
TURUN YLIOPISTO
Turku 2008

TURUN YLIOPISTON JULKAISUJA
ANNALES UNIVERSITATIS TURKUENSIS

SARJA - SER. A I  OSA - TOM. 388

ASTRONOMICA - CHEMICA - PHYSICA - MATHEMATICA

Reduction and analysis Methods 
of indigo

by

Anne Vuorema



From the Department of Chemistry, University of Turku, Finland  

 

Supervised by 
Dr Marjo Keskitalo 
Plant Production Research,  
MTT Agrifood Research Finland, Finland. 
 
Dr Frank Marken 
Department of Chemistry,  
University of Bath, UK. 
 
 
Reviewed by 
Professor Thomas Bechtold 
Research Institute for Textile Chemistry and Textile Physics, 
University of Innsbruck, Austria. 
 
Professor Fritz Scholz 
Institute of Biochemistry,  
University of Greifswald, Germany. 
 
 
Opponent 
Professor Bernd Rudolph 
FB SciTec,  
University of Applied Sciences Jena, Germany.  
 
 
Custos 
Professor Keijo Haapakka 
Department of Chemistry,  
University of Turku, Finland. 
 
 
 
 
 
 

ISBN 978-951-29-3781-3 (PRINT) 
ISBN 978-951-29-3782-0 (PDF) 
ISSN 0082-7002 
Painosalama Oy – Turku, Finland 2008 



3 

CONTENTS 

ABSTRACT 

LIST OF SYMBOLS AND ABBREVIATIONS 

LIST OF ORIGINAL PUBLICATIONS 
1. INTRODUCTION ................................................................................................. 8 
2. REVIEW OF LITERATURE ............................................................................. 10 

2.1. HISTORY OF INDIGO ................................................................................. 10 
2.2. PRODUCTION OF INDIGO ......................................................................... 11 
2.3. PROPERTIES OF INDIGO ........................................................................... 13 
2.4. REDUCTION OF INDIGO ........................................................................... 14 

2.4.1. Sodium dithionite ................................................................................. 16 
2.4.2. Biological reduction ............................................................................. 17 
2.4.3. Electrochemical reduction ................................................................... 17 
2.4.4. Glucose and catalysts ........................................................................... 20 

2.5. METHODS OF INDIGO ANALYSIS .......................................................... 21 
3. AIMS OF THE STUDY ...................................................................................... 23 
4. EXPERIMENTAL ............................................................................................... 24 

4.1. REAGENTS (I-IV) ........................................................................................ 24 
4.2. PLANT-DERIVED INDIGO SAMPLES (III,V) .......................................... 24 

4.2.1. The Extraction method of indigo (IV,V) ............................................. 24 
4.3. INSTRUMENTATION (I-IV) ....................................................................... 25 
4.4. SOLID STATE ELECTROCHEMISTRY (I,IV) .......................................... 25 
4.5. HYDRODYNAMIC PROCESSES (I-IV) ..................................................... 26 

4.5.1. Indirect electrochemical reduction of indigo (I) .................................. 26 
4.5.2. Simulation of indirect reduction processes of indigo (I) ...................... 26 
4.5.3. Glucose assisted reduction of indigo (II) ............................................. 27 

4.5.3.1. Rotating disc procedure (II).................................................. 27 
4.5.3.2. Power ultrasound procedure (II) ........................................... 27 

4.5.4. Sonic electrode (III, IV) ....................................................................... 28 
4.5.4.1. Calibration of the sonic electrode (III) ................................. 28 



4 

4.5.4.2. The Sonovoltammetric determination of indigo (III,IV) ...... 29 
4.5.4.3. Anthraquinone catalysed reduction of indigo (IV) ............... 29 

4.6. INDIGO SUBLIMATION AND SEM (IV) .................................................. 29 
4.7. SPECTROPHOTOMETRIC DETERMINATION (IV,V) ............................ 30 

4.7.1. Ethyl acetate method (V) ..................................................................... 30 
4.7.2. NMP method (V) ................................................................................. 30 

5. RESULTS AND DISCUSSION .......................................................................... 31 
5.1. SOLID STATE ELECTROCHEMISTRY (I,IV) .......................................... 31 
5.2. INDIRECT ELECTROCHEMICAL REDUCTION OF INDIGO (I) ........... 33 

5.2.1. Analysis of the voltammetric data with simulation (I) ........................ 36 
5.2.2. Interpretation of the rate constant (I) ................................................... 38 

5.3. GLUCOSE-ASSISTED REDUCTION OF INDIGO (II,III,IV) ................... 39 
5.3.1. Rotating disc voltammetry (II) ............................................................ 42 
5.3.2. Sonoelectrochemistry (II,III,IV) .......................................................... 46 

5.4. ANTHRAQUINONE CATALYSED REDUCTION OF INDIGO 

WITH GLUCOSE (II,III,IV) ......................................................................... 51 
5.5. INDIGO SUBLIMATION AND SEM (IV) .................................................. 54 
5.6. PURITY OF PLANT-DERIVED INDIGO (IV,V) ........................................ 58 

5.6.1. The optimization of extraction method (V) ......................................... 58 
5.6.2. Sonovoltammetric determination of indigo purity (IV) ....................... 59 

6. SUMMARY AND CONCLUSIONS .................................................................. 62 
7. ACKNOWLEDGEMENTS ................................................................................ 64 
8. REFERENCES .................................................................................................... 65 

 



5 

ABSTRACT 

Throughout history indigo was derived from various plants for example Dyer’s Woad 

(Isatis tinctoria L.) in Europe. In the 19th century were the synthetic dyes developed 

and nowadays indigo is mainly synthesized from by-products of fossil fuels. Indigo is a 

so-called vat dye, which means that it needs to be reduced to its water soluble leuco-

form before dyeing. Nowadays, most of the industrial reduction is performed 

chemically by sodium dithionite. However, this is considered environmentally 

unfavourable because of waste waters contaminating degradation products. Therefore 

there has been interest to find new possibilities to reduce indigo. Possible alternatives 

for the application of dithionite as the reducing agent are biologically induced 

reduction and electrochemical reduction. Glucose and other reducing sugars have 

recently been suggested as possible environmentally friendly alternatives as reducing 

agents for sulphur dyes and there have also been interest in using glucose to reduce 

indigo. In spite of the development of several types of processes, very little is known 

about the mechanism and kinetics associated with the reduction of indigo. This study 

aims at investigating the reduction and electrochemical analysis methods of indigo and 

give insight on the reduction mechanism of indigo. Anthraquinone as well as it’s 

derivative 1,8-dihydroxyanthraquinone were discovered to act as catalysts for the 

glucose induced reduction of indigo. Anthraquinone introduces a strong catalytic effect 

which is explained by invoking a molecular “wedge effect” during co-intercalation of 

Na+ and anthraquinone into the layered indigo crystal.  

The study includes also research on the extraction of plant-derived indigo from woad 

and the examination of the effect of this method to the yield and purity of indigo. The 

purity has been conventionally studied spectrophotometrically and a new 

hydrodynamic electrode system is introduced in this study. A vibrating probe is used in 

following electrochemically the leuco-indigo formation with glucose as a reducing 

agent.  

Keywords: indigo, woad, reduction, glucose, dithionite, anthraquinone, catalysis, 

electrochemistry, sonoelectrochemistry 
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1. INTRODUCTION 

Indigo is one of the oldest dyes used by mankind. The current consumption of the dye 

is enormous due to the popularity of blue jeans, which are dyed with indigo. The 

consumption of indigo and other vat dyes reaches about 33 million kg annually [1] and 

the reduction of indigo to leuco-indigo represents an important type of industrial 

process which is operated worldwide on a considerable scale [2]. Throughout history 

indigo was derived from various plants. Dyer’s Woad (Isatis tinctoria L.) was 

cultivated in wide areas in Europe until indigo from Indigofera species (Indigofera 

tinctoria) from India started to be imported in bigger scale in the 17th century [3]. In 

the 19th century came the synthetic dyes and nowadays indigo is mainly synthesized 

from by-products of fossil fuels. Recently there has been a growing interest in natural 

products obtained from renewable resources instead of oil supplies, which are non-

renewable [4]. Especially woad is interesting dye plant to cultivate in Europe and it can 

be grown also in Finland.  

Indigo is a so-called vat dye, which means that it needs to be reduced to its water 

soluble leuco-form before dyeing. The reduced form is absorbed into the fibres, and 

when oxidized back to its blue form it stays within the fibre [5]. Earlier the reduction 

and dyeing was done with fermentation [6,7]. Nowadays, the most of the reduction has 

been done chemically by sodium dithionite. It is considered environmentally 

unfavourable since it produces sulphite, sulphate, thiosulphate and toxic sulphides as 

degradation products, which then contaminate the waste waters from the dyeing plants 

[2]. Therefore there has been interest to find new possibilities to reduce indigo. 

Possible alternatives for the application of dithionite as the reducing agent are bacteria 

induced reduction and electrochemical reduction. A gram-positive, aerobic moderate 

and thermophile bacteria (Clostridium isatidis) capable of reducing indigo dye was 

isolated from woad vat at the University of Reading, UK [7,8]. In the electrochemical 

approach the possibilities are direct [9] or indirect [10,11] electrochemical reduction 

with different redox mediators. Organic reducing agents have also been investigated as 

possible alternatives to the sodium dithionite [12]. Glucose and other reducing sugars 
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have recently been suggested as possible environmentally friendly alternatives as 

reducing agents for sulphur dyes [13] and there has also been interest in using glucose 

to reduce indigo [14]. 

In addition to reducing sugars alone as organic reducing agents, anthraquinones can 

assist in the glucose induced reduction of synthetic indigo in which they act as 

catalysts. Anthraquinones have been previously recognized to stimulate indigo 

reduction by pure cultures of bacteria [15,16] and anthraquinone-rich madder powder 

is known to have been an invariable ingredient in the medieval indigo dye vat [17]. 

Anthraquinones are also known to act as mediators in the indirect electrochemical 

reduction of indigo, where they transfer electrons between electrode and dye molecule 

[18]. 

In spite of the development of several types of processes, very little is known about the 

mechanism and kinetics associated with the reduction of dispersed indigo. This study 

aims at investigating the reduction and analysis methods of indigo and give insight on 

the reduction mechanism of indigo. The study includes also research on the extraction 

of plant-derived indigo from woad and the examination of the effect of this method to 

the content and purity of indigo. 
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2. REVIEW OF LITERATURE 

This literature review consists of  sections with the history of indigo and its chemistry 

as well as its reduction  and related analysis methods. The aim of this review is to give 

a concise background of indigo and its reduction methods. 

2.1. HISTORY OF INDIGO 

Indigo has been used for thousands of years, and it’s one of the oldest dyes used by 

mankind. There is evidence of indigo being used already in mummy cloths in ancient 

Egypt [4,19]. Before the synthetic dyes were developed in the 19th century indigo as 

well as other dyes were produced from plants [20]. In Europe, Dyer’s Woad (Isatis 

tinctoria L.) was cultivated for indigo production and Indigofera species (for example 

Indigofera tinctoria) were used in the tropics. Dyer’s knotweed (Polygonum 

tinctorium) was cultivated for indigo in China and Japan. Woad is a temperate 

herbaceous biennial plant and it produces leaf rosettes on the first year (see Figure 1), 

which are harvested for the indigo production and on second year it produces flower 

stems and seeds for reproduction [21]. Woad is native to South-East Russia and it has 

spread from there to cultivation in the rest of Europe [17]. Woad was an important crop 

in Europe in the middle ages and it brought immense wealth to the woad traders. The 

renowned centres of the trade were Toulouse in France and Erfurt in Germany which 

still have some lingering effect of woad commerce [19].  

 
Figure 1. First year leaf rosette of woad (Isatis tinctoria L.) grown in Jokioinen, 
Finland (60o49’N, 23o29’E). 
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The tropical indigo overtook European markets in the 17th century even if the woad 

traders did all in their power to stop that. The indigo produced in India and Java 

replaced woad in such a way that the woad cultivation was diminished until it 

disappeared entirely in the beginning of the 20th century with the appearance of 

synthetic indigo to the markets. Synthetic indigo destroyed almost completely the 

production of tropical indigo as well [4,19]. The synthetic dyes brought also other blue 

dyes and these had superior qualities when compared to indigo and this would have 

ruined the synthetic indigo as well if the jeans hadn’t begun their invasion to the 

western culture after second world war [19]. Lately, there has been new demand on 

finding alternatives for the products made from the non-renewable materials, such as 

oil based dyes, and there is an on-going research on developing methods to produce 

biologically manufactured indigo.  

2.2. PRODUCTION OF INDIGO 

The structure of indigo was first suggested by von Bayer in 1869 and the first 

commercially successful synthesis of indigo was based on the process published by 

Heumann in 1890 [3,22]. The BASF started the production in 1897 [23]. This synthetic 

process converted phenylglycine-o-carboxylic acid by fusion with sodium hydroxide 

into indigo via indoxyl-2-carboxylic acid [24]. Indigo production with hydrocarbon 

degrading bacteria expressing mono-oxygenases or dioxygenases have also been 

investigated in search of a possible alternative for the chemical synthesis of indigo 

[25,26]. For example, Berry et al. [27] developed a fermentation process where indigo 

was produced from glucose with recombinant Escherichia coli which had been 

modified with Pseudomonas putida genes. However the method produced also 

indirubin which gave undesirable red hue to the dyeing result which they were able to 

suppress to a point [28]. 

In the traditional method of producing indigo dye (also called woad) from woad, the 

leaves were crushed to pulp which was kneaded into balls, which were allowed to dry 

for several weeks. These dried balls could then be stored. The balls needed to be 

couched before they could be used in dyeing. The couching meant crushing the balls 
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into powder and wetting it and allowing the material to ferment for several weeks 

again. After couching, the woad was dark clay-like material which was dried and 

packed tightly before use [17,29].  

The dye from woad was very impure and it gave only light colours and this was the 

reason why the exotic indigo from the Indigofera species could overtake woad so 

completely. The indigo from tropics was a better quality and it could be used to 

produce darker blues. However even this was still impure and was substituted by the 

synthetic indigo which always produced purities over 90% [20]. The extraction from 

the Indigofera was done differently from the woad extraction. The plant material was 

steeped with water (fermentation) and after that the solution was oxidised with air [30]. 

The modern extraction method of indigo from woad follows a similar method, and the 

woad balls are no longer made. 

Indigo itself doesn’t exist in the leaves of indigo producing plants. Instead there are its 

precursors, indican in Indigofera species and Polygonum tinctorium [31] and isatan B 

in addition of indican in Isatis tinctoria [19]. Lately there have been suggestions of 

other precursors being present in woad as well, namely isatan A [32,33] and isatan C 

[34]. There have also been some questions on their structures. Indican has been 

identified as indoxyl-β-D-glucoside but the already established isatan B structure as 

indoxyl-5-ketogluconate [35,36] was questioned by Oberthür et al. [32] and they 

suggested it to be 1H-indol-3-yl β-D-ribohex-3’-ulopyranoside. They also gave isatan 

A a structure as 1H-indol-3-yl 6’-O-(carboxyacetyl)-β-D-ribohex-3’-ulopyranoside 

whereas Maugard et al. [34] didn’t give specific structure for the isatan C.  

 

Scheme 1. The molecular formulas of the precursors of indigo. 
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Free indoxyl has been suggested to form indigo by indoxyl radical which first forms 

leuco-indigo which is then oxidised to indigo [37]. The leuco-indigo being the reduced 

form of indigo, which is later needed in the dyeing process because of its solubility in 

water, whereas indigo itself is not soluble in water or other commonly used solvents 

[3]. The modern extraction method of indigo from woad uses the water solubility of the 

indigo precursors in steeping the leaves in hot water. The precursors are broken down 

to indoxyl and sugar moieties by enzymes in plant, but in the extraction method this is 

done by alkali with aeration [38,39,40,41]. 

  
Scheme 2. The molecular formulas of indoxyl and indigo. 

The purity of plant-derived indigo even with the modern extraction method is 

somewhat low when compared to the synthetic indigo. Natural indigo contains besides 

indigo, impurities such as indirubin, indigo-brown, indigo gluten and mineral matter 

[42,43]. The indigo purity has been reported to be for woad indigo 20-40% [38], for P. 

tinctorium up to 12% [44] and for Indigofera indigo the highest from 50 up to 77% 

[30]. There is also the question of the efficiency of the extraction, the theoretical yield 

of the indigo formation from indoxyl molecules have been discovered to be 

approximately 60% [20]. So 40% of the indoxyl is lost during the process to impurities 

such as isatin and indirubin and other by-products of the reaction. 

2.3. PROPERTIES OF INDIGO 

The indigo which is also known as indigotin, (CI Vat Blue 1), (2-(1,3-dihydro-3-oxo-

2H-indol-2-ylidene)-1,2-dihydro-3H-indol-3-one) is present at ambient temperature 

and normal pressure as dark blue-violet needles or prisms with distinct coppery lustre 

[45,46]. It is quasiplanar molecule of approximate dimensions of 4.8 12 Å [47]. Indigo 

crystallises monoclinic and in space group P21/C [48]. It sublimes above 170 ºC [49]. 

Indigo is insoluble in water and poorly soluble in most of the common solvents [3]. It 

×
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is more soluble in polar organic solvents than non-polar ones [49,50]. The poor 

solubility is most likely due to the strong inter- and intramolecular hydrogen bonds that 

are formed in indigo crystals [51]. The hydrogen bonding also explains indigo’s 

relatively high melting point (~390 ºC) as well as its bathocromic shift of colour [24]. 

The colour of indigo is dependent on its environment [52]. In the gas phase where 

indigo is in its monomeric form, it is red, and in nonpolar solvents it is violet, but in 

solid form and in polar solvents as well as when it is applied to textiles as a vat dye, it 

is blue [53]. Indigo has a low mammalian toxicity and there is no indication of 

sensitization in humans after repeated skin applications [49]. 

Indigo is classified as a vat dye although its properties are not typical to the vat dyes as 

a whole [54]. Indigo has been mentioned to have a moderate [24] to very high light-

fastness [55] depending on the substrate it is on or whether it is as a pigment or a dye. 

All in all, it’s among the most photo-stable natural dyes. The light mostly affects the 

oxidative degradation of indigo to the degradation products such as isatin, isatoic 

anhydride and anthranilic acid [55]. There are synthetic dyes especially vat dyes with 

better fastness properties particularly to light, washing and chlorine bleaching, than 

indigo but it is this fading of colour that is so characteristic of indigo that has kept it so 

popular with the jeans-wearing people [54,56]. 

2.4. REDUCTION OF INDIGO 

As a vat dye indigo needs to be reduced to its water-soluble form before it can be used 

in dyeing. The reduction of indigo to leuco-indigo represents an important type of 

industrial process which is operated worldwide on a considerable scale [2]. The vat 

dyes have a conjugated dicarbonyl system, which is reduced with a change in 

conjugation. The reduction is a two-electron change and the resulting dihydric alcohol 

can be easily reoxidised [57,58]. The reduced form is called the leuco compound, leuco 

coming from the Greek word leucos meaning white, which refers to the change of 

colour of the vatting liquid after reduction [45]. With indigo the colour of the leuco-

indigo solution is yellow green when reduced with sodium dithionite.  
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Scheme 3. The reduction process of the conjugated dicarbonyl system of vat dyes. 

Depending on the dyebath pH the vat dye can undergo two-step ionisation from the 

non-ionic form to either mono-ionic or di-ionic, the non-ionic form being called vat 

acid [57,59]. For indigo the pKa-values have been determined to be for pK1 8.0 and for 

pK2 12.7 [59]. The extent of ionisation has an effect on the affinity of indigo for cotton 

cellulose fibres which are the most common substrate for indigo due to the popularity 

of denim. Indigo as well as cellulose fibres are negatively ionised at high pH. Cellulose 

contains alcoholic OH-groups which begin to be deprotonated when the dyebath pH is 

increased to 11, above which the deprotonation occurs more strongly. The non-ionic 

form of indigo at lower pH  is poorly soluble in the dyebath as well as it has a poor 

substantivity towards the cellulose fibres. Whereas the di-ionic form has high solubility 

but poor substantivity. The mono-ionic form has been identified to be the most 

efficient form of indigo and it predominates within the pH range of 10.8-11.2 [60]. So 

the equilibrium sorption of indigo for cotton is at its highest at a dyebath of pH around 

11 [61,62]. 

Several different methods have been invented for the indigo reduction and dyeing, all 

starting from the fermentation vat, which was used for centuries before the modern 

technology came. The fermentation process was done in large wooden barrels called 

vats from which the name for the vat dyes also comes. There were also urine vats 

which used stale urine as an ingredient in the fermentation. The industrial revolution 

brought new possibilities to the dyeing with such methods as “copperas” method which 

combined ferrous sulphate with slaked lime or potash and zinc-lime vat in which 

slaked lime and zinc powder interacted to form hydrogen as a reducing agent. The 

universal reducing agent sodium dithionite was finally introduced to the vat dyeing at 

the end of the 19th century [19]. 
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2.4.1. Sodium dithionite 

Sodium dithionite also known as sodium hydrosulphite, or Hydro (Na2S2O4) has been a 

major reducing agent [63] in the industrial reduction of vat dyes including indigo due 

to its chemical as well as economic properties. It is used with all vat dyes at 

temperatures ranging up from 30 °C [64]. It is generally produced by the zinc dust and 

the “amalgam” processes [65]. The advantage with sodium dithionite is that it causes 

swift reduction of indigo as well as other vat dyes and it enables very short fixing times 

in various dyeing methods and produces levelness in continuous dyeings [45].  

However, the disadvantage of sodium dithionite is that it can not be recycled from the 

waste waters and used again in the reduction process [66]. It is unstable, it is very 

easily oxidised by atmospheric oxygen [67] and the stability of its alkaline solutions 

reduces with the increase of temperature even in the absence of oxygen. The result is 

that large amounts of dithionite and NaOH are needed over the stoichiometric 

requirements of the reduction process although there has been speculation on whether 

the amount of dithionite could be lowered and used more efficiently [68]. The 

oxidation byproducts cause various problems with the disposal of waste waters. The 

generation of sulphate (SO4
2-), sulphite (SO3

2-), and thiosulphate ions (S2O3
2-) have 

harmful effect on the environment due to their toxicity as well  as  their having a 

corrosive effect on the waste lines. In addition sodium dithionite affects the aerobic 

processes in the water treatment and toxic hydrogen sulphide [H2S] can form 

anaerobically from the sulphate deposits present in the waste waters [45,64]. To 

improve this type of process by eliminating or minimizing the production of inorganic 

waste from chemical reducing agents, alternatives such as the iron (II) complexes 

(gluconic acid complexes) [69], the organic reducing agents [70], borohydride [71], 

and the biological [7], as well as the electrochemical reduction of indigo have been 

proposed [1]. Also pre-reduced indigo has been introduced to the dye-houses where the 

leuco-indigo is produced by reduction via a catalytic hydrogenation process [72].  
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2.4.2. Biological reduction 

Before modern reduction methods were invented indigo was dyed with a fermentation 

vat where it was converted to leuco-indigo by reducing bacteria [73]. Hurry [17] 

considered that the bacteria present in the vat were Desmobacterium hydrogeniferum 

which would also be involved with the reduction but Padden et al. [74] isolated an 

anaerobic moderate thermophile from a woad vat and they named the bacteria as 

Clostridium isatidis. The woad vat was prepared with medieval method from couched 

woad. The isolated bacteria grew in nutrient-rich medium at optimum temperature 49-

52 ºC and at optimum pH 7.2, the pH was changed to 9 for the indigo reduction to 

occur [16]. Anthraquinone rich madder was added to the woad vat already in the 

medieval times [17]. Nicholson and John [16] studied the effect of the madder powder 

and anthraquinone-2,6-disulphonate and humic acid on the reduction of indigo. They 

all were found to stimulate the bacterial reduction of indigo and it was speculated that 

it was due to their ability to alter the surface properties of the bacteria or indigo [16]. 

To identify the mechanism of the reduction of indigo by bacteria Compton et al. [75] 

colonised carbon electrodes with C. isatidis and measured electrochemically the 

process and identified that the bacteria interacted directly with indigo particles without 

the redox mediator. However, John [76] questioned this later, because Gram-positive 

bacteria such as Clostridium isatidis are not known to have a biochemical mechanism 

which would enable the transfer of electrons from the interior of the cell to the solid 

electron acceptor external of  the cell. So the mechanism of the bacterial reduction of 

indigo still remains unknown. 

Enzymatic technologies using dehydrogenases have also been investigated for the 

reduction of vat dyes in general. However, there is no enzymatic process at present that 

could be used as an alternative for the chemical reduction of indigo [45].  

2.4.3. Electrochemical reduction 

In recent years several novel electrochemical processes have been developed for the 

indigo reduction and its analysis. The solid-state electrochemical properties of indigo, 
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the effects of pH, electrolyte, and convection have been investigated when indigo has 

been firmly immobilized onto a graphite electrode surface [77]. The redox properties 

of indigo have also been studied  when small amount of indigo has been adsorbed on 

the surface of mercury electrode [78]. Direct electrochemical reduction of dispersed 

indigo for the dyeing process is somewhat complicated due to the electron transfer 

difficulties between solid electrode and solid particle of dye and therefore indirect 

electrochemical methods have been suggested first. 

In this indirect method the reducing power of cathode is transferred to the solution to a 

soluble reversible redox system that acts as a mediator and carries the electrons from 

the electrode to the dye [79]. Fe(III) -triethanolamine (TEA) complex, -bicine and 

HEDTA iron complexes and Fe3+-D-gluconate or Ca2+-Fe3+-D-gluconate complexes and 

anthraquinone derivatives have been investigated as mediators in the electrochemical 

reduction of indigo [18,80,81,82,83,84]. The reduction rate has been found out to 

depend on the type of mediator system and the type of dyestuff [85]. The general 

reaction scheme of the indirect electrochemical reduction of indigo and other vat dyes 

with iron complexes can be represented as follows [83,86]:  

Fe3+L + e–  Fe2+L     (1) 

Fe2+L + Dye  Fe3+L + Dye• –   (2) 

2 Dye• –  Dye2–  + Dye    (3) 

Dye• –  + Fe2+L   Dye2–  + Fe3+L   (4) 

Dye2–  Dye + 2e–    (5) 

The first step shows the cathodic reduction of the iron complex, the second is 

suggested to be a radical formation of the dye at the surface of the dye particle by 

electron transfer since the dye requires a two electron reduction and the complex 

carries only one. The fully reduced form of the dye is produced through the radical 

phase either by additional reaction with the complex or another radical anion. The final 

step shows the equilibrium between the reduced and oxidised forms of the dye [83]. 
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The scheme can be used also for other mediator systems used in the indirect reduction 

of indigo. 

The general requirements of the mediator in the indigo reduction are that it has 

sufficient negative formal potential in the alkaline solutions, at least -600 mV vs. Ag | 

AgCl | 3 mol dm-3 KCl to reduce the dyestuff and it has a reducible charge transfer and 

a high rate of electron transfer from cathode to the complex and from mediator to the 

dyestuff [83]. The achievable current density of the mediator process is limited by the 

diffusion transport of the mediators through the boundary layer of the cathode. 

Increasing the concentration of the mediator indefinitely and thereby increasing the 

current density is not feasible due to the economical and ecological considerations as 

well as possible changes in the product quality [87]. Multicathode cell, where the  

cathode material used is stainless steel, has been suggested as a possible solution to the 

problem of low cell current density. In this type of cell several three-dimensional 

cathodes are connected to a common anode and they produce the necessary high 

electrode surface area for the process [88]. 

However, the mediators in the indirect reduction system can be problematic and so 

there has been interest in developing another electrochemical process. The direct 

electrochemical reduction of indigo represents an alternative mediator-free approach. 

The first method for the direct electrochemical reduction of indigo introduced the 

mechanism in which the indigo radical is first formed in a comproportionation reaction 

between the leuco-indigo and oxidised indigo and the radical is reduced 

electrochemically to leuco-indigo. However, this method still needs the conventional 

reducing agent to produce the necessary leuco-dye to start the reaction after which it 

continues independently and it is not very efficient due to the low amount of radicals 

formed during the process [5,12,89]. 

Another method of the direct electrochemical reduction investigated by Roessler et al. 

[90] is electrocatalytic hydrogenation. Water is reduced electrochemically in the 

process to produce hydrogen which is adsorbed on the metal powder catalyst surface 

and reacts chemically with an organic substrate, in this case indigo or other vat dye to 
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produce leuco-dye. The electrocatalytic hydrogenation doesn’t need elevated 

temperatures or pressures and that is a clear advantage when compared to the 

conventional hydrogenation [91]. The catalytic material acts as an electrode and the 

catalyst for the hydrogenation in the system and the Raney Nickel was considered the 

best option due to its availability, costs and its stability in alkaline medium. However, 

its current efficiency is low, and there is a limiting factor in the competing reaction of 

the adsorbed hydrogen forming molecular hydrogen [46]. 

The third alternative for the direct electrochemical reduction developed by Roessler et 

al.[9] was the electrochemical reduction of indigo in fixed or fluidized beds of graphite 

granules. The limiting factor in the direct reduction of indigo seems to be the poor 

contact between the electrode surface and the indigo particle and this was improved by 

the introduction of the bed of  graphite granules, which would act as an electrode. Also 

the dispersion and adsorption of dye particles has been noticed to be important in the 

process. Leuco-indigo is produced in this system directly from the indigo and not via 

the radical formation, at least the radical formation is not considered to be significant 

in this case [2].  

2.4.4. Glucose and catalysts 

Hurry [17] already suggested that the organic substances added to the woad vat were 

fermented to glucose which acted as a reducing agent in the alkaline liquor and 

converted indigo to leuco-indigo at the same time as the sugar is oxidised and 

converted to lactic and then to butyric acid. When the fermentation vat was replaced by 

the chemical reducing agents also glucose was removed from the indigo vats. 

Glucose has been known to be a reducing agent for sulphur dyes for quite some time, 

but it was considered to give unsatisfactory results since it was dependent on high 

temperatures. This was improved by having strongly alkaline conditions in the dyeing 

vats [70]. Recently glucose and other reducing sugars have been studied as possible 

environmentally friendly reducing agents for sulphur dyes but no mechanistic detail is 

suggested there [13]. Glucose undergoes a complex degradation sequence in alkaline 

solutions [92,93,94] and the reducing effect of glucose has been suggested to be linked 
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to the degradation intermediate rather than to glucose itself [95] where the dehydrated 

intermediates, of the degradation steps, with extended π-systems are most likely the 

redox active reducing agents. The course of degradation of glucose depends on the 

concentration of alkali [96,97,98] so the concentration of specific intermediate is 

dependent on the concentration of alkali. This explains why the high alkalinity has 

been deemed necessary for the reduction processes 

Anthraquinone-containing madder extracts were invariably added to the fermentation 

vat in the middle ages, and it has been shown with pure cultures of the indigo-reducing 

bacterium Clostridium isatidis, that soluble anthraquinones stimulate bacterial indigo 

reduction [15,16]. Anthraquinones are vat dyes and they can be electrochemically 

reduced in aqueous alkaline solution at a potential similar to that for the reduction of 

indigo, forming the two-electron two-proton anthraquinol product, which subsequently 

transfers electrons to the suspended indigo. Therefore the anthraquinones have also 

been examined in the electrochemical indirect processes as soluble mediators [18] and 

immobilised on the graphite granules to stimulate the direct reduction of indigo on 

graphite beds [9].  

2.5. METHODS OF INDIGO ANALYSIS 

Indigo production as well as dyeing processes need means to measure the indigo 

content. In the indigo production from plants the final dye content varies from batch to 

batch and the purity of the raw dye needs to be determined separately. In the dyeing the 

monitoring of the vatting process is necessary so that the dyeing quality can be 

maintained stable.  

The colorimetric monitoring of solid indigo dye presents some technical problems [20]. 

Indigo is routinely determined by spectrophotometry of solutions using a variety of 

organic solvents [8,29,99]. Indigo has also been determined spectrophotometrically by 

first reducing it to its soluble leuco-form and measuring the absorbance of the reduced 

alkaline aqueous solution, this has been especially used in the dyeing processes 

[44,100]. Also recently the absorption of the reoxidised indigo has been used to 

quantify the concentration of indigo in the vatting solution [101]. It has been pointed 
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out that these methods that directly measure indigo concentration are subject to 

anomalies due to the long recognized association of indigo molecules in the solvents 

that are routinely employed in the measurements [20,51]. Also other particles present 

in the solutions, such as the impurities present in the natural indigo and the auxiliary 

agents in the vatting system, can affect measurements.   

Since vat dyes are redox active, electrochemical measurements are possible and have 

been studied for vat dyes [102], including indigo [103,104] as well as for their reducing 

agent, sodium dithionite [105] mainly to control the stability of  the dyeing vats and to 

improve the product quality. With the electrochemical methods the disturbancies to the 

measurements from the other particles present in the vat can be lowered. There has 

been interest in developing these methods for a continuous use, however there has been 

only a limited success in that since the electrode surfaces as well as valves or pumps of 

the system are easily blocked by the oxidised dyestuff [104]. 

Some of the methods use redox titrimetry, where leuco-indigo is titrated with the 

oxidising agents such as potassium ferrocyanide and the redox potential is measured 

from the mixture until the potential is zero, which denotes the end of the reaction and 

the amount of leuco-indigo is obtained [100]. Other methods use hydrodynamic 

voltammetry to measure the indigo content [103,105].  

Hydrodynamic voltammetry provides time independent steady-state responses, which, 

under conditions of mass transport control, are directly proportional to the bulk 

concentration. Hydrodynamic concentration monitoring techniques have been based 

on, for example, rotating disc voltammetry [103], jet voltammetry [106], microwave 

enhanced voltammetry [107], sonovoltammetry [108], and vibrating electrode systems 

[109]. Govaert et al. have employed the rotating disc voltammetry [103] to measure the 

indigo content, they used a multi-pulse amperometric technique to produce a semi-

continuous measurement of indigo where the pulses to negative potentials were 

necessary to clean the electrode surface from the adsorbed dyestuff. 
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3. AIMS OF THE STUDY 

This study aims at investigating the reduction and analysis methods of indigo and give 

insight on the reduction mechanism of indigo employing synthetic indigo as research 

material. The study includes also research on the extraction of plant-derived indigo 

from woad and the examination of the effect of this method to the content and purity of 

indigo. The results of this study may be used as a basis for further investigation of the 

reduction of plant-derived indigo and development of more sustainable dyeing method 

of synthetic as well as plant-derived indigo.  

The aims of the study were to: 

• quantify the mediator-based electrochemical reduction of dispersed indigo 

when DHAQ is used as a redox mediator. 

• investigate the possible reducing effect of glucose on indigo quantitatively to 

develop an alternative reduction method for indigo. 

• investigate the catalytic effect of anthraquinones on the glucose assisted 

reduction of indigo and to propose a possible molecular mechanism of the 

catalytic effect on the indigo reduction. 

• develop a new sonoelectrochemical method for determination of indigo 

reduction and quantifying the indigo/leuco-indigo concentration in the 

solution. 

• gain new insight into the extraction method of plant-derived indigo and 

measurement of the purity of indigo with the sonoelectrochemical method. 
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4. EXPERIMENTAL 

4.1. REAGENTS (I-IV) 

Chemical reagents such as indigo (Fluka), phosphoric acid, sodium hydroxide 

(Aldrich), acetone, anthraquinone, butylated hydroxyl toluene, D-(+)-glucose, N-

methylpyrrolidone (Sigma), potassium ferrocyanide, 1,8-dihydroxyanthraquinone 

(Sigma-Aldrich), hydrochloric acid and calcium hydroxide (J.T.Baker) were obtained 

commercially and used without further purification in the experiments.  Demineralised 

water was taken from an Elga purification system with at least 15 MOhm cm 

resistivity. Argon gas was used for de-aeration and obtained from BOC.  

4.2. PLANT-DERIVED INDIGO SAMPLES (III,V) 

Plant-derived indigo samples were from the extraction experiment conducted in MTT 

Agrifood Research Finland in summer 2004. Indigo was extracted from Dyer’s woad 

(Isatis tinctoria L.) leaves with the method shown below. Woad plants were grown in 

Jokioinen, Finland (60o49’N, 23o29’E) in summer 2004, the seeds were sown in green 

house on 7th May 2004 and the plants were transplanted to the field after 4 weeks from 

sowing and they had been grown for 5 weeks in field at the beginning of the 

experiments. All the leaves in the samples were collected on the day they were used in 

the extraction and they were chosen randomly from the plot from the close proximity 

of each other. The leaves were approximately the same size within a batch, although 

there were variations in the leaf size between batches.  

4.2.1. The Extraction method of indigo (IV,V) 

The extraction method used in the experiment was based on the protocol by Stoker and 

Cooke [38] with modifications. Woad leaves were first washed and then 50 g of leaves 

was put in 500 ml of 80 °C deionised water water for about 8 min after which the 

leaves were taken off and the water was cooled quickly to room temperature. The pH 

of the samples was changed to 11 by adding saturated calcium hydroxide (50 g dm-3) 

after that the suspension was aerated for 1 h with pressurized air, after which the 

sample was covered and put to storage. The next day concentrated hydrochloric acid 
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was added and the pH was lowered under pH 4. After 2 hours, an aliquot was taken to 

the analysis of the indigo content. Rest of the indigo was dried. Different treatments of 

the extractions were studied according to the Table 1. 

Table 1. Extraction process divided with extraction steps showing the standard 
treatments and the studied treatments for each step. Standard treatments being the ones 
used generally in the extraction. 

Extraction steps Standard treatments Studied treatments 

Washing times 3 0, 1, 2, 4, 6, 8, 10 
Steeping   

temperature 80 °C RT, 80 °C 
time at 80 °C 8 min 4, 6, 8, 10, 12 min 

pH water 3, 5, water, 7, 9 
Cooling time <2 min <2, 5, 10, 15, >40 min 

Aeration   
time 60 min 5, 15, 45, 60 min 

pH 11 7, 9, 11, 13 

4.3. INSTRUMENTATION (I-IV) 

All electrochemical experiments were conducted with a micro-Autolab II potentiostat 

system (EcoChemie, Netherlands) equipped with a three-electrode system, where a Pt 

wire or Pt mesh acted as a counter electrode and a saturated calomel electrode (SCE) as 

a reference electrode (Radiometer, Copenhagen). Working electrode varied depending 

on the experiment. All of the voltammetric experiments were conducted in a 

thermostated electrochemical cell (with a Haake B3 circulator) under constant de-

aeration with high purity argon and at the constant temperature. Schematic drawing of 

the system for rotating disc experiments is shown in the Figure 2.  

4.4. SOLID STATE ELECTROCHEMISTRY (I,IV) 

Synthetic indigo or anthraquinone was immobilised on a 4.9 mm diameter basal plane 

pyrolytic graphite electrode, which was used as a working electrode [110,111,112]. 

Depending on the experiment either 0.1 M phosphate buffer (at pH 7 and at pH 12) 
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was thermostatted to room temperature or to 80°C or 0.1M NaOH  was thermostated to 

RT, 55, 65, or 75 °C. The cyclic voltammograms were measured at different scan rates. 

 
Figure 2. Schematic drawing of the thermostatted electrochemical cell for rotating disc 
voltammetry experiments. 
 

4.5. HYDRODYNAMIC PROCESSES (I-IV) 

4.5.1. Indirect electrochemical reduction of indigo (I) 

Electrochemical reduction of indigo was mediated with 1,8-dihydroxyanthraquinone. A 

7 mm diameter rotating gold disc electrode was used as the working electrode. The 

home-build electrochemical cell was thermostated and equipped with an ultrasonic 

transducer (Undatim, 100 W, 500 kHz) to minimize sedimentation effects. Indigo 

dispersions were prepared by treatment with 24 kHz ultrasound. Control experiments 

in the presence and in the absence of 500 kHz ultrasound were recorded to avoid direct 

effects of ultrasound on the electrochemical process. Only at a rate of electrode rotation 

lower than 1 Hz additional ultrasonic mass transport effects were observed. Most of the 

experiments were conducted at 80 °C. 

4.5.2. Simulation of indirect reduction processes of indigo (I) 

For quantitative data analysis, cathodic limiting currents obtained at various electrode 

rotation rates and reagent concentrations were employed. A commercially available 
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numerical simulation Digisim software package (Digisim3, Cyclic voltammetric 

simulator for Windows, version 3.03, BASi, USA [113]) allows rotating disc 

voltammograms to be simulated based on the appropriate temperature, T = 353 K, the 

viscosity, η = 0.0035 cP, the diffusion coefficient (for the redox mediator DHAQ, D = 

0.84×10-9 m2 s−1), the concentrations, and further chemical parameters. For the 

mechanism a simple two-electron transfer followed by a chemical reaction step was 

chosen assuming that the dispersed particles are small enough to be approximately 

represented by a homogeneous concentration parameter. The additional effects of 

dispersed particles on the mass transport at electrode surfaces described in the 

literature, for example, for CaCO3 particles [114], are concentration dependent. Test 

experiments with indigo solutions and inert redox couples revealed no significant 

effect under conditions employed here, and therefore, these effects are not further 

considered. 

4.5.3. Glucose assisted reduction of indigo (II) 

A 3 mm diameter glassy carbon disc electrode (BAS, USA) was used as the working 

electrode with glucose acting as a reducing agent in rotating disc and sonovoltammetric 

experiments. The latter were conducted in an inverted voltammetric cell and employing 

a Hielscher UP200s 24 kHz ultrasonic glass probe system.  

4.5.3.1. Rotating disc procedure (II) 

A NaOH solution was thermostated to needed temperature and indigo added after 

dispersion in a small volume of solution by treatment with 24 kHz ultrasound. Glucose 

was added and voltammograms were recorded as a function of time. The rotation speed 

in all experiments was 5.0 Hz and the mass transport controlled limiting current (which 

is directly proportional to concentration) was measured for the leuco-indigo oxidation 

process.  

4.5.3.2. Power ultrasound procedure (II) 

An inverted cell shown in the Figure 3 [115] with the working electrode pointing up 

towards an ultrasonic horn probe (24 kHz) was employed to measure mass transport 

limited currents for the leuco-indigo oxidation. Otherwise, the procedure is consistent 
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with that used for rotating disc voltammetry monitoring of the leuco-indigo 

concentration.  

 
Figure 3. Schematic drawing of the experimental set up employing an ultrasonic horn 
system placed opposite to the glassy carbon working electrode. 

4.5.4. Sonic electrode (III, IV) 

New equipment was introduced in the experiments where a vibrating 500 μm diameter 

gold disc electrode acted as the working electrode. The electrode was embedded in a 

home-build PEEK (Polyetheretherketone) probe and connected to a sonic probe 

(Braun, Oral-B Sonic Complete) to produce a sonic vibration with approximately 1000 

μm amplitude at high power or ca. 200 μm amplitude at low power (see Figure 4). The 

vibration frequency 250 Hz was determined optically with photodiode connected to an 

oscilloscope. 

 
Figure 4. Schematic drawing of the sonoprobe design with a 500 μm diameter gold 
electrode embedded in a PEEK housing undergoing a 250 Hz lateral movement with 
ca. 1000 µm amplitude (high power) or ca. 200 µm amplitude (low power). 

4.5.4.1. Calibration of the sonic electrode (III) 

A solution of 2.4 mM K4Fe(CN)6 in 0.1 M KCl was thermostated to 55, 65, or 75 °C in 

a jacketed three electrode electrochemical cell. Cyclic voltammograms were recorded 

with a scan rate ranging from 0.1 to 5.0 V s-1. In the absence of agitation, conventional 
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voltammetric responses were obtained which allowed the diffusion coefficient to be 

assessed as a function of temperature. Next, the vibrating electrode was activated and 

voltammograms obtained at high/low power setting to assess the mass transport effect 

under these conditions as a function of temperature. 

4.5.4.2. The Sonovoltammetric determination of indigo (III,IV) 

An aqueous 0.2 M NaOH solution was thermostated to 55, 65, or 75 °C, and plant-

derived indigo was added after dispersion in a small volume of solution in a sonic bath. 

Next, glucose was added, and voltammograms were recorded at regular time intervals. 

From the limiting currents observed for the oxidation of leuco-indigo the concentration 

of indigo was determined and at the endpoint of the reduction process the total amount 

of indigo in the sample was calculated. 

4.5.4.3. Anthraquinone catalysed reduction of indigo (IV) 

Anthraquinone catalyst was immobilised onto indigo particles by adding an acetone 

solution (concentration 0.3 mM) to solid indigo powder. The suspension was 

homogenised with 24 kHz ultrasound (Hielscher UP200G) and the acetone solvent was 

evaporated to leave anthraquinone coated onto the indigo powder. An aqueous NaOH 

solution (100 cm3) was thermostated to 55, 65, or 75 °C and 30 mg indigo added 

(corresponding to 1.1 mM solution) after pre-dispersion in a small volume of solution 

by treatment with 24 kHz ultrasound. Next, 400 mg glucose (corresponding to 22 mM 

solution in 100 cm3 of NaOH) was added under an atmosphere of argon and 

voltammograms (limiting currents for the oxidation of leuco-indigo) at the vibrating 

gold disc electrode were recorded at regular time intervals. Polishing the gold electrode 

surface before each measurement was required. 

4.6. INDIGO SUBLIMATION AND SEM (IV) 

Indigo crystals were formed following sublimation in a short path vacuum sublimation 

system (made from glass) with internal water-cooled deposition finger. The system was 

heated in silicone oil to a temperature of ~240 °C. Sublimation under oil pump vacuum 

(ca. 10-3 Torr) was continued for 3 days (nights excluded). Macroscopic but very thin 

plate-like indigo crystals were obtained. Indigo crystals were collected and attached to 
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the double-sided conducting carbon sticky pads for SEM, which were mounted on 

glass slides. The glass slide with indigo crystal samples were immersed in the 

reduction solution (33 mM glucose in 0.2 M NaOH at 65 °C). Samples of indigo, 

exposed to reducing conditions for different lengths of time, were rinsed in water, 

dried, and used directly for electron microscopy (after gold sputter coating). Scanning 

electron microscopy (SEM) images were obtained with a JEOL JSM6310 system. 

4.7. SPECTROPHOTOMETRIC DETERMINATION (IV,V) 

4.7.1. Ethyl acetate method (V) 

The indigo content of the extraction suspension was determined spectrophotometrically 

[38,116]. An aliquot was taken from the extraction and diluted with deionised water, 

added ethyl acetate to transfer indigo from the suspension to the solvent layer. 

Separated the layers and added NaCl to the ethyl acetate phase to remove the 

moistness, the samples were centrifuged. Indigo content was measured from the ethyl 

acetate phase at 600 nm with spectrophotometer (UV-160A UV-visible recording 

spectrophotometer, Shimadzu). The indigo content was determined with calibration 

curve measured with synthetic indigo. 

4.7.2. NMP method (V) 

Spectrophotometric determination of the indigo purity was attempted following a 

modified literature method for measuring the indigo content in the raw sample 

[20,116,117]. A blue solution was prepared by dissolving dried indigo samples into 

90% N-methylpyrrolidone (NMP) (wet, with 0.1% butylated hydroxyl toluene and 3 

mM citric acid). The absorbance of the solution was measured at a peak at 614 nm with 

a UV-160A UV-Visible spectrophotometer (Shimadzu). The indigo content was 

determined from the absorbance with the calibration curve measured with synthetic 

indigo.  
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5. RESULTS AND DISCUSSION 

5.1. SOLID STATE ELECTROCHEMISTRY (I,IV) 

It has been shown previously that solid indigo immobilized at a graphite electrode can 

be studied directly by electrochemical methods [77]. The microcrystalline solid is 

embedded in the electrode surface, and both reversible reduction and oxidation 

processes are observed. These processes are temperature as well as pH dependent 

[118]. The temperature dependence of these processes is shown in the Figure 5 (A). 

Cyclic voltammograms were obtained for the reduction of solid indigo immobilized at 

a basal plane pyrolytic graphite electrode and immersed in 0.1 M phosphate buffer (at 

pH 7 and at pH 12, results not shown) or aqueous 0.1 M NaOH (pH 13).  

The two redox processes, P1 at -0.75 V vs. SCE and P2 at -0.1 V vs. SCE, have been 

proposed to be consistent with mechanisms given in equation (6) [77]. The reduction 

process P1 is associated with the electron transfer and deprotonation of indigo. 

Depending on the pH indigo is in non-ionic, anionic or dianionic form. At higher pH 

the reduction process P1 is also associated to an intercalation process involving the Na+ 

cation which ultimately causes the break-up of the indigo solid during reductive 

dissolution (pK2 12.7 [59]) [77]. At pH 13 these two processes, based on H+
 
and Na+, 

merge into a single reductive dissolution response, but even then the dissolution of 

indigo remains rate-limited by the relatively slow dissolution process and the removal 

of indigo away from the electrode occurs. The process P2 is associated with the 

oxidation of indigo.  

 (6) 
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Figure 5. Solid state voltammetry data (scan rate 0.2 V s-1) (A) for the reduction of 
indigo microcrystals and (C) for the reduction of anthraquinone microcrystals 
immobilised at a basal plane pyrolytic graphite electrode and immersed in aqueous 0.1 
M NaOH. Data were obtained at temperatures (i) 20 °C, (ii) 55 °C, (iii) 65 °C, and (iv) 
75 °C with starting potential -0.5 V. (B) Arrhenius plot of the indigo reduction peak 
current versus T-1.  

The voltammograms shown in the Figure 5 (A) were  obtained at 20, 55, 65, and 75 °C. 

The cathodic current response increases with temperature and this suggests that the rate 

of the dissolution process is increased. An Arrhenius-type plot shown in the Figure 5 

(B) gives the relationship of ln Ipeak and T -1 with the equation (7). 

RT
E

II A
0peak lnln −=     (7) 
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where Ipeak is the peak current and I0 is the current at negligible activation barrier. An 

approximate activation energy (EA) of 14 kJ mol-1 can be calculated from the gradient  

(–EA/R) of the plot [119,120].  

Anthraquinone particles were also immobilised at a basal plane pyrolytic graphite 

electrode and immersed in aqueous 0.1 M NaOH. In contrast to the temperature-

dependent characteristics observed for the reduction of solid immobilised indigo, 

microparticles of anthraquinone show a reversible reduction response at ca. -0.85 V vs. 

SCE without significant temperature effect. The process is consistent with the two-

electron reduction of anthraquinone [121].
 
The anthraquinol product appears to be 

sufficiently water insoluble to remain at the electrode surface. Cyclic voltammetry 

experiments conducted over a range of scan rates (0.05 to 2.0 V s-1, not shown) reveal 

increased irreversibility at 65 and 75 °C (where loss due to diffusion away from the 

electrode becomes noticeable) at scan rates of less than 0.1 V s-1. The relatively 

insignificant temperature effect on the voltammetric response suggests a facile solid 

state conversion which is approaching completion. The reversible reduction potential 

for solid anthraquinone appears to be ca. 100 mV negative of that for solid indigo (in 

aqueous 0.1 M NaOH) and therefore anthraquinone should be an effective redox 

mediator and catalyst for indigo reduction. 

5.2. INDIRECT ELECTROCHEMICAL REDUCTION OF INDIGO (I) 

1,8-Dihydroxyanthraquinone (DHAQ) was examined as a possible redox mediator for 

the indirect electrochemical reduction of indigo. The formal potential for the mediator 

reduction in 0.1 M phosphate buffer (pH 12, 353 K) E0′= −0.78 V vs. SCE was noticed 

to be virtually identical to the reversible potential for the direct reduction of solid 

indigo (E0′= −0.78 V vs. SCE) in same medium and therefore it was considered suitable 

mediator. The schematic picture of the indirect electrochemical reduction of dispersed 

indigo is shown in the Scheme 4.  
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Scheme 4. Diagrammatic representation of the 1,8-dihydroxyanthraquinone mediated 
reduction of indigo to leuco-indigo. 

The redox-properties of the DHAQ were identified from the rotating disc 

measurements which showed the limiting currents of the reversible reduction of the 

DHAQ. The typical cyclic voltammogram for the DHAQ is shown in the Figure 6. 

 
Figure 6. Cyclic voltammogram (scan rate 10 mV s-1) for the reduction of 0.42 mM 
DHAQ in 0.1 M phosphate buffer pH 12 at a 7-mm-diameter rotating gold disc 
electrode (5 Hz rate of rotation) at 80 °C with starting potential of 0 V. 

The Tomeš criterion [122], which is defined as the potential gap between the points 

where the current reaches three fourths and one fourth of the limiting current, 

nF
RTVEE ×==− 197.2 035.04/14/3     (8) 

(where n is the number of electrons transferred per molecule diffusing to the electrode 

surface), allows the number of electrons transferred in this electrochemically reversible 

reduction process to be confirmed as n ≈ 2 consistent with the proposed mediator 

reaction in Scheme 4. The oxidation peak at 0.2 V vs. SCE is consistent with a gold 

surface oxidation and not important in this study.  
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The diffusion coefficient for DHAQ at 80 °C was determined with the Levich 

equation. The plot of the limiting current observed during reduction vs. the square root 

of the rate of rotation is linear (Figure 7), and therefore, the Levich equation [123] can 

be employed to determine the diffusion coefficient as shown in the equation (9): 

Ilim = 0.62 × nFAcD2/3υ-1/6ω1/2    (9) 

In this equation the mass-transport-controlled limiting current for the reduction, I lim, is 

related to the number of electrons transferred per molecule diffusing to the electrode 

surface, n, the Faraday constant, F, the electrode area, A, the bulk concentration of 

DHAQ, c, the diffusion coefficient, D, the kinematic viscosity, υ at 80 °C, 0.35×10-6 

m2 s-1, and ω, the rate of rotation.  

 
Figure 7. Plot of the limiting currents for the reduction of DHAQ vs. square root of the 
rate of rotation for a solution of 0.42 mM DHAQ (i) without and (ii) with 2 mM 
colloidal indigo 

From data in Figure 7 the diffusion coefficient in 0.1 M phosphate buffer (pH 12) and 

at a temperature of 80 °C can be determined to be D = (0.84±0.08)×10−9 m2 s−1. 

Consistent with equation (9) the current was observed to scale linearly with the 

concentration of the mediator DHAQ. Alkaline solutions of DHAQ were observed to 

undergo ageing over several days, and therefore, fresh solutions had to be used for 

experiments.  

In the presence of only indigo in alkaline buffer solution, no significant 

electrochemical reduction current was observed in the absence of the redox mediator 

even at elevated temperatures of 80 °C. This is consistent with a repulsive or inhibited 
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interaction between dispersed indigo particles and the electrode surface, also the 

dispersion of indigo particles through the diffusion is very slow which also accounts to 

the absence of the direct electrochemical reduction of indigo. However, the current 

response observed for the redox mediator is substantially increased by the presence of 

indigo, which is consistent with a mediated reduction of indigo particles (see Figure 7). 

From the plots of the limiting current vs. the square root of rotation rate, it can be seen 

that the current due to the indigo reduction is characteristically dependent on the rate of 

electrode rotation.  

5.2.1. Analysis of the voltammetric data with simulation (I) 

To achieve a more quantitative parameterisation and understanding of the mediated 

indigo reduction process, a commercial software package for the simulation of 

voltammetric data, Digisim
 
[113], was employed. Only the limiting currents for the 

reduction process were considered and simulated. The minimisation of the complexity 

of the model is important and therefore, the following assumptions were introduced. 

The dispersed indigo was initially considered to be homogeneously distributed and 

treated as a molecular species. However, the diffusion coefficient for the indigo species 

was set to an extremely low limit (here, 10-19 m2 s-1) in order to reflect the 

low/insignificant mobility of dispersed particles. The mobility of the dispersed particle 

is considered therefore to be entirely based on convective transport. The mechanism 

for the mediated indigo reduction is proposed to follow the oversimplified (protonation 

equilibria are assumed to be fast and ignored) reaction sequence: 

DHAQ + e–  DHAQ –     (10) 

DHAQ – + e–  DHAQ2–    (11) 

DHAQ2– + Indigo  DHAQ + leuco-Indigo   (12) 

In order to further simplify the analysis, electron transfer in equations (10) and (11) is 

assumed to be fast (reversible), the equilibrium constant for the process in equation 

(12) is fixed, Keq 
 
= 100, and the forward rate constant, kapp, for equation (12) is 

introduced.  



Results and Discussion 

37 

The current responses for DHAQ obtained in the absence of indigo were considered 

first. Figure 7 shows the characteristic linear Levich behaviour of the current in relation 

to the square root of the rate of electrode rotation and this behaviour was reproduced 

with the numerical simulation. The diffusion coefficient, D = 0.8 × 10-9 m2 s-1 at 353 K, 

was employed for the 1,8-dihydroxyanthraquinone mediator and the simulated currents 

confirmed the above analysis. The effect of indigo was considered next. Indigo 

particles are distributed within the solution phase and transport of these particles into 

the diffusion or reaction layer is assumed to be entirely convection based. A 

characteristic increase in current was observed experimentally with the indigo addition 

and it was investigated with the simulation  

An overall good match of numerical and experimental data was observed when the 

forward rate constant for the bimolecular reaction (see equation (12)) was allowed to 

control the limiting current. In the absence of indigo or for very low chemical rate 

constants kapp, a mediator-only current of -109 μA is determined. For a very high 

bimolecular rate constant, kapp = 3 × 104
 
mol

 
m-3

 
s-1, the expected diffusion-limited 

current was simulated and it was higher than the experimental current. The diffusion 

controlled current is not proportional to the concentration of indigo due to the second 

order nature of the process.  

In order to match experimental and simulation currents the value of the apparent 

bimolecular rate constant was reduced. The best agreement between simulation and 

experimental data was obtained for an intermediate value of the apparent bimolecular 

rate constant, kapp 
 
= 3 mol

 
m-3

 
s-1. A remaining trend towards higher simulation currents 

(compared to experimental currents) at lower rates of electrode rotation can be 

attributed to the depletion of smaller indigo particles which leads to a change in the 

apparent rate constant towards smaller values. However, overall the match between 

experimental and simulation data is good even at different mediator concentrations. 

Finally, the effect of the equilibrium constant (Keq = 100) for the process given in 

equation (12) on the kinetic analysis is considered. The reversible potential for both the 

reduction of indigo and the reduction of the mediator 1,8-dihydroxyanthraquinone at 
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80 °C are virtually identical and therefore the (simplifying) choice of a very large 

equilibrium constant could be criticized. However, voltammetric data simulated for the 

process described by equations (10), (11) and (12) is rather insensitive to the 

magnitude of this equilibrium constant and even when set to unity very similar currents 

are simulated. Therefore the apparent bimolecular rate constant determined in this 

approach can be considered reliable. 

5.2.2. Interpretation of the rate constant (I) 

Indigo particles create their own diffusion field and the rate of diffusion of the redox 

mediator towards the particle has to be considered. The apparent bimolecular rate 

constant determined experimentally has to be written as in equation (13).  

[ ] [ ] [ ]mediatorindigo
d

indigod
app ××=

− k
t

leuco
  (13) 

In this equation the concentration term [indigo] is introduced to denote not molecularly 

dispersed indigo but a particulate species and the apparent bimolecular process is 

interpreted as a surface reaction. The rate of formation of leuco-indigo is related to an 

apparent rate constant kapp, the concentration of indigo and the concentration of the 

reduced form of the redox mediator. For the case of diffusion control this equation may 

also be written as in equation  (14) [120].  

[ ] [ ] [ ]mediatorindigo 4
d

indigod

P

A ××=
−

N
NrD

t
leuco π   (14) 

In this equation the diffusion controlled rate of formation of leuco-indigo is related to 

D, the diffusion coefficient for the redox mediator, NA , Avogadro’s number, and NP , 

the number of indigo molecules per particle and particle radius, r. The parameters r 

(the particle radius) and NP 
 
(the number of indigo molecules per particle) are related 

(by 3

A

P  4 rM
N
N

π
ρ

=× , with the molecular mass M and the density ρ) and with kapp
 

known they can be determined employing equations  (15) and (16). 
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With parameters determined in this study (kapp 
 
= 3 mol m-3 s-1 , D = 0.84× 10-9 m2 s-1 , 

M = 262 g mol-1, and ρ is assumed 106
 
g m-3) the approximate particle radius r = 0.27 

μm and NP 
 
= 6 × 108

 
molecules were estimated.  A consistent mechanistic picture of 

the mediator-based reduction of indigo was obtained based on a diffusion controlled 

reductive dissolution of dispersed indigo particles.  

5.3. GLUCOSE-ASSISTED REDUCTION OF INDIGO (II,III,IV) 

The dissolution of indigo in aqueous media is a heterogeneous process which is likely 

to involve a surface confined reaction step. The surface area of the particulate and 

highly water insoluble indigo is therefore controlling the rate of dissolution. 

Dissolution reactions have been treated in the literature for example for spherical [124] 

or for cylindrical particles [125].  

Here, indigo particles were assumed to be spherical (Scheme 5) and uniformly sized 

(for simplicity) and the rate law for the reductive dissolution of indigo to leuco-indigo 

in the presence of excess glucose is given by equation (17). 

indigo
indigo

d
d

Sk
t

nleuco ×′=−     (17) 

In this equation nleuco-indigo is the molar amount of leuco-indigo produced, k’ is a 

chemical dissolution rate constant (in mol s-1 m-2) and the surface area Sindigo = 4πr2 

(with r the approximate radius of the indigo particles).  
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Scheme 5. The glucose driven reduction of indigo. 

If a spherical indigo particle is assumed, the amount of indigo, nindigo, in the suspension 

is determined by the radius r, the density ρ, and the molar mass M (equation (18)).  

3
indigo  

3
4 r

M
n πρ

=     (18) 

The rate of reductive indigo dissolution is then equivalent to the rate of leuco-indigo 

formation and given by the change in particle radius (Equation (19)).  

t
rr

Mt
n

d
d 4

d
d 2indigoleuco πρ

−=−     (19) 

Comparison of equations (17) and (19) suggests an expression for the change in 

particle radius with time.  

t
rr

M
Sk

d
d 4 2

indigo πρ
−=×′     (20) 

ρ
Mk

t
r

×′−=
d
d      (21) 

( ) tMkrtr ××′−=
ρ0     (22) 

The concentration of leuco-indigo as a function of time is then obtained by combining 

equations (18) and (22) (equation (23)).  
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The initial rate of leuco-indigo formation can be obtained by derivation (equation 

(24)).  

2
0

0

indigo  4
d
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rk
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=

−    (24) 

 
Figure 8. Predicted plots of the concentration of leuco-indigo formed during reductive 
dissolution of indigo. Parameters are r0 = 0.5 μm, M = 0.262 kg mol-1, ρ = 1451 kg m-3, 
and a rate constant of (i) k’= 7.7 × 10-6 m s-1 × 200 mol m-3, (ii) k’= 4.1 × 10-6 m s-1 × 
200 mol m-3, (iii) k’= 2.0 × 10-6 m s-1 × 200 mol m-3. The dashed line indicates the 
initial rate.  

Equation (23) allows the change in leuco-indigo concentration with time to be plotted. 

Figure 8 shows plots of the concentration of leuco-indigo generated for an amount of 

indigo particles equivalent to a 1.3 mM concentration with an assumed radius of r0 = 

0.5 μm. The molar mass M = 0.262 kg mol-1, and the density ρ = 1451 kg m-3 [48,126] 

were used. The predicted time dependence is consistent with the experimentally 

observed curves and both the initial rate and the end point plateau data are readily 

obtained. The initial rate (see dashed line) is the most convenient way of extracting the 

rate constant for indigo dissolution. The more linear shape in experimental data plots is 

caused by the effect of the particle shape. 
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Figure 9. Scanning electron micrograph for typical indigo crystals. 

Figure 9 shows an SEM image of typical indigo particles. These particles crystallise in 

small platelets. The (during crystallisation) rapidly growing edges of the platelets are 

likely to be more reactive also during reductive dissolution and therefore the “active” 

surface area will be dominated by these edge areas rather than the plane area. Directed 

hydrogen bonding within the solid state structure is responsible for this effect [127]. 

This geometric anisotropy will dominate the rate of dissolution which then remains 

almost constant over the whole course of reaction. This results in an almost constant 

reaction rate (see equation (17)) and therefore in a much more linear increase in leuco-

indigo concentration (in contrast to the more curved plots predicted based on the 

approximate sphere model). However, the use of the initial rate data (as employed 

here) will produce reliable rate constant data in both cases. 

5.3.1. Rotating disc voltammetry (II) 

The electrochemical response for glucose at a glassy carbon electrode immersed in 

alkaline solution was investigated first without indigo addition. Figure 10 shows the 

oxidation response for a solution of 22 mM D-(+)-glucose in 0.2 M NaOH (65 °C) 

developing with time. A clear but broad oxidation response is observed at ca. -0.1 V vs. 

SCE (Process 1). Initially this process is absent but with time this response gradually 

increases indicating a chemical reaction which leads to the formation of a readily 

oxidisable intermediate from glucose and this intermediate is most likely active in the 

reduction of indigo. The alkaline degradation process of glucose is complex and the 

degradation products, specifically the active intermediate, haven’t been identified in 

the conditions used in these experiments. 
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Figure 10. Cyclic voltammograms (scan rate 10 mV s-1, rotation rate 5 Hz) for D-(+)-
glucose (22 mM) in aqueous 0.2 M NaOH at 65 oC obtained at a rotating 3 mm 
diameter glassy carbon disc electrode with starting potential -1.1 V. The current was 
monitored for (i) 0 min, (ii) 5 min, (iii) 10 min, (iv) 15 min after glucose addition. 
Next, indigo (1.33 mM) was added 20 minutes into the experiment and further cyclic 
voltammograms are recorded at (v) 20 min, (vi) 25 min, (vii) 30 min, (viii) 35 min, (ix) 
40 min, and (x) 45 min. 

After a delay of 20 minutes, indigo (equivalent to 1.33 mM) was added into the 

reaction mixture. No direct reduction of indigo at the glassy carbon electrode surface 

was observed. Therefore, leuco-indigo formed due to chemical reduction of indigo can 

be observed very clearly. Immediately after indigo addition (see Figure 10 (v)) a small 

anodic current (Process 2) and a new cathodic peak current (Process 3) are observed.  

Processes 2 and 3 are consistent with the oxidation and re-reduction of leuco-indigo in 

solution (equation (25)) with a midpoint potential of -0.75 V vs. SCE. This onset of the 

indigo reduction process occurs at a considerably more negative potential when 

compared to the oxidation of glucose intermediate and therefore the reduction of indigo 

by glucose may be expected to be kinetically very slow. The peak for the cathodic 
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process (Process 3) is associated with the “stripping” of a small amount of solid indigo 

from the electrode surface back into solution.  

Process 2 leuco-indigo (aq) → indigo (solid) + 2 e–  (25a) 

Process 3 indigo (solid) + 2 e– → leuco-indigo (aq)   (25b)  

Voltammetric currents observed under rotating disc conditions are governed by 

convection processes [119], and the mass transport controlled limiting current is 

directly proportional to the concentration of the reacting species in the bulk solution 

[123]. That is, for Process 2 the observed limiting current is directly proportional to the 

concentration of leuco-indigo. When the plots of the limiting currents vs. time were 

drawn approximately linear change in leuco-indigo concentration was observed. This 

was true also when indigo was added at the same time as glucose. The slopes were also 

similar in both occassions (the results not shown). The similarity of these slopes  

suggested that the formation of leuco-indigo is kinetically limited and the formation of 

the electroactive reductant derived from glucose is not crucial or rate determining 

under these conditions. A slow heterogeneous chemical step represented by the 

heterogeneous dissolution rate constant is likely. 

The progress of the formation of leuco-indigo in the presence of glucose can clearly be 

followed by observing the mass transport controlled limiting current for the oxidation 

of leuco-indigo (Process 2). By varying the ratio of glucose to indigo further 

information about the stoichiometry of the process is obtained. Figure 11 shows plots 

of limiting current data when indigo was added at the same time as glucose was. 

Doubling the glucose concentration has no significant effect on the rate of leuco-indigo 

formation while reducing the concentration of indigo from 5.7 to 2.9 to 1.3 mM (based 

on moles insoluble solid per volume solution) clearly reduces the final amount of 

leuco-indigo produced.  

The rate of leuco-indigo formation is approximately the same when the glucose 

concentration is altered but it appears to be proportional to the amount of indigo 

present (or the surface area of indigo particles in suspension, see equation (17)). In all 
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cases the time required for full conversion remains approximately the same. The final 

stage of the reaction where a current plateau is observed is consistent with the 

recoloration of the reaction mixture (the dark blue colour changes into yellow-brown) 

and with the complete conversion of indigo to leuco-indigo. Exposure of the resulting 

solution to air immediately caused the formation of dark blue indigo from the dissolved 

leuco-indigo.  

 
Figure 11. The effect of glucose and indigo concentrations on the rate of leuco-indigo 
formation in 0.5 M NaOH: (i) 22 mM glucose, 5.7 mM indigo; (ii) 44 mM glucose, 5.7 
mM indigo; (iii) 22 mM glucose, 2.9 mM indigo; (iv) 44 mM glucose, 2.9 mM indigo; 
(v) 22 mM glucose, 1.3 mM indigo; (vi) 44 mM glucose, 1.3 mM indigo. 

When the NaOH concentration was increased from 0.1 to 0.5 M both the rate and 

extent of leuco-indigo reduction increased (Figure 12), and the rate equation given in 

equation (17) may be modified to give the following rate law : 

indigoOHindigo
indigo

d
d

SckSk
t

nleuco ××=×′= −
−    (26) 

The rate expression (equation (26)) allows the individual rate constants k’ to be 

determined as a function of hydroxide concentration and this allows k = 4.1 (±0.3) × 

10-9 m s-1 (at 65 °C) to be estimated. An additional effect observed in the presence of 

different NaOH concentrations is the change in the final limiting current. At lower 

hydroxide concentration clearly the final current plateau is reduced. However, it is very 

likely that this effect is introduced due to the diffusion coefficient of the resulting 
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leuco-indigo in the aqueous electrolyte. A higher alkalinity may be better for 

preventing aggregation effects and for generally improving leuco-indigo solubility and 

diffusivity. At 0.1 M NaOH there was also evidence of incomplete conversion of 

indigo and therefore lower final leuco-indigo concentration in the solution. 

 
Figure 12. The effect of the NaOH concentration on the rate of leuco-indigo 
formation: (i) 1.3 mM indigo, 22 mM glucose, 0.5 M NaOH; (ii) 1.3 mM indigo, 22 
mM glucose, 0.2 M NaOH; (iii) 1.3 mM indigo, 22 mM glucose, 0.1 M NaOH. 

Hydrodynamic cyclic voltammograms were measured at three different temperatures; 

55, 65 and 75 ºC, and there was clear evidence of the temperature strongly affecting the 

rate of indigo reduction, so that higher the temperature faster the reaction. Activation 

energy was estimated to be 64 kJ mol-1 from the Arrhenius plot (not shown). 

5.3.2. Sonoelectrochemistry (II,III,IV) 

Sonovoltammetry was employed as one of the options of studying hydrodynamically 

the glucose-assisted reduction of indigo. Strong agitation was produced by a power 

ultrasound (24 kHz) horn system where the horn was positioned opposite to the 

working electrode (see Figure 3.) [128]. In addition to the agitation the power 

ultrasound applied to electrodes can lead to surface cleaning effects and higher 

reproducibility [129,130]. The final limiting current after complete reductive 

dissolution of indigo was increased when the horn to electrode distance was decreased 

due to more intense agitation close to the horn system. The rate parameters obtained in 
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these measurements were virtually identical to those obtained with the rotating disc 

methods.  

Another method of sonovoltammetry was introduced where the electrode was the 

source of vibration and no external agitation was necessary. The use of hydrodynamic 

electrode system allows diffusion controlled signals to be enhanced and in particular 

vibrating electrodes [131,132] provide a high rate of mass transport and simple 

operation. Vibrating probe systems are simple devices with no special requirements in 

terms of cell geometry or sample pretreatment and without complex moving parts. 

Vibrating electrode systems have been employed previously in electroanalysis as 

hydrodynamic sensor [133] and for heavy metal stripping analysis [134].  

A 250 Hz laterally vibrating electrode was developed for the leuco-indigo 

measurement (see Figure 4). In order for this sonoprobe system to be employed  the 

mass transport effects at the electrode surface had to be understood and calibrated. So 

the mass transport conditions at the vibrating electrode surface were characterised with 

the known Fe(CN)6
3-/4- redox system. The peak or limiting currents for the oxidation of 

ferrocyanide to ferricyanide were measured at different scan rates for different 

vibrational amplitudes (no vibration, low and high vibrational amplitude) and for 

different temperatures. The diffusion coefficients for ferrocyanide were calculated 

based on the appropriate Randles-Sevcik equation [135] where the peak currents for 

the non-vibrational voltammograms were a function of scan rates (v) (see equation 

(27)). 

  
RT

nFDvnFAcI 4463.0peak =    (27) 

In this equation n is a number of electrons transferred per molecule diffusing through 

to the electrode surface. Analysis of the data with the equation (27) suggested 

approximate diffusion coefficients for ferrocyanide to be at different temperatures: 

D55=1.3×10-9 m2 s-1, D65=1.5×10-9 m2 s-1, D75=1.7×10-9 m2 s-1 which are in good 
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agreement with the literature [136]. The diffusion layer thickness (δ) values were 

determined with the Nernst diffusion layer model [137,138]. 

δ
nFDAcI =lim      (28) 

Diffusion layer thicknesses were estimated to be approximately 5.0 µm and 7.0 µm at 

low and high vibrational amplitudes respectively.  

Figure 13 (A) shows a typical set of voltammograms obtained for the oxidation of 1.1 

mM leuco-indigo in 0.2 M NaOH at 75 °C at a vibrating (low amplitude) 500 µm 

diameter gold electrode. The reduction of indigo to leuco-indigo was performed in situ 

with glucose and this had the advantage over dithionite as reductant in that glucose 

does not cause any interfering electrode process. Figure 13 (B) shows a typical set of 

voltammograms obtained under similar conditions and for three different 

concentrations of leuco-indigo. Based on these data, Process 1 at a potential of -0.6 V 

vs. SCE is consistent with the mass transport controlled limiting current for the 

oxidation of leuco-indigo. At more positive potentials a broad response is observed 

(Process 2) which is linked to the oxidation of glucose. Due to the formation of 

insoluble indigo at the electrode surface, blocking occurs with time and both the leuco-

indigo oxidation (Process 1) as well as the glucose oxidation (Process 2) are affected. 

Figure 13 (A) clearly demonstrates the effect of indigo blocking the electrode to 

increase as the scan rate decreases. After reversal of the scan direction a further peak 

response (cathodic) is observed at a potential of -0.9 V vs. SCE (see Process 3) 

consistent with the electrochemical ‘‘stripping’’ response of solid indigo adhering to 

the gold electrode surface. It can be concluded that in order to improve the analytical 

signal (Process 1) (i) the scan rate has to be high (up to 4 V s-1), (ii) the vibrational 

amplitude is preferred to be low (faster mass transport also leads to faster blocking), 

and (iii) the temperature has to be high. 
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Figure 13. Cyclic voltammograms (scan rate (i) 90, (ii) 60, and (iii) 50 mV s-1) for the 
oxidation and re-reduction of 1.1 mM leuco-indigo (dissolved in 33 mM glucose in 0.2 
M NaOH at 75 ºC) at a vibrating (low amplitude) 500 μm diameter gold disc electrode 
with starting potential of -1.1 V. The grey zone indicates the steady state limiting 
current region. (B) Cyclic voltammograms (scan rate 200 mV s-1) for the oxidation and 
re-reduction of (i) 0.34 mM, (ii) 1.1 mM, and (iii) 1.8 mM leuco-indigo in 0.2 M 
NaOH at 75 ºC at a vibrating (low amplitude) 500 μm diameter gold disc electrode. (C) 
Plot of the limiting current versus time showing the formation of the leuco-indigo for 
1.1 mM indigo (suspended in 33 mM glucose in 0.2 M NaOH) at temperatures of 55, 
65, and 75 ºC at potential -0.6 V vs. SCE. 

With the voltammetric technique, the chemical indigo reduction process (with glucose 

in 0.2 M NaOH) was monitored by measuring the mass transport controlled limiting 

current (Process 1) for the oxidation of leuco-indigo every 3 min. Figure 13 (C) shows 

the time dependence of the leuco-indigo concentration at three different temperatures: 
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55, 65, and 75 °C. The plateau reached at the highest limiting current shows that the 

reaction has gone to completion (simultaneously a colour change from dark blue to 

yellow-brown occurred). The slow decrease of the plateau current at longer times 

(more than 15 min after the plateau is reached) can be attributed to a slow loss of the 

reducing power after glucose decomposition and possibly also to traces of oxygen 

leaking into the cell, it is also possible that the electrode is blocked more and the 

“stripping” no longer helps. From the temperature effect on the slope of leuco-indigo 

formation vs. time, it can be seen that the rate of indigo reduction is approximately 

doubled for each 10 °C increase in temperature (the approximate activation energy for 

the heterogeneous reduction of indigo is 65 kJ mol-1). 

It would be possible to perform the indigo determination even faster at even higher 

temperatures, but the temperature effect on the seal in the PEEK mounting of the 

vibrating electrode prevented work at temperatures higher than ca. 75 °C. Also the 

increase in the final limiting current (see Figure 13 (C)) is consistent with the faster 

rate of diffusion of the leuco-indigo molecules in a less viscous solution (at higher 

temperature). The diffusion coefficients for leuco-indigo can be estimated from the 

limiting currents (Process 1) based on the Fe(CN)6
3-/4- calibration data and equation 

(28). Assuming a two-electron oxidation, the estimated diffusion coefficients for leuco-

indigo are: D55=0.9×10-9 m2 s-1, D65=1.1×10-9 m2 s-1, D75=1.3×10-9 m2 s-1. These values 

are in good agreement with estimates for these diffusion coefficients based on the 

Wilke–Chang expression [139]. 

As already determined with the rotating disc electrode the NaOH concentration affects 

the rate of leuco-indigo formation. Figure 14 shows the plots of limiting currents of the 

oxidation of leuco-indigo at different NaOH concentrations. The colour of the 

suspension in 0.1 M NaOH remains dark, consistent with incomplete conversion of 

indigo whereas in 0.2 M NaOH the colour changes. Therefore, the concentration of 

NaOH is a crucial parameter in the effectiveness of the overall reduction process. It is 

possible that the ability of glucose to generate a powerful reducing agent depends on 

the level of hydroxide present in solution. 
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Figure 14. Plot of the limiting currents at potential -0.6 V vs. SCE of the leuco-indigo 
oxidation versus time at (i) 0.1 M and (ii) 0.2 M NaOH when 1.1 mM indigo is reduced 
with 22 mM glucose at 65 °C. 

Furthermore, the lack of progress in the reductive dissolution in low NaOH 

concentrations is also linked to the activity of Na+ which is competing with protons for 

the anionic binding sites on the surface of the reacting indigo crystal. In order to 

improve the rate and efficiency of the indigo reduction (while limiting the need for 

alkali during the process), redox catalysts can be introduced. Anthraquinone as well as 

its derivative 1,8-dihydroxyanthraquinone (DHAQ) can be used as catalysts for the 

glucose assisted reduction of indigo. 

5.4. ANTHRAQUINONE CATALYSED REDUCTION OF INDIGO WITH 
GLUCOSE (II,III,IV) 

Both the relatively small magnitude of the dissolution rate constant and the high 

activation energy suggest that a slow chemical reaction step governs the reductive 

dissolution of indigo. Anthraquinone derivatives are known to act as electron transfer 

mediators in the electrochemical reduction of indigo [18]. In particular 1,8-

dihydroxyanthraquinone is a very effective mediator for this reaction. The DHAQ 

solution was added in the NaOH solution at the same time with glucose and indigo. 

Figure 15 shows the effect of the 1 8-dihydroxyanthraquinone mediator on the 

reduction of indigo by glucose at 0.1 M NaOH measured with the rotating disc 

electrode. The DHAQ mediator seems to have a strong catalytic effect on the reduction 

process. The reaction rate is increased even at lower NaOH concentrations.  

,
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Figure 15. Plots are shown for the limiting currents for leuco-indigo (3 mm diameter 
glassy carbon rotating disc electrode, rotation speed 5.0 Hz) for the reduction of indigo 
(1.3 mM) by glucose (22 mM) at a temperature of 65 °C with and without different 
concentrations of DHAQ in 0.1 M NaOH: (i) 320 µM, (ii) 32 µM, (iii) 3.2 µM, and 
(iv) no DHAQ. 

Many anthraquinone derivatives are toxic but the parent anthraquinone is considered 

relatively safe to use [140] and readily available. The insignificant solubility of 

anthraquinone in aqueous media can be sidestepped in the present work by direct 

impregnation of the redox catalyst onto the indigo substrate prior to the reduction 

experiments. The anthraquinone catalyst was dissolved in acetone, indigo particles 

suspended into this solution by sonication, and after complete evaporation of the 

solvent, indigo, on which anthraquinone had been uniformly immobilised, was 

obtained. The amount of anthraquinone on the indigo surface was altered to determine 

the lowest effective level of catalyst. 

The catalytic effect of anthraquinone on the glucose assisted reduction of indigo was 

measured with the sonoprobe introduced earlier. Figure 16 (A) shows plots for the 

formation of leuco-indigo from anthraquinone-dosed indigo. In contrast to what 

happens in the absence of anthraquinone, the reduction process is highly effective in 

the presence of the lower concentration (0.1 M) of NaOH, and indigo is completely 

converted to leuco-indigo within 10-15 minutes (compare Figure 14). Low levels of 

anthraquinone effectively increase the rate and conversion level of the reduction 

process. At a level of 0.3 mol% (corresponding to 3 μM) the catalyst is still fully active 

and only at 0.1 mol% is the effect lost. In comparison, a solution of 3 μM water-
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soluble 1,8-dihydroxyanthraquinone catalyst had virtually no effect, instead 32 µM 

DHAQ was the lowest concentration where there was still strong catalytic effect to the 

reduction of indigo (see Figure 15).
  

 
Figure 16. (A) Plots of the limiting currents at potential -0.6 V vs. SCE of the leuco-
indigo oxidation versus time for the reduction of 30 mg of indigo (corresponding to 1.1 
mM) with 22 mM glucose in 100 cm3 

aqueous 0.1 M NaOH at 65 °C. The 
concentration of anthraquinone (present as solid) was (i) 30 μM, (ii) 15 μM, (iii) 3.0 
μM, (iv) 1.5 μM, and (v) 0.8 μM. (B) Plots of the limiting currents of the leuco-indigo 
oxidation versus time for the reduction of 30 mg of indigo (corresponding to 1.1 mM) 
with 22 mM glucose in 100 cm3 

aqueous NaOH at 65 °C in the presence of 15 μM 
anthraquinone with (i) 0.1 M, (ii) 0.08 M, and (iii) 0.05 M NaOH.  

With insufficient amounts of anthraquinone (less than 3 μM) the indigo reduction 

process fails to go to completion and the suspension remains dark. Increased amounts 

of catalyst above the critical level do not significantly speed up the reduction process 

either (see Figure 16 (A)). Excess of anthraquinone catalyst is likely to remain 
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insoluble and inactive under the reaction conditions employed. These findings 

suggested that it would be profitable to determine if the NaOH concentration could be 

lowered even further in the presence of anthraquinone catalyst, but Figure 16 (B) 

demonstrates that lowering the concentration of NaOH significantly below 0.1 M is not 

compatible with the full reduction of indigo (at 65 °C). It was noted that the suspension 

remained dark and therefore the reduction incomplete even after the plateau level of 

leuco-indigo had been reached. 

The effect of glucose on the reduction process was followed. Glucose is present 

typically in 20-fold excess and halving the concentration of glucose appears to not 

affect significantly the progress of the reaction. Halving the concentration of glucose 

again, however, does affect the process. An excess of at least 10-fold of glucose versus 

indigo appears to be necessary for the reaction to go to completion (in the presence of 

15 μM anthraquinone and at 65 °C). The rate of leuco-indigo formation was followed 

by voltammetry at temperatures of 55, 65, and 75 °C. Increasing the temperatures 

significantly accelerates the reduction of indigo and from the approximate rate of 

leuco-indigo formation the Arrhenius activation energy can be estimated to be 120 kJ 

mol-1. This is relatively high, it is indicative of a high activation barrier, almost twice 

as high as that observed for the same process in the absence of the anthraquinone 

catalyst. 

5.5. INDIGO SUBLIMATION AND SEM (IV) 

Indigo crystals of almost macroscopic size can be grown in short-path sublimation 

experiments to obtain plate-like crystals that owe their appearance to the layered 

packing in the indigo crystal structure. Figure 17 shows the indigo structure from three 

directions (red = O, blue = N, green = C) and the sheet-like structures held by the 

strong inter-molecular hydrogen bonds are clearly visible.  
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Figure 17. Crystal structure of indigo showing (A) from the top onto an indigo sheet, 
(B) from the side on two indigo sheets, and (C) from the side into a single indigo sheet. 
Within sheets, oxygen (red) and nitrogen (blue) atoms are inter-linked via hydrogen 
bonds (dashed lines). 

The sheet structure at molecular level is reflected in the formation of thin crystal plates 

at macroscopic level. During the indigo reduction process, both, the interactions 

between sheets and the stronger interactions within sheets need to be overcome. Indigo 

crystals grown by sublimation were immobilised onto sticky carbon tape (for mounting 

SEM samples) and imaged by electron microscopy (after gold sputter coating). Figure 

18 (A) shows a typical assembly of plate-like crystals with many smaller crystal debris 

visible initially. The characteristic shape of the crystals originates from the preferred 

growth direction planar to the sheet. In order to monitor the indigo reduction, samples 

of immobilised indigo crystals were immersed in glucose-containing reduction solution 

and withdrawn at various times.  
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Figure 18. SEM images (low magnification) of indigo crystals (A) before reduction, 
(B) after 3 minute reduction, (C) after 14 minute reduction, (D) anthraquinone-dosed 
after 3 minute reduction, (E) anthraquinone-dosed after 15 minute reduction, and (F) 
anthraquinone-dosed after 25 minute reduction. The reduction was achieved by 
immersion into aqueous 0.2 M NaOH with 22 mM glucose at 65 °C which was 
followed by rinsing with water and drying. 

Figure 18 (B) and (C) show samples after 3 minutes and after 14 minutes reduction. 

The smaller indigo crystal debris was immediately removed. Larger crystals remained 

and were still observed after 14 minutes of reduction. When the experiment was 
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repeated with anthraquinone-dosed indigo (see Figure 18 (D), (E), and (F)) similar 

images to those obtained with untreated indigo were obtained. In all cases the plate-

shape of indigo crystals remains and no holes are formed. It is most likely that the 

reductive dissolution process occurs from the edges and that this process is relatively 

slow perpendicular to the indigo sheets. Closer inspection of Figure 18 (C) and (F) 

shows etch patterns and terrace-like features which are typical for reductive dissolution 

occurring from the edges. In the presence of anthraquinone there appear to be more 

irregular features possibly associated with local anthraquinone concentration 

variations. Although quantitative information is not obtained from these images, 

qualitatively they support the idea of a reductive dissolution process occurring at the 

edges of indigo crystals. 

 
Figure 19. Schematic representation of the indigo reduction process at the edge of a 
layered indigo crystal with (A) proton intercalation, (B) Na+ intercalation, and (C) 
simultaneous anthraquinone and Na+ intercalation. 

Figure 19 shows a schematic representation of three types of reductive dissolution. In 

the presence of protons the reduction is limited to the edges of indigo sheets and proton 

intercalation followed by delamination and further dissolution is unlikely to occur. The 

protons block further progress of the reductive dissolution. In contrast, sodium cations 

can intercalate, which, under sufficiently alkaline conditions, will lead to slow 
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delamination and disintegration of the indigo sheets. Finally, in the presence of 

anthraquinone, strong adsorption of the planar anthraquinone molecule into the gap 

between indigo sheets occurs and the catalyst is moving into the crystal like a “wedge” 

causing more rapid delamination and faster reductive dissolution. 

5.6. PURITY OF PLANT-DERIVED INDIGO (IV,V) 

5.6.1. The optimization of extraction method (V) 

The extraction method of plant-derived indigo from woad was optimised on a lab-

scale. Different parameters of the process were studied to produce information on their 

effect on the  indigo content and purity. The indigo content and purities were measured 

with spectrophotometric methods described in the experimental section.  

The experiments showed that it is possible to increase the indigo content and purity by 

optimising the extraction method although the increase is highly dependent on the 

quality of leaf material. Two washings of the leaves were found out to increase the 

mean purity of indigo, however the purity stayed still under 50%  which was very low 

when compared to the synthetic indigo. The impurities weren’t examined in this 

experiment, and that could be interesting to see what constitutes the high impurity 

content and is there something in the method that might contribute to the impurities 

other than  the high amount of calcium hydroxide present in the extractions. Even 

though the other bases might be more suitable to the method to lower the impurity 

content, calcium hydroxide was deemed necessary to use in the extractions because of 

its positive effect in the sedimentation of the indigo particles. According to Garcia-

Macias and John [20] the calcium hydroxide act as nuclei in the formation of larger 

indigo particles which then sediment more quickly. The extraction time of 8 min was 

confirmed to be suitable to the hot extraction, as well as the fact that there is no need to 

adjust the pH of the steeping water to increase the indigo content or the purity. 

The two temperatures of the extractions were studied and interestingly the cold 

extraction seems to give higher indigo contents than the hot extraction, although the 

purity is lower in the cold extraction. The higher content in cold extractions could be 
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due to the enzyme activity which is prevented in the hot extractions. However, more 

studies are needed to confirm that the cold extractions really give the higher indigo 

content or whether the result is due to the impurities disturbing the measurements. It 

would have quite an impact on the energy consumption of the extraction if it isn’t 

necessary to heat the steeping water, this would also remove the need for cooling the 

water after the extraction. The fast cooling overall is not as necessary as it was thought 

to be initially, however the case might change with the larger scale of the extractions. 

The aeration time can be lowered to 15 min or even 5 min from the previously used 60 

min, which is suitable to lowering the energy consumption. The aeration pH needs to 

be alkaline, the pH 11 seems to be the most suitable for the indigo production when 

both the indigo content and the purity are considered.  

The indigo purity was mainly determined with the spectrophotometric method with 

NMP as a chosen solvent. The state of aggregation of the indigo in the solvent [6] may 

affect the method, and it has been suggested [55] that impurities in natural indigo 

reduce the size of indigo aggregates in solvents. Thus when pure synthetic indigo 

(larger aggregates) is used as a standard, the determinations of the impure natural 

indigo samples (finer aggregates) will overestimate the real indigo content. The 

voltammetric method was examined as a possible alternative for the conventional 

spectrophotometric method. 

5.6.2. Sonovoltammetric determination of indigo purity (IV) 

The leuco-indigo and indigo determination method based on voltammetry at a 

vibrating electrode described earlier was used for samples of impure plant-derived 

indigo from the optimisation of indigo extraction experiment. A comparison shows that 

the voltammetric method produces reliable results even when considerable amounts of 

ill-defined impurities are present. The results were compared to those obtained by the 

more conventional spectrometry. Initially, a calibration plot (limiting current versus 

indigo content) was obtained based on pure synthetic indigo samples at different 

temperatures (55, 65 and 75 °C). Reproducible data were obtained and the 75 °C 

conditions were selected for the determination of indigo in plant-derived indigo 
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samples. Figure 20 shows typical SEM images for the plant-derived indigo samples. At 

high magnification well-defined nanocrystalline indigo platelets are seen (see Figure 

20 (B)) in between areas with inorganic impurities. It has been shown previously [20] 

by SEM-EDAX that impurities in plant-derived indigo are non-uniformly dispersed, 

and that soil and plant-derived particulates are responsible for persistent impurities in 

the final product.  

 
Figure 20. SEM data for plant derived indigo showing (A, B) secondary electron 
images for a typical sample at two different magnifications. 

The leaf material from which the indigo is extracted is not homogeneous and there are 

many parameters which affect the indigo yield as well as the dye quality. For example, 

the growth conditions preceding harvest can significantly alter the indigo yield [141] 

and thus the impurity level [20]. The voltammetric analyses consistently indicate a 

purity less than that indicated by the spectrophotometric method (see Figure 21). Due 

to the known problems with the indigo aggregation in the solvents it was concluded 

that the voltammetric determinations of the indigo content of the natural indigo 

samples are the more accurate ones, and that the purity of the samples was typically 

20-30%.  
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Figure 21. Histogram of the mean purity determined by spectrophotometry (i, 
rectangles) and determined by voltammetry (ii, circles) for each batch of plant material. 

In support of the conclusion that the impurities are responsible for an overestimation 

by the spectrophotometric method, it was observed that when the impurity content is 

higher, the discrepancy between the two methods is greater, and the purer the samples, 

the closer are the values obtained with the two methods. The present results suggest 

that the voltammetric method is experimentally reproducible and more reliable than the 

spetcrophotometric method due to the complete dissolution of leuco-indigo and the 

reliable steady state voltammetric response at the vibrating electrode. Further work will 

be needed to determine the effect of indigoid impurities. 
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6. SUMMARY AND CONCLUSIONS 

The reduction of indigo was studied with a mediator based system where DHAQ was 

used as a redox mediator. Another reduction method studied was glucose assisted 

reduction of indigo with and without catalyst. These reductions were both followed 

electrochemically. The effectiveness of the redox mediator DHAQ for the reduction of 

dispersed indigo has been investigated by rotating disc voltammetry. A detailed kinetic 

analysis produced with Digisim suggests that essentially, diffusion-controlled 

reduction occurs, and that at a temperature of 80 °C, DHAQ is an excellent mediator 

system for the reduction of dispersed indigo.  

It was shown that hydrodynamic voltammetry (rotating disc and sonovoltammetry) 

offers a convenient and reliable tool for the determination of leuco-indigo in an 

alkaline bath containing indigo and glucose precursors. The methodology allowed a 

rate law and rate constant to be determined. It was demonstrated that anthraquinone, 

although insoluble in water, is a highly effective catalyst in the glucose-driven 

reduction of indigo to leuco-indigo in aqueous 0.1 M NaOH.  

Anthraquinone was adsorbed/immobilised onto the indigo powder prior to the 

reduction. It was shown for indigo crystals of micron dimension, that a molar ratio of 

1:400 for anthraquinone:indigo is effective for complete conversion with 10-fold 

excess of glucose at 65 °C. The temperature has a considerable effect on the 

anthraquinone-catalysed reductive dissolution. A molecular mechanism based on 

adsorption of anthraquinone between indigo sheets was proposed to explain the 

enhanced reductive dissolution. Anthraquinone and Na+
 
ions are believed to penetrate 

between the indigo sheets and thereby help breaking up the solid crystal.  

The sustainability of glucose as a reductant in indigo dyeing may be considered to be 

limited by the present high temperature requirement and a high alkalinity. However, 

the demonstration of a catalytic role for the anthraquinone points the way towards 

improvements that could be brought about in the glucose-driven process by the 
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identification of related compounds that combine an appropriate redox functionality 

and an ability to interact with the indigo particle surface. 

The extraction method of plant-derived indigo from woad has been studied on a lab-

scale. The results were compared to produce the method that would reduce the energy 

input as well as improve the product quality. More knowledge was produced on the 

effect of extraction process on the indigo content and purity even though the purity 

stayed under 50% which is still lower than the synthetic indigo. 

A novel voltammetric determination method for indigo and/or leuco-indigo was 

developed employing a vibrating (250 Hz) 500 μm diameter gold disc electrode. 

Hydrodynamic voltammetry at a temperature of 75 °C was used to provide a well 

defined steady state current response for the quantitative determination of impure 

indigo samples. The reductive dissolution of indigo driven by glucose under alkaline 

conditions and at an elevated temperature of 75 °C allows leuco-indigo oxidation to be 

exploited and the limiting current to be used as a reliable measure of indigo content.  

The sonoelectrochemical method developed was used for determination of indigo 

content in impure plant-derived indigo, but it is possible to utilize it also with other 

similar redox active substances. The two novel reduction methods developed in this 

study may be employed in the dyeing with indigo and possibly they could be applied to 

also other vat dyes. Synthetic indigo was mainly used in the redox experiments due to 

its homogeneity and purity. However, the results of this study may be used as a basis 

for further investigation of the reduction of plant-derived indigo and a possible 

development of more sustainable dyeing method of synthetic as well as plant-derived 

indigo.  
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