Web Application Performance Testing

UNIVERSITY OF TURKU
Dept. of Information Technology
Jukka Palomaki
Master's thesis

2009

UNIVERSITY OF TURKU
Department of Information Technology / Faculty odtidlematics and Natural Sciences

JUKKA PALOMAKI: Web Application Performance Tesgn
Master’s thesis, 53 pages

Software Engineering
December 2009

Web application performance testing is an emergind important field of software
engineering. As web applications become more conptace and complex, the need for
performance testing will only increase.

This paper discusses common concepts, practicesoatglthat lie at the heart of web
application performance testing. A pragmatic, hamasapproach is assumed where
applicable; real-life examples of test tooling, @xton and analysis are presented right
next to the underpinning theory.

At the client-side, web application performancepisnarily driven by the amount of

data transmitted over the wire. At the server-sgiection of programming language
and platform, implementation complexity and confajion are the primary contributors
to web application performance.

Web application performance testing is an actitist requires delicate coordination
between project stakeholders, developers, systeningirators and testers in order to
produce reliable and useful results. Proper teéiniden, execution, reporting and

repeatable test results are of utmost importance.

Open-source performance analysis tools such ash&pHdeter, Firebug and YSlow can
be used to realise effective web application pertorce tests. A sample case study
using these tools is presented in this paper. Empke application was found to
perform poorly even under the moderate load inclipyethe sample tests.

Keywords: Web application, performance testing, RTJMeter, Firebug, YSlow

TURUN YLIOPISTO
Informaatioteknologian laitos / Matemaattis-luontieteellinen tiedekunta

JUKKA PALOMAKI: Web Application Performance Tesgn
Diplomityd, 53 sivua

Ohjelmistotekniikka
Joulukuu 2009

Suorituskykytestaus on téarked osa nykyaikaistalmigéotuotantoa. Web-sovellusten
maaran ja monimutkaisuuden alati lisdantyessa.emiiduorituskyvyn testauksen ja
validoinnin merkitys kasvaa varmasti. Tassa tutkedsa tarkastellaan web-sovellusten
suorituskykytestaukseen liittyvia kasitteita ja tétoja teoriassa ja esimerkkien avulla.

Asiakkaan puolella sovelluksen suorituskykyyn vé#i&a eniten verkon yli siirrettyjen
resurssien maard ja koko. Palvelinpuolella suddtkygyn vaikuttavat erityisesti
ohjelmointialusta, sovelluksen toteutuksen moniraigikus ja konfiguraatio.

Tuottaakseen luotettavia ja hyddyllisia tuloksiagbasovelluksen suorituskykytestaus
vaatii erityisen paljon koordinointia projektin esapuolten (projektin vetaja, kehittgjat,
testaajat ja yllapito) kesken. Testien maarittedyunnittelu, toteutus ja testitulosten
toistettavuus ovat erityisen tarkeita asioita i@stan onnistumisen kannalta.

Vapaan lahdekoodin, suorituskyvyn analysointiinkégtetut ohjelmat kuten Apache
JMeter, Firebug ja Yslow mahdollistavat tehokkaiderrituskykytestien toteutuksen.
Tutkielmassa esitetdan edellamainittujen tyokalujeavulla yksinkertainen

suorituskykytesti. Esimerkkisovelluksen suorituskghi testien perusteella huono.

Asiasanat: Web application, performance testing] PiTJMeter, Firebug, YSlow

ACKNOWLEDGEMENTS

Special thanks to Timo Knuutila (University of Tu)k Tuomas Makila (University of

Turku) and Teemu Tasanto (ATR Soft Oy) for yourigrate, support and critical

feedback during the long incubation of this workwdould also like to thank Eija

Karsten, Sinikka Jarvinen and Riikka Vuokko foryding the document template and
verbal guidelines upon which to build my thesis.

Turku, December 2009

Jukka Palomaéki

TABLE OF CONTENTS

L INTRODUGCTION. ... ttttteee ittt ettt e ekttt e e e o1k bbbt e e e e okt bt e e e e as b b et e e e e s aabbe e e e e e e sanbbneeeeesannes 2
R U o0 PRSPPI 2.
1.2 WED QPPIICALIONS ...ttt ettt e e e e e e e e e e ettt ettt et e e e e e e aaaaaeaaaaaas 3

1.2.1 ClieNt-SEIVEI MOeiiieee ettt et e e et e e e e ennees 3
1.2.2 ThE HTTP PIrOtOCOL ...cceiiiiiiiieee ettt e e e e e e e e e e e e e e e e e e e annas 4
1.2.3 Server-side implemeENtatioN ... e e e e 6
1.2.4 Client-side implementation......... ... e e e e eeees 8
1.3 PerfOrmanCe tESHNGcoi ittt e e ettt e e et e e e e e e e e e e e e e e e e e e aanane 10
S T ¥ 110 == O TP PP OPPPPPPPN 10
R T =TS 1Y 01 E TSP TUOUPPPUPUPPPPPRN 11
1.3.3 IMPIEMENTALION. ...t ettt e ettt e e e e e e e e e e e e ananb et e st e e e e e e eeaaaaaaaaaaaaans 12

2 WEB APPLICATION PERFORMANCE.........cciiutttt e etee sttt e s 13

2.1 Frontend Performance fACIOrS. i it e e e e e e e e e aaeeas 13
2.0 1 HTTP rEQUESE COUNLcciiiitittiti s s e e e e e e et e eeetabbbaa e e e e e e e aaeaaeeeeeseabnbann s e e e eeaaaaas 13
2.1.2 CaChiNg Of FESOUICESuuiiiiiiiieie ettt e e e e e e e e e e e e e e e eeeaee e e eeees 14
2. 1.3 DINS TOOKUPS e eeeeeteeaeeee et ettt e e oottt et e e e e e e e e e e e e e s aa e nnnbesbenbeneeeeeeeens 14
N (T o 1 (=T od TSP PO PP PPTOPPPPP 15
A B @0 o]] {111 (o] o [P UUUURPU RPN 15
A S 1Y (R 1= = TP USSR 15
N A -\ = 1o o AU TP PRSP 16

2.2 Backend performancCe fACIOIS i ettt e e e e e e e e e aaaaaaaaaeas 16
A N e b= L1 (0] £ o TSP O PP PP PP TOPPPPP 17
A (111 o] (=T 40 T=T 01 7= Vio] o DO PSPPSR 17
2.2.3 CONFIQUIALION ... eeeeee ettt et e e e e e e e e e e e e e s s e e aaae e e e e e eeeaeaaaaaaaaaaesaeaaaaannnnnes 18

2.3 REIMAIKS. ...ttt ettt ettt E e e e e e b e e e e e e et e e e e e r e e e e e annees 18

3 WEB APPLICATION PERFORMANCE TESTINGcummiiiiiitie ettt 20

3.1 Preparing for performancCe tESES.o e e e e e 20
3.1.1 Defining aCCePLanCe CrtEIIAcccueeeeeeeeeieieeiee e e e e et e e e e e e e e e e e e e e e e e e enneeees 20
3.1.2 Designing the tESt SCENAIIOS e eeeeeeaetaaaaaaaa e e i et reeeeeeaaaaaaaaaaaesaaaaaannnnene 22
3.1.3 BUIlAING the tESE SUILE ...ttt e e e e ettt e e e e e e e e e aaaaaaaeeaaas 24

3.2 Performance ST @XECULION.c.eiiiereeeeeree ettt e e e e ettt e e e st e e e s e e e e s sbb e e e e e s anbbeeeeeesaanes 26
3.2.1 Validating the teSt SUILEooei et e e e e e e e e e e e e e e e e e e 26
3.2.2 Creating @ baseliNe ... e e e e e e e e 27
3.2.3 Benchmarking with multiple teSt FUNSooiiii i 27
3.2.4 Reasons for performance teSt fAIUIE .. . eveerieiiiiiieiieeieee e 28
3.2.5 MONITOFNG EESES. ... etttteiieeeieeet ettt ettt e e e e e e e e e e s e e s e e e e aanbe e e e e eeeaaaaaaaaaaaeasaeaaaaannnnnes 29

3.3 Analysis and reporting Of tESt FESUILS. . oot 29
3.3.1 Test data COINBCLIONcoiiiiiiii et e e 29
3.3.2 TeSt dat@ @NAIYSISuuiiiiiiiiiiiiteeeee e a e e e e 30
3.3.3 REPOIING FESUILS ...ceeiiiiiiiie ittt eeeeeas 31

4 CASE STUDY: WORDNET ...ttt ettt e e e st e e e e s anbbneeeaeeanes 33
ST (U o B TSP TR RPRRPPIY 33
A o To] {1 o TP PR PP OPPPPRPPPY A3

N RN 1Y = (T PP TP PP PPPPPPPPPP
A 1 1= o 18 o [OOSR
B, 2.3 YSIOW.. .. eteeeieee ittt ettt e ot e et e e e e e et e e e e e e e e e anree s

4.3 Sample frontend ANAIYSIS.........ooi i

4.4 Sample DAckend 1080 tESLottt e et e e e e e e e e e e e e e e e e
4.4.1 The test SCeNArio...........ccvverennn.

4.4.2 Recording the test script
4.4.3 Executing the test script..............
4.4.4 Analysing the teSt data...........o i s e e e e e e e e e e eeeaeaaaaaas

A5 REMATIKS. ...ttt e et e e e s b et e e e s e e e e e e s e b b e e e e e e e e b e e e e e s e nrrrreeeean

5 CONGCLUSIONS ...ttt e ettt e e e e skt e e e e e s s bt e e e e aab b et e e e e e e bt e e e e e e s e anbbeeeeeeaannnes

BIBLIOGRAPHY ..ttt e e e e e et et e e e e e e e e e e e s e

1 INTRODUCTION

1.1 Purpose

The purpose of this work is to discuss modern walieation performance testing from

a theoretical and a practical standpoint, with r@pleasis on the latter.

The reader is first presented with a comprehensuwerview of web applications and
performance testing in general. Chapter 2 consitiaters affecting web application
performance. Chapter 3 discusses web applicatiofiorpgance test design and
implementation. Chapter 4 begins by introducingeghcommonly used performance
testing and analysis tools (Apache JMeter [10Jelhtig [11] and YSlow [12]), each of
which is subsequently used in a sample case shadyptovides a hands-on perspective
to this paper. The case study walks through typpaiformance testing tasks and
provides some insight into common bottlenecks irb va@plication performance via

examples. Finally, all key findings are presented@nclusions.

The reader is expected to possess basic knowledidpe ifields of computing, software
engineering and web technology. Among other thittgs, means that the reader should
have some knowledge of markup languages such alyibertext Markup Language
(HTML) and Extensible Markup Languag€XML), client-side browser scripting
languages such a%avaScript as well asCascading Style Shee(€SS). Previous

knowledge of theédypertext Transfer ProtocdHTTP) will surely prove beneficial.

Specific details regarding web server internals @nfiguration, web browser internals
and support, application server technologies amapcer networking are omitted from
this paper. FurthermordRich Internet Application(RIA) technologies such a&jax
(Asynchronous JavaScript and XML) are only discdsse limited detail where
applicable. This approach enables us to place alusxe focus on the intended topic,

web application performance testing.

1.2 Web applications

Web applications arplatform-independehtsoftware applications that are run on a web
server and/or application server, with the useerfate rendered by the client's web

browser, and communication taking place over a ecdgermetwork.

The application architecture that powers traditiomab applications is called tlodient-
server model. In this model, the client sendsqueststo a server, which in turn
processes the requests and proviégsponsesThis is called the request-response cycle
and it lays the foundation for web applications @adformance testing thereof. Most
web applications utilize the aging HTTP protocol tchieve this type of

communication. The following subsections explomsthconcepts in more detalil.
1.2.1 Client-server model

A client-server application is a distributed systemwhich an application server
processes requests from (multiple) clients in otdgrrovide a service to those clients.
There is a clear separation between the clienttl@derver, and they are often run on
separate machines (though they may also reside hen same machine), with
communication between the two taking place oveoraputer network, such asLAN
(Local Area Network) or thinternet [8]

Application state is persisted at the server-sidé) the client only storing necessary
tokens (e.g. browsearookie3 that are used to distinguish clients from onetlagoand
transient data that is manipulated in order to pl®vnput to the server. The server also
manages application logic (excluding any logic eddssl in the user interface, e.g.
client-side validation), as well as interfaces xteenal systems (such as databases) that

are often necessary for an application’s operation.

The client’s task is to provide input so as to gethe state of the system. The client

accomplishes this by composing input via the ustariace and dispatching requests

! A web application may be accessed from any platfeith a suitable web browser.

that contain the necessary input, to the serves.sEnver in turn processes the requests,
makes necessary and appropriate modificationsdteisystate based on the input, and
provides a response that describes these changesclient then updates the user
interface based on the response, to allow for ter @o visualize the changes and

potentially provide more input via subsequent retgie

While this type of communication may appear stateless(“do this, do that”),
consecutive requests are often logically inter-emted. Hence a mechanism for
maintaining a context for the client is necessdiye so-calledsessionserves this
purpose. Sessions are often implemented by atigdbkens (such as textual session
keys), that identify the client, to requests. Thlbws for the server to identify the
source of the request and providstatefulservice that remembers what the client did

on previous requests, while processing the next.

1.2.2 The HTTP protocol

The HTTP protocol is a stateless application-lgueitocol that powers the web. It is
developed by th&Vorld Wide Web Consortiufftv3C) and thenternet Engineering
Task Forceg(IETF). The current version HTTP/1.1 was made jglyphvailable in 1999.
[4] As the protocol defines a request-responsedsi@hfor client-server applications, it

is best described in terms of the request-respoyde.

In order to dispatch an HTTP request, a client #astablishes a network connection
with the server, commonly 8CP (Transmission Control Protocol) connection ort

80, though any other reliable transport-level prot@and port would do. The client then
sends a request, which is composed of a numbeeadersand an optionadbodyto the
server. The server processes the request and Isackla response, composed of a status

code, a number of headers and an optional bodgll¥ithe connection is closed. [5]

A single physical network connection may be reusmdmultiple request/response
cycles to avoid the overhead of creating a new etoc&nnection on each request. The

Keep-Aliveheader is used to control this behavior. In addjtimultiple connections

may be run in parallel (which is the usual casdwibst modern browsers) to improve
concurrency and throughput. This is especially irtgopd since modern websites often
contain a large number of resources (images, scriyle sheets, etc.) that need to be

fetched in order to fully render a single (HTML)admnent.

An HTTP request is always targeted to a particaawer-side resource. This resource
may be static, such as an image or a static HTMiua@nt, or dynamic, such a®blP
(Hypertext Preprocessor) script that produces dymarontent. TheContent-Type
header in the response reveals MHME (Multipurpose Internet Mail Extensions) type
of the response body. The HTTP status code andagesse used to signal the client of

the response status and possible errors.

The most common HTTP status codes are 200 OK @tidig success), 302 FOUND
(indicating a redirect to another location) and 402T FOUND (indicating a missing
resource). In case of a redirect, a client is meglio follow the redirect to the secondary
URI (Uniform Resource Identifier). In case of an erstatus, it is up to the client to
decide what to do; most often the simplest coufsetion is to display a corresponding

error message to the user.

HTTP defines a number of different request methodsnely HEAD, GET, POST,
OPTIONS, PUT, DELETE, TRACE and CONNECT, each ofickhserves a slightly
different purpose. It is important to note thataatigular web server may not support all
of the above methods (and this is in fact the usaak). The most important methods,

with respect to web applications, GET and POSTdeeussed next.

GET is the most commonly used request method (aucdquest is indeed sent every
time one types a URI to a browser’'s address bartatsdenter). A GET request is
usually dispatched in order to retrieve (read) diqdar resource, such as an HTML
document or an image file, but it may also be usedubmit data in order to alter

system state. [9]

A GET request carries all parameters in the requédt and hence the request size is
often limited to a client-dependent maximum (aseaample, Internet Explorer allows
up to 2083 characters in the URI [13]), though raximum is specified in the HTTP
specification. A sample GET request and the comedimg response (body omitted for
brevity) are shown below. Also note the sanmglguest parameteconveniently named
as “parameter”.

CET /index. htm ?paraneter=val ue HTTP/ 1.1
Host: www. exanpl e. com

HTTP/ 1.1 200 K

Date: Mon, 23 May 2005 22:38:34 GV

Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)
Last - Modi fied: Wed, 08 Jan 2003 23:11:55 GMI
Et ag: "3f80f- 1b6- 3elcb03b"

Accept - Ranges: bytes

Cont ent - Lengt h: 438

Connection: close

Content - Type: text/htm ; charset=UTF-8

<response body om tted>

Unlike GET, POST is most often used to submit falata to the server in order to alter
system state [9]. The target resource for such estquis often a server side
script/component capable of producing a dynamiparse. A POST request may
contain an arbitrary number of request parametensedded in the request body, and
possiblymultipart data to enable file uploads. POST also placesmitslon the size of
the request data, though servers/applications mfage to serve requests exceeding a

particular size limit.

The HTTP specification also defines the https: Jétieme, which adds a security layer
via SSL (Secure Sockets Layer) 0GILS (Transport Layer Security) encryption to the
communication stack [4]. This scheme is commonbdul®r secure connections in e.g.
web-based banking applications. Further detailsiabdee https: URI scheme and data

encryption are, however, beyond the scope of thep

1.2.3 Server-side implementation

The server-side implementation of a typical webliappon consists of (but is not

limited to) the following components:

e HTTP server to handle incoming requests and prawdponses
» Application container / scripting engine to hosplagations

* Application logic components

» Database backend

* Static resources

The HTTP server is responsible for forwarding inamnrequests to the application
container / scripting engine, and for providingresponding HTTP responses to the
client. Commonly used HTTP servers include Apaditgpd) and Microsoft 1IS. Java
application servers also include embedded HTTP ectons to handle HTTP traffic.
Static resources (such as images and style staetsften served directly by the HTTP

server to avoid the overhead of dispatching sugbests to the application container.

The application container provides a runtime framdwand a further layer of
abstraction for applications that are run in it. &g other things, this involves mapping
requests to application components and wrapping HAWP requests and responses
with technology specific constructs (such as thetp&#rvletRequest and
HttpServietResponse interfaces of Java’'s JSP/Sespkxification) to enable efficient

processing by application components.

Currently available application container / scngti engine technologies include
JSP/Servlet containers (Java-based, such as Apemineat and Oracle WebLogic),
PHP (most often run as a module to the Apache vezbeg and ASP.NET (for
Microsoft IIS).

A web application is also typically backed by onenwore databasesDatabases are
used to store persistent application data. An eggdin may also include file storage,
integrations to other systems via web services essage brokers such 38IS (Java
Message Service). It is important to realize thhahgactions across these resources

contribute to web application performance overhead.

In a clustered environment, multiple instances of a particulaplegation may be

running at once, possibly on multiple physical sesy with the application container
infrastructure coordinating the instances. Clustegenerally has a positive impact on
performance and scalability, since it allows foadoto be distributed across multiple
application servers and/or application instancesthiér details about clustering are,

however, beyond the scope of this paper.

1.2.4 Client-side implementation

The client-side of a typical web application is plyncomposed of the client's web
browser. Such a client is commonly known ashim client (as opposed to thick

desktop-based client application). Nowadays brosveeme in several varieties, but the
most commonly used browsers are Mozilla Firefokermet Explorer, Opera and Safari.
The browser is responsible for communicating witle wveb server over the HTTP

protocol, rendering the user interface of the wagliaation, and enabling user input.

The user interface is commonly rendered as an HHOdtument which may contain
text, input fields, links to other documents/resas; embedded objects (such as Java
applet3 as well as references to images (elBG or PNG images), scripts (e.qg.
JavaScript) and style sheets (CSS). The client fasieves the root HTML document
(which may be static or dynamic) with a GET requestses the document text (as it
appears in the response body), and then resoltres/es any referenced resources via

subsequent GETSs.

Finally scripts are executed, styles are proceasédthe document content (styled text
along with images, objects etc.) is rendered to uker. Please note that this serial
description of the flow of events is a simplificatiat best. Browsers may (and often do)
execute the steps concurrently, improving perforeamnd, consequently, user-

experience. Section 2.1 provides additional coverdglient-side rendering issues.

User input is provided using the so-calledms Forms are HTMLelementgshat are

used to collect user input via input elements saghext fields, checkboxes, and select

boxes. Upon form submission (i.e. when the usekslithe submit button), the form
data is sent to the server via an HTTP request faamy a POST, though the exact
request method is configurable via the form elefseattion attribute) and the

corresponding response is rendered to the user.

A simple example form (with static HTML source caled a screenshot of the rendered
output) is shown in Figure 1. This particular foamly contains a single text field and
the submit button. Upon submission, the name ahg\as input by the user to the text

field) of the parameter “parameter” are sent tatugce.php” via a POST request.

<ht nl >
<head>
<title>Sanple fornk/title>
</ head>
<body>
<form acti on="resour ce. php" net hod="post">
Label
<i nput nane="paraneter" type="text" />
<input type="submt" val ue="Submt" />
</fornmp
</ body>
</htm >

Label: | Submit |

Figure 1: Sample HTML form

An alternative/complementary technique to usingmiris to simply provide
links/buttons that point to a particular resoureg the “href” attribute or by utilizing
JavasScript), along with necessary parameters. 8acction is always dispatched via a
GET request, and witHixed parameter value(s). A sample HTML snippet and
corresponding rendered output (a simple link orhancis shown in Figure 2. This
example also illustrates how multiple parameteeseanbedded to the request URI, by

using an apostrophe “&” as a delimiter.

Li nk</ a>
Figure 2: Sample HTML link

Upon clicking this link, a GET request, along witie parameter-value pairs, is sent to

the resource “resource.php” and a correspondingafyc) response is rendered to the
user. An obvious disadvantage with this type ofuinis that the request parameter
values are fixed. Hence it is most useful for reprding actions that need no user input

(apart from the button click), e.g. a simple delatexport action.

This concludes the introduction to web applicatiofgr further details about HTTP,

HTML, CSS, JavaScript and related web (applicattenhnologies, please refer to [14].

1.3 Performance testing

Performance testing is an important and emergield ©f software engineering that is
applied in order to measure application performaooéer varying load, identify

performance problems and bottlenecks, and to vehft an application meets set
performance criteria. This commonly involves meagusystem throughput and latency
with a varying number of (simulated) concurrentrasever extended periods of time,

and with different load profiles (usage scenarifs).

1.3.1 Rationale

As is the case with other types of software testipgrformance testing is often
overlooked or even left out all together. In paistcan be attributed to common myths
with regard to performance testing. One such miseption is that performance testing
is done solely for the purpose of breaking a sysfms is however not the case, though
performance tests can also be run in order to ifgetite saturation point (i.e. the

maximum amount of load, discussed later in thigotdra for an application. [7]

For any complex application, it is important thesting (performance testing included)
is done early and often. This not only allows fdentifying (performance) problems
early in the development cycle, further enablingyesefactoring and other corrective
action, but it also helps to reduce future mainteeacosts which usually make up for a

large part of an application’s total cost.

Performance testing can also be used to examinesdakability (measure of how

10

effectively an application responds to added resem)rreliability (measure of how
robust and fault-tolerant an application is) aasburce usagéprocessing, memory, etc.
analysis througlprofiling) of an application, as well as to compare diffegplication

vendors’ solutions for performance. There are iet faeveral distinct kinds of

performance testing; these are discussed next.

1.3.2 Test types

According to [1], the four basic types (thESSapproach) of performance testing are:

* Load testing
* Endurance testing
» Stress testing

* Spike testing

Load testingis conducted in order to determine how an apptoabehaves under
varying load. This involves varying the number ahuslated concurrent users, test
duration and test steps. As the name impeasglurance testing carried out to examine
an application’s long-term behavior under modetatel. Endurance testing is indeed
often coupled with profiling in order to identifgsources that may be depleted (through

resource leaks) over extended periods of time.

Stress testingon the other hand, is executed for the purposinding the saturation
(i.e. breaking) point of an application and to eksrhow gracefully (throttling down,
crashing, etc.) the application (and the surrougpdimtime) is able to navigate such a
situation.Spike testings a special case of stress testing and is useétesmine how

well an application responds to sudden increaskmuh

In addition to the basic types listed above, thare two other important types of

performance testing, namesdgalability testingandfrontend analysisScalability testing

is carried out to examine how an application sctdsandle increased load (i.e. serve
more users) with added resources. Scalability tstsbe implemented by running one

or more of the above types of performance testnagaietups with differing resources

11

and comparing the results. If a significant incee@s application performance and/or
capacity is observed, as a result of adding tol@vai resources, then the system is said

to scale well. Frontend analysis is about obsereligmt-side rendering performance.

1.3.3 Implementation

Performance tests are commonly implemented as@ setiptsthat are run to generate
load to the target application instance(s). This iseadd by utilizing a number dbad
injector machines, each running a separate instance degheset. [7] Most currently
available performance testing tools allow for rumgnisuch distributed tests in a
coordinated fashion. For small-scale scenarios,elvew it may be adequate to use a
single injector, as most load testing tools caeatively simulate multiple concurrent

users even from a single injector.

Test scripts may be crafted by hand or recordeddiyg an appropriate tool. For web
applications, scripts are often recorded by sinagking the HTTP traffic between the
client and the target application with a proxy senbepending on testing tool used, the
scripts may be fitted to include conditional tegiarameterization (e.g. dynamic user
credentials), loops, assertions, timers and ran@sirelements. Scripts may be recorded

or written in a number of (programming) languagegh as XML, C, Java or Python.

An essential part of performance testing is repgrtHence performance testing tools
must offer means of analyzing and/or exporting testilts. The number and quality of
recordedmetricsdepend on the type of test and tool used. Comrasultrmetrics for
web applications include response time and the HiEBPonse status code. Results are
commonly published in textual format, e.g. XML@8BV(Comma-separated values), or

graphical charts (e.g. line, bar, pie or scattarts).
This concludes the short introduction to perforngamesting. Factors affecting web

application performance are discussed next. Fudk&ils about performance testing,

including specification, design and implementaigsues, appear in chapter 3.

12

2 WEB APPLICATION PERFORMANCE

The factors affecting web application performance. (page rendering or response
times, to good or bad) can be roughly divided imo categories: client-sidér¢ntend
performance and server-sideatkend performance. These factors are discussed next,
along with some concrete advice for improving aggilon performance in the general
case. The final section provides limited discusianthe relative importance of these
factors, and on how they are related to web appdicgperformance testing. Material in

this chapter is based on [2], unless otherwisedhote

2.1 Frontend performance factors

At the client-side, the key to good performanceoisninimize network traffit. Below
we address some common ways to accomplish thigshdtamore, sections 2.1.6 and
2.1.7 provide guidelines on how to improve pageleeimg performance by optimizing

style sheets and JavaScript, respectively.
2.1.1 HTTP request count

As explained in section 1.2.4, a single HTTP retigesgypically used to fetch the root
HTML document. The root document may, however, rrébean arbitrary number of
other resources, such as images, scripts or segeshEach of these resources must be
fetched with a subsequent HTTP request. Each HTeRiest adds to performance
overhead since it creates network traffic betwedss c¢lient and server. Thus it is
immediately obvious that reducing the number ofemmficed resources and,

consequently, the number of HTTP requests, willroap application performance.

In a related vein, Ajax allows for HTTP requestdtodispatched asynchronously with
Javascript code, without reloading the entire HTpélge along with all of its referenced
resources (as opposed to the traditional web pnogiag model as described in section

1.2.4). Hence, generally speaking, Ajax greatlyrionps frontend performance, because

2 Because a real computer network provides onlydienbandwidth, and network latency grows with the
physical distance between a client and serveraka®s sense to minimize the amount of transferréal da

13

it reduces the total number of HTTP requests. Betdny other Javascript code, poorly
devised Ajax code can also hinder web page rerglegperformance. For further

information about Ajax, see e.g. [14].

2.1.2 Caching of resources

To reduce the number of HTTP requests, browserkega to cache resources. This
means that a browser is able to store certain ressifsuch as images, style sheets and
scripts) locally, instead of fetching them over tietwork each time. This behavior is
controlled by a number of request and response engad client can perform a
conditional GETrequest by supplying thik-Modified-Sinceheader. In response to a
conditional GET, if the resource has not changed,application server may return a

304 Not Modified response with no body; this reduttee amount of transmitted data.

An application server may choose to supplyHExpiresand/orCache-Controresponse
headers with responses; these are used to signeli¢int that a resource should only be
re-retrieved after a particular date or periodimiethas passed. Proper use of the above
headers may result in a significant reduction i@ ttumber of HTTP requests. Thus

caching should be used, whenever possible, to mepapplication performance.

2.1.3 DNS lookups

IP (Internet Protocol) addresses, such as 132.4%1ar8 used to locate servers on the
Internet. These numerical addresses are, howewed for a human to remember.
Luckily, the Domain Name SysterfDNS) exists to provide a mapping between a
human-readable hostname (such as “www.googleifiibexlded in resource URIs) and

the corresponding IP address.

Unfortunately this mapping comes with a cost. AidgbDNS lookup (to resolve the IP
address) for a particular hostname takes approgigna20-120 milliseconds to
complete. Even with DNS caching, this reduces perémce. Thus the number of DNS

lookups should be reduced to a minimum (by miningzihe number of distinct hosts

14

serving resources) to improve application perforoean

2.1.4 Redirects

Redirects are used for a multitude of purposesh @sctracking user movement (by
proxying requests via trackers), and tadirect-after-pos{15] technique, which is used
to prevent the “double submit” problem after sutsius of a form that uses the POST
request method. It is important to realise, howetleat a redirect always requires the
client to dispatch an extra HTTP request to themssgary URI, which implies reduced

performance. Thus redirects should be avoided pvare application performance.

2.1.5 Compression

The body of an HTTP response can be compressetitwe the amount of transmitted
data. A client can indicate support for compressignusing theAccept-Encoding
request header with an appropriate compressionatdet@onversely, the application
server may supply th€ontent-Encodingheader to indicate a compressed response
body. A commonly used compression method is gzf§).[Compression should be

applied to reasonably-sized (> 2K&xtresponses to improve application performance.

2.1.6 Style sheets

As any other static resource, style sheets shailchbhed by the browser to reduce the
total number of HTTP requests. Caching of styleethés enabled by usingxternal

(rather thaninline or embedded)tyle sheets, which allow for the style sheet ¢0 b
requested separately from the main document, armgbpgnding the appropriate caching

headers (as discussed in section 2.1.2) to response

Because browsers often utilipeogressive renderingi.e. render whatever content is
available as soon as possible, misplaced referetwestyle sheets can delay the
rendering of a web page by forcing the browser ébed rendering of the entire

document until those references have been resolved. thus appropriate to put

15

references to style sheets at the top of the HTMktudhent to allow for proper

progressive rendering and, consequently, impropgtiaation performance.

Another source of poor performance with regardtytessheets are CS&«pressions
CSS expressions are a powerful way of dynamicalhtrolling page layout and style,
because they are re-evaluated every time the pageges (upon window resize, for
example). Unfortunately this evaluation requirgmgicant processing power and adds
to performance overhead. Thus CSS expressionsdsheuhvoided, whenever possible,

to improve application performance.
2.1.7 JavaScript

Like style sheets, JavaScript scripts should besreatized and cached whenever
possible to improve performance. But unlike styleets, scripts should be placed at the
bottom (or as near the bottom as possible) of aMH@ocument for best performance.
This is because script execution not only blocksalpel downloads of resources, but

also effectively disables progressive renderingleients appearing after the script.

Furthermore, because JavaScript is a rich progragnnguage that allows the
developer to use arbitrary names for variablesfandtions, add comments, and format
code with an arbitrary amount of whitespace (spacestabs), script files can become
large, which implies reduced performance. To cautftes, compression, minification
(trimming comments and whitespace) and obfuscdtimnifying variable, function, etc.

names) should be utilized for improving applicatperformance.

Finally, one should make sure that an external Sewpt script is never included to a
single HTML document more than once. Duplicate pgsrirequire both duplicated
HTTP requests and processing effort, which impleekiced application performance.

2.2 Backend performance factors

A high-performance backend is able to to proceksge number of concurrent client

requests with minimal response times. Factorsmithis ability are considered next.

16

2.2.1 Platform

Selection of programming language and platform, tinme environment and

development tools all contribute to web applicatiparformance and scalability.
Programming languages and platforms affect perfoo@mdecause they vary greatly in
their implementation and runtime performance. Asmegles, compiled code (e.g. C++)
generally performs better than interpreted codg. (#ava), static typing (of e.g. Java)
avoids the runtime overhead of dynamic typing (gf ®ython), and dynamic semantic
checks (of, say, Java) can be useful for debugging error detection, but incur

significant runtime overhead.

Updated versions of a particular platform typicatiglude performance enhancements
not found in earlier versions. Vendor-specific periance may also differ (which is

often the case for e.g. application servers). Dmoraknt tools affect performance by
promoting particular styles of development, appicaframeworks, libraries, as well as

deployment strategies and targets. Use of modettfiopin-architectural styles such as
cloud computing[17] can have a profound (positive) effect on gmpleation’s

performance and scalability.

2.2.2 Implementation

Server-side code quality, architectural complexityg selection of third-party libraries
and/or modules can have a significant effect oriegion performance. Hence proper
selection of algorithms, architectural models aiataties, use of well-established
coding idioms, optimization of database queriesiective use of application

frameworks and efficient modularization, among aghare vital for good performance.

It is also important to realise that high-level ajgrhes to application development
(utilizing various frameworks and a layered desigifien simplify the task of the
programmer by hiding unnecessary implementationildetand make the system easier
to develop, comprehend and maintain due to separafi concerns. Unfortunately this

adds further layers of abstraction to the applicastack, which may have an adverse

17

effect on performance due to increased indiredog. longer method invocation chains
or the use ofeflectionin languages that support it). Fortunately, a ntexdar layered

design can also have a positive effect on scatgbilihich in turn can be harnessed for
improving application performance by adding to &lae server resources, such as the

number of processors or the amount of memory.

2.2.3 Configuration

Proper configuration of application and databaseess (and clusters thereof) is often
vital for good application performance. An applioat server (and the application
running in it) must often handle requests from ipidt concurrent clients. Thus the
configuration of thread pools, database connegbools, memory management (e.g.
garbage collection) etc. can have a substantiabceffon performance. Proper
configuration of database properties, such as indexable spaces or caching is equally
important. Other external resources, such as dileess or message brokers may require

similar attention in order to achieve best perfanoea

2.3 Remarks

As suggested by [2], from a user’s perspectivaténd performance is more important,
as typically only 10-20% of the total response tisiespent fetching the root HTML
document, which includes any (dynamic) backendgssing. The remaining 80—90% is
spent rendering the response on the client-sidelufimg the fetching of related

resources such as images, style sheets and settiptsubsequent HTTP requests).

It is, however, important to realize that whilerftend performance typically makes up
for most of how the user perceives application grembnce, a poorly performing

backend can bring the entire application to itsdenley taking a long time to process the
initial request, or by refusing to handle the resja all. It is ultimately the backend that

must handle high and unpredictable concurrent taaal long periods of time.

With performance testing in mind, it is thus imp@mrt to analyze performance in both

domains. Frontend performance should be measuredier to identify and enhance the

18

quality of the immediate user-experience. Backesdopmance should be measured in
order to determine maximum concurrent load, schiipland long-term application

behavior, among other things. Whereas chapterséscon backend performance (load
testing), the case study of chapter 4 incorporatesnples of both frontend and backend

performance analysis using appropriate tools.
This concludes the introduction to web applicatjperformance aspects. The next

chapter will build upon the theory presented tharstd present a thorough discussion of

the intricacies of web application performance teetign and implementation.

19

3 WEB APPLICATION PERFORMANCE TESTING

This chapter discusses practical implementationesof web application performance
testing, including test preparation, execution aggorting. The focus is on backend
load testing. Performance testing is an activigt tmay occur concurrently with other
application development tasks, or be carried ouerabn application has been
successfully deployed into production. In geneoal, discussion does not assume any
particular phase in application lifecycle; wheredides, the phase is clearly stated.

Material in this chapter is based on [1], unlesgentise noted.

3.1 Preparing for performance tests

The test preparation phase involves the definitidesign and building of the test

environment and scripts. These items are discussetd
3.1.1 Defining acceptance criteria

In order to establish performance (acceptancegraitfor an application, requirements
elicitation (as it appears in the initial applicati design phase) must include
performance considerations, such as projected lbase and number of concurrent
users, typical usage scenarios, desired qualitgeofice (e.g. in terms of maximum
response times) and maximum server resource tidlizato name a few. In a formal

process, the result of these considerations ipéhf@rmance requirement document

In addition, it is often necessary for the clientiaservice provider to sign Service
Level Agreemen{SLA). The SLA is a formal, binding document on a@pplication’s
performance acceptance criteria, agreed upon Hdy that client and service provider.
Further, established performance requirements seel to define gerformance test
strategy (document). This strategy represents a high-lesaimap for performance

tests. Topics covered by the test strategy typicgadiude (but are not limited to):

e Scope

* Metrics

20

* Objectives

* Load profiles

* Test environment
e Think time

« Test data

Scope defines the extent to which performance testingcamducted, including

disucssion of the components to be tested andyfies tof test to execute (e.g. LESS).
Metrics define the criteria by which system performancméasured. Common metrics
for web applications include response time andutjinput. Relevant metrics should be

defined by consulting appropriadeakeholders

Objectivesrepresent the rationale for carrying out perforogatests. Typical objectives
include verifying an application’s ability to haedh specified number of concurrent
users or asserting its ability to sustain high loa@r a long period of time without
resource leaks. Objectives must be conceived bgutting appropriate stakeholders.
Load profiles represent typical usage scenarios for the appitatRealistic load

profiles should be deduced by consulting relevasiress stakeholders.

Preliminary discussion of thest environmentust be included in the strategy. The test
environment should resemble the production enviemmas far as possible. A
standalone performance test environment providest mcurate results since it is not
shared by interfering testing and/or productionivéas. Unfortunately such an
environment may be not be readily available; irs ttéise performance test execution

should be isolated from other activities to ensatiable results.

User think time i.e. the time a user typically takes to “thinkéfbre executing a
particular action, such as submitting a form, maestaddressed in the strategy. Think
times can have a profound effect on test relevahoe.short or long think times can

result in biased test results, due to unusualliz biglow transaction rates, respectively.

Last, but surely not least, performance test datatrne addressed in the strategy. This

21

includes discussion of both dynamic input (usedengials, form data, etc.) as well as
test database setup. Test data should resembleftipapbduction as far as possible to
enable reliable results. Hence if real productiatads available, it should be used. If
not, sufficient amounts of realistic test data stidae generated. Unfortunately test data
generation is a daunting and time consuming tasH, lack of proper test data can

invalidate an otherwise legitimate test setup.
3.1.2 Designing the test scenarios

The test design phase captures the performanceareswnts and strategy of the
definition phase to produce a solid performancedesign (blueprint), which is in turn

realised in the building phase. Needless to say,design is the single most important
step in performance testing lifecycle. It is eswsdigt composed of three components:

scenariqg workloadandtooling design. These concepts are discussed next.

A scenario is a collection ®fansactions. In practical terms, a scenario is a sequence of
user actions, such as logging in to the systerokiolj on a particular link, submitting a
form, and finally logging out of the system. Scemadesign is vital for realistic
simulation of application usage in performancestesnd a prequisite for workload
design. A scenario should be composed of transectibat represent typical and/or

critical user actions, and have significant perfance effects.

To identify frequently occurring transactions, sth&lders and e.g. application server
access logs should be consulted. It is importansttmly application usage over a
sufficiently long period of time, because usageguas can vary greatly over time, based
on time of day, day of week, week of month, or ewenth of year. For example, in a
banking application, weekdays are likely to incworenload than weekends. Similarly, a

payroll application will likely have less use dugithe summer months due to vacations.

Transactions should also be prioritized based eridlhowing qualities:

% In this context, a transaction is a user actia thsults in server-side processing, typicallyHdiT P
reguest to a server-side application resourceait (out is not required to) span a database tréinsac

22

» Concurrency
* Number of user interactions
« Computational requirements

» Resource usage

Concurrency defines the degree to which a trarmacis typically executed
simultaneously by concurrent users. A single tretisa may be composed of multiple
user interactions (requests). Transactions may algee different computational
requirements in terms of required processing pamer time. Resource usage refers to

the 1/0* operations incurred by a transaction, among dtfiegs.

Workload design builds on scenario design by assigtransactions (or scenarios) to
specific (simulateduser groups(such as the “customers”, “managers” and “support
personnel” of a banking application), assigningtieé weightsto the user groups and

to transactions within each group, a®tjuencingransactions within groups.

The relative weight of a user group or transactienotes its relative importance and
commit rate (some groups use the appplication mactvely, and some transactions
take place more often than others) within a testju®ncing of transactions denotes the
ordering and timing of transactions during a test within a user group. The sequence

of transactions is typically inferred from the @sponding scenatrio.

In goal-oriented workload design, performance tests are designedssert certain
system qualities, such as high system availabibitygraceful degradation during
overload. Intransaction-orienteddesign, performance tests are devised so that they
focus on particular, critical transaction typégchitecture-orientedworkload design
focuses on verifying the scalability, robustnessd aefficiency of application
architecture, and as such requires intricate kndgdeof its implementatiorGrowth-

orienteddesign places an exclusive focus on testing systatability.

Tooling design involves the selection of performatesting tools. At a bare minimum,

* Input/Output, such as file access

23

for web application performance testing, the tgokbould provide the following

features, necessary for devising, running and amajytests:

e HTTP protocol support

» Test script editing and recording capability

» Client-side cookie support (for session tracking)

« Ability to parameterize tests with input data (aiger credentials)

» Ability to run test scripts with an arbitrary nunths users and iterations
« Ability to record relevant metrics (such as resgotisie) at run time

» Test data export capability

In addition to the features listed above, for sapelications, it may be necessary to
support data transport encryption (via HTTPS, dee énd of section 1.2.2), basic
authentication or file uploads (multipart reques&inong other things. For further

guidelines on performance testing tool selectideage refer to appendix B of [1].

3.1.3 Building the test suite

The purpose of the build phase is to implementtés¢ design in a way that enables
successful test execution. At this stage, the taagplication must be deployable, and
must successfully implement all of the features #ra to be tested. The build phase is
essentially composed of four tasks: creatingegormance test plarsetting up dest
environment developingtest scripts and setting up &est scheduleThese items are

discussed next.

A performance test plan (document) saves the sesilthe test definition and design
phases (we will not repeat the items dicussed eénpitevious two sections here), and
appends a detailed plan of test execution, inctygians for the remaining three tasks
above. In addition, a performance test plan typicabcludes discussion of any

assumptions, constraints and risk factors thapezeent in the design. A performance

test plan is thus an essential tool for the prajeaghager, test designer, and testers alike.

24

Test environment construction is a crucial taskenformance test setup. The goal is to
create an environment that most closely resembteguption (otherwise the test results
would not apply to production). It spans the setfipoth client-side machines (load
injectors, see section 1.3.3) and server-side egipdn components (application servers,
database servers, firewalls, load balancers etcthé same time, it is a very domain,
environment and application-specific task that nepua lot of coordination between

stakeholders. Hence we only outline some impoxtansiderations below.

« Is a proprietary performance testing environmeailakle?
* If not, can external noise (interference from othsers) be eliminated?

* Does the test environment resemble productiont(hardware and software)?

These considerations are typically driven by budiete and resource constraints. It is
generally difficult (or next to impossible) to use production environment for
performance testing, due to inherent noise fromileggise and data integrity constraints
(performance tests must not modify real productiata, such as the account balances in
a banking application). In a similar vein, a simethenvironment thaterfectlymatches
production environment in both hardware and softwar generally too costly and time

consuming to implement. In practical terms, tesiremment setup is composed of:

» Hardware and software installation

* Hardware, software and network configuration
* Application build, deployment and configuration
* Client-side (load injector) setup

« Test data(base) setup

Once a test environment has been setup, testSargm be devised for each relevant
scenario (or transaction). As explained in secfidh3, the scripts are either manually
written or recorded, depending on the complexityhaf scenario and available tooling.
In either case, a script must be manually editethétude dynamic, environment or

user-specific input data (i.e. request parametars),to modify think times (see relevant

® A test script is a sequence of programmatic HTa@qests (transactions) to application resources. It
may include requests to static resources (suamages), but these are often omitted for simplicity.

25

part of section 3.1.1)Form tokenS are a prime example of dynamic input. A form
token’s value varies per request (form reload) wemtiers the use of a static, recorded
value impossible In a similar vein, session tracking, if implemehtby appending
session ids (that vary per browser session) toestiquRIs, must be taken into account
in script development. Caching of resources is l@rotmportant consideration (see
section 2.1.2 for rationale). Each script shouldim@ke testefby running it against the

test application) to assert correct runtime belraamal test data compatibility.

The final step in test preparation is to createsh $chedule and assign testers to it. In a
shared test environment, where e.g. functionalngsind development activities may
occur at arbitrary times, scheduling an isolatedopmance test might turn out to be a

challenge. This concludes our discussion of thiepieparation phase.

3.2 Performance test execution

Performance test execution can be divided intcetdrstinct phases: validation, baseline
creation and benchmarking. These are discussed Rasthermore, sections 3.2.4 and

3.2.5 discuss typical reasons for test failure testimonitoring, respectively.
3.2.1 Validating the test suite

Prior to running actual tests, the entire testes(of scripts) must be validated. For this
purposeglaborationandself-satisfactiortests are executed. Elaboration tests are run to
verify that the system operates as expected daripgrformance test, and that the test

runs produce reasonable output data (metrics). @leglso useful for:

* Verifying test data integrity

» Understanding system behavior when subjected forpeance tests

« Establishing groof-of-conceptor performance tests (to management)
» Debugging any remaining issues with the test ssapd/or environment

» Familiarizing testers with the test suite and emvinent

® Form tokens are hidden HTML form elements thatimckided to prevent a double form submit.
" A test script must parse the token value fromeaipus response that was used to render the form.

26

* Tuning application parameters

Due to resource and time constraints, elaboraéists tare often run with a small number
of concurrent simulated users and a limited nundferuns. As the name implies,
additional self-satisfaction tests complement ealathon tests by building tester
confidence in the test suite and tooling (via répeéauns and peer/expert review) and by

asserting system readiness for the final performaests.

3.2.2 Creating a baseline

To establish a point of comparison (reference) fidure performance test runs, a
baseline is created. In other words, the resulth@initial stable run(s) of the test suite
are recorded for future reference. Any subsequesttrun (with the same configuration
and test data) can then be compared to the badelisee whether performance has

improved or declined.

In particular, a baseline allows for applicationfpemance to be tracked across builds
and versions, though major application revisiony megjuire a rebuild of the baseline
due to functional, architectural or platform-inddashanges that render the comparison
unreliable. A baseline can also be used to idergd#yformance deviations due to

configuration changes ardning (see section 3.2.5 below).

3.2.3 Benchmarking with multiple test runs

Once a baseline has been setup, an arbitrary nuofliest runs (benchmarking) will
follow. In addition to running tests with each apation revision, the need for repeated
test runs may arise due to failed tests (runtimerersee section 3.2.4 below), test data
corruption, human error, or other unexpected camtht during test execution.
Endurance tests are clearly most susceptible tb puablems due to inherently long

run-time.

Furthermore, multiple test runs provide more régatesults because they effectively

27

eliminate uncertainty due to transient factors lfsas someone mistakenly using the
target application for other purposes during a qremdnce test run) in the test
environment. In particularrepeatable results are likely to promote testers’ and

stakeholders’ confidence in the test environmedtapplication performance.

Depending on the test data and the applicationtiumality being tested, it may be
necessary to “reset” the test environment and/dabdse between test runs to a
particular state. For instance, in a banking apgibn, the need for an intermediate reset
would arise with a test that creates an accourit wiparticular number. If such a test
were to be run agaiwithout resetting the database, the account creation {faad

surrounding test) would fail due to a duplicatecact number.

In a related vein, the wotldenchmarkcan also refer to the use of an external, industry
standard performance benchmark provided by a fhartly organization. It is carried out
by running a set of tests, that comply with thecsmtions of the industry-standard
benchmark, to produce a score. Benchmarks complethenresults of proprietary
performance tests by allowing direct performancengarison (via scores) to
applications from other vendors. [3] Further dstaibout benchmarks are, however, out

of the scope of this paper; refer to [3] for a mibrerough discussion on the subject.
3.2.4 Reasons for performance test failure

A performance test run is considered as failed fifiis to produce reliable and useful
results. Typical causes for failed performancestestlude application defectsand

network congestian

Whereas test scripts typically operate in a det@stic manner, i.e. execute a
predefined sequence of steps (requests), applicegfectd may cause the application
to respond in a way that was not expected by #testzipt. In this case the script cannot

continue, and test execution is aborted with aimmerror.

8 Concurrency bugs (due to the high number of caramiusers) are a common source of error in
performance tests. They are also notoriously diffito debug due to their non-deterministic nature.

28

Network congestion is harmful to performance testcation for two primary reasons:
first, it may result in unusually high responsedsrand poor throughput due to excess
network delays; second, complete connection faslgenerally cause a test to abort with

a network timeout error. In this respect, propst tetwork configuration is important.
3.2.5 Monitoring tests

We end our discussion of the test execution phase testmonitoring Monitoring a

performance test involves keeping track of howtdst is progressing. By monitoring a
test run, any errors are spotted immediately, atigwor the test to be cancelled and
restarted on the spot, which saves time. Monitotypgcally includes tracking test script
or tool (console) output, application and databss®er logs, and observing realtime

server load statistics such as processor and mamage througprofiling.

Profiling is especially important when coupled withining (modifying application
and/or server configuration in order to find thestoperforming setup). Unfortunately
profiling and tuning are very broad topics in thehass, and hence were not included in

the scope of this paper; the interested readerrafayto [19] for further information.

3.3 Analysis and reporting of test results

Performance test result analysis typically involtbsee tasks: test data collection,

analysis and reporting. These tasks are discusgbe following subsections.
3.3.1 Test data collection

Test data is typically collected by observing testl output logs. The number, format
and content of these logs is tool-dependent. Acglpsolution would be to output two
distinct log files, one containing a summary of tbst run(s), and another containing the
raw test data. Runtime errors during a test run ahsy produce separate error logs. Log
files are typically in either XML or CSV format &nable efficient parsing and analysis

thereof. A typical test output log contains the sequence of trarmativith the

° Load testing a web application over HTTP

29

following columns and metrics (though this lisbisno means exhaustive):

* Userid

* lteration

e Timestamp

» Transaction id

* HTTP status code
* Response time

* Error status

User id represents a tool-dependent identifier for a satma user (a single test is
typically run with multiple simulated concurrentess), e.g. a running numbdteration
represents the iteration number (in case of meltifgrations of the same test), which is
generally a running numbeilimestamprepresents the time of execution for the
transaction, which may be relative to test stametiand is typically given to millisecond

precision.Transaction ids a transaction (request) identifier, e.g. a pfie@d number.

HTTP status codés the response status co&esponse times the time elapsed from
sending a request to receiving a full resporisgor statusis a boolean that tells
whether the test failed due to a runtime errorwich case an error log is typically

created) or a bad HTTP status code (e.g. 404 notfcsee section 1.2.2 for details).

Depending on the types of metric being collectesnay also be necessary to collect
persistent profiling data from server-side machin&his is usually achieved by
consulting relevant server logs and/or the outgulenlicated profiler tools (that were
active during the performance test run). Servee-sidetrics are most useful for

investigating and pinpointing potential performabcdtlenecks.

3.3.2 Test data analysis

Once test data has been successfully gatheredsit Ine@ analyzed. Analysis is carried

out by calculating (aggregate) metrics, such asageeresponse time per time unit or

30

peak number of transactions per time unit, fromdhta. Furthermore, the (aggregate)
metrics may be compared to a baseline to prodyeefarmancdrend A test tool may

incorporate the necessary facilities for data aislyAlternatively, generic spreadsheet
tools (such as Microsoft Excel) may be used. At #eever-side, enterprise-grade

management tools often incorporate sophisticatéa atzalysis and reporting facilities.

According to [1], test data analysis serves théowahg purposes (non-exhaustive, in

order of relative importance):

» Checking whether all tests (transactions) were @eecas planned
» Checking whether set performance criteria werebyéhe system under test

» Identifying performance bottlenecks and possibieadies

The first item is important because errors in & tes mayrender test data unreliable,
thus preventing further analysis. It is up to tleef@rmance analyst to decide whether a
particular number of failed transactions constigusefailed test run. The second and
third items are at the heart of software perforneaesting. Test data must be compared
to specified criteria to determine whether applaafperformance is within acceptable
limits. Performance bottlenecks may be identifigddzusing on particular transactions,

application resources or server-side metrics.

3.3.3 Reporting results

Reports are the primary deliverable of performatests. Hence they must convey all
the relevant performance metrics in a concise aiflegident manner. Reports are
typically created to serve the interests of différstakeholders, such as management,
developers or system administrators. Managementoist interested to see how their
investment in performance testing and applicatiemetbpment pays off. Developers
require detailed performance reports to be ablenioance application performance.

System administrators use their reports to deterrmmoptimal runtime configuration.

As explained in section 1.3.3, reports may be pteduin textual (tabular) format or

graphs. Whereas developers typically require iateécdetails (i.e. “raw” figures) on

31

application performance, for management, a handfuhigh-level and colorful pie
charts (along with proper justification) will likelsuffice. When producing reports,
standard statistical analysis meth8dwmay be used, along with conventioriaboling.

Spreadsheet tools can be used to provide dualseqaions (tables and charts) of data.

Within a report, it is important to highlight anp@malies in the test data. For example,
sudden and/or constant increases in response timapplication/database server
resource usage may be indications of performanoblgms. Graphs are particularly

effective at conveying such trends.

This concludes our discussion of web applicatiorfgpmance testing. The interested
reader may refer to e.g. [1], [3], and [7] for het information. Chapter 4 provides

examples of both test tooling and implementation.

1% Averaging, sampling and histograms, among others
! Generally available (open-source or commerciap-specialized

32

4 CASE STUDY: WORDNET

The purpose of this case study is to convey kegdgwesented in the previous chapters
in a pragmatic manner. The web application undst i®WordNet a large lexical
database of English, publicly available on the rimt¢ provided by Princeton
University. [21] This particular application wasos®en because it couples an adequately
complex frontend with search functionality that ydes a good candidate for backend

load testing.

We begin by describing the test setup (section dnb) test tooling (section 4.2). For
brevity, tool installation steps are not includ8ection 4.3 describes a sample frontend
analysis, and section 4.4 walks through a simd test. Finally, some generic remarks

about the test results are made.

4.1 Setup

The following setup was used to drive tests:

» HP Compaq nw8240 laptop computer

e Pentium M 2GHz processor, 1.5GB RAM
* Windows XP Pro SP3 operating system
* 54 Mbit WLAN (Wireless LAN) network

* 8/1 Mbit ADSL2+ internet connection

The following application versions were used:

* Firebug 1.4.2

* Apache JMeter 2.3.2
* Mozilla Firefox 3.5.2
+ Sun JRE?6uUl5

* YSlow 2.0.0b6

12 A Java Runtime Environment [22] is necessary todMeter.

33

All tests were run on a freshly booted machine wédhminimal number of

simultaneously running (background) processes ¢adanterference with the tests.

4.2 Tooling

This section provides a brief introduction to th@en source performance testing and
analysis tools used in the case study. JMeter wéscted primarily from personal
experience. It is also seemingly popular (with ao@e hit count of 574,00@s of
December 2009). Firebug and YSlow were selectedausec they come highly
recommended by [2]. It must be noted that a nunabalternative tools (both open

source and commercial) exist. For a listing of opearce alternatives, refer to [18].
4.2.1 JMeter

Apache JMeter is a Java-badedd testing toallt can be used to load test applications
over a variety of protocols and APIs (Applicatiorogframming Interfaces), including
HTTP, SOAP (Simple Object Access Protocol), JDB&v&dlDatabase Connectivity),
LDAP (Lightweight Directory Access Protocol), IMBOP3 (Post Office Protocol) and
IMAP (Internet Message Access Protocol). JMeta Ightweight desktop application
with a simple graphical user interface (GUI). Ihaso be run from the command line,

if necessary (e.g. in a headEssnvironment).

JMeter runs on thdava Virtual MachingJVM), so it is fully portable across machine
architectures and operating systems, and has ratp@ort formultithreading(i.e. tests
can be run with multiple simulated concurrent usargl groups within a single
instance). JMeter allows for test scenarios todsended using a built-in proxy server. It
has a fully configurable, pluggable (via plug-ias)d scriptable (using e.BeanShelf)
test architecture, so all types of performance(tds8S and more) can be run with it. In
addition, multiple test iterations (runs), inputrgraeterization, loops, assertions and

timers are supported out-of-the-box.

'3 No display device (monitor) attached
14 BeanShell [20] is a lightweight scripting langudgethe Java platform

34

Pluggablesamplersallow for a number of metrics to be recorded at tan-time. Basic
test data analysis and reporting facilities ar® atsluded; these can be extended by
installing appropriate plug-ins. JMeter uses a pedary XML format to store test plans

(steps) and test result data alike.

With respect to web application performance testimgle JMeter effectively simulates
the behavior of a web browser (or, actually, migdtiprowsers), it isot a web browser.

In particular, JMeter does not render HTML, evadustlyle sheets or execute JavaScript.
It simply dispatches the same HTTP requests (arglves the same responses) as a real
browser would, with the addition of recording respe time, throughput and other

relevant metrics at the same time. [10]
4.2.2 Firebug

Firebug is a FirefoX add-on that can be used fisontend performance analysi#

enables a number of web application frontend deveént tasks (non-exhaustive list):

* HTML inspection and editing

* CSS inspection, editing and visualization

» JavaScript execution, debugging, logging and pnafil
« DOM (Document Object Model) inspection

* Network traffic monitoring

For our purposes, the last item is clearly mostartgnt. Firebug’s network monitoring
facilities allow the user to track response times HTTP request (i.e. per resource),
monitor browser cache usage, inspect HTTP requektessponse headers, and visualize
the entire loading of a web page (from the root HTMobcument to any referred
resources) on a timeline. Furthermore, Firebugi&aSaript profiling capabilities may

come in handy when diagnosing script-induced perémrce problems. [11]

> There is also a “lite” version of Firebug that denused with any browser. Refer to [11] for dstail

35

4.2.3 YSlow

YSlow is a Firefox add-on that integrates seamyes#th Firebug. YSlow analyzes and
gradesfrontend performance (like a benchmark, see se&®id.3), and suggests ways to
improve it, based on a predefined set of rulest@tnsule sets may also be defined).
Some of these rules were introduced in chapter @rading is done on a scale of A
through F, where A denotes best performance. Y @lew provides views for inspecting

individual resources (e.g. size) and overall siagsuch as total page weight). [12]

4.3 Sample frontend analysis

This section depicts a simple frontend analysiseRample, we analyze the WordNet
homepage. We consider page load time, the numbedTdiP requests, caching,

compression, and finally the YSlow grade and penéoice suggestions.

The first step is to launch Firefox. Once Firefexup and running, we must enable
Firebug and YSlow for all web pages. Firebug isbéed by right-clicking on its “bug”
icon in the browser’s status bar (lower right corokthe screen) and selecting the “On
for All Web Pages” option. In a similar fashion, @ is enabled by right-clicking on
its “gauge” icon and selecting the “Autorun” optiofhese tasks are illustrated in

Figures 3 and 4 below.

Cpen Firebug in Mew Window Ckrl+F12

Clear Console trlH-Shift+R.

WSlow Horne
Enable Al Panels

Disaie Al Paneks oo |

Hide Statusbar Info

OFfF For &ll Web Pages

Run COnce
@ P A 183K 0.717s | . rﬁ, A 163K 0.717s
Figure 3: Enabling Firebug in Firefox Figure 4: Enabling YSlow in Firefox

To bring up the Firebug console, left-click on thieebug icon. Now select the “Net”
(network) view by clicking on the corresponding.taéltbe haven’t loaded a page yet, so

the view is empty. The view should resemble thdtigtire 5 below.

36

L
% "% Ul console HTML €55 Script DOM | Net+ | ¥Slow P ==

Clear | Al HTML CS5 15 #HR Images Flash

| Done |2 @ s 183 oo

Figure 5: Empty Firebug network statistics view

The next step is to browse to the WordNet homepBgelo this, simply type the target
URL (http://wordnet.princeton.eduinto the browser’s address bar and hit enterth&s

page loads, Firebug should update its view. Thaltrag view is illustrated in Figure 6.

1) WordNet - About WordNet - Mozilla Firefox = ;l.glil

File Edit Miew History Bookmarks Tools Help

@@: e X Tl I*|http:,l’,l’wordnet.princeton.edu,l’ T:? = I'r’\]'lGoogle)'_-‘-'

- = B ~ . ———
%" 5% Ul console WML €SS Saipt DOM | Net~ | vsiow L =[]
Cear || Al HML €55 J5 ®HR Images Flash

@) net panel activated. Any requests whils the net panel is inactive are not shown,

GET wordnet.prince 200 2 wordnet.princeton.edy. 9KE 550ms

[+ GET component.css 2000k wordnet.princeton.edu 24 KB _— | F79ms

[+ GET style.css 200 Ok wordnet.princeton.edu SKEB () S521ms

[+ GET forms.css 200 0k wordnet.princeton.edu 643 B B 274ms

[+ GET print.css 200 2 wordnet.princeton.edu 1 KB L 152ms

GET handheld.css 200 O wordnet. princeton.edu 294 B - Z79ms

GET aural.css 200 Ok wordnet.princeton.edu 1 KB - 154ms

GET braille.css 200 2K wordnet,princeton.edu 516 B B 152ms

GET custom.css 200 2k i igms . DNS Lookup B 13ims

[+ GET logobar_logo.p 2000k W fone - Conmecting [8 Z58ms

th GET forms-and-res) 200 Ok WO s g - 254ms .

1# GET banner_photo_ 200 0k 4 "’ - | B36Ms

GET main_bg.gif 200 0 of B7eks laieing For: Rezperse L 176ms

GET content_bullet 200 0K wi BEEeTs Reseiving:Daba L t30ms

GET ga.js 200 0K ac | +1.4Z2s : 'DOMContentLoaded' (ewent) - 2E4Ms

GET __utm.gif?utm 200 0k gc | tl.64s : 'load' {event) ! 160ms
16 requests asxe 2.6

[4 [c s 20615 y

| Dane .

Figure 6: Firebug network statistics for the WordNé homepage, empty browser cache

37

Looking at the statistics, 16 GET requests wereanadth a total response time of
2.061 seconds, and a combined page weight of 86TKB requests are displayed in the
order in which they were sent, starting with thetdd TML document. For each request,
HTTP method and status code, target host and ifike @&e shown. By hovering the
mouse on top of a particular request, a detailedkatfown of the total response time for
the request is shown (the rectangular popup bdxgare 6 above). The timeline graph

on the right conveys the same data in a visual eranvith matching colors.

The page was initially loaded with an empty browsache (see section 2.1.2). To
demonstrate the effect ofpgimed (i.e. full) browser cache, we now reload the phge
clicking on the browser’s reload button. The rasgltstatistics are shown in Figure 7
below. In a nutshell, by caching resources, thal t@isponse time was reduced to 1.036
seconds (a 50 % reduction), and the total amoutraatferred data decreased from 86
KB to a mere 11 KB (a 90 % reduction).

As described in section 2.1.2, the browser seramditional GET request to retrieve a
resource that has been previously cached (evenanitxplicit reload of a page). In our
sample, all but one of the referred resources wefact cached, and for each of those
resources the server returned a 304 status codwlittate that the cached version is

valid, avoiding the need to transfer data ovenitre.

%" % Ul Console HMIML (S5 Script DOM | Netw | ¥slow P (=&}

Clear | al HTML ©33 15 ®HR Images Flash

€ net panel activated. Any requests while the net panel is inactive are not shown,

+ GET wordnet.prince 200 O, wordnet.princeton.edu 9 KB 44Zms

+/ GET component.css 304 Ok wordnet. princeton.edu 24 KB 160ms

+ GET style.css 304 O wordnet.princeton.edu 3 KB 153ms

+ GET forms.css 304 0K wordnet, princeton.edu 643 B 202ms

+ GET print.css 304 O, wordnet,princeton.edu 1 KB 204ms

+ GET handheld.css F04 Ok wordnet.princeton. edu 294 B 206ms

+ GET aural.css 304 Ok wordnet.princeton.edu 1 KB 133ms

+ GET braille.css 304 Ok wardnet.princeton.edu 516 B 134ms

+ GET custom.css 304 O wordnet.princeton.edu 896 104ms

+ GET logobar_logo.p 304 O wordnet.princeton.edu 3 KB 105ms

+ GET forms-and-res| 304 0K wordnet,princeton.edu 4 KB 115ms |

+ GET banner_photo_ 304 O, wordnet, princeton,edu 23 KB 30Lms

+ GET main_bg.qgif S04 Ok wordnet.princeton.edu 356 30Pms

+ GET content_bullet F04 Ok wordnet.princeton.edu 45 B 303ms

+ GET ga.js 304 Mok Modified google-analvtics.com S KB 237ms

+ GET __utm.gif?utm 200 O, google-analytics.com 35 B]_ a7ms
16 requests 86 KB ({77 KB from cache) 1.03s

| pore [4F B c s 1oms

Figure 7: Firebug network statistics for the WordNé homepage, primed browser cache

38

We now turn our attention to YSlow. To view the ¥®l grade and statistics for the
WordNet homepage, simply select the YSlow tab om Firebug console. This is
illustrated in Figure 8 below. The view has beamdtated for brevity. In particular, it

does not show all grading criteria, though unsatistriteria are shown at the top.

3%
%" & Ul console HTML €55 Script DOM Net | YSlow~ Pl =@

G

Grade | Components | Statistics | Tools ¥slow(¥2) x| | Edit L5, Printable View | (7) Help

ALL{22) FILTER BY: CONTENT {(6) | COOKIE (2) | £SS (6) | IMAGES (2) | JAVASCRIPT {4) | SERVER (5)
C Make fewer HTTP requests
Grade C on Make fewer HTTP requests
I F Use a Content Delivery Network {CDN} a

I F Add Expires headers

I F Compress components with gzip
I A Put C55 at top
I A Put JavaScript at bottom

I A Avoid CSS expressions gRendlions

[pane [[c s 10w

Figure 8: YSlow grade ‘C’ for the WordNet homepage

As can be seen from Figure 8, the WordNet homepacmgved a grade C, scoring 71
out of 100 points with the default ruleset (YSlow)VYWhile most of the tests passed
with flying colors (grade A), the number of HTTRjteests was considered high due to a
large number of external style sheets (9). As aethmYSlow suggests combining the
style sheets. This would in fact reduce the totamber of HTTP requests by

minimizing the number of referenced style sheethéroot HTML document.

Further, resources were not compressed, and naha lfar-future Expires-header. As
explained in section 2.1.3, compression improvefopeance by reducing the amount
of transmitted data. A far-future Expires-headeulddurther improve performance by
eliminating the conditional GET requests that nowaktplace. YSlow also detected that
a Content Delivery Network (CDRP was not used to serve static content on the

WordNet homepage. Response times could be impribeelse issues were addressed.

This concludes our sample performance analysiseoff¥ordNet homepage.

'8 A content delivery network is a collection of thiparty servers that host static resources (such as
images and scripts) to reduce application senad.|®lease refer to e.g. [23] for further inforroati

39

4.4 Sample backend load test

The target of our sample load test is the WordN#ine search, located at the URL

http://wordnetweb.princeton.edu/perl/webwrand accessible via the WordNet

homepage. The sample test is necessarily a blackelsd’, since we do not have access
to the target application’s implementation and/onfgguration details. Section 4.4.1
describes the sample test scenario. Section 4 dlkswhrough the process of recording
a test script that follows the scenario. In seciah3 we run the test script with multiple

concurrent simulated users. The final section glesisome analysis of the test results.
4.4.1 The test scenario

The test scenario is simple: a user opens the Wair@Nline search page, enters a
misspelledEnglish word to the “Word to search for:” fielddaclicks on the “Search
WordNet” button, only to discover that the searetums no results. The tenacious user

then re-runs the search, this time with properlisygglto obtain a non-empty result set.
4.4.2 Recording the test script

To record the test scenario, we first start upJideter load testing tool. Once JMeter is
running, we right-click on the “Workbench” item, darselect theAdd > Non-Test
Elements > HTTP Proxy Serveption to enable the proxy server (pane) thaseduo

record a test script. This is illustrated in Figuugeand 10 below.

17 Black-box testing is carried out without any knedge of the target application’s implementatiod] [2

40

EAApache IMeter {2.3.2 r6b65936)

File Edit Rum Options Help

Tesst Plan |
5 Wil Pamedn

Mon-Test Elements » HTTF Mirrar Server I

Logic Controller oYy Sery
Paste Chrl+y
. Config Element » Property Display
Resek Gui
Timer]
Qpen. .. Fre Processors]
Merge Sampler »
Save Selection As.., Assertions [
Pask Py]
Save Mode As Image ChrHG DSt FHORESS0rs
Listener]
Save Screen As Image ChrH-Shift+G
Emable
Disable
Help

Figure 9: Enabling the HTTP proxy server pane in JMeter

== apache Meter (2.3.2 r665936) —[of x|
Fle Edt Run Options Help
ojo
L, TestPlan
& [i2] WorkBeneh HTTP Prosxy Server
R AP Frox ve ame; [HTTF Prosey Server
Comments:
Port: [B080 I Attempt HTTPS Spacfing Optional LRL match string: |
Test plan conkent
Target Contrallsr: ILIsE Recording Contraller = arouping: IDn nat group samplers =1
[V Capture HTTF Headers [Add Assertions [Regex matching

HTTR Sampler setting:
’;ype: HTTF Request ~ | I” Redirect Automatically [Follow Redirscts [Use Kespalive [Retrisve All Embedded Resources from HTML Files ‘

r:nntant-type Filter
! |

nelude; | Excluds: |

[URL Patterns ko Includs

URL Patterns ko Include |

Add Delete

URL Patberns to Exclude

URL Patterns ko Excluds

Add Delete
| st Restart

Figure 10: The HTTP proxy server settings pane, wit controls at the bottom

The default settings for the proxy server (runnmy port 8080) are fine for our
purposes. We then click on the “Start” button a bHottom of the pane to start the
server. The next step is to start up the Firefok Wweowser. Once Firefox is up and
running, we selecfTools > Options... > Advanced > Network > Connection
Settings... > Manual proxy configuratipand enter the values “localhost” and “8080”
to the “HTTP Proxy” and “Port” fields, respectivelffinally we save the settings by

clicking on “OK” twice. Refer to Figure 11 for prgxconfiguration details.

41

Connection Settings |

—Configure Proxies ko fdccess the Inkernet

£~ Mo proxy
{~ Auto-detect prowxy settings For this nebwork,

% Manual proy configuration:

HTTP Praogn: I localbosk Port: BDEDH:
[~ Use this procey server For all protocols
S5L Prooeys I Part: 0=
ETP Praxy: I Port: 0=
Gopher Prosy: I Part: 0=
SOCKS Host: | Port: 0=

v SOCKS w4 { SOCKSwS

Mo Procey For: I

Example: .mozilla.org, .net.nz, 192, 165.1.0/24
£ Autamatic proxy configuration URL:

Reload

i

Cancel | Help |

Figure 11: Configuring the JMeter HTTP proxy to usein Firefox

To record the script, we now simply execute the asions as per the scenario, using
the browser. The proxy server intercepts all HT&guests and generates the test steps
accordingly. We first open the WordNet online shaferm at the appropriate URL,
enter a misspelled keyword (“duk”) and run a seaBd#tause the initial search returns
no results, we then then correct the spelling efkbyword (“duck”) and run the search

again. These steps are illustrated in Figures 32antl 14 below.

42

¥2) WordNet Search - 3.0 - Mozilla Firefox =101x]

File Edit Wew History Bookmarks Tools Help
CZ|—~ » R4 e x fht ||j|http:,l’,l’wordnetweb.princeton.edu,l’perl,l’webwn ﬁ? -

WordNet Search - 3.0 - WordMet home page - Glossary - Help

Word to search for: I Search WordNet |
Dizplay Options: I (Select option to change) j Change |
WordMNet home page

| Done ’?@, 3l 4

Figure 12: WordNet online search form

%) wordNet Search - 3.0 - Mozilla Firefox (=] 4]

File Edit Wiew History Bookmarks Tools Help

CZI— 3~ G X o ||_-L]|http:,l’,l’wordnetweb.princeton.edu,l’perl,l’webwn?s=duk&sub=Search+W0rdNet&02=&oD=1&o?=&05=&01=1&06=&04=&03=&h= FArdd

Word to search for: Iduk Saearch Wordhet |

Display Options: I (Select option to change) j Change |

Your search did not return any results.

| Done ’? | E Slow 4

Figure 13: Empty result set for the initial query with misspelled keyword

%) wordNet Search - 3.0 - Mozilla Firefox AEE

File Edit Wiew History EBookmarks Tools Help

CZ|—~ F R e X it Iﬂ |http:,l’,l’wordnetweb.princeton.edu,l’perl,l’webwn?s=duck&sub=Search+W0rdNet&02=&0El=1&o?=&05=&01=1&06=&04=&03=&h= ﬁ? -

WordNet Search - 3.0 - WordHet home page - Glossary - Help

Word to search for: Iduck Search WaordMet I
Display Options: | (Select option to change) j Change |
Key: "3:" = Show Synset (semantic) relations, "W." = Show Word (lexcal) relations

Noun

3 (1) duck (small wild or domesticated web-footed broad-billed swirmming bird usually having a depressed body and short legs)
2 (n) duck, duck's egg ({cricket) a score of nothing by a batsman)

2 (n) duek (fesh of a duck (domestic or wild))

3. (n) duck (a heavy cotton fabric of plain weave; used for clothing and tents)

Verb

3. (v) duck (to move (the head or body) quickly downwards or away) "Before he could duck, ancther stone struck him"

2 (v) duck (submerge or plunge suddenly)

S (v) dip, douse, duck (dip into a liqud) "He dipped inio the poal”

2 () hedge, fudge, evade, put off, circumvent, parry, elude, skirt, dodge, duck, sidester (avoid or try to avoid fulfilling, answering, or
petforming {duties, questions, or issues)) "He dodged the issue™; "she shirted the prablem"; "Thay tend to evade their
responsibilities”; “he evaded the questions skilifully”

Wordiet home page

| Done ’?@l Slow v

Figure 14: Non-empty search results for the secorguery with correctly spelled keyword

Once the above steps have been completed, it Bss@y to stop the proxy. This is

43

accomplished by clicking on the “Stop” button in &félr’'s proxy server settings pane.
As a result, three GET requests (i.e. transactises,section 3.1.2) are generated and
shown under the “Workbench” item, in the order ihiet they were dispatched. The
first GET request was used to load the search favirereas the second and third

requests represent our failed and successful gueespectively.

Figure 15 illustrates the resulting view with thestf recorded request highlighted. As

shown, JMeter allows us to modify the details ofeaorded request. We will later

utilize this capability to enable user-specificunp

EAApache IMeter (2.3.2 r665936) _ O] x|
File Edit FRun Options Help
ojo
Test Plan 1=l
WiorkBench HTTP Request
4, & HTTP Proxy Server Mame: I,l'perl,l'webwn
ﬁ Erowser-derived headers Comments:
+ K’ Toerlivebyen
o Wb Server
4’ Iperliwetram
Server Narme ar IP: |w0rdnetweb.princeton.edu Part Mumber: I
HTTP Request
Protocol {(default Rtkp): Ihttp Mekhod: [GET vl Conkent encoding: I
Path: I,l'perl,l'webwn
I~ Redirect utomatically W Follow Redirects [Use Keepdlive [Use mulkipartfform-data For HTTP POST |
Send Parameters With the Request:
Marme: I Walue I Encode? IIncIude Equ...I
Add | Delete |
=l

Figure 15: HTTP request settings pane for the inill request that loads the search form

Test script recording is now complete. In the nsxttion we see how the recorded

requests are configured to load test the targdicapipn with multiple simulated users.

4.4.3 Executing the test script

The sample load test is to be run wifthe concurrent usergwo runs, and with a
different keyword-pair (misspelled and correct wdiar each user. To accomplish this,
we must add necessary configuration items andeiberded requests to a test plan. We
begin by adding &ser Parameterglement to the plan. This element is used to pevi

user-specific input, in this case the search kegig/ofo add this element, we right-click

44

on the “Test Plan” element and selécid > Pre Processors > User Parameteiiis
brings up the User Parameters settings pane. Wedlek on the the “Add Variable”
button twice to add a row for each variable (miiegeword, correct word) and finally
click the “Add User” button five times to add colamfor each simulated user. We then

enter the following values (see Table 1 belowhifields.

Variable name User 1 User 2 User 3 User 4 User 5
correct brick girl moon fight bomb
misspelled brik gilr muun figth bomp

Table 1: User-specific input

The variable names (in italics above) are lateduseefer to the values when we setup

the corresponding requests. The pane should namntds that of Figure 16 below.

EATestPlan.jmx {C:Documents and Settings'jpalomak’Desktop'msciresources’ TestPlan.jn = |EI|5|
File Edit Rum Options Help
ajo I
B[4 TestPlan
SR s Parameters User Parameaters
WiarkdBench Mame: |User Parameters
Joerlinekinen
A{’Iperh\v\febwn Comments:
--u{’.l‘perl.i\.vvebwn
N [~ Update Once Per Iteration
Parameters
| Marme: User_1 I User_& User_3 User_4 User_5

::Efigth bomp

Add Yariable Delete Variable

Add User Delete User

Figure 16: The User Parameters pane with user-spdit input values entered

To enable test execution, and to setup the deswetber of users and runs, we add a
Thread Groupelement (i.e. a user group, see section 3.1.2hdotest plan. This is
accomplished by selectirydd > Thread Grougrom the test plan’s context menu. We
then input the desired number of concurrent ugrsins (2), and the ramp-up perivd

(5) to corresponding fields. The resulting vievsi®wn in Figure 17 below.

8 The ramp-up period controls the rate at which &ied users start their scenario. In this casesuse
start to execute the scenario at five second iaterihis prevents a sudden increase in applicédizch

45

FEATestPlan.jmx {C:Documents and Settings' jpalomak’Desktopmschresources' TestPlan.jms) - Apa _ O] x|
File Edit FRun Options Help

ojo I

El- [TestPlan
“ D Uszer Parameters Thread GI’OUD
E‘ Thread Group
‘WiorkBench

Toerlinebn Comments:

f' Terliavetbran —#ckion ko be taken after a Sampler error
H- £ iperliwetren

Mame: IThread Group

{+ Continue { Stop Thread Stop Test

~Thread Propetties

Mumber of Threads {users): IS

Ramp-Up Period (in seconds): IS

Loop Count: [~ Forewver |2

[~ Scheduler

Figure 17: Thread group setup

We must now add the recorded requests to the lgst Phis is done simply by dragging
the requests to the thread group and selectingAtié as Child” option. While doing
this, it is important to maintain the order of tteguests. As we assign the requests to
the thread group, we also rename the requests i@ ntaeasier to identify them.
Renaming a request simply involves changing its mida attribute via the

corresponding request settings pane. The setupdshow resemble that of Figure 18.

EATestPlan.jmx {C:Documents and Settings' jpalomak’Desktop'mschresources’ TestPlan.jmx) - Apa: = |EI|5|
File Edit Rum Options Help

ajo I

=l [, TestPlan =
D User Parameters HTTP Request

=8 E‘ Thresd Group
f' Load search form

Mame: |Run failed search

Comments;

—Web Server

Server Mame or IP: Iwordnetweb.princeton.edu Park Mumber: I
~HTTF Reguest

Protocol {defaulk http): Ihttp Mekhod: [GET VI Conkent encoding: IISO-8859-1

Path: |,|’perl,|’webwn

[~ Redirect Automatically W Follow Redirects W Use Keepdlive [Use multipartjform-data for HTTP POST -

Send Parameters with the Request:

Marne! Encode? |Include Equ...
s] "
sub Search Wordhet ¥ ¥ I
o2 | 0 T~ =

add | Delete | LI

Figure 18: Request assigned to thread group, notéé modified ‘Name’ attribute at the top

To enable dynamic, user-specific input, we must rset the value of the request

46

parameter, that corresponds to the search keywonafer to the User Parameters we
defined earlier. The appropriate parameter “s”ighlghted in Figure 18 above (under
the “Send Parameters With the Request” sectionpalss in a dynamic search keyword
at run-time, we simply replace the recorded parametlue “duk” with the expression
${m sspel | ed}. This expression refers to the variable definedable 1. We then
repeat the procedure for the correct search reqegsacing the parameter value “duck”

with the expressios{ corr ect } . This is illustrated in Figure 19 below.

EATestPlan.jmx (C:Documents and Settings' jpalomak’,Desktop'msc'resources’ TestPlan.jms) = = | Ellll
File Edit Run Options Help

0jo

Test Plan
D User Parameters HTTP Request

| v

=8 E‘ Thread Graup
: Z’ Load search form

Mame: IRun correct search
Comments:

Web Server

Server Mame or IP: Iwordnetweb.princeton‘edu Part Mumber: I
HTTP Request
Protocal {default http): Ihttp Method: |GET VI Conkent: encoding: IISO-8859-1

Path: I,l’perl,l’webwn
[Redirect Automatically v Follow Redirects [Use Keepdlive [~ Use multipart/Form-data For HTTP POST

Send Parameters With the Request:

Mame: Walue Encode? |Include Equ...

sub Search Wordhet I I I

o2 | - [~ = =

Figure 19: Modifying a request parameter value to efer to the appropriate user parameter

JMeter is now able to supply the dynamic paramedguwes with requests at test run-
time. A final step is to add a listener to the f@an. A listener tracks test execution by
saving relevant metrics, and allows us to visuakzst results once the test has been run.
Out of the box, JMeter provides a number of deftsténers. We select the “Statistical
Aggregate Graph” listener that is available as atereal plugin®. This listener

produces a nice aggregate graph with average respione and throughput.

To add the listener, we select thdd > Listener > Statistical Aggregate Grapiption
from the test plan’s context menu. The final setulustrated in Figure 20 below. Now
that the test plan is complete, we start the lesd Iy selecting the test plan item and
pressing CTRL + R on the keyboard, or by seleckugp > Startfrom the top menu.

Test execution can be tracked by monitoring theitgé label at the upper right corner

19 Seehttp://rubenlaguna.com/wp/better-jmeter-graphs/

47

of the screen (see Figure 20). Once the label gmagand shows a value of “0 / 57, the

test has run to completion. The next section dsesibasic result analysis with JMeter.

A TestPlan.jmx (C:\Documents and Settings'jpalomak' Desktop’msciresources' TestPlan.jmx) - Apache JMeter (20 10l |
File Edit Run Options Help
0f5 T
Bl fi Test Plan =
User Parameters
7 Thread Group 10 10
atistical Agaregate Repol
arkBench o0& e
[aR:] 08
o7 07
A
= o
03_ 0.6 0.6 %
= o
=] E
205 05 @
£]
= E
0.4 04 T
[ac] 0.3
0.z 0.2
01 0.1
0.0 00
Time
|—Thr0ughput, hits/sec — Average Response Time, msec ‘ ;I

Figure 20: Final JMeter test plan with the statisttal aggregate report listener added and visible

4.4.4 Analysing the test data

Once the test has run to completion, we can vzeidhne results by selecting the

“Statistical Aggregate Report” item. The resultingw is shown in Figure 21 below.

=13l
File Edit Run Options Help
40T
El- [TestFlan -
-- User Parameters REEHE
075
"~ Thread Group
atistical Aggregate Repol 070 - 20,000
iorkBench .
0.80 17,500
0.55
15,000
. o&o a
: 2
L pas 12,500 ©
2 2
2 040 ©
2 =
F oas 10000 5
™
0.30
- 7,500
0.25
0.20 | 5,000
0.15
0.10 £ 2,500 s
21:2450 21:25:00 21:26:10 21:25:20 21:2530 212540 21:25:50 212600 21:28:10
Time
|—Th|nughput, hits/sec — Average Response Time, msec ;I

Figure 21: Test results as visualized by the statisal aggregate report

Looking at the graph, we see that the average nsgptime was rather poor at 12

48

seconds, with values ranging from approximately&sds to 22 seconds. Throughput
(the number of requests completed per time uniy agually poor, averaging at a mere
0.4 transactions per second (or 24 transactionsnparte). These observations confirm
what can be seen by using the application withcavber; the WordNet online search

does not generally perform very well, especiallyhia face of multiple concurrent users.

This concludes our sample load test of the Wordiéhe search.

4.5 Remarks

The previous sections covered typical performamrse implementation tasks through
real-life examples. The two main aspects of webliegjon performance testing,
namely frontend analysis and backend load testwege covered. Our discussion was of
necessity simplistic, and only provided examples # subset of the previously
discussed testing practices and tool features. Wiglse considerations in mind, the
interested reader is encouraged to further evaltise tools and practices for

him/herself. For this purpose, the sample testsigeca good starting point.

49

5 CONCLUSIONS

Through reading the previous four chapters, thele@eahould now possess a basic
understanding of the intricacies of web applicapenformance testing. In the following

paragraphs we summarize some key findings, andge@ointers for future study.

In chapter 2, we identified the factors that detaanweb application performance. At
the client-side, performance is primarily driventhg amount of data transmitted over
the wire. At the server-side, selection of prograngnlanguage and platform,
implementation and configuration are the primaryntdbutors to application
performance. The performance effects of moderrigrtatarchitectural models such as

cloud computing are of particular interest, andeepnt a viable topic for further study.

Chapter 3 walked through the process of load tgstiweb application. We covered test
definition, design, execution and reporting issueh an emphasis on practical
implementation. Performance testing was found t@iectivity that requires delicate
coordination between project stakeholders, devesypsystem administrators and
testers, in order to produce reliable and usefsllts. Proper test definition and design
are of utmost importance. Baselining allows forlejapion performance to be tracked

over time and across builds and versions.

Chapter 4 introduced three performance testing @malysis tools (Apache JMeter,
Firebug and YSlow) that can be used to realisect¥e web application performance
tests with minimal overhead. However, several a#gve tools (commercial and open-
source) also exist. A comparison between the fo@sented here and their alternatives

would also prove to be an interesting continuatmthis paper.

Chapter 4 also provided a detailed walkthroughypfcl performance testing tasks,
using the tools mentioned above. Our sample frahtaralysis identified some typical
performance bottlenecks (lack of response compmmesand proper caching) in the

sample application. The sample load test conveliedkey ideas and test phases of

50

chapter 3 in a minimal but pragmatic manner. Thegetaapplication was found to
perform poorly even under the moderate load incubg our sample load test. The
results must be taken with a grain of salt, howe8earce the tests were run in a black-
box manner, no guarantees can be made about tiéyaf the results, since external
noise from other users (that may very well numipethie thousands, for all we know)

cannot be eliminated.

While this paper considered Ajax and other RIA testbgies only briefly, future web
applications will increasingly utilise Ajax in threimplementation. This means that
performance test tools and methodologies will alsed to evolve. In particular, the
traditional request-centered (get root HTML pagei gnage, get stylesheet etc.)
approach to performance testing may need to evtweards a more user-oriented

approach (open search page, type text into fidick submit, etc.).

In particular, use of functional test tools suchSatenium [25] or WebDriver [26] can
help the performance test designer to build madrgtize test scripts that lift the level of
abstraction from the HTTP request to that of alsinger. This approach can greatly
reduce the complexity of the test scripts, rendeparformance testing a less daunting

and less time-consuming process.

51

BIBLIOGRAPHY

[1] Subraya, B.M. 2006. Integrated Approach to ViPelsformance Testing — a
Practitioners Guide. IRM Press, United Kingdom.

[2] Souders, Steve 2007. High Performance Web Sitessential Knowledge for
Frontend Engineers. O’'Reilly, United States.

[3] J.D. Meier et al., 2007. Performance Testingdance for Web Applications.
Microsoft Corporation, United States.

[4] HTTP specification (RFC2616kp://ftp.isi.edu/in-notes/rfc2616.txt

[5] HTTP (Wikipedia).http://en.wikipedia.org/wiki/Hypertext Transfer_ Rvool

[6] HTML (Wikipedia). http://en.wikipedia.org/wiki/HTML

[7] Software performance testing (Wikipedia).
http://en.wikipedia.org/wiki/Software performancesting

[8] Client-server model (Wikipediahttp://en.wikipedia.org/wiki/Client-server

[9] W3C, 2004. URIs, Addressability, and the usé&dfTP GET and POST.
http://www.w3.0rg/2001/tag/doc/whenToUseGet.html

[10] Apache JMetemttp://jakarta.apache.org/jmeter/

[11] Firebug.http://getfirebug.com/

[12] YSlow. http://developer.yahoo.com/yslow/

[13] Microsoft support article 20842ittp://support.microsoft.com/kb/208427

[14] W3Schoolshttp://www.w3schools.com/

[15] Redirect After Post.
http://www.theserverside.com/tt/articles/articlsAls=RedirectAfterPost

[16] GZIP file format specificatiorhttp://www.fags.org/rfcs/rfc1952.html

[17] Cloud computing (Wikipediahttp://en.wikipedia.org/wiki/Cloud_computing

[18] Open source performance testing tools.
http://www.opensourcetesting.org/performance.php

[19] Software profiling (Wikipedia)http://en.wikipedia.org/wiki/Software_profiling

[20] BeanShellhttp://www.beanshell.org/

52

[21] WordNet.http://wordnet.princeton.edu/

[22] Javahttp://www.]java.com

[23] Content delivery network (Wikipedia).
http://en.wikipedia.org/wiki/Content delivery netiko

[24] Black-box testing (Wikipediahttp://en.wikipedia.org/wiki/Black-box_testing

[25] Seleniumhttp://seleniumhq.org/

[26] WebDriver.http://code.google.com/p/selenium/

53

