bus (OPB), bus bridges, and the device control register
(DCR) bus. High-performance peripherals connect to the high-bandwidth,
low-latency PLB. Slower peripheral cores can be connected to the OPB,
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in order to reduce the traffic and capacitive load on the PLB. The Core-
Connect architecture also supports other bus standards, like the Advanced
Microcontroller Bus Architecture (AMBA) [115], by providing bridges that
allow data to pass from one bus type to the other.

The CoreConnect is available as a no-fee, no-royalty architecture to tool
vendors, IP core companies and chip development companies. According
to IBM [89], it is licensed by over 1500 electronics companies, including
Cadence, Ericsson, Lucent, Nokia, Siemens and Synopsys. Adopting such
a widely used bus architecture helps in integrating the REALJava virtual
machine to other systems in the future.

The CoreConnect is an integral part of IBM’s Power Architecture of-
fering and is used extensively in their PowerPC 4xx based designs. Xilinx
uses CoreConnect as the infrastructure for all of their embedded processor
reference designs including MicroBlaze based systems.

The protocol used by the REALJava virtual machine for the PLB com-
munication is a simplified version of the protocol for the parallel port. Since
the PLB provides read and write request signals, no commands are needed
for them. Also the burst mode is not meaningful, since the PLB always pro-
vides the address for every transaction. The JPU/#MEM signal is replaced
by dividing the address space of the co-processor in two parts, namely one
for the local memory and the other for the internal registers. The remaining
command bits (SingleStep, IrqReply, Halt and Continue) remain in their
original locations.

4.4.3 Internal Interface

Both of the communication systems have identical internal interface between
the co-processor core and the communication module. If other busses should
be required, they too would replicate the internal interface. The purpose is
to keep the co-processor core separated from the communication module in
order to keep the core easily portable to other systems.

The connections are shown in Figure 4.4. The communication module is
connected to the internal registers and to the memory controller. Also sys-
tem wide IRQ and Halt signals are connected to the communication module.
The connection to the register bank allows accessing the internal registers,
but also a set of helper addresses. These are not ordinary registers, but
rather data request forwarders. As examples the addresses 64, 66, and 255
operate on the top of the stack, the instruction stream parameter and the
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Figure 4.4: The internal interface to the communication module.

size of the local memory, in that order. The functionality and other details
of these and the other implemented helper addresses will be discussed in
more detail in Chapter 5.

4.5 Memory Areas of the Prototypes

Table 4.5 shows the various memory areas in the prototypes. The areas
were described in Section 3.5. The table shows the memory domain of each
area and also the initial sizes of the areas. The initial sizes for the areas
in the local memory are one half of the total size of the local memory for
each. This translates to 24576 bytes in the XESS version and to 65536 bytes
in the larger boards. The software only version uses the same sizes as the
larger boards. The areas which are collected for garbage are identified in
the GC column. The grows column shows whether the area can grow if
required. Finally the last column describes the data items placed in the
areas. No addresses are shown, since the system memory is provided by the
operating system, and thus uses virtual addresses. In the local memory the
method area starts from the highest address and the stack starts from the
lowest address. The initial sizes for the areas stored in the system memory
are variables in the software partition, and they can be changed to suit the
demands of a given application and the limitations of a given system. The
sizes reported in the table are the values used in the prototypes of the RE-
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ALJava. The initial size of the heap is chosen to be 16 Mb since the Kaffe
used in the comparisons in Chapter 6 uses 16 Mb as the default size of the
heap. Using the same initial size keeps the comparisons on a level playing
field, since garbage collection is forced at the same times. The sizes are also
reasonable when comparing them to the 64 Mb available to the operating
system on the larger boards. For simplicity the sizes are the same on the
desktop computer versions of the REALJava. The code segment size is mea-
sured on the ML410 board, and it includes the executable software partition,
which is 330 kb in size, and the libraries, which take 170 kb. The size of
this area is platform dependent, since the software is compiled for a given
host CPU, and the size is effected by the instruction set of the CPU as well
as by the compilers abilities to perform optimization for the architecture in
question. The swap area is not shown in the table, since it is only created
if needed. The initial size of the swap area would depend on the size of the
region to be swapped.

Area Memory Size GC Grows Data items

Heap System 16 Mb Yes Yes Java objects

Reference table System 1 Mb No Yes References to the
Java objects

Static members System 0 No Yes Static class mem-
bers

Class area System 4 kb No Yes Methods and con-
stant pools

String area System 0 No Yes String data

Code segment System 500 kb No No Executable code
segment of the
software partition
and the required
libraries

Method area Local 1/2 No Yes Method code seg-
ments

Stack Local 1/2 No Yes Stack frames

Table 4.5: Memory areas of the prototypes. The sizes of the areas in the
local memory are initially set to one half of the total amount of the local
memory.
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4.6 Chapter Summary

Based on the conceptual model shown in Chapter 3, and the generic princi-
ples of the Java technology outlined in the Chapter 2, the REALJava virtual
machine was prototyped using FPGA platforms. The structure of the co-
processor was modified to suit the properties of the FPGA technology. The
physical resources needed for the prototype were listed and analyzed with
several other systems as reference points. The FPGA platforms were de-
scribed, and the communication schemes used for each platform were also
detailed.
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Chapter 5

Performance Increasing

Techniques

This chapter details the techniques developed and applied to increase the
performance of the REALJava virtual machine. Before going into the ac-
tual performance boosting techniques, the strategies employed to identify
the performance hindrances are explained. Each of the improvements pre-
sented is motivated by an inefficiency found using these strategies. First a
simple but effective stack cache architecture is presented. It is followed by
details of the pipeline structure tailored to the modified stack subsystem.
Then the Java method invocation is enhanced by employing caching of the
required data with the stack frame initialization performed in hardware. As
some of the values retrieved from the CPU are constants, caching systems
for these are shown next. The method and constant caches are deployed in
order to increase data locality and to reduce the number of communications
by reducing the number of traps generated by a given application. The possi-
bilities for hardware level control in the time domain are outlined, with focus
on the thread scheduling system, which uses hardware timers for time slice
preempting. Finally an extended register map is presented, with emphasis
on the additional functionality provided via the register address space. The
multicore approach is very briefly mentioned. The performance increasing
techniques are evaluated for their effectiveness by showing measurement re-
sults before and after a given technique was applied. More measurements
are available in the Appendix B, and the corresponding version history is
given in the Appendix C.
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5.1 Identifying the Performance Hindrances

In order to find out the bottlenecks in the REALJava virtual machine several
techniques were used. Most of the bottlenecks were identified by running
several Java applications on the REALJava and on Kaffe. The results from
the two virtual machines were then compared to find applications that show
relatively poor performance 1 for the REALJava. These applications were
then further analyzed to find out the reasons for the poor performance.

In the first level of analysis the applications were simply disassembled
using a Java disassembler called Jad [116]. The disassembled listings pro-
vided some insight to the operation of an application, but the contribution
of the methods imported from the standard library was not shown in the
listings. Also the number of times a given instruction was executed had to be
deduced. For these reasons more accurate analysis techniques were required.

The most detailed analyses were performed by creating full instruction
traces of the execution of the application in question. These traces were
created with the software version of the REALJava virtual machine. The
software version was used because the disk accesses are very much faster
on the desktop computer than on the ML310 or the ML410. The software
virtual machine’s execution engine was configured to write every instruction
to a file, while it was being executed. It should be said, that the execution
in REALJava progresses along exactly the same path, regardless of whether
the execution is performed on the co-processor or on the software. Thus
the trace files were valid for both of the execution engines. This technique
provided the dynamic instruction counts, representing the actual number of
executions for each instruction, including the effect of the standard library.

The amount and type of trapped instructions was also analyzed. To this
end a counter register was integrated to the co-processor core. Besides just
counting the amount of the traps, the instructions causing them were traced.
This provided profiles of the trap behavior for the applications. From the
data gathered with this technique some of the bottlenecks were identified.

Besides the instruction traces, also other data items were traced to a file
in similar fashion. These includes the names of the methods to be invoked
and the values of the constants to be loaded. Since the first traces indi-
cated that the method invocations were a possible cause for relatively low
performance in some of the applications, some profiling of the invocations
was required in order to develop new techniques to improve the performance.

1The “relatively poor performance” means that a given application was not as many
times faster as the other applications.
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The applications were also analyzed based on the percentage of time the
co-processor was executing the application. This was measured by mea-
suring the total time for a given application and the actual “live time” in
the co-processor. The values showed, that some applications achieved more
than 90% of hardware execution, while others were initially below 10%. This
analysis provided insight to the distribution of the instructions in the time
domain, instead of just the number of executions.

Several Java applications were created for the analyses presented above.
Some of them are described later with the performance evaluations of the
final version of the REALJava virtual machine. The others were mainly
very short applications aimed to pinpoint certain inefficiencies. These ap-
plications are not described in detail, since they were used for very strictly
specified purposes. As an example one such application is described. To see
the effect of the instruction stream parameter loading, an application with
three tests was designed. The tests comprised the same loop, with only
one difference between them. The first loop used a local variable for the
arithmetics, the second loop used a constant in the 8-bit range and finally
the third used a constant in the 16-bit range. The instructions fetch zero,
one or two bytes of parameters, respectively. By measuring the execution
times for each of the loops, it was possible to calculate the effect of fetching
the parameters from the instruction stream. Similar constructs were used
for other cases, like conditional jumps taken or not taken, different forms
of method invocations, temporary data saved to the local variable or to the
stack, variations in the order of instructions causing traps and many others.
Practically the whole instruction set was tested and compared to the other
execution engines available.

Also the software partition of the REALJava virtual machine contributed
to the identification of the performance hindrances. The software was an-
alyzed to find out possibilities for moving some of the functionality related
to a given instruction to the hardware. This technique was used for instruc-
tions that have some components that need to be performed on the software.
With this technique the computational load experienced by the CPU of the
related instructions was minimized. This was achieved by moving as much as
possible of the basic functionality to the hardware domain. As an example,
the push and pop registers were designed to remove unnecessary software
computation of the new stack top pointer.

Finally some of the performance increasing techniques were discovered
during the prototyping of other techniques. This means that while designing
the required facilities for a given acceleration technique, the possibility of
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using the same facilities for other cases also was discovered. Additionally
some modifications changed the structure so as to allow deeper or more ag-
gressive pipelining.

In order to compare and analyze the performance of the REALJava vir-
tual machine in respect to other virtual machines, a database was created.
This database stores the results for all of the tests available. The database
is accessible via a net browser, for both updating new results and analyzing
the existing results [111]. The user interface allows selecting the systems to
be compared and the analysis to be performed. The system can show the
results for up to nine virtual machines at once. In the basic view the best
and the worst scores are highlighted for clarity. The results can be analyzed
to see the relative performance, instead of plain test scores. Additionally
the results can be shown in graphical from, in order to visualize the results.
The database also served as a form of research journal. Detailed version
information has been logged to the database, including the version number,
the release date, the description of the major changes and the full set of the
results from the tests.

5.2 Stack Handling

The top of the stack is cached, but instead of the large ring buffer suggested
in Chapter 3, a four places long linear cache was implemented. This number
was chosen based on studies on the code generated by Java compilers. The
Sun Java compiler performs practically no optimization on the user code.
The only optimization goal is to keep the number of stack locations required
by an application at a minimum. This results in code that pumps the stack
fast and with small amplitude, first loading data to stack, operating on the
data and finally saving the result to local variable. Making the stack cache
larger than four places would provide only marginal improvement. Since the
maximum number of stack data popped by any given instruction is four, it
is also sufficient for the most data hungry instructions.

The linear cache refers to an architecture where the contents of the in-
dividual registers are moved up or down along the cache as the cached area
moves up or down. This architecture is shown in Figure 5.1. The ring buffer
on the other hand refers to an architecture where the data items in the
cache remain in place, but the access pointers move up or down. The ring
buffer, shown in Figure 5.2, is quite efficient in ASIC designs, but since the
architecture incurs a lot of multiplexers, which are expensive in FPGAs, it
is not well suited for FPGA based designs. Using the linear approach the
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Figure 5.1: Stack cache with linear architecture.

number of multiplexers is one per cache location, regardless of the number
of output signals. The direction of the movement is assigned to all of the
multiplexers as the selection signal. Also all of the registers share a common
clock enable line. In the ring buffer approach the number of multiplexers
is highly dependent on the number of outputs, since each output signal re-
quires a multiplexer tree of its own. Naturally the outputs require control
signals for selecting the appropriate register, thus increasing the number of
registers. At the input side the incoming data can be directly mapped to all
registers, but the clock enable signal needs to be decoded from the pointer
showing the location of the next free element. In the case of four places the
number of multiplexers is three per output port, totaling 12 for four outputs.
The linear approach also provides outputs faster after a clock edge. This is
because the multiplexing is done before the registers, not after it. The faster
outputs provide more time for the ALU to process the data, thus decreasing
the minimum clock period.
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Figure 5.2: Stack cache with ring buffer architecture. Only the output
multiplexers connected to OUT1 are shown, similar structures would be
needed for each output, with their own control signals.

The data in the stack cache is hardwired to the ALU. This means that
the instructions, like iadd, which perform an operation on the top stack
elements, do not need to actively fetch the data. Rather the data is pro-
vided directly to the inputs of the arithmetic unit. In case the stack cache
is not valid, a validate request is send to the stack unit. When the stack
unit receives the validate request, it validates as many stack top locations
as specified by the request. If some of the locations are already valid, they
are naturally skipped. After the validation process is completed, the ALU
receives an acknowledgment signal from the stack module and is free to con-
tinue processing the data. All writes to the stack go through the cache and
all the reads come from the cache.
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The fact that the topmost stack elements are cached and provided to
the ALU gives the REALJava co-processor a clear performance edge over
the naive architecture in which every operand has to be retrieved from the
memory before an operation can be performed on them. The effect of the
caching cannot be demonstrated by the measured results, since the cache
was already present in the first version of the prototype. However, the effect
of the direct connection to the ALU can be seen by comparing the results of
versions 0.06 and 0.08. The connection was introduced in version 0.07 and
fine tuned in version 0.08. The performance increase was measured to be
roughly 25% in the byte arithmetic tests and just under 20% in the integer
tests 2. The performance increase is shown in Figure 5.3. The aforemen-
tioned tests contain one arithmetic instruction inside the test loop with two
load instruction before it and one store instruction after it. Since the direct
connection to the ALU has no effect on the loads and stores, the perfor-
mance increase for the arithmetics alone is considerably higher.

Figure 5.3: The effect of the direct connection from the stack cache to the
ALU on the byte arithmetics.

2Excluding the divisions, which are multicycle instructions.
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5.3 Pipeline Structure

The pipeline structure of the FPGA prototype is relatively similar to the
structure presented in Chapter 3. The main differences come from the fact
that the instruction folding unit has been omitted. This caused the buffering
in the next stage (“fifo and sign extend”) to become unnecessary. The sign
extending is performed inside the ALU. Also the “operand access” stage
becomes obsolete as the folding is not performed for the load type instruc-
tions. The duties of the operand access stage are handled by the direct data
mapping from the top elements of the stack to the ALU, as discussed in the
previous section.

The instruction fetching is changed slightly, since no asynchronous re-
quests for the parameter data in the instruction stream are available. The
parameters are instead offered automatically, with valid signals telling the
ALU when the parameters are correct for the current instruction. If the
parameter data is not already loaded, the instruction fetching unit au-
tonomously fetches it. The fetching is done using the same mechanism
that performs instruction prefetching and thus it consumes no additional
resources and also it incurs no time penalty. The ALU then notifies the
internal register bank to increase the program counter (PC) by the amount
of parameter data consumed by the instruction.

The ALU handles also the multicycle instructions, such as integer divi-
sion. When an instruction requires multiple clock cycles to be completed,
the ALU signals the rest of the pipeline stages to stall, if they already have
been filled. Empty stages still continue until the pipeline is full.

Since the “operand access” stage was removed and the operands are al-
ways presented straight from the top of the stack to the ALU, most of the
stack manipulation instructions do not need the ALU to perform their func-
tion. These instructions include the local variable loads and stores as well
as the simple pop and dup instructions. These instructions skip the ALU
completely, and they are handled directly by the memory controller. In the
original architecture a local variable load would have first loaded the data
item into the ALU and then saved it to the top of the stack. The modified
architecture removes the unnecessary cycle in the ALU and thus speeds up
the operation, since the memory controller can perform the data transfer
internally. The dup type instructions that relocate or duplicate more than
one data item need to use the ALU in order to provide temporary storage
for the data elements being relocated. The effect of this enhancement is
shown in Figure 5.4.
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Figure 5.4: The effect of the enhanced stack manipulation on the integer
addition test. The enhancement was applied in the version 0.03 and it was
fine tuned in the version 0.04.

The resulting pipeline structure is shown in Figure 5.5. The figure also
includes the partial folding, which will be discussed in the next section. The
figure shows the direct connection between the ALU and the stack, four
words from the top of the stack provided automatically. The write connec-
tion from the ALU to the stack goes to the top of the stack. The instruction
parameter data connection from the instruction fetch stage to the ALU is
also shown. The instructions to be handled in the software partition are
detected in the decoder, which sends a trap request to the pipeline control
unit. The partial folding stage is placed as separate stage, since it redirects
the result of the current computation so, that the next computation can pro-
ceed with the stack in coherent state. This path is used only if the current
computation is followed by a local variable store instruction. Since the FP-
GAs used for the prototypes have very fast internal memory 3, which is used
as the local memory containing the stack and the method area, the cache
sizes are set to zero. The caches would be used, if an external or otherwise
slower memory would be used. The signals that tell the ALU whether the
stack top elements and the instruction parameters are valid are left out of
the figure in order to keep it readable.

3Single cycle access time.
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Figure 5.5: The pipeline structure used in the FPGA prototypes, including
the partial instruction folding.

5.4 Partial Instruction Folding

The partial folding is performed at the output of the ALU. The partial fold-
ing works by identifying instruction sequences that move the result of the
current computation into a local variable. In these cases the result is written
directly to the local variable in question, without putting it to the top of
the stack. In the straight forward implementation the result would be first
written to the top of the stack, and then moved to the local variable. Using
the classes presented earlier in Chapter 3 in Table 3.2, the partial folding
handles sequences “OP1 MEM” and “OP2 MEM”. Since the Java compilers
typically generate code with small stack space requirements, a lot of the in-
termediate results in computation are stored to local variables. This causes
a significant portion of the arithmetic operations to be followed by a local
variable store.

This technique was applied in the version 2.08. The pipelining of the
folded local variable stores was included in the version 2.09. The results
show that these improved the performance of the integer tests by more than
a factor of two. Figure 5.6 shows the results for the integer addition test
for the versions in question. In the real life applications the performance
increased by more than 22 %, on average.
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Figure 5.6: The effect of the partial folding on the integer addition test. The
folding was applied in the version 2.08 and the pipelining was fine tuned in
the version 2.09.

5.5 Method Invocation

Because the method invocations were noticed to be a performance bottle-
neck, a hardware acceleration scheme [58] for method invocation was de-
signed. The invoker speeds up the invocation of methods that are already
loaded to the local memory of the co-processor. The strategy to identify
invocations that have happened earlier relies on the reprogramming of the
invocation instructions. When a given invoke instruction is first encoun-
tered, it performs a lot of mandatory checks. These include finding out if
the method in question is already loaded, and if not, then loading the re-
quired class. The class loading can, in turn, cause new classes to be loaded.
This phase is only necessary when the invocation is executed for the first
time. After that the system knows, that the method has been loaded, and
no further checks are required. In cases like this it is common to reprogram
the instruction to a fast version, that does not perform the checks. When
this is done, the hardware can recognize the fast version, and execute the
instruction without the checks. The method invocation process is rather
complex, and requires several data items from a variety of sources. It also
includes the initialization of a new stack frame. A simple MSC of the invo-
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cation procedure, as performed in the straight forward technique, is shown
in Figure 5.7. Statistics about the stack frame sizes and the lengths of the
methods are shown in Table 5.1 along with the amount of invocations per-
formed in the tests 4.

Figure 5.7: A MSC of the straightforward invocation sequence.

Neural Net Salesman Sort

Stack frame size 11.25 16.95 10.64

Method length 14.29 37.79 7.00

Total invocations 341821 993604 18424832

Table 5.1: Statistics from method invocations in selected benchmarks. The
first two rows are averages and they are measured in 32-bit words.

The connections of the invoker module are shown in Figure 5.8. When a
fast invocation command is encountered in the ALU, it sends the constant
pool index of the method to the invoker module and sets query high. The
pool index is used as a method id. At this time the invoker performs a look
up in the content addressable memory (CAM) using the method id and the

4Descriptions of the tests are given in the Chapter 6.
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Figure 5.8: The invoker connected to the ALU and the registers.

code offset as the key. The key for the CAM is 40 bits wide, as the code
offset is 24 bits and the method index is 16 bits. The code offset is not in
byte address space but rather in 32-bit word address space in order to align
the data in the memory correctly and save the lower two bits. The offset
has been limited to 24 bits, since it is not reasonable to assume that an em-
bedded co-processor core would have more than 64 megabytes of memory
locally for each core. As mentioned earlier, the prototypes of the REALJava
co-processor core have at maximum 128 kilobytes of local memory, and in
all of the tests the system has not been forced to swap out anything.

After the key has been found in the CAM, the match address is sent
to normal RAM, as shown in Figure 5.9. The RAM stores the information
needed to perform the method call. This RAM is 56 bits wide, and consists

New_offset_1

New_offset_2

RAM

... ... ...

16 bits16 bits24 bits

n_Locals_1 n_Params_1

n_Params_2n_Locals_2Matching
Address

CAM
Code_offset_1Method_1

... ...

16 bits 24 bits

Method_2 Code_offset_2

Figure 5.9: The invoker CAM and RAM structure.
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of 24 bits for the code offset of the new method, 16 bits for the number of
local variables and finally 16 bits for the number of parameters taken by the
new method. These are sent to the ALU with get regs high to indicate a
valid match. The ALU then moves old register values to the local memory
and calculates new register values using the following rules. The PCnew is
always 0, since the execution of a new method starts at the beginning. The
STnew is counted as STold-NPnew+NLnew+5. The 5 is added to make room
for the return information on the stack frame. The COnew and LOnew come
directly from the invoker module. The LVnew is counted as STold-NPnew.
Then the computation resumes from the beginning of the new method. The
behavior of the stack during method invocation is shown in Figure 5.10.

LV

Local
Variables

Stack

ST
Parameters

Local
Variables

Return
Info

Stack

Return
Info
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X

ST_new

Previous

Frame
Stack

N_locals

LV_new

Figure 5.10: Stack behavior during method invocation.

In case a match is not found in the CAM, a trap is produced. To indi-
cate this condition to the ALU the do trap signal is set high. Upon receiving
this signal the ALU sets the trap signal high to communication module, and
finally the host CPU performs the needed actions to start execution of the
new method. At the same time the invoker module saves the key to the
CAM, unless it has received a signal from the CPU disabling the caching
for this invocation. When the execution resumes after the trap, the invoker
module captures the required register values and saves them to the RAM.
Now the invoker is ready to speed up the execution in case the method is
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called again. When the invoker module saves a new key to the CAM it uses
circular oldest algorithm to choose which entry to replace. This scheme pro-
vides reasonably close approximation of the least recently used algorithm
with very low complexity. The resulting cached invocation procedure is
shown in Figure 5.11. The figure shows both cache hit and miss, as well as
the procedure for methods that are not cacheable.

Figure 5.11: A MSC of the cached invocation procedure.

The invoker module can also clear its contents. This is required for sit-
uations where a virtual method has been cached to the module, and a new
overloading virtual method needs to be loaded. Overloading of methods
causes them to fall out of the cache because selecting the implementation
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for a specific call requires access to heap data. The host CPU is better
suited for this kind of task, so it is assigned to there.

5.5.1 Results

Figure 5.12: The effect of the method cache size on the cache hit rate.

The module was integrated into the REALJava co-processor prototype
as eight places deep. This depth was chosen as the statistics in Figure
5.12 show that the size in question provides the highest impact on perfor-
mance with the least resources. The effect of the invoker module can be
seen in Figures 5.13 and 5.14. The first figure shows the performance in the
method invocation test of the Embedded Java BenchMark. This test per-
forms 200000 simple method invocations and measures the execution time
in order to calculate the number of invocations per second. The second fig-
ure shows the effect of this acceleration on the vector sorting benchmark.
Details of the benchmarks are given in Section 6.2. In both of the figures
the method invocation module was activated in the version 1.00, and the
results clearly show the impact to be significant.

The results in Table 5.2 show that the invoker module has significant
impact on execution times of the benchmarks. In the table REALJava
(ON) stands for a configuration with the invoker enabled, REALJava (OFF)
stands for a configuration with the invoker disabled and Kaffe is the Kaffe
Virtual Machine running on the same PowerPC processor. REALJava, even
though running at lower clock speed, clearly outperforms the Kaffe. The gain
is the percentage of improvement caused by activating the invoker module.

The first set of benchmarks are a collection of method call tests. They
measure only the method call performance, and do not include (significant
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amounts of) arithmetics. The first one simply calls an empty method and
then returns. The results from the best reference systems are shown for
comparison in Figure 5.15. The next four are taken from the Java Grande
Suite [110] to show the performance gains for various method types. It
is worth noticing that the synchronized calls are not accelerated at all, as
stated previously.

The next set of benchmarks are a collection of tests that have been writ-
ten to evaluate true life performance. The benchmark applications do not
contain any special optimizations for our hardware. Short descriptions of the
benchmarks follow. Life plays Game of Life for a while, Text just exercises
the text output functions, Salesman solves the traveling salesman problem
using a naive try all combinations method, Sort tests array performance
by creating arrays of random numbers and then sorting them, Neural Net
trains a backpropagational neural network with bitmaps of letters and then
recognizes them and finally Raytrace renders a 3D sphere above a plane.
As the benchmarks emphasize different aspects of the system, together they
should give a rather good estimation of different practical applications that
might be found on an embedded Java system. The results show 5 to 52
percent improvement in the execution speed when the invocation module is
activated. The relatively small improvement in the Neural Net test is due to

Figure 5.13: The effect of the invoker acceleration. The invoker module was
activated in version 1.00.
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Figure 5.14: The effect of the invoker acceleration on a real test (sort). The
invoker module was activated in version 1.00.

Processor REALJava REALJava Kaffe Units Gain
ON OFF %

Engine speed 100 100 300 MHz N/A

Simple call 1754385 265604 32690 1/s 660.5

Instance call 355630 151032 19460 1/s 135.5

Synch. call 33551 33366 15567 1/s 0.6

Final call 334881 158220 18090 1/s 111.7

Class call 341220 164408 18847 1/s 107.5

Fibonacci 1377 1499 5522 ms 8.9

Life 2022 2237 9705 ms 10.6

Text 1709 1931 9455 ms 13.0

Salesman 37496 41744 136079 ms 11.3

Sort 11153 16903 142110 ms 51.6

Neural Net 180441 188705 748649 ms 4.6

Raytrace 19689 25633 223918 ms 30.2

Table 5.2: Amount of method calls per second and execution times for
various benchmarks. The execution times include the startup time for the
virtual machine. The results are obtained using core version 1.00.
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Figure 5.15: The relative performance of the fastest reference systems in the
simple method invocations. Also two software virtual machines are shown.
The reference systems are described in Chapter 6.

the fact that the number of method invocations in that benchmark is very
small in relation to the total execution time. More results can be found at
the REALJava results site [111] and in the Appendix B.

5.5.2 Additional Benefits

In addition to the clear performance gain shown previously, the method
invocation module produced another opportunity for increasing the perfor-
mance of the REALJava system. The idea is quite straight forward. Since
the invocation module can perform a method invocation with just the 56
bits from the cache and no CPU interaction, the same mechanism can be
used for the method calls that cannot be cached. This would include over-
loaded virtual method invocations and synchronized method invocations. In
the first case the CPU simply performs virtual method lookup and once the
correct method has been identified the CPU passes the required 56 bits to
the method invocation module. The module then performs all necessary
steps, as if the information required for the invocation had been found in
the cache. The synchronized method invocations follow the same lines, but
instead of the virtual method lookup phase the CPU performs tasks related
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to the synchronization. The difference can be seen by comparing the previ-
ously shown Figure 5.11 and Figure 5.16.

Figure 5.16: A MSC of the final invocation sequence.

This form of acceleration was applied to the system between versions
2.02 and 2.03. The impact of this secondary method invocation acceleration
can be seen most clearly in the RayTrace test. The results are shown in
Figure 5.17. The execution time in the RayTrace test was reduced by more
than 45% in comparison to the previous version. This surprisingly large
gain is caused by the massive amount of virtual method calls used for the
file I/O stream writing. The methods used in file I/O are overloaded virtual
functions in the classpath, and thus fall out of the hardware based method
invocation caching scheme. None of the other tests perform massive file I/O.
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For comparison the RayTrace2 test, which performs the same calculations
with out the file I/O only improved by about 11%.

Figure 5.17: The effect of the improved software method invocation on a
real test (RayTrace). The invoker module used for SW invocations starting
from version 2.03.

5.6 Constant Caches

Java bytecode instruction set can only load signed 8-bit or 16-bit integers to
the stack with the data value in the instruction stream as literal data. Also
a few constant values can be loaded without any parameter data, these are
integers of values -1, 0, 1, 2, 3, 4 and 5, single precision floating point num-
bers of values 0, 1 and 2 and both long integers and double precision floating
point numbers of values 0 and 1. All other values for integers and floating
point numbers must be loaded from the constant pool. This would cause an
IRQ for each such load, but since the data is constant, as suggested by the
name constant pool, it can be cached inside the co-processor. The structure
of the constant value cache is quite similar to the structure of the method
invocation cache. The key is exactly the same, as both of these caches seek
the data values based on the current method and the index in the current
methods constant pool. The data value is untyped 32-bit data word, which
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can be either a byte, a short, a char, an integer or a single precision floating
point number. Since the whole co-processor is designed without hardware
support for 64-bit data types the cache also omits those types.

The constant pool load is performed by the ldc instruction. This instruc-
tion may load other types than supported, so all of the instances of this
instruction that load supported data types are reprogrammed to ldc fast.
Whenever the co-processor encounters an ldc fast instruction it first per-
forms a look-up in the constant cache. If a match was found it is pushed to
the top of the stack. In case of a miss, an IRQ is produced and the CPU
pushes the correct value to the stack. At this time the constant cache unit
copies the value to its own memory, so that it will be found in the cache if
it is needed again. The cache is updated in the same fashion as the method
invocation cache. The constant cache is implemented as eight places deep
in the co-processor.

Careful investigation of the bytecode instruction set revealed also one
more instruction with constant return values. This is the arraylength in-
struction, which pops first a reference to an array from the stack and then
pushes the length of that array back to the stack. Since the arrays as well
as other objects are referenced using the global reference table, the array
reference remains constant regardless of garbage collection. This means that
the reference value can be used as a key to a similar cache as presented for
the constants. This time the key is the 32-bit reference popped from the
stack and the data value is a 32-bit integer whose value is the length of the
array in question. This cache is updated in the same way as the constant
cache. The rationale for caching the arraylengths comes from the fact that
some Java applications perform loops with an arraylength in the loop end
condition. This would cause an IRQ for each loop iteration, when the end
condition is tested. Since these cases use only one value per loop, which
of course can be nested, it makes sense to use only a few locations for the
cache. The depth was chosen to be four in the implementation.

5.7 Time Control

The co-processors time control capabilities have not been fully utilized at
this point. The time control is used for time slicing the execution between
threads. This reduces the overhead at the software partition when more
than one threads are running. Without the hardware timers the software
partition would have to check the time slice information during every trap
produced by the co-processor. With the hardware timer based slicing co-
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processor notifies the CPU that it is time to perform a context switch. When
the time slicing is done in the hardware the accuracy of the slicing improves
as well. This method of slicing will become more and more useful as the
number of co-processor cores and simultaneously running threads increase.

The slicing is performed by a counter counting down, and causing an
interrupt once the timer reaches zero. The counting progresses one step for
each clock cycle. When the counter generates the interrupt, it also resets it
self to a specified value. This value is stored in another register, and can
be changed by software, if the length of the time slice is to be changed.
Setting the counter to value of 0xFFFFFFFF stops the timer. This mode
can be used for single thread operation, which requires no slicing, and also
for threads with realtime priority.

Hardware timers can also be used to implement high precision timers
[55]. The impact of these timers would be clear in a system used for mea-
suring or controlling some real time events than in a system with no real
time inputs. No realistic test cases for the time control were designed so it
is left for future work.

Finally a third type of time control is available, namely a system level
timer used for non-critical events in Java. This includes the wait() method
of a thread. The wait() method is used to push the thread out of execution
for a given time. This time is used as the minimum time the threads is not
executed, and it can be exceeded by arbitrary amount of time. Since there
may be several threads waiting for their timeouts to elapse it gets rather
hard for the software to check every one of the timeouts. In theory that
would require comparing each system level timer value with the operating
systems timer every time a trap is being handled. Instead a system level
timer is provided in hardware, signaling the CPU when the first timeout
occurs. Then the CPU finds out the thread to reactivated and restarts the
system timer with the next timeout as the timers value. Using this scheme
frees the CPU from querying the operating systems timer, improves accu-
racy and speeds up trap handling.

5.8 Additional Registers and Helper Addresses

The internal register bank houses the five control registers mentioned ear-
lier, the four mentioned already in Chapter 3 and the LO register added in
Chapter 4. It should be noted that these are not general purpose data reg-
isters used for storing of intermediate values during computation. Besides
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these it also contains some additional debug registers and helper addresses.
The full address space mapping is shown in Table 5.3. For instance when the
CPU needs to access the stack top, in the straightforward way the procedure
would be for the CPU to first read the ST register, then read the local mem-
ory for the data and finally update the ST register. Using the helper address
64 the CPU just reads that register to receive the data. During the read
operation the address of the stack top is given to the memory controller by
the register bank, which also simultaneously updates the ST register accord-
ingly. The sequence is the same for writing, only the direction of the data
is reversed. This way reduces the number of required communications from
three to just one per stack item. Also the amount of arithmetics performed
by the CPU is reduced, since the new ST register value does not need to
be calculated by the CPU. Additionally this improves the cache coherence
on the host CPU, since the CPU needs to operate on fewer variables. Both
push and pop operations go through the stack cache, ensuring that the cache
coherence is maintained and that the cache validity is maximized regardless
of the trapped instruction. The impact of the push and pop registers, as
shown in Figure 5.18, is about 25% in the integer arithmetics.

Figure 5.18: The effect of the push and pop registers on the integer arith-
metics.

A secondary address is given for the write direction. This is used in
case the CPU knows that the write operation is the last action required for
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handling the current trap. Writing to this address moves the data to the
top of the stack and updates the ST register just as in the normal version.
The difference is that after the data is moved to its correct location, the
execution on the co-processor is automatically resumed. This removes the
need for sending the execute command separately. The same method is
not implemented for reads, since the Java bytecode instruction set has no
suitable candidates for that kind of optimization. For instance the iastore
instruction, which stores an integer to an array, pops three values from the
stack. The first one is the value to be stored, then is the index to the array
and finally the third item is the array reference identifying the array in which
the data is to be stored. The execution cannot be resumed directly after
any of these reads, since the virtual machine must perform checks on the
array index and the reference. Only after they both are found to be valid,
can the execution be allowed to continue on the co-processor. If either one
of them is invalid, an exception is thrown and the program counter value of
the offending instruction is used to find a handler for the exception.

A similar helper address is provided for accessing the parameter data
from the instruction stream. Reading this address returns the parameter
data for the current instruction. Using the straightforward procedure, the
CPU would have to first read the code offset and the PC in order to cal-
culate the actual address of the current instruction, the read the data from
the memory and finally update the PC accordingly to reflect the fact that
the parameter data was read. Again, the helper address reduces the com-
munications to just one data item per parameter, as opposed to the four
communications required before the helper was introduced.

As mentioned in Chapter 3, while discussing the bytecode storage model,
the code segment also contains information other than the actual instruc-
tion stream. These items are the method id of the method in question and
the constant pool address of the class it belongs to. These are accessible
through the normal connection from the CPU to the local memory, but ac-
cessing them that way requires the CPU to first get the CO register and
then access the data. Using the two provided helpers the CPU can omit one
read cycle and also saves the arithmetics required to calculate the offset of
the data items in the local memory.

Two helper addresses are also provided for the method invocations that
cannot be cached inside the co-processor. As mentioned earlier, the method
invocation module is used to accelerate these by providing the values of the
CO and the LO registers for the new method. Here the later one of these two
registers also activates the execution on the co-processor, in similar fashion
as in the writes to the top of the stack. The method invocation cache also
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needs to be reset when certain events happen, as stated earlier in this Chap-
ter. To provide a channel for that information a control register is placed in
this address space.

The registers used for the time slicer are also in this address space. The
first one provides the software partition with possibility to control the length
of the current slice by setting the counter register to a suitable value. The
second one on the other hand allows setting the next slices length in ad-
vance. The latter is not reset when it is copied to the actual timer, so the
setting remains until it is changed by the software.

After all of these helper addresses were included to the control register
bank, the execution sequence was significantly simplified. Figure 5.19 shows
the original approach, which required the registers to be read and written
for every trap. The improved approach is shown in Figure 5.20. Besides the
number of communications, also the amount of arithmetics in the CPU is
reduced. The fact that the CPU does not have to calculate new values for
the registers additionally improves the cache performance of the host CPU.
This is due to the reduction in the amount of variables the CPU has to
operate on during a trap.

One control register is implemented for testing purposes. This register
has been used to turn modules and features on and off during the testing
phases of the system. The functionality of a module or a feature is easier
to verify when it can be switched off when needed. Also the performance
impact of some modification can be more accurately seen, when tests can
be run with and without it. For instance the performance impact of the
method invocation module was analyzed using this approach.

The debugging registers and counter are also located in the register ad-
dress space. These provide debugging and performance evaluation informa-
tion. The data obtained from these was used in debugging both the software
and the hardware during the design phase. They also provided information
on the bottlenecks of the system and helped in locating them. All of the
debug registers are reset by a reset signal to the co-processor, so they retain
their contents after execution. The debug registers can be removed from
the system with no effect, but they are kept in order to help debugging
the future versions of the REALJava virtual machine as well as new Java
applications. These registers provide data of the four previous instructions
executed in the co-processor, the amount of time the co-processors has been
executing code, the number of traps generated since the last reset, the max-
imum value of the stack pointer and the amount of space taken by the code
segments. Additionally one address is reserved for debugging internal sig-
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Figure 5.19: A MSC of the original execution sequence.

nals from the co-processor. In case of dubious behavior, the suspect module
would be connected to this register in order to see the internal behavior of
the module in question.

The last address is used to convey information about the size of the lo-
cal memory. This is required since the Spartan3 has less BRAMs available.
Since accessing the top of the stack from the CPU is handled by the regis-
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Address Name Access Function

0 PC R/W Program counter

1 ST R/W Pointer to the top of the stack

2 CO R/W Code offset

3 LV R/W Pointer to the local variable area

4 LO R/W Number of local variables and pa-
rameters

16 Slicer1 R/W The current value of the time slicer

17 Slicer2 R/W The resetting value for the slicer

64 − >ST R/W Forwarding to/from the top of the
stack

65 − >ST exec W Forwarding to the top of the stack,
with automatic execute

66 − >Param R Access to the parameter data asso-
ciated to the current instruction

68 New CO W Code offset for the new method

69 New LO W Number of local variables and pa-
rameters for the new method, acti-
vates the method invocation auto-
matically

70 MI R Retrieve the ID of the current
method

71 CP R Retrieve the constant pool address
of the current method

128 MC R/W Method cache control

129 Control R/W Control for optional features

249 I trace R Show the last four instructions

250 Live R Live timer, does not count the time
spend in traps

251 Traps R Amount of traps generated

252 Max ST R Maximum value of ST

253 Max codes R Maximum amount of code segments
in the local memory

254 Check R Temporary debug variable

255 Mem size R Memory size of the co-processor

Table 5.3: Contents of the register address space.
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Figure 5.20: A MSC of the improved execution sequence.

ter bank, the link to the local memory is used mainly for storing the Java
methods to be executed to the method area of the local memory and during
garbage collection to seek the references from the stack.
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5.9 Impact of the Techniques

This section shows the overall impact of the performance increasing tech-
niques applied to the REALJava virtual machine. Several figures are used
to show the performance gains attained during the research. The version
numbers and their relation to the individual techniques can be found in
Appendix C. Again, the figures are drawn on relative scales, to make them
more readable. Full numerical results of these, and all the other tests, are
provided in Appendix B.

First, the arithmetic computations are discussed. To show the improve-
ments in that field, the results from two tests are shown. The first one,
shown in Figure 5.21, shows how the integer additions have improved. Since
integer, byte and float arithmetics are all performed on the co-processors,
they follow roughly the same lines, as well as the other operations on the
mentioned types. The second one shows double precision floating point
arithmetics, which were left out of the co-processor, causing them to be
trapped to the CPU. In order to show the impact of the applied techniques
on arithmetics that require CPU intervention, Figure 5.22 shows perfor-
mance increases in the double precision floating point addition test. As a
reference, the aJile aJ100 5 scores translate to 20% in the integer additions
and 300% in the double precision floating point arithmetics. The results
show, that in the integer addition test the REALJava surpassed the perfor-
mance of the aJile between version 0.04 and 0.05. The large difference inthe
double arithmetics is due to the lack of floating point unit in the PowerPC
CPU and the fact that the REALJava does not perform double precision
floating point arithmetic on the hardware.

Second, the impact on the method invocation has already been shown in
Figure 5.13. Similar results can been seen in the Figure 5.23, which shows
the effect of the performance increasing techniques on the string compari-
son test. The shape of the curve follows rather closely the shape of before
mentioned figure, because the string comparison test uses methods from the
standard library. The required method Invocations have a strong impact on
the results of this test. The score of the aJile aJ100 in the string comparison
test is 69% of the REALJava version 2.09.

Third, the performance in real life applications is evaluated. The results
for the Sort and the RayTrace have already been shown in Figures 5.14 and
5.17, respectively. The Figure 5.24 shows the relative execution times of
the Mandel test. This application is heavily arithmetics oriented, so also

5The aJile aJ100 is the fastest of the full custom solutions used for performance eval-
uations, and it is described in more detail in the next chapter.
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Figure 5.21: Integer performance through the versions of the REALJava.

Figure 5.22: Double precision floating point performance through the ver-
sions of the REALJava.
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Figure 5.23: Performance of the string comparisons through the versions of
the REALJava.

Figure 5.24: Relative execution times in the Mandel test through the ver-
sions of the REALJava.
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Figure 5.25: Relative execution times in the Salesman test through the
versions of the REALJava.

another test is shown, exhibiting a different behavior through the versions.
This other test is the Salesman, whose relative execution times are shown
in Figure 5.25.

Overall, all of the figures show improvement throughout the whole ver-
sion history, with larger changes occurring at different times due to the
applications using different instruction mixes. From the figures it can be
estimated that the performance has been increased by a factor of 10, trans-
lating to a decrease in the execution times by the same factor.

5.10 Multicore Approach

Even though the multicore support of the REALJava virtual machine falls
outside the scope of this thesis, it is worth while to mention that the sys-
tem is currently capable of running multithreaded Java applications using
two parallel co-processor cores. The multicore system provides reasonable
performance improvement as it is, but only if the application has been pro-
grammed with multiple threads. The efficiency of the multicore architec-
ture can be increased by implementing some parts of the standard library
so that the library methods perform their function in multithreaded style.
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This would allow the second core to be used in the library routines even if
the original user application has only one thread. This and other techniques
relating to the multicore execution model, and also to the programming of
such a virtual machine, are left for future work.

The REALJava virtual machine would support a higher number of cores,
even though the current multicore version uses only two of them. The dual-
core approach is used because it physically fits in the currently used FPGA
chip without any modification required. The fact that the REALJava is able
to run two cores in parallel shows that the multicore capability, rudimentary
as it might be, is achieved. The scalability of the virtual machine is not very
good at the moment due to the lack of direct communication between the
cores. This would lead to the CPU being overwhelmed if the number of
co-processor cores would be high. A revised communication module with
better multicore support is left for future work.

5.11 Chapter Summary

Several techniques were used to increase the performance of the REALJava
virtual machine. The caches for method invocations, constant values and
the top four places of the stack were presented. Also the functionality of
the method invocation module was detailed. The time domain control fea-
tures of the co-processor were discussed, focusing on the thread time slicing
mechanism. An extended register map was given, highlighting the addi-
tional functionality. The helper addresses specified here greatly reduce the
number of communication cycles during the execution of a trapped instruc-
tion. Finally the multicore approach was briefly discussed.
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Chapter 6

Performance Evaluation

This chapter evaluates the performance of the REALJava virtual machine.
The reference systems are first described shortly, to provide context for the
results. Then the results from various benchmarks are shown and analyzed.
The benchmarks include some commonly used ones as well as few Java appli-
cations designed to see the real life performance. The real life tests attempt
to cover as wide a spectrum of applications as possible. This chapter only
shows the best performing reference systems for some of the benchmarks,
the full result tables are presented in the Appendix B. The amount of mem-
ory accesses during the execution of Java applications is also measured. The
performance of the REALJava is broken down to reflect the relative contri-
butions of the CPU, the communication bus and the co-processor. Finally
some preliminary results for the multicore version of the REALJava virtual
machine are presented.

6.1 Overview of the Reference Systems

The benchmark results are reported for a variety of reference systems. Some
of the systems are definitely low-end products, at least in terms of perfor-
mance, but others demonstrate the pinnacle of the current embedded Java
processors.

In the Sun eSPOT1 [90] the main processor is an Atmel AT91RM9200
system-on-chip (SOC) integrated circuit. This unit incorporates the ARM920T
ARM Thumb processor, based on the v4T ARM architecture ARM9TDMI.
There is no operating system used. According to Sun, the Sun SPOT “runs
a Java VM on the bare metal”.

1SPOT stands for Small Programmable Object Technology.
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JStik and JStamp are both high speed native-execution modules based
on the aJile 32-bit core. JStik has a 32-bit wide data path to external mem-
ory, so it can fetch opcodes and data in one cycle. On the other hand the
JStamp has an 8-bit data path. This makes JStik 4-5 times faster than JS-
tamp at the same clock rate. Both of these systems use aJile processors, the
JStamp uses the aJ80 and the JStik uses the aJ100. Both of the processors
execute Java bytecodes natively, but also support extended instructions. In
order to use the extended instruction set, a tool called JEMBuilder must
be used. This means that the extensions are not available on dynamically
loaded Java classes. More details on the aJ100 can be found in [21].

TStik is based on a much lower cost 8-bit 8051 “super core”, the Dal-
las/Maxim DS80C400. TStik executes an interpreted JVM, so it is signif-
icantly slower than native execution systems, but it also costs less. The
DSTINI is based on the DS80C390, which is an older sister model of the
DS80C400.

SNAP fits between TStik and JStik in terms of cost and performance.
It uses the Cjip [74] processor, which supports multiple instruction sets, al-
lowing Java, C, C++ and assembler to coexist. Internally the Cjip uses 72
bit wide microcode instructions to support the different instruction sets. At
its core, the Cjip is a 16-bit CISC architecture with on-chip 36KB ROM and
18KB RAM for fixed and loadable microcode. Another 1KB RAM is used
for eight independent register banks, a string buffer and two stack caches.

Nokia 6170 mobile phone was included as a reference system in order to
compare the performance of the FPGA implementation to the performance
of a highly optimized embedded software virtual machine. The 6170 uses
a translating (no JIT2) virtual machine for Java execution. The phone in
question was purchased roughly in the December of 2005, when it belonged
to the higher middle class of phones available. Unfortunately technical de-
tails of the phone, such as the processor type and speed, were not to be
found.

The last reference system is Kaffe [97] running on the same processor as
the software partition of the REALJava. Kaffe is a well known open source
JVM, and is has been used as a reference in several studies relating to the
development of JVMs. Since the Kaffe is running on the same hardware
(PowerPC 405 integrated to the Virtex4FX device) and uses the same ex-
ternal memories etc. as the REALJava, it provides a meaningful reference.

2This assumption is based on the fact that the empty measurement loops were not
optimized away. All JIT compilers tested did remove at least the empty loops.
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The performance of Kaffe and the software only version of the REALJava
virtual machine were also evaluated on an x86 based computer, and the re-
sults can be found in the Appendix D.

The REALJava virtual machine is benchmarked with the system run-
ning Linux as operating system, actually the setup is exactly the same as for
the Kaffe benchmarks. The older results are collected from Xilinx ML310
board housing a Virtex2Pro FPGA as the main processing element while the
newer results are from a ML410 with a Virtex4FX FPGA. The transition
from ML310 to ML410 was done between versions 1.01 and 2.00. The board
is actually the only difference between the two versions. The cores and the
software are generated from the same source codes. The differences in the
results can be explained by the fact that the ML310 used DDR type mem-
ory while the ML410 moved to a newer generation DDR2 memory. This
boosted the performance in all areas that required high bandwidth to the
memory. Also the network controller is different on the ML410. In the older
system the network controller is a separate chip on the mainboard, and it
is accessed via the OPB bus. The Virtex4 device supports built-in tri-mode
network controller, which is used in the ML410 board. This built-in con-
troller connects to the CPU directly via the PLB bus.

Also software-only versions of the REALJava virtual machine were tested.
The versions with no co-processor are marked “REALJava (SW)” while the
versions with a co-processor are named “REALJava (HW)”.

Finally a few of the benchmarks were converted to multithreaded form,
in order to test the preliminary multicore version of the REALJava virtual
machine. The system was composed of two unmodified co-processor cores
and rudimentary multicore support on the software partition. Even though
the multicore version of the virtual machine falls outside the scope of this
thesis, it is worthwhile to show that the whole virtual machine has been de-
signed to support the multicore approach. This applies to both the software
and the hardware.

6.2 Descriptions of the Benchmarks

The first benchmark collection is taken from “Practical Embedded Java”
[112], under the benchmarking section 3. This benchmark set is designed
especially for embedded environments. The results for the REALJava, the
Kaffe and the Nokia 6170 are actual measurements, and the results for the

3The version of the benchmark used is 1.1a.
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other systems have been taken from the web site. The benchmark calculates
the scores for the various sub-tests by first measuring the time to perform
an empty loop. The number of rounds in the loop is the same as for the test
run. Then the instructions to be tested are inserted to the loop, and the
time is measured again. Finally the first loops execution time is subtracted
from the test loops time. The purpose of this is to eliminate the effect of
the loop from the results. The tested instructions in the testing loops are
accompanied by data transfers. According to the authors of the benchmark
application, this is done in order to provide more realistic results. This
claim is validated by the fact that also in real applications the operands
need to be loaded to the stack before the operation and the results are typ-
ically saved to the local variables. For the “integer add” test the sequence is:

ldc <Int 0x44332211>

iload 8

iadd

istore 10

This sequence first loads a constant value, then the contents of the local
variable. These values are then added and the result is saved to another lo-
cal variable. The benchmark measures the time taken to execute these four
instructions 200000 times. This is used to count the number of sequences per
second, which is the score reported by the benchmark. All of the sub-tests
operate in similar fashion. The “Total Loop Executions” (T.L.E.) score is
a composite score, which is calculated from the total execution time of the
benchmark application. It does not reflect a number of sequences per sec-
ond, like the individual tests do. Rather it shows a weighted average of all
of the sequences tested. The weight factors of the individual tests have been
chosen by the authors of the benchmark.

The next set of benchmarks is a collection of tests that have been writ-
ten to check the correct functionality of the prototype as well as to evaluate
the performance. The benchmark programs do not contain any special op-
timizations for our hardware. Short descriptions of the benchmarks follow.
Mandel counts the Mandelbrot set, using fixed point arithmetics, Fibonacci
counts a sequence of the Fibonacci numbers, Life plays Game of Life for
a while, Text just exercises the text output functions, Salesman solves the
traveling salesman problem using a naive try all combinations method, Sort
tests array performance by creating arrays of random numbers and then
sorting them, Neural Net trains a backpropagational neural network with
bitmaps of letters and then recognizes them, finally RayTrace performs ray-
tracing to create a 3D image of a ball on top of a plane. Since the RayTrace
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writes the resulting image to the hard drive, which very slow on the ML310
and ML410, another version of the test was designed. It is called Ray-
Trace2, and it is otherwise the same, but it does not write the image to the
hard drive. As the benchmarks emphasize different aspects of the system,
together they should give a rather good estimation of different practical ap-
plications that might be found on an embedded Java system. The execution
times reported for these benchmarks include the startup and shutdown time
for the virtual machines. This is because the times are measured using the
time Unix command. No web applications are tested, because the majority
of the Java web benchmarks available are targeted for servers rather than
embedded systems. Also the rather poor network performance of the ML310
and ML410 would cause any web benchmarks to measure mainly the per-
formance of the network connection. The computation between the data
transfers would behave similarly to the applications used here.

Some of the benchmarks in the second set were also converted to be
J2ME compliant, and they can be identified by the “ ME” appended to
the name. Specifically the CLDC 1.1 configuration and MIDP 2.0 profile
were used, because that combination is supported by the Nokia 6170 mo-
bile phone. The time measurement in these benchmarks had to be moved
inside the benchmark programs because the phone’s operating system does
not provide means of measuring the execution time of an application. The
impact of the virtual machine startup time is thus not measured in these
benchmarks.

The amount of local memory required for each of the tests is listed in
Table 6.1. The table shows the maximum sizes of both the Method area
and the stack, as well as the total amount of local memory required and
the total size of the class files. The table also shows the memory sizes for
the CaffeineMark, which will be discussed later. Besides the actual operand
stack, the stack sizes include the local variables and the stack frame data.
This is due to the stack frame structure. Similarly the method space sizes
include the additional data placed before the actual methods. The total
amount of memory for each application, calculated as the sum of the two
parts, is the minimum size of the local memory that does not require swap-
ping of the methods or the stack. As mentioned in Chapter 5, the size of the
local memory in the smallest prototype, based on the XESS board, is 49152
bytes. That size is clearly sufficient for all of the test applications, and the
larger systems have even more headroom. The small memory requirements
for the applications was mentioned as one of the attractive points for using
Java in embedded systems, and the statistics support that. Especially the
class files are very small, thus being very well suited for deployment over
networks and also for permanent storage on embedded systems with limited
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storage capacity. The deployable size can be further decreased by packaging
the calls files into JAR files, as mentioned in Section 2.5.5.

Test Method space Stack space Total Class files

BenchMark 20572 4140 26116 6365

Mandel 18376 912 19288 1109

Fibonacci 18312 904 19216 1021

Life 18536 904 19440 1256

Text 17988 880 18868 504

Salesman 18492 892 19384 1630

Sort 18648 1968 20616 637

Neural Net 20004 1036 21040 5517

RayTrace 9708 1032 10740 5432

RayTrace2 19036 952 19988 3037

CaffeineMark 21976 4140 26116 14031

Table 6.1: Size statistics of the tests. Besides the requirements for the local
memory, also the total sizes of the deployable class files are presented. The
sizes are measured in bytes. The test “BenchMark” refers to the benchmark
collection from “Practical Embedded Java”.

The method space statistics show a very small value for the RayTrace
test. This was analyzed, to verify the correctness of the value. The test in
question is the only one that does not produce any textual output, so the
text output was examined by two Java applications. The first one does ab-
solutely nothing 4, and the second one writes one word to the terminal. The
method space requirements for the two applications were 2164 bytes and
17924 bytes, respectively. The difference is caused by initializing the text
handling system, including character converters, string manipulation tools
and so on. Clearly a large share of the method space is used by the text
output methods. Since these come from the standard library, they are not
modified in this thesis, but as a future improvement they should be looked at.

6.3 Results

Table 6.2 show the results of the benchmark set from “Practical Embed-
ded Java” [112]. Only the best performing hardware virtual machines are

4Actually the only method in that application does contain one return instruction,
used to return from the user code.
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included. The scores for the software virtual machines used for the perfor-
mance evaluations are shown in Table 6.3, the rest can be found at [112], at
the REALJava results site [111] or in the Appendix B. The REALJava site
offers also other benchmarks, such as those presented in Table 6.6, and also
the measurement data for the different versions of the REALJava core 5.
The results show that REALJava (HW), even though running at the lowest
clock speed, outperforms the fastest competitors in all of the areas where
the hardware acceleration has been applied. The benchmarks that indicate
lower performance (array accesses and double precision arithmetics) are all
handled by the software partition. The scores are surprisingly good, consid-
ering that the aJile is designed using ASIC technology and the REALJava
virtual machine is using an FPGA based co-processor. Especially the inte-
ger arithmetics are significantly faster in the REALJava. This suggests that
when the complex instructions are left out of the hardware, the remain-
ing instructions can be optimized further. Also the Total Loop Executions
scores show that the overall performance of the REALJava virtual machine
is more than twice as fast as the aJile.

Two software virtual machines are also used as reference systems. Both
of these run on the PowerPC of the larger Xilinx boards. The results are
shown in Table 6.3. The results show that the hardware accelerated REAL-
Java is clearly the fastest in all of the sub-tests. The T.L.E. scores indicate
that the Kaffe is roughly 20 times slower and that the REALJava running
in software only is about four times slower. The most surprising observation
is that the Kaffe is almost five times slower than the software version of the
REALJava. This would suggest that the software architecture of the Kaffe
is somehow unsuitable for the PowerPC 405. Both of these software virtual
machines have been compiled using the same tools and the same options.
The performance of the software only version of the REALJava virtual ma-
chine is actually higher that the Sun eSPOT’s by a factor of two. Even the
normalized T.L.E. / MHz score is higher.

The T.L.E. scores for all of the applicable reference systems are tabu-
lated in Table 6.4. The results are normalized by the clock frequency of the
execution engine in each system. Two of the systems clearly stand out in
the T.L.E. / MHz column, namely the aJile and the REALJava (HW). For
clarity, the scores are also shown in Figure 6.1.

Since the double precision floating point arithmetics are not implemented
in hardware in the REALJava virtual machine, a modified version of the

5The site defaults to the newest version available, the version used to report the results
in this thesis is 2.09.
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Processor aJile aJ100 Sun eSPOT REALJava
(HW)

Engine speed (MHz) 103 180 100

byte array access 879677 479239 791975

byte array copy 32768000 6241523 52428800

int array access 1008246 432580 789590

int array copy 7281777 1927529 14563555

byte add 2702702 1438848 10000000

byte sub 2777777 1449275 9090909

byte mul 1369863 1428571 9090909

byte div 1360544 1190476 1960784

int add 2898550 1724137 14285714

int sub 2898550 1724137 12500000

int mul 1587301 1652892 14285714

int div 1351351 1369863 2083333

float add 2985074 250000 4545454

float sub 2666666 246002 4545454

float mul 1408450 199401 6666666

float div 1379310 100452 2702702

double add 1754385 226500 578034

double sub 1612903 215517 540540

double mul 581395 193236 460829

double div 574712 70348 163800

string concat 3711 533 13726

string compare 270270 67340 392156

method calls 847457 706713 2857142

object creations 36101 86206 645161

Total Loop Executions 146536 34553 302941

T.L.E./MHz 1423 192 3029

Table 6.2: Execution rates for various loops (cycles per second). The best
scores are highlighted.
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Processor Kaffe REALJava REALJava
on PPC (SW) (HW)

Engine speed (MHz) 300 300 100

byte array access 98773 405168 791975

byte array copy 26214400 18724571 52428800

int array access 88622 468114 789590

int array copy 9362285 10082461 14563555

byte add 224215 1098901 10000000

byte sub 225733 1104972 9090909

byte mul 174064 1005025 9090909

byte div 219298 995024 1960784

int add 355239 1388888 14285714

int sub 326797 1388888 12500000

int mul 371057 1351351 14285714

int div 351493 1183431 2083333

float add 303030 675675 4545454

float sub 296735 655737 4545454

float mul 312012 696864 6666666

float div 251889 500000 2702702

double add 270635 277777 578034

double sub 257731 274348 540540

double mul 183654 252206 460829

double div 124610 126182 163800

string concat 265 1320 13726

string compare 15372 142857 392156

method calls 59488 425531 2857142

object creations 18761 86206 645161

Total Loop Executions 15221 74057 302941

T.L.E./MHz 51 247 3029

Table 6.3: Execution rates for various loops (cycles per second). The best
scores are highlighted.
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Engine Speed T.L.E. T.L.E. / MHz

DS80C390 36.864 555 15

DS80C4000 29.491 492 17

Imsys Cjip 80 11557 144

aJile aJ80 73 41106 563

aJile aJ100 103 146536 1423

Sun eSPOT 180 34553 192

Kaffe on PPC 300 15221 51

REALJava (SW) 300 74057 247

REALJava (HW) 100 302941 3029

Table 6.4: Total loop executions for various systems.

Figure 6.1: Total loop executions for all available systems.

benchmark was created. This modified version does not include the double
type tests. Since the source code for the benchmark is available at [112],
it was simple to just leave the double arithmetics out from the T.L.E. cal-
culations. Knowing the way the benchmark calculates the T.L.E. score,
an estimator was programmed to find out the T.L.E. scores for the other
systems, assuming that the double precision floating point arithmetics are
ignored. The accuracy of the estimator is reasonable, as demonstrated by
the estimates for the Kaffe and both of the REALJava versions. The estima-
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tor predicted T.L.E. scores 14460, 77700 and 464886 for Kaffe, REALJava
(SW) and REALJava (HW), while the measured scores were 14805, 78074
and 465759 respectively. The error of the estimate, based on the data points
available, is within 3 %. The estimates and measurement results are pre-
sented in Table 6.5. The results show that, if the double arithmetics are
left out, the REALJava (HW) is more than three times as fast as the best
reference system.

Engine Speed T.L.E. T.L.E. / MHz

DS80C390 36.864 731 20

DS80C4000 29.491 668 23

Imsys Cjip 80 11418 143

aJile aJ80 73 39832 546

aJile aJ100 103 147989 1437

Sun eSPOT 180 34727 193

Kaffe on PPC 300 14805 49

REALJava (SW) 300 78074 260

REALJava (HW) 100 465759 4657

Table 6.5: Total loop executions for various systems when double arithmetics
has been ignored. The results for Kaffe and both versions of REALJava are
measurements, the others are estimates.

The next set of benchmarks is executed only on the Kaffe and on both
of the versions of the REALJava. Table 6.6 shows the execution times for
the benchmarks. The times are measured using the time Unix command.
The results show that the REALJava (HW) is between 9 and 25 times faster
than the Kaffe. This supports nicely the results of the previous benchmark.
The hardware accelerated version of the REALJava is between 2 and 7 times
faster than the software version, also supporting the results from the previ-
ous benchmark.

In Comparison to a Mobile Phone

The performance of the REALJava virtual machine was also compared to
the performance of a mobile phone. The phone in question is Nokia 6170, a
roughly two and a half years old phone, which belonged to the higher middle
class of that time. The results for the first benchmark set are shown in the
first section of Table 6.7. Note that the scores for the object creation test
and the T.L.E. are not reported. This is because the Java virtual machine
of the phone did not allow creating new instances of the benchmark object.
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Processor REALJava REALJava Kaffe
(HW) (SW) on PPC

Mandel 5325 36784 134878

Fibonacci 433 1127 4545

Life 571 1601 7804

Text 518 1429 7489

Salesman 12625 29437 115769

Sort 4396 13961 106285

Neural Net 64794 127553 590552

RayTrace 12168 58507 229174

RayTrace2 8349 29862 177037

Table 6.6: Execution times for various benchmarks (times are in millisec-
onds). The best scores are highlighted.

This violated the security rules of the virtual machine, stating that no new
object belonging to the midlet class are allowed. The T.L.E. score thus
becomes incompatible with the other systems. The REALJava again dom-
inates in the sub-tests that have been accelerated in the co-processor, and
falls behind the phone in the array accesses and in the double arithmetics.
A surprising results can be seen in the string manipulation tests. While the
REALJava (HW) was 3.70 and 1.45 times as fast as the aJile in the concate-
nations and the compares respectively, the mobile phone outperforms the
REALJava by 13 and 31 percent in the same sub-tests. Even though the
difference is relatively small, it suggests that the string handling routines in
the phones classpath are very highly optimized. The REALJava virtual ma-
chine uses the GNU Classpath without any modifications or optimizations.

Table 6.7 also shows the execution times for some of the benchmarks
from the second set. These are not on the same scale as the previously
presented results, since the benchmarks had to be slightly modified to be
suitable for execution on the phone. The Sort test was performed ten times
inside the time measurement loop, since the original version was too fast.
This caused the timer on the phone to report values with about 10 % spread.
The spread was reduced to less than 1 % after the loop was run ten times.
The results show clear performance lead for the REALJava in all of the tests
except the Salesman. This is due to the fact that the Salesman contains
relatively little arithmetics mixed with a lot of array accesses. As shown in
the first section of Table 6.7, the Nokia is faster in array accesses. The Sales-
man runs a naive algorithm to find the solution to the traveling salesman’s
problem. It is implemented by storing the distances between the cities in a
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REALJava Nokia 6170

byte array access 791975 962879

byte array copy 52428800 22795130

int array access 789590 916587

int array copy 14563555 6096372

byte add 10000000 2724795

byte sub 9090909 2840909

byte mul 9090909 2695417

byte div 1960784 1694915

int add 14285714 3361344

int sub 12500000 3316749

int mul 14285714 3210272

int div 2083333 1917545

float add 4545454 1733102

float sub 4545454 1572327

float mul 6666666 1633986

float div 2702702 973709

double add 578034 1207729

double sub 540540 1240694

double mul 460829 788643

double div 163800 310173

string concat 13726 15467

string compare 392156 512820

method calls 2857142 1069518

Mandel ME 4832 14098

Salesman ME 11597 10546

Sort ME 40342 55777

RayTrace ME 7891 9036

Table 6.7: Results of the benchmarks modified for mobile phone. The top
section gives the scores of the first benchmark set while the lower section re-
ports the execution times of the second set. The best scores are highlighted.
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matrix. The arithmetics required are simply adding the distances together
and comparing the result to the best solution found so far.

CaffeineMark

Several websites and research papers dedicated to Java execution have used
the CaffeineMark [109] as a performance measurement. The CaffeineMark
is also available as an embedded version, which omits the graphical tests
from the desktop version. The test scores are calibrated so that a score of
100 would equal the performance of a desktop computer with 133 MHz Intel
Pentium class processor. The individual tests cover a broad spectrum of ap-
plications. The descriptions of the tests follow. The Sieve is the classic sieve
of Eratosthenes, and it finds prime numbers. The Loop test uses sorting and
sequence generation to measure the execution rate of loops. The Logic tests
the speed with which the virtual machine executes decision-making instruc-
tions. The String test operates on string data, performing concatenations
and seeks on the strings. The Float simulates a 3D rotation of objects
around a point. Finally, the Method test executes recursive function calls to
see how well the virtual machine handles method calls. The Overall score is
a composite of the individual tests, calculated as the geometric mean of the
individual scores.

Some of the results gathered from various sources can be seen in Table
6.8. The results for IPAQ are from [12], which does not specify the type of
the device, but states that it is a handheld device running Linux as operating
system. The virtual machine running on that system is the Sun KVM. The
Wikipedia lists various models of the IPAQ [113], and the clock frequencies
reported there range from 200 MHz to 624 MHz. The scores for the SHAP
[64] are also presented. The SHAP is a standalone Java processor focusing
on the security and real-time aspects of the virtual machine. The results
indicate that the REALJava is twice as fast as the second best reference
system, when considering the overall score without the floating point arith-
metic tests. The results for the floating point tests are not available for all
of the systems. For instance the SHAP does not support any floating point
arithmetics. Even though slower in the overall score, the SHAP performs
very well in the string test, and actually also the IPAQ does relative well
in that test, when compared to the overall score. Since the REALJava and
the Kaffe both use the GNU classpath and the IPAQ, as a commercial prod-
uct, probably uses an optimized classpath, it seems reasonable to assume
that the SHAP also has some kind of optimized classpath implementation.
The scores of the string test here and the string tests run on the mobile
phone suggest that the GNU classpath is somehow inefficient in the string
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operations. Finding the cause for this is left for future work, since this is
not really a problem in the REALJava virtual machine, but rather in the
supporting library.

REALJava SHAP IPAQ Kaffe

Sieve 140 15 40 9

Loop 121 114 35 6

Logic 466 321 39 21

String 95 200 129 14

Float 61 N/A N/A 8

Method 285 64 35 9

Overall 153 N/A N/A 10

(no float) 184 93 55 11

Table 6.8: Results of the CaffeineMark test suite.

6.4 Memory Accesses

In order to evaluate the impact of REALJava virtual machine on the amount
of physical memory accesses, an analyzer was attached to the memory bus of
the CPU. The analyzer simply counts the number of accesses to the address
space of the memory controller. Both the reads and the writes are counted
in the same counter. The measurement results are presented in Table 6.9.

As predicted earlier, the hardware acceleration significantly reduced the
number of accesses to the physical memory. The results are well in line with
the study [25] of Hsieh et al., who analyzed the cache and branch prediction
behavior of Java execution. Seshadri et al. [47] also studied the same as-
pects with different workloads, and they also concluded that Java execution
is not favorable to caches and branch predictors.

Using the power consumption profiles from [33, 34], which state that
around 70% of the energy consumed during the execution of a Java appli-
cation is used on memory accesses, the total energy consumption can be
divided between the CPU and memory. It can be estimated that the por-
tion of the power consumption caused by the memory accesses decreases
proportionally to the amount of the memory accesses. Using ECPU for the
energy used in the CPU, EMEM for the memory and EJPU for the co-
processor, and estimating 6 that the co-processor uses as much energy per

6This estimate is very conservative, since the PowerPC is four times larger than the
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REALJava REALJava Kaffe
(HW) (SW)

Start 3337362 11475149 (3.44) 26141221 (7.83)

Fibonacci 5828262 13599265 (2.33) 51458556 (8.83)

Life 6492661 15399044 (2.37) 88610969 (13.65)

Mandel 6640936 16718282 (2.52) 105763181 (15.93)

Salesman 7048099 29258496 (4.15) 660082767 (93.65)

Sort 6662480 14561877 (2.19) 791217728 (118.76)

Neural 18438158 85038430 (4.61) 3134828762 (170.02)

Total 60082862 199446750 (3.32) 4898708471 (81.53)

Average (3.09) (61.24)

Table 6.9: The number of accesses to the physical memory during the exe-
cution of the benchmarks. The numbers in the parenthesis show the ratio
of the accesses in comparison to the hardware accelerated REALJava.

clock cycle as the PowerPC CPU, the following estimates can be formulated:

ESW = ECPU + EMEM

EMEM = 0.7 ∗ ESW

ECPU = 0.3 ∗ ESW

EHW = ECPU + EJPU + EMEMHW

EJPU = 1/3 ∗ ECPU

Assuming that the amount of energy consumed by the processing ele-
ments is distributed evenly over time, and using Creduct for the factor of
reduction in the memory accesses, TEXEC for the total execution time and
PCPU for the power consumption, the following expressions can be obtained:

ECPU = TEXEC ∗ PCPU

0.3 ∗ ESW = TEXEC ∗ PCPU

PCPU = 0.3 ∗ ESW /TEXEC

REALJava co-processor core.
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EHW = ECPU + 1/3 ∗ ECPU + 1/Creduct ∗ EMEM

EHW = 4/3 ∗ TEXEC ∗ PCPU + 1/Creduct ∗ 0.7 ∗ ESW

EHW = (0.4 ∗ THW /TSW + 0.7/Creduct) ∗ ESW

The total execution times for all the test in Table 6.9 are 88358 ms,
210463 ms and 959833 ms for REALJava (HW), REALJava (SW) and Kaffe,
respectively. Thus, substituting the appropriate values, the relative energy
consumption values can be estimated:

EREALJava(HW ) = 0.0454 ∗ EKaffe

and

EREALJava(HW ) = 0.3788 ∗ EREALJava(SW )

Using the values obtained above, the energy consumptions and energy-
delay products (EDP) for the systems are presented in Table 6.10. The EDP
values show that the hardware accelerated version of the REALJava virtual
machine is by far the most efficient of the systems.

Time Energy EDP

REALJava (HW) 88358 1.00 1.00

REALJava (SW) 210463 2.64 6.29

Kaffe 959833 22.03 239.31

Table 6.10: Execution times, relative energy consumption estimates and
energy-delay products (EDP).

6.5 Breakdown of the Performance Factors

In order to estimate the performance of the REALJava virtual machine on
other host systems with different communication channels and speeds for
the CPU and the co-processor the system is evaluated by breaking down
of the performance figures to evaluate the effect of each parameter. The
T.L.E. score of the first benchmark set is used as the performance metric.
Since the double precision floating point arithmetics are supposedly rare,
and thus not implemented in the co-processor, the T.L.E. score is also eval-
uated without the doubles. The equations obtained here are of course only
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rough estimates of the resulting performance, but they can be used as es-
timation tools, when selecting the individual components of a new system.
For more accurate predictions the Java applications intended to be used on
the new platform should be known in advance so that the profiling could be
performed with them. The actual profiling would then proceed as here, but
with the correct applications.

First the impact of the communication channel is estimated. The esti-
mation is obtained by artificially slowing down the communication in the
REALJava. This is done by inserting dummy communications to the com-
munication routines in the software partition. In the Table 6.11 the exe-
cution times and the resulting T.L.E. scores are presented. The slowdown
factor indicates the resulting communication speed so that factor of one
represents the original speed, two is twice as slow (one dummy and the ac-
tual communication), three is three times as slow (two dummies and the
actual communication) and so on up to ten (nine dummies and the actual
communication). The slowdown factor of zero is an estimate based on the
linear regression equation, and it shows the performance level that would
be attained with instantaneous communication. It can be noticed, that the
results for slowdown factor of one differ marginally from the ones presented
earlier in Table 6.4 and in Table 6.5. This is due to the insertion of the code
that facilitates slowing down the communication. The data is also shown in
Figure 6.2, along with the linear regression curves and the derived equations.

Slowdown Time Time T.L.E. T.L.E.
Factor no doubles no doubles

0 4757 2673 383946 608467

1 6076 3521 300597 461923

2 7290 4235 250539 384045

3 8507 5096 214697 319158

4 9835 5922 185707 274642

5 10798 6686 169145 243259

6 12112 7554 150795 215307

7 13224 8155 138114 199439

8 14646 9103 124705 178669

9 15969 9957 114373 163345

10 17404 10756 104943 151211

Table 6.11: The execution times (in milliseconds) and resulting T.L.E. scores
with slowed down communication. The values in italics are estimates based
on linear regression of the execution times.
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Figure 6.2: The execution times of the first benchmark set with slowed
down communication. Regression curves are shown with the corresponding
equations.

Based on the regression equations the T.L.E. scores can be expressed
as a function of the relative communication speed, expressed as RComm =
old transfer rate
new transfer rate

. Using T.L.E. for the T.L.E. score and T.L.E.ND for the
T.L.E. score without double precision floating point arithmetics, the equa-
tions are:

T.L.E. = 1826432
1.2417∗RComm+4.7567

T.L.E.ND = 1626432
0.80467∗RComm+2.6728

The equations were checked by calculating the T.L.E. scores for each of
the slowdown factors, and the results were within ±1 of the measured value.
This shows that the equations are quite accurate. The relative communica-
tion speed needs to be transformed to a more understandable form in order
to make the equations usable in the evaluation of a possible new system.
The communication speed was measured to be 49875311 bytes/second for
the writes and 43859649 bytes/second for the read. Since the PLB bus oper-
ates at 100 MHz and the data is transmitted in 32-bit words, this translates
to 8 clock cycles for the writes and 9 clock cycles for the reads. The differ-
ence is due to the fact that the co-processor needs one cycle to retrieve the
data requested by the CPU, while the writes are pipelined, effectively hiding
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the one cycle needed to save the data presented by the CPU. It is also worth
noting, that the communication speeds were measured as single word trans-
actions. Since the communication profile of the REALJava mainly consists
of very small transmissions, fast burst mode would not be effective. Also
packet based communication channels may have good transmission speeds
when single communication units are large, but still the performance of the
REALJava would not reflect the high speed since the packets would not be
filled with useful data.

Since the equations obtained above can be used to calculate the time
used for the communication and the co-processor contains a counter mea-
suring the time spend on the hardware accelerator, the time spend on the
CPU can also be calculated. The calculation is based on the assumption
that the total time consumed can be expressed in three parts, namely the
CPU, the communication and the co-processor. These are denoted by tCPU ,
tCOMM and tJPU , respectively. The T.L.E. scores can then be calculated
from:

T.L.E. = 1826432
tCPU +tCOMM+tJPU

T.L.E.ND = 1626432
tCPU +tCOMM+tJPU

The regression equations reveal the time spend on the CPU and JPU to
be 4756.7 and 2672.8 milliseconds with and without the doubles, and the
live time counter shows that the JPU has been active for 2051.0 and 1725.5
milliseconds. Using these yields the CPU time to be 2705.7 and 947.3, again
in the same order. Using RCPU = old clock frequency

new clock frequency
for the relative speed of

the CPU and RJPU = old clock frequency
new clock frequency

for the relative speed of the JPU,
the following equations can be obtained:

T.L.E. = 1826432
2.7057∗RCPU +1.2417∗RComm+2.0510∗RJPU

T.L.E.ND = 1626432
0.9473∗RCPU +0.80467∗RComm+1.7255∗RJPU

Normalizing the coefficients of the denominator to the smallest, namely
the communication, results in the values shown in Table 6.12. From the val-
ues in the table it can be seen, that the relative effect of the CPU is higher
in the T.L.E. score calculated with the double precision floating point op-
erations. This is to be expected, since they are handled by the software
partition. The fact that the doubles are handled on the software also causes
the communication channel to have a slightly more higher factor, thus re-
ducing the JPU’s share.
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Coefficient Coefficient
no doubles

CPU 2.179 1.1772

Communication 1 1

JPU 1.652 2.144

Table 6.12: Coefficients of the performance. The higher the coefficient, the
more significant effect the unit has on the overall performance.

The equations were used to estimate how much the CPU of the ML410
could be slowed down to get the same T.L.E. scores as the best performing
reference system, the aJile aJ100. In case of the normal T.L.E. score, the
CPU could be slowed down by a factor of 3.4, which would result in a clock
frequency of 88 MHz. Without the doubles, the factor comes to 8.9, equaling
a clock frequency of 34 MHz. This kind of system would, however, be unre-
alistic, as the CPU typically runs at the same or higher frequency than the
bus. Scaling all components, that is the CPU, the bus and the co-processor,
to the same frequency, the T.L.E. score of the aJ100 is attained at about
92 MHz with doubles and at about 49 MHz without. Table 6.13 shows the
system clock frequencies required to match the performance of the reference
systems.

Reference T.L.E. Clock T.L.E. Clock
MHz MHz no doubles MHz

DS80C390 36.864 555 0.35 731 0.24

DS80C4000 29.491 492 0.31 668 0.22

Imsys Cjip 80 11557 7.22 11418 3.77

aJile aJ80 73 41106 25.7 39832 13.2

aJile aJ100 103 146536 91.5 147989 48.9

Sun eSPOT 180 34553 21.6 34727 11.5

Kaffe 300 15221 9.51 14805 4.89

SW 2.00 300 74057 46.3 78074 25.8

Table 6.13: Clock frequencies that give the REALJava the same performance
as the reference systems have. The CPU, the bus and the co-processor are
all scaled to the same clock frequency.

The equations do not address the effects of various CPU architectures,
pipeline lengths, instruction sets or memory subsystems for the CPU. All of
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these are considered to be lumped into the relative CPU speed. The relative
speed of the JPU is also considered to affect the speed of the local memory
and all other subsystems in the co-processor. The speed of the co-processor
should be the same, if implemented in a different FPGA, or even in ASIC
technology, as long as the clock frequency remains the same. When the
clock frequency is scaled, the performance of the co-processor should scale
directly in proportion, if the clock frequency scaling is applied to all of the
components and subsystems of the co-processor.

Additionally the time required for transferring the execution from the
co-processor to the CPU and back was measured. This was done using a spe-
cially generated Java application which had 20000 non-existent instructions
in a row, enclosed in a loop. A non-existent instruction was chosen because
the software partition could then be configured to return control directly to
the co-processor, without performing any additional processing. Executing
the sequence produced altogether 10000000 trapped instructions. The time
required for the sequence was measured, and it was 1713141 µs. Assuming
that 13141 µs of the total time was the overhead caused by the loop and
the time measurement system, the time translates into 17 clock cycles of
100 MHz per trapped instruction. The time required for control transfer
in one direction could not be measured, since the time measurement has to
be located in either the software partition or in the co-processor. Trying
to communicate the reception of the control from one domain to another
would cause too much overhead. Measuring the time for the entire cycle,
moving control in one direction and back again, however can be done in
either of the domains, since they are informed of when they have the control
over the execution. As a reference, in [62], the time required for the control
transfer to the software and back was also measured from version 0.05 of
the REALJava. The time was then 1.781 µs per trap, over ten times as long
as the time measured here. Most of the improvement comes from the use of
the helper addresses mentioned in Section 5.8.

6.6 Preliminary Results for the Multicore REAL-

Java

A simple multicore version of the REALJava virtual machine was designed
in order to prove that the system is scalable. This version contains only
rudimentary support for multiple co-processor cores in the software, and
the co-processor core is exactly the same as in the unicore virtual machine.
The results are thus only preliminary and several performance enhancing
techniques will be developed in future research.
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The benchmarks used in this section are slightly modified versions of
the second set of benchmarks. Only the longer benchmarks were modified
since the short ones do not contain enough processing for the multicore ap-
proach to show significant benefits. This is because the virtual machine
startup sequence is executed as a single thread and only the user applica-
tion is multithreaded. The startup time dominates in the shortest test, thus
masking the effect of the multicore setup. The modifications are quite sim-
ple, just splitting the processing into two or more threads. For instance, in
the Mandel benchmark the processing is divided by assigning even pixels in
the image to one thread and odd pixels to another one. A third thread is
used for control and output of the resulting image. Similar techniques were
used for all the benchmarks presented here. Table 6.14 shows the execution
times and the efficiency of the dualcore version in comparison to the unicore
version.

REALJava REALJava Efficiency
(dualcore) (unicore)

Mandel 2690 5099 1.90

Salesman 6825 8878 1.30

Neural 171112 246990 1.44

RayTrace 5421 8228 1.52

Average 1.54

Table 6.14: Execution times (in milliseconds) for various benchmarks using
multicore virtual machine.

The reported efficiency of the multicore REALJava virtual machine could
also be increased by designing the benchmarks from the scratch to support
multithreading. The current benchmarks are not well suited for the multi-
threaded execution model, especially if the number of threads is large. In
the future work also new programming models suitable for multicore Java
virtual machines will be developed.

6.7 Chapter Summary

The performance of the REALJava virtual machine was shown to be superior
to all of the reference systems in most of the benchmarks. The results are
summarized in Table 6.15, which shows the best reference system for each
individual test, along with the scores of the test and the relative performance
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of the REALJava virtual machine in that test. In the table SW stands for
the software only version of the REALJava, followed by the version number.
This shorthand notation was adopted in order to fit the table within the
page borders. In the few benchmarks that the REALJava did not dominate,
the difference was very small. Especially the Kaffe, a software only solu-
tion for the PowerPC, was clearly outperformed, even by the software only
version of the REALJava virtual machine. The results support the initial
assumptions of increased computational performance with reduced power
consumption. The accesses to the physical memory were measured from
all virtual machines running on the ML410 board. These results show a
significant decrease when the co-processor is used. The preliminary results
for the multicore version of the REALJava show that the secondary goal of
avoiding decisions that would lead to problems in multicore environments
was also attained.
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Best Reference REALJava Relative
Reference Score 2.09 (HW) Performance

byte array access Nokia 962879 791975 82.25%

byte array copy aJile aJ100 32768000 52428800 160.00%

int array access aJile aJ100 1008246 789590 78.31%

int array copy Kaffe 9362285 14563555 155.56%

byte add Nokia 2724795 10000000 367.00%

byte sub Nokia 2840909 9090909 320.00%

byte mul Nokia 2695417 9090909 337.27%

byte div Nokia 1694915 1960784 115.69%

int add Nokia 3361344 14285714 425.00%

int sub Nokia 3316749 12500000 376.88%

int mul Nokia 3210272 14285714 445.00%

int div Nokia 1917545 2083333 108.65%

float add aJile aJ100 2985074 4545454 152.27%

float sub aJile aJ100 2666666 4545454 170.45%

float mul Nokia 1633986 6666666 408.00%

float div aJile aJ100 1379310 2702702 195.95%

double add aJile aJ100 1754385 578034 32.95%

double sub aJile aJ100 1612903 540540 33.51%

double mul Nokia 788643 460829 58.43%

double div aJile aJ100 574712 163800 28.50%

string concat Nokia 15467 13726 88.74%

string compare Nokia 512820 392156 76.47%

method calls Nokia 1069518 2857142 267.14%

object creations Sun eSPOT 86206 645161 748.39%

T.L.E. aJile aJ100 146536 302941 206.73%

Mandel SW 1.00 35127 5325 659.66%

Fibonacci SW 2.00 1127 433 260.28%

Life SW 2.00 1601 571 280.39%

Text SW 2.00 1429 518 275.87%

Salesman SW 2.00 29437 12625 233.16%

Sort SW 2.00 13961 4396 317.58%

Neural Net SW 2.00 127553 64794 196.86%

RayTrace SW 2.00 58507 12168 480.83%

RayTrace2 SW 2.00 29862 8349 357.67%

Mandel ME Nokia 14098 4832 291.76%

Salesman ME Nokia 10546 11597 90.94%

Sort ME Nokia 55777 40342 138.26%

RayTrace ME Nokia 9036 7891 114.51%

Table 6.15: The scores of the best reference systems in individual tests.
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Chapter 7

Conclusions

This thesis proposed a co-processor approach for Java execution in embed-
ded systems. The proposed approach was used to design a hardware ac-
celerated Java virtual machine, called REALJava. The REALJava virtual
machine was partitioned so that the platform specific parts were imple-
mented in software while as much as possible of the actual Java bytecode
processing was implemented in hardware. This partitioning scheme allows
the co-processor to be used in a variety of environments, since the platform
dependent features are assigned to easily portable software. Including the
REALJava virtual machine to new systems is further facilitated by the sep-
aration of the communication from the rest of the virtual machine, both in
hardware and software domains. Since all of the modifications to the Java
virtual machine specification [38] are hidden inside the virtual machine, the
Java programmers do not need to employ any special coding techniques.
Also all existing Java applications are readily usable with the REALJava,
without any modifications. From the viewpoint of the end users running
the Java applications the REALJava virtual machine behaves as any other
Java virtual machine. All of the variants of Java are currently based on the
same instruction set, and it is likely that future variants will maintain this
trend. New variants have so far consisted mainly of modifications to the
standard library and the minimum requirements for the underlying system.
If these assumptions hold the test of time, the REALJava virtual machine
will follow suit.

The software partition was designed and developed in portable C++
code, without any assembler level optimizations that might hinder the adop-
tion of new system architectures. An efficient stack based hardware archi-
tecture was designed to be used as the main execution engine in the co-
processor. Initially the co-processor was designed targeting asynchronous
ASIC technologies, but later the system was prototyped using FPGA tech-
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nology. The transition from one technology to the other required several
architectural modifications. The FPGA technology allowed fast paced, iter-
ative design and evaluation of the REALJava virtual machine. The virtual
machine was analyzed and evaluated in detail, using actual hardware in-
stead of simulations. All of the performance metrics reported in this thesis
have been obtained from actually running the REALJava virtual machine
on the platforms specified in Chapter 4. The observations made here were
reflected back to the specifications and design of the individual units. The
measurement data gathered was also used to show the feasibility of the cho-
sen strategies and technologies.

The co-processor was prototyped using Xilinx FPGAs and Xilinx tools.
The co-processor approach was shown to be valid and the actual perfor-
mance increased significantly, even though the co-processor was running at
mere 100 MHz while as the software only virtual machines were running on
the PowerPC CPU with 300 MHz clock rate. Also the number of memory
accesses was greatly reduced when the co-processor executed the Java ap-
plications. Since a large portion of the power consumed while executing a
Java program is used in the memory accesses the co-processor accelerated
virtual machine clearly improved the energy efficiency as well as computa-
tional performance.

A number of performance increasing techniques were developed during
the prototyping phase. Most notably the method invocation mechanism
was under scrutiny. Also strategies to increase and exploit data locality
were studied. Efficient caching of constant data in the co-processor core
helped in reducing the amount of traps generated by a given Java applica-
tion. The control of multiple threads in the time domain was assigned to
the hardware, freeing the CPU of this time consuming task. The communi-
cation overhead was further reduced by including data forwarding services
to the internal control register bank. These provide access to various data
items so, that the CPU does not need to know the physical addresses of the
data items. All of the presented techniques can be applied to other hardware
based Java execution engines, provided that the surrounding architecture,
internal services and the assignment of memory areas are similar to the RE-
ALJava. Some of the techniques that are not specifically related to Java
and it’s properties, like the stack caching, can be used in a wider spectrum
of systems.

The performance of the REALJava virtual machine was compared to
commercial hardware accelerated Java virtual machines and to software vir-
tual machines running on embedded devices. A mobile phone was also used
as a reference. The REALJava virtual machine outperformed all these ref-
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erence systems. The best performing hardware reference system was aJile
aJ100, a dedicated Java processor on full custom hardware. The aJ100
reference system runs at 103 MHz. Despite the slightly slower clock rate
and the inherent inefficiency of FPGA technology when compared to a full
custom VLSI chip, the REALJava was roughly five times faster in integer
arithmetics. The REALJava virtual machine was a bit behind in the array
accesses and more so in the double precision floating point operations. The
overall score however shows that the aJ100 has less than half of the speed
of the REALJava virtual machine.

A multicore version of the REALJava was briefly discussed, and some
preliminary results were shown. The multicore version had two parallel
co-processor cores and achieved roughly 50% performance gain on average.
This result is actually better than expected, since the multicore support is
still rudimentary. Also the benchmarks used here were simply divided into
parallel threads. This is most likely not the optimal test to show the ef-
ficiency of a multicore system. However the results clearly show that the
concept is valid, and definitely worth further study.

7.1 Current and Future Work

The next step in the evolution of the REALJava system is improving the
multicore support. This will greatly speed up execution of multithreaded
java applications as several threads can be executed in parallel, each using
their own co-processor. The thread scheduling and co-processor assignment
for threads will be re-evaluated. Also the communication between the co-
processor cores will be investigated. Possibilities for hardware based thread
synchronization will be studied. Finally programming models for the new
truly parallel multicore hardware accelerated virtual machine will be devel-
oped. This will include analysis and modification of the standard library as
well.

This system can be further improved by including multitasking inside
the REALJava virtual machine. In the current solution each Java program
requires a separate instance of the virtual machine software, thus using ex-
cessive resources. It is worth noticing that for instance the Java virtual
machine implemented by Sun works the same way, starting a new fully
separate instance of the virtual machine for every Java application. The
multitasking approach is expected to obtain better results in allocation of
the co-processors to the threads running in the systems. This is due to the
fact that parallel virtual machine instances cannot evaluate each others load
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characteristics. When the applications run inside the same virtual machine,
the load evaluation is quite straightforward, leading to improved load bal-
ancing and thread allocation.

As a further improvement a three tier memory model will be considered.
This model would have all the same data in the local memory of the co-
processor, but some of the heap memory space of the CPU would be moved
to the third memory space. This space would allow direct access from the
co-processors, thus requiring no CPU intervention for object and array ac-
cesses. The impact of the third memory region will be more prominent as the
number of cores is increased. With the current architecture the CPU would
easily be overwhelmed by the object access requests. The three tier model
can also provide new methods for synchronization of the object accesses,
since it might be possible to move at least parts of the locking mechanisms
to the new memory controller.

After the REALJava virtual machine has been fine tuned for the multi-
tasking, an ASIC will be designed. The purpose of this ASIC is to see the
performance impact of moving from the synchronous design space to the
asynchronous. Also the effects of using FPGAs versus ASIC technology can
be evaluated. The case study will include several co-processors, connected
to each other and to the CPU by some network structure. The type of the
network is open at this time, but as stated earlier, the REALJava virtual
machine does not care about that anyway. The design will be implemented
using the Haste [102] asynchronous synthesis tool set, which has been found
[61] to provide good synthesis results.

One more interesting direction in the future of the REALJava virtual
machine is the use of dynamic reconfiguration facilities in modern FPGAs
to provide hardware-on-demand. The tool support for designing such sys-
tems is improving, for instance the PARBIT developed by Horta et al. [24]
could be used. Xilinx FPGAs can be only partially reconfigured, allowing
the operating system to request a new co-processor when needed. Of course
the device must have enough space available at the time to be able to respond
to the request. A system with several co-processor specifications stored to
the memory could then instantiate a set of co-processors and replace some
of them with others when needed. The result would be a power and cost
efficient system with very high peak performance.

Finally, since the software only version of the REALJava will evolve to-
gether with the hardware accelerated version, it will be interesting to see,
whether the software only approach can be scaled up to support multicore
processors. Currently desktop computers have two or four CPU cores, and
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the number is very likely to grow. Assigning the software partition of the
hardware accelerated REALJava to one core and starting separate threads
for execution engines in the other ones would utilize the resources more ef-
fectively than current single threaded Java virtual machines. The execution
engine threads would perform the same functions as the co-processors in the
hardware accelerated REALJava. Using the experiences gained with the
multicore version of the REALJava will provide additional insight to the
possible problems and also provide ways to deal with them.
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Appendix A

Java Instruction Set

This appendix presents the Java bytecode instruction set. Besides the op-
codes and their meaning, also some ancillary data is give here. This includes
the grouping of the instructions, which is done according to the classes pre-
sented in Chapter 3 while discussing the instruction folding. Additional
groupings are added to show which proprietary opcodes are executed in
software (SW) or both software and hardware (SW/HW). Also a sub group
denoted by C is added to show the instructions that are cacheable.

The Table A.1 also contains information about the data traffic associated
with the instructions. The column titled I contains the number of parameter
bytes read from the instruction stream. The push and pop columns show
how many stack operations are performed by the instruction. The local
column lists accesses to the local variable area of the current method. The
const column shows the instruction that perform reads from the constant
pool. Finally the heap column lists accesses to the data contained in the
heap memory.
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Opcode Mnemonic I Description Pop Push Local Const Heap Group
0 (00) nop Do not operate NF
1 (01) aconst null Push null object 1 LV
2 (02) iconst m1 Push integer constant -1 1 LV
3 (03) iconst 0 Push integer constant 0 1 LV
4 (04) iconst 1 Push integer constant 1 1 LV
5 (05) iconst 2 Push integer constant 2 1 LV
6 (06) iconst 3 Push integer constant 3 1 LV
7 (07) iconst 4 Push integer constant 4 1 LV
8 (08) iconst 5 Push integer constant 5 1 LV
9 (09) lconst 0 Push long integer constant 0 2 Trap
10 (0a) lconst 1 Push long integer constant 1 2 Trap
11 (0b) fconst 0 Push float constant 0.0 1 LV
12 (0c) fconst 1 Push float constant 1.0 1 LV
13 (0d) fconst 2 Push float constant 2.0 1 LV
14 (0e) dconst 0 Push double float 0.0 2 Trap
15 (0f) dconst 1 Push double float 1.0 2 Trap
16 (10) bipush 1 Push 1-byte integer 1 LV
17 (11) sipush 2 Push 2-byte integer 1 LV
18 (12) ldc 1 Load constant from the constant pool 1 1 Trap
19 (13) ldc w 2 Load constant from constant pool using

a wider offset (16-bit index)
1 1 Trap

20 (14) ldc2 w 2 Load long or double from constant pool 2 2 Trap
21 (15) iload 1 Load local integer variable 1 1 LV
22 (16) lload 1 Load local long variable 2 2 NF
23 (17) fload 1 Load local float variable 1 1 LV
24 (18) dload 1 Load local double float variable 2 2 NF
25 (19) aload 1 Load local object variable 1 1 LV
26 (1a) iload 0 Load local variable 0 1 1 LV
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Opcode Mnemonic I Description Pop Push Local Const Heap Group
27 (1b) iload 1 Load local variable 1 1 1 LV
28 (1c) iload 2 Load local variable 2 1 1 LV
29 (1d) iload 3 Load local variable 3 1 1 LV
30 (1e) lload 0 Load local long variable 0 2 2 NF
31 (1f) lload 1 Load local long variable 1 2 2 NF
32 (20) lload 2 Load local long variable 2 2 2 NF
33 (21) lload 3 Long local long variable 3 2 2 NF
34 (22) fload 0 Load local float variable 0 1 1 LV
35 (23) fload 1 Load local float variable 1 1 1 LV
36 (24) fload 2 Load local float variable 2 1 1 LV
37 (25) fload 3 Load local float variable 3 1 1 LV
38 (26) dload 0 Load local double variable 0 2 2 NF
39 (27) dload 1 Load local double variable 1 2 2 NF
40 (28) dload 2 Load local double variable 2 2 2 NF
41 (29) dload 3 Load local double variable 3 2 2 NF
42 (2a) aload 0 Load local object variable 0 1 1 LV
43 (2b) aload 1 Load local object variable 1 1 1 LV
44 (2c) aload 2 Load local object variable 2 1 1 LV
45 (2d) aload 3 Load local object variable 3 1 1 LV
46 (2e) iaload Load integer from array 2 1 1 Trap
47 (2f) laload Load long from array 2 2 2 Trap
48 (30) faload Load float from array 2 1 1 Trap
49 (31) daload Load double from array 2 2 2 Trap
50 (32) aaload Load object from array 2 1 1 Trap
51 (33) baload Load signed byte from array 2 1 1 Trap
52 (34) caload Load character from array 2 1 1 Trap
53 (35) saload Load short from array 2 1 1 Trap
54 (36) istore 1 Store integer into local variable 1 1 MEM
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Opcode Mnemonic I Description Pop Push Local Const Heap Group
55 (37) lstore 1 Store long into local variable 2 2 NF
56 (38) fstore 1 Store float into local variable 1 1 MEM
57 (39) dstore 1 Store double into local variable 2 2 NF
58 (3a) astore 1 Store object into local variable 1 1 MEM
59 (3b) istore 0 Store integer into local variable 0 1 1 MEM
60 (3c) istore 1 Store integer into local variable 1 1 1 MEM
61 (3d) istore 2 Store integer into local variable 2 1 1 MEM
62 (3e) istore 3 Store integer into local variable 3 1 1 MEM
63 (3f) lstore 0 Store long into local variable 0 2 2 NF
64 (40) lstore 1 Store long into local variable 1 2 2 NF
65 (41) lstore 2 Store long into local variable 2 2 2 NF
66 (42) lstore 3 Store long into local variable 3 2 2 NF
67 (43) fstore 0 Store float into local variable 0 1 1 MEM
68 (44) fstore 1 Store float into local variable 1 1 1 MEM
69 (45) fstore 2 Store float into local variable 2 1 1 MEM
70 (46) fstore 3 Store float into local variable 3 1 1 MEM
71 (47) dstore 0 Store double into local variable 0 2 2 NF
72 (48) dstore 1 Store double into local variable 1 2 2 NF
73 (49) dstore 2 Store double into local variable 2 2 2 NF
74 (4a) dstore 3 Store double into local variable 3 2 2 NF
75 (4b) astore 0 Store object into local variable 0 1 1 MEM
76 (4c) astore 1 Store object into local variable 1 1 1 MEM
77 (4d) astore 2 Store object into local variable 2 1 1 MEM
78 (4e) astore 3 Store object into local variable 3 1 1 MEM
79 (4f) iastore Store integer into array 3 1 Trap
80 (50) lastore Store long into array 4 2 Trap
81 (51) fastore Store float into array 3 1 Trap
82 (52) dastore Store double into array 4 2 Trap
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Opcode Mnemonic I Description Pop Push Local Const Heap Group
83 (53) aastore Store object into array 3 1 Trap
84 (54) bastore Store signed byte into array 3 1 Trap
85 (55) castore Store character into array 3 1 Trap
86 (56) sastore Store short into array 3 1 Trap
87 (57) pop Pop top entry in stack 1 NF
88 (58) pop2 Pop top two entries in stack 2 NF
90 (5a) dup x1 Duplicate top word, put two down 2 3 NF
91 (5b) dup x2 Duplicate top word, put three down 3 4 NF
92 (5c) dup2 Duplicate top two words 2 4 NF
93 (5d) dup2 x1 Duplicate top two words, put three

down
3 5 NF

94 (5e) dup2 x2 Duplicate top two words, put four down 4 6 NF
95 (5f) swap Swap top two stack words 2 2 NF
96 (60) iadd Add integer 2 1 OP2
97 (61) ladd Add long 4 2 Trap
98 (62) fadd Add float 2 1 OP2
99 (63) dadd Add double 4 2 Trap
100 (64) isub Subtract integer 2 1 OP2
101 (65) lsub Subtract long 4 2 Trap
102 (66) fsub Subtract float 2 1 OP2
103 (67) dsub Subtract double 4 2 Trap
104 (68) imul Multiply integer 2 1 OP2
105 (69) lmul Multiply long 4 2 Trap
106 (6a) fmul Multiply float 2 1 OP2
107 (6b) dmul Multiply double 4 2 Trap
108 (6c) idiv Divide integer 2 1 OP2
109 (6d) ldiv Divide long 4 2 Trap
110 (6e) fdiv Divide float 2 1 OP2
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Opcode Mnemonic I Description Pop Push Local Const Heap Group
111 (6f) ddiv Divide double 4 2 Trap
112 (70) irem Compute integer remainder 2 1 OP2
113 (71) lrem Compute long remainder 4 2 Trap
114 (72) frem Compute float remainder 2 1 Trap
115 (73) drem Compute double remainder 4 2 Trap
116 (74) ineg Negate integer 1 1 OP1
117 (75) lneg Negate long 2 2 Trap
118 (76) fneg Negate float 1 1 OP1
119 (77) dneg Negate double 2 2 Trap
120 (78) ishl Shift left integer 2 1 OP2
121 (79) lshl Shift left long 3 2 Trap
122 (7a) ishr Arithmetic shift right integer 2 1 OP2
123 (7b) lshr Arithmetic shift right long 3 2 Trap
124 (7c) iushr Logical shift right integer 2 1 OP2
125 (7d) lushr Logical shift-right of a long 3 2 Trap
126 (7e) iand Compute bitwise AND 2 1 OP2
127 (7f) land Compute long bitwise AND 4 2 Trap
128 (80) ior Compute integer bitwise OR 2 1 OP2
129 (81) lor Compute long bitwise OR 4 2 Trap
130 (82) ixor Compute integer bitwise XOR 2 1 OP2
131 (83) lxor Compute long bitwise XOR 4 2 Trap
132 (84) iinc 2 Increment local variable by constant 2 NF
133 (85) i2l Convert integer to long 1 2 Trap
134 (86) i2f Convert integer to float 1 1 Trap
135 (87) i2d Convert integer to double 1 2 Trap
136 (88) l2i Convert long to integer 2 1 Trap
137 (89) l2f Convert long to float 2 1 Trap
138 (8a) l2d Convert long to double 2 2 Trap
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Opcode Mnemonic I Description Pop Push Local Const Heap Group
139 (8b) f2i Convert float to integer 1 1 Trap
140 (8c) f2l Convert float to long 1 2 Trap
141 (8d) f2d Convert float to double 1 2 Trap
142 (8e) d2i Convert double to integer 2 1 Trap
143 (8f) d2l Convert double to long 2 2 Trap
144 (90) d2f Convert double to float 2 1 Trap
145 (91) i2b Convert integer to byte 1 1 OP1
146 (92) i2c Convert integer to character 1 1 OP1
147 (93) i2s Convert integer to short 1 1 OP1
148 (94) lcmp Compare long 4 1 Trap
149 (95) fcmpl Compare two floats (-1 if NaN) 2 1 OP2
150 (96) fcmpg Compare two floats (1 if NaN) 2 1 OP2
151 (97) dcmpl Compare two doubles (-1 if NaN) 4 1 Trap
152 (98) dcmpg Compare two doubles (1 if NaN) 4 1 Trap
153 (99) ifeq 2 Branch if equal to 0 1 OP1 B
154 (9a) ifne 2 Branch if not equal to 0 1 OP1 B
155 (9b) iflt 2 Branch if less than 0 1 OP1 B
156 (9c) ifge 2 Branch if greater than or equal 0 1 OP1 B
157 (9d) ifgt 2 Branch if greater than 0 1 OP1 B
158 (9e) ifle 2 Branch if less than or equal 0 1 OP1 B
159 (9f) if icmpeq 2 Compare top two stack items, branch if

=
2 OP2 B

160 (a0) if icmpne 2 Compare top two stack items, branch if
! =

2 OP2 B

161 (a1) if icmplt 2 Compare top two stack items, branch if
<

2 OP2 B

162 (a2) if icmpge 2 Compare top two stack items, branch if
>=

2 OP2 B
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Opcode Mnemonic I Description Pop Push Local Const Heap Group
163 (a3) if icmpgt 2 Compare top two stack items, branch if

>
2 OP2 B

164 (a4) if icmple 2 Compare top two stack items, branch if
<=

2 OP2 B

165 (a5) if acmpeq 2 Compare top two stack objects, branch
if =

2 OP2 B

166 (a6) if acmpne 2 Compare top two stack objects, branch
if ! =

2 OP2 B

167 (a7) goto 2 Branch always NF
168 (a8) jsr 2 Jump to subroutine 1 Trap
169 (a9) ret 1 Return control to the PC stored in local

variable index
1 Trap

170 (aa) tableswitch ... Access jump table by index & jump 1 Trap
171 (ab) lookupswitch ... Access jump table by match & jump 1 Trap
172 (ac) ireturn Return integer from procedure 11 OP1 B
173 (ad) lreturn Return long from procedure 21 NF
174 (ae) freturn Return float from procedure 11 OP1 B
175 (af) dreturn Return double from procedure 21 NF
176 (b0) areturn Return object from procedure 11 OP1 B
177 (b1) return Return void from procedure NF
178 (b2) getstatic 2 Get static field value 1/2 1 1/2 Trap
179 (b3) putstatic 2 Set static field in class 1/2 1 1/2 Trap
180 (b4) getfield 2 Get field value 1 1/2 1 1/2 Trap
181 (b5) putfield 2 Set field in class 2/3 1 1/2 Trap
182 (b6) invokevirtual 2 Call method based on object ...2 Trap
183 (b7) invokespecial 2 Call method not based on object ...2 Trap

1Pushed to return frame
2Not necessarily popped; stack pointer moved for return
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Opcode Mnemonic I Description Pop Push Local Const Heap Group
184 (b8) invokestatic 2 Call a static method ...2 Trap
185 (b9) invokeinterface 4 Call an interface method ...2 Trap
186 (ba) Unused
187 (bb) new 2 Create new object 1 1 ... Trap
188 (bc) newarray 1 Allocate an array 1 1 ... Trap
189 (bd) anewarray 2 Allocate an array of objects 1 1 1 ... Trap
190 (be) arraylength Get length of array 1 1 1 Trap/C
191 (bf) athrow Throw an exception 1 13 Trap
192 (c0) checkcast 2 Ensure if object is of given type 1 1 1 ... Trap
193 (c1) instanceof 2 Test if object is of given type 1 1 1 ... Trap
194 (c2) monitorenter Enter a monitored region of code 1 Trap
195 (c3) monitorexit Exit a monitored region of code 1 Trap
196 (c4) wide 3/5 Extend local variable index ... ... ... Trap
197 (c5) multianewarray 3 Allocate a multidimensional array ... 1 1 ... Trap
198 (c6) ifnull 2 Test if null 1 OP1 B
199 (c7) ifnonnull 2 Test if not null 1 OP1 B
200 (c8) goto w 4 Branch always (wide index) Trap
201 (c9) jsr w 4 Jump subroutine (4-byte offset) 1 Trap
202 (ca) breakpoint Reserved for debuging Trap
203 (cb) getfield fast 2 Get field using offset 1 1 1 SW
204 (cc) getfield wide fast 2 Get 2-word field using offset 1 2 2 SW
206 (ce) putfield fast 2 Put field using offset 2 1 SW
207 (cf) putfield wide fast 2 Put 2-word field using offset 3 2 SW
208 (d0) invokevirtual fast 2 Invoke method using vtable lookup 1 SW
209 (d1) getstatic fast 2 Get 1-word static field using class and

field index
1 1 SW

3Stack is cleared; possibly pushed in another frame
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210 (d2) getstatic wide fast 2 Get 2-word static field using class and

field index
2 2 SW

211 (d3) putstatic fast 2 Put 1-word static field using class and
field index

1 1 SW

212 (d4) putstatic wide fast 2 Put 2-word static field using class and
field index

2 2 SW

213 (d5) invokespecial sw 2 Invoke native/synchronized method us-
ing pointer from constant pool

1 SW

214 (d6) invokestatic sw 2 Invoke native/synchronized static
method using pointer from constant
pool

1 SW

215 (d7) new fast 2 Allocate object using class pointer from
constant pool

1 1 ... SW

216 (d8) anewarray fast 2 Allocate object array using class
pointer from constant pool

1 1 1 ... SW

217 (d9) multianewarray fast 3 Allocate object multidim. array using
class pointer from constant pool

... 1 1 ... SW

218 (da) checkcast fast 2 Verify instance using class pointer from
constant pool

1 1 1 ... SW

219 (db) instanceof fast 2 Check instance using class pointer from
constant pool

1 1 1 ... SW

220 (dc) invokevirtual nosub 2 Invoke non-overridden virtual method 1 HW/SW
221 (dd) invokespecial fast 2 Invoke normal bytecode method using

pointer from constant pool
1 HW/SW

222 (de) invokestatic fast 2 Invoke normal bytecode static method
using pointer from constant pool

1 HW/SW

223 (df) invokevirtual slow 2 Invoke virtual method using method
lookup

1 ... SW
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224 (e0) ldc fast 1 Load constant that has been loaded be-

fore
1 1 SW/C

225 (e1) ldc w fast 2 Load constant that has been loaded be-
fore with 16-bit constant pool index

1 1 SW

255 (ff) slicer trap Trap on thread slicer timeout Trap
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Appendix B

Measurement Data

This Appendix tabulates all of the measurement data available, save for the results
of the multicore version of the REALJava virtual machine and the results of the
CaffeineMark benchmark suite. All of the Tables here have the same formatting.
The first part of any given Table gives the results of the benchmark collection from
“Practical Embedded Java” [112], using loops per second as the unit. The results
are to be interpreted so that the higher the score, the higher the performance. The
second part of a given table gives the execution times of the second benchmark set,
as described in the Chapter 6. Since these values are the execution times (given in
milliseconds), a lower the number means higher performance.

The Tables B.1 and B.2 show the results of the hardware reference systems,
while the Table B.3 shows the results of the software reference systems. All of the
software only versions of the REALJava virtual machine are shown in the Table
B.4. The Tables B.5 though to B.9 give the results for the older versions 1 of the
hardware accelerated REALJava virtual machine. Finally, the Table B.10 shows
the measurement data for the mobile phone.

1The major changes between the versions are described in the Appendix C.
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DS80C390 DS80C400 Imsys Cjip REALJava
1.11 1.11 0.7.1 2.09 (HW)

byte array access 3644 4068 106519 791975

byte array copy 655360 1448309 23831272 52428800

int array access 3031 3891 105109 789590

int array copy 165913 360087 6241523 14563555

byte add 11142 13542 263504 10000000

byte sub 11123 13514 262812 9090909

byte mul 10395 12189 241545 9090909

byte div 6015 5859 105042 1960784

int add 11337 13793 90867 14285714

int sub 11318 13765 90579 12500000

int mul 7877 8228 88183 14285714

int div 3225 2827 60864 2083333

float add 2525 2149 143781 4545454

float sub 2220 1871 137268 4545454

float mul 1836 1528 125234 6666666

float div 254 201 76804 2702702

double add 3254 3104 96993 578034

double sub 2859 2657 93896 540540

double mul 1989 1755 64040 460829

double div 259 207 34506 163800

string concat 45 46 247 13726

string compare 1320 1756 5390 392156

method calls 5566 5556 14729 2857142

object creations 558 496 3635 645161

T.L.E. 555 492 11557 302941

Mandel 5325

Fibonacci 433

Life 571

Text 518

Salesman 12625

Sort 4396

Neural Net 64794

RayTrace 12168

RayTrace2 8349

Mandel ME 4832

Salesman ME 11597

Sort ME 40342

RayTrace ME 7891

Table B.1: Measurement data for the hardware reference systems, part I.
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aJile aJ80 aJile aJ100 Sun eSPOT REALJava
3.16.07 3.16.07 2006Aug25 2.09 (HW)

byte array access 206575 879677 479239 791975

byte array copy 4443118 32768000 6241523 52428800

int array access 233224 1008246 432580 789590

int array copy 1092266 7281777 1927529 14563555

byte add 793650 2702702 1438848 10000000

byte sub 803212 2777777 1449275 9090909

byte mul 561797 1369863 1428571 9090909

byte div 561797 1360544 1190476 1960784

int add 641025 2898550 1724137 14285714

int sub 641025 2898550 1724137 12500000

int mul 478468 1587301 1652892 14285714

int div 621118 1351351 1369863 2083333

float add 735294 2985074 250000 4545454

float sub 847457 2666666 246002 4545454

float mul 826446 1408450 199401 6666666

float div 561797 1379310 100452 2702702

double add 595238 1754385 226500 578034

double sub 813008 1612903 215517 540540

double mul 377358 581395 193236 460829

double div 311526 574712 70348 163800

string concat 879 3711 533 13726

string compare 64935 270270 67340 392156

method calls 271739 847457 706713 2857142

object creations 17331 36101 86206 645161

T.L.E. 41106 146536 34553 302941

Mandel 5325

Fibonacci 433

Life 571

Text 518

Salesman 12625

Sort 4396

Neural Net 64794

RayTrace 12168

RayTrace2 8349

Mandel ME 4832

Salesman ME 11597

Sort ME 40342

RayTrace ME 7891

Table B.2: Measurement data for the hardware reference systems, part II.

B-3



Kaffe Kaffe REALJava REALJava
ML310 ML410 2.00 (SW) 2.09 (HW)

byte array access 92597 98773 405168 791975

byte array copy 26214400 26214400 18724571 52428800

int array access 84617 88622 468114 789590

int array copy 8738133 9362285 10082461 14563555

byte add 214362 224215 1098901 10000000

byte sub 215285 225733 1104972 9090909

byte mul 171379 174064 1005025 9090909

byte div 209424 219298 995024 1960784

int add 345423 355239 1388888 14285714

int sub 345423 326797 1388888 12500000

int mul 344234 371057 1351351 14285714

int div 326264 351493 1183431 2083333

float add 271002 303030 675675 4545454

float sub 265604 296735 655737 4545454

float mul 277777 312012 696864 6666666

float div 236966 251889 500000 2702702

double add 255102 270635 277777 578034

double sub 246305 257731 274348 540540

double mul 178890 183654 252206 460829

double div 121065 124610 126182 163800

string concat 220 265 1320 13726

string compare 10893 15372 142857 392156

method calls 32690 59488 425531 2857142

object creations 11013 18761 86206 645161

T.L.E. 12794 15221 73057 302941

Mandel 144829 134878 36784 5325

Fibonacci 5522 4545 1127 433

Life 9705 7804 1601 571

Text 9455 7489 1429 518

Salesman 136079 115769 29437 12625

Sort 142110 106285 13961 4396

Neural Net 748649 590552 127553 64794

RayTrace 268908 229174 58507 12168

RayTrace2 223918 177037 29862 8349

Mandel ME 126686 23867 4832

Salesman ME 116063 20148 11597

Sort ME 893590 79478 40342

RayTrace ME 168745 17223 7891

Table B.3: Measurement data for the software reference systems.
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REALJava REALJava REALJava REALJava
0.01 (SW) 1.00 (SW) 2.00 (SW) 2.09 (HW)

byte array access 32768 297890 405168 791975

byte array copy 38347922 20164923 18724571 52428800

int array access 32768 292571 468114 789590

int array copy 11671106 13107200 10082461 14563555

byte add 83333 1123595 1098901 10000000

byte sub 71428 1123595 1104972 9090909

byte mul 83333 1117318 1005025 9090909

byte div 71428 995024 995024 1960784

int add 100000 1369863 1388888 14285714

int sub 100000 1369863 1388888 12500000

int mul 100000 1351351 1351351 14285714

int div 100000 1190476 1183431 2083333

float add 83333 344827 675675 4545454

float sub 100000 334448 655737 4545454

float mul 100000 451467 696864 6666666

float div 83333 347826 500000 2702702

double add 55555 143575 277777 578034

double sub 55555 141442 274348 540540

double mul 62500 150943 252206 460829

double div 50000 94607 126182 163800

string concat 333 1128 1320 13726

string compare 7142 44444 142857 392156

method calls 18181 265251 425531 2857142

object creations 10000 32626 86206 645161

T.L.E. 73057 302941

Mandel 486676 35127 36784 5325

Fibonacci 3858 1496 1127 433

Life 7931 2312 1601 571

Text 7107 2049 1429 518

Salesman 325644 34142 29437 12625

Sort 237617 21934 13961 4396

Neural Net 1049729 127553 64794

RayTrace 101891 58507 12168

RayTrace2 34836 29862 8349

Mandel ME 23867 4832

Salesman ME 20148 11597

Sort ME 79478 40342

RayTrace ME 17223 7891

Table B.4: Measurement data for the software only versions of REALJava.
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REALJava REALJava REALJava REALJava
0.01 (HW) 0.02 (HW) 0.03 (HW) 0.04 (HW)

byte array access 262144 146777 149369 157633

byte array copy 44739242 43690666 52428800 52428800

int array access 123361 146612 149114 157349

int array copy 12201611 11915636 11915636 11915636

byte add 1200000 1351351 1459854 1923076

byte sub 1200000 1388888 1515151 2000000

byte mul 1200000 1351351 1470588 1923076

byte div 162162 877192 925925 1086956

int add 1428571 1626016 1724137 2325581

int sub 1428571 1680672 1785714 2439024

int mul 1428571 1626016 1724137 2325581

int div 188679 1005025 1036269 1234567

float add 142857 1324503 1388888 1754385

float sub 136363 1360544 1428571 1818181

float mul 142857 1449275 1538461 2000000

float div 125000 1129943 1176470 1428571

double add 57692 80289 80160 80645

double sub 51724 79428 79239 79617

double mul 63829 73072 73019 73340

double div 45454 52548 52465 52590

string concat 500 479 485 483

string compare 9090 11173 10869 10989

method calls 24793 23906 24366 23696

object creations 6666 7082 7275 7267

T.L.E.

Mandel 38431 33287 31166 26414

Fibonacci 3384 3306 3289 3297

Life 6372 6329 6290 6289

Text 5643 5628 5587 5573

Salesman

Sort

Neural Net

RayTrace

RayTrace2

Mandel ME

Salesman ME

Sort ME

RayTrace ME

Table B.5: Measurement data for the older versions of REALJava, part I.
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REALJava REALJava REALJava REALJava
0.05 (HW) 0.06 (HW) 0.07 (HW) 0.08 (HW)

byte array access 162418 171112 174413 179305

byte array copy 52428800 52428800 43690666 52428800

int array access 162017 171112 174297 179060

int array copy 13107200 13107200 13107200 13107200

byte add 2500000 2500000 3125000 3125000

byte sub 2500000 2500000 3125000 3125000

byte mul 2325581 2325581 2857142 2857142

byte div 1204819 1204819 1333333 1333333

int add 2941176 2941176 3448275 3448275

int sub 3125000 3125000 3703703 3703703

int mul 2941176 2941176 3448275 3448275

int div 1369863 1369863 1470588 1470588

float add 2083333 2083333 2272727 2272727

float sub 2173913 2173913 2380952 2380952

float mul 2409638 2409638 2702702 2702702

float div 1639344 1639344 1754385 1754385

double add 80677 83125 82918 82918

double sub 79808 82000 81799 81799

double mul 73152 80032 79808 79808

double div 52603 55370 56545 56609

string concat 489 504 501 501

string compare 11299 11627 11976 11976

method calls 23920 23688 24035 24035

object creations 7217 7283 7315 7473

T.L.E.

Mandel 23104 22896 20874 20866

Fibonacci 3282 3278 3276 3258

Life 6271 6258 6196 6185

Text 5505 5494 5489 5481

Salesman 143841 138655 136697 134747

Sort 127445 126948 121693 123239

Neural Net 631251 592376 591292 591225

RayTrace

RayTrace2

Mandel ME

Salesman ME

Sort ME

RayTrace ME

Table B.6: Measurement data for the older versions of REALJava, part II.
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REALJava REALJava REALJava REALJava
1.00 (HW) 1.01 (HW) 2.00 (HW) 2.01 (HW)

byte array access 238529 325240 331827 510007

byte array copy 20164923 20164923 18724571 17476266

int array access 234475 320469 326862 506069

int array copy 13107200 13107200 10922666 10922666

byte add 3125000 3125000 3125000 4000000

byte sub 3125000 3125000 3125000 3703703

byte mul 2857142 2857142 2857142 3448275

byte div 1333333 1333333 1333333 1449275

int add 3448275 3448275 3448275 4347826

int sub 3703703 3703703 3703703 4545454

int mul 3448275 3448275 3448275 4347826

int div 1470588 1470588 1470588 1587301

float add 2272727 2272727 2272727 2631578

float sub 2380952 2380952 2380952 2702702

float mul 2702702 2702702 2702702 3225806

float div 1754385 1754385 1754385 1923076

double add 111919 342465 353982 475059

double sub 93896 329489 338409 450450

double mul 106553 298062 305343 378071

double div 75272 136986 136798 154202

string concat 1407 1616 1930 2994

string compare 133333 166666 181818 222222

method calls 1754385 1754385 1754385 1818181

object creations 54347 62305 136054 350877

T.L.E.

Mandel 16973 16817 16525 14444

Fibonacci 1466 1377 1143 1641

Life 2251 2022 1601 1984

Text 1953 1709 1392 1875

Salesman 52052 37496 36236 23952

Sort 14991 11153 10886 8380

Neural Net 180441 173345 121350

RayTrace 65164 43831 33454 34701

RayTrace2 19689 19342 14697

Mandel ME

Salesman ME

Sort ME

RayTrace ME

Table B.7: Measurement data for the older versions of REALJava, part III.
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REALJava REALJava REALJava REALJava
2.02 (HW) 2.03 (HW) 2.04 (HW) 2.05 (HW)

byte array access 510007 562540 562540 562540

byte array copy 17476266 17476266 17476266 17476266

int array access 510007 557753 557753 557753

int array copy 10922666 10922666 10922666 10922666

byte add 4761904 4761904 4761904 4761904

byte sub 4347826 4347826 4347826 4347826

byte mul 3571428 3571428 3571428 3571428

byte div 1470588 1470588 1470588 1470588

int add 5263157 5263157 5263157 5263157

int sub 5263157 5263157 5263157 5263157

int mul 5263157 5263157 5263157 5263157

int div 1652892 1666666 1666666 1666666

float add 2941176 2941176 2941176 2941176

float sub 2941176 2941176 2941176 2941176

float mul 3703703 3703703 3703703 3703703

float div 2040816 2040816 2040816 2040816

double add 475059 481927 481927 511508

double sub 450450 454545 454545 480769

double mul 392927 396039 396825 417536

double div 154202 154918 146412 146520

string concat 3021 3759 3937 3960

string compare 250000 285714 285714 294117

method calls 1851851 1851851 1851851 1851851

object creations 357142 384615 465116 487804

T.L.E.

Mandel 13354 13330 12635 12588

Fibonacci 1638 1633 970 964

Life 1962 1932 1186 1157

Text 1803 1781 1136 1093

Salesman 23927 21488 20777 18157

Sort 8170 7864 7167 6944

Neural Net 119717 100557 99970 86701

RayTrace 34546 18846 18189 17333

RayTrace2 14614 13021 12081 11549

Mandel ME

Salesman ME

Sort ME

RayTrace ME

Table B.8: Measurement data for the older versions of REALJava, part IV.
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REALJava REALJava REALJava REALJava
2.06 (HW) 2.07 (HW) 2.08 (HW) 2.09 (HW)

byte array access 566185 585142 732245 791975

byte array copy 17476266 43690666 52428800 52428800

int array access 560136 579964 724154 789590

int array copy 10922666 14563555 14563555 14563555

byte add 4545454 5000000 8333333 10000000

byte sub 4545454 5000000 7692307 9090909

byte mul 4347826 4761904 7692307 9090909

byte div 1587301 1639344 1886792 1960784

int add 5882352 5882352 9090909 14285714

int sub 5882352 6250000 10000000 12500000

int mul 5882352 5882352 9090909 14285714

int div 1754385 1785714 1960784 2083333

float add 3030303 3125000 4000000 4545454

float sub 3030303 3225806 4166666 4545454

float mul 3846153 4000000 5555555 6666666

float div 2083333 2173913 2564102 2702702

double add 512820 527704 558659 578034

double sub 481927 497512 523560 540540

double mul 418410 428265 448430 460829

double div 147928 159489 162206 163800

string concat 4043 4511 13046 13726

string compare 322580 333333 344827 392156

method calls 1818181 2272727 2325581 2857142

object creations 487804 540540 555555 645161

T.L.E. 185537 282598 302941

Mandel 11682 8464 6225 5325

Fibonacci 949 457 438 433

Life 1155 636 587 571

Text 1072 575 540 518

Salesman 17312 15817 13829 12625

Sort 6652 5510 4974 4396

Neural Net 83470 78775 70443 64794

RayTrace 16838 14584 13187 12168

RayTrace2 10839 10001 9299 8349

Mandel ME 5474 4832

Salesman ME 13030 11597

Sort ME 45501 40342

RayTrace ME 8666 7891

Table B.9: Measurement data for the older versions of REALJava, part V.
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Nokia REALJava
6170 2.09 (HW)

byte array access 962879 791975

byte array copy 22795130 52428800

int array access 916587 789590

int array copy 6096372 14563555

byte add 2724795 10000000

byte sub 2840909 9090909

byte mul 2695417 9090909

byte div 1694915 1960784

int add 3361344 14285714

int sub 3316749 12500000

int mul 3210272 14285714

int div 1917545 2083333

float add 1733102 4545454

float sub 1572327 4545454

float mul 1633986 6666666

float div 973709 2702702

double add 1207729 578034

double sub 1240694 540540

double mul 788643 460829

double div 310173 163800

string concat 15467 13726

string compare 512820 392156

method calls 1069518 2857142

object creations 645161

T.L.E. 302941

Mandel 5325

Fibonacci 433

Life 571

Text 518

Salesman 12625

Sort 4396

Neural Net 64794

RayTrace 12168

RayTrace2 8349

Mandel ME 14098 4832

Salesman ME 10546 11597

Sort ME 55777 40342

RayTrace ME 9036 7891

Table B.10: Measurement data for the Nokia 6170.
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Appendix C

Version History

This Appendix shows the version history of the REALJava virtual machine. The
history is recorded starting from the first version that was prototyped using the
ML310 demonstration board. The older versions used only the XESS board, and
during those early days the system was very slow and contained several bugs, both
in the software partition and in the hardware as well. As a result, new versions
were introduced daily, sometimes even several version in a single day. The major
changes introduced by every new version are also listed in the Table C.1. Naturally
all of the changes are not listed here, only those that required significant redesign
of the co-processor and/or produced a measurable performance boosts.

The dates in the Table show when the version in question was prototyped using
the larger boards. Most of the techniques were developed over time, with several
preprototype versions designed for the XESS board. The techniques were tested
for both correctness and compatibility with each other. Some of the modifications
needed some tweaking in order to facilitate some other changes. Thus the dates of
the versions seem to be packed towards the end of the time period in question.

The Table C.2 shows the performance increasing techniques presented in the
Chapter 5 with the versions in which they were applied. If a given technique was
modified in more than one version, all are listed. The section describing a given
technique is shown in parenthesis for reference.
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Name Version Date Comment

REALJava 0.01 19.02.07 The first tests run on Xilinx ML310
with PowerPC 405 @ 300 MHz and
REALJava co-processor @ 100 MHz

REALJava 0.02 13.03.07 Added IDIV,IREM and single pre-
cision floats, streamlined internal
memory management

REALJava 0.03 16.03.07 Optimized stack <=> memory

REALJava 0.04 05.04.07 More optimization on memory con-
troller and fixed int to 0 comprisons

REALJava 0.05 25.04.07 Instruction prefetch and early stack
idle detection

REALJava 0.06 03.05.07 Method changed testing enabled

REALJava 0.07 29.05.07 Partial stack visibility to alu

REALJava 0.08 08.06.07 Improved visibility

REALJava 1.00 10.09.07 New SW and method invoker

REALJava 1.01 03.10.07 FCMP{L|G} + improved I/O
(CPU<=>JPU)

REALJava 2.00 04.01.08 Moved to ML410, Virtex4, othervice
same as 1.01

REALJava 2.01 19.02.08 Push and pop registers

REALJava 2.02 19.02.08 Fast instruction data (8-bit)

REALJava 2.03 26.02.08 Push execute and improved method
invocation on cache miss

REALJava 2.04 29.02.08 Constant cache

REALJava 2.05 04.03.08 Arraylenght cache

REALJava 2.06 12.03.08 Fast instruction data (all widths)

REALJava 2.07 19.03.08 Cleanups, on HW and SW

REALJava 2.08 25.03.08 Partial folding on arithmetic results

REALJava 2.09 08.04.08 Added pipeline stage for partial
foldings

Table C.1: Version history of the REALJava virtual machine.
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Technique Introduced in

Direct connection between the stack and the ALU (5.2) 0.07, 0.08

Stack manipulations in the memory controller (5.3) 0.03, 0.04

Partial instruction folding (5.4) 2.08, 2.09

Method invoker module (5.5) 1.00

Using invoker with SW invocations (5.5.2) 2.03

Constant cache (5.6) 2.04

Arraylength cache (5.6) 2.05

Push and pop registers (5.8) 2.01

Table C.2: The performance increasing techniques and the corresponding
versions. The sections describing the techniques are given in parenthesis.
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Appendix D

Comparing Kaffe and

REALJava on an x86

processor

This appendix provides estimation on the Kaffe virtual machine’s performance in
comparison with the software only version of the REALJava virtual machine. Since
both systems can be run on the PowerPC based demonstration boards as well as
on a standard laptop with an x86 architecture based processor, the results can be
used to draw conclusions about the possible optimizations Kaffe might have. This
possibility is considered because the software only version of the REALJava clearly
outperformed Kaffe on the PowerPC architecture. The software only version of the
REALJava is exactly the same as used for the PowerPC, except that it has been
recompiled for the x86 architecture. The same is true for the Kaffe, the version is
the same as used on the PowerPC, as are the configuration options. The results are
shown in the Table D.1, and they show that the Kaffe is slower (based on the T.L.E.
score) by a factor of 7.8. On the PowerPC the factor is 4.8, suggesting that Kaffe
contains no optimizations for the x86 architecture. Rather it seems that the Kaffe
performs relatively better on the PowerPC system. The discrepancy in the factors
is most likely due to a combination of the amount of memory, the cache system, the
processors architecture and other properties of the systems. Also the compilers can
optimize code differently for different target architectures. The evaluation is not
extended beyond the tests shown here, since the target domain of the REALJava
virtual machine is in the embedded systems.
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REALJava Kaffe
2.00 (SW)

byte array access 6241523 1110779

byte array copy 262144000 262144000

int array access 5957818 1159929

int array copy 131072000 131072000

byte add 25000000 3448275

byte sub 28571428 3448275

byte mul 28571428 3508771

byte div 25000000 3389830

int add 16666666 4347826

int sub 20000000 4444444

int mul 22222222 4444444

int div 22222222 4255319

float add 33333333 4255319

float sub 28571428 4255319

float mul 28571428 4166666

float div 22222222 4081632

double add 14285714 4255319

double sub 14285714 4081632

double mul 10000000 4081632

double div 10526315 4081632

string concat 136054 8305

string compare 2857142 425531

method calls 18181818 1626016

object creations 5000000 273972

T.L.E. 2643172 336855

Table D.1: Performance evaluation between the software only version of
the REALJava virtual machine and the Kaffe virtual machine on an x86
based system.
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