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Introduction 5

INTRODUCTION

Mobile phone use has increased dramatically in recent years, reaching up to 4.1 billion
subscribers in 2008 [ITU, 2009]. Mobile phone use in close proximity to the head has
increased public concern about adverse effects of mobile phone radiation on the nervous
system in the head. For the last decades, a large number of studies have investigated
the possible effects of mobile phone exposure, mainly of short-term exposure to
digital handset-like signals, with various methods for investigating cognition and brain
functioning.

Radiofrequency (RF) electromagnetic radiation is used in mobile phones to transmit
information between handsets and base stations, and the information can be transmitted
in either analog or digital form. Different mobile phone systems use different signals
(different frequency bands and information coding methods). The first generation (1G) of
cellular mobile telecommunication systems, such as the Nordic Mobile Telephone (NMT)
introduced in 1980s, used analog signals, which were usually frequency-modulated
and continuous (not pulsed). The analog systems were then replaced by the digital 2G
systems in 1990s, which have many technical advantages over the analog systems (e.g.,
multiplexing, data compression). Global system for mobile communications (GSM) is
the most widely used 2G system for mobile phone communications in the world. About
3.5 billion mobile phone connections use GSM across 222 countries, which is over 80%
of all the connections in the world (ca. 4.4 billion) [GSM Association, 2009].

The GSM network operates in the 900 and 1800 MHz bands in most countries. For
example, GSM-900 uses a frequency of 890-915 MHz to transmit signals from a handset
to a base station (uplink) and a frequency of 935-960 MHz for the other direction
(downlink). Frequency-division multiple access (FDMA) allows 124 RF channels of 200
kHz wide, which can be used simultaneously. Each base station is assigned a different
set of channels to serve mobile phones, avoiding interference with neighboring base
stations. Time-division multiple access (TDMA) allows several users to share the same
RF channel by dividing the data stream into time slots allocated to each user. The users
transmit in rapid succession, one after another, using own time slots.

The GSM signal is pulse-modulated at a frequency of 217 Hz with a frame length of
4.6 ms and each frame is divided into eight slots with a pulse width of 0.577 ms, allowing
eight simultaneous calls on the same channel. One slot is active in handset signals and

seven in base station signals. Since the transmission power is limited to a peak power of
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2 W for GSM-900 and 1 W for GSM-1800, the averaged power is 0.25 W and 0.125 W,
respectively, for handset signals because of the duty cycle of 1/8.

In the GSM signals pulse-modulated at 217 Hz, every 26™ pulse is idle by definition,
causing a modulation component at 8 Hz (‘talk’ mode). In ‘listen’ mode, discontinuous
transmission (DTX) for saving battery power produces additional pulsing at 2 Hz.
In ‘standby’ mode when the phone is switched on without an active call, the carrier
frequency pulses less periodically at below 2 Hz. Thus, the GSM signal have modulation
components of 2, 8, 217, 1733 Hz, and higher harmonics, and the different spectral
composition of ‘talk’, ‘listen’, and ‘standby’ signals affect the output power and thus the
amount of radiation energy absorbed by adjacent tissue (talk > listen > standby =~ 0 W/
kg) [Hung et al., 2007; Hyland, 2000].

Specific absorption rate (SAR) is a measure of the rate at which RF energy is absorbed
by a unit mass of tissue (W/kg) [Durney et al., 1986]. Exposure limits relevant to mobile
phones are expressed in terms of the SAR averaged over a small sample volume (typically
1 or 10 g) of tissue, for instance, SAR1g < 1.6 W/kg [IEEE, 2005] and SAR10g <2.0 W/
kg [ICNIRP, 1998]. The (worst-case) spatial average SAR in the user’s head would be
the maximum output (2.5 W) divided by the mass of the head, but local peak values can
be much higher depending on the distance to the phone and tissue type [Gandhi, 2002].
The local peak SAR that have been determined by measurements with a phantom (SAR |
=1.20 W/kg, SAR, 0p — 0.86 W/kg) or numerical simulations (II, TABLE 1) are slightly

but not much lower than the guidelines.
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LITERATURE REVIEW

Subjective symptoms and EMF perception

Cross-sectional studies from various countries reported that a small but significant
proportion of the population experience subjective or nonspecific symptoms associated
with EMF exposure: 1.5% in Sweden [Hillert et al., 2002], 3.2% in California [Levallois
et al., 2002], 5% in Switzerland [Schreier et al., 2006]. Moreover, a majority (56%)
of the people with self-reported hypersensitivity reported being able to perceive EMF
[Ro6sli et al., 2004]. Electromagnetic hypersensitivity is characterized by a variety
of nonspecific symptoms (e.g., headache, dizziness, fatigue, sleep disorder) and may
be recognized as functional impairment [Johansson, 2006; WHO, 2005], but is not
currently an accepted diagnosis. These survey studies, based on subjective statements
or observations, are inappropriate for addressing causal relationship between EMF
exposure and subjective symptoms or for providing objective evidence of the ability of
humans to perceive EMF.

The (self-reported) ability to perceive or sense EMF, referred to as electromagnetic
sensibility, may not be a necessary condition for hypersensitivity [Leitgeb & Schrottner,
2003], and electromagnetic hypersensitivity and sensibility are even considered as two
independent phenomena [Seitz et al., 2005]. Leitgeb and Schréttner [2003] analyzed
the distribution of the perception threshold of a 50 Hz electric current in 708 adults and
found a significant deviation (lower threshold), suggesting the existence of increased
sensibility to the low frequency EMF in the general population. Mueller et al. [2002] also
found a small number of subjects sensitive to 50 Hz EMF, with no difference between
the two groups with and without self-reported hypersensitivity. Some other provocation
studies have provided evidence against such ability to perceive low frequency EMFs,
especially in self-reported hypersensitive subgroups [Lyskov et al., 2001; Reillenweber
et al., 2000].

Aforementioned studies have used low frequency EMFs, but sensibility to low
frequency fields does not necessarily correlate with that to RF fields used in mobile
telecommunications [Leitgeb & Schrottner, 2003]. There have been only a small number
of provocation studies on the perception of mobile phone EMF, providing little evidence
for the ability to perceive EMFs in hypersensitive individuals. For example, Hietanen et
al. [2002] reported that 20 hypersensitive subjects failed to distinguish real exposure to

mobile phone radiation from sham exposure (30 min, 3-4 trials), and Raczek et al. [2000]
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also reported that 16 hypersensitive subjects failed to discriminate between real exposure
to mobile phone radiation and sham exposure (3 min, 21 trials). However, sample groups
in previous studies were largely limited to self-reported hypersensitive subjects although
the possible sensibility and hypersensitivity are not necessarily related to each other
[for reviews see Rubin et al., 2005; Seitz et al., 2005]. In addition, the sample size (i.e.,

number of subjects and trials) was often too small to ensure statistical confidence.

Cognitive performance

The effects of mobile phone radiation on cognitive functions have been investigated
in a number of studies by comparing performance measures (e.g., accuracy, speed) of
various cognitive tasks under different exposure conditions. Previous studies have often
used attention or working memory tasks. For instance, reaction time (RT) tasks measure
subjects’ RT to one single stimulus (simple RT) or several complex stimuli (choice RT).
In other attention tasks, subjects respond to a target stimulus presented in a series of non-
target stimuli (vigilance task), or subtract one-digit numbers from nine (subtraction task).
In n-back working memory tasks, subjects were to respond to each stimulus (letter in this
study) whether it appeared n trials back. Early studies often reported significant effects
such as increased speed in those tasks [Preece et al., 1999; Koivisto et al., 2000a, 2000b],
but these studies tested many variables obtained from a series of tasks without enough
consideration for multiple comparisons. Later studies even by the same research groups
have failed to replicate the previous findings despite methodological improvement.

Preece et al. [1999] reported choice RT being reduced in a dose-dependent manner
(analog 1 W < digital 0.125 W < sham 0 W), but it was the only significant result (P =
0.003) out of 15 tested variables from ten attention and memory tasks. Subsequently,
Preece et al. [2005] tested the observed dose-dependent effect in children using two
digital signals of 0.25 and 0.025 W and the same attention and memory tasks slightly
modified for children. They found a similar trend of better performance, most marked in
reduced simple RT (P = 0.02), but none of the variables reached statistical significance
after Bonferroni corrections (22 tests). They concluded the replication to have failed in
children.

Koivisto et al. [2000a] reported reduced RT in a working memory task (3-back),
and Koivisto et al. [2000b] also reported reduced RT in simple RT, subtraction, and
vigilance tasks. However, simple RT (P = 0.026) and subtraction RT (P = 0.044) results
did not reach statistical significance when corrected for multiple testing (14 tests). Their

replication studies with improved study design (larger sample size, double-blind design,
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multicenter testing, additional attention tasks) found no significant effects in either RT
(attention) [Haarala et al., 2003b] or working memory [Haarala et al., 2004; Haarala et
al., 2003a] tasks. They conducted further experiments in children [Haarala et al., 2005],
or in adults including additional exposure conditions (CW signals, both left and right
exposure) and a control group with no exposure equipment [Haarala et al., 2007]. The
tasks were selected considering the facilitating effects observed in the previous studies
[Koivisto et al., 2000a, 2000b] but neither of the studies found any significant effects.

The cognitive facilitating effects on attention [Koivisto et al., 2000b] and memory
[Koivisto et al., 2000a] were also tested by Russo et al. [2006] and Cinel et al. [2008],
respectively, using a large sample of 168 subjects for improved statistical power. Russo
et al. [2006] included simple RT, subtraction, and vigilance tasks that might be sensitive
to exposure [Koivisto et al., 2000b], while Cinel et al. [2008] manipulated task difficulty
because the exposure might affect cognitive functions only in the high cognitive
load conditions (3-back) [Koivisto et al., 2000a]. Using otherwise identical exposure
setup, study design, and statistical analysis, neither of the studies found any significant
effects.

Curcio et al. [2004] found significantly reduced simple and choice RT, but Curcio et
al. [2008] subsequently reported no effects in the same simple RT task (choice RT task
not tested) or in a sequential finger tapping task. Regel et al. [2007a, 2007b] found no
facilitating effects in simple and choice RT tasks but only inconsistent results in n-back
memory tasks: improved performance (reduced RT, enhanced accuracy) in Regel et al.
[2007a] but then the opposite results (increased RT with increasing SAR levels) in Regel
et al. [2007b]. Keetley et al. [2006] reported impaired simple and choice RT, rejecting the
hypothesis of facilitating effects, but improved RT in a trail-making task. Furthermore,
these results (P = 0.005-0.043) were not adjusted for multiple testing (18 tests).

Besset et al. [2005] and Fritzer et al. [2007] examined long-term cumulative effects
of a 2 h daily exposure for four weeks and of exposure during a whole night sleep of
about 8 h for six nights, respectively, finding no significant effects on attention, memory,
or executive functions. Aside from the frequently investigated attention and memory
functions, Maier et al. [2004] reported increased auditory temporal-order thresholds,
the minimum time to discriminate two successive tone presented to each ear, while no
effects were found in visual luminance-discrimination thresholds [Irlenbusch et al.,
2007] and critical flicker fusion thresholds [Wilén et al., 2006]. No effects of 2G digital
signals were found in visuo-motor preparation [Terao et al., 2006], and saccades [Terao

et al., 2007]. Finally, 3G digital signals were also found not to affect attention [Regel et
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al., 2006; Unterlechner et al., 2008], memory [Regel et al., 2006], or visual perception
[Schmid et al., 2005].

Some studies had problems in data analysis and interpretation. For instance, Eliyahu
et al. [2006] and Luria et al. [2009] arbitrarily combined the data from different exposure
conditions (right, sham) in order to yield significant results (left) on laterality. Smythe
and Costall [2003] excluded a certain condition (no phone) because the initial analysis
comparing all conditions (on, off, no phone) revealed no significant results on short-term
and long-term memory functions. Wiholm et al. [2009] reported that the performance of a
virtual navigation task was improved (distance traveled was decreased) in a hypersensitive
group after real exposure, but the performance of the hypersensitive group was actually
worsened after sham exposure, with no differences between the hypersensitive (real)
and control (real, sham) groups. This suggests that the observed effect might be due to
chance.

In sum, the issue of multiple comparisons was not taken into account in the earlier
behavioral studies, which reported a few significant results in a number of tests. Thus,
the positive findings may be explained by chance. Later more elaborate studies could
not replicate these results. Considering recent findings of null effects, mobile phone
radiation does not seem to have measurable effects on cognitive functions assessed with

behavioral measures.

Cochlear and brainstem auditory processing

Auditory organs such as the ear absorb most of the radiation energy from the mobile
phone [Parazzini et al., 2007b], prompting investigations on the auditory function
in humans with audiometric tests used for diagnosis of hearing loss or ear diseases.
Previous studies usually used pure tone audiometry (PTA), otoacoustic emission
(OAE), or auditory brainstem response (ABR) [Parazzini et al., 2007a]. Compared
with subjective audiometry such as PTA, the OAE and ABR provide more sensitive
and reliable methods for detecting subtle disturbances of hearing function due to EMF

exposure, for instance.

OAE

The OAE is a natural sound signal generated from the cochlea due to the motility of
the outer hair cells related to sound amplification [Kemp, 1978, 2002]. The OAE is
objectively measurable in the ear canal and provides a very sensitive index of cochlear
damage by monitoring the status of the outer hair cells. Mild changes in the cochlear

function that are not revealed by subjective audiometric tests such as PTA can cause
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obvious changes in the OAE [Kemp, 2002]. Evoked OAE includes transiently evoked
OAE (TEOAE) elicited by click stimuli and distortion product OAE (DPOAE) elicited
by a pair of pure tones with particular intensity and frequency ratio.

Previous mobile phone studies compared either TEOAE [Bamiou et al., 2008; Mora
et al., 2006; Paglialonga et al., 2007; Uloziene et al., 2005], DPOAE [Parazzini et al.,
2005], or both [Ozturan et al., 2002] measured before and after short-term exposure (10
or 30 min) to the GSM signal. However, none of them found any effects of the exposure,
even using sophisticated data processing for increasing the sensitivity to detect small
changes in hearing function due to exposure [Paglialonga et al., 2007; Parazzini et al.,
2005]. As for the vestibular part of the inner ear, Bamiou et al. [2008] and Pau et al.
[2005] found no evidence of nystagmus due to short-term exposure as measured with

video-oculography (VOG).

ABR

The ABR is an electrical response evoked from the brainstem by a sound such as a
rarefaction click [Jewett et al., 1970; Jewett and Williston, 1971]. The sound signal
travels along the auditory pathway producing small deflections of the ABR within 10
ms following stimulus onset. The ABR involves auditory nerve and nuclei located in the
brainstem, providing information about cochlear and retrocochlear auditory functions
and hearing sensitivity [Henry, 1979]. Wave I originates from the acoustic nerve (8"
cranial nerve), wave Il from the superior olivary complex (lower pons), and wave V
from the inferior colliculus (midbrain). Kellényi et al. [1999] first reported that the
latency of wave V was delayed by 0.207 ms after 15 min exposure to a GSM signal.
Thereafter, several studies were conducted to determine the effects of short-term
exposure (10 or 30 min) to mobile phone EMF on the ABR [Arai et al., 2003; Bak et al.,
2003; Mora et al., 2006; Oysu et al., 2005; Sievert et al., 2005; Stefanics et al., 2007],
none of them finding significant effects on any ABR variables. Even the same group
[Stefanics et al., 2007] failed to replicate their preliminary findings [Kellényi et al., 1999]
in experiments with several improvements compared to the first study (sample size,
stimulus type, double-blind, counterbalancing). Arai et al. [2003] measured the ABR and
its recovery function, as well as middle latency responses (MLR) with negative (Na) and
positive (Pa, Pb) waves at 10-75 ms latency. The MLR originates from thalamo-cortical
projections and temporal auditory cortex [Picton et al., 1974; Picton and Hillyard, 1974],
in addition to subcortical generators, but they found no significant effects. Finally, Oktay
and Dasdag [2006] studied long-term effects of mobile phone use in heavy, moderate,

and non-users but found no effects on the ABR.



12 Literature Review

In sum, previous OAE and ABR studies were quite consistent in experimental setup
and provided consistent results of no effects. However, only a few ABR studies applied
concurrent exposure with the radiation source being placed apart from the ear [Sievert et
al., 2005] or on the head over the temporo-occipital region [Bak et al., 2003]. The OAE
was not measured during exposure at all. This is an important issue because the effects

of mobile phone radiation with the weak transmission power can be transient.

Brain activity during cognitive processing

Electroencephalogram (EEG) is electrical activity within the brain recorded with
electrodes attached to the scalp [Berger, 1929]. The EEG signal is a mixture of
simultaneous oscillations traditionally subdivided into EEG frequency bands such as
delta (< 4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (> 30 Hz).
As derivatives of EEG techniques, event-related desynchronization and synchronization
(ERD/ERS) refer to the relative EEG spectral power decrease and increase, respectively,
in defined frequency bands occurring in relation to an event [Pfurtscheller 1992]. In the
time domain, evoked (EP) and event-related potentials (ERP) refer to the averaged brain
responses time-locked to the presentation of external stimuli or more complex cognitive
processing of internal/external stimuli, respectively. Positive or negative deflections are
measured on a millisecond time scale, for example, N100 denoting a negative deflection
at about 100 ms latency. These techniques have been extensively used in studying human

cognitive functions.

Resting EEG

Despite the differences in study design, previous studies on resting EEG have rather
consistently reported enhanced alpha activity (8-12 Hz) due to mobile phone exposure
[Croft et al., 2002; Curcio et al., 2005; Regel et al., 2007a; Reiser et al., 1995], and Croft
et al. [2008] confirmed this alpha power enhancement by using a large sample size (N
= 120 subjects). In addition, Vecchio et al. [2007] reported modulated interhemispheric
EEG spectral coherence also in the alpha band: increased temporal coherence at 8-10
Hz and decreased frontal coherence at 8-10 and 10-12 Hz. Thus, mobile phone radiation
may have affected underlying thalamic mechanisms of alpha rhythm generation [Hughes
and Crunelli, 2005], which is prominent during relaxed wakefulness (eyes closed). Some
studies reported significant effects also in the delta [Croft et al., 2002] and beta [Reiser
et al., 1995] bands.

Some other studies have reported no significant effects of mobile phone exposure on
resting EEG [Hietanen etal., 2000; Kleinlogel et al., 2008a; Perentos etal., 2007; Roschke
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and Mann, 1997]. Notably, Hietanen et al. [2000] compared five analog or digital phones
operating at 900 or 1800 MHz and found increased absolute power in the delta band (1.5-
3.5 Hz) for an analog NMT-900 phone at an alpha level of 0.01 (P = 0.004). However,
they concluded to have found no significant effects because the observed effect could be
due to multiple comparisons (36 variables, 180 t-tests). Otherwise, a similar difference
should have been observed in the relative power, which was not the case. Analog signals
induced no effect on the resting EEG [Regel et al., 2007a; Perentos et al., 2007].

Sleep EEG
A series of studies on sleep EEG [Borbély et al., 1999; Huber et al., 2000, 2002] found

enhanced EEG spectral power in subjects exposed to mobile phone radiation in the
alpha band of sleep EEG and in the adjacent sleep spindles range (12-16 Hz) during the
initial part of non-REM (rapid eye movement) sleep. Loughran et al. [2005] attempted
to replicate these findings [Huber et al., 2000, 2002] by recording EEG for the first 30
min of the initial non-REM sleep after 30 min exposure prior to night sleep. The results
showed similar spectral power enhancement in the slow sleep spindle range. Regal et
al. [2007b] found dose-dependent increase in the sleep spindle range in non-REM sleep
using five times lower (0.2 W/kg) and higher (5 W/kg) than in their earlier experiments
(SAR10g=1 W/kg) [Borbély et al., 1999; Huber et al., 2000, 2002], further corroborating
the earlier findings.

In contrast, a series of studies reported null findings [Mann and Rdéschke, 1996;
Wagner et al., 1998, 2000]. Mann and Rdschke [1996] first reported sleep-inducing
effect (reduced sleep onset latency), suppressed REM sleep (prolonged latency, reduced
duration), and enhanced alpha power during RAM sleep. However, Wagner et al. [1998]
with improved dosimetry found no effects, attributing the discrepancy to lower field
intensity (0.2 W/m? < 0.5 W/m?) or different antenna and signal type. In further studies,
Wagner et al. [2000] employed considerably higher power density (50 W/m?) but still
found no effects, rejecting the possibility of a dose-dependent effect. Finally, Fritzer et
al. [2007] found no cumulative effects of six-night consecutive exposure on sleep EEG.

In sum, previous resting and sleep EEG studies have provided conflicting results (i.e.,
enhance alpha activity vs. null effects). Moreover, it is difficult to compare the findings
to draw any conclusions because of huge discrepancies in the experimental setup,
especially in the exposure characteristics. For instance, the same series of studies used a
intermittent base station signal (15 min on, 15 min off) for 8 h night sleep [Borbély et al.,
1999], a base station signal for 30 min prior to 3 h daytime sleep [Huber et al., 2000], or

a handset signal for 30 min prior to 8 h night sleep including an analog signal [Huber et
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al., 2002]. Even replication studies sometimes differed from the studies to be replicated
in experimental setup (e.g., Wagner et al. [1998, 2000]).

Low frequency modulation components may be a reason for the inconsistency. The
450 MHz microwave radiation has been shown to affect the EEG differently at different
modulation frequencies [Hinrikus et al., 2007, 2008; Bachmann et al., 2005, 2006].
Regarding mobile phone radiation, Hung et al., [2007] compared the three different
modes (talk, listen, standby) of GSM signals with different spectral composition and
thus different output power and SAR, and reported delayed sleep latency after talk mode
exposure. Further investigation is thus needed to determine the critical modulation
frequencies for human brain activity. The inconsistency may also be attributed to the
difference between the base station and the handset signals. The latter, for instance,
provides higher spectral power of the 2 and 8 Hz modulation components and four times

higher peak SAR, while maintaining the same time-averaged SAR [Huber et al., 2002].

ERD/ERS

Some studies analyzed the ERP reflecting auditory discrimination process in an auditory
oddball task in the frequency domain. Eulitz et al. [1998] reported altered P300 responses
to the target stimuli in the 18.75-31.25 Hz range, mainly in the ipsilateral hemisphere.
Croft et al. [2002] also found altered neural activities (ERD/ERS) in various frequency
bands, but Stefanics et al. [2008] found no effect on early gamma (30-50 Hz) power and
coherence in an auditory oddball paradigm. Papageorgiou et al. [2004] found gender-
related effects on auditory working memory using a digit span forward/backward test:
EEG energy was larger in males than in females at baseline, while it decreased in males
and increased in females under exposure. However, this study tested separately for each
electrode and frequency band without corrections for multiple comparisons.

Krause et al. [2000a, 2000b, 2004, 2006, 2007] extensively investigated the effects of
a GSM-900 handset signal on memory functions using ERD/ERS. They first examined
auditory memory encoding and retrieval [Krause et al., 2000a] and visual working
memory (n-back) [Krause et al., 2000b], both using right side exposure and a single-
blind design. The auditory memory results showed increased spectral power in 8-10
Hz during retrieval and altered ERD/ERS as a function of time and phase (encoding
vs. retrieval) in all frequency bands analyzed (4-6, 6-8, 8-10, 10-12 Hz). The results on
visual working memory showed altered ERD/ERS in 6-8 and 8-10 Hz as a function of
memory load (0-2 items) and stimulus type (target, non-target).

They replicated the auditory memory encoding and retrieval study in adults [Krause

et al., 2004] and children [Krause et al., 2006] using the opposite left side exposure in
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a double-blind design but the results were inconsistent. In adults, they found decreased
power in 4-6 Hz and altered ERD/ERS only in the 6-8 Hz band during both encoding
and retrieval. They also found an increased error rate not observed in the previous study.
In children, ERD/ERS was altered in 4-8 and around 15 Hz. Finally, Krause et al. [2007]
used both tasks comparing the effects of left and right side exposures, and analog and
digital signals, but only found modest effects in the alpha band.

In sum, the ERD/ERS results were very complex, often described simply with
‘altered’, and completely inconsistent, putting the general repeatability of the method
itself into doubt. In addition, the statistically significant results mostly came from higher
order interactions rather than main effects in the analysis of variance (ANOVA), making

it difficult to interpret the results simply based on exposure conditions.

EP/ERP

Auditory organs as well as the temporal cortex responsible for cortical auditory
processing are in close proximity to the mobile phone radiation source, so that previous
studies often investigated auditory EP or ERP. Maby et al. [2004, 2006] reported reduced
amplitude and latency of an auditory EP (N100) in nine adults. Similarly, Hamblin et al.
[2004] reported reduced N100 amplitude and latency and increased P300 latency in 12
adults during an auditory oddball task. However, Hamblin et al. [2006] found no effects
in either auditory or visual oddball tasks using a larger sample size of 120 subjects and a
double-blind design. More recent studies also found no effects of mobile phone radiation
on auditory EP (N100) [Kleinlogel et al., 2008b] or ERPs (e.g., P300) [Kleinlogel et al.,
2008Db; Stefanics et al., 2008] elicited during an auditory oddball task.

Papageorgiou et al. [2006] examined auditory P50 component reflecting preattentive
information processing in working memory operations (digit span forward/backward),
reporting increased amplitude for the low tone signal (forward) and decreased amplitude
for the high tone signal (backward). However, since the P50 amplitude was compared
separately for each electrode (15) and tone (2), the significant results might be due to
statistical chance (30 tests, alpha = 0.05). Finally, Kleinlogel et al. [2008b] and Yuasa
et al. [2006] reported no effects of digital signals on the visual EP (P100) and the
somatosensory EP and its recovery function, respectively.

On the other hand, Freude et al. [1998, 2000] reported a rather consistent effect on
the preparatory slow brain potential (SP). Freude et al. [1998] investigated the slow
potential in two tasks of different cognitive demand, a simple finger movement task and
a complex visual monitoring task. The amplitude of the slow potential was reduced in

the high-demanding visual monitoring task, interestingly in the contralateral hemisphere.
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Freude et al. [2000] replicated this study by including an additional (low-demanding)
two-stimulus task to elicit contingent negative variation (CNV). They found reduced
amplitude only in the same visual monitoring task over similar regions, confirming
selective effect of exposure on the slow potential depending on the task demand.

In sum, EP/ERP studies involved similar issues of multiple comparisons (and
possibility of false positive findings) and replication as in the behavioral studies. In
this respect, Freude et al. [1998, 2000] (N = 16 subjects) should be replicated using a
larger sample. However, the majority of studies have found no effects of mobile phone

radiation on cognitive functions reflected in EP/ERP responses.
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AIMS

Previous behavioral and EP/ERP studies have not provided convincing evidence for
a connection between mobile phone radiation and cognitive functions. The ERD/ERS
studies did not provide reliable results probably because the cortical electric responses
elicited during complex cognitive performance are too sensitive to various factors.
Mobile phone radiation can exert influence on, for instance, sensation without necessarily
inducing any measurable changes in cognitive functions. In the previous studies on RF
EMF perception, the sample size was usually too small and sample groups were limited
to self-reported hypersensitive individuals often claiming their ability to perceive EMF.
Thus, it is an open question whether ordinary people without subjective hypersensitivity
can perceive RF EMF.

The possible effects of mobile phone radiation on the auditory system can be rather
transient because of the weak transmission power. However, the previous studies rarely
measured auditory responses during simultaneous exposure to the mobile phone placed
on the same position as in ordinary mobile phone use. Objective audiometric tests
such as OAE and ABR can provide very sensitive and reliable methods for detecting
subtle changes in auditory function due to EMF exposure. Especially the ABR provides
information about auditory processing at the peripheral (cochlea, acoustic nerve) as well
as more central (brainstem) nervous system levels.

As for cortical auditory processing, the mismatch negativity (MMN) provides a
sensitive measure for auditory discrimination processing regardless of attention and
other contaminating factors that may have caused inconsistency in the literature. The
MMN is elicited by infrequent deviant stimuli in a homogeneous stimulus sequence
regardless of attention or behavioral tasks [Nditidnen et al., 1978]. The MMN reflects
preattentive automatic change detection process based on the memory trace of the
repetitive standard stimulus and the subsequent automatic orienting response [Nééténen,
1990]. The supratemporal auditory cortices and the right prefrontal cortex are involved
in the MMN generation for change detection and attention switch, respectively [Opitz et
al., 2002; Rinne et al., 2000].

Despite the increased use of mobile phones by children [Schiiz, 2005] and the fact
that the SAR of the head can be higher in children than in adults [Christ and Kuster,
2005], only a few studies have been conducted in children in the literature as already
described [Haarala et al., 2005; Krause et al., 2006; Preece et al., 2005].
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Aims

The research questions of the present series of studies can be summarized as follows:

II.

III.

Iv.

Can we subjectively detect RF EMF? — Perception of mobile phone EMF in
a large sample of subjects recruited from the average general population in a

comprehensive provocation test with a large number of trials

Does RF EMF affect cochlea and brainstem auditory pathways? — Effects
of concurrent mobile phone exposure on the cochlear and brainstem auditory

processing reflected in the ABR

Does RF EMF affect cortical auditory system in adults? — Effects of short-
term mobile phone exposure on the cortical auditory discrimination processing
reflected in the MMN in young adults

Does RF EMF affect cortical auditory system in children? — Effects of short-
term mobile phone exposure on the cortical auditory discrimination processing
reflected in the MMN in children, who could be more vulnerable to the possible

effects of mobile phone exposure
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METHODS

Exposure setup

In all studies presented here, a generator-amplifier setup was set to produce an EMF
similar to that emitted by an ordinary GSM mobile phone: 902.4 MHz EMF with the
mean power of 0.25 W pulsed at a frequency of 217 Hz with a pulse width of 0.58 ps. A
GSM phone (Nokia 6310i, Nokia, Helsinki, Finland) was modified with its loudspeaker
and buzzer removed. The remaining antenna was connected via a RF amplifier (Mini
circuits LZY-2) to a vector signal generator (Rohde and Schwarz SMIQ 06B, Munich,
Germany) with a 10 m cable. The output power from the generator-amplifier setup was
regularly measured with a RF power meter (Hewlett-Packard 437B, Palo Alto, CA,
USA). This exposure setup provided constant and reliable RF signals throughout the
experiments. The phone was placed on the ear in the same position as during ordinary
phone conversations.

The (local peak) SAR was measured before (SAR,, =1.20 W/kg, SAR | = 0.86 W/
kg) and after (SAR = 1.14 W/kg, SAR, = 0.82 W/kg) removing the loudspeaker and
buzzer with Dosimetric Assessment System 4 (DASY4, Schmid and Partner Engineering
AG, Zurich, Switzerland). Measurements were conducted according to the standard
IEC 62209-1 [IEC, 2005] with a Standard Anthropomorphic Model (SAM) phantom
filled with head tissue simulating liquid (HSL 900, conductivity ¢ = 0.969 S/m, relative
permittivity & = 40.14, density p = 1000 kg/m®) at Nokia Research Center, Helsinki,
Finland. The phone was in the left cheek position and the SAR peaked near the position
of the removed loudspeaker on the ear (see Fig. 1 and TABLE 1 in Study II for SAR

distribution and specific SAR values of selected organs, respectively).

EMF perception

Procedure

Eighty-four healthy young adults aged 24.4 + 5.7 years (57 females) were recruited
through an advertisement announcing a monetary prize (50 euro) for good performance
(correct response rate > 75%, N = 600 trials). Participants performed two forced-choice
tasks, on/off task (“Was the field on?”’) and change task (“Did the field change?”’), each
including three different conditions of 100 trials. The on/off task included one genuine
on/off condition (P, =P .= 0.5) and two sham conditions with the EMF always on (P_|
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= 1) or off (P . = 1). The change task included one change condition (P, =P .
= (.5) and two constant conditions with no changes, that is, with the EMF always on
(P, .= Doroff (P .= 1). The order of the tasks and the conditions within each task
was counterbalanced and the 100 trials were randomized in the genuine on/off and the
change conditions.

Participants performed the tasks sitting 1.5 m away from a computer monitor in a
soundproof room. A gray circle (20 cm in diameter) on the monitor screen signalled trial
onset by turning to red. A question box containing yes/no buttons appeared 5 s after trial
onset. As soon as participants responded to the question with a mouse, the circle turned
back to gray to signal the end of the trial. The next trial began after 1 s pause. In the
change condition, EMF status was changed 2.5 s after the trial onset. Once the order of
tasks and conditions set by the experimenter, the computer operated the signal generator
and randomized the trials, thus the experiment being in effect double-blinded.

If participants reported either ear to be more sensitive to EMF, the phone was placed
on that ear. Otherwise, the phone was placed on the ear usually used for mobile phone
use and, if this was not specified, handedness was used as the final criterion. Accordingly,
17 participants had the phone on the left ear and 67 on the right. Because ordinary GSM
mobile phones make a small noise when the EMF is on, earplug-shaped earphones were

inserted into both ears to deliver masking white noise (50 dB).

Data analysis

For the genuine on/off condition, one-sample t-tests (two-tailed) were conducted to
determine whether the performance (correct response rate, %) different from the 50%
chance level and to compare the signal detection theory measures, d' (sensitivity) and ¢
(response bias) [Stanislaw & Todorov, 1999], with zero. For the whole data, four-way
repeated-measures ANOVA with gender (2 levels: female, male), sensibility (2 levels:
with, without), condition (6 levels: three conditions of each task), and interval (10 levels:
intervals of 10 trials within each condition) factors were conducted. The interval factor

was included in order to analyze the data as a function of time.

ABR

Procedure

Seventeen healthy young adults aged 25.9 + 4.3 years (11 females, 2 left-handed)
participated in this study. The ABR recording was carried out according to the routine

clinical procedure at the department of clinical neurophysiology, Turku University
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Hospital. Participant were lying on a reclining chair in a soundproof laboratory, being
relaxed with the eyes closed. A nurse inserted tubal insert phone electrodes (TIPtrode,
Nicolet Biomedical Instruments, Madison, WI, USA) and attached three Ag-AgCl
electrodes, a ground at the midline and two reference for each side at the Fpl” and Fp2’
positions according to the international 10/20 system of electrode placement [Jasper,
1958]. Impedance was kept under 5.0 kQ.

The ABR was recorded with an eight-channel Nicolet Viking IV device (Nicolet
Biomedical Instruments, Madison, WI, USA) after measuring auditory thresholds to click
stimuli. The TIPtrode delivered auditory stimuli as well as recorded the ABR from the
outer ear canal. Auditory stimuli were conducted to the ears through thin flexible silicon
tubes and polyurethane foam eartips wrapped in thin gold foil. The ABR was elicited by
a rarefaction click stimulus of 85 dB nHL intensity and 100 ps duration given at a rate of
10.3 Hz, while masking white noise of 45 dB nHL was delivered to the contralateral ear.
The responses were amplified with the high and low pass filters set at 100 Hz and 3 kHz,
respectively. The ABR was recorded at least twice to ascertain reproducibility.

Both ears were stimulated one at a time, first the right then the left, under three
different conditions: without a mobile phone (baseline) and then with the phone placed
on the stimulated ear, either emitting EMF (EMF-on) or not (EMF-off). The recordings
always began with the baseline condition and the order of the following two conditions
was counterbalanced. The ABR was always checked for EMF-induced artifacts (regular
rectangular-shaped pulses) during recordings. Each ABR recording took less than 5 min

and the whole experiment took 1 h.

Data analysis

According to clinical routine, the main ABR waves I, III, and V were identified and
marked manually on a computer by a nurse and the results were visually analyzed by
a clinical neurophysiologist. The absolute latencies of waves I, III, and V, and their
interwave intervals (I-11L, III-V, I-V) were measured. The amplitudes of waves I and V
were measured from the negative peak to the following trough (I', V') and amplitude
ratios (I/V) were calculated. Repeated-measures two-way ANOVA with condition (3
levels: baseline, EMF-on, EMF-off) and side (2 levels: left, right) factors were conducted

on each ABR variable (amplitude, latency, interwave interval).
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ERP

Procedure

Seventeen healthy young adults aged 23.1 + 4.5 years (12 females, 2 left-handed) and
17 healthy children aged 11-12 years (13 females, all right-handed) participated in the
two studies III and IV, respectively. During experiments, participants were sitting in
an armchair in a soundproof room watching a movie without sound. Earplug-shaped
earphones were inserted into both ears and the phone attached to a headset was placed
on the ear. Participants were instructed not to pay attention to the auditory stimuli, which
were conducted to the ears through thin flexible silicon tubes and foam eartips using
STIM 10 Q insert earphone kits (NeuroScan, Herndon, VA, USA).

The EEG was recorded in three blocks with the phone on one ear, one block with
EMF off and two with it on, and then the three-block recording continued with the phone
on the other ear. The order of the exposed ear and the three blocks of EMF on or off
was counterbalanced. One recording block lasted for 6 min and the whole experimental
session took 1 h including preparation for EEG recordings. The experiment was conduced
in a single-blind manner but since the experimenter visited only once in order to change
the phone to the other side, not between single blocks with EMF on or off, the participant
had no clue when it would be on or off.

The standard stimulus was a harmonic tone composed of three sinusoidal tones or
harmonic partials of 523, 1046, and 1569 Hz corresponding to c? on the Western musical
scale. The second and third partials were lower than the first in intensity by 3 and 6 dB,
respectively, and the intensity was 60 dB and the duration was 75 ms including 5 ms
rise and fall times (linear ramp). The deviant stimulus differed from the standard in one
sound feature only: duration (50 ms decrease), intensity (10 dB decrease), frequency
(9.6% increase), or by having a gap (10 ms, 5 ms fall and rise times) in the middle of
the tone.

The multi-feature paradigm (Optimum-1) [Nédtinen et al., 2004 ] was used to present the
sounds, in which every other sound of the stimulus sequence (N = 840 in each block) was
the standard stimulus (P = 0.5, n=420) and every other sound was one of the four deviants
(P = 0.125 for each deviant type, n = 420 = 105 x 4 types). The stimuli were binaurally
presented in a pseudorandom order so that two successive deviants were never of the same
type. The stimulus-onset-asynchrony (SOA, time from the onset of the previous sound to
the onset of the next sound) was 425 ms and the exact duration of the auditory stimulation
was 5 min 57 s (840 stimuli x 0.425 s = 357 s) for each recording block.
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The EEG was recorded from 11 Ag/AgCl electrodes (F3, F4, C3, Cz, C4, P3, P4, LM,
RM, VEOG, HEOG) [Jasper, 1958] with a common reference at the nose. The vertical
and horizontal electro-oculogram (EOG) were recorded from the electrodes below the
left eye and on the outer canthus of the right eye. Impedance was checked to be below
5 kQ in all electrodes prior to the recordings. Continuous EEG sampled at 500 Hz was
filtered offline (bandpass 1-30 Hz) and cut into epochs of 600 ms including prestimulus
baseline of 100 ms. The epochs were averaged separately for the standard (mean + SD =
522 + 88 sweeps) and the four deviants types (131 +22 sweeps). Baseline correction was
performed using a time window of -100 to 0 ms. Epochs including EEG or EOG voltage
exceeding £75 puV were omitted from the averaging. Since the stimulus presentation
always began with five consecutive standards, the epochs for the first five standards were
also omitted from the averaging. The averaged response to the standard was subtracted
from that to each deviant in order to delineate the MMN (and P3a in children), resulting
in four different waveforms, one for each deviant type. The P3a is elicited by deviant
or novel sounds and reflects involuntary attention switching to the distracting stimuli
[Escera et al., 2000].

In addition, the P1 and N2 responses to the standard sounds were also examined in
children because the P1 and N2 reflect cortical sound encoding processing and dominate
late-latency auditory ERP in childhood [Ceponien¢ et al., 2002]. The P1 is predominant
at early age (1-4 years) and the N2 becomes robust at 3-6 years and then dominates until

adolescence.

Data analysis in adults

The MMN peaks were identified at the time window of 100-250 ms in the grand mean
waveforms at the F3 and F4 for each deviant and condition. The F3 and F4 channels
placed at the left and right frontal areas, respectively, were chosen for analysis because the
MMN is largest at the frontal scalp area [Alho, 1995]. The peak amplitudes and latencies
were measured at the same time window of 100-250 ms and the mean amplitudes were
calculated at a 40 ms period centered at the peak latencies of the corresponding grand
mean responses.

One-sample t-tests were conducted to determine whether the mean amplitudes were
significantly different from (i.e., more negative than) zero. Repeated-measures three-
way ANOVA with site (2 levels: F3, F4), condition (3 levels: off, on-left, on-right),
and deviant (4 levels: duration, intensity, frequency, gap) factors were conducted on the

MMN variables (mean amplitude, peak amplitude, peak latency).
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In addition, because of the possible effects of exposure side (e.g., attenuation in the
hemisphere contralateral to the position of the phone), repeated-measures three-way
ANOVA with site (2 levels: F3, F4), side (3 levels: sham, F3-off, F4-off; ipsilateral,
F3-on-left, F4-on-right; contralateral, F3-on-right, F4-on-left), and deviant (4 levels:

duration, intensity, frequency, gap) factors were conducted.

Data analysis in children

The P1 and N2 peaks were identified at the time windows of 30-150 and 150-300 ms,
respectively, in the grand mean waveforms elicited by the standard stimuli at the Cz
for each condition. The peak latencies were measured and the mean amplitudes were
calculated at a 20 ms period centered at the peak latencies of the corresponding grand
mean responses (P1: 70-90 ms, N2: 220-240 ms).

The MMN and P3a responses were delineated by subtracting the response to the
standard sounds from that to each of the four deviant sounds separately. The MMN and
P3a peaks were identified at the time windows of 100-280 and 200-400 ms, respectively,
in the grand mean waveforms for each deviant and condition. The F3 and F4 channels
were chosen for the MMN and the Cz channel for the P3a. The peak latencies were
measured and the mean amplitudes were calculated at a 40 ms time window centered at
the peak latencies of the corresponding grand mean responses.

One-sample t-tests (one-tailed) were conducted for each ERP to determine whether
the responses were significant, that is, the mean amplitudes were significantly different
from zero. Repeated-measures three-way ANOVA with condition (3 levels: off, on-left,
on-right), deviant (4 levels: duration, intensity, frequency, gap), and site (2 levels: F3,
F4) factors were conducted on the MMN variables (mean amplitude, peak latency).
Repeated-measures two-way ANOVA with condition (3 levels: off, on-left, on-right)
and deviant (4 levels: duration, intensity, frequency, gap) factors were conducted on the
P3a variables. Repeated-measures one-way ANOVA were conducted on the P1 and N2

variables to compare the three different conditions.
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RESULTS

All data were tested for a normal distribution (one-sample Kolmogorov-Smirnov, two-
tailed). In ANOVA, Greenhouse-Geisser corrections were made when the sphericity
assumption was violated [Geisser and Greenhouse, 1958; Greenhouse and Geisser,

1959] and pairwise comparisons were conducted using Bonferroni corrections.

EMF perception

None of the participant won the prize (criterion: correct response rate > 75%, N = 600
trials). The performance in the genuine on/off condition of the on/off task was no better
than expected by chance (50.84%, n = 100 trials). The correct response rate was around
50% throughout the genuine on/off condition (I, Fig. 2), while it was lower or higher
than 50% when EMF was always on or always off, respectively. In the change task, the
correct response rate was much lower in the change condition where the correct response
was always “Yes”, while it was much higher in the constant conditions where the correct
response was always “No”. This shows a response bias toward “No” and such a response
tendency was stronger in the change task. Accordingly, signal detection theory measures
from the genuine on/off condition indicated poor sensitivity (d' = 0.061) and a response
bias toward the no response (c = 0.251), which was stronger in the change task.

The ANOVA revealed a significant main effect of condition due to response bias
(F, 156,168,100 — 10.990, P<0.0005) but no main effects of gender, sensibility, and interval,
or interactions. Two subjects with no self-reported sensibility showed extraordinary
performance in the genuine on/off condition with correct response rates of 97% (binomial
P=1.28 x 10%) and 94% (binomial P =9.40 x 10-??). These two subjects were retested a
month later in six blocks of the genuine on/off condition only but they failed to replicate

their initial performance.

ABR

The main effect of condition was not significant except for the wave I latency (F,,,
=17.392, P = 0.002). The mean latency of wave I was slightly longer in the EMF-on
(L: 2.35 ms, R: 2.37 ms) and EMF-off (L: 2.35 ms, R: 2.37 ms) conditions than in the
baseline (L: 2.33 ms, R: 2.35 ms), with no significant difference between the two EMF
conditions. Therefore, the small prolongation of the wave I latency was not due to the
exposure but to the presence of the mobile phone on the outer ear, which might have
changed the air conductance of the click stimulus by slightly pressing the silicon tube.

It could also be due to the manual peak identification or a type I error. The main effect
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of side and interactions were not significant for any ABR parameters at an alpha level
of 0.05.

ERP

All deviants elicit significant MMN responses except for a few cases of the intensity
deviant in both adults (III, TABLE 1) and children (IV, TABLE 2). Accordingly, the
main effect of deviant was significant for the mean amplitudes (adults: F, . = 11.637,
P < 0.0005; children: F,,. = 8.021, P < 0.0005) and the duration deviant elicited largest

responses. No significant main effects of condition or site, or interactions were found

3,48

in either of the studies. In adults, the main effect of side was slightly significant for the

peak amplitude (F = 5.124, P = 0.045) but pairwise comparisons revealed no

1.046,16.741
significant differences between conditions. For the peak latencies, only the main effect
195431260 5.124; P=0.012).

In children, all deviants elicited small but significant P3a responses in children except

of deviant was found in adults (F

for a few cases of the intensity and frequency deviants (IV, TABLE 3). Accordingly, the
=12378,P<

0.0005) and the duration deviant elicited largest responses. The main effect of condition

main effect of deviant was significant for the mean amplitudes (F, ., -,

and interactions were not significant. The ANOVA revealed slightly significant main
effects of deviant (F =3.575, P=0.045) and condition (F, ,, =3.321, P =10.049)

on the P3a latency but pairwise comparisons revealed no significant differences between

1.797.,28.756 2,32

conditions. These significant main effects were rejected after Bonferroni corrections (6
ANOVAs, alpha = 0.0083).

The N2 responses to the standard stimuli were significant in all three conditions (IV,
TABLE 1), while the P1 was significant only in one condition (on-left). No significant

differences were found among conditions on any of the P1 and N2 variables.
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DISCUSSION

The overall performance on the subjective perception of mobile phone EMF in a large
sample of general population was no better than expected by chance. An important
finding was that extraordinary performance with extremely low probability could occur
even twice in a sample of only 84 subjects. Such performance has not been reported
even in those who strongly claimed to be able to perceive EMF. The two subjects did not
know how they did it and failed in replication. This finding emphasizes the importance
of replication in the EMF studies in general [also see Rubin et al., 2005].

As for response bias, people tend to make a choice in a rather balanced way in an
uncertain but neutral situation. In this study, the overall response bias was towards the no
response probably because they continued to perceive no changes. In contrast, those who
reported themselves as being able to perceive EMF frequently made false alarms in the
sham exposure condition [also see Frick et al., 2005] and a similar tendency towards the
yes response was observed across conditions in this study. Since the subject’s response
can be affected by various factors such as a priori knowledge of the experimental design,
provocation studies should employ study design and analysis that are not vulnerable to
possible response bias.

The ABR results showed no measurable effects of mobile phone radiation on the
transmission of sensory stimuli from the cochlea up to the midbrain along the auditory
nerve and brainstem auditory pathways. In the ERP results, the duration, gap, and
frequency deviants always elicited strong MMN in both adults and children with the
duration deviant eliciting the largest response. The physical difference between the
standard and the intensity deviant probably was too small to elicit reliable MMN.
Regardless of the deviant type, the MMN latency and amplitude showed no significant
differences due to EMF exposure on either side, showing no measurable effects on
the preattentive change detection and automatic orienting response in either adults or
children. No effects were found on auditory encoding (P1, N2) or involuntary attention
shifting (P3a) in children.

In the MMN results, three slightly significant main effects were found, one in adults
(P =0.045) and two in children (P = 0.045 and 0.049) at the conventional alpha level of
0.05, but these main effects are likely to be chance findings due to multiple comparisons
because all of them were rejected after adjustment for multiple comparisons. Simple
methods such as Bonferroni corrections applied here could be often too conservative, but

considering the number of comparisons and P-values, less conservative corrections would
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lead to the same conclusion in these results. This conclusion was further supported by the
statistically non-significant results of pairwise comparison between exposure conditions.
At an alpha level of 0.05, one test has only a 5% chance to incorrectly reject the (true)
null hypothesis but in 100 tests, for instance, it is expected that the (true) null hypothesis
be rejected five times by chance. Therefore, it is necessary to apply conservative criteria
as the number of tests or variables increases.

Finally, an important issue to be discussed here is effect size and statistical power.
The ABR and MMN studies (11, I1I, IV) used the same sample size of 17 subjects, which
is not considered small in EP/ERP studies. However, it may not be large enough to
ensure sufficient statistical power to detect subtle effects of mobile phone radiation. In
study IV, for instance, the estimates of effect size and observed power were small for the
condition factor compared to those for the deviant factor, suggesting that, although the
study was successful in detecting MMN responses to different deviants, it may not have
had adequate statistical power to detect subtle changes due to exposure. Therefore, the

present findings of null effects should also be replicated using a larger sample size.
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CONCLUSIONS

This field of research has been full of controversies due to inconsistent and contradictory
findings. More rigorous study designs such as crossover and double-blind protocols can
reduce controversy. The issues of multiple comparisons, replication, and effect size and
statistical power should also be taken into account.

The present series of studies aimed at detecting possible effects of mobile phone
radiation by means of behavioral and neurophysiological methods, without involving
any complex cognitive processes or performance. The exposure setup provided constant
and reliable RF signals of a typical GSM mobile phone (902 MHz pulsed at 217 Hz
with mean power of 0.25 W) throughout the experiments. The present series of studies
found no measurable effects of short-term concurrent mobile phone radiation on the
peripheral and central auditory processing reflected in the ABR and auditory ERP. In
addition, there was no evidence for the ability to perceive mobile phone EMF in the

general population.
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