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Abstract

The properties and cosmological importance of a class of non-topological solitons, Q-
balls, are studied. Aspects of Q-ball solutions and Q-ball cosmology discussed in the
literature are reviewed. Q-balls are particularly considered in the Minimal Supersym-
metric Standard Model with supersymmetry broken by a hidden sector mechanism
mediated by either gravity or gauge interactions.

Q-ball profiles, charge-energy relations and evaporation rates for realistic Q-ball
profiles are calculated for general polynomial potentials and for the gravity mediated
scenario. In all of the cases, the evaporation rates are found to increase with decreasing
charge.

Q-ball collisions are studied by numerical means in the two supersymmetry break-
ing scenarios. It is noted that the collision processes can be divided into three types:
fusion, charge transfer and elastic scattering. Cross-sections are calculated for the
different types of processes in the different scenarios.

The formation of Q-balls from the fragmentation of the Affleck-Dine -condensate
is studied by numerical and analytical means. The charge distribution is found to
depend strongly on the initial energy-charge ratio of the condensate. The final state
is typically noted to consist of Q- and anti-Q-balls in a state of maximum entropy.

By studying the relaxation of excited Q-balls the rate at which excess energy can
be emitted is calculated in the gravity mediated scenario. The Q-ball is also found to
withstand excess energy well without significant charge loss. The possible cosmological
consequences of these Q-ball properties are discussed.
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Summary of the research papers

Paper I: Analytical and numerical properties of Q-balls

Q-ball solutions are studied in three different types of potentials: two polynomial
potentials and a potential corresponding to a D-flat direction in the MSSM with SUSY
broken by a gravity mediated mechanism. The profiles and charge-energy relations of
Q-balls in these potentials are calculated. Analytical criteria are derived to check
whether stable Q-balls exist in the thick-wall limit for a general polynomial potential.
Evaporation rates are calculated numerically in the perfect thin-wall limit and for
realistic Q-ball profiles. In each case the evaporation rate is found to increase with
decreasing charge.

Paper II: Q-ball collisions in the MSSM: gravity-mediated supersymmetry
breaking

Q-ball collisions are studied in the Minimal Supersymmetric Standard Model where
supersymmetry has been broken by a gravitationally coupled hidden sector. It is found
that the relative phase difference between the colliding Q-balls determines the type
of the collision process at velocities v < 1072. The total cross-sections, fusion cross-
sections and charge transfer cross-sections are calculated by numerical simulations
on a two dimensional lattice. The charge transfer cross-section, as well as the total
cross-section, is found to be larger than the geometric cross-section whereas the fusion
cross-section is smaller than the geometric one.

Paper III: Q-ball collisions in the MSSM: gauge-mediated supersymmetry
breaking

Collisions of Q-balls are simulated numerically on a two dimensional lattice in the
MSSM where SUSY has been broken at a low energy scale via a gauge mediated
mechanism. The total and fusion cross-sections are calculated over a range of charges.
The total and geometric cross-sections appear to converge with increasing charge. The
fusion cross-section for large, cosmologically interesting, Q-balls is noted to be larger
than 60% of the geometric cross-section.

Paper IV: Numerical simulations of fragmentation of the Affleck-Dine con-
densate

The fragmentation of the Affleck-Dine condensate into Q-balls is studied by numerical
and analytical means. On the basis of analytical arguments, it is expected that the
number of Q-balls and anti-Q-balls in the final state is strongly dependent on the
initial ratio of energy and charge density of the condensate, z = p/mqg. If z = 1
only Q-balls are expected to appear whereas if z > 1, an almost equal number of
QQ-balls and anti-Q-balls is expected. Furthermore, if the initial energy density of the
condensate is large compared to the charge density, the final state should be in a state
of maximum entropy with most of the balls small and relativistic. The expected be-
haviour on the basis of analytical arguments is seen in numerical simulations on a two
dimensional lattice. The total charge in the final state in Q-balls is found to be almost
equal to the total charge in anti-Q-balls and much larger than the original charge in
in the condensate for z > 1.



Paper V: Excited Q-balls in the MSSM with gravity mediated supersym-
metry breaking

The dynamics of excited Q-balls are studied in the context of the MSSM with gravita-
tionally broken SUSY. The rate at which Q-balls can emit excess energy is calculated
for a range of charges and initial excess energies. The emission rate is found to be
weakly dependent on the charge and initial excess energy in the Q-ball and to be sup-
pressed by O(107%) compared to the dynamical scale of the field, m. It is also noted
that a Q-ball, at least in this scenario, is a very robust object that can withstand large
amounts of excess energy without losing a significant amount of its charge. The sig-
nificance of these Q-ball properties for thermal dissociation and dissolution processes
is discussed.

10



Chapter 1

Introduction

Supersymmetry has over the last decades been one of the most studied theories that
attempts to understand nature at high energies, regardless of the lack of direct experi-
mental evidence of its existence. In addition to solving technical difficulties associated
with quantum field theories, it also provides us with a rich phenomenology at varying
scales of energy. In the present day collider experiments the obvious objective is to
search for hints of supersymmetric particles but supersymmetry can also reveal its
presence in other ways. Especially the extreme conditions present in the very early
moments of the universe may have restored supersymmetry as an unbroken symmetry
of nature, which can have far reaching cosmological consequences, up till present day.

The field theoretical content of supersymmetric theories is such that extended
objects can typically exist. Localized bound states of supersymmetric particles that
are non-dispersive in time are naturally present in many supersymmetric extensions
of the Standard Model. These lumps of scalar particles, Q-balls, can have a number
of phenomenological implications both at present and especially in the early universe.
Understanding their properties is necessary to explore the possible role that Q-balls
may play in cosmology.

In this work, the properties and cosmological significance of Q-balls in supersym-
metric theories are discussed, in addition to studying Q-balls at a more general level.
Analytical and numerical methods are utilized to understand the qualitative and quan-
titative features of Q-balls and their importance to cosmology.

The introductory review part is organized as follows: In Chapter 2 non-topological
solitons are introduced as a general class of extended objects to which Q-balls be-
long. General features of Q-ball solutions are discussed in Chapter 3. Q-balls in
supersymmetric theories are studied in Chapter 4 along with a brief look at different
supersymmetry breaking mechanisms. The possibility of producing Q-balls by cosmo-
logical means is discussed in Chapter 5 and different properties of Q-balls are described
in Chapter 6. In Chapter 7 aspects of Q-ball cosmology and detection possibilities are
discussed. The work is summarized in Chapter 8.

11
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Chapter 2

Non-topological solitons

Stable, localized bound states that have a finite shape and that can travel with a
constant velocity are of interest in many different branches of physics. Possibly the
most famous of such solutions is the Korteweg-de Vries soliton [1] that describes the
motion of solitary waves in shallow water in one spatial dimension. Such localized
solutions in three dimensions are obviously intriguing as models of extended objects.
However, a stable, localized solution in more than two spatial dimensions is severely
restricted by a theorem stating that no time-independent solution of this kind exists
[2], i.e. the equation "
2 2, _ Of(o
Vi - gfo =5 (2.1)
has no time-independent, localized solutions for any f(¢). Put in another way, any
such configuration must be time dependent.

The appropriate solutions in relativistic local field theories that have been con-
sidered in the literature can be classified into two types: topological solitons! and
non-topological solitons [3]. The feature that distinguishes the two types from one
another is the requirement of distinct vacuum states. In the topological case the
boundary condition at infinity for a soliton state differs from the boundary condition
of the physical vacuum state, implying degenerate vacuum states. In the case of non-
topological solitons, a degenerate vacuum is not needed as the boundary conditions at
infinity are equal for the soliton and vacuum states.

Non-topological solitons as solutions to classical field theories were first introduced
and studied in [4, 5]. The general class of non-topological solitons has since then
been split into a variety of types that correspond to different types of potentials and
fields. Typically the models investigated involve one or two scalar fields, but also
fermion and gauge fields have been studied. The types of different non-topological
solitons discussed in the literature include Q-balls [6, 7, 8] (abelian and non-abelian),
abnormal nuclei [9], quark nuggets [10], cosmic neutrino balls [11], soliton stars [12],
Q-rings [13], and Q-lumps [14]. Fermionic non-topological solitons have been studied
as models of hadrons [15] and also in connection to possible Q-balls in superfluid
3He [16]. Some examples of the rich variety of Q-balls in different types of theories,
other than Q-balls associated with supersymmetry that this work mostly discusses,
are reviewed in Sect. 6.4.

'Tt should be noted that the word soliton is used very loosely in this context to describe stable,
localized bound states that are non-dispersive. In a strict sense of the word, these objects are generally
not solitons as they do not conserve their shapes and charges in collisions.

13



14 CHAPTER 2. NON-TOPOLOGICAL SOLITONS

A typical general model that can have non-topological soliton solutions, consists of
a (real) scalar field, o, that couples to another field, ¢, that is either a complex scalar
field (see e.g. [3, 17]) or a fermion field (see e.g. [15]). The ¢ field carries a conserved
quantum number and is ”confined” by the non-zero vacuum expectation value of the
o field, og. As a concrete example, consider a two scalar theory that is described by
the Lagrangian density [17, 18]

L = 0,60 + %(3#0)2 — hed* (o — 00)? — U(0), (2.2)
Ule) = %(02 —03)* + %00(0 —09)® + A, (2.3)

where ¢ is a complex scalar field, o is a real scalar field, h is the coupling constant
and )\;, A are constants. This theory can have non-topological soliton solutions. The
constants are chosen such that in addition to the local minimum at ¢ = o, there exists
a global minimum at 0 = ¢ such that U(o_) = 0. The Lagrangian is invariant under
U(1) transformations of the ¢ field and hence there is a conserved Nother charge,
@, in the system. As an example, consider the potential depicted in Fig. 2.1 (A\; =
1, Ay = 1/3, A =15/8). Due to the coupling term in the Lagrangian, the ¢ field is

U(o)

o
Figure 2.1: An example potential for theories with non-topological soliton solutions

massless at the local minimum, ¢ = oy = 1, and massive, mi = h(o_ — 0¢)? at the
true minimum, o = o_ = —2. A configuration of massless ¢ particles near oy can be
trapped due to the mass gap for sufficiently large charge. The o field hence acts as
a confining field for the ¢ particles. Such a configuration can be energetically stable
(to put more precisely, there exists a time-dependent spherical configuration of ¢ with
charge () whose energy is less than that of free ¢ scalars carrying an equal amount of
charge) [17, 18].



Chapter 3
Q-balls

A class of non-topological solitons that has been studied more recently by several
authors is the solution first discussed in [4, 7] and later named as Q-balls by Coleman
[6]. The term Q-ball was associated to a class of non-topological solitons where solitons
are described only by a single scalar field. In the context of the example in the previous
chapter, a single field now plays the role of both the o and ¢ fields so that the field is
self-containing. This obviously sets limitations for choosing the potential U(¢) since
now one clearly must require that U(¢) = U(|¢|?) and that localized solutions exist in
the theory. In the following, the Q-ball solution is considered in more detail in order
to gain some insight into the different aspects of Q-balls.

Consider a scalar field theory in D space dimensions with a global U(1)-symmetry
and described by the Lagrangian density

L= 0,60"¢" — U(¢"9). (3.1)
By Nother’s theorem there exists a conserved current
j* = i(¢0"¢" — ¢"0" ) (3-2)
and a corresponding conserved charge
Q= /jo dPs. (3.3)

The other conserved quantity, energy, is given by
E= [167 + Vol + U(ls)] ds. (3.4)

We wish to find the minimum energy solution in the sector of fixed charge i.e.
we want to minimize E while keeping () fixed. This is conveniently done by using a
Lagrange multiplier ¢.e. we wish to minimize

Eo=E-wlQ—i [(60°9" - 9"0°) d”a), (3.5)
where w is the Lagrange multiplier. Now we need to find the extremum of E, while

varying ¢ and w independently. Let us first vary ¢, ¢ — ¢+ ¢, ¢* — ¢* + d¢*, while
keeping w fixed and requiring that 0 E,, = 0. Doing the variation, integrating by parts,

15



16 CHAPTER 3. Q-BALLS

and using the equation of motion of the field ¢, we find that the condition </5— weo =10
must hold. Hence we find that the field can be written as

B(t, x) = “"p(x), (3.6)

where ¢ can be chosen to be real due to the gauge invariance. The charge and energy
of the configuration (3.6) are

Q = 2w/<p2 dPz, (3.7)
B = [l + (V) + U(e)] ds, (338)

and the equation of motion is

U(p?)

2 2 _
Vo +wo—¢ a2 =0. (3.9)
It now remains to extremize
E= /[(V€0)2 + U (¢%)] d°z + wQ, (3.10)
where
Uas(¢”) = U(p%) — w?¢?, (3.11)

with respect to variations of ¢ and w (recalling that Q is fixed). We wish to find
localized solutions that vanish at infinity and study their energies in order to determine
the ground state of the theory.

The spherical rearrangement of function ¢, where ¢ is positive and vanishing at
infinity, is defined as the spherically symmetric monotone decreasing function g, for
which condition

p{zlor(z) > M} = pfzlp(x) > M}, (3.12)
where M is a positive number and p the Lebesgue measure, holds [6]. We can choose
@ to be positive due to the gauge freedom and require that it vanishes at infinity.

Clearly, such a rearrangement leaves the charge and the integral of U, (¢) unchanged.
In addition, the spherical rearrangement theorem [20] states that

/ (V)2dPz > / (Vr)2dPa. (3.13)

We can hence minimize (3.10) by choosing ¢ to be spherically symmetric and monotone
decreasing. Equation (3.9) now becomes

dr? rodr LR dy?

=0. (3.14)

Localized, smooth solutions of (3.14) must have the properties p(r) — oo as r — 0
and ¢'(0) = 0.

So far we have not set any other requirements for the potential U than the U(1)-
symmetry. By convention we choose U(0) = 0, require that the origin is a global
minimum, and that the tree level mass of a free ¢ scalar is m, that is

au(lel®)|  _ o

S b Y = 3.15
dl¢?  lg=o (8.15)
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For Q-balls to exist in the theory, the potential must be such that U(|¢|?)/|#|* has a
minimum that is not located at the origin [6], i.e. that

U(|¢I2)) U(l¢ml)
[k |rm?

In other words, we require that the potential U grows more slowly than m?|¢|? over
some range of ¢ (there is an additional technical restriction which assures that the
minimum of U/|¢|? is not at ¢ = 0 or at ¢ — oo [6]).

We can get an intuitive understanding of the solutions of Eq. (3.14) and the
conditions for the potential U(|¢|) by studying a mechanical analogy: Consider a
point particle moving in the potential —Z(U(¢?) — w?¢?) = V,,(¢?). Equation (3.14)
then becomes

<m?, ¢m #0. (3.16)

min (

d? D—-1d dV,(p?

Lo . g\, (%)

dr? r o dr d?
which can be thought to describe the motion of the particle in the potential V,, with
¢ describing the “position” of the particle and 7 the “time”. Integrating (3.17) with
respect to r we get

=0, (3.17)

(d—go)2 + V() = V(o) = —=(D — 1) / i(dso(f)

dr o 7 dr

1

5 )2dF, (3.18)

where it has been assumed that the particle starts at rest at ¢(0) = . From (3
it is clear that the “energy” of the particle, ¢"/2 + V,,, is conserved only for D
and that for D > 1, the system is dissipative.

A generic effective potential that satisfies the conditions required for Q-balls to
exist in the theory is depicted in Fig. 3.1. The solution that satisfies the conditions

18)
=1

V()

: %

Figure 3.1: A generic potential that allows Q-ball solutions

¢'(0) = 0 and ¢(r — 00) = 0 corresponds in the mechanical analogy to a point particle
that is released at rest at such a point that it just reaches the origin. From Fig. 3.1
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it is clear that we must release the particle on the hill for it to reach the origin. In
the one dimensional case, D = 1, there is no dissipation and the point at which the
particle must start, ¢, is clearly at the same level as the origin, V,,(¢o) = V,,(0) = 0.
When there is dissipation present in the system, we must then release the particle at
a higher point for it to reach ¢ = 0. Note that the dissipation term is proportional to
r~1, or inversely proportional to “time” in the mechanical analogy, which means that
the dissipation term can be made small if the particle starts to slide along the potential
very slowly. It is then clear that in the case D > 1, there exists a suitable solution for
a type of potential shown in Fig. 3.1: If a particle is released too close to the “valley”,
it will never reach the origin. If, on the other hand, the particle is initially placed very
close to the top of the hill, ¢, it can spend a very long time near its initial position
during which the dissipation term becomes negligible and the particle will overshoot.
The required solution is hence located somewhere in between these two cases.

We can now understand the requirement for the potential (3.16). It assures that
for some range of w the potential U, has a global minimum somewhere away from the
origin, or U, = 0 has non-zero solutions, which in turn guarantees that solutions exist.
As an example, a model polynomial potential, U, () = ©? —0.03p* +0.001¢° — w?y?,
is shown in Fig. 3.2 for different choices of w.

5 /
3 I ' -
1 I -
s |
5
-1 L |
""""""""" U(¢)—m2¢2
-3 - U((I))—(JOC ¢ |
***** U@
-5 ‘ |
0 2 4 p

Figure 3.2: A polynomial potential with varying value of w

The critical value w, corresponds to the point at which Q-ball solutions start to
exist, i.e. the effective potential starts to dip below zero. Q-balls hence exist for w in
the range w, < w < m. The upper limit, m, is set by the requirement that dU/dy? > 0
at the origin, or in the context of the mechanical analogy, that the origin is located
on top of a hill which enables the particle to stop at the origin.

Consider then the energy of a Q-ball with some charge @ (recall that due to the
U(1)-symmetry, charge is conserved in the theory). If the energy of the Q-ball con-
figuration, Eg, is less than the energy, m(), of a collection of free scalars with an
equal total charge, @), the Q-ball is energetically stable. In other words, to have an
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energetically stable Q-ball, condition
EQ < mQ , (319)

must hold. The stable Q-ball solution is hence the ground state of the theory in the
sector of fixed charge. In general, the question of finding the energy and charge of a
Q-ball configuration is a numerical problem. In some limiting cases, namely in the
thin- and thick-wall limits, analytical approximations can be utilized.

3.1 Thin-wall approximation

Consider a spherical configuration with some associated charge ) whose surface is thin
compared to its volume so that its profile can be approximated by ¢(r) & ¢f(r — R).
The energy and charge of such a configuration are obtained from (3.7) and (3.8)
(omitting all contributions coming from the surface terms):

Q = 2weiV (3.20)
E = WV +U(ps)V, (3.21)

where V' is the volume of a D dimensional sphere with radius R,

D
L - (3.22)
I'(D/2+1)
From (3.20) and (3.21) we can eliminate w, so that the energy of the Q-ball in terms

of charge and volume is
2

E(V) = Ve + VU(3). (3.23)

For a fixed charge Q, E(V') obtains its minimum at Vi, = Q/(21/U(03)¢?). Inserting
Vinin back into (3.23), we find that

E 1 U(p3)

Q \ ¢

(3.24)

Consider now the potential U(y) as w approaches w, from above. The minimum of
Uy, defined in (3.11), then becomes less and less negative. In this limit ¢g, which in the
mechanical analogy corresponds to the starting point of the particle, must approach
the minimum point of the potential, ¢., so that it spends an arbitrarily long time close
to it in order to minimize dissipation. The profile of the field configuration is hence
such that the value of the field stays approximately constant up to a large radius after
which it rapidly decreases (close) to zero, which is exactly what is assumed in the
thin-wall approximation. We can hence approximate w by w, and ¢, by ¢y (i.e. , the
minimum of U, (p?) is at ¢p). In this limit the minimum of U, (p?) is approximately
at the same point as the minimum of U, (¢?)/¢?, i.e. at ¢p. On the other hand, the
minimum of U(y?)/¢? is at the same point as the minimum of U, (¢?)/¢?, implying

) <m?, (3.25)
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due to (3.16). From (3.24) it then follows that £/Q < m and the Q-ball is stable. The
condition (3.16) therefore guarantees that the potential is such that Q-ball solutions
exist and are energetically stable in the thin-wall limit.
By the time the particle starts to roll, the dissipation term is negligible and the
effective equation of motion during the transition ¢y ~ ¢. — 0 is therefore
o AUy (¢%)

il el (3.26)

Integrating this with respect to r gives

(%2

o) Uuo (%) = 0 (3.27)

(the integral vanishes since ¢' — 0 and U, — 0 as 7 — o0). The energy of a thin-walled
Q-ball can be approximated by using (3.27):

d
E o~ [ 150+ UJa% +wQ
aVp

dr
~ / 2UdeDx+ch
Vo
~ LRDI/ 2 /U,, doo + w,Q (3.28)
~ (D/2+ wc QD Wely, .

where R is the radius of the thin-walled Q-ball. Using (3.22) we see that the energy
of the thin-walled Q-ball grows with charge as

7D/2

E(Q) = w.Q + D(W)I/D(Zw o2 Q / 2\/Tcd(l0 (3:29)

It is worth noting that we have actually not showed that the solution is a minimum
energy configuration but just a stationary point of E at fixed ). Coleman [6] has shown
that for large ) the Q-ball solution is the minimum energy configuration and that Q-
balls exist if condition (3.19) holds. It has also been shown that if stable Q-balls exist
at some charge @), Q-balls in the thin-wall limit will also be stable for any @' > @ [6].

3.2 Thick-wall approximation

On the basis of the thin-wall approximation one might be lead to believe that only
Q-balls with large charges exist. However, Kusenko has showed by studying Q-balls
in the thick-wall limit [21], that small stable Q-balls exist in the potential U(yp) =
sm?p? — Ap® + \p* This was generalized in Paper I, where a more general potential
was considered in D dimensions in the thick-wall approximation.

The basic idea of the thick-wall approximation is simple: Consider a Q-ball config-
uration corresponding to some value of w > w,.. As w is increased, U, dips deeper and
(o moves closer to the origin. In the language of the mechanical analogy, the particle
is released farther from the top of the hill as the height of the hill increases. At some
point the hill is so high that the particle is released far away from the top and the
effect of the top can be ignored, i.e. we only need to consider the two lowest order
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terms in the potential. Clearly this cannot be done for an arbitrary potential since
one can easily device a case where the height of the hill cannot be increased enough
(recall that w is bounded from above by m) for the higher order terms to be negligi-
ble. Therefore, the condition (3.16) is not sufficient to determine whether thick-walled
Q-ball solutions are allowed in an arbitrary potential.

To illustrate these arguments, consider a general potential

U(p) = m*@* = Ap™ + NP + O(pP 1), (3.30)

where A > 2, B > A and A\, )\ are positive. In the thick-wall limit, the higher order
terms can be neglected so that

Uy(p) = (m? — w?)? — M. (3.31)

We hence require that (m? — w?)p2 ~ Apg > Mg (and that the higher order terms
can be neglected), from which it follows that

X < AT (m2 — w?) 57 (3.32)

Introducing dimensionless space-time coordinates, & = x;1/m? — w? and re-scaling the
field ¢ = (7> ))1/(‘4_2), the energy functional (3.10) can be written as

(m2 —w?

€y = )\ﬁ(m2 - wQ)CHS;;‘ + w@, (3.33)

where S;;} is the action of the bounce in the dimensionless potential ¥? — )4 and
(= %. For Q-balls to exist in the thick-wall limit, (3.33) must have a minimum
in the range 0 < w < m, and the minimum energy must less than m() for the Q-ball

to be energetically stable. The derivative of (3.33) with respect to w is

Oey
ow

Clearly, if ¢ < —1, (3.33) will be monotone increasing in the considered range and no
local energy minimum exists. If —1 < ¢ < 0, (3.34) can vanish in the required range,
but looking at the second derivative of (3.33) we find that the extremum is a local
maximum and no stable Q-balls exist in the thick-wall limit. The second derivative of
(3.33) with respect to w has a zero at

= Q — 2ATASH (¢ + w(m® — )’ (3.34)

2
2 m

W= T (3.35)

which for ¢ > 0 is in the range 0 < w < m. In order to have a local minimum of ¢, in
the appropriate range, the minimum of (3.34) must be negative because then (3.34)
will have two zeros and hence ¢, will have a local minimum and a maximum in the
appropriate range. Since

o€,

ow
for ¢ > 0, the local minimum will have energy less than m(). The requirement for the
minimum of de/0w to be negative sets an upper limit for the charge,

_ Oe,

w=m  Ow

=0, (3.36)

w=0

Q < 2AFASH(C + 1)m*H(20)4(1 + 2¢) 512, (3.37)
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To summarize, for Q-balls to exist in the thick-wall limit in the potential (3.30)
the following conditions must hold:

A—B

N o< )\%(mQ—wQ)fF2
0 < 442D —AD (3.38)
Q < 2ATASH(C+ 1)mH(20)4(1 +2¢) ¢

For example, in three dimensions (D = 3), Q-balls in the thick-wall limit can only
exist if A < 10/3. The case A = 3 was considered in [21] where it was shown that
Q-balls exist at the thick-wall limit. If A = 4, it is easy to see that the only extremum
point is an energy maximum for which E = mQ./1+ (S;,/A\Q)?> > mQ. Note how
the requirement for ¢ > 0 severely restricts the allowed integer values of A so that for
D > 3 Q-balls do not exist in the thick wall limit in a potential of the form (3.30) *.

The charge in the thick-wall limit was also studied in Paper I, where it was found
that

Q ~ (m? — w?)°, (3.39)

as w tends to m. Hence, since ¢ > 0, the charge of a thick-walled Q-ball vanishes in
the w — m limit.

3.3 Q-ball solutions

Q-balls in the two limits discussed in the previous sections are energetically stable,
because they fulfill the energy condition (3.19). In a general case, however, the question
of Q-ball stability is a numerical problem. To address it, one first needs to solve the Q-
ball profile by solving (3.14) with the initial conditions ¢’(0) = 0, ¢(r — c0) — 0. The
initial value of the field, ¢(0), is left as a free parameter and is in practice determined
by trial and error.

To illustrate the Q-ball solutions, consider the following two different polynomial
potentials:

1

Ui(p) = 5mig” —onp' + g (3.40)
1 o A

Ualp) = 5m3e” - 32903 + e (3.41)

that were studied in Paper I. Their profiles and energy versus charge curves are shown
in Figs. 3.3 and 3.4 (D = 3) [23]. The parameter values were chosen as m; = 1, my =
1, Ay =0.001, A» =0.01, and the « values were such that the minimum is degenerate
at w = 0.

From the figures it can be seen how the profiles mutate from a thick-walled type
to a more thin-walled configuration as w decreases. Note that the profiles appear
quite similar in the two cases. However, when one considers the energy versus charge
behaviour, there is a clear difference. In both cases, the charge of the Q-ball starts to
decrease as w increases as is expected from the general behaviour of the Q-ball solution.
In the first case, Fig. 3.3, the energy of the Q-ball decreases more slowly so that at

'Recently, the thick-wall limit has been further studied in [22]. It was noted that in three dimen-
sions, the thick-wall limit is a bad approximation for A > 6.
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some point it crosses the stability line £ = m(@). When w is increased even further,
the energy curve reaches a turning point after which both energy and charge start to
increase and asymptotically approach the stability line from above. This is exactly
what we expect on the basis of the analytical arguments: Since A = 4 and D = 3,
¢ < 0, and from (3.38) we expect that Q-balls do not satisfy the energy condition
(3.19) in the thick-wall limit. Furthermore, looking at (3.39), we can seen that as
w — m, Q = oco. In the second case, Fig. 3.4, the energy of the Q-ball decrease with
increasing w so that the energy is below the stability line at all points. Also the energy
curve tends to the origin as charge decreases. This is again in accordance with the
analytical expectations, since now A = 3, D = 3, and hence ¢ > 0. From (3.38) and
(3.39) we expect that Q-balls are energetically stable in the thick-wall limit and that

Q—0

as w — m.
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Chapter 4

Q-balls in supersymmetric theories

For looking at the consequences of Q-balls for phenomenology and in cosmology, one
should obviously consider Q-balls in realistic theories. Based on the discussion in
Chapter 3, in order for the theory to have QQ-balls in its spectrum, some requirements
must be satisfied. First of all, we need to have a suitable U(1)-symmetry in order to
have a conserved charge to keep the QQ-balls stable. In this work we have concentrated
on global U(1)-symmetry, but Q-balls associated with a local U(1)-symmetry have
also been considered [24]. In addition, we need to have a scalar field in the theory that
carries one of these charges, and a suitably flat scalar potential with a global minimum
at the origin (Q-balls associated with scalar fields that carry different charges have been
considered in [19]). Clearly, the Standard Model (SM) does not satisfy these conditions
so one must consider extensions of the Standard Model.

Supersymmetric (SUSY) extensions of the SM have a large number of scalar fields
that commonly have flat directions in their potential. In particular, the Minimally
Supersymmetric Standard Model (MSSM) [25] has several flat directions in its scalar
potential where the scalar potential nearly vanishes [26, 27]. One can then expect
that the MSSM may support Q-balls in its scalar spectrum, at least for some range of
parameters.

For any realistic supersymmetric theory, SUSY breaking will play a role in deter-
mining the details of the model. Hence the form of the scalar potential in the MSSM
is dependent on the exact nature and method of SUSY breaking. To understand the
implications of the SUSY breaking mechanism for the scalar potential along a flat
direction, different breaking scenarios are briefly discussed in the following.

4.1 SUSY breaking

From experiments we know that supersymmetry is necessarily a broken symmetry of
nature at energies accessible to us because of the lack of experimental evidence of
supersymmetric particles. The question of understanding how SUSY is broken in the
theory is therefore important. While breaking supersymmetry, one obviously wishes
to retain the properties of SUSY (namely the cancellation of quadratic divergences)
that makes it so desirable. A pragmatic approach to SUSY breaking, that leaves many
questions unanswered, is to simply add ”soft” SUSY breaking terms to the Lagrangian
("soft” means that the cancellation of quadratic divergences remains) [28]. Such an
approach, however, leaves one with the question of the origin of the breaking terms.

25
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Another, maybe a more elegant, approach is to break SUSY spontaneously.

Breaking SUSY dynamically in the context of global supersymmetry, has some
difficulties associated with it. A non-supersymmetric vacuum implies that the vacuum
has positive energy, which might be problematic for cosmology . Furthermore, the
supertrace relations (see e.g. [25]) associated with F- and/or D-term breaking lead to
troublesome constraints. For example, in pure F-term breaking the following relation
holds [29] (at tree level for renormalizable theories):

STeM =" J(-1)*(2J +1)TtM? = 0, (4.1)

where J is the spin and M ; the mass matrix of all particles with spin J. Making
all of the fermionic superpartners heavy enough not to be seen in present day collider
experiments is hence quite problematic due to (4.1).

A way to solve the difficulty in building phenomenologically viable models is to
consider SUSY breaking in some sector that is "hidden” to us. The hidden sector then
couples to the ”visible” sector either via loops or non-renormalizable couplings, hence
avoiding the rigorous constraints coming from the supertrace relations. Furthermore,
if one considers in more detail the pragmatic approach of simply adding the soft
breaking terms to the Lagrangian, one finds that the parameter space of the MSSM
is constrained due to phenomenology. Problems arise due to the constraints on flavor
changing neutral currents and CP violation [30].

A common way to solve these problems is to consider mechanisms which communi-
cate SUSY-breaking from the hidden sector in such a way, that the problems present
in the MSSM with arbitrary parameters are addressed. In addition, such models ob-
viously greatly reduce the large number of free parameters that plague the MSSM.

4.2 Gravity mediated SUSY breaking

A conventional approach to SUSY breaking is the one based on local supersymmetry,
which naturally includes gravity and is hence often called supergravity (for an intro-
duction, see e.g. [25, 31, 32]). In promoting a globally (N = 1) supersymmetric theory
to a local one, one finds that now the couplings depend, in addition to the superpoten-
tial and the gauge kinetic function, also on the so-called Kahler potential, G (2%, z}),
where z; are the scalar components of the chiral multiplets. The scalar potential is
given in terms of the Kahler potential as

1
V=—e%3+G(G G+ §f;1DaDﬁ, (4.2)

where G; = 0G/0z;, D* = gGinj z;, g is the gauge coupling constant, Tz-aj the group
generators and f,s the gauge tensor [25]. Comparing with the case of global SUSY,
we see that we can now have (Gx) # 0, (D?) # 0, i.e. , broken SUSY with a vanishing
vacuum energy. However, setting the cosmological constant to zero requires fine tuning
[25] (and, in light of the recent supernova results [33], may even be disfavored).
Supersymmetry can be broken dynamically by setting a non-vanishing vacuum
expectation value (vev) to some of the fields in the hidden sector of the theory. Since
the natural scale of the hidden sector is the Planck scale, the vacuum expectation
values of the fields are of order Mp,. The hidden sector is chosen such that the fields
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that have large vevs are gauge singlets so that they do not have gauge couplings to
the MSSM fields. The other couplings are all suppressed by powers of Mp;, hence the
sector is hidden from the MSSM, expect that soft breaking terms now appear in the
effective low energy theory through Planck scale suppressed operators. Supergravity
hence provides a way to couple the visible sector fields to the hidden sector such that
the couplings are well suppressed and soft breaking naturally follows from the high
energy theory. The soft breaking terms can still be chosen quite freely by appropriate
choices of the Kahler potential. However, by imposing a global U(/N)-symmetry on
the Kahler metric, (G')%, where N is the number of superfields on the visible sector,
SUSY breaking in the visible sector can be described by only a few parameters [34].

4.3 Gauge mediated SUSY breaking

In addition to the gravity mediated scenario, another commonly considered method
is to transit SUSY breaking to the visible sector by gauge interactions [35]. This
has the advantage that the communicating mechanism of SUSY breaking respects the
flavor symmetry of the SM, whereas in the gravity mediated mechanism this is not
necessarily guaranteed by the nature of the breaking mechanism.

The basic principle of the gauge mediated SUSY breaking mechanism is that the
supersymmetric partners of the Standard Model fermions receive the dominant part
of their mass via gauge interactions with the hidden sector. As an example, consider
a generic model [30, 36] with a superpotential that includes a term

W = AX9Y + ..., (4.3)

where v is a superfield with SM couplings but is not in the spectrum of MSSM and X
is a SM singlet superfield in the hidden sector that gets non-zero vacuum expectation
values in the D- and F-directions. The scalar vev of X gives masses to the fermionic
component of 1 so that mj; = A(X). The masses of the scalar components are mi =
A2(X)2 £ \(Fx), where (Fy) is the vev of the auxiliary component of X. The gauginos
of the MSSM now get mass corrections at 1-loop level, my ~ A = (Fx)/(X), while the
scalars of the MSSM get soft masses at 2-loop level, m7 ~ A?. The trilinear soft terms
arise at 2-loop level as well. These masses then act as effective soft supersymmetry
breaking terms in the theory.

4.4 Flat directions

Flat directions in supersymmetric theories appear as combinations of fields for which
the F- and D-terms vanish. A flat direction can, however, be lifted by two different
mechanisms, by non-renormalizable terms in the superpotential and by supersymmetry
breaking which implies that the mechanism of SUSY breaking is also significant. A flat
direction can be parametrized by an invariant operator, X, formed from the product
of [ chiral superfields which constitute the flat direction. The flat direction can then
be lifted by a non-renormalizable term X*, which in terms of the field ¢ then leads to
a term in the superpotential of the form [26]

A

W=—"—¢° 4.4
=t (44)
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where A is a coupling constant, M is a large mass scale and d = [k. Another type of
a non-renormalizable term is one with a single field (¢)) not in the flat direction and a
number of fields (¢) in the flat direction [26],

W = %wﬁd—l. (4.5)

In the _ﬂat space limit, Mp, — oo with minimal kinetic terms for the Kéahler poten-
tial, G! = =0}, fap = 0qp, the lowest order contributions from (4.4) or (4.5) give a
contribution to the scalar potential [26]

)\2
V(¢) = —5a=s o[ (4.6)

Pl

Such a term will always dominate the potential for large enough field values. Note
that the contribution to the scalar potential (4.6) is U(1) symmetric, which is exactly
what we need for building Q-balls.

In addition to the terms coming from the non-renormalizable terms in the super-
potential, the flat directions are lifted by soft terms arising from the supersymmetry
breaking mechanism. Since the supersymmetry breaking in the gravity mediated sce-
nario is communicated via gravity, the soft breaking terms stay intact up to ~ Mp,.
The situation in the gauge mediated case is, however, quite different. Here the soft
masses are vanishing at a scale larger than the supersymmetry breaking scale, which
for the gauge mediated case can be much less than Mp;. This is due to the fact that as
¢ grows larger than (X)), the loop corrections that lead to the soft mass term become
suppressed by (¢)~2 so that at (¢) > (X) the soft mass of ¢ decreases [36]. The
potential can hence be flat at (¢) > (X) until the non-renormalizable terms become
effective.

In addition to the effect of the non-renormalizable terms and the terms induced by
SUSY breaking, the high energy density of the early universe also affects the effective
potential along the flat direction. For example, the Kédhler potential can have a (D-)
term of the form [26, 37]

[ aton:xixolo, (4.7)

where M, = Mp,/ /87 is the reduced Planck mass, X is a field which dominates the
energy density of the universe and ¢ again corresponds to the flat direction and the
integration is with respect to a superspace coordinate . While the energy density of
the universe is dominated by the yx field, the interaction (4.7) gives an effective mass
of (p/M2)|$|?, where p is the energy density of the y field. The energy density of the
universe in flat space with vanishing cosmological constant is related to the Hubble
parameter, H, by Einstein’s equations, p = 3H2M?2. We can then, for example, identify
the x field with the inflaton which dominates the energy density of the universe during
inflation and during the coherent oscillations.

More generally, the flat directions are lifted by a number of different terms coming
from the supergravity scalar potential. The general form of these terms differs accord-
ing to whether they are lifted by the superpotential terms along the flat direction or
not. However, to avoid the gravitino problem [38], the lifting terms arising from the
supersymmetry breaking are only effective during the inflation and pre-heating [26].



4.5. FLAT DIRECTIONS AND Q-BALLS IN THE MSSM 29

The terms that are independent of the superpotential along a flat direction can be
expressed in the following general form during inflaton dominance [26]

¢

V(g) = H2M§1f(M—m),

(4.8)
where f is a function that depends on the exact form of the Kahler potential. The
contributions to the potential that depend on the non-renormalizable terms in the
superpotential are of the form of a general A-term [26],

¢d

HME’]Q(W);
Pl

(4.9)

where ¢ is again some function that depends on the details of supersymmetry breaking.

The flat directions of the supersymmetric models are lifted by a number of terms
from different sources. To be more concrete and for understanding the relevance of
the flat directions for Q-balls and Q-ball formation in the early universe, the MSSM
is considered in more detail in the following.

4.5 Flat directions and Q-balls in the MSSM

The MSSM has a number of flat directions along which a scalar field can have a
large vacuum expectation value [26]. A condensate of the flat direction can have
a net quantum number corresponding to a global U(1) symmetry and therefore, in
the MSSM, we can expect to have condensates with non-zero B and L. In view
of baryogenesis, the most interesting flat directions are those that carry a non-zero
B — L number and unbroken R-parity, since electroweak sphaleron transitions can
then convert the non-zero B — L to a baryon asymmetry. Among these flat directions
are those which correspond to the H, L direction ((H,) = (v;)) and the u®d°d® direction
({(ue) # 0, (d.) # 0, (d.) # 0, the color indices of the squark field are different and d,
and d,, are orthogonal combinations of the down squark generations) [39]. If R-parity is
assumed to be conserved, the superpotential of the MSSM contains terms proportional
to (H,L)? and (u®d“d)?. In addition to these terms, another interesting case is the
B — L conserving u‘ud‘e® direction, since baryon number carrying Q-balls that decay
after the electroweak phase transition can protect the baryons from the sphalerons.
For a large |¢| the scalar potential along a general flat direction is [39]

)\2
2(d—3
MEE)

U(8) = 3|8 — cH?|6" + g2 4 The), (410

where m?% is the soft SUSY breaking scalar mass, Ay + ayH the (order H corrected)
A-term, d is the dimension of the non-renormalizable term in the superpotential and
¢, A constants of order one. The value of a, depends on the inflation model: in the
case of the F-term inflation, |a,| is typically of order one [26] whereas for the minimal
D-term inflation it vanishes [40].

The non-renormalizable terms are suppressed by the Planck scale. Clearly, if m%
is ¢ independent, (4.10) cannot support Q-ball solutions for H < mg. Hence, for
Q-balls to exist in potentials of this type, m% must depend of |¢|? so that U(¢)/|¢|>
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has a global minimum away from the origin. Therefore m% must decrease over some
range of increasing |¢|%.

The way supersymmetry is broken determines how m?% depends on |¢|. If SUSY
is broken by a gauge mediated mechanism, the potential can be completely flat until
the non-renormalizable terms begin to dominate [36, 41]. A generic potential in this
case is typically modeled by (omitting the A-terms) [41]:

2

8P ]
U(6) = m*log(1 + ) = cHJof* + gy 0247, (411)

Pl
where H is the Hubble parameter, )\ is a dimensionless coupling constant and c is
a constant of order one [41]. The mass of the field, m, is typically in the range
10?2 — 10* GeV.

On the other hand, if the soft SUSY breaking terms are generated by a gravity
mediated mechanism, the breaking terms are constant at tree level. However, ra-
diative corrections cause the soft parameters, including m%, to be scale dependent.
The running of the soft parameters hence depends on the particular direction we are
considering.

The H,L direction was studied in [39, 42] where it was found that even though
Q-balls (or L-balls since Q-balls will be carrying lepton number in this case) may
exist along this direction, the range of the MSSM parameters that allows for Q-ball
solutions, is quite constrained. Furthermore, the L-balls typically have small charges
and evaporate too quickly to be cosmologically significant.

The potential in the d = 4 (u‘u‘d®e®) and the d = 6 ((ud®d®)?) directions can be
modeled in the general form [39, 43]

U(6) = m2(1 + K log( 2L )62 — cH2|f2 +

= B, (@12)

2(d—3
M

where M is a large mass term, K a constant, and the A-terms have been omitted
again. The mass of the scalar is the sum of the constituent fields of the flat direction,
e.g. in the (u°d’d®)® direction m?> ~ (mZ + m3 + m2) (j # k) [42]. Radiative
corrections to the scalar mass cause it to run, ancjl the value of K can be calculated
from the renormalization group (RG) equations for the constituent masses. The sign
of the K-term is crucial in determining whether Q-balls exist along the flat direction
in question; if K > 0, no Q-ball solutions exist, whereas if K < 0, Q-ball solutions
are possible. The value of K was studied for different flat directions in [42]. There it
was found that generally all but the H,L direction are such that for a large part of
the MSSM parameter space the potential is sufficiently flat for Q-balls to exist. The
value of K along a suitable direction is typically in the range K ~ —0.01 to —0.1.

In addition to the flat directions that allow for large Q-balls to exist in the MSSM,
Q-balls can typically also appear in all other realistic supersymmetric extensions of
the Standard Model [19]. This is due to the trilinear couplings in the superpotential
that arise from the Yukawa couplings of the Higgs fields with quark and leptons. The
corresponding scalar potential then has cubic couplings that allow for Q-balls made of
sleptons or squarks to exist. The mass of such Q-balls grows linearly with respect to
charge, and they are generally unstable with respect to decay into fermions.
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Note that the Q-ball scalar fields can also have gauge interactions. The effect of
gauge interactions have been studied in [44], where a set of sufficient conditions for
the existence of Q-balls in a class of gauge theories have been formulated.

4.6 (Q-balls in the gravity mediated SUSY breaking
scenario

In the MSSM with SUSY broken by a gravity mediated mechanism, the effective
potential of a generic field along a flat direction is given by (4.12). The properties of
Q-balls in potentials of this type have been studied in [43], as well as in Papers I and
IT of this thesis. In [43] the thick- and thin-wall solutions of these Q-balls were studied
analytically and numerically. The thin-wall solution behaves as described in Section
3.1. The wall width of the solution is 6r ~ wy ', where w2 = w? — m?(1 + K). The
thick-wall solution, on the other hand, is well described by a Gaussian Ansatz,

B(r) = goe " /1, (4.13)

where R ~ |K|'/?>m~!. The energy-charge relation was found to be linear in this
approximation, E o« @, and the binding energy per unit charge, 6E = (m — E/Q) ~
|K|m. The evaporation rate of Q-balls in the gravity mediated scenario was studied
in Paper I along with their profiles and charge-energy relations. These were again
considered in Paper II where the similarity of the energy-charge relations and the
profiles in the case of two and three spatial dimensions were noted.

4.7 Q-balls in the gauge mediated SUSY breaking
scenario

The behavior of the Q-ball solutions in the gauge mediated scenario can be quite
different compared with the gravity mediated case. This is due to the fact that the
effective potential at high enough energy can be completely flat due to the switching
off of the soft SUSY breaking terms that lift the potential at lower energy scales.
In the gravity mediated case the potential was growing more slowly than the mass
term m2¢2, but was not completely flat due to the nature of the messengers of SUSY
breaking. The unusual properties of Q-balls in these completely flat potentials were
realized in [36, 45].

The energy of a Q-ball in terms of its charge and w is given by (3.10). Assuming
that the potential is flat, U(¢) ~ Uy, and redefining the field and space variables,
© =wyx, & =wx, the energy functional can be written as

£y = w/d3g(|vgx|2 3 + w*3/d3§Uo +wQ. (4.14)

The integrals are now independent of w so that solving for the minimum of ¢, in
terms of w, one finds that @ oc w™. Substituting this into (4.14), it can be seen that
E o Q%*, i.e. , the energy of a Q-ball in a flat potential grows more slowly than Q.
It is hence energetically preferable to store charges in large Q-balls.
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The profile of a Q-ball in a flat potential can be solved approximately near the
origin, r = 0, where the potential is effectively Uy — w?¢? and far away from the Q-
ball, where the potential is approximately constant. The Q-ball profile can therefore
be modeled by [36]

sin(wr)
_ ) Yo , r< R, 41
o= o (4.15)

The constants g, 1, w, and R are chosen in such a way that the energy of the solution
is minimized. Using the approximation (4.15), the energy, radius and the value of the
field inside the Q-ball can be estimated. The energy minimum of (4.14) corresponds
to wy &~ (4Uym R3/Q)Y*, which with R¢ ~ 7 and Uy ~ m* becomes wq ~ v/2mrm@Q /4.
Substituting this into the expression for energy and dropping the bounce term gives
the approximate mass of the Q-ball:

4\f

1

3/4
Ex \/_m Q/ 31/4(33/4

+ 3% = = omm @3/t (4.16)

The radius is

R~ 7wy = —=m QY4 (4.17)

\/_

and the field inside the Q-ball can be obtained from the approximate relation @) =

wo(4/3)m R*¢j, giving
[ 3 1
Yo ~ 2—7‘_2le/4 ~ \/—2—7er1/4. (418)

Note that these expressions are only valid along a completely flat potential and are
violated as the non-renormalizable terms begin to dominate at Planck scale.

The profiles and energy-charge relations in the gauge mediated scenario with po-
tential (4.11) in the case of two and three spatial dimensions were calculated in Paper
ITI. It was found that both the profiles and energy-charge curves were similar to each
other in the two cases just like in the gravity mediated scenario studied in Papers I
and II. The properties of Q-balls along flat directions in supersymmetric potentials
hence appear to be quite insensitive to the number of spatial dimensions, in contrast
with the polynomial potentials studied in Chapter 3.

In addition to the two scenarios presented above, a hybrid of the two has also been
suggested [46]. There the potential is a combination of the gravity and gauge mediated
scenarios that allows for stable Q-balls to exist.



Chapter 5

Q-ball formation

For Q-balls to be interesting for cosmology or astrophysics, they must either be pro-
duced in the early universe or later in the evolution on the universe by some process.
The prospect of actually producing these extended objects in a collider was considered
in [36], where it was speculated that large Q-balls, once produced, could be used for
high-energy experimentation. Such prospects, however, seem still far off while super-
symmetric particles await their discovery, and so we must look for the time being to
the universe as a source of Q-balls.

The formation of non-topological solitons has been studied in different models and
mechanisms in the literature. In the context of a model of the type (2.2) it was first
studied in [47], where solitogenesis was contemplated in a phase transition. (A similar
model was studied in [10] for the formation of strange-matter nuggets in the QCD
phase transition.) As was already mentioned, the potential of the model (2.2) has
two minima; a global minimum at ¢ = o_, where the ¢ field is massless, and a local
minimum at o = oo where mj = h(o_ — 09)*. The potential is such that there exists
a critical temperature 7, ~ 20y, below which the universe divides into regions of false
(0 = 0y) and true (6 = 0_) vacua. These vacua are separated by domain walls due to
the potential barrier separating the two minima. The energy difference between the
two minima, however, leads to a shrinking of the false vacuum domains so that all of
the universe is eventually in the true vacuum state (hence avoiding the domain wall
problem, see e.g. [48]). If the domain walls survive long enough to protect the regions
of false vacua from the background of ¢ particles in the true vacua, the ¢ particles in
the false vacuum regions can then be trapped into the contracting bag. If the number
of ¢ particles, and hence the charge, is large enough, Q > Quin o< A1/h?, to render the
non-topological soliton stable, the collapse will halt leaving a non-topological soliton
in the universe. In a sense such a non-topological soliton is hence an artifact of the
false vacuum regions present in the early universe. The distribution of the domains
of different vacua is determined by the thermal fluctuations, which freeze-out below
the Ginzburg temperature, Ti;. To efficiently produce non-topological solitons via this
generic mechanism, the charge within a false vacuum region must be large enough for
the non-topological soliton to be stable. This requirement may be fulfilled by an initial
charge asymmetry or, in a zero net charge universe, by statistical fluctuations [49].

The initial papers on solitogenesis did not consider the evolution of non-topological
solitons after they have been formed. The distribution of non-topological solitons
can obviously be altered by a number of different processes, which in turn can be
significant in determining the role of non-topological solitons in cosmology. The non-
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topological soliton distribution can evolve due to dissociation or evaporation into free
¢ scalars, absorption of ¢ particles, and fusion into larger non-topological solitons.
New non-topological solitons can possibly be formed via fusion of free ¢ scalars, called
solitosynthesis [17, 18, 41, 50].

In the solitosynthesis, an initial charge asymmetry in the form of free particles at
finite temperature start to accrue and form Q-balls. The basis of this mechanism can be
understood by considering the free energy of a plasma at temperature 7', ' = E—T'S,
where S is the entropy of the state and F is its energy. The Q-ball is a state of low
entropy compared to the entropy of free scalars carrying an equal amount of charge as
the Q-ball. At high temperatures the Q-ball may then well not be the minimum free
energy state. As the temperature drops, the increase in free energy coming from the
Q-ball state compared to the plasma state becomes smaller and below some critical
temperature, the Q-ball becomes the minimum free energy configuration.

The formation of Q-balls by the solitosynthesis is efficiently suppressed by the fact
that if there are light fermions in the system carrying the same global charge as the
QQ-ball scalars, the free energy can be accommodated in the fermionic sector of the
theory [50]. This clearly makes solitosynthesis impossible in such a theory. Hence,
in the MSSM the solitosynthesis of Q-balls carrying baryon or lepton number is only
possible in a B or L breaking minima, where the quarks/leptons are heavy enough
[50].

The cosmological evolution of non-topological solitons in the context of the model
(2.2) was studied in [17], where it was found that the evolution is strongly dependent on
the values of the parameters and that the solitosynthesis appears to require a somewhat
special choice of parameters. In [18] it was further noted that in a general class of
models, the primordial non-topological solitons tend to disappear quickly unless their
typical charge is large.

The formation of Q-balls has been recently considered also via thermal fluctuations
[61]. The thermal production rate of Q-balls with charge @) in a generic polynomial
potential of finite temperature,

V= %M(T)Qqﬁ? — A(T)¢* + \¢*, (5.1)

was approximated by considering the nucleation rate of subcritical bubbles with a
charge asymmetry. The obtained result is
913/8 £ 49/87°6

2NMPQ?  QuinM?
¢ =N ) (5.2)

where (Qmin is the minimum charge Q-ball and ¢ a constant of order one. Such pro-
cesses are unlikely to produce a cosmologically significant number of Q-balls, and the
production of large Q-balls is virtually impossible unless there exists a mechanism that
leads to charge accretion to the initially small Q-balls.

In many of the aforementioned mechanisms the requirement that Q-balls have a
minimum charge severely restrict the possibility of producing a large amount of Q-
balls. This is not necessarily the case for the Q-balls of supersymmetric theories that
allow very small Q-balls to exist [21]. Such small Q-balls can be created by pair
production due to thermal fluctuations, after which they can grow by charge accretion
[21].

re
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The different mechanisms of producing Q-balls in the early universe are often either
restricted or inefficient in generating a cosmologically significant amount of Q-balls.
Furthermore, the suggested mechanisms are typically generic and not necessarily in
contact with phenomenology. A new mechanism for producing a copious number of
Q-balls in the context of the MSSM was realized in [39, 41], where it was noted that the
Affleck-Dine (AD) -condensate [52] is generally unstable and breaks up into Q-balls.

The sign of the first term in (4.10) at the origin ¢ = 0 is crucial for the formation of
the AD-condensate and hence Q-balls. In the case of minimal Kahler terms, there is a
H?|¢|? contribution with a positive sign in the potential so that typically the average
value of the field evolves to the origin during inflation [26]. As inflation ends, the field
continues to sit at the origin and no AD-condensate forms. Quantum fluctuations may
salvage the situation if the induced mass term (m% — cH?)|¢|? is very small so that
the fluctuations can drive the field up to large values [53].

However, with non-minimal Kéahler terms, it is possible that the sign of the induced
H?|¢|?-term is negative. During inflation the field again evolves to the minimum of
the potential but this time it can be located far away from the origin. The relaxation
of the field after inflation can in this case lead to the formation of an AD-condensate
which, in turn, can then fragment into Q-balls.

5.1 Formation of the AD-condensate

During inflation, the universe expands rapidly as the Hubble parameter acquires a
large value. The potential (4.10) during inflation is then effectively given by

CL)\H /\(bd )\2|¢|2(d71)
MP] Mp]

where Hj is the value of the Hubble parameter during inflation. The soft terms are
omitted here since their contribution during inflation is negligible (except in mini-
mal D-term inflation where ay = 0). The minimum of (5.3) is located at [¢g| =
(BA*IHIM]‘\Z?)U("I*Q), where (3 is a numerical constant depending on ay, ¢ and d. The
non-zero A-term violates the U(1)-symmetry of the potential and gives discrete min-
ima for the phase of ¢. During inflation the field quickly settles into one of the minima
[26].

Inflation ends with the end of the slow-roll of the inflaton field, after which the
field begins to oscillate around the minimum of the inflaton potential. The universe
becomes dominated by the coherent oscillations, and the Hubble parameter during
this era is H = 2/3t. At large values of H the potential V(¢) is still effectively (5.3).
As the Hubble parameter decreases with time, the minimum of the potential starts
to approach the origin. The field closely follows the minimum of the potential during
this time [26].

As H ~ mg, the coherent production of baryons takes place. The field begins to
oscillate about ¢ = 0 with the initial condition given by the location of the minimum
at t ~ mg'. The presence of the U(1) violating A-terms are now crucial since they
lead to the evolution of the phase of the ¢ field with time. Writing ¢ = |¢p|e?, X\ =
IMe ay = |ayle?s, A = |Al|e?4, the angular potential at large H is effectively
proportional to cos(f, + 0y + df). As H decreases the A-term begins to dominate over
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axH and the angular potential is proportional to cos(f4 + 65 + df). A nonzero 0 is
generated as the ¢-field begins to oscillate freely, assuming that 64 # 6,. The rotation
of ¢ generates baryons due to n, = i(¢T¢ — ¢po') = 2|¢|20. The CP-violating phase,
04 — 0,, which is the relative phase between the inflaton and the hidden sector, is
hence important for determining the amount of baryons produced by this mechanism.

The number density of baryons created in this process is obviously dependent on
the parameters of the theory, but for a reasonable choice of these parameters, the
ratio of baryon number density to the number density of the ¢ field, ny ~ m%|¢[?,
is np/ng ~ O(0.1) [26]. Note that after the baryon number is created the Hubble
parameter decreases to a value that is small compared with the scalar mass, H <
m?%, the baryon number violating terms become negligible, and the produced baryon
asymmetry is conserved to later times.

In the case of minimal D-term inflation, the mechanism works slightly differently
since now the ayH-term does not dominate over the Ay-term at large H;. Instead,
the initial phase of the ¢-field will be random since the equation of motion for 6 is
overdamped for H > mg [40]. As H ~ mg, the A)-term becomes effective and 6
begins to evolve. Again, the rotation of the ¢ field as it oscillates around zero, violates
CP-symmetry and baryons are produced. This scenario is described in detail in [40].

The effect of thermal corrections to the AD-potential have been studied in [54],
where it has been shown that at least the d = 4 directions are generally such that
efficient production of baryons does not occur easily. In light of this information,
the d = 6 directions are favored as far as the QQ-ball formation and baryogenesis are
concerned.

5.2 Fragmentation of the AD-condensate

The recent interest in Q-balls in the early universe is much due to the realization that
the AD-condensate naturally fragments into Q-balls [41, 43]. The seeds of fragmenta-
tion are due to the quantum fluctuations during inflation that generate a spectrum of
perturbations in the magnitude of the AD-field [39],

1
27rm5\/H1)\3/2,

where )q is the perturbation length scale at H ~ mg and Hj is the value of the Hubble
parameter during inflation.

The growth of perturbations has been later on studied both analytically and numer-
ically. To understand the origin of the growing perturbations, it is useful to study the
evolution of the homogeneous condensate. Writing the field in the form ¢ = e and
assuming that the baryon number violating terms are negligible at this time so that
the potential is U(1)-symmetric, the equations of motion in the expanding universe
are [41]:

3o (Ao) =2 (5.4)

L 5.2
b+3H0— —V20+226— — V0. Vo = 0 (5.5)
a o
) .1 . 1 oU ()
Ho— —V2p — 2 L 2 _ .
G+3Hp a2V<p 9g0+a2(V0)<p-|— R 0, (5.6)
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where a is the scale factor of the universe. To study the growth of perturbations we
need the set of linearized equations obtained by the replacements, § — 6 + 66, ¢ —
@+ dp:

; .1 b . 0 >0
50+3HM—7EV%0+2£M+Q—&p—2gﬁ¢ =0 (5.7)
@ @ @
1 . .
0o+ 3HOp — ?VQ&p — 20050 + U" ()b — 0*5p = 0. (5.8)

Since we are interested in the time development of the field, the terms proportional to
the spatial derivatives of ¢ or # have been omitted for simplicity.

Consider now a perturbation of ¢ and 6, such that both d¢ and 66 are proportional
to exp(S(t) — ik - x), where k is the spectral index. An exponentially growing mode
is present if Re(digt)) > 0 (which obviously means that the linear approximation
becomes rapidly inappropriate as the non-linear mode begins to grow). Substituting
the Ansatz for the perturbation into (5.7) and (5.8), collecting terms proportional to
0w and 66 and requiring that the solution is non-trivial, we get the dispersion relation
[41]

k? % kK : %
[@® +3Ha + Pl 2£a][a2 +3Ha+ poi 02 + U"] + 40*[a — g]a =0, (5.9)

where o = dS/dt and the adiabatic approximation & < « has been used. Since we
are interested in the possibility of rapidly growing instability modes, we can assume
that the amplitude of the homogeneous field evolves slowly. From (5.9) we can then
see that for growing modes to exist, U”(¢) — #* must be negative since then o has
solutions that have a non-zero real component. The band of growing modes is roughly

0 <k < kmax = a(t)y/02 — U (). (5.10)

The time evolution of the band depends on the potential; if k,,,, is constant or grows
with time, the instabilities can develop indefinitely (or more precisely, at least until
the linear approximation breaks down). On the other hand, if k., decreases rapidly,
an instability may not have enough time to grow significantly before it is red-shifted
away from the resonance.

In the case of gravity mediated SUSY breaking, with a potential of the form (4.12),
the perturbations grow as [43]

k2|K|m2 ik-x

_ (%3/2
56 = ()aseesp( [ ([ o5 (5.11)
k2| K lm2 _
00 = 5006Xp(/ % ikex (5.12)

where ¢g, 0y, ag are the initial values at %y, and it has been assumed that conditions
k%?/a? < 2|K|m?, H? < m? and |K| < 1 are satisfied. The negativity of K is crucial
for the formation of condensate lumps since the pressure in the potential (4.12) is
P, =~ (K/2)py [39]. According to the stability analysis of [43, 55], the band of growing
modes lies between

]{32
0< 7 < 3m?|K]|. (5.13)
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Hence the band of growing modes, in this scenario, becomes larger with time due to
the expansion of the universe.

The behavior of the instability band in the gauge mediated case corresponding to
the potential (4.11) is somewhat similar. At large ¢ the instability band is now [41, 56]

2
kom (5.14)
a ™ |¢]

where it has been assumed that the potential is dominated by the logarithmic part.

Since the homogeneous field ¢ decreases as a(t) 2, the instability band grows with

time, which again allows fluctuations to grow.

The growth of fluctuations into Q-balls in the two scenarios, were first considered
in [39, 41, 43]. These analytical and numerical studies, which were based on the linear
approximation, were supplemented by a number of numerical works [55]-[57]. In these
studies the formation of Q-balls from an initial homogeneous condensate with small
random perturbations has been demonstrated in three dimensional lattices in both
the gravity and gauge mediated SUSY breaking cases. Nearly all of the charge in the
condensate was found to be contained in Q-balls (and anti-Q-balls) in all cases.

Three dimensional simulations require a large amount of CPU time and that is why
only a few simulations have been done [55, 56]. In particular, the initial charge-energy
density ratio of the condensate,

_ p(¢)

)

was assumed to be approximately one in these studies. The condensate was seen to
fragment into Q-balls with no anti-Q-balls visible.

To further explore the fragmentation of the AD-condensate, the Q-ball formation
process in the gravity mediated case was studied in Paper IV by two dimensional
lattice calculations. Simulations were done only in two spatial dimensions simply
to reduce the required CPU time so that a larger parameter space could be explored.
Furthermore, analytical considerations done in Paper IV show that, at least for z > 1,
the two and three dimensional cases should give similar results.

If one assumes that most of the baryon asymmetry of the universe was contained
in Q-balls formed from the AD-condensate, it is likely that the energy-charge density
ratio is naturally much larger than one, z > 1. Obviously the exact value of x will
depend on the details of the theory but if we wish to have a small baryon asymmetry,
AQ = (Q: — Q_)/(Qs + Q_), contained in Q-balls at early times, a large value of x
is necessary [48].

A large x implies that there is a significant amount of extra energy in the system
compared with the energy that is stored in Q-balls with an equal amount of charge.
It is then expected that the fragmentation of the AD-condensate produces also anti-
Q-balls and that small Q- and anti-Q-balls are relativistic. In Paper IV it was argued
that the Q-ball distribution will reach an equilibrium state with a one-particle partition
function

(5.15)

m [ D+1

7 =2VoB55) " [ dQIQIF K s (5m0Q), (5.16)

where D is the number of spatial dimensions, p is the chemical potential related to the

charge of the Q-balls, K, (z) is the modified Bessel function, and it has been assumed
that the energy-charge relation of a Q-ball in this potential is £ ~ m). Fixing the



5.2. FRAGMENTATION OF THE AD-CONDENSATE 39

total energy and charge of the distribution, the chemical potential can be found in
terms of z. In Paper IV it was found that the chemical potential nearly vanishes at
large x and that the average velocity of Q-balls is relativistic but that large Q-balls
move slowly. The reaction rate is hence found to be larger than the Hubble rate and
one can expect that the small quickly moving Q-balls thermalize the distribution.

The numerical simulations performed in Paper IV confirm what one expects on the
basis of analytical arguments. As x was varied, it was found that at x & 1 only Q-balls
are present at the end of the simulation, whereas at larger = a large number of Q-balls
as well as anti-Q-balls appear. This is quite natural simply from the conservation of
energy and charge; in the x ~ 1 case the amount of energy in the condensate is just
right to accommodate the charge in Q-balls, no anti-Q-balls are needed. However,
if there is a large amount of extra energy in the system, it must be accounted for in
some form. Some of the energy invariably goes into the kinetic energy of small Q-balls,
but it is also possible that Q-ball - anti-Q-ball pairs with equal and opposite charge
appear.

The simulations also confirms the analytical expectations of an equilibrium distri-
bution of Q-balls. The condensate relaxes into the state of maximum entropy and the
Q-ball charge distribution is well represented by a Maxwell-Boltzmann distribution.

A copious production of anti-Q-balls is also expected to occur in the gauge me-
diated scenario for large x, because again the energy cannot all be accommodated
in Q-balls. Due to the non-linear energy-charge relation, the analytical study is less
straightforward than in the gravity mediated case. Future studies are needed to shed
light on this question.
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Chapter 6

Properties of Q-balls

QQ-balls possess a number of properties that are interesting in themselves and need to
be studied for better understanding of the significance of Q-balls for cosmology.

6.1 Evaporation of Q-Balls

In realistic theories the Q-ball field will obviously couple to other fields as well as to
itself. The interactions with other fields may cause charge loss from the Q-ball through
an evaporation process. Evaporation was first studied in [58], where a semi-infinite
Q-ball with a step-function boundary was considered.

Consider a field theory with the Lagrangian density

L = 8,00"¢* — U(¢*¢) + ¥t (idy + io - V)b — igdptony* +igp*pToxp,  (6.1)

where 9 is a two component Weyl spinor, ¢ is the Q-ball scalar field, and o are the
Pauli matrices. From (6.1) we can see that, in addition to the Q-ball field, the theory
also includes a massless fermion field which couples to the Q-ball with a coupling g.
In other words, we are considering massless fermions in the presence of a classical
background field, the Q-ball. The Fermi sea inside the Q-ball is filled, and hence
evaporation will only occur at the surface of the Q-ball [58]. From (6.1) we can also
read that evaporation proceeds via pair production.

The equations of motion for 1 and x = io99* can be calculated from (6.1), and by
choosing the normal modes such that ¢ ~ exp(—(w/2+w')it) and x ~ exp(—(—w/2+
w')it), the field equations can be written as

(5 +w/ +io- V)g—gox = 0, (6.2)
(—5 +u/ +io-V)x—gsv = 0. (6.3)

Writing the fields by using spherical spinors [59], ¥ = ¢1(7)Qjum + if1 (1) Ljrm, X =
92(7)Qjim + 1 f2 (1) Qjrm, (1 =3j —1/2, I' = j+1/2), we get the set of radial equations
that can be solved analytically in terms of spherical Bessel and Hankel functions at
the center of the Q-ball and far away from the Q-ball, respectively.

From the solutions of the radial equations we can identify the in- and out-moving
1 and x waves outside the Q-ball. The evaporation rate can then be calculated
by assuming that there is no incoming y wave: all outgoing x flux must have been
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transmutated by the Q-ball from the 1) wave. The transmutation coefficient 7" then
leads us to the expression for the evaporation rate [58]:

d w/2 dk
@ =2 e T (6.4

where k = w/2 4+ w'. The upper bound for the evaporation rate per unit area of the
Q-ball surface was calculated in [58] to be

d@ < w3
dtdA — 19272°

(6.5)

For the step-function boundary, the in- and out- solutions can be easily matched
and the transmutation coefficient expressed analytically. In the general case, where
the Q-ball profile is not necessarily well represented by a step-function, the calculation
of the transmutation rate is a numerical problem that was studied in Paper I. The
radial equations can be solved numerically with the initial conditions coming from the
known solution near the origin. The problem hence reduces to finding the right initial
conditions in such a way that far away from the Q-ball there is no incoming x-wave.
The transmutation coefficient and the evaporation rate can then be calculated in a
straightforward fashion.

In addition to checking that the numerical calculation reproduces the results of [58],
realistic Q-ball profiles were also studied in Paper I. The evaporation rates of Q-balls
were calculated in three different potentials; in two polynomial potentials (3.40) and
along a flat direction in the MSSM with supersymmetry broken by a gravity mediated
mechanism.

In all of the three cases it was found that Q-balls lose their charge the faster the
smaller they are. An evaporating Q-ball will then lose its charge at an accelerating
rate as time passes. The fate of the Q-ball is therefore governed by the characteristics
of the energy-charge relation, which determines whether scalar decays begin below
some critical charge or not. Note however, that if a Q-ball is energetically stable for
all values of () the semi-classical description applied here is not valid all the way to
zero charge and a quantum mechanical approach is required to understand how such
a small Q-ball loses its charge!.

The evaporation of QQ-balls in supersymmetric theories breaking was considered
recently in [61]. There a thin-walled Q-ball was studied, with a mass-to-charge ratio
greater than 100 MeV. It was found that the evaporation rate of large Q-ball in the
gauge mediated case increases with increasing charge, but that the evaporation rate
of a Q-ball with charge @ < 103* in the gravity mediated scenario, decreases with
increasing charge.

6.2 Q-ball collisions

After Q-balls have been formed, e.g. from the AD-condensate, they may collide with
each other. Collisions can affect their charge distribution and thereby their evolution
in the early universe. For example, fusion of Q-balls can increase the average charge

'Recently, quantum corrections to Q-balls in a polynomial potential have been studied in [60].
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of the distribution leading to longer decay times. In addition, the scattering of non-
topological solitons is by itself an interesting problem that has been studied in the
literature [55],[62]-[68] for various potentials. These studies were mostly done in one
or two dimensions, except for [68] where Q-ball collisions were studied in three dimen-
sions. Realistic potentials from the MSSM have been considered in [55, 68]. There
collisions between two similar Q-balls and between a Q-ball and an anti-Q-ball were
studied, but with only a very limited range of phase differences and only for a zero
impact parameter.

In Papers IT and III, Q-ball collisions were studied more extensively in two spa-
tial dimensions for the two realistic potentials corresponding to the different SUSY
breaking scenarios. Due to the similarity of both the Q-ball profiles and energy-charge
relations in the cases of two and three spatial dimensions noted already in Chapter 4,
the two dimensional simulations are expected to give a good picture of the dynamics
in three dimensions as well. To understand the dynamics of the collision processes in
more detail, the velocity and the phase difference between the (Q-balls were varied, as
well as the impact parameter. The potentials studied in Papers II and III were

2

Ui(6) = mis(1+ Klog() + 06", (6.
2 A
0(6) = milogli+55)+ 50" (6.7

which correspond to the potentials in the gravity and gauge mediated SUSY breaking
scenarios (4.12) and (4.11), respectively (note that there is a typographical error in
Eq. (7) in Paper III, the potential should read as Eq. (6.7)). The potential in the
gravity mediated scenario corresponds to the d = 6 flat direction and the parameters
were chosen to have values m; = 100 GeV, K = —0.1, \; = M and M ~ 10! GeV.
The parameters in the gauge mediated case were chosen as my = 10* GeV, Ay = 0.5.
A different choice of parameters is not expected to give significantly different results.

Collisions were studied for different values of charge, relative phase, and impact
parameter. The relative phase between Q-balls simply refers to a non-zero phase
difference in the Q-ball frequencies, 0 < Aw < 27 (note that in Papers II and III, the
relative phase difference Aw was referred to as A¢). The colliding Q-balls had for the
most part of the simulations equal initial charges, but a limited study was done for
Q-balls of unequal charges in the gravity mediated case.

The studied collision processes can be roughly divided into three types: fusion,
charge exchange (also referred to as charge transfer), and elastic scattering. Fusion is
defined as a process where most of the initial charge is after the collision in a single
Q-ball and the rest of the charge is lost as radiation or small lumps of charge. In the
charge exchange process some of the charge is transferred from one Q-ball to the other
while the total charge of the two Q-ball system is conserved. Elastic scattering was
defined to be a process where less than 1% of the initial charge was transferred from
one Q-ball to another.

The relative phase difference is a critical parameter in determining the type of
a Q-ball collision process, assuming that the speed of the Q-balls is not too large
(v < 1072). If the Q-balls are in phase, i.e. their complex phases rotate in uniform,
colliding Q-balls fuse. As the phase difference is increased, at some value of Aw the Q-
balls begin to scatter while charge is transferred between them. The amount of charge
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transfer in the collision process decreases with increasing Aw, so that after a critical
value Q-balls start to scatter elastically. Varying the impact parameter, the scattering
cross-section for each process can be calculated. The cross-sections for fusion, op,
charge transfer, g, as well as the geometric cross-section, o¢, have been calculated
for a range of charges in Papers IT and III.

In both cases the cross-sections decrease with increasing velocity, which is as ex-
pected because the Q-balls have less time to interact with one another as their velocity
increases. In the gauge mediated case the charge transfer cross-section is negligible
and the total and geometric cross-sections appear to converge with increasing charge.
From the simulations a lower limit for the fusion cross-section in terms of geometric
cross-section can be estimated for large, @@ > 108, Q-balls:

op > 0.606. (6.8)

By using the approximation R & 27/2m~1QY* for the radius of the Q-ball, we get an
estimate for the fusion cross-section in three dimensions of large Q-balls in the gauge
mediated scenario:
QY
o 2 3.8

. (6.9)

The gravity mediated scenario behaves slightly differently from the gauge mediated
case. Now the charge transfer cross-section is significant and is found to be weakly
dependent on w, so that the relative average charge increase of the larger Q-ball after
the collision is 10% for v = 1072 and 14% for v = 10~2. The total cross-section that
includes all the aforementioned processes is also weakly charge dependent. The values
of oy, averaged over the different charges are in this scenario

Ot = 0.27+£0.01 GeV™? (v =107%),
Ot = 0.1940.01 GeV 2 (v =10"2?).

Colliding Q-balls can create an excited intermediate state that has excess energy
compared to the energy of a Q-ball with equal charge. Such configurations can also
emerge from other processes, which raises the question of the dynamics of an excited
Q-ball.

6.3 Excited Q-balls

Lumps of charge that are not Q-balls, have excess energy compared with the energy of
a Q-ball with equal charge. Such charge lumps can be produced, for example, during
the formation of Q-balls as the AD-condensate fragments, in Q-ball collisions where
two Q-balls fuse, and in thermal processes where thermal particles can transfer excess
energy to the Q-ball.

The evolution of a single spherical condensate lump in the gravity mediated scenario
was studied in [69]. It was found that a condensate lump that is not a Q-ball, i.e.
it has excess energy compared with the energy of the Q-ball configuration, generally
forms a pulsating configuration that loses charge until it reaches a quasi-equilibrium
pseudo-breather solution, the Q-axiton. Such a configuration can have a much larger
energy per charge ratio than a Q-ball and it can exist even if ) = 0 [69]. The Q-axiton
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is expected to relax to a Q-ball, albeit very slowly compared to the natural time scale,
m~1, of the field. However, the numerical studies of Q-axitons were done assuming
a spherically symmetric configuration which may constrain the process too much to
be accurate. Furthermore, no Q-axitons have been reported in numerical simulations
[565, 56], which may be explained by the fact that they can be difficult to observe as
intermediate states in the highly non-linear fragmentation process.

Excited Q-ball states have been identified as intermediate states in the studies of
Q-ball collisions [62, 68, 70, 71]. In Papers II and III it was found that the fusion of
two Q-balls typically created an excited state that had excess energy compared with
its charge. This excess energy was then found to emit slowly as the lump relaxed into
a Q-ball. It was found in [68] that in high-velocity collisions Q-rings were produced as
intermediate states that subsequently fragmented into Q-balls.

A more systematic study of excited Q-balls was conducted in Paper V, where Q-
balls with varying excess energies were studied using 2 4+ 1 dimensional numerical
simulations in the framework of the gravity mediated SUSY breaking scenario. It
was found that a QQ-ball with an added random perturbation relaxes slowly compared
with the dynamical scale of the field so that there is a suppression factor O(1072)
in the rate at which excess energy is emitted compared with m. This suppression
factor increases slightly with increasing charge in the studied range of Q-ball charges,
Q@ ~ 10'® —10'8, therefore larger Q-balls are expected to emit their excess charge even
more slowly. Another observation made from the simulations was that Q-balls can
withstand a large amount of excess energy without losing a significant amount of their
charge. To significantly reduce the charge of a Q-ball in the gravity mediated scenario,
it seems that an excess energy comparable to the energy of the unperturbed Q-ball is
needed.

The slow emission rate and the robustness of Q-balls obviously has an effect on
how efficient thermal effects are in corrupting a Q-ball. This was discussed in Paper
V where it was estimated that e.g. a Q-ball with charge 10?° should survive reheat
temperatures of 10° GeV for |K| = 0.1, assuming that all of the energy of an incoming
thermal particle is absorbed and that the charge replenishment rate of the soft edge
is m. However, if also the Q-ball reconfiguration rate is suppressed, which may well
be the case on the basis of the slow relaxation rate seen in Paper V, the absorption
and charge replenishment will be less effective and Q-balls can survive higher reheat
temperatures.

6.4 (Q-ball variants

In addition to the Q-balls associated with supersymmetry mostly discussed in this
introductory part, a number of other types of Q-balls arising from different mecha-
nisms have been studied. Some of these models are very briefly reviewed here for
completeness.

The type of Q-ball mostly discussed in the literature is an abelian Q-ball associated
with an abelian group. However, also non-abelian Q-balls associated with a polynomial
potential have been studied [8]. The non-abelian group in these models is either SO(3)
or SU(3).

QQ-balls can also exist in models where the scalar sector of the Standard Model
is extended by an additional U(1)-singlet, under which none of the Standard Model
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particles is charged [72]. The breaking of the electroweak symmetry allows for stable,
electrically neutral Q-balls to exist. Such a so-called electroweak Q-ball couples to the
SM spectrum via Higgs bosons and can serve as a dark matter candidate.

The recent interest in large extra dimensions has lead to a suggestion that Q-
balls may arise in that framework [73]. The compactification of an extra dimension
leads to a U(1)-invariance for a bulk scalar field generated by the translations along
the compact dimensions. The conserved charge is associated with the number of the
Kaluza-Klein excitations in the compact direction.

Non-commutative field theories, inspired by string theories, have also been consid-
ered as a possible framework for Q-balls [74]. A non-commutative scalar field theory
with a global U(1)-symmetry can have Q-ball solutions that are classically and quan-
tum mechanically stable.

As was mentioned earlier, Q-balls associated with a local U(1)-symmetry have also
been studied [24]. In this case there exists a maximum charge above which Q-balls
become unstable.



Chapter 7

Cosmological implications of
Q-balls

The copious formation of Q-balls from the fragmentation of the AD-condensate can
leave the universe filled with Q-balls. Such a phase in the history of the universe
may obviously be significant for the evolution of the universe and possibly leave a
detectable trace. As the effective and natural production of Q-balls from the AD-
condensate was realized, a number of different cosmological scenarios involving Q-balls
were suggested. For the most part, the discussion of these scenarios presented in this
chapter is a review of literature and is included for completeness and to discuss the
interesting cosmological aspects of Q-balls.

7.1 SUSY Q-balls as dark matter

As discussed in Sect. 4.7, the flatness of the potential in the gauge mediated scenario,
leads to a non-linear energy-charge relation, £ ~ %m@g’/ 4. A B-ball is therefore
absolutely stable if m, > dE/dQ = 7v/2mQ =", where m, is the mass of the lightest
baryon that can be emitted from the B-ball. The stability limit for a B-ball of charge
Q@ is then

Rz 474(@)4- (7.1)

Assuming that the lightest baryon is a nucleon, m; ~ 1 GeV, this translates into a
lower limit of @ > 10 for m = 10?2 GeV and @ > 10'® for m = 10* GeV. Smaller
Q-balls, as well as lepton number carrying Q-balls that can emit (nearly) massless
neutrinos, can evaporate their charge as described in Sect. 6.1. Depending on the
details of the potential, Q-balls formed from the fragmentation of the AD-condensate
can satisfy the stability bound [41, 56]. Such absolutely stable Q-balls can then be
responsible for at least some of the dark matter content of the universe [41]. Recently
it was also pointed out that Q-balls possess a number of interesting features that make
them a candidate for self-interacting dark matter [77]. The detection of dark matter
Q-balls is discussed in Sect. 7.6.
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7.2 B-ball baryogenesis

Q-balls in the gravity mediated SUSY breaking case have a linear charge-energy rela-
tion and are therefore susceptible to decay. Their role in cosmology is then somewhat
different from the role of the absolutely stable Q-balls in the gauge mediated scenario.
Depending on the flat direction of the potential, a Q-ball formed from the AD-
condensate can carry either baryon or lepton number. Its lifetime, due to evaporation
is [39]
481
~ WQ’ (7.2)

where R is the radius of a thick-walled Q-ball and it has been assumed that the upper
bound for the evaporation rate given in Eq. (6.5) has been saturated. The temperature
of the universe at which Q-balls decay, is given by [43]

T, ~ 0.06(%)1/2(

T

10%°
Q

where f; is a possible enhancement factor of the decay rate due to a decay mode into
pairs of light scalars. For the purely baryonic d = 6 (u¢dd®)? direction, f, ~ 1, whereas
for a direction containing sleptons, f, ~ 170(1 + 2.1¢g*)|K|~*/? (g is the coupling
between the condensate scalars and the light decay products) [43]. The charge of a
typical Q-ball coming from the fragmentation of the AD-condensate in this scenario
has been estimated to be [43]

m

100 GeV )'/? GeV, (7:3)
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(7.4)

where Ty is the reheat temperature, « = —log(ddo/do), do is the value of the field
when the first perturbation goes non-linear, and 7g is the value of the baryon asym-
metry during the period dominated by the oscillations of the inflaton. The reheat
temperature enters (7.4) due to the fact that the baryon asymmetry of the universe
during inflation oscillation domination [39, 43] is

773H2M1%1

"B = 27TTR

(7.5)

Independently of these analytical arguments, the numerical simulations, at least in
the x ~ 1 case [55], show that depending on the dimension of the non-renormalizable
operator, the largest Q-balls produced are in the range ) ~ 10 — 10%. Q-balls can
then, depending on the reheat temperature and details of the model, decay after the
electroweak (EW) transition.

The fact that possibly a large fraction of the baryon number of the universe is
stored in decaying Q-balls offers a way to protect the baryons from the sphaleron
transitions that are effective at high temperature [75]. The weak sphaleron transitions
violate B + L at temperatures above the EW transition and can wash out the baryon
number created by the conventional AD-mechanism. If the baryon number is stored in
Q-balls, however, baryons can be protected from the electroweak wash out, assuming
that the Q-balls decay after the EW phase transition [39, 43].
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7.3 Baryon to dark matter ratio

In addition to the B-ball baryogenesis, where the baryon asymmetry is created from
decaying B-balls, the fact that Q-balls once might have stored a large fraction of the
total baryon number may provide us with an a natural explanation of the baryon to
dark matter ratio of the universe [43, 76]. The observed baryon number will be a
combination of the baryon number from the decays of Q-balls and what was left from
the original AD-condensate (if it has not been destroyed by anomalous B+ L violation).
The decay of squarks in the Q-ball leads to the production of supersymmetric particles,
that decay into the lightest supersymmetric particle (LSP), typically the neutralino.
After Q-ball decay there will hence be a background of LSPs from the Q-balls, in
addition to the thermal relic background of LSPs. The fractions of LSPs coming from
the two sources depend on the reheat temperature and the LSP freeze-out temperature.
If the reheating temperature is low compared with the LSP freeze-out temperature,
which is favorable for B-ball formation and baryogenesis, the thermal relic density is
negligible compared with the density from the Q-balls decays. The LSP density is
then determined by the decays of Q-balls [43, 76], i.e.

npp ~ 3fpng, (7'6)

where ngp is the LSP density, fp is the fraction of baryons in Q-balls, and ng is
the total baryon number density. In order for the decays of Q-balls to explain natu-
rally the baryon to dark matter ratio of the universe, the annihilations of LSPs must
also be insignificant. This then requires that for a light neutralino, the B-ball decay
temperature must be 7; < 1 GeV, which requires a reheat temperature in the range
Tr < (103 — 10%)f;! [43]. Assuming that the LSP annihilations are negligible and
the Q-ball decay temperature is low enough, the baryon to dark matter ratio can be
accounted for if [43]

N
3.7 GeV £ (5 famy < 67 GeV, (7.7)

where N, is the number of LSPs produced per baryon number and m, is the mass of
the neutralino.

The baryon to dark matter ratio has been studied in the gauge mediated scenario
in [78]. It was suggested that thermal effects transport charge from Q-balls to the
surrounding plasma. The thermal effects are most effective at temperatures 17" ~ my,
where my represents the mass of squarks (suppressed by some couplings to the Q-ball
field). To survive thermal erosion, the charge of a Q-ball should obey

M() ( m

QR (6——In

)2, (7.8)
m me

where 6 < 1 parametrizes the deviation from the maximum evaporation rate and
My ~ 3 x 107 GeV [78]. A Q-ball loses some of its baryon number to the surrounding
plasma so that the amount of baryons and Q-balls, which later act as dark matter, are
related. In [78] it was estimated that the correct baryon photon ratio n = ng/n, ~
10719 can be obtained for m ~ 10% — 10* GeV if the initial charge of Q-balls is in the
range @ ~ 10?3 — 1028, This calculation was, however, critically reviewed in [80], where
it was argued that due to a suppression of the rate at which diffused charge can be
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transported away from the Q-ball, the number density of baryons outside the Q-balls
is smaller that suggested in [78]. This then implies that to obtain the correct baryon
to photon ratio at the present epoch, the Q-ball charge must satisfy Q > 10%* — 1023.

The fraction of the total baryon number of the universe contained in Q-balls, fgz,
is obviously important in explaining the baryon to dark matter ratio. In numerical
simulations it has been found that in the both SUSY breaking scenarios nearly all of
the baryon number in the AD-condensate is in Q-balls after the condensate fragments
[65, 56, 57]. Therefore, if the AD-condensate is the only source of baryons, fp ~ 1.
However, fg = 1 may be inappropriate for the both cases, unless thermal effects are
strong enough to change fg, which in turn requires a large enough reheat temperature.
In the gauge mediated scenario fg = 1 implies that all of the baryon number is
contained in Q-balls, which obviously is unacceptable, assuming that a large majority
of the Q-balls are stable. Thermal effects, as discussed previously, can remedy the
situation by decreasing fg. In the numerical simulations a range of Q-ball charges
have been observed to emerge of which only a fraction is actually stable but still
contain most of the charge [55, 56].

Also in the gravity mediated scenario fp =~ 1 may be inappropriate [79, 81]. As-
suming that the energy-charge ratio of the AD-condensate is x &~ 1 and that there
are no subsequent annihilation of neutralinos, the experimental bound for the mass
of the neutralino from ALEPH [82] implies fp < 0.64, assuming a conservative nu-
cleosynthesis limit on primordial element abundances [79]. Increasing x would not
in general remedy the situation since then there will simply be more neutralinos and
anti-neutralinos produced in the decay of Q- and anti-Q-balls, unless neutralino anni-
hilations take place. A possible solution is that a > 1 condensate may fragment into
charged lumps with excess energy that then evolve into Q-balls before the neutralino
freeze-out [69, 79]. In this case fp can be small enough to allow MSSM neutralinos
compatible with experimental constraints to arise from Q-ball decays [79].

7.4 Q-balls and phase transitions

The charge accretion mechanism that leads to the formation of Q-balls at a phase
transition can also enhance the phase transition itself that would otherwise be effec-
tively suppressed by a negligible tunneling rate of a critical bubble [50, 51]. A Q-ball
may, via charge accretion, grow large enough to become unstable and fill the space
with the true vacuum, i.e. it can precipitate a phase transition [50, 51]. Again, a
critical property of Q-balls that other non-topological solitons often do not possess, is
that QQ-balls associated with supersymmetric models may exist for very small charges.
Therefore, an initial Q-ball is more likely to appear from thermal fluctuations than a
large non-topological soliton of some other type.

7.5 Thermal effects

As was already discussed, thermal effects can be significant in the early universe. A
QQ-ball can lose some of its charge to the surrounding plasma or possibly be completely
erased by thermal effects. Thermal effects on Q-balls have been discussed in [41, 43,
78, 80, 83].
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Q-balls in a flat potential at a non-zero temperature were studied by thermody-
namical considerations in [78], where it was found that for a system with non-zero
conserved charge density, the ground state at any temperature is a single Q-ball in the
infinitely large volume limit. If on the other hand, the total charge in the considered
volume is fixed, i.e. charge density decreases as V' — oo like in the early universe, a
state that includes a Q-ball is more favorable than a homogeneous plasma if [78]

5/4
tot

where M(T) is the effective mass of the Q-ball scalar and Qo is the total charge.
From (7.9) one can then estimate at which temperature a Q-ball will evaporate due
to thermal effects. All of these conclusions are due to the non-linear energy-charge
relation of the Q-ball in a flat potential, E ~ Q%*, which makes it energetically
favorable to store charge in a large Q-ball.

A different approach to study the thermal effects on Q-balls has been adopted in
[41, 43, 83], where the collisions of thermal particles with a Q-ball were considered.
These effects can be divided into two classes [43]: dissociation, where thermal particles
transfer energy to the Q-ball that can overcome the binding energy, and dissolution,
where charge is removed from the soft edge of a thick-walled Q-ball due to thermal-
ization.

In a dissociation process [41, 43], a thermal particle with energy 7', interacting with
the Q-ball field, ¢, with coupling g gains an effective mass of gy inside the Q-ball and
can hence penetrate it up to a distance where 7" ~ gp. If the time scale over which
the particle stops is short compared with the absorption time scale of the Q-ball, some
of the kinetic energy of the particle will be transferred to the Q-ball. If the rate at
which energy is transferred to the Q-ball is larger than the energy emission rate, excess
energy can build up in the Q-ball and overcome its binding energy. Hence, to avoid
dissociation, condition

AE(5t,) < 6m(Q)Q, (7.10)

must be satisfied. Here AE(dt,) is the energy delivered to the Q-ball in a time over
which a Q-ball can radiate its excess energy without losing charge, and dm(Q) its
binding energy per unit charge.

Dissolution [43] progresses via charge transfer from the edge of the Q-ball to the
surrounding plasma. A thick-walled Q-ball has a soft edge over which the the ¢ field is
approximately constant, d¢/¢ < 1. Thermal background quarks have a much shorter
mean free path, A = k,/T (k, ~ 6) [84], than the width of the soft edge of a Gaussian
Q-ball in the gravity mediated SUSY breaking scenario [43]. A thermal equilibrium
should hence exist within the soft edge and charge can leave the Q-ball by diffusion.
The diffusion, rate as well as the rate at which the Q-ball can replenish charge in
the soft edge, are therefore crucial in evaluating the significance of thermal effects.
Assuming that the charge diffusion is a random walk effect and that the Q-ball can
replenish charge in the soft edge approximately at rate m, the charge loss can be
estimated to happen at rate [43],

10B _ 4nfk,T
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B ot g2p3R%’ (7.11)
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where 5 = y/log(gpoe/3T) and ¢y is the magnitude of the field inside the Q-ball. Note
that (7.11) is effective only at high temperatures, i.e. when T > 43%k,|K|m, where
the Q-ball has time to replenish charge in the soft edge (charge is diffused more slowly
at higher temperatures).

Dissolution and dissociation clearly limit the allowed reheat temperature of the
universe if Q-balls are to survive, since any previously formed Q-balls can be erased
by the thermal bath if the universe is reheated too much. In the gravity mediated
SUSY breaking case it was estimated that, using (7.4) for the charge of Q-balls coming
from the fragmentation of the AD-condensate, reheat temperature should be less than
10 — 10° GeV for |K| = 0.01 — 0.1 to avoid significant thermal erosion of Q-balls
[43]. In the gauge mediated case, the survival of a Q-ball from dissolution leads to the
following bound for the charge of a Q-ball [41]:

Ty
m

M
1.7 /negm’”’

Q2 (=) (7.12)
where neg ~ 100 is the number of effective degrees of freedom. For m = 10* GeV, this
give an upper limit of Tx < 1073QY/? for the reheat temperature.

The dissociation and dissolution processes were also studied in Paper V. These

were discussed in more detail in association with excited Q-balls in Sect. 6.3.

7.6 Detection of Q-balls

Q-balls produced in the early universe can, at least in the gauge mediated scenario,
survive till the present time. It is then an interesting question to study the possibility
of detecting Q-balls either directly with present experiments or indirectly via some
astrophysical processes.

The detection and properties of a Q-ball depend on the details of the fields that
the Q-ball is made of. The flat direction along which the Q-ball has a large vev
obviously dictates which fields acquire these large expectation values. Typically some
combination of squark, slepton or Higgs fields have a non-zero vev inside a Q-ball. If
a Q-ball carries baryon number (B # 0), the SU(3) symmetry inside it will be broken.
On the other hand, the electroweak SU(2) symmetry may be restored if all of the fields
inside the Q-ball are SU(2) singlets, e.g. a squark Q-ball associated with the u‘d“d®
direction. The exact properties of a Q-ball with B # 0 hence depend on whether the
squark fields are accompanied by slepton or Higgs fields. A nucleon entering a baryonic
Q-ball will experience QCD deconfinement and dissociate into quarks. The energy
released in the process is typically emitted as pions [45]. An electrically neutral Q-ball
passing through matter will therefore absorb nuclei by transforming the deconfined
quarks into squarks via a gluino exchange [45]. The squarks are then absorbed into
the condensate within the Q-ball.

The fate of the electrons in matter are determined by the electric properties of
the passing Q-ball. The absorption of quarks into the Q-ball leads to a positively
charged condensate unless electrons can be trapped at an equal rate. Depending on
whether electroweak symmetry is restored inside the Q-ball or not, electrons can either
enter the core of the Q-ball or form a bound state with the positively charged core
[45]. The ability to retain charge divides the Q-balls into two classes: supersymmetric
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electrically neutral solitons (SENS) and supersymmetric electrically charged solitons
(SECS) [45].

SECS passing through matter at a velocity v ~ 10=* — 1072 lose their energy
mainly via the interaction of the SECS core with nuclei and electrons in the transversed
medium [45, 85]. The rate of energy loss is dominated by the electronic losses for v >
10~* [85, 86]. SECS can also catalyze proton decay, but only if they have large masses
and velocities [87]. The energy release from SENS, is mainly via their interactions with
nucleons that dissociate and get absorbed into the core of the Q-ball. The energy is
released typically as pions, so that only a small amount of the kinetic energy of SENS
is lost. For example, a large, Q ~ 10%*, Q-ball passing through matter will release
about 100 GeV of energy per centimeter in both cases [45].

Experimental limits on the flux of large Q-balls have been obtained from different
sources. The Baikal deep underwater array, ” Gyrlyanda”, constrains the flux of SENS
[88]

Fspns < 107 %em 25 tsr (7.13)

for a cross-section o > 1.9 x 107*2cm?. The MACRO search [89] constrains the flux
of SECS [45]
Fspes < 107 em 25 tsr 1, (7.14)

Furthermore, the Kamiokande Cherenkov detector results can be reinterpreted for
SENS [90], giving
Fspns < 107 Pem™2s s (7.15)

for o = 10~ %cm?.

If one assumes that stable Q-balls are the main constituents of galactic dark matter,
i.e. that their mass density in the galactic halo is ppy &~ 0.3 GeV/cm3, these limits
translate into lower limits for the baryon number of the dark matter Q-balls: for SECS,
Q 2 10%! and for SENS, Q > 10?2, for m = 1 TeV [45]. The smaller SECS dissipate
their energy so quickly, however, that they may never reach the underground detectors,
which leaves a window for SECS in the range @ ~ 10'? — 10'® [45]. No such window
exists for SENS since they pass through matter quite freely. On the other hand, the
upper limit on the flux of SECS could probably be improved to 10 %cm 25 lsr!
by the MACRO detector [85]. Furthermore, a number of present and forecoming
experiments can significantly constrain the flux of non-topological solitons in the near
future [90].

In addition to the direct detection, stable (or long living) Q-balls can play an im-
portant role in various astrophysical processes. The role of large, baryonic Q-balls
that are not associated with supersymmetry, in nucleosynthesis has been studied in
[91]. It was found that the presence of such electrically charged Q-balls can reduce
the production of *He. Furthermore, the possibility of Q-stars [92] as neutron stars
further constrains the range of allowed non-supersymmetric Q-balls. However, the nu-
cleosynthesis constraint is not relevant for the Q-balls associated with supersymmetry
due to the compactness of these objects.

On the other hand, SUSY Q-balls in the gauge mediated scenario can play a major
role in the evolution of a neutron star. In [93] it was suggested that SUSY Q-balls
trapped inside neutron stars can absorb the neutrons into the scalar condensate. The
Q-ball, due to the non-linear energy-charge -relation, is at a lower energy state than
the neutron star and hence energy is released as thermal neutrinos and photons in
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the absorption process. The Q-ball grows until the star becomes unstable and ex-
plodes with a large burst of energy. This has been offered as a possible explanation for
gamma-ray bursts [93]. A similar process was also suggested to occur for white dwarfs.
These suggestions have since been critically studied in [94], where it was noticed that
the capture of SUSY Q-balls in both neutron stars and white dwarfs is probably less
likely than what was envisaged in [93]. However, in contrast with [93], the most im-
portant trapping mechanism was suggested to be the trapping of Q-balls in supernova
progenitors before the neutron star is formed. These considerations may improve the
direct detection constraints by several magnitudes for SECS and are hence potentially
sensitive detectors of Q-balls. However, further study is still needed to understand the
details of the conversion process and the amount of appropriate Q-balls in the cloud
forming the neutron star progenitor.

An indirect detection method of primordial Q-balls in the gravity mediated SUSY
breaking case arises from the isocurvature fluctuations that should be detectable by
the forthcoming cosmic microwave background experiments [95]. In D-term inflation
models with low reheat temperature, the fluctuations of the phase of the AD-field are
unsuppressed after inflation [40]. Fluctuations of the phase correspond to fluctuations
in the local baryon number density, isocurvature fluctuations, while the fluctuations
of the amplitude correspond to adiabatic density fluctuations. If the AD-condensate
fragments into Q-balls that later decay into the dark matter particles and baryons,
the dark matter can have both isocurvature and adiabatic density fluctuations. These
result in an enhanced isocurvature contribution relative to the purely baryonic isocur-
vature fluctuations in the case of conventional AD baryogenesis. The enhancement is
so large that it should be observable by MAP and PLANCK [95].



Chapter 8

Conclusions

Any scalar field theory, which is U(1)-symmetric and hence possesses a conserved
charge, may carry non-topological solitons, Q-balls, in its spectrum. The only stringent
requirements are that the potential of the theory has a global minimum at the origin,
and it grows slowly enough over some range of field values. The properties of the Q-
balls then depend on the details of the theory and the spectrum of Q-balls can range
from large thin-walled ones to very small thick-walled Q-balls.

Supersymmetric theories offer a natural framework for Q-balls. The large number
of scalars and the existence of flat directions in their scalar potentials provide all the
necessary ingredients needed for Q-balls to exist in a theory. Such Q-balls are typically
composed of supersymmetric scalars, e.g. in the Minimal Supersymmetric Standard
Model Q-balls are made of supersymmetric partners of the Standard Model fermions,
i.e. squarks and sleptons, and possibly from Higgs fields.

In addition to its composition, the details of the flat direction along which the
QQ-ball fields gain their non-zero value affects the properties of the Q-ball. The su-
persymmetry breaking mechanism is therefore important for understanding the Q-ball
properties. In this work two mechanisms of supersymmetry breaking have been con-
sidered where the breaking occurs in a hidden sector and is then transmitted to the
visible sector by messenger fields. The nature of the messenger fields determines the
details of the potential. If supersymmetry is broken by a gravity mediated mecha-
nism, the energy of a Q-ball grows linearly with charge. The binding energy of such a
Q-ball is relatively small and the Q-ball is susceptible to decay. If, on the other hand,
the supersymmetry breaking mechanism is transmitted to the visible sector via gauge
interactions, the energy of a Q-ball grows typically as E ~ Q%% over some range of
charges. QQ-balls in this scenario have a greater binding energy and, if they are large
enough, Q-balls can be absolutely stable.

The same framework that naturally leads us to expect Q-balls to appear in super-
symmetric theories also provides means to copiously create them in the early universe.
The Affleck-Dine -condensate is unstable with respect to fragmentation into Q-balls
as the universe expands and cools. The distribution of the formed Q-balls is strongly
dependent on the energy and charge present in the condensate before it breaks into
fragments, as was presented in Chapter 5.

The studies of the Q-ball properties provide us with an insight to the interesting
aspects of these extended objects. The energy-charge -relation, which guides us in
determining whether a Q-ball is energetically stable or not, depends critically on the
details of the potential, as was emphasized in Chapter 3. A Q-ball, that interacts with
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other fields and is hence detectable, can evaporate its charge. Such an evaporation
process, at least in the three cases studied in Paper I, proceeds at an increasing rate
as the Q-ball becomes smaller, much like black holes that lose their mass by Hawking
radiation [96]. This behaviour was noticed in studying the evaporation rates of Q-balls
with realistic properties as discussed in Sect. 6.1. In Sect. 6.2 it was seen that the rel-
ative phase difference in the rotating complex fields of the colliding Q-balls determines
the type of the scattering process. Scattering processes shed light on the dynamics
of Q-balls. They can also be of importance in altering the distribution of primordial
Q-balls coming from the fragmentation of the Affleck-Dine -condensate. The relax-
ation of Q-balls, which was studied in Sect. 6.3, provides us with an understanding
how quickly excess energy is emitted from an excited Q-ball state. Furthermore, the
conducted work shows how robust objects Q-balls are in withstanding excess energy.

If Q-balls are produced in the early moments of the evolution of the universe they
are evidently of great interest from a cosmological perspective. Again the properties
of Q-balls, arising ultimately from the details of supersymmetry breaking, lie in the
heart of matters. Stable Q-balls could be responsible for a considerable fraction of the
dark matter content of the universe, whereas decaying Q-balls can protect the baryon
asymmetry that otherwise could be erased by electroweak processes. In both cases one
can offer an explanation for the baryon to dark matter ratio of the universe as coming
from a single source. The thermal bath of the early universe plays a role in the Q-ball
cosmology as it can remove charge from Q-balls or erase them completely. On the
basis of the information gained in studying the relaxation of Q-balls, the effectiveness
of the thermal erosion processes can be estimated, as was discussed in Sect. 6.3.

The property of Q-balls which ultimately determines their fate in cosmology is, of
course, whether they actually exist or not. If Q-balls are to be considered as a serious
dark matter candidate, their mass density must be large and experimental searches
are hence important in looking for them in the halo of our galaxy. Such searches, as
described in Sect. 7.6, already limit the possible charges and hence masses of the dark
matter Q-balls. Future experiments will constrain the limits even more, unless, of
course, a positive Q-ball signature is seen in a detector. Even though a significant Q-
ball dark matter fraction may be effectively ruled out in the future, unstable, decaying
Q-balls would still be of interest in the early universe. A possible signature left by
such Q-balls may be imprinted into the cosmic microwave background as enhanced
isocurvature fluctuations arising from late decaying Q-balls.

In summary, Q-balls have proved to be interesting objects that can have far-
reaching consequences for cosmology. In addition to being typically a part of the
spectrum of realistic supersymmetric extensions of the Standard Model, they can also
be quite naturally produced copiously in the early universe. However, before super-
symmetric particles are actually seen in the detector and a further understanding of
what lies beyond the Standard Model is acquired, some healthy skepticism toward
the cosmological significance of Q-balls is still in order. Whatever the final verdict
on Q-balls might be, Q-balls as field theoretical objects are interesting by themselves.
They have been shown to posses a number of interesting qualities, the understanding
of which might prove one day to be valuable in different branches of physics. Further-
more, the study of Q-balls has reminded us again how field theories can exhibit a rich
phenomenology that may influence and broaden our perspectives on nature.
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