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Kvanttimekaniikan teoriassa suljettuja, ympäristöstään eristettyjä systeemejä koske-
vat tulokset ovat hyvin tunnettuja. Eräs tärkeä erityispiirre tällaisille systeemeille
on, että niiden aikakehitys on unitaarista. Oletus siitä, että systeemi on suljettu, on
osaltaan tietysti vain yksinkertaistus. Käytännössä kaikki kvanttimekaaniset sys-
teemit vuorovaikuttavat ympäristönsä kanssa ja tästä johtuen niiden dynamiikka
monimutkaistuu oleellisesti. Kuitenkin tietyissä tapauksissa systeemin aikakehitys
voidaan ratkaista, ainakin approksimatiivisesti.

Tärkeimpinä esimerkkeinä on ympäristön joko nopea tai erittäin hidas muutos
kvanttisysteemin ominaiseen aikaskaalaan verrattuna. Näistä erityisesti jälkimmäi-
nen on käyttökelpoinen oletus monissa fysikaalisissa tilanteissa. Tällöin voidaan
suorittaa niin sanottu adiabaattinen approksimaatio. Sen mukaan systeemi, joka
on aikakehityksen generoivan Hamiltonin operaattorin ominaistilassa, pysyy vas-
taavassa ominaistilassa ympäristön muuttuessa äärettömän hitaasti, mikäli sys-
teemin eri energiatasot eivät leikkaa toisiaan. Todellisissa tilanteissa muutos ei
tietenkään voi olla äärettömän hidasta ja myös energiatasojen leikkaukset ovat mah-
dollisia, jolloin tapahtuu transitio eri ominaistilojen välillä.

Energiatasojen leikkauksilla on oleellisia vaikutuksia erittäin monissa fysikaalisissa
prosesseissa ja niitä kuvaamaan on luotu monia malleja kvanttimekaniikan alku-
ajoista lähtien aina tähän päivään saakka. Nykyinen teknologinen kehitys on avan-
nut uudenlaisen mahdollisuuden ilmiön kokeelliseen varmentamiseen ja hyödyn-
tämiseen. Tämän vuoksi kyseisten mallien dynamiikan ja erityisesti energiatasojen
useiden peräkkäisten leikkausten aiheuttamien koherenssi-ilmiöiden selvittäminen
on tärkeää.

Tässä työssä käsitellään kvanttimekaanisia kaksitasosysteemejä, joissa esiintyy ener-
giatasojen leikkauksia sekä niiden pitkän aikavälin dynamiikkaa. Tutkielmassa pe-
rehdytään tarkemmin kahteen tiettyyn malliin. Näistä ensimmäinen, Landau-Zener
-malli, on tunnetuin ja sovelluksissa käytetyin malli. Kuitenkin erityisen mielenki-
innon kohteena on niin kutsuttu parabolinen malli, jolle johdetaan eri approksimaa-
tioita käyttäen asymptoottiset transitiotodennäköisyydet eri tilojen välille. Näitä
verrataan numeerisiin tuloksiin.

Asiasanat: Kvanttidynamiikka, ei-adiabaattiset transitiot, parabolinen malli,
Landau-Zener -malli, DDP-menetelmä, adiabaattinen approksimaatio.
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Introduction

Quantum mechanical level crossing problems have regained considerable attention

in the recent years. Originally, the first level crossing model was introduced in the

studies of inelastic atomic collisions as early as the 1930s [1, 2, 3]. Nowadays the

topic is familiar in many different contexts in physics and with a wide variety of

phenomena, for example in quantum information processing [4], laser-driven molec-

ular wave packet dynamics [5], neutrino oscillations in astrophysics [6], tunneling

between different energy bands of a semiconductor [7] or in mesoscopic supercon-

ducting circuits [8]. Clearly, the level crossing problems are not confined to any

particular branch of physics. The reason is that the situation they cover is a quite

generic one. When the discrete energy values of different states of a quantum me-

chanical system evolve in time, it might happen that these energy levels approach

each other very closely or even cross at some points of time. There is a probability

for the system to make a transition to another state because it becomes energetically

possible at the vicinity of these points. The problem is then to find an expression

for the transition probability between different states of the system.

The recovered interest in studying level crossing models is largely due to the

fact that nowadays one is able to observe such genuinely time-dependent situations

experimentally. One can modify the energy level structure of an atom for example

by making it interact with an electromagnetic field and by those means induce time-

dependent level crossings and couplings between the levels. This can be done for

example with frequency-tunable lasers or placing the atom in a microwave cavity

field or in a time-dependent magnetic field [9].

A two-level system is an elementary and basic framework for these kinds of

studies, and indeed in this thesis, the level crossing models are considered in the

two-level approximation. In quantum mechanics, a two-level system is a physical

system which has a two-dimensional state space. There are many physical systems
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which can be approximated by a two-level system. For example, systems in the

low-temperature limit where only two of the energetically lowest-lying states are

admissible and higher excitations can be neglected, or situations where we consider

only the spin degree of freedom of a spin-1/2 particle. Even more importantly, at

the viewpoint of this thesis, level crossings happen usually only with two levels at

a time so near these degeneracy points the system can be considered as a two-level

system.

Two-level systems are extremely important tool in quantum optics, being as sim-

ple as possible for studying transition dynamics but still providing some insight and

methods for understanding more complicated systems. Their role is even more fun-

damental in the field of quantum information and quantum computation, constitut-

ing the physical implementation of qubits [10]. The great interest and development

these research fields have gained in the past decades has made it also very important

to be able to control the state of a two-level system interacting with its environment.

Although the rapid development of computers at the same time have made it

possible to perform numerical simulations of quite complex quantum dynamics, the

need for analytical methods and solvable models has not diminished because they

are often much faster to solve at least in some parameter regions and they also offer

better insight for example on the parameter dependence of the problem. Even within

the two-level approximation, obtaining any analytic solution for the time evolution

of a system is difficult and may usually be obtained only approximately. This leads

to further approximations concerning the nature of the evolution.

For many physical systems, approximating the processes to be adiabatic is a

natural choice. This can be done when the environment of a system is changing, in

a sense, slowly enough. The adiabatic theorem ensures that in the limit of infinitely

slow change, in a system initially prepared to an eigenstate of a time-dependent

Hamiltonian there happens no transitions between the states and the state of the
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system follows the instantaneous eigenstate that corresponds to the initial one. The

adiabatic theorem is usually derived assuming the so-called "gap-condition" that

the eigenvalue is separated from the rest of the spectrum. Of course in real phys-

ical systems the evolution is never strictly speaking infinitely slow and, as already

mentioned earlier, energy level crossings are quite common, therefore breaking the

validity of the adiabatic theorem so that there indeed are transition probabilities

between the states. Such transitions that emerge from this breakdown are often

called non-adiabatic ones.

Much of what is known about non-adiabatic transitions near the adiabatic limit

can be summarized with a simple formula, a non-perturbative result first derived

by Dykhne, stating that such transitions are exponentially suppressed [13, 14]. A

mathematically rigorous proof of this result in the case of analytical Hamiltonian was

later provided by Davis and Pechukas [15]. It is based on the analytic continuation

of energy eigenvalues to the complex-valued time domain and integrating along a

level line containing the complex crossing point nearest the real axis, that is, the

complex plane zero point of the adiabatic energies which is shown to contribute

most to the transition. Therefore we shall call their method of obtaining the final

populations of the system as Dykhne-Davis-Pechukas method, abbreviated as DDP

method. We shall discuss this important method in detail in chapter four of this

thesis.

The first level crossing model was studied independently by Zener, Landau and

Stückelberg in 1932. It consists of a two-level model where energy levels vary lin-

early in time having constant interaction between them. Nowadays it is known as

the Landau-Zener model. It will be considered in chapter two and it serves as an

introduction to crossing problems and to the methods for obtaining solutions to

them. It is a very interesting and useful model also on its own because many more

complicated crossing models can be reduced to it.
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However, this is not always the case. There are situations where it is impossible

to linearize the energy levels near the crossing point and to that end we consider

a slightly more general setting where the linear time-dependence of energy levels is

replaced by a parabolic one. We shall call this model as parabolic model or t2-model

and it too was first considered in collisional problems [31, 32, 33]. An interesting

extra feature in this model is that now, depending on parameters, we have two

crossings and the phase of the state becomes an observable. Therefore, it has raised

interest also in the context of some interferometric schemes [29, 30].

The purpose of this thesis is to give an introduction to level crossing problems

in the two-state approximation and in particular to the parabolic model. We con-

sider different approximation methods and use them to solve the parabolic model

in different parameter regions. We also discuss the difference between the results

obtained in the references [28] and [41]. The model is solved also by performing

numerical simulations and the approximative results are compared to these results.
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1 Introduction to two-level systems with time-

dependent Hamiltonians and level crossings

1.1 Basic formalism

We review some basic notions and definitions of the mathematical formulation of

quantum mechanics and the problem at hand. In quantum mechanics, every physical

system is associated with a Hilbert space H and in the case of a two-level system

this is a two-dimensional vector space over the complex numbers, H = C2, so that

every vector in it can be written as |ψ〉 = (ψ1, ψ2)
T where ψi ∈ C, i = 1, 2. Elements

of a Hilbert space are also called state vectors. In a Hilbert space, there is defined an

inner product 〈· | ·〉 : H×H → C. For C2, the inner product is just the familiar dot

product 〈ψ | ϕ〉 =
∑2

i=1 ψ̄iϕi for every |ψ〉, |ϕ〉 ∈ C2, where the overhead bar stands

for complex conjugation and the subscript indicates the component of a vector. If

〈ψ | ϕ〉 = 0 for two vectors |ψ〉, |ϕ〉 ∈ H, then those vectors are said to be orthogonal

to each other. An inner product also defines a norm in the Hilbert space through

‖ψ‖ =
√
〈ψ | ψ〉 for all |ψ〉 ∈ H.

Every vector of norm one defines a one-dimensional projection P[ψ] in H with

formula P[ψ]|ϕ〉 = (〈ψ | ϕ〉) |ψ〉, |ϕ〉 ∈ H and the elements of the set

P(H) = {P[ψ] | |ψ〉 ∈ H, ‖ψ‖ = 1} (1.1)

are called pure states. Any two pure states, say P[ψ] and P[ϕ], can be combined

into a new pure state P[aψ + bϕ] with a, b ∈ C, as long as aψ + bϕ 6= 0 and

normalisation of the vector is satisfied. This is called the principle of superposition.

If a state is not pure it is called a mixed state. In any case, every state ρ of a

quantum mechanical system can be given as a convex combination of pure states,

which in the case of a two-level system means that an arbitrary state is of the form

ρ = t1P[ψ1] + t2P[ψ2], 0 6 ti 6 1, t1 + t2 = 1, P[ψi] ∈ P(H), i = 1, 2. In this
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thesis we consider only pure states. Clearly, from the axioms of the inner product,

two vectors |ψ〉, |ϕ〉 ∈ H differing only by a phase factor eı̇θ, θ ∈ R, define the same

pure state. So, if |ψ〉 = eı̇θ|ϕ〉 then P[ψ] = P[ϕ] and there is a freedom of choosing

the phase of a state vector. This does not mean that the phases of state vectors

in different times are irrelevant. As it will be seen, in the context of the parabolic

model, the superposition principle together with the phase differences give rise to

observable interference effects.

Also worth mentioning is the usual Born rule that for a system in a some pure

state P[ψ], |〈ϕ | ψ〉|2 is the probability to be in a state P[ϕ] for all |ϕ〉 ∈ H. We

introduce the quantity P which is the survival probability, and its counterpart, the

overall transition probability Q = 1− P . P is defined as

P = lim
t0→−∞

lim
t→∞

| 〈ψ(t) | ψ(t0)〉 |2, (1.2)

that is, the probability for the system to stay in the initial state P[ψ(t0)] when the

system is first prepared in the infinite past and then it evolves to the infinite future.

In this thesis we are interested in the asymptotic populations of two-level systems.

We denote the probabilities for a system to be in states corresponding to levels one

and two at a time t, respectively, by P1(t) and P2(t). The asymptotic probabilities

of the levels are written without explicit reference to time or to initial state as P1

and P2.

We consider two-state systems with Hamiltonian operators that depend explicitly

on time so that the time evolution of a state vector is given by the time-dependent

Schrödinger equation:

ı̇
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉, (1.3)

whereH(t) is the Hamiltonian that generates the time evolution. Here and through-

out this thesis we have chosen ~ = 1. Time-dependence of the Hamiltonian implies

that the two-level system is not isolated from its surroundings but is, in fact, in an

interaction with an environment. In principle, one could modify the description of
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the physical system by including the environment to be part of it and that way end

up with a time-independent Hamiltonian for this new enlarged system. In practise,

for real systems the resulting mathematical model becomes too difficult. In any

case, the solution to the Schrödinger equation (1.3) can be obtained by the unitary

operator U(t, t0) that satisfies the relation |ψ(t)〉 = U(t, t0)|ψ(t0)〉, as the series [11]

U(t, t0) = I +
∞∑

n=1

(−ı̇)n

∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtnH(t1)H(t2) · · ·H(tn). (1.4)

1.2 Adiabatic and diabatic approximations

Assume that a system is coupled to an environment. When one wants to specify

what is the effect on the state of the system when the environment is changing in a

certain way, the result is known to depend largely on the length of the time interval

on which the change is happening. The two limiting cases for the evolution, namely

the diabatic and adiabatic approximations, are reviewed here shortly.

To do this, let T = t1 − t0 be the time interval of the evolution on which the

Hamiltonian is changing and replace the physical time by scaling s = (t − t0)/T ∈
[0, 1]. Also it is convenient to denote the actual physical time evolution operator by

U(t, t0) = UT (s).

When the evolution is thought to be rapid, an approximation which shall here

be called as the diabatic approximation is made. It is also commonly called sudden

approximation in quantum mechanics but the reason for this kind of terminology

used here is due to the mutual history and interference between collisional problems

and level crossing studies. The connection shall be made clearer later. Now the

change of the Hamiltonian takes place in a really short time interval and it can be

thought to be instantaneous. When T tends to zero, the second term in the equation

(1.4) vanishes and the time-evolution operator can be approximated as

UT (1) ' I. (1.5)
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It should be noted that this is physically very intuitive. The evolution is so instan-

taneous and impulsive that the state of the system has not got time to react to this

and change its functional form. Of course, this does not mean the same as that the

system would not change at all. The eigenstates of the system change along with

the Hamiltonian, and so do the eigenvalues as well, so a system that is initially in a

stationary state does not usually remain in one.

This approximation is valid when [19]

T ¿ 1

∆H̄
, (1.6)

where ∆H̄ is the root mean square deviation for the initial state of the averaged

Hamiltonian

H̄ =
1

T

∫ 1

0

H(s)ds. (1.7)

In the opposite case, when the Hamiltonian is changing slowly, the adiabatic

approximation can be used. The notion of adiabaticity has always played an im-

portant role in physics. Usually a physical process is considered to be adiabatic if

it leaves invariant some essential property of the system involved in the process. In

the case of quantum mechanics these are the stationary states. The adiabatic the-

orem of quantum mechanics concerns the long-time behaviour of a system, taking

dynamical effects into account in the limit of slow change of the Hamiltonian which

generates the evolution.

The idea of the adiabaticity in quantum mechanics was first formulated by Born

and Fock in the late 1920s [16] but the modern formulation of the adiabatic theorem

is due to T. Kato [17]. Although there are various versions of the problem and also

generalisations to it, the traditional way to formulate the adiabatic theorem is to do

it with the so-called "gap condition" [18]. It can be explained as follows.

The system is assumed to be initially in an instantaneous eigenstate of the Hamil-

tonian. It is then assumed that the corresponding eigenvalue is at all times isolated

from the rest of the spectrum of the Hamiltonian, that is, there is a gap between
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them. Now, in the limit of infinitely slow change, the state of the system stays at

all times in the eigenspace corresponding to the initial one. This is formulated here

explicitly in the case of a discrete Hamiltonian, so its spectrum consists entirely of its

eigenvalues. Let s, T and UT (s) be as defined before and let En(s), n = 1, 2, . . .,

be the eigenvalues with the projections to respective eigenspaces denoted by Pn(s).

It is assumed that all quantities involving the scaled time s are continuous and that

the eigenvalues remain distinct at all times, Em(s) 6= En(s) when m 6= n. Also it

is assumed that d
ds
Pn(s) and d2

ds2Pn(s) are well-defined and continuous. Now with

these assumptions, let us state the adiabatic theorem: For all n = 1, 2, . . . , and

|ψ〉 ∈ H
lim

T→∞
‖UT (s)Pn(0)|ψ〉 −Pn(s)UT (s)|ψ〉‖ = 0. (1.8)

A proof of the adiabatic theorem can be found for example in [19]. It can also be

shown that for finite time intervals, the error term goes as O(T−1) and depends on

the time interval T and the size of the gap.

The existence of a gap is important because being able to give precise meaning

to such terms as fast and slow change of a system, one has to have some intrinsic

time scale in the system and the time scale is usually given by the gaps in the

spectrum. Of course there might be some other property that gives the time scale.

For example, even though the gap condition breaks down at the linearly crossing

energy levels, there still is a characteristic time scale in the system given essentially

by the inverse of the difference between the slopes of the eigenvalues [18].

Illustrating now the adiabatic approximation, consider a time-dependent Hamil-

tonian with a spectrum that is at every instant discrete and non-degenerate. Choose

an orthonormal basis consisting of eigenstates |φn(t)〉 of the Hamiltonian H(t) so

that they are also time-dependent,

H(t)|φn(t)〉 = En(t)|φn(t)〉 (1.9)
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and

〈φm(t)|φn(t)〉 = δnm. (1.10)

The state vector of the system at time t may be expanded in the orthonormal basis

resulting

|ψ(t)〉 =
∑
m

cm(t) exp

(
−ı̇

∫ t

t0

Em(t′)dt′
)
|φm(t)〉. (1.11)

The exponent term in the middle is called the dynamical phase and the time-

dependent Schrödinger equation (1.3) gives the equations for the expansion coef-

ficients cn(t) as

ċn(t) = −cn(t)〈φn(t) | φ̇n(t)〉

−
∑

m6=n

cm(t) exp

(
−ı̇

∫ t

t0

(Em(t′)− En(t′)) dt′
)
〈φn(t) | φ̇m(t)〉, (1.12)

where the overhead dot stands for time derivation as usual. Differentiation of the

equation (1.9) and multiplication by 〈φm(t)| gives

〈φm(t) | φ̇n(t)〉 =
1

En − Em

〈φm(t) | Ḣ(t) | φn(t)〉, m 6= n. (1.13)

Now the evolution is considered adiabatic if

| 〈φm(t) | Ḣ(t) | φn(t)〉 |¿ | En(t)− Em(t) |
∆Tnm

, (1.14)

where ∆Tnm is the characteristic time of transition between the states indexed with

n and m which defines the time scale for the system. The characteristic time ap-

proaching to infinity is then obviously equivalent to that there are no transitions

between the states and then also from the left side of the equation (1.14) it is seen

that the matrix elements of the Hamiltonian change infinitely slowly. Then from

the equation (1.13) it follows that

〈φm(t) | φ̇n(t)〉 −→ 0, m 6= n. (1.15)

The equation (1.12) for the coefficients then gives

ċm(t) = −cm〈φm(t) | φ̇m(t)〉. (1.16)
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The initial condition that the state is initially in the nth eigenspace of the Hamilto-

nian can be expressed as cm(0) = δnm and in this case the adiabatic theorem follows:

cm(t) = 0 for n 6= m and the equation (1.11) implies that

|ψ(t)〉 = cn(t) exp

(
−ı̇

∫ t

t0

En(t′)dt′
)
| φn(t)〉. (1.17)

Moreover, the coefficient cn(t) can be calculated from equation (1.16). It is an

additional phase factor

cn(t) = eı̇γ(t), (1.18)

where γ(t) satisfies the relation

γ̇(t) = ı̇〈φn(t) | φ̇n(t)〉. (1.19)

This extra phase factor is usually chosen to be equal to zero and a state vector

satisfying the relation is said to be in the Born-Fock gauge [20]. However, this is not

always possible and when the evolution is cyclic, this term gives rise to the Berry

phase [36].

1.3 Level-crossing model

Instead of taking the environment of the two-level system explicitly into account it

is assumed here that by considering the interactions or by some other means, one is

able to write down the Hamiltonian for the two-level system alone. In this thesis we

study cases where the Hamiltonian operator for a two-level system is represented as

a real symmetric 2× 2 -matrix rather than as a complex Hermitian matrix. This is

the case for systems with time-reversal symmetry [36]. The basic properties of such

Hamiltonians are discussed next. So now we have

H(t) =




β1(t) V (t)

V (t) β2(t)


 . (1.20)

Here the real-valued functions β1(t) and β2(t) are the diabatic level energies and

V (t) is the interaction term that couples the two levels with each other. Moreover,
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we can also symmetrize the two diabatic energy levels by writing the state vector

explicitly with a phase factor as

|ϕ(t)〉 = exp

(
−ı̇

∫ t β1(τ) + β2(τ)

2
dτ

)



C1(t)

C2(t)


 , (1.21)

where |ψ(t)〉 = (C1(t), C2(2))T is a vector satisfying the equation (1.3). Now, setting

|ϕ(t)〉 into that same equation, we end up with a convenient form of the time-

dependent Schrödinger equation, the basic equation

ı̇




Ċ1(t)

Ċ2(t)


 =




α(t) V (t)

V (t) −α(t)







C1(t)

C2(t)


 , (1.22)

where it is defined α(t) = (β1(t)− β2(t)) /2 and an overhead dot denotes the time

derivative. Therefore there is no loss of generality in choosing the Hamiltonian to

be traceless as well as real-symmetric.

The formula (1.22) is given in an orthonormal basis Kd = {|+〉, |−〉} which we

shall refer to as the diabatic basis and in which the basis vectors are written as

|+〉 =




1

0


 and |−〉 =




0

1


 . (1.23)

When it is needed to emphasize the basis which is used, it is denoted as a

subscript in the Hamiltonian,

Hd(t) =




α(t) V (t)

V (t) −α(t)


 . (1.24)

The eigenvalues of the Hamiltonian in (1.22), are obtained from the secular

equation det (H(t)− E±(t)I) = 0 which gives

E±(t) = ±
√
α(t)2 + V (t)2. (1.25)

Here E±(t) are the two possible outcomes for individual measurements of the system

energy and they are called as the quasi-energies because the energy is not now con-

served in the two-state system. They are also called the adiabatic energies because,
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as it will be seen, they determine the adiabatic energy levels. The corresponding

instantaneous normalised eigenvectors are

|χ1(t)〉 = N




α(t)+
√

α(t)2+V (t)2

V (t)

1


 and |χ2(t)〉 = N




α(t)−
√

α(t)2+V (t)2

V (t)

1


 ,

(1.26)

where the normalisation factor N is

N =
V (t)2

E±(t)2 ∓ α(t)E±(t)
. (1.27)

Depending on the functional form of the diabatic energy levels α(t), there may

be such t∗ ∈ R that α(t∗) = 0 and α̇(t∗) ≡ ∂α(t)
∂t
|t=t∗ 6= 0 and if such points exist

we say that we have an energy level crossing in those points. We call models with

Hamiltonians having this property as level crossing models. In the case that the

time-derivative of the diabatic energy levels would be zero at t∗ the energy levels

would only touch but not cross. If V (t∗) 6= 0, even when the diabatic energy levels

cross each other the adiabatic energies usually merely approach each other but there

is no real crossing. We shall call such situations as avoided crossings, often also called

as pseudocrossings.

It is seen from the crossing model Hamiltonian written in (1.24) and from the

discussion of the adiabaticity in the previous section, that there are two parameters

which control the adiabaticity here. They are given by V (t∗) which is essentially

the minimum distance between the different eigenvalues, in other words the size of

the gap, and α̇(t∗) which corresponds to the rate of the change of the Hamiltonian

at the time when the energy separation is smallest. So, roughly speaking, it can

be concluded that when V (t∗) À 0 and slowly-varying and α̇(t∗) ≈ 0 the adiabatic

approximation applies. On the other hand, if V (t∗) ≈ 0 and α̇(t∗) À 0 the evolution

is best approximated diabatic. On the whole, it would be important to establish

a theory which would give results in a similar manner for intermediate parameter

values, interpolating between the two approximations.
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1.4 Change of basis

As mentioned in the previous section, the framework for our studies was formulated

in the diabatic basis. We could have chosen another basis for C2 and it would have

been an equally valid formulation of the physical problem. However, some basis may

turn to be computationally more convenient than others, depending on the system

and its parameters. We study here unitary transformations between different bases.

Generally, a transformation U is said to be unitary if its adjoint is equal to its

inverse, U∗U = UU∗ = I. The unitary transformations leave the inner product

invariant, that is, they map an orthonormal basis to another orthonormal basis.

It is a well known fact that the normalised eigenvectors of a self-adjoint oper-

ator form an orthonormal basis for H in the finite-dimensional case. We call the

basis formed from the instantaneous eigenstates of the diabatic Hamiltonian as the

adiabatic basis and denote it as Ka = {|χ1〉, |χ2〉}. When the Hamiltonian is time-

dependent then also its eigenvalues are, and therefore also these basis vectors change

with time, unlike the static diabatic basis vectors. Conversely we can also note that

in the two-state case that is being studied, if there were no coupling between the two

diabatic levels, then the diabatic basis vectors which are also orthonormal, would be

the eigenvectors. Since we are interested here in the transition dynamics of the sys-

tem, the non-diagonal terms are assumed to be non-zero and the bases are generally

different.

On one hand, it may be suggested on the grounds of the adiabatic theorem that

when the evolution of a system is nearly adiabatic and the system is initially in an

eigenstate of the Hamiltonian, the state of the system follows closely the eigenstate

and then using the adiabatic basis would be advantageous. On the other hand, if a

system is changing rapidly, the state of the system has not got time to change its

functional form and then formulating the problem in the time independent diabatic
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basis is preferable. It can be shown that if

lim
t→±∞

|α(t)| = ∞ and/or lim
t→±∞

V (t) = 0, (1.28)

then the energy levels of the different bases coincide when t → ±∞, although

depending on the model the level labels may be swapped [27]. Then the comparison

between the results obtained in the different bases is straightforward because the

initial and final probability distributions can be given in both bases simultaneously.

The relation between the two bases is now studied explicitly and the linear

dependence between the adiabatic and diabatic basis vectors is established. In

general, however, it should be noted when performing the two-state approximation,

that it is possible that the two lowest adiabatic states would be combinations of more

than just two diabatic states but it is clear from the introduction of the level-crossing

model in the previous section that we do not consider such cases here.

At each instant t ∈ R, we can diagonalize the Hamiltonian with a unitary trans-

formation U(t), which is a 2 × 2-matrix that can be constructed by setting the

instantaneous eigenvectors as its columns. Explicitly,

U(t)H(t)U∗(t) = D(t), (1.29)

where D(t) = diag (E2(t), E1(t)) and U(t) =
(
χT

2 (t) | χT
1 (t)

)
. Now the change of

basis from the diabatic basis to the corresponding adiabatic one is obtained through

the relation

|χ1,2(t)〉 = U(t)|±〉. (1.30)

When a vector |ψ(t)〉 is transformed to another vector |φ(t)〉 = U(t)|ψ(t)〉 the
time-dependent Schrödinger equation changes as

ı̇
d

dt
[U∗(t)U(t)|ψ(t)〉] = H(t)U∗(t)U(t)|ψ(t)〉 (1.31)

⇒ ı̇
dU∗(t)
dt

|φ(t)〉+ ı̇U∗(t)
d

dt
|φ(t)〉 = H(t)U∗(t)|φ(t)〉 (1.32)

U(t)· |⇒ ı̇
d

dt
|φ(t)〉 =

[
D(t)− ı̇U(t)

dU∗(t)
dt

]
|φ(t)〉. (1.33)
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So now, due to the time-dependence of the unitary transformations, the adiabatic

Hamiltonian is not diagonal.

The usual and convenient way to write the transformation U(t) is obtained by

expressing the Hamiltonian in a different form [15],

H =




H11 H12

H21 H22


 = Ē · I +

δE

2



− cos(θ) sin(θ)

sin(θ) cos(θ)


 , (1.34)

where H12 = H21, I is the identity matrix and the time-dependence of the elements

is omitted for clarity. The quantities introduced in the previous formula are

Ē =
H11 +H22

2
, (1.35)

δE =
√

(H22 −H11)2 + 4H2
12, (1.36)

tan(θ) =
2H12

H22 −H11

, or equivalently (1.37)

e2ı̇θ =
H11 −H22 − 2ı̇H12

H11 −H22 + 2ı̇H12

. (1.38)

With these notations it follows easily that the eigenvalues of the Hamiltonian are

E1 = Ē + δE/2 and E2 = Ē − δE/2 and the corresponding eigenvectors are

|χ1(θ)〉 = ±




cos
(

θ
2

)

− sin
(

θ
2

)


 and |χ2(θ)〉 = ±




sin
(

θ
2

)

cos
(

θ
2

)


 . (1.39)

The eigenvectors are obviously orthonormal and real-valued for real t but determined

only up to a factor of ±1.

Comparing the basis vectors between the adiabatic and diabatic bases as given

in equations (1.23) and (1.39) it follows that the transformation between these bases

is given by a matrix belonging to the representation of the SU(2) group which is

also determined up to a sign and parametrized with θ.

U(t) = ±




cos
(

θ
2

)
sin

(
θ
2

)

− sin
(

θ
2

)
cos

(
θ
2

)


 . (1.40)
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Applying these formulas explicitly to our real-symmetric and traceless Hamiltonian

given in equation (1.24) we get tan(θ) = −V (t)
α(t)

and from equations (1.33) and (1.39)

it is clear that the coupling between basis states exists even in the adiabatic basis,

it has only changed its form:

γ(t) ≡ 〈χ1(t) | χ̇2(t)〉 (1.41)

= ± θ̇
2

(1.42)

= ±V (t)α̇(t)− α(t)V̇ (t)

2 (α(t)2 + V (t)2)
. (1.43)

This is the non-adiabatic coupling that follows from the explicit time-dependence

of the Hamiltonian because it leads to the time-dependent unitary transformations

between the bases. γ(t) vanishes at the adiabatic limit. Moreover, it depends on the

relative sign of the adiabatic basis vectors given in (1.39). Now the Hamiltonian in

the adiabatic basis is

Ha(t) =



−E(t) −ı̇γ(t)
ı̇γ(t) E(t)


 , (1.44)

where E(t) =
√
α(t)2 + V (t)2 and Ei(t) = (−1)iE(t) are the adiabatic energy levels.

Note that the adiabatic levels are chosen here in a such way that E2(t) ≥ E1(t).

A state vector in the adiabatic basis can be written as

|Ψ(t)〉 = a1(t)e
−ı̇
R t
0 E1(s)ds|χ1(t)〉+ a2(t)e

−ı̇
R t
0 E2(s)ds|χ2(t)〉, (1.45)

where a1(t) and a2(t) are the probability amplitudes and exponential coefficients are

the adiabatic dynamical phases. Inserting |Ψ(t)〉 into the time-dependent Schrödinger

equation, and operating left with eı̇
R t
0 Ek(s)ds〈χk(t)|, k = 1, 2 we get the differential

equations for the amplitudes ak(t), k = 1, 2

ȧ1(t) = −γ(t)e−ı̇∆(t)a2(t), ȧ2(t) = γ(t)eı̇∆(t)a1(t), (1.46)

which follow from the orthogonality of the eigenvectors and the facts that

〈χi(t) | χ̇i(t)〉 = 0 and 〈χ2(t) | χ̇1(t)〉 = −〈χ1(t) | χ̇2(t)〉 = −γ(t) and where it is
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also defined

∆(t) =

∫ t

0

(E2(s)− E1(s)) ds. (1.47)

Now the Schrödinger equation can be given in the adiabatic basis as

ı̇




ȧ1(t)

ȧ2(t)


 =




0 −ı̇γ(t)e−ı̇∆(t)

ı̇γ(t)eı̇∆(t) 0







a1(t)

a2(t)


 . (1.48)
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2 The Landau-Zener model

Probably the most familiar and also the simplest level crossing model is the Landau-

Zener model, where the diabatic level energies vary linearly and the coupling between

the levels is constant. It was first considered in papers published by Zener [1],

Landau [2] and Stückelberg [3] as early as 1932. Although first used in inelastic

atomic collisional problems, the Landau-Zener model has been used with a wide

variety of physical phenomena over the years. The model has also been generalised

to deal with more than just two energy levels [21]. The Landau-Zener model is

defined by setting

α(t) = λt, V (t) = V, (2.1)

where λ and V are positive constants. Of course this simple model is not physically

very realistic in the sense that the energy values are not bounded and the constant

interaction between the levels lasts forever although the levels become more and more

separated. Despite these shortcomings and its simplicity, the model has proven to

be very important because usually when there is one or several isolated crossings,

one is able to linearize the energy levels near them. One more important property

of the model is that it can be solved analytically. Therefore it could also be used to

study how well some of the approximate methods discussed later in this thesis will

work.

2.1 Differential equations

The coupled first-order differential equations for the state vector elements resulting

from the time-dependent Schrödinger equation (1.22) can be further differentiated

to give two independent, second-order in time, differential equations

C̈1 + (V 2 + λ2t2 + ı̇λ)C1 = 0, (2.2)

C̈2 + (V 2 + λ2t2 − ı̇λ)C2 = 0, (2.3)
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time

energy

D1

D2
A2

A1

Figure 1. The time-dependence of the energy levels in the Landau-Zener model.
The diabatic levels are drawn with solid lines and denoted with labels D1 and D2
while adiabatic ones are drawn with dashed lines and denoted with A1 and A2.

where the time dependence has not been explicitly written out. These equations

can be cast into a solvable form by making a change of variables

z =
√

2λte−ı̇ π
4 . (2.4)

Defining further

n =
ı̇V 2

2λ
≡ ı̇

Λ

2
(2.5)

and denoting with (′) derivation respect to the new variable z we obtain the equations

C ′′2 +

(
n+

1

2
− z2

4

)
C2 = 0, (2.6)

C1 − 1

V

(
ı̇Ċ2 + λtC2

)
= 0. (2.7)

The positive parameter Λ = V 2

λ
is related to adiabaticity of the system, Λ → ∞

being the adiabatic limit while Λ → 0 is the extreme non-adiabatic limit.

The differential equation for C2 has solutions in terms of parabolic cylinder

functionsDn(z), sometimes also called Weber functions. In turn, they can be written
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with the help of confluent hypergeometric functions

1F1 (a, b; z) = 1 +
az

b
+
a(a+ 1)z

2!b(b+ 1)
+
a(a+ 1)(a+ 2)z

3!b(b+ 1)(b+ 2)
+ . . . (2.8)

as

Dn(z) = 2n/2e−z2/4

[ √
π

Γ
(

1−n
2

)1F1

(
−n

2
,
1

2
;
z2

2

)
−
√

2πz

Γ
(−n

2

)1F1

(
1− n

2
,
3

2
;
z2

2

)]
.

(2.9)

The description and numerous properties of the functions used here can be found

for example in [22] and [23]. The differential equation (2.6) remains unaltered if the

solution Dn(z) is replaced with Dn(−z), D−n−1(ı̇z) and D−n−1(−ı̇z), so all these

functions are also solutions. They are actually linearly independent solutions, so

taking the initial conditions to be arbitrary, the general solution can be written as

C2(z) = anDn(z) + bnDn(−z), (2.10)

where an, bn ∈ C.

2.2 Asymptotic expansions and the Stokes phenomenon

Being interested with the long-time behaviour of the solutions it is useful to study

the asymptotic expansions of the parabolic cylinder functions when |z| is large. We

say that two functions, say f(z) and g(z), are asymptotic to each other as z tends to

z0 if

lim
z→z0

f(z)

g(z)
= 1. (2.11)

Then the asymptotic relation is denoted as

f(z) ∼ g(z), z → z0. (2.12)

Generalising the definition of the asymptotical equivalence in (2.11) to complex

functions one must take into account that some paths in the complex plane may give

nonunique limits. Therefore, the asymptotic expansion depends on the argument of
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the complex variable z rather than being unique. The asymptotic expansions for

parabolic cylinder functions with fixed n, |z| is large and |z| À |n| are [23]

Dn(z) ∼ e−z2/4zn

(
1− n(n− 1)

2z2
+
n(n− 1)(n− 2)(n− 3)

2 · 4z4
− . . .

)
, (2.13)

Dn(z) ∼ e−z2/4zn

(
1− n(n− 1)

2z2
+
n(n− 1)(n− 2)(n− 3)

2 · 4z4
− . . .

)

−
√

2π

Γ(−n)
enπı̇ez2/4z−n−1

(
1 +

(n+ 1)(n+ 2)

2z2

+
(n+ 1)(n+ 2)(n+ 3)(n+ 4)

2 · 4z4
+ . . ., (2.14)

Dn(z) ∼ e−z2/4zn

(
1− n(n− 1)

2z2
+
n(n− 1)(n− 2)(n− 3)

2 · 4z4
− . . .

)

−
√

2π

Γ(−n)
e−nπı̇ez2/4z−n−1

(
1 +

(n+ 1)(n+ 2)

2z2

+
(n+ 1)(n+ 2)(n+ 3)(n+ 4)

2 · 4z4
+ . . ., (2.15)

when |arg(z)| < 3π
4
, π

4
< arg(z) < 5π

4
and −5π

4
< arg(z) < −π

4
, respectively.

Introducing the asymptotic expansions, the complex plane is now divided into

different sectors by the domains of their validity in a such way that the limit (2.11)

defining the asymptotic expansion is well defined on the sectors. Each sector has its

own form of the asymptotic expansion of the function and the asymptotic expansion

of the function is then a combination of these different terms. The term that is valid

in a certain sector is said to be dominant in that sector while the other term is called

subdominant, giving negligible contribution in the interior of that sector. Assume

that f(z) ∼ g(z) in some sector. We can write explicitly f(z) = g(z)+ [f(z)− g(z)]

and the second term is now just the subdominant one which can be neglected in

the asymptotic relation. The edge of a sector is known as a Stokes line. When

approaching this line, the subdominant term grows in magnitude comparable to

the dominant part and can no longer be ignored. The leading behaviour of the

asymptotic expansions becomes actually purely oscillatory at the Stokes line. Going

over the Stokes line, the different terms in the asymptotic expansion swap their

dominant and subdominant identities. This is known as the Stokes phenomenon [24].
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The lines where the leading behaviour is purely real and therefore most unequal,

exponentially increasing or decreasing, are called anti-Stokes lines.

The Stokes phenomenon is a purely mathematical concept but it is also physically

relevant. The importance of the phenomenon can be illustrated with the help of

the parabolic cylinder functions although the phenomenon is, of course, in no way

confined to them. The Stokes phenomenon appears when there is an exponential

function present in the asymptotic approximation [24]. From the equation (2.6)

it is seen that the two controlling factors of the leading behaviour of the solution

when |z| is large compared to n are ez2/4 and e−z2/4. These functions are oscillatory

when arg(z) = ±π/4 or arg(z) = ±3π/4, defining the Stokes lines which in this

case correspond to a π/4-rotation of the coordinate axes. Crossing these lines, the

sign of Re(±z2/4) changes and the dominant and subdominant status of the terms is

swapped. So now in our case, the increase in physical time t from the initial negative

infinity corresponds to z approaching from the complex infinity to the origin on a

Stokes line with angle 3π/4, so that the second asymptotic expansion (2.14) is valid.

Once it reaches the origin, the physical time becomes positive and now its increase

corresponds to z receding from the origin on a line with arg(z) = −π/4. Also at

the origin, it crosses a Stokes line and the term that was earlier dominant becomes

subdominant and the asymptotic expansion that is valid is now the equation (2.13).

This is important because if the dominant part would be the same as initially then

lim
t→−∞

|Ci(t)| = lim
t→∞

|Ci(t)|, (2.16)

and there would not be any transitions. Therefore, the existence of the Stokes lines

can be seen as a condition for transitions to happen.

2.3 Solution by Zener

The results Clarence Zener originally obtained in [1] are reviewed here shortly. He

considered a collision of two atoms with constant relative velocity and with an



24

assumption that the separation between the colliding partners is a known function

of time. Moreover, he assumed that the transition region is so small that the energy

separation of the two states is a linear function of time and the coupling between

the levels could be regarded independent of time. This leads to (2.1) and of course

to (2.6) and (2.7). Zener simplified the problem further by assuming the initial

conditions 


| C1(−∞) | = 1,

C2(−∞) = 0,

where the rather obvious notation Ci(±∞) = limt→±∞Ci(t), i = 1, 2, is intro-

duced. The same notation for the asymptotic amplitudes is also frequently used in

what follows. The only solution satisfying these initial conditions is

C2(z) = cnD−n−1(−ı̇z), (2.17)

where cn ∈ C. This is realised from the fact that Dn(y) vanishes for infinite y when

arg(y) < 3π/4 by Dn(y) ∼ exp(−y2/4) and from that arg(−ı̇z) = π/4 is in the

corresponding sector as t → −∞. The coefficient can be determined by putting

(2.17) into (2.7) and using the initial condition for C1 ending up with equation

V = lim
t→−∞

| cnḊ−n−1(−ı̇z) |, (2.18)

where it is possible to solve the modulus of the coefficient cn. We choose to solve

this a little bit differently.

C1(z) can be solved from the equation (2.7) and using the solution obtained for

C2(z):

C1(z) =
1

V

(
ı̇Ċ2(t) + λtC2(t)

)
(2.19)

=

√
2λ

V
eı̇ π

4

(
C
′
2(z) +

z

2
C2(z)

)
(2.20)

=

√
2λ

V
eı̇ π

4 cn

(
D
′
−n−1(−ı̇z) +

z

2
D−n−1(−ı̇z)

)
. (2.21)
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The diabatic energy levels cross at t = 0. We can calculate the amplitudes Ci(0), i =

1, 2 as follows:

C1(0) =

√
2λ

V
eı̇ π

4 cnD
′
−n−1(0), (2.22)

C2(0) = cnD−n−1(0). (2.23)

Now, D−n−1(0) and D′
−n−1(0) can be calculated by using the standard form of the

solutions to the parabolic cylinder equation and the duplication formula for gamma

function Γ(z) [22]

Γ(z)Γ(z +
1

2
) = 21−2z

√
πΓ(2z), (2.24)

resulting in

D−n−1(0) = −
√

2
Γ(−n)

Γ
(

1
2
− n

2

)2
n
2 sin

(πn
2

)
, (2.25)

D
′
−n−1(0) = 2ı̇

Γ(−n)

Γ
(−n

2

)2
n
2 cos

(πn
2

)
. (2.26)

By putting them back into equations (2.22) and (2.23) we can determine the absolute

squares of the amplitudes. Since n is purely imaginary, Γ(n)∗ = Γ(n∗) = Γ(−n) and

by applying formulas [22]

Γ(n)Γ(−n) = − π

n sin (nπ)
, (2.27)

Γ

(
1

2
− n

2

)
Γ

(
1

2
+
n

2

)
=

π

cos
(

πn
2

) , (2.28)

we find
(
n = ı̇Λ

2

)

|C1(0)|2 =
2|cn|2

Λ
cosh

(
Λπ

4

)
, (2.29)

|C2(0)|2 =
2|cn|2

Λ
sinh

(
Λπ

4

)
. (2.30)

Because these are probabilities they have to sum up to unity and the coefficient |cn|
is now easily found to be

|cn| =
√

Λ

2
e−

Λπ
8 . (2.31)
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The probabilities at the crossing are now

P1(0) =
1

2

(
1 + e−

Λπ
8

)
, (2.32)

P2(0) =
1

2

(
1− e−

Λπ
8

)
. (2.33)

The asymptotic probabilities P1 = 1− P2 are found by first using the identity

D
′
−n−1(−ı̇z) = ı̇D−n(−ı̇z)− z

2
D−n−1(−ı̇z) (2.34)

to simplify the equation (2.21) into

C1(z) =

√
2λ

V
eı̇ 3π

4 cnD−n(−ı̇z), (2.35)

and then as t→∞ we have−ı̇z = re−ı̇ 3π
4 with r →∞ and we can use the asymptotic

value (2.15)

D−n

(
re−ı̇ 3π

4

)
∼ e−ı̇ r2

4

(
e−ı̇ 3π

4 r
)−n

−
√

2π

Γ(n)
eı̇ r2

4 eı̇ 3π
4

(
eı̇ π

4 r
)n
r−1, (2.36)

where only the first term remains and the value of P1 is found to be

P1 =
2

Λ
|cn|2e− 3π

4

= e−πΛ, (2.37)

and for the other diabatic state

P2 = 1− e−πΛ. (2.38)

Initially, the system was in |+〉 which coincides with |χ1(t)〉 at the initial moment.

In the adiabatic limit, Λ → ∞, the final asymptotic populations are P2 = 1 and

P1 = 0. There is no contradiction because corresponding level labels between the

diabatic and adiabatic levels are swapped at the crossing and |−〉 coincides with

|χ1(t)〉 as t→ +∞.



27

2.4 The S-matrix

In order to determine the asymptotic populations under general initial conditions,

it is useful to introduce the S-matrix, the scattering matrix which maps the initial

populations to the final ones. Because the total probability must be conserved the

matrix is unitary. It is defined as


C2(+∞)

C1(+∞)


 =




S1 S2

−S∗2 S∗1







C1(−∞)

C2(−∞)


 . (2.39)

The S -matrix as defined is unitary when |S1|2 + |S2|2 = 1. It should be noted that

the S -matrix maps the asymptotic populations according to their energies and in

the Landau-Zener model the level with initially higher energy value becomes the

lower one during the process, so the initial and final populations swap their places

in the equation (2.39). The elements of the S -matrix are now calculated based on

the exact solution (2.10). Calculations are similar to what is found in the reference

[25].

As discussed, when t −→ −∞ we have arg(z) = 3π/4 and arg(−z) = −π/4
so that their asymptotic expansions are (2.14) and (2.13), respectively. Using the

general solution given in (2.10), the given asymptotic expansions and also making

use of the polar form for the complex number z = re
ı̇3π
4 , we get

C2(−∞) = e−z2/4 [anz
n + bn(−z)n] (2.40)

= rne
ı̇r2

4 eı̇ 3πn
4

[
an + bne

−ı̇πn
]

(2.41)

= eı̇( 3πn
4

+Φ) [
an + bne

−ı̇πn
]
, (2.42)

where the last step is obtained using (2.4), where it follows that rn = (2λ)
n
2 |t|n and

defining Φ as

Φ ≡ lim
t→−∞

[
ln(rneı̇ r2

4 )
]
. (2.43)

It follows that this phase factor actually tends to infinity:

Φ = lim
t→−∞

[
λ

2
|t|2 − ı̇

n

2
ln

(
2λ|t|2)

]
. (2.44)
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The amplitude C1(−∞) is obtained in a similar fashion from the equation (2.7),

using the identity [23]

D′
n(z) = nDn−1(z)− z

2
Dn(z), (2.45)

to obtain the result

C1(−∞) = an
2
√
πλ

V Γ(−n)
eı̇(πn

4
− 3π

4
−Φ). (2.46)

When t→ +∞ the arguments of the complex variables are swapped, arg(z) = −π/4
and arg(z) = 3π/4 and now we get

C2(∞) = eı̇( 3πn
4

+Φ) [
ane

−ı̇πn + bn
]
. (2.47)

This is all that is needed to determine the S-matrix of equation (2.39) because

the previous formula for C2(∞) can be written in terms of the asymptotic initial

populations. This is realised by defining

R = e−
πΛ
2 (2.48)

and

χ =
3π

4
− arg

[
Γ

(
ı̇
Λ

2

)]
+ 2Φ, (2.49)

where the previously defined parameter Λ = V 2/λ is used and we can finally write

C2(∞) =
√

1−R2eı̇χC1(−∞) +RC2(−∞), (2.50)

from where the matrix elements S1 and S2 can be read out and then to obtain the

other two elements is straightforward. Concluding,



S1 =

√
1−R2eı̇χ

S2 = R

. (2.51)

It is easy to see that with the initial conditions (2.3), the result of Zener is ob-

tained. Although Zener discussed his model in the context of a collisional process

where the parameter controlling the energy level separation was the distance be-

tween colliding particles, a known function or equivalently a classical trajectory, he
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neglected the fact that in a collisional process the crossing actually happens twice

if the minimum distance in the process is smaller than the crossing distance. He

therefore also neglected the coherence effects that result from this. A single crossing

case happens only when the crossing distance is equal to a classical turning point

of a collision and the validity of the model near the turning point is actually being

questioned [26]. However, the Landau-Zener model has been proven to be a very

successful one in practise.
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3 Parabolic model

The usual procedure when two crossings are largely separated is to linearize the en-

ergy levels and treat the crossings as independent ones and then apply the Landau-

Zener model twice. However, there are situations where the idea of separate level

crossings does not work [28]. Next step after the linear model could be to consider

models with parabolic time dependence of the energy levels and with constant cou-

pling between them. We shall call this model as the parabolic model or t2 model. It

can be used in a similar way to approximate more complex systems, covering also

cases where the linearization fails, but it is a very interesting model also by itself.

Just like the Landau-Zener model, the parabolic model has been introduced

in the context of slow atomic collisions [31, 32, 33] but can, of course, be used

also in many other physical situations. The double crossing character mentioned

already in the previous section is present in the parabolic model and it gives rise to

interference effects due to the phase difference of the state vector that is accumulated

between the crossings. Therefore it has also been studied in the context of molecular

interferometry [29] and in a proposal of making a multiarm interferometer using a

spinor Bose-Einstein condensate [30]. The analogy to quantum optical beam-splitter

interferometers is clear, here the crossings just take the role of beam-splitters.

3.1 The model

The parabolic model is defined as a model where the diabatic energy levels, instead

of varying linearly in time as in the Landau-Zener model, are parabolic with respect

to time. The coupling between the diabatic levels is still kept constant. This is done

by setting the diabatic Hamiltonian matrix elements to be



α(t) = at2 − b

V (t) = v

, (3.1)
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where a and v positive parameters and b is a parameter which can be either positive,

negative or zero. This leads to three different cases: if b > 0, we have a double

crossing case for diabatic energy levels, a single crossing when b = 0 and for values

b < 0, there is no crossing and this is a tunnelling case. Naturally, also in the

parabolic model, the adiabatic energy levels have avoided crossings in all those

cases. The eigenvalues of the parabolic model Hamiltonian are

E±(t) = ±
√

(at2 − b)2 + v2. (3.2)

The non-adiabatic coupling is now

γ(t) = ± avt

(at2 − b)2 + v2
. (3.3)

The coupling is antisymmetric with respect to time, that is γ(−t) = −γ(t), and it

is interesting to note that the magnitude of the non-adiabatic coupling has got two

peaks regardless of b, that is, the double crossing character of the model does not

vanish although the actual diabatic crossings do. These all are illustrated in the

figure 2 for different cases.

The double crossing character can be understood by studying the adiabatic en-

ergy levels and their crossings. Although physically, that is when time is real, there

are only two avoided crossings for the adiabatic energy levels, mathematically the

equation E(t) = 0 of course has solutions when time t is taken to be a complex vari-

able. Such points tc ∈ C are called complex crossing points. They will be discussed

in detail in the context of the DDP method where they play a crucial role. For

future purposes the complex crossing points for the parabolic model are given here

by the equation

tc = ±
√
b± ı̇v

a
, (3.4)

where one must take into account that b may be positive or negative. The complex

crossing points are situated symmetrically with respect to the real and imaginary

axes.
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Figure 2. The three different cases in the parabolic model, from top to bottom:
b > 0, b = 0, b < 0. On the left are the time dependencies of the energy levels
and on the right are the corresponding level couplings. The diabatic quantities are
marked with solid lines and the adiabatic quantities with dashed lines.

Also worth noticing is that when the time of the evolution is taken to be sym-

metric, the evolution for the parabolic model is actually cyclic in the sense that

H(+∞) = H(−∞). In the adiabatic limit, this would give rise to the Berry phase

which for real-valued state vectors is just equal to ±1 [36].

With three independent parameters, the adiabaticity parameter is not so evident.

Also otherwise it is useful to use the scaling τ = vt for time, so that the number

of parameters reduces to two: ε ≡ a
v3 and µ ≡ b

v
. This corresponds to setting the

diabatic coupling equal to unity and just replacing the parameters a and b with

ε and µ, respectively. This scaling is used in what follows. In the reference [28]
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√
ε is recognised as the adiabaticity parameter in the sense that

√
ε → 0 is the

adiabatic limit where the transition probability between the adiabatic states goes

to zero. However, the situation here is also different from the Landau-Zener model

because now the diabatic states do not swap their status during the evolution. This

means that, for example, the diabatic state that corresponds to the lower adiabatic

state initially corresponds to that also in the final time. Therefore, the behaviour is

similar in both the large and small
√
ε limit, that is, the transition probability for

the diabatic states goes to zero in both limits as we shall see.

The diabatic energy levels cross the first time at τ = −
√
µ/ε ≡ τ

(1)
d and the

second time at τ =
√

µ
ε
≡ τ

(2)
d , so the crossings are symmetrical with respect to

the temporal zero point and the time interval between the crossings is τs = 2
√

µ
ε
.

Assume that the system is initially in the lower basis state |−〉 = |χ1(−∞)〉. When

one calculates the final state of the system in the parabolic model, that is, the

asymptotic probabilities for the different basis states, it is seen that an interference

effect is present. In certain parameter regions the transition probability depends

sensitively on the parameters of the system. The interference emerges during the

time interval between the crossings because the state of the system is then split into

two partial waves which correspond to different "energy trajectories", as illustrated

in the figure 3. The final state is then a superposition state of two partial waves

which have traversed different paths between the crossings and their phases may

therefore be different. The dynamical phase that is accumulated by the state vector

of the system in the ith level with energy Ei during the time interval between τ0

and τ1 is

φi =

∫ τ1

τ0

Ei(τ
′
)dτ

′
. (3.5)

It dependes only on the energy and the time interval, so the dynamical phases that

the two partial waves accumulate between the crossings are in general different. If

the change of the phase between the crossings is large, the interference effects are
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negligibly small when averaging over energy and instead of adding up the probability

amplitudes to obtain the transition probability, the probabilities of the different

versions of the transitions become additive [31].

In the diabatic basis the dynamical phase obtained by the level 1 during τs is

φ1 =

∫ √
µ
ε

−
√

µ
ε

(εx2 − µ)dx (3.6)

= −4µ3/2

3
√
ε
, (3.7)

and due to symmetry, for level 2 this is just φ2 = −φ1 ≡ φ so that the phase

difference accumulated is σd ≡ φ2 − φ1 = 2φ = 8µ3/2

3
√

ε
. For adiabatic states the

difference of the dynamical phases acquired is now

σa = 2

∫ √
µ/ε

−
√

µ/ε

√
(εx2 − µ)2 + 1dx.

=
2

3

√
µ

ε
{1 + 2

√
µ+ i

µ
[µE (ϕ|k)− iF (ϕ|k)]}, (3.8)

where F (ϕ|k) and E(ϕ|k) are the incomplete elliptic integrals of the first and sec-

ond kind, respectively. They are defined as F (ϕ|k) =
∫ ϕ

0
dθ1/

√
1− k sin2(θ) and

E(ϕ|k) =
∫ ϕ

0
dθ

√
1− k sin2(θ) with the variables k = arcsin

(√
µ

µ−i

)
and ϕ = µ−i

µ+i
.

When µ gets large, which in our scaling corresponds to the case when separation

of the diabatic energy levels near the temporal zero point is large compared to the

coupling between the levels, the adiabatic phase difference tends to the same value

as the diabatic case.
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Figure 3. The two different trajectories, A and B, for a system initially in the low-
energy level: A corresponds to the trajectory I-II-IV and B to I-III-IV. Diabatic
levels are again drawn with solid line and the adiabatic levels are dashed.

4 Approximative methods

Unlike for the Landau-Zener model, the analytic solution for the parabolic model is

not known. Therefore we are resorted to approximations and numerical methods.

The rest of this thesis is devoted to these studies. Although with modern computers,

the numerical simulations offer a strong alternative for more conventional analytic

solution methods, even they become tediously hard in some parameter regions. The

numerical method used is discussed in more detail in the next chapter.

The objective here is to find approximations that would cover the whole pa-

rameter range or at least a considerable amount of it so that one would get good

approximations of the solutions fairly easily with all parameters. We consider four

different approximation methods and their applicability, namely the perturbation

series, the independent crossing approximation and the original and modified ver-

sion of the DDP method. We find the quantity P1 ≡ |C1(∞)| = |a2(∞)| in each of
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the approximations with the initial conditions

|C2(−∞)| = |a1(−∞)| = 1, C1(−∞) = a2(−∞) = 0, (4.1)

and compare the results with the numerical ones in the next section.

4.1 The independent crossing approximation

As discussed, many crossing models can be reduced to the Landau-Zener model.

For parabolic model this is valid when the two crossings are so well separated that

one can consider them as independent, hence the name for the approximation. The

condition for this to be true is that the time interval between the two crossings, ts, is

considerably larger than the time scale of a single Landau-Zener transition denoted

by tz, which is for the limiting cases of adiabatic and diabatic approximations given

by [34]

tz =
V

λ
, when Λ À 1,

tz =

√
~
λ
, when Λ ¿ 1. (4.2)

The linearisation is done in the usual way by expanding the diabatic energy

level into Taylor series at τ = τd = ±√
µ
ε
and keeping the linear terms so that the

truncated series forms a good approximation of the level near τd. This gives

α(τ) ≈ α(±τd) + α̇(τ)|τ=±τd
(τ ∓ τd) (4.3)

= 2
√
εµτ ∓ 2µ, (4.4)

which gives an effective λ-term for the parabolic model,

λeff = 2
√
εµ. (4.5)

It follows that now the linearisation condition τz ¿ τs would correspond to that

in the adiabatic limit 1
4
¿ µ would have to hold while in the diabatic limit the



37

condition requires that µ3/ε À 1/256. If these do not hold, it means that the

crossings overlap each other and they can not be considered as two separate events.

When calculating the asymptotic populations within the independent crossing

approximation, the S -matrix of equation (2.39) is applied twice and the dynamical

phase difference and the sign changes of the basis vectors must be taken into account:

|ψ(+∞)〉 = SAS|ψ(−∞)〉. (4.6)

The matrixA, which gives the change of the dynamical phases between the crossings,

is different for different bases. It is given by

A =




eı̇φ 0

0 e−ı̇φ


 . (4.7)

The S -matrices in the previous asymptotic formula are otherwise the same for both

the adiabatic and diabatic basis as given by the equation (2.39) but the phase term

obtained in the adiabatic basis is [9, 28, 32]

χ =
π

4
+

Λ

2
ln

(
Λ

2e

)
+ arg

[
Γ

(
1− ı̇Λ

2

)]
. (4.8)

The phase term χ is a monotonically decreasing function of Λ having the values

between π/4 and 0 and therefore being small in the adiabatic region of the parameter

space.

The straightforward application of the equation (4.6) with initial conditions (4.1)

gives the result of the independent crossings approximation as

PLZ
1 = 4e−πΛeff

(
1− e−πΛeff

)
sin2(χ+ σ/2), (4.9)

where it is defined similarly to the Landau-Zener model that Λeff ≡ V 2

λeff
= 1

2
√

εµ
.

From the result (4.9) the interference effect is readily seen: there exists both an

exponentially decaying part as well as a sine term which depends on the dynamical

phases and the phase term χ.
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4.2 Perturbation method

The traditional way of solving problems approximately is to make use of perturba-

tion theoretical methods in the weak coupling limit, where the general idea is that

one obtains the solution for the real, more complicated, problem with the help of

some simpler problem whose solutions are known. One considers a Hamiltonian for

the real system which is written as the sum of the Hamiltonian for the simple unper-

turbed system and a relatively small perturbation term with some suitably chosen

parameter which measures the strength of the perturbation. Then by continuity it is

expected that one obtains the solution for the real problem as a series expansion in

a such way that when the parameter vanishes, the real perturbed problem reduces

to the unperturbed one and a good approximation would be obtained by considering

a few first term of the series [35].

In quantum mechanics, Born approximation is most familiar in the context of

scattering theory. Let ṽ(r) be the interaction potential in the scattering process

and ψ0(t, r) be the state of the system in the absence of the interaction potential.

Now the solution ψ(t, r) to the Schrödinger equation can be obtained formally as

an integral equation:

ψ(t, r) = ψ0(t, r) +

∫
G(t, r, r′)ṽ(r′, t′)ψ(t′, r′)dr′, (4.10)

where G(t, r, r′) is the propagator. Now ψ(t, r) is on both sides of the equation, but

it can be solved iteratively. The result is a series called Born series and the (first)

Born approximation consists of considering only the first term of the series [11, 35].

Of course in our case we study only the time-dependence of the system. By

taking the coupling term to the be a small perturbation we end up with a similar

iterative integral equation scheme. In the adiabatic basis it follows from the initial

conditions (4.1) and from the equation (1.48) that the Born approximation now
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yields

|a2(∞)|2 =

∣∣∣∣
∫ ∞

−∞
γ(t)eı̇∆(t)dt

∣∣∣∣
2

. (4.11)

Because the coupling is weak, it can not change the amplitudes substantially from

the initial ones and we can take in the first Born approximation a1(t) = 1. However,

as indicated in [25, 27] the validity and usefulness of the Born approximation in

adiabatic basis is questionable. In the diabatic basis it gives reasonably good results

in a suitable parameter region as will be seen for the parabolic model.

Now in the diabatic basis when the diabatic coupling v is small we consider it to

be a small perturbation for an unperturbed "free atom" whose energy levels are not

coupled. In the scaling used, the relative smallness of the perturbation corresponds

to ε and µ being large. In the diabatic basis, the Born approximation gives

PBorn
1 ≡


∫ ∞

−∞
V (τ) exp

[
−2ı̇

∫ τ

α(τ ′)dτ ′
]
dτ


2

(4.12)

=


∫ ∞

−∞
exp

[
−2ı̇

∫ τ

(ετ ′2 − µ)dτ ′
]
dτ


2

(4.13)

=


∫ ∞

−∞
cos

(
2ετ 3

3
− 2µτ

)
dτ


2

(4.14)

=


2π
3
√

2ε
Ai

[
− 2µ

3
√

2ε

]
2

, (4.15)

where the last steps follow by writing the exponent term as eı̇x = cos(x) + ı̇ sin(x)

and the sine function is odd so its integral vanishes. The integral that is then left

is just the Airy function Ai[·] [22]. The expression can be further simplified and

approximated with large µ,

PBorn
1 = π2

(
4

ε

)2/3
(
Ai

[
−µ

(
4

ε

)1/3
])2

(4.16)

∼ π√
2ε|µ| exp

[
−1

3

√
8|µ|3
ε

]
, µ < 0 (4.17)

∼ 2π√
εµ

sin2

(√
4µ3

ε
+
π

4

)
, µ > 0. (4.18)
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4.3 DDP method

In the early 1960s, A. M. Dykhne considered the problem of calculating transition

probabilities for discrete spectrum states of a system evolving under adiabatic con-

ditions [13, 14]. The treatment was quite general, the main assumptions of Dykhne

were that the Hamiltonian was analytic in time and that the transition was localised

near the crossing points of the adiabatic energies where it would be sufficient to

consider only the leading terms of the adiabatic energies and non-adiabatic coupling

between the states. As discussed, these zero points lie in general in the complex

time plane. This resulted in a well-known approximative formula for transition

probability P :

P = exp

[
−2Im

∫ tc

0

(E2(s)− E1(s))ds

]
. (4.19)

The Dykhne formula, also often called Landau-Dykhne formula, is in general a good

approximation when the crossings are located far from the real axis. This is true

when the separation of the energy levels or the time scale on which the Hamiltonian

is changing is large [36]. Indeed, the rigorous proof of the Dykhne formula was given

by Davis and Pechukas in the adiabatic limit [15]. Of course, the formula may give

good results also in some situations beyond the adiabatic limit. For example, it can

be shown to give the exact result for the Landau-Zener model [36].

Davis and Pechukas also made the idea of Dykhne more clear with a simple

formulation in terms of complex contour integration. Therefore this approximation

method is often called the Dykhne-Davis-Pechukas method or more concisely as the

DDP method.

The result (4.19) is rather non-intuitive in the sense that it depends only on

the eigenenergies of the states and does not contain the non-adiabatic coupling that

causes the transition. Moreover, it may seem somewhat paradoxical that one can

use the adiabatic theorem in the complex plane to get the non-adiabatic transitions

in the real-line [37]. To clarify these things, the DDP method is discussed here in
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detail, following mostly the formulation of Davis and Pechukas in [15] and then it is

applied to the parabolic model.

Davis and Pechukas used the adiabatic basis in their treatise and we use here

the notation that was introduced in the context of the change of basis in the section

1.4 with the exception that we choose to write explicitly in the place of the reduced

Planck constant ~ a parameter λ in the equations. For example, the wavefunction

in the adiabatic basis is written as

|Ψ(t)〉 = a1(t)e
−ı̇
R t
0 E1(s)ds/λ|χ1(t)〉+ a2(t)e

−ı̇
R t
0 E2(s)ds/λ|χ2(t)〉. (4.20)

This is because of the fact that when the adiabaticity parameter, now λ, appears just

as a scaling of time λt ↪→ t, the parameter takes the place of ~, so that the adiabatic

limit λ→ 0 is equivalent for taking the limit ~→ 0. Davis and Pechukas therefore

identify the adiabatic and the semiclassical limit to be the same although strictly

speaking this is not always the case despite the scaling argument. The Hamiltonian

still conceals an ~-dependence which is different for different cases [38]. Also, the

differential equations for the amplitudes a1(t) and a2(t) are now given similarly as

in the equation (1.46):

ȧ1 = −γe−ı̇∆/λa2, ȧ2 = γeı̇∆/λa1, (4.21)

where the γ(t) is the non-adiabatic coupling, and ∆(t) is as defined in the equation

(1.47) and we choose E2(t) > E1(t) when t is real.

4.3.1 Analytic behaviour of the eigenvalues

It was assumed in the treatise of the problem by Davis and Pechukas that the

diabatic Hamiltonian H(t) is a symmetric 2 × 2-matrix, real valued for real t and

that it is analytic and single valued in t throughout a region of the complex plane

from the real axis to the complex crossing point which is closest to the real axis.

The exact specification of this region is done by requiring that it contains a certain
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level line which is to be discussed soon. The imposed assumptions are equivalent to

that the elements of the matrix fulfill these conditions.

The analyticity allows one to use the Cauchy integral theorem which states that

for a function f(z), which is analytic in a region of the complex plane containing a

closed curve C, the integration along any such curve will always yield

∮

C
f(z)dz = 0. (4.22)

Therefore, one can choose a contour, denoting it with Cc, on the complex plane

so that if it is connected to the real axis at the both ends of the real line and it

lies in the region where the function was assumed to be analytic, one can solve an

integration with respect to real time with the help of integration along the contour

C = Cr + Cc where Cr denotes the real axis, so that

∫

Cr

f(z)dz = −
∫

Cc

f(z)dz (4.23)

=

∫

−Cc

f(z)dz. (4.24)

The curve −Cc is the originally chosen curve Cc but traversed in the opposite direc-

tion. We wish to solve the time evolution of the system by integrating along the

level lines of the eigenvalues which are continued analytically to the complex plane,

as discussed below. Of course, when modifying the integration path to the complex

plane, one loses the detailed information about the time evolution of the system in

the real line. That is, the method is only used to solve the asymptotic evolution of

the system.

The separation of the energy eigenvalues is now

δE(t) =
√

(H11 −H22)2 + 4H2
12, (4.25)

so that crossing points tc are the zero points of this equation:

H11(tc)−H22(tc) = ±2ı̇H12(tc). (4.26)
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Therefore the number of complex crossing points in general is even. In the region

where the Hamiltonian was assumed to be analytic and single valued, all the pos-

sible singularities of the eigenvalues are the branch points that follow from square

root term in the eigenvalue function. Moreover, the right and left hand sides of

the equation (4.26) do not in general both vanish at the crossing point and the

derivative of δE(t)2 is in general non-zero at the crossing. Then one can write in

the neighbourhood of tc

δE(t) = A
√
t− tc [1 + β(t)(t− tc)] , (4.27)

where A is constant and β(t) is analytic and single-valued around the crossing point.

Now going around tc once δE(t) changes to −δE(t), due to the fact that the complex

square root function present in the equation (4.27) is not a single-valued function

but has a branch point at tc, and therefore the eigenvalues exchange their labels. If

however, at least the first derivative of δE(t)2 is zero at tc, (4.26) would vanish at tc

as (t−tc)n
2 for some n. If it is odd, we still have a branch point at tc. Otherwise there

is no branch point and the eigenvalues cross without the exchange of the labels. For

our purposes it is sufficient to have n = 1.

The structure of the complex crossing points could be quite intricate in general.

However, the one closest to the real axis dominates the non-adiabatic transition

so it is sufficient to consider only that one. It is assumed that the crossing point

lies off the real axis at all times so that there is no eigenvalue crossing, not even

at the endpoints t → ±∞. Moreover, as discussed, the crossing points are located

symmetrically with respect to imaginary axis and we choose to consider the one that

is on the upper half of the complex plane. There can also be many crossing points

equally far from the real axis but at the time being we assume that only one such

point exists and generalize the method for the case of several points later.

A level line is defined as a curve on the complex plane for which Im∆(t) = C,

where C is constant. As we are considering only the upper half of the complex plane,
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C is positive. The level lines near the real axis can be computed approximatively

by writing t = x+ ı̇y and then approximating the equation (1.47) for small y as

∆(x+ ı̇y) ≈
∫ x

0

δE(s)ds+ ı̇yδE(x). (4.28)

Now the equation for the level lines with small C reads

y(x) ≈ C/δE(x). (4.29)

The eigenvalues are real always when t is real, so then C = 0 and the real line is also

a level line. When constructing the other level lines by increasing C one eventually

finds a value where the level line goes through the crossing point tc nearest to the

real line so that Im∆(tc) is smallest. From equation (4.27) it follows that near tc

we have

∆(t) ≈ ∆(tc) +
2A

3
(t− tc)

3
2 (4.30)

and the level line that passes the crossing point will split at tc into three different

lines of constant Im∆(t) with 2π/3 angles between them.

The function θ(t) is singular at tc because from its definition in the equation

(1.38) and from the equations (4.25) and (4.27) it follows that when t tends to tc we

have

e2ı̇θ ∼ δE(t)±2 ∼ (t− tc)
±1, (4.31)

and
θ̇(t)

2
∼ ± 1

4ı̇(t− tc)
. (4.32)

The function θ̇(t) is analytic when t 6= tc so by fixing the sign of the adiabatic basis

vectors we have in the neighborhood of the crossing point

γ(t) =
1

4ı̇(t− tc)
+ η(t), (4.33)

where the function η(t) is analytic at tc. It is seen from this that the leading term of

the non-adiabatic coupling has a simple pole at tc and the residue is independent of
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Figure 4. A few of the level lines for Im∆(t) in the upper half of the complex plane
in the case of a single crossing as in the Landau-Zener model.

the form of the Hamiltonian. This explains the non-intuitive feature of the Dykhne

formula because it shall be shown here that in the adiabatic limit all the contribution

to the calculations comes from the vicinity of the crossing point. So the Dykhne

formula does not imply that the non-adiabatic coupling does not matter but that

the leading term of the coupling is same for all cases.

4.3.2 Crossing point dominance

If the non-adiabatic coupling γ(t) goes to zero when |t| → ∞ the integration path

can be modified from the real line to the level line which passes the complex crossing

point except that the crossing point itself must be circled from below along an arc

which satisfies |t − tc| = Cλ2/3 in order to avoid the branch point tc. The integral

is split into three parts: the first part is the integration from the left end of the

contour along the level line to a point t− (see fig. 5), the center part is from t−

to t+ which also includes the detour below tc, and the third part is from t+ to the

right end of the contour. It is now shown that only the center one of the three parts

contribute to the integral in the adiabatic limit. We slightly redefine the amplitudes
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of the vectors in the adiabatic basis as

ã2 = e−ı̇∆c/λa2, ã1 = a1, (4.34)

where ∆(tc) ≡ ∆c. The differential equations (4.21) are now

˙̃a2 = γeı̇(∆−∆c)/λã1, ˙̃a1 = −γe−ı̇(∆−∆c)/λã2. (4.35)

This arrangement ensures that the exponentials are pure phase factors along the

level line which passes tc, that is, Im (∆−∆c) = 0. The integral solutions to the

equations (4.35) are obtained by partial integration:

ã2(t, λ) = ã2(−∞) +

∫ t

−∞
dsγeı̇(∆−∆c)/λã1

= ã2(−∞) + λγ
eı̇(∆−∆c)/λ

ı̇δE
ã1

+ ı̇λ

∫ t

−∞
ds

( γ

δE

)′
eı̇(∆−∆c)/λã1 − ı̇λ

∫ t

−∞
ds

(
γ2

δE

)
eı̇(∆−∆c)/λã2, (4.36)

ã1(t, λ) = ã1(−∞)−
∫ t

−∞
dsγe−ı̇(∆−∆c)/λã2

= ã1(−∞) + λγ
e−ı̇(∆−∆c)/λ

ı̇δE
ã2

+ ı̇λ

∫ t

−∞
ds

( γ

δE

)
e−ı̇(∆−∆c)/λã2 + ı̇λ

∫ t

−∞
ds

(
γ2

δE

)
e−ı̇(∆−∆c)/λã1. (4.37)

Considering now the first part of the chosen integration contour, from the left

end to point t−, let M1 and M2 be the least upper bounds of |ã1(t)− ã1(−∞)| and
|ã2(t)− ã2(−∞)|, respectively, when t ∈ (−∞, t−) and on the contour. It is assumed

that γ and (γ/δE)′ are absolutely integrable. This is not a too restrictive condition,

as it is sufficient that those functions go to zero faster than |t|−1. It is then easy to

see from the integral equations for the amplitudes that

M2 ≤ λ [(A1 + A2)(ã1(−∞) +M1) + A3(ã2(−∞) +M2)]

M1 ≤ λ [(A1 + A2)(ã2(−∞) +M2) + A3(ã1(−∞) +M1)] , (4.38)
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Figure 5. The neighbourhood of the crossing point. Solid line is the level line contour
and the dashed arc is the modification made into it in order to avoid the crossing
point. The points t− and t+ divide the contour into three parts.

where

A1 = max|γ(t)/δE(t)| ≤ γ(t−)/δE(tc)| ≤ Cλ
3ε
2
−1,

A2 =

∫ t−

−∞
|ds|| (γ/δE)′ | ≤

∫ t−

−∞
|ds||s− tc|−5/2,

≤ C

∫ t−

−∞
|d|s− tc|||s− tc|−5/2 ≤ C|t− − tc|−3/2 = Cλ

3ε
2
−1,

A3 =

∫ t−

−∞
|ds|| (γ2/δE

) | ≤ C

∫ t−

−∞
|ds||s− tc|−5/2

≤ C

∫ t−

−∞
|d|s− tc|||s− tc|−5/2 ≤ C|t− − tc|−3/2 = Cλ

3ε
2
−1. (4.39)

Because the numerical value of the constant factor in the bounds is irrelevant here

as long as it is finite, we have adopted the notation used by Davis and Pechukas that

C is used in all equations to stand for a bounding constant although their numerical

value may be different. This same notation for upper bounds is also used in what

follows. Finally, we obtain the bounds for the change of the amplitudes in the first

part of the contour as

Mi ≤ Cλ3ε/2 [ã1(−∞) + ã2(−∞)] ≤ Cλ3ε/2, i = 1, 2. (4.40)

The same result is obtained for the third part of the contour from t+ to the right end

of the complex plane in a similar way. When λ → 0 it is seen that the amplitudes
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remain constant in these parts of the contour and all of the change in them is

confined to the vicinity of the crossing point.

In order to solve the evolution of the system we introduce again the S -matrix

that propagates the system from t− to t+. The S -matrix is now defined as

S ≡




Ω− Γ−

Γ+ Ω+


 , (4.41)

so that 


ã1(t+)

ã2(t+)


 = S ·




ã1(t−)

ã2(t−)


 . (4.42)

The matrix elements of the propagator can be expanded as perturbation series,

Ω± = 1−
∫ t+

t−
dt1γe

±ı̇(∆−∆c)/λ

∫ t1

t−
dt2γe

∓ı̇(∆−∆c)/λ + · · · ,

Γ± =

∫ t+

t−
dt1γe

±ı̇(∆−∆c)/λ

−
∫ t+

t−
dt1γe

±ı̇(∆−∆c)/λ

∫ t1

t−
dt2γe

∓ı̇(∆−∆c)/λ

∫ t2

t−
dt3γe

±ı̇(∆−∆c)/λ + · · · , (4.43)

where the integrations are along the center contour and the series are absolutely

convergent.

To actually calculate the elements of the S -matrix in the adiabatic limit the

integrands are split into two parts as

γe±ı̇(∆−∆c)/λ = L±(t) +R±(t), (4.44)

where L±(t) is the leading part,

L±(t) =
e±2ı̇A(t−tc)3/2/3λ

4ı̇(t− tc)
, (4.45)

and R±(t) is the remainder of the term, explicitly

R±(t) = η(t)e±ı̇(∆−∆c)/λ + L±(t)
[
e±ı̇

R t
tc

dsAβ(s)(s−tc)3/2/λ − 1
]
. (4.46)

The first term of the remainder is bounded because η(t) was analytic at tc and the

imaginary part of ∆−∆c tends to zero as λ→ 0 even in the arc because there we
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have Im∆ ≤ Im∆c. The second term of the remainder is bounded above with the

bound
C

|t− tc|
(
eC|t−tc|5/2/λ − 1

)
≤ C|t− tc|3/2

λ
≤ Cλ−3ε/2, (4.47)

and in the center contour we have |t− tc| ≤ Cλ2/3−ε so that if ε < 4
15

then

|t− tc|5/2/λ→ 0 as λ→ 0. So now we have an upper limit for the remainder

|R±(t)| ≤ Cλ−3ε/2, (4.48)

and since the length of the center contour is bounded by Cλ2/3−ε, the contribution

of the remainder term is bounded by
∣∣∣∣
∫ t+

t−
R±(t)dt

∣∣∣∣ ≤ Cλ2/3−5ε/2, (4.49)

with the above constraint for ε. Therefore the contribution of the remainder vanishes

in the adiabatic limit. If we define a positive constant M such that

|γe−ı̇(∆−∆c)/λ| ≤ |γeı̇(∆−∆c)/λ| ≤M, (4.50)

then it follows from (4.43) that

|Γ±| ≤M

∫ t+

t−
|dt1|+M3

∫ t+

t−
|dt1|

∫ t1

t−
|dt2|

∫ t2

t−
|dt3|+ · · ·

= M

∫ t+

t−
|dt1|+ M2

3!

[∫ t+

t−
|dt1|

]3

+ · · ·

≤ eMl, (4.51)

where l is the total length of the center contour. The upper limit for the matrix

elements |Ω±| is found in a similar way. To calculate the elements it is shown that

in the adiabatic limit we can consider only the leading terms. Let

L(t) = max ( |L+(t)|, |L−(t)| ) ,

R(t) = max ( |R+(t)|, |R−(t)| ) . (4.52)

By replacing |L±(t)| and |R±(t)| with L(t) and R(t) respectively and every dti by

|dti| in the perturbation series and finally all minus signs by plus signs we do not
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decrease the sum. It follows that we can find an upper limit for |Ω±| − |Ω0
±| and

|Γ±| − |Γ0
±| where Ω0

± and Γ0
± are the series that contain only the leading term in

the integrals by
∫ t+

t−
(L+R)|dt1|+

∫ t+

t−
(L+R)|dt1|

∫ t1

t−
(L+R)|dt2|

∫ t2

t−
(L+R)|dt3|+ · · ·

−
∫ t+

t−
L|dt1| −

∫ t+

t−
L|dt1|

∫ t1

t−
L|dt2|

∫ t2

t−
L|dt3| − · · ·

≤ e
R t+

t− (L+R)|dt| − e
R t+

t− L|dt|
= e

R t+
t− L|dt|

(
e
R t+

t− R|dt| − 1

)
. (4.53)

The term in the parenthesis tends to zero in the adiabatic limit so if
∫ t+

t−
L|dt| is

bounded it follows that we can consider only the leading terms in the S -matrix

elements in the adiabatic limit. On the center contour we have

L(t) ≤ C

|t− tc| (4.54)

so therefore ∫ t+

t−
L(t)|dt| ≤ C + C ln(λ−ε), (4.55)

and

e
R t+

t− L|dt| ≤ Cλ−Cε, (4.56)

which is not bounded when λ→ 0. However, from the equation (4.49) we have that

e
R t+

t− R|dt| − 1 ≤ Cλ2/3−5ε/2, (4.57)

which tends to zero in the adiabatic limit when ε < 4/15. It follows that for the

entire term we have

e
R t+

t− L|dt|
(
e
R t+

t− R|dt| − 1

)
≤ Cλ2/3−Cε, (4.58)

which then tends to zero when ε is chosen small enough depending on the value of

the finite constant C.

To conclude, in the limit λ → 0 the asymptotic time evolution of the system is

obtained by considering the time evolution in the center contour, that is, from t−

to t+ with considering only the leading terms in the S -matrix.
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By making a change of variable

x ≡ 2A

3
(t− tc)

3/2, (4.59)

it follows from the equations (4.30) and (4.33) that the differential equations (4.35)

become

ã′1(x) = −e
−ı̇x

6ı̇x
ã2(x), ã′2(x) =

eı̇x

6ı̇x
ã1(x), (4.60)

where (′) stands for derivation with respect to the new variable x. With the initial

conditions a1(−∞) = 1 and a2(−∞) = 0 we have the integral equations

ã2(x) =

∫ x

−∞
dx′

eı̇x′

6ı̇x′
ã1(x

′), (4.61)

ã1(x) = 1−
∫ x

−∞
dx′

e−ı̇x′

6ı̇x′
ã2(x

′)

= 1 +

(
1

36

) ∫ x

−∞
dx′

e−ı̇x′

x′

∫ x′

−∞
dx′′

eı̇x′′

x′′
ã1(x

′′). (4.62)

Because eı̇∆c/λ was independent of the particular Hamiltonian in the adiabatic limit

the matrix elements could be actually calculated by referring to some appropri-

ate solvable two-state model such as the Landau-Zener model or it could be inte-

grated directly by considering only the leading terms around tc. However, Davis

and Pechukas perform and justify a more elementary-looking but somewhat tricky

manoeuvre. They compute an asymptotic expansion for ã1 with large x as

ã1(x) ∼
∞∑

n=0

αnn!

(ı̇x)n
, α0 = 1. (4.63)

Inserting the expansion in the integral equation and then by repeated integration

the recurrence relation

αn = − 1

36n2

n−1∑
m=0

αm (4.64)

is obtained. Now by setting βn = −36n2αn, n 6= 0 it follows from the equation

(4.64) that βn+1 = (1− 1/36n2) and since β1 = 1 we have

βn =
n−1∏
m=1

(
1− 1

36m2

)
. (4.65)
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If the series (4.63) is inserted in the integral equation for ã2 the repeated partial

integration gives the asymptotic amplitude as

ã2(∞) =
(π

3

) ∞∑
m=0

αm =
(π

3

)
lim

n→∞
βn =

(π
3

) ∞∏
m=1

(
1− 1

(6m)2

)
= 1, (4.66)

where in the last steps we have used the equations (4.64), (4.65) and an infinite

product representation [23]

sin(z)

z
=

∞∏
m=1

(
1− z2

(6m)2

)
. (4.67)

Now we have calculated the matrix element Γ+ because with the chosen initial

conditions ã1(−∞) = 1, ã2(−∞) = 0 and the definition of the S -matrix we get

ã2(∞) = Γ+ = 1.

The other matrix elements can be obtained more easily. By considering the initial

conditions and the adiabatic theorem we know that ã1(∞) → 1 when λ → 0 and

furthermore we know that the amplitudes are asymptotically constant everywhere

except in the center contour so that ã1(t+) → 1, ã1(t−) → 1 and ã2(t−) → 0 as

λ → 0. It follows that Ω− → 1. The rest of the elements are obtained considering

the inverse of the S -matrix defined in equation (4.42). Although this time due to

approximate nature of the calculations we did not define the S -matrix to be strictly

unitary it is assumed to have an inverse, a condition for this is now Ω+ 6= Γ−. The

elements of the inverse can be calculated from the equation (4.43) by interchanging

the limits of integration where it follows that we have



ã1(t−)

ã2(t−)


 =




Ω− −Γ−

−Γ+ Ω+







ã1(t+)

ã2(t+)


 . (4.68)

so that 


Ω− Γ−

Γ+ Ω+







Ω− −Γ−

−Γ+ Ω+


 =




1 0

0 1


 , (4.69)

which can be solved with the help of the already solved matrix elements Γ+ and Ω−

which result in Γ− → 0 and Ω+ → 1 as λ→ 0.
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Now returning from the redefinition of equation (4.34) to the original definition

of the amplitudes we have finally obtained an equation for the amplitudes in the

case of a single crossing as



a1(∞)

a2(∞)


 =




1 0

eı̇∆c 1







a1(−∞)

a2(−∞)


 . (4.70)

It should be noted that although often in practise one has to use numerical

methods anyway because the eigenvalue functions may be complicated or because

one has to go beyond the approximation of equation (4.29), the numerical integration

to obtain the term eı̇∆c is still much faster than solving the whole Schrödinger

equation numerically.

4.3.3 Parabolic model in the DDP approximation

Davis and Pechukas discussed shortly also generalisations of their method and sug-

gested that for the case of several complex crossing points on the level line, one can

add up the contributions calculated separately from each of the crossing point as

a coherent sum. When applying this for the double crossing case in the parabolic

model we have to be aware of the fact that the non-adiabatic coupling is in that

case an antisymmetric function of time, γ(−t) = −γ(t). In the derivation of the

DDP method we fixed the non-adiabatic coupling by choosing the positive sign in

equation (4.33) but now we can not choose the sign for the both crossing point

independently. We can take this into account by fixing the sign in the first crossing

point and then placing a minus sign in front of the exponential term eı̇∆
(2)
c in the

second crossing point. Therefore the final populations for the double crossing case

are obtained from the equation



a1(∞)

a2(∞)


 =




1 0

eı̇∆
(1)
c − eı̇∆

(2)
c 1







a1(−∞)

a2(−∞)


 . (4.71)
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The complex crossing points τ (i)
c were calculated already in the equation (3.4) and

now considering only the ones with positive imaginary part we have

∆c ≡ ∆(2)
c = − [

∆(1)
c

]∗
=

2√
ε

∫ x
(2)
c /

√
ε

0

dx
√

1 + (µ− x2)2, (4.72)

where we already have scaled the integration variable in the integral over the eigenen-

ergies as x ≡ √
ετ . The integrals of the form ∆c appearing in the previous formulas

can be calculated with the help of the change of variables x ≡ √
i+ µ sinϑ and then

using the binomial series as done in the reference [32] to obtain

∆c =
2√
ε
eiπ/4(1− iµ)(1 + iµ)1/2

∫ π/2

0

dϑ cos2(ϑ)

(
1 +

(1− iµ) sin2(ϑ)

1 + iµ

)1/2

. (4.73)

This can be solved with a further substitution sin2 ≡ t and then using the equation

(15.3.1) of the reference [22] we get

∆c =
π

2
√
ε

√
(µ+ ı̇)(µ2 + 1)2F1 [1/2,−1/2; 2; z(µ)] , (4.74)

where we again have the hypergeometric function, now with the variable

z(µ) =
µ+ ı̇

µ− ı̇
=

(
µ+ i√
1 + µ2

)2

. (4.75)

The straightforward application of equation (4.71) with the usual initial conditions

|a1(−∞)| = 1 and a2(−∞) = 0 gives

a2(∞) = (eı̇∆
(1)
c − eı̇∆

(2)
c )a1(−∞)

=
(
e−ı̇∆∗c − eı̇∆c

)
a1(−∞)

= −2ı̇e−Im∆c sin (Re∆c) a1(−∞), (4.76)

and now denoting the asymptotic probability for the amplitude in this case by

|a2(∞)|2 ≡ PDDP
1 we get

PDDP
1 = 4 sin2 (Re∆c) e

−2Im∆c . (4.77)
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4.4 The modified DDP method

The DDP method can be in general expected to give good results only near the adia-

batic limit. To be able to give good approximations of the populations for parameters

outside adiabatic regions we modify this method by including the phase term given

in the context of the independent crossing approximation and the Landau-Zener

model by the equation (4.8). The DDP method itself does not give this phase term

but it does give of course the normal phase evolution of the system even when µ ≈ 0,

that is when the crossings overlap and treating the system as a double Landau-Zener

model as in section 4.1 does not work. Therefore, the modified DDP method covers

a larger part of the parameter region of the parabolic model than the independent

crossing approximation.

The procedure here is very similar to what is done in the independent crossing

approximation but now our S -matrix to be applied twice is given by the DDP

method for a single crossing and therefore by the equation (4.70). The inclusion of

the extra phase term is done by inserting the term e−ı̇χ into the upper corner of the

S -matrices. Now with the same initial conditions and similar calculations as in the

equation (4.76) we get the final result as

PDDPm
1 = 4 sin2 (Re∆c + χ)

(
1− e−2Im∆c

)
e−2Im∆c . (4.78)
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5 Numerical studies

Numerical methods were used to solve the parabolic model in order to use the results

as a benchmark for the different approximative expressions obtained in the previous

section. The two coupled first-order differential equations arising from the time-

dependent Schrödinger equation were solved numerically with different parameter

regions so that the comparison between different approximations and finding their

regions of applicability is possible.

The implementation of the numerical calculations were done with Mathematica

6.0 software [39] by constructing a simple program that makes use of the NDSolve

routine of Mathematica. NDSolve is a numerical differential equation solver and al-

though the routine offers many options concerning for example the method of solving

or the precision or the stepsize to be used, it still has a certain "black box" character

and therefore one has to take a critical look at the results it gives and somehow en-

sure their correctness. In our case there actually already exists previous numerical

results for the parabolic model obtained by using the Runge-Kutta method to solve

the Schrödinger equation in a quite wide parameter region [28]. By using the same

parameters we obtained results that were in a good agreement with those given in

the reference and this gives confidence to our numerical studies. When comparing

the results, one should note anyhow that the reference [28] contains some misprints

and for example the numerical simulation for the case µ = 10 in the reference [28]

is more likely to be really the case where the parameter value is µ = 5 [40] so also

that case fits perfectly to our results.

The program that was used calculated numerically the solutions to the coupled

differential equations to give the final amplitudes in the diabatic basis with the same

initial conditions used in the previous section. So although we used only the final

state of the system and the values it gives for the amplitudes of the basis states the

whole time evolution of the system had to be of course calculated. In each run of the
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program we kept either ε or µ fixed and computed the final probability distributions

while varying the other parameter. For example, to determine the ε-dependence of

the probability distributions for a parabolic model in a highly tunneling case one

would fix the µ to be for example µ = −5 and then run the program which would

solve the differential equations in a sufficiently large region, for example ε ∈ [0, 100].

In practise of course the calculations are done for close-lying but discrete values

of ε on the interval [0, 100]. From these solutions the population is computed at

the end of the interval and finally a curve is fitted to the these values so that the

ε-dependence of the final population is obtained.

Another practical issue in numerical studies is of course that the time interval can

not be taken to be infinite but has to be bounded by some value that is large enough

to keep the error small. The change of the probability amplitudes is concentrated

near the crossings and therefore usually near the origin as discussed earlier. An

example of this behaviour can be seen from the figure 6. Therefore sufficiently

small time intervals are needed in many cases. However, when the system tends

to more and more adiabatic parameter regions one should correspondingly take the

time interval to be longer and longer which causes problems because the size of

the timestep has to be kept small anyway. Also, the rapid oscillations in the final

populations lead to difficulties. This happens, for example, when µ is positive and

large. Then to obtain a good fit for the probabilities one has to make the spacing

of the discrete values of ε more dense and therefore the calculations get more time-

consuming.

One challenge for the numerical studies is that the needed time interval and

the spacing of the sample values for the parameter that is not fixed beforehand

changes during the run of the program and depends on the value of the other, fixed

parameter. However, even without a general formula for doing this one obtains quite

easily sufficient estimations for needed values in each of the parameter regions.
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The results of numerical simulations are presented in the section 7 together

with the comparison of the different approximative results. However, in order to

illustrate the things discussed here, we have plotted in the figure 6 the time evolution

of the transition probability for some of the individual amplitudes with different

parameters. We have also included the values that the most suitable approximative

results in each region give for the final transition probabilities. The parameter µ is

fixed to unity while ε is plotted for three values, 1, 5 and 20. There one can see

some of the characteristic behaviour. The topmost plot is the most adiabatic one

with ε = 1 and although the transition probability goes to almost unity near the

temporal zero point it dies out with some oscillations and has a small final value. In

the next plot we have ε = 5 and a complete population transfer. The change in the

amplitudes is also somewhat more concentrated in the vicinity of the origin. In the

lowest picture we have ε = 20 and it can be seen that the final transition probability

does not grow monotonically with ε; now we have P ≈ 0.6. Also, in the undermost

plot one should note that none of the approximations gives a sensible answer.
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Figure 6. The numerical solution of P1(t) plotted as solid blue line for three dif-
ferent parameters, from top: ε = 1, ε = 5 and ε = 20 with µ = 1 in all of them.
Also plotted are the values of the asymptotic transition probabilities given by those
approximation methods that give sensible results in these cases. The red solid line
is the independent crossings approximation while the purple line is the perturbation
result. The values obtained with the pure and the modified DDP method are given
by dark and light blue lines, respectively.
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6 Results of Shimshoni and Gefen

Although we already obtained various approximative results to the parabolic model

we study the problem in this section once more and from a little bit different angle.

All the approximative methods that were used were given in the adiabatic basis,

except the perturbation approach. As discussed, in principle there is no preference

between the bases and because the asymptotic basis states are the same for adiabatic

and diabatic basis states in the parabolic model the asymptotic transition probability

could be given simultaneously in both bases. However, we also noted that the

expressions that were obtained for phases in different bases were different. An

example of this was seen in the context of independent crossing approximation. The

correct calculations of the phase terms are of crucial importance in the parabolic

model where the phases contribute directly to the transition probability.

Shimsoni and Gefen have studied the parabolic model and calculated asymptotic

transition probabilities in different parameter regions in [41]. They were interested

in the dephasing and relaxation of an externally driven system coupled to an en-

vironment and in this context considered the coherence properties of non-adiabatic

transitions. Despite some similarities with the approximative results obtained above,

in general their results seemed to differ. They used in their calculations interchange-

ably either the diabatic or the adiabatic bases in appropriate parameter regions as

was suggested to be desirable in the section 1.4. The results were obtained both in

the diabatic and the adiabatic limits first by considering two independent Landau-

Zener crossings and then with a more general calculation using the actual parabolic

model.

The objective here is to clarify and understand the differences of the different

results and to see if the results obtained by their method or the ones used above

are in a considerably better agreement with the numerical results at least in some

parameter regions. We do this below by reviewing their calculation and comparing
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the results.

6.1 The independent crossing approximation

The independent crossing approximation was already discussed quite thoroughly

in the section 4.1. The idea here is equivalent to that and we outline only the

calculations to derive the scattering matrix and the phase terms for a single Landau-

Zener transition using the same notation as before whenever possible.

Shimshoni and Gefen derived the scattering matrix elements in the form

S1 =
√

1−R2eiθ1 , S2 = Reiθ2 , (6.1)

where R = e−πΛeff/2 was defined in the section 2 and the arguments of the phases,

θi, i = 1, 2 are the important quantities whose values are to be specified here. They

may depend on different parameters but calculating them is quite easy, at least in

the diabatic and adiabatic limits. With the usual initial conditions C−(−∞) = 0

and C+(−∞) = 1 the asymptotic transition probability is obtained in the same way

as in the equation (6.2),

P̃ LZ
1 = 4e−πΛeff

(
1− e−πΛeff

)
sin2(φ+ θ1), (6.2)

where the tilde is used to distinguish the results of Shimshoni and Gefen from the

ones obtained above with similar approximations.

Considering first the Landau-Zener model and the diabatic approximation we

use the diabatic basis so that every vector can be written as

|ψ(t)〉 = C−(t)e−iφ(t)|−〉+ C+(t)eiφ(t)|+〉, (6.3)

where φ(t) is the diabatic dynamical phase given by the equation (3.7). Using the

same form of the time-dependent Schrödinger equation as in [1] we obtain a pair of

coupled differential equations as before but now they reduce to the form

Ċ∓(t) = ı̇V e±ı̇λt2C±(t). (6.4)
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In the diabatic approximation and using the same parameter Λ ≡ V 2/λ defined

already for the Landau-Zener model we now have the condition Λ ¿ 1. Shimshoni

and Gefen introduced a similar but not yet equivalent scaling of time as in (2.4),

namely y = t
√

2λ, and obtained

dC∓(y)

dy
= ı̇

√
Λ

2
e±ı̇y2/2C±(y). (6.5)

The parameter Λ is small and the solution of (6.5) is expanded as a power series in
√

Λ,

C±(y) =
∞∑

n=0

C
(n)
± (y)Λn/2. (6.6)

The amplitudes C±(∞) are then calculated in the lowest order in
√

Λ. From the

initial conditions it follows that we must have C(0)
− = 0 and C(0)

+ = 1. Inserting the

power series in the differential equation (6.5) and considering only the lowest terms

we get

C−(∞) = ı̇

√
Λ

2

∫ ∞

−∞
eı̇y2/2dy = ı̇

√
2Λ

∫ ∞

0

eı̇y2/2dy. (6.7)

Integrating the above integral in the right-hand side of (6.7) is equal to integrating

along the line y = xeı̇π/4. Therefore we end up with a Gaussian integral and the

result

S1 = 2ı̇
√

Λeı̇π/4

∫ ∞

0

e−x2/2dx =
√
πΛeı̇3π/4. (6.8)

The Landau-Zener factor can be given as series so for small Λ it suffices to keep only

the terms up to first order in Λ. Then by comparing the expressions (6.1) and (6.8)

we see that in the diabatic limit we have θ1 = 3π/4.

C+(∞) is obtained similarly by substituting the power series into the differential

equation and considering the initial conditions. Due to the fact that C(0)
− = 0 the

result is to second order in
√

Λ and we get

S2 = 1− πΛ

2
, (6.9)
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and now a comparison between the expressions implies that in the diabatic limit θ2 =

0 although, with the chosen initial conditions, this phase term does not contribute

to the transition probability anyway.

Next we study the adiabatic limit. Shimshoni and Gefen used some of the meth-

ods and analytical considerations originally used in the references [15] and [42] to

solve the adiabatic case and therefore also implicitly using the same main assump-

tions as the DDP method. However, as they are only interested in the Landau-Zener

and the parabolic models where these assumptions are valid they do no state them

explicitly. In any case, it is seen that there is a connection with the methods they

use and with those we have used to derive our main results as presented before in

this thesis.

In the adiabatic limit we use the adiabatic basis and write the state vector in it

as

|ψ(t)〉 = a1(t)e
iφa

1(t)|χ1(t)〉+ a2(t)e
iφa

2(t)|χ2(t)〉, (6.10)

where |χi〉 and φa
i (t), i = 1, 2 are as before the eigenstates of the system and the

dynamic phase accumulated by the the eigenenergies, respectively.

For the initial conditions to be equivalent to those in the diabatic limit it is

imposed a2(−∞) = 0 and a1(−∞) = 1. With these initial conditions one can

approximate in the adiabatic limit a1(t) ≈ 1 for all t and from the equation (1.46)

we have

a2(∞) ≈ λV

2

∫ ∞

−∞

dt

(λt)2 + V 2
exp

[
2i

∫ t

0

√
(λt′)2 + V 2dt′

]

=
1

2

∫ ∞

−∞

dy

(1 + y2)
exp

[
2iΛ

∫ y

0

√
1 + x2dx

]

≡ 1

2

∫ ∞

−∞
dwθ′e2iΛw, (6.11)

where in the second integral time is rescaled by introducing a new variable as y =

(λ/V )t and to obtain the solution for the integrals we have finally defined the variable

w =

∫ y

0

dx
√

1 + x2, (6.12)
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and the points in the complex plane

wc =

∫ yc

0

dx
√

1 + x2, y2
c + 1 = 0, (6.13)

that is, the points that correspond to the familiar complex zero points of the eigenen-

ergy at yc = ±i. The integrand in the equation (6.11) for the asymptotic amplitude

a2(∞) has simple poles in these degeneracy points. Now we again have similarly to

the equation (4.30) an expansion near yc as

w ≈ wc +
2
√

2

3
(y − yc)

3/2, (6.14)

where the fact that the elements of the Hamiltonian are analytic near the degeneracy

points is used. It follows that near wc we now have [42]

θ′ = ± 1

3yc(w − wc)
. (6.15)

Making the substitutions to equation (6.11) we obtain

a2(∞) ≈ 1

2

∫ ∞

−∞

e2iΛw

3yc(w − wc)
dw. (6.16)

From the equation (6.13) we have that the points yc = ±i correspond to wc = ±iπ/4
and they are the poles of the integrand in (6.16). The integrand in equation (6.16)

vanishes when the modulus of w tends to infinity so it is possible to close the

integration contour by including a path in the upper half of the complex plane in

a such way that it encloses the pole wc = iπ/4 but does not change the integral

and therefore allows one to use the integral formula of Cauchy [12] to evaluate the

integral and we get for the amplitude the result

a2(∞) ≈ π

3
e−πΛ/2, (6.17)

and for the transition probability

|a2(∞)|2 =
(π

3

)2

e−πΛ, (6.18)
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which indeed provides the Landau-Zener factor in the amplitude but with slightly

wrong prefactor π/3 ≈ 1.047 instead of the normal unity. Neglecting the incorrect

prefactor it is seen that the phase terms are zero in the adiabatic limit because in

the Landau-Zener model we had the correspondence between the asymptotic states

as |χ1(∞)〉 = |−〉 and |χ2(∞)〉 = |+〉 so that in the adiabatic limit the S-matrix

element S2 is exponentially small and S1 ≈ 1 and the phases are θ1 = θ2 = 0.

6.2 A more general approximative solution

To calculate more detailed and general approximative solution for the asymptotic

transition probability of the parabolic model in adiabatic and diabatic limits Gefen

and Shimshoni define a parameter which measures the degree of adiabaticity. It is

expressed in the scaled variables ε, µ and τ defined before as δ ≡ 41/3ε−1/3 so that

δ →∞ corresponds to the adiabatic limit and δ → 0 to the diabatic limit. Now the

differential equations for the amplitudes in the diabatic basis reads

Ċ∓(τ) = ı̇e
±2ı̇

“
ετ3

3
−µτ

”
C±(τ). (6.19)

Let us again scale the time to be dimensionless by the new variable y = (2ε)1/3τ

and also define µ̃ = µ/(16ε)1/3 so that (6.19) becomes

dC∓(y)

dy
= ı̇δe±ı̇(y3/3−µ̃y)C±(y). (6.20)

In the diabatic limit the parameter δ is small and we again use a power series expan-

sion with respect to this parameter for the solutions C±(y). Now the assumption

that the system is initially in the lower eigenstate corresponds to imposing the ini-

tial conditions as C−(−∞) = 1 and C+(−∞) = 0. Direct integration yields to first
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order in δ

C+(∞) = ı̇δ

∫ ∞

−∞
e−ı̇(y3/3−µ̃y)dy

= 2ı̇δ

∫ ∞

0

cos
(
y3/3 + µ̃y

)
dy

= 2πı̇δAi(µ̃)

=
2πi
3
√

2ε
Ai

[
− 2µ

3
√

2ε

]
, (6.21)

which is just the same as the perturbation result obtained before. This is obvious

because although Shimshoni and Gefen call this result as a sudden approximation

the procedure here is similar to a perturbative one, namely expanding the result to

power series with respect to small perturbation.

For the adiabatic case where δ ¿ 1 Shimshoni and Gefen use the exactly same

method as in the double Landau-Zener approximation. In the parabolic model the

correspondence between asymptotic states in the diabatic and adiabatic bases is the

same for the initial and final states, meaning that |χ1(±∞)〉 = |−〉 and |χ2(±∞)〉 =

|+〉. Therefore, the initial conditions are now a1(−∞) = 1 and a2(−∞) = 0 and the

asymptotic transition probability is P̃ = |a2(∞)|2. As for the Landau-Zener model

in the adiabatic case above it is approximated that a1(t) ≈ 1 for all times and we

have

a2(∞) ≈
∫ ∞

−∞
dy

y

1 + (µ− y2)2
exp

[
iδ3/2

∫ y

0

dx

√
1 + (µ− x2)2

]
, (6.22)

with the definition y ≡ √
εt. We again define a variable with the help of the argument

in the exponent:

w ≡
∫ y

0

dx

√
1 + (µ− x2)2. (6.23)

and the critical complex plane points, there are four of each, are

wc =

∫ yc

0

dx

√
1 + (µ− x2)2, yc = ±

√
i± µ. (6.24)

Near the critical points yc we have

w − wc ≈ 4
√

(y2
c − µ)yc

3
(y − yc)

3/2 (6.25)
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and (
dw

dy

)3

≈ 6yc

(
y2

c − µ
)
(w − wc) , (6.26)

so that now we have

a2(∞) ≈
∫ ∞

−∞

eiδ3/2wy(w)

(dw/dy)3
dw. (6.27)

As before, let us consider only the poles in the upper half of the complex plane.

Those are the critical points yc,1 =
√
µ+ i and yc,2 = −√µ− i and the corresponding

points wc,1 and wc,2. We have the same relations stated before

Re(wc,1) = −Re(wc,2), Im(wc,1) = Im(wc,2). (6.28)

A similar closing of the integration path as in the Landau-Zener case is done in order

to evaluate the integral in equation (6.27). Now the contour encloses a two simple

poles wc,1 and wc,2 so by using a generalization of the integral theorem of Cauchy,

the residue theorem, we get

a2(∞) =
π

3

[
eiδ2/3wc,1 − eiδ2/3wc,2

]

=
π

3

[
e(iδ2/3wc,1) − e(iδ

2/3wc,1)∗
]

=
2πi

3
eR(δ,µ) sin (I(δ, µ)) , (6.29)

where we have applied the relations of equation (6.28) and it is defined

R(δ, µ) ≡ Re
(
iδ3/2wc,1

)
and I(δ, µ) ≡ Im

(
iδ3/2wc,1

)
. (6.30)

Therefore, the asymptotic transition probability is

P̃ = 4
(π

3

)2

e2R(δ,µ) sin2 (I(δ, µ)) . (6.31)

The integrals of the form wc,1 appearing in the previous formulas are of the same

form as those in the equation (4.72) and Shimshoni and Gefen also refer to the

reference [32] and use similar change of variables. They also modify the result of
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the integration one step further using the equation (15.4.14) of the reference [22] to

obtain

wc,1 =

∫ √
i+µ

0

dy

√
1 + (µ− y2)2

=
πeiπ/4 (1− iµ)

√
1 + iµ

4
2F1

(
−1/2, 1/2; 2;

i + µ

−i + µ

)

=
(iπ)3/2 (1 + µ2)

4

[
2F1 (1/4, 5/4; 1/2;−µ2)

Γ
(

3
4

)
Γ

(
7
4

) − 2iµ
2F1 (3/4, 7/4; 3/2;−µ2)

Γ
(

5
4

)
Γ

(
1
4

)
]
.

(6.32)

It should be noted that the second line form of the equation (6.32) is almost the

same as the equation (4.74), the latter differing from the first one by a factor of

δ3/2 =
√

4/ε. However, from the definitions in equation (6.30) and the result of

equation (4.74) we have the relations

R(δ, µ) = −δ2/3Im∆c, I(δ, µ) = δ2/3Re∆c, (6.33)

and the asymptotic transition probability in this notation is

P̃ = 4
(π

3

)2

e−2Im∆c sin2 (Re∆c) , (6.34)

so that, actually, the result of Shimshoni and Gefen in the adiabatic limit also differs

only by the prefactor π/3 from the one obtained by the DDP method so that all the

transition probabilities in it are larger by factor (π/3)2 ≈ 1.097.

We can conclude that there is no essential difference between the DDP results

and those of Shimshoni and Gefen which is a fact that was not all that clear before-

hand. Moreover, as our perturbation result coincided with the sudden limit result

of Shimshoni and Gefen it is clear that their results do not really give us any signif-

icantly new contribution apart from the different phase factors for the independent

crossing approximation and the alternative derivation of our results.
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7 Comparison between different methods

The validity of different approximations were shortly discussed when introducing

the different approximative methods in section 4. To gain a more complete view,

we discuss them here in detail while comparing the results with those obtained by

numerical simulations. The numerical calculations were done in a wide range of

parameters so that one could be able to deduce the general behaviour of the system,

at least qualitatively.

The most interesting cases are the double crossing ones, that is, the cases where

µ is positive. There one can see a diverse behaviour due to the interference effects.

These are discussed in the first subsection and we represent the results for the

parameters µ = 0.1, µ = 1, µ = 3 and µ = 5 when ε is varied from 0 to 100. In

the following subsections we also study similarly the tunneling cases with µ = −0.1

and µ = −1, the limiting case of a single crossing with µ = 0 and also cases

where the parameter ε is fixed and µ varies. These are all plotted in the figures

7 − 11. In the cases where µ is fixed the ε-axis is logarithmic because the general

behaviour is that the transition probabilities are changing more rapidly with respect

to ε when ε is sufficiently small. With larger values the population does not depend

so sensitively on ε. In the last subsection we discuss the different phases obtained

for the independent crossing approximation to decide whether one of them is in a

better correspondence with numerical results than the others.

7.1 The double crossing case

In the figure 7 we have the numerical result and different approximations for µ = 0.1

and µ = 1. When µ = 0.1, we have only one wide peak and the behaviour is still

rather similar to single crossing or tunneling cases. It is also evident that none of

the approximative curves gives right kind of results for all the values of ε. However,

one can see that the DDP curve is of the right shape and it does give right values



70

along with the modified DDP result in the adiabatic region which in this case means

the values ε < 1. For intermediate values of ε there is no good approximation. The

perturbation result is seen to give a good approximation for larger values of the

variable. This is of course what the used scaling ε ≡ a/v3 suggests: small coupling

of the diabatic energy levels correspond to large values of ε if we fix the parameter

a and the same result holds for the other values of µ as well.

For µ = 1 there is already some oscillations present and also a complete popula-

tion transfer can be obtained. Here the DDP curve is again of the right shape but

it diverges from the numerical result earlier than in the previous case giving values

larger than unity. However, here the modified DDP result overlaps completely with

the numerical result for values approximately from zero to five. For larger values it

starts to diverge from the numerical result. Also, the independent crossing approx-

imation meets with the modified DDP result from the value ε = 1 on, thus giving a

good approximation for intermediate values.

The validity of the independent crossing approximation for these particular cases

can be further studied from the equations (4.2) which give the time scale for a single

Landau-Zener transition τz. The approximation was expected to work whenever we

have τz ¿ τs where τs is the time between the crossings. From this we derived

the test for the validity in the section 4.1 which, when simplified, reads: in the

adiabatic limit we have Λeff À 1 and the condition is µ ¿ 1 and in the diabatic

limit (Λeff ¿ 1) the condition is (µ3/ε) À 1/100. However, as ε increases we move

from adiabatic into diabatic region and we have to change the expression for τz

correspondingly, as suggested by the equation (4.2). It follows that in between them

we have a parameter region where we have Λeff ≈ 1 and we do not have a test

for the validity of the approximation. For example, when µ = 1 we see that in the

region where ε ∈ [0.1, 1] the independent crossing curve almost gives the right kind

of behaviour but with too small values. It is in this parameter region the parameter
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Λeff decreases from the value
√

5/2 to the value 1/2 and we do not have a clear

time scale for the transitions or at least it is not given by the condition (4.2). From

that point on, however, the curve overlaps with the numerical result until about the

point ε = 5 onwards it again starts to diverge slightly. The reason for diverging

is that the crossings start to slowly overlap already. At that point we still have

(µ3/ε) = 1/5 which is relatively large when compared to the validity condition but

also decreasing steadily as ε increases.

The general trend is that as µ has greater values the adiabatic test fails but

at the same time both the time between the crossings and the region where the

diabatic condition can be used and is valid becomes larger. For example, when µ

is multiplied by two, ε can have eight times larger values before the approximation

becomes invalid.

From the figure 8 one can also see that when µ gets larger the plots get more

rapidly oscillating and the value of the population becomes more sensitive to changes

of ε. Moreover, it is seen that the adiabatic region gets smaller and smaller with

greater µ and the DDP result diverges from the numerical one from early on giving

unphysical values greater than unity. The perturbation method on the other hand

becomes useful slightly earlier, compared to previous cases and this is of course what

was expected from the scaling µ ≡ b/v. However, the most noteworthy thing is that

the modified DDP result and the double Landau-Zener result overlap completely in

the studied parameter region of ε when we have µ = 3 or µ = 5. In the figures 10

and 11 where ε is kept constant in each plot, it is seen that these two approximations

seem to work really nicely with also larger positive values of µ because of the overlap

with the numerical results also in those cases.
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Figure 7. Here are the final populations P1 as functions of ε for the cases µ = 0.1
and µ = 1 from top to bottom, respectively. The numerical result is represented
by the black line, whereas the perturbation result is drawn as a purple line and
the independent crossing approximation as a red line. The pure and modified DDP
results are represented by dark blue and light blue lines, respectively.
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Figure 8. This figure is similar to Fig. 7 and with the same notation but for the
cases µ = 3 and µ = 5 from top to bottom, respectively. For the case µ = 3 we have
plotted the DDP result only up to the argument value ε = 1 as it diverges from the
numerical result. Also, the perturbation result is plotted only from the value ε = 5
on as it does not give sensible results earlier. For the case µ = 5 we have omitted
the DDP result altogether as it differs from the numerical result even earlier on.
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7.2 The tunneling case

The single crossing and the two tunneling cases studied are plotted in the figure

9. The plots look all alike and are also similar to the case µ = 0.1. It is also

seen that the maximum transition probability decreases rapidly as µ decreases, or

equivalently, as the gap between the energy levels increases.

All of the approximations give a correct behaviour qualitatively but not correct

values everywhere. The DDP method works in the adiabatic region and slightly

better than the modified one. It should be noted that the phase term χ is left

out from the equation (4.78) for non-positive values of µ. Also, the perturbation

method works where it is expected to, namely for large ε. However, none of the

approximations cover the region with intermediate values of ε.

7.3 The phases in the independent crossing approximation

The independent crossing approximation turned out to be a good and useful ap-

proximation in many cases, especially with sufficiently large positive values of the

parameter µ. From the discussion of the results of Shimshoni and Gefen we saw

that their way of deriving the same approximation gave different phase terms than

the one we obtained in the section 4.1 but that the enveloping curve was the same

for both, given by the function e(ε, µ) ≡ 4e−πΛeff
(
1− e−πΛeff

)
. Because of the rapid

oscillations, the results are sensitive to the phases so it is important to compare

these results and to see if the results of Shimshoni and Gefen work in some regions

better than our result.

In some ways this seems unlikely. First of all, the linearisation condition to ensure

the validity of the approximation is of course the same for their result. Secondly,

our result which consisted of a single formula for all the parameter regions worked

very well for the parameters µ > 1. Rather than just one expression, Shimshoni and

Gefen derived different expressions for the adiabatic and diabatic limits and this too
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Figure 9. This figure is similar to the two previous ones and it covers the cases µ = 0,
µ = −0.1 and µ = −1 from top to bottom, respectively. These are double crossing
cases no more and therefore there are no oscillations visible. Also the Landau-Zener
approximation is omitted as well as the χ term in the modified DDP method.
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Figure 10. Here are the final populations P1 as a function of µ and with fixed ε.
The color coding for the lines is the same as in the preceding figures but for the
case ε = 1 the perturbation result is omitted because it would require higher values
of µ to be useful. For the case ε = 10, the DDP plot is instead dropped because it
diverges from the numerical result quite early on. The double Landau-Zener result
and the modified DDP result are defined only for positive µ but it is seen that from
approximately µ = 1 on they overlap with the numerical result.
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Figure 11. This is exactly similar to figure 10 but this time for the parameter values
ε = 25 and ε = 100, respectively from top to bottom. The DDP result is again
omitted. The independent crossing result and the modified DDP result overlap
again the numerical plot in a large part of the parameter range of µ. This time
also the perturbation method gives a rather good approximation already with quite
small values of µ as expected.
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can be thought as a downside because then one has to also consider their different

regions of validity and it is likely that neither of them is a good approximation for

intermediate values, that is, between the adiabatic and diabatic limits. In any case,

it is interesting to see if the results of Shimshoni and Gefen work as well as ours in

general or even better with small values of µ.

The different independent crossing results are plotted in the figures 12 and 13.

One can immediately see that, indeed, our result seems to work much better. The

results of Shimshoni and Gefen do work where they should, namely in the adiabatic

and diabatic limits, but for the most part of the parameter range they both go

wrong. Although, in the case for which µ = 0.1 all of the different independent

crossing results break down, it is interesting how far off the adiabatic result of

Shimshoni and Gefen goes from the correct numerical result. It does give correct

values for small ε, but then again, all of the double Landau-Zener results do because

the modulation of the enveloping curve cuts them off. With larger values of ε it

remains barely visible above the ε-axis.

Some insight to this and to the general behaviour of the results in this approx-

imation can be attained by studying the phases, that is, the arguments in the sine

term in the independent crossing result and same time taking to account the be-

haviour of the modulation of the envelope curve. We have plotted these phases in

the figures 14 and 15. For the adiabatic result of Shimshoni and Gefen the phase

consists only of the dynamical phase accumulated by the diabatic energy level as

given by the equation (3.7). This phase term is small when either µ is small or ε

is large. The diabatic result on the other hand, differs from it only by a constant

factor of π/4.

It is readily seen that all of the different phases behave similarly by decreasing

quite rapidly with increasing ε and fixed µ. The general behaviour is that as we

increase the value of µ, the phases get larger values and that the relative differences
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between them get smaller. Also, the diabatic phase of Shimshoni and Gefen tends

to our result in the diabatic region which is not surprising but the adiabatic phase

does not in general do the same in the adiabatic region.

Of course, the absolute value of the phases is not really the essential quantity

here. Because the sine squared has a periodicity of π we are more interested in the

remainder when the values of the phases are divided by π. However, the absolute

value of the phase does tell us something about the number of periods of oscillation

in the parameter region. Another important quantity is the rate of the change of

the phase as a function of ε which is related to the periods of these oscillations. As

the absolute values of the phase functions get larger along with the parameter µ

but still decrease to values near zero we see that the range of the values the phase

gets is a higher multiple of π and therefore the number of periods of oscillations is

larger. Similarly, when the phases decrease rapidly the period of these oscillations is

small and as mentioned above, the rapid decrease of the phases happen with small

ε. On the other hand, we can also see that there still is no oscillations when µ is

sufficiently small. The reason for this is that the enveloping curve suppresses them

as the maximum of the enveloping curve is given by the equation εmax = 1
µ

(
π

2 ln 2

)2.

As µ increases the maximum value is obtained with smaller ε and the oscillations

become visible.

From the figures 12 - 15, for example, we see that although the different phases

behave similarly and are relatively close to each other the values of the different

transition probabilities at some given point may differ largely due to rapid oscil-

lations. It is therefore evident that the correct way to calculate the phases in the

parabolic model is crucially important.
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Figure 12. A comparison between the different independent crossing results which
differ from each other only by the phase terms in the sine function. The populations
are plotted here for the cases µ = 0.1 and µ = 1, from top to bottom. Our result is
again represented by the red line, the black line being again the numerical result. The
adiabatic and diabatic expressions for the double Landau-Zener result of Shimshoni
and Gefen and are plotted as a dark and light green lines, respectively.
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Figure 13. This is similar to the previous figure but here are the cases for µ = 3 and
µ = 5.
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Figure 14. In this figure we have plotted the arguments Θ of the sine term in
the different independent crossing approximations as a function of ε for the cases
µ = 0.1 and µ = 1. That is, the red line represents the overall phase term again for
the double Landau-Zener result obtained in the section 4.1 while the light and dark
green are respectively the corresponding sudden and adiabatic results of Gefen and
Shimshoni.
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Figure 15. This figure is similar to previous one but containing the case µ = 3. An
inset has been added in order to make the behaviours of the different phases for
large values of the parameter ε more clear.

Figure 16. This figure is similar to previous one but it contains the case µ = 5.
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8 Conclusions

In this thesis we have studied simple level crossing models and some of the related

phenomena in the two-level approximation. It was seen that even such simple sys-

tems could contain quite diverse behaviour and that solving the time evolution of

the system is in general difficult. It was also seen that already the most simple of

the level crossing models, the Landau-Zener model, was able to give some essen-

tial behaviour of the more complex systems. The emphasis, however, was on the

dynamics of the parabolic level crossing model.

We considered many different approximative methods to obtain the asymptotic

transition probabilities. In particular, the DDP method was discussed in depth

and its derivation was performed in detail although perhaps other approximation

methods turned out to be more useful in terms of simplicity and larger parameter

region of applicability. The importance of the DDP method, however, is its rigorous

mathematical basis and the fact that quite often the physical systems under study

do behave nearly adiabatically and in those cases the numerical methods also get

more time-consuming, therefore emphasising the need for analytical methods.

By slightly modifying the DDP method one could get an approximation that

works beyond the adiabatic limit, although the derivation of the modified DDP

method was largely of heuristic nature. However, it works nicely over the validity

region of the double Landau-Zener result and contains also parameter regions where

the assumption of independent crossings fails. In the tunneling cases the DDP

method was found to give better results although in general the approximative

method were less succesful than in the double crossing regions. We can conclude

that the modified DDP method gives surprisingly good results but it would be

important to have a more rigorous and firm derivation for it.

In this study we also recalculated and confirmed many of the results obtained in

the reference [28], including the numerical results as well as some others. We also
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compared these results to the results in the reference [41] which is something that

has not been previously done. We found that there were a lot of similarities between

the approach used in [41] and for example the DDP method but overall our results

seemed to be in a better agreement with the numerical calculations. In particular,

our expression for the phases in the independent approximation gave considerably

better results. In any case, the double crossing character of the parabolic model

highlighted the importance of the correct calculation of the phases.
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