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Abstract

Construction of multiple sequence alignments is a fundamental task in Bioinformatics.

Multiple sequence alignments are used as a prerequisite in many Bioinformatics methods,

and subsequently the quality of such methods can be critically dependent on the quality

of the alignment. However, automatic construction of a multiple sequence alignment for

a set of remotely related sequences does not always provide biologically relevant align-

ments. Therefore, there is a need for an objective approach for evaluating the quality of

automatically aligned sequences.

The profile hidden Markov model is a powerful approach in comparative genomics. In

the profile hidden Markov model, the symbol probabilities are estimated at each conserved

alignment position. This can increase the dimension of parameter space and cause an

overfitting problem.

These two research problems are both related to conservation. We have developed

statistical measures for quantifying the conservation of multiple sequence alignments.

Two types of methods are considered, those identifying conserved residues in an alignment

position, and those calculating positional conservation scores. The positional conservation

score was exploited in a statistical prediction model for assessing the quality of multiple

sequence alignments. The residue conservation score was used as part of the emission

probability estimation method proposed for profile hidden Markov models.

The results of the predicted alignment quality score highly correlated with the correct

alignment quality scores, indicating that our method is reliable for assessing the quality

of any multiple sequence alignment. The comparison of the emission probability estima-

tion method with the maximum likelihood method showed that the number of estimated

parameters in the model was dramatically decreased, while the same level of accuracy was

maintained.

To conclude, we have shown that conservation can be successfully used in the statistical

model for alignment quality assessment and in the estimation of emission probabilities in

the profile hidden Markov models.
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Abbreviations
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APDB - Analyze PDB
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ET - Evolutionary trace
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FDR - False discovery rate
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MOS - Multiple overlap score
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MSA - Multiple sequence alignment

MSE - Mean square error

NiRMSD - Normalized iRMSD
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SABmark - Sequence alignment benchmark
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Chapter 1

Introduction

1.1 Comparative genomics

During the last few years, the whole genome sequencing projects of human and several

animals, plants and microbe genomes have produced large amounts of raw nucleotide

sequence data (Lander et al., 2001; Venter et al., 2001). Similarly, three-dimensional

structures have been solved for thousands of proteins every year. In order to understand

how this genetic information leads to observable traits and behaviors, advanced bioinfor-

matics methods are needed. Comparative genomics has become a very important research

area in the molecular genomics after the whole genome sequencing projects (Saccone and

Pesole, 2003). Comparative genomics compares genomes of different species or strains to

infer how selection has acted on genomes. The major principle of comparative genomics

is that the DNA responsible for common features of organisms has been conserved among

the species (Hardison, 2003). Under the neutral theory of molecular evolution, in the

absence of selective constraints, the mutation rate is high, while in the presence of func-

tional or structural constraints, the mutation rate is low, imposed by purifying or negative

selection (Jukes and Kimura, 1984). Comparative genomics uses this theory conversely:

the degree of conservation is used to find functional and structural constraints that have

acted on a particular site of the genome.

1.2 Multiple sequence alignments

The multiple sequence alignments (MSA) are a core of comparative genomics (Batzoglou,

2005). A sequence alignment maps the residues of one sequence onto the residues of

the other sequences. Gaps are inserted between the residues, and thereby, residues with

identical or similar characters are aligned in the same column. The alignment columns

represent nucleotide or amino acid residues having evolved from the same position of the

common ancestor, superposable structures or sequence motifs having a common function
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Chapter 1. Introduction

(Edgar and Batzoglou, 2006).

MSAs help to identify regions of similarity and dissimilarity, which is essential in under-

standing structural, functional or evolutionary relationships of DNA or protein sequences

among different organisms. MSAs are useful in annotation of sequences, gene finding and

finding new family members of distantly related proteins by sequence database search.

They are valuable in locating and visualizing conserved domains and sequence patterns

within a protein family. The evolutionary relationships for a set of sequences can be

studied by phylogenetic methods, which are usually based on MSA. Protein structural

analyses, such as homology modeling and protein secondary and tertiary structure pre-

diction, are based on sequence alignments.

It has been recognized that the automatic construction of MSAs for a set of remotely

related sequences can be a very demanding task. Nowadays, most algorithms aligning

protein sequences originate from the pioneering work of Needleman and Wunsch for finding

global pairwise alignments Needleman and Wunsch (1970). The Needleman–Wunsch’s

method allows matches, mismatches, insertions and deletions to occur in the alignment.

It applies the dynamic programming algorithm to build up the best global alignment by

using optimal alignments of smaller subsequences. Smith and Waterman (1981) modified

the Needleman–Wunsch’s algorithm to find an optimal local pairwise alignment. Globally

optimal pairwise sequence alignments can be solved in O(L2) time (Gotoh, 1982) and

O(L) space (Myers and Miller, 1988). Most MSA methods rely on a sum-of-pairs scoring

function (Carrillo and Lipman, 1988). The sum-of-pairs score can be optimized for MSA

by the dynamic programming with time and space complexity O(LN). Thus, an optimal

solution can only be found for a very few sequences in exponential time (Carrillo and

Lipman, 1988; Wang and Jiang, 1994). Several powerful alignment algorithms have,

however, been developed for multiple sequences. Since many methods of comparative

genomics can be critically dependent on the quality of a given alignment, there is a need

for an objective approach to evaluate the quality of automatically aligned sequences. The

procedures developed for assessing the quality of MSAs are described in more detail in

section 2.2.

1.3 Conservation

Protein conservation can be quantified from a MSA of homologous sequences. A wide

variety of methods has been developed for calculating the degree of conservation at an

alignment position (Valdar, 2002). Different approaches are described in section 2.1.

Conservation measures can be used to study evolutionary sequence conservation in

relation to structural and functional properties of a given protein. To be more specific,

many measures have been developed for functional and structural annotation to predict

functionally or structurally important sites of protein families, such as catalytic and lig-
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1.4. Profile analysis

and binding residues (Mirny and Shakhnovich, 1999; Magliery and Regan, 2005; Capra

and Singh, 2007; Fischer et al., 2008). Extensive efforts have also been made to apply

conservation scores for predicting residues involved in protein-protein interaction (Valdar

and Thornton, 2001; Caffrey et al., 2004; Bordner and Abagyan, 2005). A very popular

application has been to detect positions responsible for functional and structural differ-

ences between subgroups, i.e. functional specificity of proteins (Lichtarge et al., 1996;

Hannenhalli and Russell, 2000; del Sol Mesa et al., 2003; Kalinina et al., 2004a; Pei et al.,

2006; Marttinen et al., 2006). Finally, conservation measures have been effectively used

for refining automatically produced MSAs, by detecting misaligned regions or unreliable

aligned sequences (Sadreyev and Grishin, 2004; Thompson et al., 2001; Castresana, 2000),

for visualization (Schneider and Stephens, 1990; Thompson et al., 1997) and for assessing

the quality of MSAs (Pei and Grishin, 2001; Thompson et al., 2001).

1.4 Profile analysis

Traditional profile analysis and profile hidden Markov models (HMM) have been proved to

be very powerful methods in comparative genomics. The essence of the traditional profile

analysis is that the information about sequence or structural aligned probe sequences is

incorporated into a position-specific scoring table, a profile, whereby the analysis is able

to detect structural similarities and remote homologies to the sequence family (Gribskov

et al., 1987). The profile includes information about conservation of residues, changes

allowed at each position and penalties for insertion or deletion.

The profile HMMs originate from the profile analysis (Krogh et al., 1994; Eddy, 1998).

The underlying idea and the objective of the profile HMMs is exactly the same as in

the profile analysis, the difference being that the HMM is a well-formulated probability

model. The conserved positions of the alignment are modeled by match states, while other

positions are modeled by either insertion or deletion states. Match states emit a residue

according to the estimated probability distribution, which corresponds to the substitution

score matrix in the traditional profile analysis. The gap penalties for insertions and

deletions, by which positions of conserved regions are controlled, are provided by transition

probabilities from/to insert and delete states.

In the profile HMMs, emission probabilities of all 20 amino acids are estimated in all

emitting states, and thus, the number of estimated parameters can be enormous. However,

the majority of estimated emission parameters are actually ’noise’, that is, probabilities

of uninteresting or unconserved residues. The phenomenon is related to overfitting, which

occurs when there are not enough data to obtain good estimates for the model parameters,

and consequently, the model will not generalize adequately to new data

The traditional profile analysis can be used to build local sequence-profile or profile-

profile alignments and assess the statistical significance of the alignments (Altschul et al.,
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Chapter 1. Introduction

1997; Sadreyev and Grishin, 2003; Yona and Levitt, 2002). The profile HMMs are useful

in detecting remote homologues to the protein family, for instance. The profile analysis

and conservation scores are, hence, differently motivated. A more general difference to

the conservation scores is that the profile analysis provides a (complicated) model for

describing a whole alignment, whereas the conservation score provides a single, decisive

positional statistic (Valdar, 2002).

1.5 Aims of the thesis

The aim of the thesis was to develop a both biologically and statistically relevant method

for measuring conservation of multiple protein sequence alignments, and to use this mea-

sure for assessing the quality of alignments (Publications III and IV).

The secondary aim of the thesis was to develop methods for identifying conserved

residues in an alignment position, and by means of these scores to solve the overfitting

problem in estimating emission probabilities in profile HMMs (Publications I and II).

1.6 Scientific novelty of the thesis

The thesis contributes to quantifying the conservation and assessing the quality of MSAs.

The thesis focuses on developing both biologically and statistically sound scores for mea-

suring conservation on two different levels: identifying conserved residues in one alignment

position and scoring the conservation of an alignment position. The practical exam-

ples show that the scores are able to identify structurally and/or functionally important

residues and alignment positions. The improvement over the earlier developed meth-

ods is that the scores have a strong statistical background and the significance of the

conservation score can be reliably estimated.

The positional conservation score has been extended to define the quality of the whole

alignment. The whole alignment quality score has been used as a key factor in a model-

based alignment quality method. The results suggest that the novel method for assessing

the quality of alignments can confidently predict the quality of any MSAs. The improve-

ment over the existing scores is that our measure can be used without reference alignment

or other additional information. The residue level conservation score has been applied

in the emission probability estimation method developed for the profile HMMs. The

emission probability estimation method dramatically decreases the number of estimated

parameters and thus, solves the overfitting problem in the estimation of emission proba-

bilities in profile HMMs without losing accuracy. The new method provides an alternative

approach to Bayesian methods for profile HMMs.

16



Chapter 2

Conservation and alignment quality

2.1 Scoring residue conservation

This section presents several approaches for quantifying positional conservation, discusses

statistical inference on the conservation scores and the performance of the scoring methods

in predicting functional and structural sites of proteins.

2.1.1 Positional conservation scores

Conservation scores are important for predicting functionally important sites in protein

sequences. A good conservation score should give biologically relevant results and fulfill

the following criteria. The score should be a simple mathematical mapping to continuous

and bounded space, should take into account relative frequencies and stereochemical prop-

erties of amino acids, should penalize for gaps and weight sequences against redundancy

(Valdar, 2002). Additional criteria require that the maximally unconserved position ob-

tains a minimum score of zero, and that an invariant position always obtains a maximum

score and does not depend on an invariant amino acid (Fischer et al., 2008). This section

introduces different measures used for quantifying positional conservation during the last

40 years.

The variability of amino acid positions was quantified already in 1970 (Wu and Ka-

bat, 1970). Their measure divided the number of different amino acids by the relative

frequency of the most common amino acid at a given position. The later scores have taken

into account relative frequencies of all amino acids at a given position and background

distribution (Pei and Grishin, 2001). Lockless and Ranganathan (1999), for instance,

assumed that the lack of evolutionary constraint should cause the distribution of amino

acids to approach the mean distribution of the same set of proteins. They defined conser-

vation as a root mean square deviation (RMSD) of residue relative frequencies from their

background probabilities.

Probably the most popular conservation scores have been based on the Shannon en-
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Chapter 2. Conservation and alignment quality

tropy, which was originally introduced for information theory (Shannon, 1948). For nu-

cleotide sequences, the Shannon entropy and relative entropy were first described by

Schneider et al. (1986) and used by several authors thereafter, for instance, to discover

regulatory sites in co-regulated genes (Stormo and Fields, 1998). The entropy-based se-

quence logo method has become popular for visualizing sequence alignments (Schneider

and Stephens, 1990). For protein sequences, Shenkin et al. (1991) used the Shannon

entropy,

S = −

J∑

j=1

pj log2 pj, (2.1)

where pj is the relative frequency of amino acid j, as a measure of variability in alignment

positions. In the same year, Sander and Schneider (1991) proposed a similar measure.

These measures were called the information content (IC). These and many other modifi-

cations of the Shannon entropy, relative entropy or mutual information have become very

popular in scoring positional conservation (Pei and Grishin, 2001; del Sol Mesa et al.,

2003; Pirovano et al., 2006), although, as such, they do not account for different stere-

ochemical properties of amino acids. Furthermore, they can only be used for ungapped

alignments.

Another often used approach for scoring residue conservation is based on substitution

matrices, such as PAM, Blosum or Gonnet (Dayhoff et al., 1978; Henikoff and Henikoff,

1993; Benner et al., 1994). These matrices are used to quantify the similarity of amino

acids in an aligned position. An often used score is a sum-of-pairs score, which is the sum

of pairwise alignment scores, where the alignment score can be any residue comparison

matrix normalized so that the diagonal values are always one (Karlin and Brocchieri,

1996). The idea of the sum-of-pairs score was originally introduced by Carrillo and Lip-

man (1988) for the alignment problem, and has been subsequently used in many MSA

programs and conservation scores (Pilpel and Lancet, 1999; Armon et al., 2001; Pei and

Grishin, 2001; Valdar and Thornton, 2001). The original sum-of-pairs score has usually

been supplemented by gap opening and extension penalties for introducing insertions and

deletions into alignment. The mean distance (MD) score, implemented into the ClustalX

program (Thompson et al., 1997), does not directly use a sum-of-pairs score, but is based

on the concept of continuous sequence space (Vingron and Sibbald, 1993). The MD score

calculates the mean distance of all residues from the consensus point (Thompson et al.,

2001). The normalized MD score (norMD) is comparable among different alignments,

and also penalizes for gaps. Another group of scores accounting for amino acid propensi-

ties uses stereochemical groups of amino acids. These scores calculate the minimal set of

physiochemical properties that represent any group of amino acids in an aligned column

(Taylor, 1986; Zvelebil et al., 1987; Livingstone and Barton, 1993).

Many authors have proposed scores which incorporate physicochemical properties of

amino acids into the Shannon, relative or mutual entropy scores. Mirny and Shakhnovich
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2.1. Scoring residue conservation

(1999, 2001) incorporated grouping of amino acids into the Shannon entropy. The amino

acids were grouped according to their physicochemical properties into six classes. Earlier

Williamson (1995) had used relative entropy for groups of amino acids. These scores

combining entropy and amino acid groups, however, ignore relative frequencies within the

partition (Valdar, 2002).

Later measures have also incorporated sequence similarity into the entropy-based

scores. Caffrey et al. (2004) introduced the use of the von Neumann entropy (Lifshitz

and Pitaevskii, 1980) to test the conservation of protein interfaces. The von Neumann

entropy uses the density matrix, whose components are obtained by multiplying residue

relative frequencies by their similarities. Jensen-Shannon divergence measures the devi-

ation between the relative frequencies of amino acids and background distribution using

relative entropy (Capra and Singh, 2007; Lin, 1991). Kalinina et al. (2004a,b) used a

modified mutual information score to predict residues which determine the functional

specificity of predefined groups. Their method, SDPpred, uses smoothed residue relative

frequencies, in which amino acid substitutions have been accounted for. Other modifica-

tions use amino acid similarities (e.g. Blosum matrix) instead of background probabilities

in relative entropy or relative joint entropy-based scores (Capra and Singh, 2007; Mihalek

et al., 2007).

The evolutionary trace (ET) method, originally introduced by Lichtarge et al. (1996),

was a first attempt to account for the evolutionary history of a protein family in the

conservation scores. The ET method was developed to identify active sites and functional

protein interfaces when the structure of a protein is known. The ET method consists of

the following steps Lichtarge et al. (1996):

1. Construct a phylogenetic tree from a MSA.

2. Assemble a consensus sequence for each branch of the tree.

3. Align consensus sequences.

4. Compute an evolutionary trace by assigning each position as neutral, conserved

(invariant) or class-specific.

5. Map a status of each site by color coding onto the 3D structure of the protein.

After the development of the original ET method, developers of Consurf and other

authors have used different methods for calculating the phylogenetic tree (1) and con-

servation of consensus sequences (4) (Armon et al., 2001). The first version of Consurf

applied a conservation score, where physicochemical distances between each pair of amino

acid were taken into account (Armon et al., 2001). Later versions have used evolutionary

rate as a conservation score. The evolutionary rate indicates how fast a site has evolved

in relation to the average site (Landau et al., 2005). In the Rate4site method, the evo-

lutionary rate can be estimated using the likelihood of the data given the tree and the
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Chapter 2. Conservation and alignment quality

evolutionary rate. The estimation can be carried out by the ML method (Pupko et al.,

2002) or alternatively by the empirical Bayesian method (Mayrose et al., 2004). The

Bayesian approach calculates a posterior distribution of the evolutionary rate assuming a

Gamma prior distribution (Mayrose et al., 2004). The evolutionary rate is estimated by

the expected value of the posterior distribution.

A good conservation score should take into account sequence redundancy in a given

MSA. However, among a considerable number of different conservation scores, only a few

have originally used sequence weighting. Principally, however, sequence weighting could

be added to most of the presented scores. One could apply average distance between

sequences (Vingron and Argos, 1989), an entropy-based measure (Henikoff and Henikoff,

1994), Voronoi weights (Sibbald and Argos, 1990), or other methods using a phylogenetic

tree, for instance (Durbin et al., 1998; Valdar, 2002). The authors using Vingron and

Agros -type weighting have used the mutation matrix (Valdar and Thornton, 2001) or

one minus percentage identity to calculate the evolutionary distances between sequences

(Sander and Schneider, 1991; Wass and Sternberg, 2008; Thompson et al., 2001). Pei and

Grishin (2001) proposed the option of using weighted relative frequencies of amino acids

instead of plain relative frequencies in their three scores, and many others have followed

them (Capra and Singh, 2007).

2.1.2 Inference on conservation scores

The interpretation of conservation scores have been traditionally made by dividing the

scores as conserved or unconserved using a predefined threshold level. Only recently,

have methods of statistical inference been used to interpret the scores and answer the

questions: ’what is the expected probability of conservation’ or ’what is the statistical

significance of an alignment position’. A simple approach is to compare the average

conservation of positions of interest with that of the other positions in order to compute

the probability that the variability of positions of interest has been obtained by chance.

This kind of approach has been used for studying the conservation of a folding nucleus

(Mirny and Shakhnovich, 2001) and the conservation of protein-protein interfaces (Valdar

and Thornton, 2001).

Several conservation measures use the Z score as a test statistic. The simplest way is

to calculate the mean and standard deviation of the conservation score, which are needed

in the Z score, over all positions in the alignment, and use a predefined threshold to de-

termine the status of the position (Hannenhalli and Russell, 2000; Wass and Sternberg,

2008). A more sophisticated way is to calculate the mean and standard deviation from the

random model, which is as close as possible to the original data, but does not include the

functional constraints of the original data (Pei et al., 2006). Mirny and Gelfand (2002)

introduced two ways to generate a random sample: random shuffling of the original posi-

tion and simulating data with the help of a phylogenetic tree. Pei et al. (2006) generated
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2.2. Methods for assessing alignment quality

a random model as a combination of random shuffling and evolutionary simulation. Fis-

cher et al. (2008) directly calculated the probability that a given position is functional

(catalytic or ligand binding). They defined the posterior probability of a position given

a conservation score, relative frequencies of residues, and other parameters predicted for

the local environment.

2.1.3 Performance of conservation scores and recent advances

Many authors have evaluated the performance of different scoring methods in predicting

catalytic, ligand-binding and protein-protein interaction (PPI) sites in protein sequence

alignments (Panchenko et al., 2004; Capra and Singh, 2007; Fischer et al., 2008). The re-

sults have shown that the prediction accuracy is highest in catalytic sites and next highest

in ligand-binding sites, while that of PPI sites is much lower, indicating that the conser-

vation cannot be solely used to predict the PPI sites. Clustering of neighboring positions

seems to improve the accuracy of prediction of functional sites. Panchenko et al. (2004)

scored clusters of residues in contact, while sequential neighbors have been exploited by

others (Capra and Singh, 2007; Fischer et al., 2008). Recent advances in prediction of

protein functional sites have been made by combining different sequence and structural

information, such as relative frequencies of amino acids, identity, solvent accessibility, sec-

ondary structure, relative position on protein surface, along with conservation, into the

machine learning framework (Gutteridge et al., 2003; Panchenko et al., 2004; Petrova and

Wu, 2006).

To conclude, conservation scores have been successfully used for finding and verifying

many important structural and functional sites in proteins. Although recent methods

often use additional sequence and structural information in the prediction, conservation

has been proved to be the most important feature of the prediction (Petrova and Wu,

2006). In his review of conservation methods, Valdar (2002) concluded that no method

was both biologically and statistically rigorous at that time. Since Valdar’s review, new

conservation scores have better taken into account his criteria for a good conservation

score. Improvements could be made, however, by estimating the significance or posterior

probability of conservation in an alignment position. Furthermore, the uncertainty of the

prediction should be estimated by calculating confidence or probability intervals for the

conservation.

2.2 Methods for assessing alignment quality

This section discusses factors having an impact on alignment quality, and describes meth-

ods developed for assessing the quality of multiple sequence alignments.
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2.2.1 Factors affecting alignment quality

The major factors contributing to alignment difficulty and quality are evolutionary dis-

tance between sequences, sequence length and number of sequences (Sauder et al., 2000;

Griffiths-Jones and Bateman, 2002). The increase of evolutionary distance (decrease of se-

quence identity) complicates the alignment procedure and decreases the alignment quality.

The increased sequence length has an opposite effect on alignment quality, especially in

alignments with high evolutionary distances (Lassmann and Sonnhammer, 2002). Most of

the alignment algorithms are capable of producing biologically plausible alignments, when

pairwise identity of all sequences is more than 40 %. When identity drops below 20-25 %,

the accuracy of most alignment methods decreases dramatically (Thompson et al., 1999;

Jaroszewski et al., 2000). This is because local changes in structure between distantly

related sequences can be remarkable: conserved regions such as hydrophobic core residues

or key catalytic amino acids are usually correctly aligned, but alignment quality tends to

decrease in more variable loop regions or other regions exposed to solvent. The sequence

identity is, however, not alone a sufficient measure for validating sequence alignments (Pei

and Grishin, 2006, 2007).

2.2.2 Reference-based alignment quality scores

Cline et al. (2002) defined three criteria for a good alignment quality measure. Firstly, the

measure should be scaled so that a higher score implies higher alignment quality, secondly,

it should be optimizable, so that the quality increases when badly aligned regions are

removed, and thirdly, it should penalize for over-alignment, i.e. aligning pairs which are

structurally not alignable, for under-alignment, i.e. not aligning structurally alignable

parts, and for misalignment.

The traditional method for validating sequence alignments has been to compare them

with the corresponding structural alignments. This approach can, however, be widely

applied only for pairwise sequence alignments. The standard quality scores for pairwise

alignments are called modeler’s (fm) and developer’s (fd) viewpoint scores (Sauder et al.,

2000). The fm score measures the proportion of correctly aligned residues in the sequence

alignment, whereas the fd score describes which part of the structural alignment is cor-

rectly represented in the sequence alignment. The fm and fd scores measure specificity

and sensitivity, which control over-alignment and under-alignment, respectively. Hence,

together they fulfill Cline’s three criteria for a good alignment quality score, except for the

last part of the third criterion. These two scores have been frequently reported together

to assess the overall quality of pairwise alignments. A shift score calculates how many

residues apart the residue in the sequence alignment is from the corresponding residue

in the structural alignment (Domingues et al., 2000; Cline et al., 2002). The validation

of the shift score shows that it effectively addresses all the criteria for a good alignment

quality score (Cline et al., 2002).
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Similar measures have been widely used for evaluating MSAs. The most commonly

used alignment quality measures, when reference alignment is available, are the sum of

pairs (SP) score and the column score (CS) (Thompson et al., 1999). The CS score

measures the proportion of identical columns between the reference and test alignments:

it gives a rough overall estimate of the alignment quality, but has the drawback that even

one misaligned residue in a position reduces the score of that position to zero, and one

misaligned sequence is enough to result in a zero CS score for the whole alignment. The

SP score calculates the proportion of identically aligned residue pairs in the reference

and test alignments. Karplus and Hu (2001) modified the SP score to account for gaps

by weighting the identically aligned residues in the reference and test alignments by 2,

and the residues aligned with a gap in both alignments by 1. The CS and SP scores are

both measures of sensitivity. They have frequently been used for benchmarking the MSA

methods in different reference alignment databases.

2.2.3 Reference-independent alignment quality scores

If no reference alignment is available, the alignment quality can be assessed by reference-

independent methods. Conservation has traditionally been used as a measure of alignment

quality (Pei and Grishin, 2001). Principally, any column-based conservation score pre-

sented in a section 2.1 could be used as a quality score by summing up the positional

scores over the entire length of the alignment. One such measure is the sum-of-pairs mea-

sure of Carrillo and Lipman (1988), from which many other scores have obtained their

inspiration. The benefit of the scores based on the sum-of-pairs is that the similarity

of amino acids has been taken into account. It should be noted that this sum-of-pairs

measure is different from the SP score presented in the previous section.

Pei and Grishin (2001) introduced several positional conservation measures, which

are based on the use of the sum-of-pairs score, the Shannon entropy or the variance of

relative frequencies of residues. The authors also used these positional scores to assess

the quality of whole alignments. They compared the conservation of manually curated

SMART (Schultz et al., 1998) and FSSP structural alignments (Holm and Sander, 1996)

with that of ClustalW alignments (Thompson et al., 1994). The entropy-based measure

was superior to the other methods for rather similar sequences (SMART), whereas the

sum-of-pairs-based measure outperformed the others for very divergent sequences (FSSP).

These results indicate that conservation-based measures are valuable tools for assessing

the quality of MSAs.

Thompson et al. (2001) have used the norMD conservation score for measuring the

overall quality of alignments and for the detection of badly aligned regions or unrelated

sequences in MSAs. Their comparison with the other column-based methods, sum-of-

pairs, IC and MD scores in the BAliBASE reference databases (Bahr et al., 2001) shows

that the norMD is superior to the other methods.
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Beiko et al. (2005) presented a word-oriented objective function (WOOF) for align-

ment validation. Their method is not column-based, but relies on the scoring of regions of

conserved amino acids. The WOOF generates patterns from each pair of sequences and

calculates a weighted proportion of correctly aligned residues. The results of Beiko et al.

(2005) show that both the WOOF score with exact pattern matches and the IC score

assign very high scores to BAliBASE reference alignments compared to the automatically

generated alignments. The norMD score, on the contrary, did not favor reference align-

ments over automatically produced alignments. This result is somewhat inconsistent with

the results of Thompson et al. (2001).

In their article, Hertz and Stormo (1999) described two procedures for calculating the

significance of IC for a whole MSA, and used these measures to identify optimal align-

ments. The first procedure used large-scale deviation statistics, while the other was based

on pure numerical calculations. Later, Nagarajan et al. (2005) and Keich (2005) used

modified fast Fourier transformation to estimate the p value for an IC. Recently, Tomovic

and Oakeley (2007) applied Bayes factors and posterior probabilities to distinguish ran-

dom alignments from biologically relevant ones. Their results showed that the Bayesian

method had higher specificity compared to the two methods proposed by Nagarajan et al.

(2005) and Keich (2005). All these approaches calculating the significance of the IC are,

however, only applicable for local ungapped alignments, and they have mostly been tested

for short DNA sequences. Furthermore, like all positional quality scores, they assume that

alignment positions are independent from each other, which is too strict an assumption.

Another approach to assess alignment quality is to use known protein structures. This

is especially beneficial with divergent sequences, since the best alignments of remote homo-

logues have been built using structural information (Jaroszewski et al., 2000; Menke et al.,

2008). The iRMSD (Armougom et al., 2006) and its previous version, APDB (O’Sullivan

et al., 2003), are based on the RMSD, which measures the distance between equivalent

alpha carbons of two superposed structures. The iRMSD score has been improved so

that the score is independent of any structural superposition methods. The iRMSD score

assumes that if two residue pairs, say A1B1 and A2B2, are correctly aligned, then the dis-

tances of two residues, d(A1, A2) and d(B1, B2), within both sequences must be roughly

equal. The normalized iRMSD (NiRMSD) takes into account alignment lengths, and can

be used to compare alternative alignments. Armougom et al. (2006) have shown that in

the BAliBASE database, the performance of the NiRMSD is 90% consistent with that of

the SP score, when the SP score was calculated for the core blocks only. The drawback

of the NiRMSD score is that it can only be used to compare the relative accuracy of two

alignments and, more importantly, the structures of at least two sequences of alignment

must be available.

If the structures of at least two sequences of alignment are available, another possibility

is to use structural similarity scores, such as the DALI Z score (Holm and Sander, 1998),

the TM score (Zhang and Skolnick, 2004), the GDT-TS score (Zemla et al., 1999) or the
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3D score (Rychlewski et al., 2003), for the evaluation of alignment accuracy (Pei and

Grishin, 2006, 2007). Pei and Grishin (2006; 2007) obtained good correlation between the

reference-independent structural similarity and reference-dependent scores. The result

indicates that the structural similarity scores could be helpful in benchmarking alignment

programs, for instance, especially when the similarity of sequences is low. It should be

remembered, however, that such evaluation is based only on sequences whose structure is

available.

The concept of consistency was first introduced for constructing pairwise alignments

by Gotoh (1990) and Vingron and Argos (1991). Currently, it is used in the best strategies

for constructing MSAs (Edgar, 2004; Katoh et al., 2002, 2005; Do et al., 2005), and it has

also been used to assess alignment quality. The use of consistency in measuring alignment

quality originates from Mevissen and Vingron (1996), who presented a reliability score

for every residue pair of optimal pairwise alignment using sub-optimal alignments. Their

measure is based on the assumption of consistency, that is, that the positions which are

consistent among several suboptimal alignments are usually highly conserved, and have

been proved in many studies to be reliably aligned. Lassmann and Sonnhammer (2005)

also used consistency as a core idea in their alignment quality method. Their MOS score

is based on aligning the same set of sequences with several MSA programs and comparing

the results. The alignment quality is determined by the proportion of similarly aligned

residue pairs among all pairs of aligned residues. Their comparisons show that the MOS

score clearly outperforms the norMD, average identity and the scores proposed by Pei

and Grishin (2001). The authors report that the MOS score might be sensible for the

choice and number of test alignments. Landan and Graur (2007, 2008) also relied on

consistency. As distinct from Lassmann and Sonnhammer’s method, they used several

suboptimal alignments and the same alignments in reversed residue order. Vingron (1996)

pointed out that consistency-based scores cannot recognize the real relation of sequences

and should, therefore, only be applied to similar sequences, since even unrelated sequences

could be similarly aligned.

In conclusion, the measures quantifying alignment quality can be divided into those

relying on conservation, consistency or structural similarity. The evaluation of the scores

is difficult, since no comprehensive comparison has been made. The performance of the

new scores has usually been compared with that of the SP score. This comparison gives

a test for sensitivity, whereas a test for specificity has often been ignored. Scores for

measuring specificity, such as the fm score (Sauder et al., 2000) or the shift score (Cline

et al., 2002) for pairwise alignments, should also be developed for the evaluation of MSA.

Almost all measures are meaningful in the sense that the absolute scores of different

alignments with different characteristics can be compared. The statistical inference of

quality scores, such as significance tests, confidence intervals or posterior probabilities,

has, however, usually been ignored.
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Methods

3.1 Multiple sequence alignment

3.1.1 Formulation of MSA

In the following, we present a mathematical formulation for the MSA (Koski, 1999; Wa-

terman, 1995). Suppose, we have N amino acid sequences

ololol = (ol
i1
, ol

i2
, . . . , ol

im(l)
), for l = 1, 2, . . . , N, (3.1)

of length m(l). The sequences consist of symbols oi from the 20 letter alphabet O =

{A, C, . . . , T, Y } of amino acids. The MSA of the sequences ololol is a two-dimensional array

of N rows and L columns, and can be designated as

A :

o1
1, o1

2, . . . , o1
L

o2
1, o2

2, . . . , o2
L

...
...

. . .
...

oN
1 , oN

2 , . . . , oN
L .

Each row represents one sequence and each column the residues, which have been assumed

to be evolved from the same position of the common ancestor. The residue mismatches

within a column are interpreted as point mutations. Technically, we need to add a gap
′−′ to the alphabets to describe insertion or deletion indels, which usually cannot be

distinguished from each other. Pairwise sequence alignments are special cases of MSAs

where l = 2.

3.1.2 Probabilistic model for MSA

In this section, we formulate a statistical model for MSA. The model assumes that the

positions of MSA are independent. We assume that amino acids have fixed probabilities

β = (β1, β2, . . . , β20) to occur in the sequences. Let us introduce Y = (Y1, Y2, . . . , Y20) as

27



Chapter 3. Methods

a vector of random variables defining the number of times each amino acid occurs in an

alignment position. Then, the observations (n1, n2, . . . , n20) from the random variables

(Y1, Y2, . . . , Y20) follow a multinomial distribution

P(Y1 = n1, Y2 = n2, . . . , Y20 = n20) =
n!∏20

i=1 ni!

20∏

i=1

βni

i , (3.2)

where n is the number of amino acids in an alignment position.

The probabilities of amino acids are unknown, but the maximum likelihood (ML)

estimators of β are given by the relative frequencies of amino acids

bi =
ni

n
, for i = 1, 2, · · · , 20. (3.3)

The vector of background probabilities β0 = (β0
1 , β

0
2 , . . . , β

0
20) describes a random

distribution of amino acids. As a background, we used the distribution of the amino

acid composition of all proteins in the SWISS-PROT database (Boeckmann et al., 2003)

(Publications I and II) or the amino acid distribution of the whole MSA of interest (Pub-

lications III and IV). The latter background distribution was chosen to obtain a better

estimate of the underlying amino acid composition of the protein family of interest.

The mean and variance of number of an amino acid i are E(ni) = nβi and Var(ni) =

niβi(1 − βi), from which it follows that the expectation vector and covariance matrix of

b = (b1, b2, . . . , b20) are given by

E(b) = β and Cov(b) = Σ, (3.4)

where

Σij =
βi(δij − βj)

n
, for i, j = 1, 2, . . . , 20, (3.5)

and the Kronecker’s delta function is defined by δjj = 1 and δij = 0 for all i 6= j.

3.1.3 Statistical hypotheses for MSA

This section presents the statistical hypotheses which were used to identify conserved

residues and conserved positions in MSA. The following hypotheses were postulated for

testing whether the occurrences of residues follow an underlying background distribution:

H0i : βi = βo
i , for i = 1, 2, · · · , 20 (3.6)

versus

HAi : βi ≥ βo
i , for i = 1, 2, · · · , 20, (3.7)

where at least one inequality is proper.
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Since the hypotheses can be considered as a family of 20 hypotheses, we can express

the null hypothesis as an intersection of hypotheses and the alternative as a union of

hypotheses (Roy, 1953):

H0 : βi =
20⋂

i=1

βo
i and HA : βi =

20⋃

i=1

βo
i . (3.8)

3.2 Methods for scoring conservation

This section introduces three types of conservation scoring methods. The residue conser-

vation scores divide individual residues into conserved and unconserved in a given MSA

position (Publications I and II). The positional conservation score calculates conservation

for each alignment position (Publication III). Finally, the whole alignment conservation

score defines conservation for the entire alignment (Publication III). In the following text,

the terms ”residue conservation” and ”positional conservation” have been used to distin-

guish the first two of these approaches.

3.2.1 Scoring residue conservation

In this section, we present three methods, Dunn-Sidak, Bauer and Iterative scores, for

identifying conserved residues at each MSA position. The Dunn-Sidak and Bauer scores

have been originally presented in Publication II, and the Iterative score in Publication

I. The Dunn-Sidak and Bauer scores test the H0i hypothesis (3.6) against an alternative

(3.7) in order to decide which of the residues at one MSA position occur more often than

would be expected from the background probability of that residue. Both scores use

Zi =
bi − E(bi)√

Var(bi)
, for i = 1, 2, · · · , 20 (3.9)

as a test statistic for each individual residue i. The Zi statistics are assumed to be

independent and identically distributed N(0, 1) random variables. For testing the null

hypothesis H0i, the rejection region for the Z test is in the form

max
1≤i≤20

Zi > ξ, (3.10)

where ξ is a critical value. The critical value can be defined from the Union-Intersection

(UI) test for H0 (3.8) (Roy, 1953). The rejection region is defined as a union of rejection

regions, i.e. H0 is rejected only if at least one H0i is rejected. In order to contol the

family-wise error rate (FWE), that is, the risk of a false decision at some predefined level

α, the ξ must be chosen so that under H0

P( max
1≤i≤20

Zi > ξ) = α. (3.11)
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Under H0 Z1, Z2, . . . , Z20 have a 20-variate normal distribution and, hence, the critical

value ξ is an upper α point of the standard normal distribution, which is denoted as Zα
20.

For the Dunn-Sidak score, we specified a critical value ξ, so that it would better ac-

count for the multiple tests made at each alignment position (Publication II). To obtain

a less conservative approximation for the critical value, we used the Dunn-Sidak proce-

dure (Dunn, 1958; Hochberg and Tamhane, 1987). From Sidak’s inequality (Sidak, 1967;

Hochberg and Tamhane, 1987)

P( max
1≤i≤20

Zi ≤ ξ) ≥
∏

1≤i≤20

P(Zi ≤ ξ) (3.12)

it follows that if each test Zi is of size

P(Zi ≤ ξ) = (1 − α)1/20 (3.13)

then

P( max
1≤i≤20

Zi ≤ ξ) ≥ 1 − α. (3.14)

The approximation to the upper bound of ξ results in Z
1−(1−α)

1
20

20 , which is an upper

1 − (1 − α)
1
20 point of the standard normal distribution.

Let us assume that under H0 b has an asymptotically multivariate normal distribution.

The expectation and variance of distibution of b are obtained from the equations (3.4) by

replacing the unknown β by the corresponding value of the background distribution βo.

The Dunn-Sidak conservation score can now be expressed as

IDS = {i :
bi − βo

i√
βo

i (1−βo
i )

n

> Z
1−(1−α)

1
20

20 , 0 < α < 1}. (3.15)

The score determines the residues whose Z score under the H0 is over the critical point

Z
1−(1−α)

1
20

20 as conserved and the other residues as unconserved. Let us define the sets of

conserved and unconserved residues as J1 and J2, respectively, and J = J1 ∪ J2.

In Publication II, we also introduced the Bauer conservation score. The Bauer

score is assigned as

IB = {i : ni = n or
bi − βo

i√
bi(1−bi)

n

> n
1
c , c > 2, ni > 0}, (3.16)

where c is a fixed threshold value. Here n
1
c → ∞ and n

1
c σin → 0 for n → ∞ and

all 0 < βi < 1 (Bauer et al., 1988). The Bauer score differed from the Dunn-Sidak

mainly in the way it calculates the variance. While in the Bauer score, βi is replaced

by its ML estimate bi, in the Dunn-Sidak score, the variance is calculated under the null

hypothesis. Another difference between the methods is that in the Dunn-Sidak score, the
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significance level α is fixed, meaning that, even if the sample size tends to infinity, the

risk of misclassification of unconserved residues is always α. In the Bauer score, on the

contrary, the significance level converges to zero, i.e. ci(n) → ∞. Therefore, as the sample

size increases, the number of misclassifications tends to zero, although very slowly.

In Publication I, we introduced an algorithm to calculate an Iterative conservation

score. In that publication, conserved and unconserved residues have been called effective

and ineffective, respectively. The iterative conservation score (IIT ) is based on comparing

the proportion of residues in one alignment position with respect to their background

probabilities. The residue which determines the largest ratio between the ML estimates

and background probabilities exceeding a fixed threshold value c > 1 is chosen as con-

served. The rest of the ML estimates and background probabilities of the residues are

renormalized to sum to one. The renormalization ensures that the residues with low and

high background probabilities are handled equally. The iteration is continued until the

largest ratio does not exceed the threshold value. The algorithm for calculating the IIT

score has been elaborated in Publication I.

3.2.2 Scoring positional conservation

For scoring positional conservation, the Z statistic (3.9) was calculated for the profile

instead of the ML estimates of residue probabilities (Publication III). The profile for

amino acid i is expressed as

fi =

20∑

j=1

bjcij = cT
i b, for i = 1, 2 · · · , 20, (3.17)

where cij denotes one component (i, j) of the whole substitution or similarity matrix C.

The expectation vector and covariance matrix for the profile under H0 (3.6) are defined

as

E(f ) = Cβ0 and Cov(f ) = CΣ0CT , (3.18)

where the entries of Σ0 are defined as in (3.5) but βi and βj has been replaced with β0
i

and β0
j . Applying the expectation and covariance to the Z statistic (3.9) gives us a Z

statistic for the profile (3.17)

Zi =
cT

i (b − β0)√
cT

i Σ0ci

, i = 1, 2, . . . , 20. (3.19)

This statistic differs from the Z statistic used for scoring individual residues by taking

into account the similarities or other criteria describing the stereochemical relationships

between amino acids. For scoring alignment positions, we used as a test statistic the

maximal Zi value, maxZ. Hence, we avoided carrying out multiple tests within one

alignment position.
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The significance of the maxZ statistic was calculated by testing the null hypothesis

(3.6) against the alternative (3.7) using an importance sampling (IS) method (Rubin,

1988). The low observed significance level indicates that the observed value of maxZ

is significantly larger than that which would be likely to arise under H0 due to random

variation. The alignment position with a low significance level was defined as conserved.

In order to apply the IS method, we defined the IS distribution as a mixture of multi-

nomial distributions for 20 amino acid frequencies (Publication III)

g∗ = P(n1, n2, . . . , n20|β
0
1 , β

0
2 , . . . , β

0
20, α, ǫ)

= α( n
n1,0...n20,0

)
∏20

i=1 β
0ni,0

i,0

+ 1−α
K

∑K
k=1(

n
n1,k...n20,k

)
∏20

i=1 β
ni,k

i,k ,

(3.20)

where α > 0, ǫ < 1, K + 1 denotes a number of mixture components, which is here the

number of amino acids plus one, β0
i,0 is the background probability of the ith amino acid

in the 0th mixture, ni,k is the ith amino acid frequency in the kth mixture and

βi,k =

{
ǫ + (1 − ǫ)

β0
i

K
, i = k,

(1 − ǫ)
β0

i

K
, i 6= k.

This IS distribution has one mixture component for the background distribution and one

for each amino acid. The α (mixture) parameter determines which parts of the samples

are drawn from the background distribution (first mixture) and which from the other K

mixtures. The ǫ (shape) parameter approximates the probability of the highest amino

acid, while the probability of the other amino acids are proportional to their background

distribution.

Using this IS distribution, the IS procedure converges rather rapidly. This is because

by using K + 1 mixtures we can obtain a good coverage in the 20-dimensional parameter

space, but at the same time, by using large ǫ values, we can obtain extreme samples

from the parameter space, and hence, obtain more exact significance levels for extreme

observations. The entire IS procedure for calculating significance levels for each alignment

position has been elaborated in Publication III.

3.2.3 Scoring whole alignment conservation

After calculating the significance tests for each alignment position by IS sampling, we

corrected the false-positive error rate of multiple tests by controling the false discovery rate

(FDR), i.e. the expected proportion of erroneously rejected null hypotheses (Benjamini

and Hochberg, 1995). The FDR was chosen since our main interest is not to increase

the statistical power of single tests, but to find the set of conserved alignment positions.

Furthermore, we expected to find many conserved positions in the alignment, and it

has been proven that the FDR methods are most applicable for this kind of approach

(Dudbridge and Koeleman, 2004). We applied a step-up procedure, which takes the
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dependency of test statistics into account (Benjamini and Yekutieli, 2001). With the given

FDR and the length of MSA, the procedure chooses which of the hypotheses H0i (3.6)

are not supported, i.e. which of the alignment positions can be considered as conserved.

The full step-up procedure has been described in Publication III.

Next, we defined a quality score for the whole alignment using the FDR-corrected

significance tests. The whole alignment score measures the conservation level of MSA.

The score was defined by the proportion of residues located in the conserved alignment

positions, hence, it also takes the number of gaps into account. The whole alignment

conservation score ConsAA is designed as

ConsAA =

∑
j∈J∗ nj∑L
j=1 nj

, (3.21)

where nj is the number of residues at position j, and J∗ is a set of conserved alignment

positions. The ConsAA will be used as a core for building the alignment quality scores

in the next section.

3.3 Applications of conservation scores

This section first describes how the methods identifying conserved and unconserved residues

in an alignment position can be used to solve the overfitting problem in profile HMMs

(Publication I). Then, it introduces two measures for quantifying alignment quality. Both

of these measures determine quality in terms of the whole alignment conservation score

ConsAA. The first score assumes the true reference alignment to be known (Publication

III), while in the second score, this assumption has been relaxed (Publication IV).

3.3.1 Emission probability estimation method for profile HMMs

In the profile HMMs, the conserved residues of MSA are modeled by emissions in the

match states (Krogh et al., 1994; Eddy, 1998). The emission probability distribution of

match states is usually estimated by the ML or an alternative Bayesian method. When

using the ML method, the emission probabilities are calculated for each amino acid at

each alignment position. Since the profile HMMs can be very long, the number of esti-

mated emission parameters can be enormous, and this may cause the overfitting problem.

In the Bayesian framework, this problem has been solved by incorporating some under-

lying characteristics of alignment environments into the model using the Dirichlet prior

distribution (Sjölander et al., 1996). The use of the 1-component Dirichlet distribution is

a probabilistic way to add simple pseudocounts to the count of each residue in the align-

ment (Durbin et al., 1998), whereas the use of the Dirichlet mixture prior distribution

corresponds to the use of linear combination of pseudocounts (Sjölander et al., 1996).
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We have developed an efficient emission probability (EEP) estimation method to re-

duce the parameter space in the emission probability estimation of profile HMMs, and

hence, overcome the overfitting problem (Publication I). The method is based on the idea

of choosing which of the residues in the alignment are conserved and unconserved, and

then incorporating this information into the ML estimation. The method assumes that

unconserved residues follow the background distribution.

First, the three constraints have been determined for the log-likelihood function of the

multinomial distribution function

l =
∑

j∈J

nj log bj . (3.22)

The constraints enable the reduction of the parameter space. The first constraint forces

the mutual ratios between the residue relative frequencies and their background probabil-

ities to be equal in the set of unconserved residues. The second condition is needed to give

a small, non-zero estimate for unconserved residues when only conserved residue(s) ap-

pear in that position. The third condition ensures that the emission probabilities always

sum to one.

The optimisation problem has then been solved with the Lagrange multipliers method

(Luenberger, 1984). In the first solution, the EEP estimated probabilities b∗j are given by

b∗j =
nj

P

j∈J nj
, for j ∈ J1, and

b∗j =
bo
j

P

j∈J2
bo
j

P

j∈J2
nj

P

j∈J nj
, for j ∈ J2.

The EEP estimators for conserved residues are ML estimators, but the estimates of un-

conserved residues are obtained by dividing the sum of the probability of unconserved

residues in proportion to the background probabilities. If a position has been occupied

with conserved residues only, the EEP emission probability estimates take the forms

b∗j =
c

P

j∈J1
bo
j

c
P

j∈J1
bo
j+

P

j∈J2
bo
j

nj
P

j∈J1
nj

, for j ∈ J1, and

b∗j =
bo
j

c
P

j∈J1
bo
j+

P

j∈J2
bo
j

, for j ∈ J2.

The latter solutions are an alternative to the pseudocount methods, ensuring that the

emission probabilities are always non-zero.

The EEP method has two advantages over the ML method: the first advantage is

that the number of parameters needed for emission probability estimation is dramatically

reduced. While in the ML estimation, 20 parameters are needed for each match state, in

the EEP estimation, the number of parameters is the number of conserved residues plus

one. Hence, only one parameter is needed to estimate the emission probabilities of all

unconserved residues. The second advantage is that the EEP method always produces

non-zero emission probability estimates.
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3.3. Applications of conservation scores

3.3.2 Reference-based alignment quality score

When reference alignment is available, the quality of the alignment can be assessed by

explicitly comparing the proportion of conserved residues, ConsAA, in reference and test

alignments. The alignment quality (AQ) score, originally presented in Publication III,

can be expressed as

AQ = [1 − (|ConsAAref − ConsAAtest|/ConsAAref)] ∗ 100. (3.23)

The AQ score measures what percentage of conservation of reference alignment is included

in a test alignment. The AQ score can be used in benchmarking MSA programs, for

instance. Compared with the SP score, which calculates the proportion of correctly

aligned residues and does not distinguish between divergence and homologous regions,

the AQ is focused on comparing the total conservation of alignments.

3.3.3 Reference-independent alignment quality score

When the ”true” reference alignment is not known, the quality of alignments cannot

be assessed by the score presented in the previous section, but a reference-independent

validation method is needed. This section describes a model-based quality score, which

can be used when only primary multiple sequence alignment is available. The score

does not need structural information or several alternative alignments, but is based on

the conservation of the whole MSA and additional ab initio sequence information. The

model-based quality score was originally presented in Publication IV. An overview of the

building and use of the quality score is illustrated in Figure 3.1.

For building a model-based quality score, one has to choose one or several reference

alignment databases, which are used as a source of conservation information about known

proteins from the whole protein fold space. The database should include multiple align-

ments of reference protein sequences, and the number of aligned sequences should be

large enough for statistical analysis. The reference alignments should be biologically as

correct as possible, for example, structural alignments. This is a huge demand, since the

construction of multiple structural alignments, especially for remote homologues, is often

a difficult or even impossible task. We used two thirds of the Homstrad database as a

reference (Mizuguchi et al., 1998).

Next, one or several MSA programs have to be chosen. The programs should be

proven to be accurate and fast enough to align sequences in one or several reference

alignment databases. We used three alignment programs, Mafft (L-INS-i mode), Muscle

and Probcons (Katoh et al., 2002, 2005; Edgar, 2004; Do et al., 2005). The sets of reference

sequences were re-aligned using the three methods, and the reference-based quality scores

were calculated to measure how far the automatically aligned sequences are from the

reference alignments. We chose the SP score as a reference quality score, but principally
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Chapter 3. Methods

Figure 3.1: Diagram for building and using the alignment quality model. Stage 1 illus-

trates the steps for calculating the beta regression parameter estimates, and stage 2 their

use in predicting the SP score for an unknown alignment.

any other quality score could have been used. The conservation score and other ab initio

alignment characteristics were used as predictors in the statistical model. We used the

ConsAA as the conservation measure, and average of pairwise sequence identity, number

of sequences and alignment length as predictors.

The SP score can obtain values on the bounded unit interval [0,1], and hence, the SP

score can be assumed to follow a beta distribution. The beta distribution is very flexible;

it can have many different shapes on the open unit interval (0,1). Since the SP score can

also be zero or one, the endpoints of the interval have to be transformed. We added 1
2M

to the zero observations and subtracted 1
2M

when the SP score was equal to one, where

M denotes the number of alignments (McMillian and Creelman, 2005).

Now let us assume that the transformed SP score follows a beta distribution

f(S̃P ; ω, τ) =
Γ(ω + τ)

Γ(ω)Γ(τ)
S̃P

ω−1
(1 − S̃P )τ−1,
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3.3. Applications of conservation scores

where S̃P ∈ (0, 1), Γ(.) is the gamma function and ω, τ > 0 are the shape parameters of

the beta distribution. Let the mean and variance of S̃P be

E(S̃P ) =
ω

ω + τ
and Var(S̃P ) =

ωτ

(ω + τ)2(ω + τ + 1)
. (3.24)

In order to transform the beta regression model to the form of the generalized linear

model, the parameters ω and τ are often transformed as (Ferrari and Cribari-Neto, 2004)




µ = ω
ω+τ

ω = µφ

⇔

φ = ω + τ τ = φ − µφ.

The mean and variance of S̃P can now be written in the form

E(S̃P ) = µ and Var(S̃P ) =
µ(1 − µ)

1 + φ
,

where the new parameters µ and φ can be interpreted as location and precision parameters.

The location and precision parameters of the transformed beta distribution can now be

estimated for alignment i in the same way as in the generalized linear models for many

other distributions using the linear equations for alignment i

g(µi) =
∑k

j=0 xijθj and

h(φi) = −
∑t

j=0 wijγj

for the location and precision of S̃P . Adding a minus sign to the equation of precision

turns the interpretation of precision to dispersion (Smithson and Verkuilen, 2006). Thus,

θ = (θ0, θ1, . . . , θk) and γ = (γ0, . . . , γt) are vectors of unknown regression parameters

for location and dispersion, and xi = (xi0, . . . , xik) and wi = (wi0, . . . , wit) are known

predictors for the location and dispersion models, respectively. Link functions g and h

have to be chosen so that the mean can have any real value between zero and one and

the variance is always positive. We used a logit and log functions as link functions. In

Publication IV, the models for the location and dispersion have been determined by

g(µi) = θ0 + θ1 ∗ ConsAAi + θ2 ∗ identityi

+θ3 ∗ number of sequencesi + θ4 ∗ alignment lengthi

h(φi) = −γ0 − γ1 ∗ ConsAAi − γ2 ∗ identityi

−γ3 ∗ number of sequencesi − γ4 ∗ alignment lengthi.

The alignment quality score, the predicted average SP score and its dispersion are

obtained by replacing θ and γ with their estimated parameter values, and predictors xi

and wi with their observed values and by applying the equations

µi =
exp(

Pk
j=0 xijθj)

1+exp(
Pk

j=0 xijθj)

φi = exp(−
∑t

j=0 wijγj).
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The uncertainty of the predicted SP score can be estimated by calculating the pre-

diction intervals for the location parameter

µi ± t1−ασ̂,

where t1−α is the 1−α’s quantile of the Student’s t distribution and σ̂ the standard error

of µi, which can be calculated using the delta method (Cox, 1998).

The strength of the use of the beta regression model is that it takes heteroscedasticity

into account in the dispersion model. This means that the association of different predictor

values with the changes in variability of SP scores can be taken into account in the

dispersion model.
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Chapter 4

Summary of the Publications

The thesis is based on the introduction part and four original publications. This chapter

summarizes the contents of the original publications.

Publication I: Efficient estimation of emission proba-

bilities in profile hidden Markov models

Publication I presents a likelihood-based approach for the estimation of mission probabil-

ities in the profile HMMs. The method overcomes the overfitting problem in the emission

probability estimation by explicitly taking into account conservation of alignment.

First, we presented an iterative classification algorithm to divide residues into con-

served and unconserved (effective and ineffective) at each alignment position. Then, we

introduced the EEP estimation method for the profile HMMs. The underlying assump-

tion of the EEP method is that the unconserved residues follow a background distribution.

The Lagrange multipliers method was used to discover the estimation formulae for the

emission probabilities. In most alignment positions, the emission probability estimates of

conserved residues are ML estimates, whereas the probabilities of unconserved residues

are obtained by dividing the remaining probability in proportion to their background

probability. In the absence of unconserved residues, the estimates of the EEP method

are proportional to their background distribution, and hence, all residues obtain non-zero

emission probability estimates.

The performance of the EEP and ML methods was compared in simulations and in

a database search of 20 protein families. The results of the database search showed a

dramatic reduction in the parameter space when the EEP was used instead of the ML

method. The sensitivities were 98% and 97% in the EEP and ML methods, respectively,

whereas the specificities were 100% in both methods. The result indicates that the accu-

racy of the EEP method was slightly better than that of the ML method, although the

number of parameters was reduced to 15 % of the original. The performance of the EEP
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method was further compared to that of the ML, HMMER and Blast in the database

search of the triosephosphate isomerase (TIM) family. The results of this small example

show that all three profile HMMs were comparable with each other when the same log-

odds score threshold value was used. The specificity of the EEP and ML methods was

100%, whereas the Blast had some false positive findings. The sensitivity of the EEP and

ML methods was somewhat lower than that of the Blast.

To conclude, the EEP method flexibly incorporates residue conservation scores into

the profile HMMs. The results suggest that this combination provides a potent method

for a database search.

Publication II: Statistical methods for identifying con-

served residues in multiple sequence alignment

Publication II continues the work of Publication I in developing measures for identifying

conserved residues in MSA. The residue conservation measures predict single conserved

residues at aligned position. The predicted residues are assumed to be under strong

evolutionary constraints and, hence, to be important for maintaining the 3D structure or

function of a protein.

This article introduces two scores for measuring residue conservation, the Bauer and

Dunn-Sidak conservation scores. The proposed scores measure whether the estimated

residue probabilities differ from their background probabilities. The scores have two major

advantages: firstly, they are based on statistical multiple comparison methodology, and

hence, the decision for selecting conserved residues is made simultaneously, and secondly,

they account for the variability of residue estimates. The two scores differ mainly in the

way they incorporate variances into the scores.

The new test procedures were compared with the iterative approach, presented in

Publication I, and traditional background- and entropy-based methods in an extensive

simulation study. The simulations were used to determine the threshold levels for the

conservation scores and to compare the number of false positive (type I error) and negative

(type II error) classifications in the different procedures. Additionally, an assessment of

the effect of number of sequences on the estimation was made. The practical performance

of the methods was evaluated in the alignments of the Src homology 2 (SH2) domain, and

three other protein families: globins, ras-like proteins and serine proteases.

The results of the simulation study showed that the false positive rate was very low,

especially in the multiple comparison based methods (<3%). The false negative rate was

greatest when the conservation level was 20%, but decreased rapidly as the level increased,

being less than 1 % with the conservation level of 30%. The classification of conserved

residues was heavily dependent on the background distribution. When the conservation

level was near to 20%, the false negative rate of rarely occurring amino acids was very
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low, but the rate was increased in the more often occurring amino acids. The impact of

number of sequences appeared when the number of sequences was decreased from 30 to

20. If the alignment had 30 or more sequences, then the error rates always remained low

(<10%).

The conservation analysis of the SH2 domain was performed by comparing the experi-

mental, functional and structural information of the domain with the results of the conser-

vation scores. Functionally, the most important sites of the SH2 domain are those involv-

ing phospotyrosine binding and those forming the binding pockets for phosphotyrosine-

following residues. All the scores classified as conserved the most important amino acids,

whose mutation would be crucial for the protein. The advantage of the multiple compar-

ison methods was that they mostly identified only the functionally important residues as

conserved, whereas the other methods also suggested that some additional residues were

conserved.

The performance of the Dunn-Sidak score and Sequence logo was further studied

using the alignments and entropy/variability classifications of globins, ras-like proteins

and serine proteases (Oliveira et al., 2003). The results showed that both the scores

detected the most important positions and highly conserved residues (Box1). When the

entropy and/or variability were decreased, both the scores identified several residues as

conserved. In the highly variable positions with low entropy, only a few residues were

identified as conserved (Box33). These findings might be false positives, or they might

indicate functional specificity of the protein subfamily (Oliveira et al., 2003).

To summarize, we have presented two multiple comparison -based residue conservation

scores. The scores, especially the Dunn-Sidak score, could be used to predict functionally

and structurally important residues in the MSAs or used, in conjunction with the EEP

method, to estimate emission probabilities in the profile HMMs.

Publication III: A statistical score for assessing the

quality of multiple sequence alignments

Publication III has two objectives. Firstly, it introduces a new conservation score for quan-

tifying the degree of conservation at each alignment position, and secondly, it introduces

the AQ measure based on this conservation score.

The positional conservation score is based on a modified Z-score for the sequence pro-

file. The Z-score includes the background distribution of amino acids and the covariance

structure of residue probability estimates, but also considers physicochemical properties

of residues. The statistical significance of the maxZ score was estimated at each alignment

position using the IS method. The novel IS distribution was introduced for this particular

problem. The ability of the maxZ score to predict functionally and/or structurally impor-

tant regions in a given MSA was studied in the SH2 domain, ras-like proteins, peptidase
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M13, subtilase and β-lactamase families. The effect of different scoring matrices on the

results was also studied. The results of the maxZ score was compared with that of the IC

and MD conservation scores.

The AQ score was derived from the results of the positional conservation score. The

positional significance tests were adjusted using a step-up procedure for controling a

predefined FDR. The conservation of the whole alignment, ConsAA, was defined as a

proportion of conserved residues in MSA, i.e. the proportion of residues occurring in

conserved positions. The AQ score quantifies the divergence of the whole alignment

conservation between the reference and test alignments. The performance of the AQ

score was evaluated by comparing the scorings of seven alignment methods with that of

the SP and CS scores in the BAliBASE database. A comprehensive comparison of the

alignment methods is reported.

The performance of different scoring schemas in the use of the maxZ score was com-

pared in the SH2 domain and ras-like proteins. The comparison matrices included the

Blosum62, Gonnet250 and PAM250 substitution matrices, the identity matrix and a 6-

class grouping of amino acids. All the scoring matrices provided similar conservation

scores. With the Blosum62, Gonnet250 and PAM250 substitution matrices, the scoring

of the highly conserved positions was, however, heavily dependent on the mutability of

the most conserved amino acid, i.e. the diagonal value of the substitution matrix.

The conservation scoring of the maxZ score was compared with that of the IC and MD

scores in the five protein families. The three scores mostly predicted the functionally or

structurally important sites as highly or moderately conserved. The result clearly shows

three main differences between the scores. Firstly, the scorings of the maxZ are dependent

on the average substitution rate of amino acids, i.e. the diagonal values of the scoring

matrices. Therefore, the maxZ score gives different scorings for invariant positions with

different amino acids. Secondly, the maxZ score considers only the most conserved residue

at the position, and therefore, is not affected by the distribution of other residues. The

MD score, on the contrary, might fail to detect some important positions, in which, for

instance, subgroups are conserved on different amino acids. Thirdly, the IC score can only

be used for ungapped alignments. Nor does the IC score give equal scores for invariant

positions.

The quality of the seven alignment methods, Clustal, Dialign, Mafft (L-INS-l and

FFT-NS-2 modes), Muscle, Probcons and TCoffee, was assessed using the BAliBASE

reference sequence alignment database. The performance of the presented AQ score was

compared with that of the frequently used SP and CS scores. The AQ and SP scores

were moderately correlated (r=0.53-0.67) in the alignments of the BAliBASE database.

Moreover, the median scorings in the six reference sets were very similar between the

AQ and SP scores, while those of the CS were considerably lower. The results show

clear difference between the AQ and SP scores. Using the AQ score, the L-INS-i strategy

of Mafft obtained the best overall result, being the best method in four reference sets,
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while the SP score ranked the Probcons as the best overall method. In the results of

the AQ score, the Probcons outperformed the other methods in two reference sets. The

differences to the Muscle, TCoffee and Clustal were, however, negligible, whereas the

FFT-NS-2 strategy of Mafft and Dialign usually scored significantly more poorly than the

other methods.

To summarize, the third article introduces a novel approach for quantifying the posi-

tional conservation of a given MSA, and uses this score as a core function to formulate an

alignment quality measure. The study of the five protein families shows that the positional

conservation score is able to predict the functionally and structurally important sites of

a protein. An alignment quality assessment of seven alignment methods and compari-

son with the other reference-based scoring methods suggest that the presented method is

reliable for assessing the quality of MSAs, when the reference alignment is available.

Publication IV: Model-based prediction of sequence

alignment quality

Publication IV generalizes the AQ score presented in Publication III for the situations

where no reference alignment is available. The novel score is a model-based prediction of

the alignment quality and is based on measuring the conservation of reference alignments

using the whole alignment conservation score, ConsAA, presented in Publication III.

The reference MSAs with different similarities, alignment lengths and number of se-

quences were obtained from the Homstrad database. The reference sequences were re-

aligned with Mafft, Muscle and Probcons alignment programs and their quality was mea-

sured by the SP score. The beta regression model was fitted for the SP score using

conservation level, identity, number of sequences and alignment length as predictors in

the model. The new quality measure, called the predicted SP score, uses the parameter

estimates of the beta regression model to predict the quality of a given global MSA. We

tested the novel quality score on the structural alignments in the test sets of the Hom-

strad and SABmark databases by comparing the predicted SP with the CS and correct

SP scores in the Homstrad and median fd and fm scores in the SABmark database. Ad-

ditionally, we compared the performance of the predicted SP score with that of the MOS,

NiRMSD and NorMD quality scores.

The results suggest that the predicted SP was highly correlated with the correct quality

scores in the test set of the Homstsrad database (rSP=0.65 and rCS = 0.60, mean of

Mafft, Muscle and Probcons alignments) and in the SABmark database (rfd
= 0.73 and

rfm
= 0.72). Among the other quality scores, the MOS score had a very strong relationship

with the correct alignment quality scores (rSP = 0.87 and rCS = 079 in Homstrad and

rfd
= rfm

= 0.83 in SABmark databases). The NiRMSD and NorMD scored slightly more

poorly than the other two methods in the Homstrad database, while the results of all the
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approaches were very similar in the SABmark database. In the Homstrad database, the

agreement of the correct and predicted SP scores and the MOS score was measured by

the mean square error (MSE) rate. All three scores were within the 1 % mean square

difference from each other, indicating very low divergence among the three scores. The

ability of the quality scores to distinquish correct alignments from alignments with badly

aligned or unrelated sequences was studied by adding random sequences to the Homstrad

alignments with 5 to 10 sequences. The results suggest that the predicted SP score

decreases in the same proportion as the number of added random sequences, whereas the

MOS score overcorrects the influence of unrelated or badly aligned sequencs.

To conclude, Publication IV uses the statistical prediction model, together with the

conservation scoring method, for the prediction of alignment quality. The results suggest

that the quality of any global MSA can be evaluated by the novel model-based approach.

Contribution of the author

The ideas of Publications I, II and III were joint work. In Publications II and III, the

author participated in developing the theoretical approaches. The design of computational

experiments was planned by the author with the help of the other co-authors. The author

implemented the methods and carried out all the simulations, computational experiments

and statistical analyses. Publications I, II and III were mostly written by the author.

The co-authors commented and helped by revising the manuscript. Publication IV was

initiated by the author. The author implemented the methods, and planned and carried

out the computational experiments and statistical analyses. The author was the principal

writer of Publication IV. The co-authors contributed by commenting on and revising the

manuscript.
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Discussion

This study introduces methods for predicting conserved residues or positions in a given

MSA. These measures were used as the core in developing further methods. The measures

for quantifying alignment quality were derived from the positional conservation scores,

whereas the estimation method for profile HMMs was based on the methods identifying

individual residue conservation.

We have developed two statistical approaches for scoring residue conservation in an

alignment position. We have shown that these scores are useful when they are used in

conjunction with profile HMMs. The method proposes an alternative to the frequently

used Bayesian approach (Sjölander et al., 1996). It is a noteworthy solution to the ques-

tion of how the overfitting problem could be handled in the profile HMMs, and more

broadly speaking, how the explicit prediction of conserved residues could be used in the

comparative genomics methods.

The positional conservation score uses as a test statistic a maximum Z value, which

has been calculated for the sequence profile. The test statistic fulfills most of the criteria

defined for a good conservation score (Valdar, 2002). The maxZ score is simple and

maps an alignment position into the bounded interval of real numbers, it accounts for

the relative frequencies and stereochemical properties of residues as well as gaps. The

sequence weighting is the only requirement that was not fulfilled. The ability to normalize

against redundancy is an important characteristic of a conservation score and should

always be accounted for. A variety of weighting methods related to genetic distance

between sequences or symbol entropy, for instance, have been proposed for conservation

and profile analysis (Vingron and Argos, 1989; Durbin et al., 1998; Valdar, 2002). The

weighting of relative frequencies of residues in the maxZ score could be done by applying

any appropriate weighting method in the same way as described by Pei and Grishin (2001).

Traditionally, many conservation scores are simple and have not been presented in

the form of a test statistic or probability model, which would enable statistical inference,

such as calculation of significance tests, confidence intervals or posterior probabilities.

This might have arisen from the fact that they often require either complicated sampling
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or asymptotical approximations, whereupon the methods might become time-consuming.

During the last few years, more and more statistical inference has been incorporated

into the conservation analysis (Mirny and Gelfand, 2002; Pupko et al., 2002; Mayrose

et al., 2004; Marttinen et al., 2006; Pei et al., 2006; Fischer et al., 2008). We have

used the IS method to estimate the significance of the maxZ score. The method has been

proved to provide reliable results, but calculation of p values for large alignments might be

time-consuming. The difference from another sampling method presented by Mirny and

Gelfand (2002) is that our method does not use an evolutionary tree, but the sampling is

controlled by the IS distribution. Recently, conservation has been calculated for clusters

of alignment positions (Panchenko et al., 2004; Capra and Singh, 2007; Fischer et al.,

2008). The results suggest that the prediction power of functional sites could be improved

if the consecutive, interacting or co-evolving alignment positions were simultaneously

considered.

Conservation has been proved to be a valuable measure for alignment quality as-

sessment (Pei and Grishin, 2001; Thompson et al., 2001). The reference-independent

alignment quality measures have been traditionally formulated by summing over the po-

sitional conservation scores (Valdar, 2002). Our approach also uses conservation, but

accounts for the effect of making multiple tests and the effect of gaps. Alternative ap-

proaches usually require structural information or that parallel alignments are available

(Armougom et al., 2006; Lassmann and Sonnhammer, 2005). Our model-based quality

score does not need any additional information on tested sequences. It uses conservation

and other ab initio sequence information available in the existing reference alignments

to formulate a prediction model, and exploits this information in the prediction of the

quality of a given alignment. The difference from the consistency-based methods is that

in our prediction method, information on other alignments is computed only once, while

in the consistency-based methods, the alternative alignments have to be constructed for

each alignment quality assessment. Furthermore, the uncertainty of the prediction can be

estimated using the statistical approach.

The model-based prediction assumes that the reference alignments are biologically

’correct’, and that they are a comprehensive set of a type of alignments one would like

to predict. The limitation inherent in the reference alignment databases is that different

structural alignment methods may produce somewhat different alignments (Goldsmith-

Fischman and Honig, 2003; Notredame, 2007). In the Homstrad database, which we

used, the limitation was that the structural alignments have been supplemented using

ClustalW, and hence, the alignments are not necessarily structurally correct. The model-

based prediction method could be further developed by applying a more comprehensive

reference alignment database. Furthermore, cross-checking of the effect of different struc-

tural alignment databases on quality assessment could be useful in further improving the

prediction power.

Recent advances in protein functional annotation have been made by combining infor-
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mation from different sources (Gutteridge et al., 2003; Panchenko et al., 2004; Petrova and

Wu, 2006). Our prediction method is flexible for testing different predictors and conser-

vation scoring methods. In future work, the alignment quality prediction could also take

into account factors within the protein sequence, such as secondary structures or solvent

accessibility. The performance of different conservation scores could also be tested.
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Chapter 6

Conclusion

The thesis has introduced statistical measures for quantifying conservation in multiple

protein sequence alignments. These measures have been used as a core in developing

further methods for comparative genomics.

The main objective of this study was to develop both biologically and statistically

relevant methods for measuring conservation of MSAs, and to use these measures for

assessing the quality of protein sequence alignments. The positional conservation score

uses a Z statistic of the sequence profile (Publication III). The Z statistic was used to test

whether the amino acids follow the underlying background distribution. The hypothesis

testing has been carried out by the IS procedure, which has been particularly tailored

for calculating positional significance levels. The significance level is our new positional

conservation score. The applicability of this score has been carefully tested in several

protein families. The result indicates that the score detects key functional positions, such

as the catalytic residues or ligand-binding sites of proteins.

The positional conservation score was exploited in the statistical prediction model for

assessing the quality of MSAs (Publication IV). The key idea of our alignment quality

score is that the conservation information available in the reference alignment databases

was incorporated into the statistical model. In this way, the information about known

proteins in the whole fold space was available for the prediction model. Conservation of

alignments was defined using our positional conservation scores to calculate the proportion

of conserved residues in the alignment. The reference alignments were realigned using

three frequently used alignment programs, and the SP score was used to measure the

quality of the realigned sequences. The beta regression model was built for the SP score

using conservation level and other ab initio alignment characteristics as predictors. The

estimated model parameters of the prediction model can be used to predict alignment

quality. The comparisons of the predicted and correct quality scores show high correlation

and low MSE between the two scores. The results suggest that our method is reliable for

assessing the quality of any global MSA.

The secondary aim of the study was to develop residue conservation scores for iden-
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tifying conserved residues in an alignment position and, by means of these scores, to

develop a method for estimating emission probabilities in the profile HMMs (Publications

I-II). We developed two residue conservation scores based on statistical hypothesis testing

(Publication II). A careful examination of these scores in the SH2 domain shows that the

scores are capable of identifying functionally and structurally important residues in MSA.

One of the constructed residue conservation scores was used as a preliminary stage

in the emission probability estimation method for profile HMMs (Publication I). The

EEP method developed overcomes the overfitting problem in the estimation of emission

probabilities. The results of the EEP method in the database search indicate that the

novel estimation method dramatically reduces the average number of estimated emission

parameters, while the accuracy was maintained at the same level. The EEP method, in

conjunction with some residue conservation score, provides a flexible method for detecting

remote homologues to the protein families, for instance.
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