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"Om sahanaa vavatu sahanau bhunaktu 
saha veeryam karavaavahai 
tejasvi naavadheetamastu maa vidvishaavahai 
Om shantih shantih shantih" 
Om ! May He protect us both together; may He nourish us both together; 
May we work conjointly with great energy,  
May our study be vigorous and effective;  
May we not mutually dispute,  
Om ! Let there be Peace in me,  
Let there be Peace in my environment,  
Let there be Peace in the forces that act on me 

- Taittiriya Upanishad 
 
 
"na hi jnanena sadrsam pavitram iha vidyate" 
In this world, there is nothing as sublime and pure as transcendental knowledge 

- Bhagavad Gita 
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ABSTRACT 

Structural studies of proteins aim at elucidating the atomic details of molecular 
interactions in biological processes of living organisms. These studies are particularly 
important in understanding structure, function and evolution of proteins and  in 
defining their roles in complex biological settings. Furthermore, structural studies can 
be used for the development of novel properties in biomolecules of environmental, 
industrial and medical importance. X-ray crystallography is an invaluable tool to obtain 
accurate and precise information about the structure of proteins at the atomic level. 

Glutathione transferases (GSTs) are amongst the most versatile enzymes in nature. 
They are able to catalyze a wide variety of conjugation reactions between glutathione 
(GSH) and non-polar components containing an electrophilic carbon, nitrogen or 
sulphur atom. Plant GSTs from the Tau class (a poorly characterized class) play an 
important role in the detoxification of xenobiotics and stress tolerance. Structural 
studies were performed on a Tau class fluorodifen-inducible glutathione transferase 
from Glycine max (GmGSTU4-4) complexed with GSH (2.7 Å) and a product 
analogue Nb-GSH (1.7 Å). The three-dimensional structure of the GmGSTU4-4-GSH 
complex revealed that GSH binds in different conformations in the two subunits of the 
dimer: in an ionized form in one subunit and a non-ionized form in the second subunit. 
Only the ionized form of the substrate may lead to the formation of a catalytically 
competent complex. Structural comparison between the GSH and Nb-GSH bound 
complexes revealed significant differences with respect to the hydrogen-bonding, 
electrostatic interaction pattern, the upper part of -helix H4 and the C-terminus of the 
enzyme. These differences indicate an intrasubunit modulation between the G-and H-
sites suggesting an induced-fit mechanism of xenobiotic substrate binding. A novel 
binding site on the surface of the enzyme was also revealed. 

Bacterial type-II L-asparaginases are used in the treatment of haematopoietic 
diseases such as acute lymphoblastic leukaemia (ALL) and lymphomas due to their 
ability to catalyze the conversion of L-asparagine to L-aspartate and ammonia. 
Escherichia coli and Erwinia chrysanthemi asparaginases are employed for the 
treatment of ALL for over 30 years. However, serious side-effects affecting the liver 
and pancreas have been observed due to the intrinsic glutaminase activity of the 
administered enzymes. Structural studies on Helicobacter pylori L-asparaginase (HpA) 
were carried out in an effort to discover novel L-asparaginases with potential 
chemotherapeutic utility in ALL treatment. Detailed analysis of the active site 
geometry revealed structurally significant differences between HpA and other L-
asparaginases that may be important for the biological activities of the enzyme and 
could be further exploited in protein engineering efforts. 
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ABBREVIATIONS 

ALL acute lymphoblastic leukaemia 
ASK1 apoptosis signal-regulating kinase 
ATP adenosine-5´-triphosphate 
CDNB 1-chloro-2, 4-dinitrobenzene 
cGST cytoplasmic glutathione S-transferases 
DHAR dehyrdroascorbate reductases 
EcAII Escherichia coli periplasmic L-asparaginase 
EwA Erwinia carotovora L-asparaginase 
ErA Erwinia chrysanthemi L-asparaginase 
-ECS -glutamyl-cysteine-synthetase 
-EC -glutamyl-cysteine 
GFP green fluorescent protein 
GSH reduced glutathione 
GST glutathione transferase (formerly known as glutathione S-

transferase) 
GSTO Omega class of GST 
GSTP Pi class of GST 
GT glucosyltransferase 
GTX S-hexylglutathione 
GmGSTU4-4 Glycine max GST Tau 4-4 
G-site GSH-binding site 
HpA Helicobacter pylori L-asparaginase 
hGSTA1-1 human GST Alpha 1-1 
H-site hydrophobic binding site 
MAPEG membrane-associated proteins involved in eicosanoid and 

glutathione metabolism 
Nb-GSH S-(p-nitrobenzyl)-glutathione 
NpM (4-nitrophenyl) methanethiol 
PEG polyethylene glycol 
PEG-ASP pegylated L-asparaginase 
PgA Pseudomonas 7A glutaminase L-asparaginase 
RMSD root mean square deviation 
TCHQD tetrachlorohydroquinone dehalogenase 
TRX thioredoxin-like fold 
TLK286 canfosfamide hydrochloride 
WsA Wolinella succinogenes L-asparaginase 
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1 LITERATURE REVIEW 

1.1 Glutathione transferase superfamily  

The discovery of the catalytic activity of an enzyme responsible for the conjugation of 
glutathione (GSH) to 1,2-dichloro-4-nitrobenzene in the cytosolic extracts of rat liver 
occurred in the year 1961 [1]. The enzyme was later identified as glutathione S-
transferase (GST; E.C. 2.5.1.18). This led to an increasing interest in the genetics, 
enzymology and structural studies of GSTs and their role in conjugation reactions. The 
existence of GSTs in plants was first discovered in the early 1970s when a GST from 
maize was shown to be responsible for the conjugation of chloro-S-triazine atrizine 
with GSH, thereby protecting the crop from the herbicide [2]. Since then, the 
identification of the activities of GSTs or their corresponding enzymes/gene sequences 
in animals, plants and fungi has taken place [3, 4]. Furthermore, the structural 
information of the GSTs has had a profound impact on our understanding of their 
catalytic mechanism, protein fold evolution, and the molecular basis of detoxification 
of endogenous and xenobiotic electrophiles. Issues such as the recognition and the 
activation of glutathione for nucleophilic attack and the specific recognition of the 
electrophilic substrates by the enzyme have been well explained with the help of 
structural studies [5]. 

1.1.1 Importance of detoxification 

All living organisms are constantly exposed to non-nutritional foreign chemical species 
commonly known as xenobiotics. Xenobiotics are potentially toxic to the organisms 
because they possess electrophilic centres that could readily form covalent bonds with 
the nucleophilic centres of proteins and nucleic acids and intervene with the metabolic 
processes. Most xenobiotics are naturally occurring compounds of microbial, animal 
and plant origin. Furthermore, a range of novel human-made chemicals such as 
agrichemicals (herbicides and pesticides) and industrial by-products that contaminate 
the ground water and soil pose a serious threat to the environment and to organisms.  

Plants, in particular, are subjected to greater xenobiotic challenges owing to their 
direct contact with the contaminants. Hence, they have to develop more efficient ways 
of xenobiotic detoxification for their survival. As a result, the plant mechanisms in 
response to the xenobiotic compounds are of great importance to the natural world, 
agriculture, and human health and could provide a more reliable, natural, and 
inexpensive method of environmental cleansing. GSTs are the enzymes which play a 
major role in xenobiotic detoxification process [6, 7]. 

1.1.1.1 The detoxification process 

The whole detoxification process can be subdivided into three phases (Fig. 1) [8, 9]: 
 Phase I (activation): The initial phase of chemical activation of the xenobiotic 

compound is achieved mostly by hydrolysis, oxidation or reduction reactions 
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catalyzed by esterases (P-450 monooxygenases and peroxidases) [10, 11]. 
Although the products of phase I reactions are more hydrophilic than the parent 
xenobiotics [12], the primary aim is to create reactive sites in the compound by 
addition or exposure of functional groups (hydroxyl or carboxyl) that will 
prepare the compound for phase II conjugation reactions. If the xenobiotic 
already contains a functional group for phase II metabolism, the detoxification 
will proceed without phase I metabolism. 

 Phase II (conjugation): Phase II type of reactions accomplish the deactivation of 
xenobiotic or the phase I activated metabolite by conjugation (covalent linkage) 
to an endogenous hydrophilic molecule such as glucose, malonate or glutathione 
[13]. Halogen- and nitro-functional groups and the occurrence of conjugated 
double bonds trigger glutathione conjugation [14] resulting in a water-soluble 
conjugate compound. The increase in water solubility decreases the ability of the 
compound to partition in biological membranes, hence restricting its distribution 
within cells and tissues. Subsequently, water-soluble conjugates are exported to 
sub-cellular components by compartmentalization that prevents their 
interference with the activity of enzymes through product inhibition or their 
conversion to toxic metabolites by cytosolic enzymes [15, 16].  

 Phase III (compartmentalization): Vacuoles and apoplasts are the sub-cellular 
compartments of the phase III processes [17]. The transport of the water-soluble 
conjugate from the cytosol to either the vacuole or the apoplast requires passage 
across the tonoplast or the plasma membrane. This is achieved by an ATP-
dependent transporter which recognizes the glutathione conjugates as substrates 
[18].  
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Figure 1. The enzyme-catalyzed reactions responsible for the detoxification of xenobiotics in 
plants. These reactions take place within several organelles and cellular compartments. 
Abbrevations: CT, glutathione-conjugate transporter; AT, ATP-dependent xenobiotic anion 
(taurocholate) transporter; GT, ATP-dependent glucose-conjugate transporter; VP, vacuolar 
peptidase. Adapted from [14]. 

1.1.2 GST-catalyzed conjugation of xenobiotics to GSH 

GSTs are the principal phase II enzymes that catalyze the conjugation of activated 
electrophilic xenobiotics to the thiol of reduced glutathione, an endogenous water-
soluble substrate [6]. The electrophilic sites necessary for GSH conjugation in 
xenobiotics are present in arene-oxides, aliphatic, aryl halides, --unsaturated 
carbonyls, organonitro-esters and organic thiocyanates, while compounds such as 
haloalkanes, chlorobenzenes and thiocarbamates form the industrial substrates [4, 6]. 
The conjugation reaction proceeds with the displacement of a nucleophile (e.g. halogen 
or alkyl sulfoxide) (Fig. 2) [19]. The various reactions catalysed by GSTs include, for 
example, nucleophilic aromatic substitutions, Michael additions, epoxide ring-opening 
and isomerization reactions (Fig. 3) [20, 21]. 
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Figure 2. (a) Chemical formula of GSH (-Glu-Cys-Gly; -glutamylcysteinylglycine). (b) 
Glutathione conjugation to a generic xenobiotic (X) catalyzed by GST. The final product is a 
glutathione-S-conjugate. 

 
Figure 3. Typical GST-catalyzed reactions. (a) Nucleophilic aromatic substitution with 1-
chloro-2, 4-dinitrobenzene, (b) Michael-type addition reaction, (c) epoxide-ring opening, (d) 
isomerization. 
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1.1.3 GST classification 

Three GST subfamilies have been discovered so far: cytosolic, mitochondrial kappa, 
and microsomal. The subfamily of soluble cytosolic GSTs is the most abundant and 
omnipresent in all the aerobic organisms. There are 15-20 different GSTs occuring in 
mammals, including humans [22], 40-60 GSTs in plants [23], and more than 10 GSTs 
in insects [24]. The kappa GSTs are found in mitochondria and also in human 
peroxisomes [25]. The localization of the kappa GSTs in the organelles, which are 
known to be involved in lipid metabolism and the production of reactive oxygen 
species in large amounts, could suggest that the kappa GSTs are implicated in the role 
of detoxification of lipid peroxides in -oxidation. Microsomal GSTs, now designated 
as membrane-associated proteins involved in eicosanoid and glutathione metabolism 
(MAPEG) exist in a wide spectrum of organisms, but are less numerous compared to 
cytosolic GSTs. 

1.1.3.1 Cytosolic GSTs 

Cytosolic GSTs (cGSTs) have been grouped into various classes (Table 1) based on 
several criteria, such as the amino acid and nucleotide sequence identity, physical 
structure of the genes (intron number and position), tertiary and quaternary structural 
properties, and immunoreactivity [4, 26]. Between members of the same class, the 
amino acid sequence identity is more than 40%, while between different classes it is 
less than 25% [27]. The mammalian-specific cGSTs that are recognized so far are 
Alpha, Mu, Pi, Sigma, Theta, Zeta, Omega, and Sigma. The six classes of plant-
specific cGSTs are Lambda, Phi, Tau, Theta, Zeta, DHAR (dehyrdroascorbate 
reductases), and TCHQD (tetrachlorohydroquinone dehalogenase) [28]. The six insect 
specific classes are Delta, Epsilon, Sigma, Theta, Zeta, and Omega. The bacterial 
specific classes are Beta and Chi. Finally, the fungal GST classes are Alpha, Mu, and 
Gamma. Some of the monomer folds of the GST classes are shown in Fig. 4. 
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Table 1. Classes and biological functions of cytosolic GSTs [29]. 

Organism Class Function Active site 
residues 

Non-catalytic 
and/or specific 
functions 

Mammalian  Alpha Isomerase activities, drug 
metabolism, peroxidase activity, 
detoxification 

Tyrosine Signaling 
modulation 

 Mu Drug metabolism Tyrosine Signaling 
modulation 

 Pi Drug metabolism Tyrosine Signaling 
modulation 

 Theta Prevention of 
hepatocarcinogenesis, metabolism 
of industrial compounds 

Serine Prostaglandin 
synthesis 

 Zeta Catalysis of α-haloacids 
metabolism 

Serine Phe/Tyr 
catabolism; 
DCA 
dechlorination 

 Omega Oxidative stress Cysteine Ion-channels 
modulation 

 Sigma Prostaglandin synthesis Tyrosine Prostaglandin 
synthesis 

Bacteria Beta Catabolism of organic compounds Cysteine  
 Chi  Unknown  
Plants Phi Role in detoxification, oxidative 

stress protection, signalling, non-
catalytic binding of flavonoids, 
participation in intermediary 
metabolism 

Serine Ligandin; 
signalling 
modulation 

 Tau  Serine Ligandin  
 Theta  Serine  
 Zeta  Serine  
 Lambda  Cysteine  
 DHAR  Cysteine  
 TCHQD Unknown Possibly 

Serine 
 

Fungi Alpha  Unknown  
 Mu  Unknown  
 Gamma  Unknown  
Insects Delta Possible detoxification of 

environmental xenobiotics 
Serine  

 Epsilon Detoxification of insecticides, 
peroxidase activity, oxidative stress 

Serine  

 Theta Unknown Serine  
 Sigma It probably acts against by-

products of oxidative stress  
Tyrosine  

 Zeta Tyrosine degradation pathway Serine  
 Omega Unclear (probably act against 

oxidative stress) 
Cysteine 
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Figure 4. A comparison of the various monomer folds of the different classes of the GST 
superfamily. The structures from different classes were superimposed onto Tau class enzyme 
GSTU4-4 (PDB id: 1gwc [30]) using the program SSM [31] and displayed as differently 
colored individual ribbons for clarity. The structures superimposed are the mammalian Alpha, 
1gse [32] (RMSD 3.2 Å for 187 residues); Mu, 4gst [33] (RMSD 2.6 Å for 179 residues); Pi, 
1gss [34] (RMSD 2.5 Å for 181 residues); bacterial Beta, 1a0f [35] (RMSD 2.0 Å for 181 
residues); plant Theta, 1ljr [36] (RMSD 2.5 Å for 196 residues); Zeta, 1e6b [37] (RMSD 1.9 Å 
for 171 residues); insect Omega, 1eem [38] (RMSD 2.1 Å for 198 residues) and Phi, 1gnw [39] 
(RMSD 2.1 Å for 187 residues). 

1.1.3.2 Plant GSTs 

The increasing interest in plant GSTs arises from herbicide selectivity and 
environmental safety. Plants are able to tolerate a wide spectrum of xenobiotics 
because of the broad-spectrum specificity of the GSTs. The different classes of 
herbicides metabolized by GSTs are triazines, thiocarbamates, chloroacetanilides, 
diphenylethers, and aryloxyphenoxypropionates. The primary basis of herbicide 
tolerance in plants is the differential ability of plant species to detoxify a herbicide (via 
GSH conjugation) in the resistant but not in the susceptible species. Plant GSTs also 
respond to plant hormones such as auxins and cytokines, to pathogenic infections, 



Literature Review 16 

oxidative stress and other conditions. They are capable of carrying out many more 
functions in addition to detoxification [40] such as homeostasis of hormones and 
catalysis of alternative GSH-dependent biotransformation reactions. 

Plant GSTs are both cytosolic (soluble) and microsomal forming a complex 
superfamily of eight distinct classes, seven of which are soluble and one microsomal 
[28]. The microsomal GSTs are membrane-bound members of the MAPEG 
superfamily that catalyze GSH-dependent reactions [41]. The overall structure of the 
plant GSTs shows a high level of structural homology to those of animal origin. 

1.1.3.3 Phi and Tau GSTs 

The plant-specific Phi and Tau GSTs are primarily responsible for herbicide 
detoxification, displaying class specificity in substrate preference [42]. Phi class GSTs 
are highly active towards chloroacetanilides and thiocarbamate herbicides, whereas the 
Tau enzymes are efficient in detoxifying diphenylethers and aryloxyphenoxypropionates 
[43]. Phi and Tau classes of GSTs are dimeric and most abundant. They share functional 
similarity with the drug-metabolizing GSTs found in animals [28]. The Phi class of GSTs 
are the first class of enzymes of plant origin to be identified for their herbicide 
detoxification. Tau class GSTs were initially found to be induced by auxins. Later studies 
revealed their response to endogenous and exogenous stresses including pathogen attack, 
wounding, heavy metal toxicity, oxidative and temperature stresses [44]. The ability to 
bind hydrophobic substrates is much wider in plants than in mammalian enzymes [39, 
45]. Apart from their primary role as detoxifying agents, these classes of GSTs also 
participate in endogenous cellular metabolism [39] by functioning as glutathione 
peroxidases that neutralize oxidative stress, as flavonoid-binding proteins [40], as stress-
signalling proteins [46], and as apoptosis regulators [47]. 

1.1.4 3D structure 

GSTs are composed of 200-250 amino acids with a molecular mass ranging from 20–
28 kDa [4, 48-50]. Structural studies of the various cGSTs of plant, animal and bacterial 
origin have shown a striking level of structural conservation in fold and dimeric 
organization. Therefore, all the GSTs are characterized by a two-fold axis and pose an 
independent binding site in each subunit (Fig. 5a). The basic GST fold of each subunit 
contains two domains: an N-terminal domain and a C-terminal domain. The N-terminal 
domain consists of  helices and  strands and adopts a thioredoxin-like (TRX) fold 
() [51], which is also shared by glutaredoxin and glutathione peroxidase [52]. 
The two structural motifs of the N-terminal domain are made up of the N-terminal 
112 and the C-terminal 343, which are linked together by a long loop that hosts 
the -helix 2. Thus, three parallel -strands 124 and the single antiparallel 3 form 
a -sheet sandwiched between the -helix 2 on one side and -helices 1and 3 on the 
other side (Fig. 5b). The presence of a cis-Pro loop connecting the -helix 2 and the 3-
strand is observed in all the GSTs [53]. The conserved cis-Pro loop is probably important 
for the recognition of and subsequent binding to GSH [54]. 
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The C-terminal domain is all -helical and is connected to the N-terminal domain by 
a short linker sequence of ~ 10 residues. Unlike the N-terminal domain, the C-terminal 
domain is quite variable with respect to sequence and topology thus leading to distinct 
hydrophobic substrate specificities. Moreover, plant GSTs possess a larger cleft for co-
substrate binding compared with mammalian GSTs and hence have the ability to accept a 
larger and much more diverse variety of substrates. The type of interactions between the 
two subunits involved in the assembling and maintenance of the quaternary structure 
varies amongst different classes of GSTs. The interactions are hydrophobic in Theta, 
Sigma, Beta, and Tau classes and hydrophilic in Alpha, Mu, Pi, Phi, and Omega classes.  

 

 
Figure 5. (a-left) Cartoon diagram of dimeric Tau GST (PDB id: 1gwc [30]). (a-right) The 
dimer after 90 rotation. (b) Cartoon representation of Tau class monomer. The colouring 
scheme is according to secondary structural elements. The active site is occupied by S-
hexylglutathione (GTX), which is shown as ball-and-stick representation and coloured 
according to atom type. The Figure was created by PyMol (http://www.pymol.org). 
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1.1.4.1 Active site 

The active site is formed by residues from the N- and C-terminal domains. It comprises 
two sub-sites: a glutathione-specific site (G-site) constructed from residues of the N-
terminal domain, and a hydrophobic substrate binding site (H-site) formed by non-polar 
side-chains of the C-terminal domain. A conserved Tyr residue in the active site of 
mammalian Alpha Mu and Pi classes and a conserved Ser in Theta, Zeta, Phi, Tau and 
Delta classes (Fig. 6) are involved in the catalytic activation of GSH by acting as hydrogen 
bond donors to the thiol group of the GSH. This leads to the formation and stabilization of 
the highly reactive thiolate anion which is susceptible to a nucleophilic attack by an 
electrophilic substrate [5, 55, 56]. The amino acid sequence alignment between the Phi and 
Tau GST classes has revealed a highly conserved nature of the N-terminal G-site for GSH 
binding and of the C-terminal for co-substrate binding. A ligand binding L-site is observed 
in a hydrophobic surface pocket in some classes of GSTs. For example, the human P1-1 
enzyme binds part of the compound sulfasalazine in the L-site [57]. 

 
Figure 6. (a) Multiple sequence alignment of Alpha (2r6k [58]; NCBI code: AAA70226), Mu 
(4gst [33]; AAA41293) and Pi (1gss [34]; CAA29794) classes showing the conserved 2r6k-
Tyr9 that is marked. (b) Multiple sequence alignment of Tau (1gwc [30]; AAM89393), Theta 
(1ljr [36]; AAB63956), Zeta (1e6b [37]; AAG30131) and Phi (1gnw [39]; AAA32800) classes. 
The conserved Ser15  is marked. (c) Close-up view of the active sites of (left) Alpha (2r6k) and 
(right) Tau (1gwc) classes. The active site residues and GTX in both the structures are shown in 
stick representation and coloured according to atom types. The active site Tyr9 and Ser15 are 
shown in different colours. 
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1.1.5 Biotechnological applications 

The development of inventive remediation technologies is of paramount importance 
since these technologies help combat the environmental pollution created by organic 
xenobiotics such as pesticides, pharmaceuticals and petroleum products [59]. The use 
of plants to clean up polluted soils and water (phytoremediation) has been recognized 
as a cost-effective method of decontaminating soil and water resources [60]. The fact 
that plants exhibit a variety of pollution attenuation mechanisms renders them more 
feasible than physical or chemical remediation means [61, 62]. 

Although plants possess the inherent capability to detoxify xenobiotics, they are 
deficient in the catabolic pathways to degrade these compounds completely compared 
to the microorganisms. On the other hand, microorganisms are not preferred for the 
remediation of xenobiotics as they require both inoculation and nutrient application for 
efficient functioning. Besides, microbes that exhibit considerable biodegradation 
efficiency in the laboratories, fail to exhibit the same at actual contaminated sites. A 
greater concern with respect to plants is also the introduction of contaminants in the 
food chain. Therefore, a direct method for enhancing the efficacy of phytoremediation 
is via transgenesis by overexpressing in plants the genes involved in metabolism, 
uptake, or transport of specific pollutants [63]. The insertion of multiple genes for 
phase I metabolism (cytochrome P-450s) and phase II metabolism (GST, GT etc) for 
complete degradation of the xenobiotics within the plant system is one of the most 
promising methods of transgenic technology. 

1.1.5.1 Transgenic plants 

Transgenic organisms assist in understanding the gene functions in vivo, in setting up 
“cell factories” for the production of compounds of medical and technological 
applications, and in engineering organisms with new desirable characteristics. 
Furthermore, creating bacterial strains for the degradation of toxic/carcinogenic 
compounds is another active area of research [49]. 

GST from maize was the first of its kind to be exploited owing to its participation in 
herbicide (atrazine) metabolism [64]. Since then, several successful approaches have 
been reported for the generation of transgenic plants overexpressing GST isoenzymes. 
Some examples are given below: 

 The bacterial gene encoding -glutamyl-cysteine-synthetase (-ECS), a rate-
limiting regulatory enzyme in the biosynthesis of GSH, was overexpressed in 
poplar plants (Populus balsamifera) [65]. Enhanced levels of GSH and its 
precursor -EC were observed in the transformed plants. The increased levels of 
GSH eventually led to the protection of plant cells from oxidative stress due to 
environmental factors. Enhanced tolerance to atrazine, CDNB, metachlor and 
phenantrene were also observed in -ECS- and GST-overexpressing Brassica 
juncea [66]. 

 Transgenic tobacco (Nicotiana tobaccum) plants expressing the gst1 gene from 
maize were developed. The transgenic plants exhibited higher tolerance to 
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alachlor in terms of root, leaves and vigorous development compared to non-
transgenic plants [67]. 

 Cytochrome P4502E1 gene from human involved in the phase-I of the organic 
pollutant degradation and GST gene from fungus Trichoderma virens involved 
in phase-II detoxification were inserted into Nicotiana tobaccum [68]. The 
transgenic plants exhibited enhanced degradation of anthracene and 
chloropyriphos.  

1.1.5.2 Biosensors 

The principal role of GSTs in xenobiotic-GSH conjugation has formed the basis for the 
development of novel biosensors. Herbicide determination via biosensors is considered 
environmentally safe and requires minimum sample preparation without compromising 
the accuracy [69]. Two examples are given below: 

 Acrylamide detection in starchy foods. The gst-4 gene from Caenorhabditis 
elegans was selected to construct a gst-gfp fusion gene that was used to 
transform C. elegans into a biosensor [70]. The GFP signal is not emitted in the 
absence of acrylamide while a very strong signal is emitted from the whole body 
of C. elegans in the presence of acrylamide. 

 Captan detection. Captan, a non-systemic fungicide, is a powerful carcinogen 
and harmful chemical to the water ecosystem [71-73]. An optical biosensor 
consisting of GST-immobilized gel film was constructed for quick, simple, and 
sensitive detection (up to 2 ppm) of captan in water supplies [69]. 

1.1.6 Biomedical applications 

GSTs are of immense interest in the fields of pharmacology and toxicology because 
they metabolize diverse chemicals such as cancer chemotherapeutic agents, 
carcinogens, and insecticides and, therefore, provide targets for asthma and antitumor 
drug therapies. Importantly, overexpression of GSTs in mammalian tumour cells that 
exhibit resistance to various anti-cancer agents has been observed [22]. 

1.1.6.1 Diagnostics  

Soluble cGSTs can be used in diagnostics and in monitoring the clinical course of 
cancer. The increase in expression of GSTs as the tumour progresses could be 
exploited as a useful immunological marker for many cancers. Some examples of the 
applications of GSTs in diagnostics include: 

 An increase in the levels of GSTP1-1 was observed in patients with gastric 
cancer and gliomas as the tumour progresses. Hence, GSTP1-1 could be used as 
a marker for gastric cancer progression [74]. 

 Epidemiological studies have implicated polymorphisms of human GST genes 
as a response to cancer therapy [75]. Accordingly, the subtypes and the variants 
of GSTs could become potential drug targets in cancer therapy [76, 77]. 
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 The diagnostic applications of GSTs extend to avenues other than cancer, as well. 
Elevated levels of plasma Pi GST were found in chronic hepatitis, chronic 
cholestatic diseases, primary biliary cirrhosis and transplant rejection. Hence, GST 
measurements in plasma might be useful in assessing the hepatic status [78]. 

 The Omega class of GSTs (GSTO) hosts a special range of enzymatic activities 
compared to other GSTs. The isoenzyme GSTO1-1 exhibits dehydroascorbate 
reductase and thioltransferase activities while catalysing the reduction of 
monomethylarsonate, an intermediate in the arsenic biotransformation pathway 
[38]. The human GSTO1-1 is involved in the modulation of ryanodine receptors 
and interacts with cytokine release inhibitory drugs. In addition, GSTO1 is also 
linked to both Alzheimer’s and Parkinson’s diseases [79].  

1.1.6.2 Drug design 

GSTs are involved in the efficient detoxification of several chemotherapeutics and are 
therefore, considered as crucial factors in regulating the susceptibility to cancer [80]. 
An elevated level of GSTs was observed in cancer cell lines compared with the 
parental cells lines and the normal tissues [81, 82]. 

The overexpression of GSTs, particularly the GSTP1-1 isoform, observed in 
neoplastic cells in cancers resistant to drugs can be used as a platform for pro-drug 
development. An interesting example of a pro-drug is TLK286, which is activated by 
GSTP1-1 [83]. The drug binds at the active site of human GSTP1-1 and is activated by 
Tyr7 through a -elimination reaction. 

GSTs can also be used as potential drug targets in diseases other than cancer. The 
present therapy for schistozomiasis occurs via a drug (oltipraz) that binds directly to the 
GST of the integument of the nematode [84]. The low homology between the human and 
parasitic GSTs (<30 %) is the key factor for drug design.  Differences in their respective 
hydrophobic clefts have been observed with a more open cleft in the former [85]. 

1.2 L-Asparaginases 

The L-asparaginase activity in the blood of guinea pig serum was first discovered by 
Clementi in 1922 [86] and after 40 years [87] it was found responsible for the 
antitumour properties of the guinea pig serum [88]. Subsequently, potent antileukemic 
L-asparaginases were found in bacteria and introduced into clinical practice especially 
for the treatment of acute lymphoblastic leukaemia (ALL) [89-91]. The role of L-
asparaginase (EC 3.5.1.1) in the treatment of ALL is accredited to the fact that the 
tumour cells have a compromised ability to generate L-asparagine necessary for 
cellular functions to keep up with their malignant growth [92]. This could be either due 
to low expression levels of asparagine synthetase [93], or to insufficient supply of its 
substrates, aspartate or glutamine [94]. The cancerous cells thus depend on 
extracellular supply of L-asparagine for protein, DNA and RNA synthesis and G1 
phase of cell division. The enzyme, however, selectively starves cancerous cells 
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leaving out the normal cells, which are capable of synthesizing the necessary amount 
of the amino acid for growth with the help of asparagine synthetase [92]. 

1.2.1 General reaction mechanism catalyzed by L-asparaginase 

The reaction catalyzed by L-asparaginase is a simple hydrolysis of the side-chain 
amide bond of L-asparagine. The reaction can be assayed by measuring the release of 
ammonia in a simple Nessler test [95]. The reaction mechanism is similar to the two-
step mechanism of serine proteases that involves three residues forming a catalytic 
triad : a nucleophile, a general base and an additional acidic residue [96]. In serine 
proteases, the catalytic triad is typically Ser-His-Asp. In L-asparaginases the reaction 
proceeds as follows [97] (Fig. 7): 

 Step 1: In the beginning, the nucleophile is activated via a OH…B hydrogen 
bond to the adjacent basic residue. The C atom of the amide substrate is then 
attacked leading to the formation of an acyl-enzyme intermediate through a 
tetrahedral transition state. Stabilization of the negative charge that develops on 
the O atom of the amide group during the transition state is achieved by an 
‘oxanion hole’ resulting from the interaction with adjacent hydrogen bond 
donors (main-chain N-H groups). 

 Step 2: The second step proceeds in a similar way to the first except that the 
initiation of the attack on the ester C atom (Asp) is now carried out by an 
activated water nucleophile. 

 
Figure 7. Proposed general mechanism of L-asparaginase catalytic reaction (adapted from 
[97]). 
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1.2.2 Sources of L-asparaginases  

The demand for large amounts of the enzyme for clinical studies has promoted the 
search for new L-asparaginases. L-asparaginases from various organisms such as 
microorganisms, mycobacteria, yeast molds, plants and plasma of some vertebrates 
have been isolated and characterized [98-100]. The native forms of L-asparaginase 
have been isolated from a number of bacteria. Among them, L-asparaginase from 
Escherichia coli (EcAII) and Erwinia chrysanthemi (ErA) were found to be useful 
from a clinical point of view [101]. Subsequently, two isoenzymes produced in E. coli 
were discovered and designated as type-I and type-II L-asparaginase [102]. Structural 
aspects of E. coli type-II and -I L-asparaginases are discussed under sections 1.2.4.1 
and 1.2.4.2, respectively. 

1.2.3 Treatment and side-effects  

Natural enzymes used as therapeutic drugs have to be purified extensively to eliminate 
toxic reactions and increase their persistence in the circulation for prolonged period of 
time. Two bacterial L-asparaginases, EcAII and ErA, have successfully overcome the 
above mentioned challenges and have major applications in the treatment of ALL 
[103]. Randomized clinical trials have suggested that the clinical efficacy of EcAII is 
superior to that of ErA. Despite the achieved success rate in the treatment of childhood 
ALL, EcAII and ErA exhibit a unique toxicity profile with EcAII characterized by 
greater toxicity due to induction of increased coagulation abnormalities. Vomiting and 
allergic reactions are the mild side-effects, while the life-threatening adversities such as 
hypersensitivity, pancreatitis, clotting of large veins, liver toxicity, hyperglycemia, 
neuropathy, and reduced clotting factors with bleeding are more severe side-effects 
[104]. Some adversities arise mainly due to the intrinsic glutaminase activity (the 
glutaminase activity for EcAII and ErA amounts to 2 % and 10 % of their asparaginase 
activity, respectively) [105]. The low half-life of EcAII (Table 2) further decreases its 
potential as a chemotherapeutic agent. In order to overcome the above limitations, 
EcAII has been pegylated. 

Covalent linkage to polyethylene glycol (PEG) generally prolongs the plasma 
retention time of the enzyme and also decreases the loss of the enzyme due to 
proteolysis and renal excretion [106]. Pegylated L-asparaginase (PEG-ASP) has a 
prolonged half-life (5.5 days), and is associated with decreased immunogenicity 
compared with that of EcAII [107, 108]. The efficacy, safety and tolerability of PEG-
ASP have been demonstrated by clinical trials [109]. 

PEG-ASP shares similar chemical properties with EcAII, with optimal conditions 
for activity at pH 7.0, isoelectric point at pH 5.0 and reaction temperature of 50 C 
[110]. PEG-ASP can be given to children with a history of allergic reactions to 
previous administration of EcAII and is prescribed to patients who require L-
asparaginase but have developed resistance to the native form [111]. The major side-
effects due to the administration of PEG-ASP are similar to those of native enzyme and 
are related to the inhibition of normal protein synthesis (including the production of 



Literature Review 24 

fibrinogen, antithrombin III, protein C and S, along with other clotting factors), and the 
development of anti-asparaginase antibodies [110]. Therefore, an L-asparaginase that 
can overcome all the above-mentioned limitations is desirable for the treatment of 
childhood ALL. 

1.2.4 E. coli L-asparaginases 

The two isoenzymes of L-asparaginase that are expressed in E. coli are known as type-
I and type-II. The percentage sequence identity between them is 24% (Fig. 8). The 
type-I L-asparaginase (EcAI) is expressed constitutively whereas the type-II L-
asparaginase (EcAII) which has a tumour-inhibiting effect is expressed under 
anaerobic conditions [112]. EcAI displays lower affinity for the substrate (Km = 5 mM) 
[113] compared to its type-II counterpart (Km = 11.5 M) [114].  

Table 2. Preparations of L-asparaginases [115] 

Form of  
L-asparaginase 

Properties Half-life (days)#  

E. coli  Native form; it can induce hypersensitivity reactions 1.28  0.35 

E. chrysanthemi Minimal cross-reactivity with E.coli preparation; 
shortest half-life 

0.65  0.13 

PEG-ASP Decreased immunogenicity; longer half-life 5.73  3.24 
#Intramuscular administration. 

Although these two enzymes catalyze an identical reaction, they can be distinguished 
by their solubilities in ammonium sulphate solution and by their sensitivity to thermal 
activation [102]. 

Structural details of only a few type-I L-asparaginases are available because of their 
lack of therapeutic applications. Although the short half-life of the enzyme (15 min) 
may explain its inactivity in animal models, the inactivity in cell culture still remains a 
mystery. The biochemical properties that are mostly responsible for the above include 
high Km value for L-asparagine, the substrate specificity or potential allosteric kinetics. 
The type-II L-asparaginases, on the other hand, are more extensively studied at both 
structural and mechanistic levels. 
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Figure 8. Sequence alignment between the EcAII (PDB id 3eca [116]; AAA23445.1) and EcAI 
(PDB id: 2p2d [117]; ACX39533) L-asparaginases. The position of the disulphide bridges is 
depicted in green. 

1.2.4.1 Structural details of type-II L-asparaginases 

Structural studies of type-II L-asparaginases have been conducted on a number of 
bacterial species including E. coli [116], Erwinia chrysanthemi [101, 118, 119], 
Acinitobacter glutamininasificans [120], Pseudomonas 7A [120], Erwinia carotovora 
[121, 122], and Wolinella succinogenes [123]. Thirty-nine refined crystal structures till 
date are available in the Protein Data Bank for substrate-free forms, various mutants, 
complexes and reaction intermediates of L-asparaginases. The structural studies have 
revealed that the bacterial type-II L-asparaginases are active as tetramers of identical 
subunits that obey the 222 symmetry (Fig. 9a). Each subunit consists of ~ 330 amino 
acids with a molecular weight of approximately 35 kDa. Crystal structures of EcAII 
[116] and EcAII T89V variant together with kinetic data [124, 125] that facilitated the 
identification of the residues involved in substrate binding and catalysis. 

The active site is located between the N-terminal domain of one subunit and the C-
terminal domain of another (Fig. 9b). A pair of Thr residues (EcAII Thr12 and Thr89) 
is located on either side of the scissile bond of the substrates. The formation of a 
Thr12-acyl complex has led to the suggestion that Thr12 and not Thr89 is the primary 
nucleophile in the L-asparaginase reaction. Thr12 along with Tyr25 are part of the 
flexible loop that attains stability upon substrate binding [126]. The other part of the 
active site is rigid and comprises Thr89, Asp90 and Lys162. Glu283 from the adjacent 
subunit plays a crucial role by assisting in substrate binding. 
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A left-handed crossover connecting the 4 and 5 strands in the N-terminal domain 
is observed in all the L-asparaginases. Such crossovers are rarely observed and are 
considered to be important for the enzymatic catalysis. The residues involved in the 
crossover form a part of the active site. Furthermore, the amino acid residues that 
comprise the crossover are evolutionarily conserved because they provide a substantial 
part of the interface between the pairs of dimers in the tetramer [119]. The formation of 
a hydrogen bond between the carbonyl O atom of EcAII Ala20 from the active-site 
flexible loop and the main-chain N atom of Leu127 from the crossover is characteristic 
of all L-asparaginases. 

 
Figure 9. (a) The tetramer of EcAII (PDB id: 3eca) where the helices are shown as cylinders 
and the A, B, C and D subunits are coloured green, turquoise, magenta and yellow, respectively. 
L-asparate is shown in ball-and-stick representation and coloured according to atom types. (b) 
Monomer of EcAII where the secondary structure elements are labelled. The colouring scheme 
is from blue (N-terminus) to red (C-terminus). The active site is occupied by L-aspartate, which 
is represented as ball-and-stick and coloured according to atom types. 

1.2.4.2 Structural details of type-I L-asparaginase 

The crystal structure of type-I EcAI in the presence of L-Asn has been determined at 
1.9 Å [117]. The structural analysis revealed a tetramer in the asymmetric unit. The 
overall structure of EcAI is very similar to the related L-asparaginases (Fig. 10a) and 
also includes the left-handed crossover structural motif. The / domains of the 
molecule are connected by an extended but structured linker region from residue 191 to 
210. The unexpected feature of the complex is the location of four tightly bound 
asparagine molecules at equivalent locations within the tetramer, far from the active 
site (Fig. 10b). The distance between the C-atoms of the bound asparagine residues 
within the dimer is less than 7 Å. It was suggested that asparagine might have a dual 
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role as a substrate and as an allosteric effector molecule. The putative allosteric site is 
located at the N-terminus of -helix 8 and close to the dimer interface. Kinetic, 
mutagenic and hydrodynamic experiments supported further the notion of an allosteric 
switch in EcAI [117]. 

 
Figure 10. (a) Cartoon representation of the monomer of EcAI (PDB id: 2p2n [117]) depicting 
the secondary structure elements. The colouring scheme is from blue (N-terminus) to red (C-
terminus). The active site (light colour) and allosteric site (dark colour) are occupied by L-
aspartate, represented by space-filling models and labelled. (b) Similar representation of EcAI 
tetramer.  

1.2.5 Helicobacter pylori L-asparaginase 

Currently, two L-asparaginases (91% sequence identity) from different strains of the 
pathogenic bacterium Helicobacter pylori have been studied in detail. Strain J99 L-
asparaginase (HpA) is the subject of the structural studies in this thesis. A functional 
study of the second L-asparaginase (Helicobacter pylori CCUG 17874 strain) has been 
carried out independently to gain insights into the pathological and therapeutic 
properties of the enzyme [127]. An important feature of these two L-asparaginases is 
their negligible (0.01%) L-glutaminase:L-asparaginase activity compared to the other 
type-II enzymes. Moreover, the enzyme was found to exhibit the following important 
properties that could make it a chemotherapeutic candidate: 

 Positive homotropic cooperativity towards L-glutamine that can account for its 
lower affinity for L-glutamine compared to other type-II L-asparaginases. 
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 High thermal stability showing a T50 of 53 C strengthening its suitability to 
chemotherapeutic usage. 

 A sigmoidal pH rate profile against L-asparagine with a broad optimum in the 
pH range of 7.0-10.0 in contrast to the bell-shaped pH rate profile for L-
glutamine with the maximum activity at pH 7.5. 

 High cytotoxic activity towards several humoral cell lines (HL60, MOLT-4, 
HDF, AGS, MKN28, MKN74, and MKN7). 
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2 AIMS OF THE PRESENT STUDY 

The aim of this thesis was to characterize a fluorodifen-inducible GST from Glycine 
max complexed with glutathione and S-(p-nitrobenzyl)-glutathione and to obtain 
structural and functional information of L-asparaginase from Helicobacter pylori strain 
J99. The specific goals were: 
I GST 

 To produce crystals of complexes of GmGSTU4-4 with glutathione and S-(p-
nitrobenzyl)-glutathione. 

 To determine the crystal structures of the two complexes. 
 To compare the structures and study molecular recognition, binding, and 

catalytic aspects. 
II L-asparaginase 

 To crystallize HpA. 
 To determine the three-dimensional X-ray crystal structure. 
 To explore the active site of the enzyme and understand the behaviour of the 

flexible loops near the active site. 
 To compare the structure with the other type-II L-asparaginases to better 

understand the catalytic mechanism and specificity of the enzyme. 
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3 SUMMARY OF MATERIALS AND METHODS 

3.1 Crystallization 

Prior to crystallization screening, the purified proteins supplied by our collaborators 
were concentrated by ultrafiltration using Amicon YM-10 filters in an appropriate 
exchange buffer and the concentrated protein was then stored in the same buffer. The 
concentration of the protein was measured by the Bradford method using bovine serum 
albumin as a standard [128]. Screening of the crystallization conditions was done by 
PACT (Qiagen) and INDEX (Hampton Research) screens on 96-well Corning plates 
by the sitting-drop vapour-diffusion method at +16 C. Typically, a 1.0 l of the 
protein was mixed with an equal amount of the crystallization solution in the respective 
well and incubated at +16 C. Optimization of the crystallization condition that 
produced crystals was carried out by the hanging-drop vapour-diffusion method by 
equilibrating 2 l of the protein mixed with an equal amount of the precipitant solution 
taken from a reservoir of 800 l (Fig. 11). 

3.1.1 GST-GSH complex 

Purified GmGSTU4-4 was concentrated to 12.5 mg/ml in 10 mM HEPES-NaoH at pH 
7.0 and 10 mM GSH was added to the concentrated protein. Condition No. 20 (tri-
sodium citrate 1.4 M, 0.1 M HEPES-NaOH, pH 7.5) of the INDEX screen yielded the 
first crystals and the condition was further optimized by the hanging-drop vapour-
diffusion method. The optimal condition (tri-sodium citrate 1.2–1.3 M in 0.1 M 
HEPES-NaOH, pH 7.4 at 16 C) produced crystals within 1 day. The crystals attained 
a maximum size of 0.5×0.15×0.15 mm3 within 3 days. 

3.1.2 GST-Nb-GSH complex 

Previously purified and concentrated GmGSTU4-4 was mixed with a stock solution of 
S-(p-nitrobenzyl)-glutathione (100 mM in 0.1 M Na/K phosphate buffer, pH 7.0) to a 
final concentration of 10 mM. Condition No. 70 (0.2 M NaCl, 0.1 M Bis-Tris, pH 5.5, 
25% (w/v) PEG 3350) of the INDEX screen resulted in the appearance of crystals. X-
ray diffraction quality crystals were grown within four to five days under the same 
conditions without further optimization. 

3.1.3 HpA 

The protein was concentrated to 3.7 mg/ml as measured by the Bradford method and 
stored in the presence of 10 mM HEPES-NaOH, pH 7.0. Crystals appeared after 2 days 
under condition No. 92 of the INDEX screen that consisted of 15% (w/v) PEG 4000 
and 0.1 M magnesium formate. Optimization of condition 92 resulted in good quality 
crystals that appeared within 4 days under the following conditions: 17.5% (w/v) PEG 
4000, 0.1 M Mg formate, 0.1 M HEPES-NaOH, pH 7.0. 



Summary of Materials and methods 31 

 
Figure 11. Typical crystals of (a) GmGSTU4-4-GSH, (b) GmGSTU4-4-Nb-GSH, and (c) HpA. 

3.2 Data collection and processing 

3.2.1 GST-GSH complex 

Cryogenic data to 2.7 Å resolution were collected from a single crystal on station X13 
in EMBL-Hamburg, c/o DESY by using 20% (v/v) glycerol as a cryoprotectant and 
subsequent flash-cooling in a gaseous nitrogen stream at 100 K. Despite their relatively 
big size, the crystals diffracted weakly owing to their high solvent content (74%) as 
deduced by the Matthews coefficient (Vm = 4.86 Å3 Da-1). A 2-min exposure time was 
used in order to record weak high-resolution reflections. Data processing was carried 
out using the HKL suite [129]. 

3.2.2 GST-Nb-GSH complex 

Data under cryogenic conditions were collected up to 1.75 Å from a single crystal on 
station X11 in EMBL-Hamburg. Mother liquor solution containing 20% (v/v) glycerol 
was used as a cryoprotectant where the crystal was briefly soaked prior to data 
collection. The raw diffraction data were indexed, integrated, scaled and merged using 
the HKL suite. 

3.2.3 HpA 

An in-house data set to 2.6 Å resolution was initially collected from a single crystal 
soaked for a few seconds in a mother liquor solution containing 25% (v/v) glycerol as a 
cryoprotectant. The crystal was subsequently flash-cooled at 100 K in a gaseous 
nitrogen stream. Higher resolution cryogenic data (1.4 Å) were collected on station 
X13 (λ=0.8081 Å) at EMBL-Hamburg. In addition, a room-temperature dataset to 1.8 
Å resolution was collected on X13 from a single crystal mounted on a quartz capillary. 
All data were indexed, processed and scaled using the HKL package. Data collection 
and refinement statistics are shown in Table 3. 

3.3 Structure determination and refinement 

All the structures in the present study were determined by molecular replacement using 
PHASER [130] in the CCP4 programme suite [131]. Inspection of the 2|Fo|-|Fc| and 
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|Fo|-|Fc| maps and manual model building was performed by COOT [132]. A randomly 
selected subset (5%) of the total number of reflections was set aside for cross-
validation analysis to monitor the progress of refinement using the Rfree factor. The co-
ordinates were submitted to Translation/Libration/Screw Motion Determination 
TLSMD server [133, 134]  for protein partitioning to perform TLS and restrained 
refinement in REFMAC [135]. Various aspects of manual modelling such as the side-
chain flip in Asn and Gln residues, alternative conformations, and addition of solvent 
molecules were carried out. Waters with B-factor higher than 60 Å2 were removed 
from the structures during the course of the refinement. 

3.3.1 GmGSTU4-4-Nb-GSH complex 

A poly-alanine model of the rice GST structure (PDB id: 1oyj, with 47% sequence 
identity) [136] was used as a search model for molecular replacement. The best 
solution was obtained in P41212 spacegroup, thus resolving the ambiguity in the space 
group. The model was submitted to ARP/Warp for automatic building of the side-
chains. Structural refinement was carried out by REFMAC in CCP4. 

3.3.2 GmGSTU4-4-GSH complex 

The poly-Ala model derived from the coordinates of GmGSTU4-4-Nb-GSH was used 
as a search model for molecular replacement to determine the GmGSTU4-4-GSH 
structure. The best solution with a Z-score of 61.4 was obtained in P61 space group and 
selected for refinement by REFMAC and subsequent rebuilding. 

3.3.3 HpA 

A poly-Ala model of the A subunit of Wolinella succinogenes L-asparaginase (PDB id: 
1wsa; 55% sequence identity with HpA) [123] was used as a search molecule for 
molecular replacement. A Z-score of 22 was observed for the top solution employing 
the 2.6 Å resolution in-house data. REFMAC in CCP4 was initially used to carry out 
the refinement. The resolution was extended to 1.4 Å when the new data set became 
available. Anisotropic refinement was carried out by SHELXL-97 during the final 
stages of refinement [137]. Default values for the distances, planarity, chiral and anti-
bumping restraints by SHELX-97 were used for the protein molecules. Geometric 
restraints for the ligand were generated by the PRODRG server [138] and they were 
manually added into the input file of SHELXL-97. 

3.3.4 Validation and quality of the structures 

The final quality of the structures was assessed by MOLPROBITY [139], 
PROCHECK [140] and the various validation tools in COOT. The programme 
CONTACT was used through the CCP4i to calculate the various types of contacts in 
the structures. The programme BAVERAGE in CCP4 was used to calculate the 
average B-factor values for the main chain, side-chain, ligands and the waters. 
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Structural superposition was carried out by SSM [31] , RMSDs calculated for the C- 
alphas and the structures were visualized in COOT. Multiple sequence alignment was 
performed by ClustalW [141], and secondary structure assignment was performed by 
DSSP [142]. 

3.4 Presentation 

All the schematic protein structure representations were produced with PyMol 
(http://www.pymol.org). Multiple sequence alignment output from ClustalW was 
formatted into a coloured postscript file using ESPript [143]. 

Table 3. Data collection and refinement statistics. 

 GST HpA 
Data collection and 

processing 
GSH Nb-GSH In-house Cryogenic Room-temp 

Wavelength (Å) 0.8088 0.8088 1.5418 0.8081 0.8123 

Resolution (Å) 
100-2.7 

(2.75.2.70) 
70.71-1.75 
(1.78-1.75) 

2.6 
99.0-1.4 

(1.42-1.40) 
99.0-1.8 

(1.83-1.80) 
Angle Δφ (  ) 0.5 0.5 1.5 0.5 0.5 
No of images 250 250 100 400 300 

Beamline DESY-X13 DESY-X11 - DESY-X13 DESY-X13 
Cryoprotectant (%) 20 20 25 25 - 

Space group P61 P41212 I222 I222 I222 

Unit-cell parameters 
(Å) 

a=b=136.2, 
c=90.7 

 

a=b=91.4, 
c=111.9 

a=63.6, 
b=94.8, 
c=100.3 

a=63.6, 
b=94.8, 
c=100.3 

a=64.9, 
b=96.4, 
c=101.9 

Completeness (%) 99.0 (100.0) 99.0 (100.0) 97.5 (93.4) 99.7 (99.1) 99.9 (99.4) 
I/(I) 28.9 (3.5) 40.1 (4.1) 12.2 (2.4) 22.8 (7.1) 24.8 (3.5) 

Rmerge (%) 6.8 (56.3) 5 (52.2) 13.4 (42.3) 9.6 (27.2) 7.2 (50.2) 
No. of protein 

molecules/asymmetric 
unit 

2 2 1 1 1 

Matthews coefficient 
(Å3 Da-1) 

4.9 2.3 2.1 2.1 2.1 

Refinement      
Resolution range (Å) 59.0-2.7 70.71-1.75  20.0-1.40 70.0-1.80 

Rcryst/Rfree (%) 18.9 /24.1 19.4 / 24.3  13.1/16.9 15.1/18.5 
Protein atoms 3656 4243  2531 2428 

Water molecules 100 479  391 168 
RMSD from ideality      

Bond lengths (Å) 0.015 0.015  0.012 0.014 
Bond angles () 1.90 1.5  2.52 1.32 

PBD code 3fhs 2vo4  2wlt 2wt4 
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4 SUMMARY OF RESULTS AND DISCUSSION 

4.1 Structural aspects of GmGSTU4-4 complexes (Paper II and III) 

GmGSTU4-4 displays the characteristic GST fold. The protein is functional as a dimer 
(Fig. 12) similarly to all the cytosolic GSTs that belong to Tau and Phi classes. The two 
subunits exhibit only minor structural differences. Salt-bridges, hydrogen bonds and 
hydrophobic interactions are the three types of interactions involved in the subunit-
subunit interface. The dimer adopts a globular shape and each subunit folds to form two 
spatially distinct domains: a small N-terminal / domain (1-77 residues) and a larger C-
terminal -helical domain (89-219 residues) (Fig. 13). A large cleft formed in the centre 
of the dimer is unique to GSTs. The presence of a large inverted L-shaped active site is 
also typical to Tau GSTs whereas Phi class GSTs have a large open cavity [144]. One 
molecule of the ligand was unambiguously observed in each subunit of the complexes. 

 
Figure 12. (a-left). Cartoon diagram of dimeric GmGSTU4-4 (PDB id: 2vo4) where monomer A is 
coloured in cyan and monomer B in magenta. (a-right) The dimer after 90 rotation. (b) Cartoon 
representation of the monomer. The colouring scheme is from blue (N-terminus) to red (C-terminus) 
and the ligandsS-(p-nitrobenzyl)-glutathione (Nb-GSH), (4-nitrophenyl) methanethiol (NpM) and 
glycerol (GOL) are shown in ball and stick representation and coloured according to atom types. 
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4.1.1 Glutathione-binding site (G-site) 

The N-terminal domain binds GSH in a topologically conserved location known as the 
G-site. The G-site is formed in the beginning of H1, H2 and H3-helices. The Tau class 
GSTs along with mammalian theta and insect delta use a catalytic serine hydroxyl to 
activate GSH during catalysis [55]. The hydroxyl group of the serine acts as a 
hydrogen donor to the thiol group of GSH leading to the formation and subsequent 
stabilization of the highly reactive thiolate anion which is the target for nucleophilic 
attack of an electrophilic substrate. The interactions of the G-site in the GSH bound 
complex are: 

 The -Glu moiety of GSH points downward to an internal cavity and forms 
hydrogen bonds with Glu66, Ser67 and Wat250. 

 The cysteinyl moiety of GSH is involved in hydrogen bonding with the peptide 
bond of Ile54. 

 The –SH group is involved in water-mediated hydrogen bonding with Lys40 and 
in weak contacts with the side-chain of Lys53 as well. 

 The glycyl moiety of GSH hydrogen bonds with the active site Ser13. 
Interestingly, GSH is bound in a different conformation in each subunit of the 
GmGSTU4-4-GSH complex (Fig. 13). Details about the active site interactions in the 
individual subunits are as follows:  

4.1.1.1 GmGSTU4-4-GSH-Subunit A 

Apart from the aforementioned interactions at the active site, the -Glu carboxyl group 
undergoes a water-mediated hydrogen bond with Asp103. The glycyl moiety of GSH 
in this subunit is located in a more positive electrostatic potential area and is stabilized 
by a hydrogen bond formed with the side-chain of Tyr107 (2.81 Å). No hydrogen bond 
is seen between the hydroxyl group of Tyr107 and guanidine group of Arg111. The 
interaction between the two is important for the subsequent reorientation of GSH to its 
correct position for catalysis (more details about the binding mechanism are mentioned 
under section 4.1.3). The –SH group of the cysteine residue of GSH is accessible to the 
bulk solvent while pointing toward the H-site. The carboxyl group of the glycyl moiety 
also establishes weak contacts with Phe15 (3.52 Å) and also forms a hydrogen-bond 
with the catalytic Ser13 (3.45 Å) (Fig. 13). Therefore, the enzyme forms a complex 
with the ionized form of GSH in the A subunit. The GSH interacts with the enzyme in 
such a way to form a catalytically competent complex. 
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Figure 13. Cartoon representation of the GmGSTU4-4-GSH G-site in subunit A (a) and subunit 
B (b). All the active site residues and GSH are shown in stick representation, coloured 
according to atom type and labelled. 

4.1.1.2 GmGSTU4-4-GSH-Subunit B 

While the interactions at the -Glu moiety are similar to those of A-subunit, significant 
differences are observed in the interaction patterns of cysteinyl and glycyl moieties due 
to their respective conformational variabilities. The –SH group of the cysteinyl moiety 
makes weak contacts with Lys53, and fails to interact with Lys40 due to a change in 
the conformation of the –SH reacting group. The glycyl moiety adopts a different 
conformation by positioning itself away from the H-site and Tyr107 and towards an 
unfavourable hydrophobic environment formed by Phe10, Pro12, Leu37, Trp163 and 
Phe208 (Fig. 13). An important feature again is a missing hydrogen bond between 
Tyr107 and Arg111 owing to a conformational change of the latter pointing away from 
the active site. This interaction is necessary for the correct positioning of the xenobiotic 
substrate. These differences might explain the variations in the ionic states of the 
glycyl moiety in both subunits and further support the possibility of different ionization 
states of glycine carboxylate. The conformation of the –SH group of GSH in the B 
subunit probably does not play a role as a nucleophile and, therefore is unable to 
produce a catalytically competent complex. As a result, GSH binds in a productive 
(ionised form) mode in subunit A and unproductive (non-ionised form) mode in 
subunit B. 

Two possible explanations could be given for the unproductive binding of GSH in 
the B subunit: either to prevent the oxidation of the GSH-SH group under oxidative 
stress conditions or to deliver the bound GSH to specific receptors or cellular 
compartments by performing a non-catalytic function such as glutathionylation. 
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4.1.1.3 GmGSTU4-4-Nb-GSH complex 

The location of the GSH moiety of the bound Nb-GSH inhibitor is similar to that found 
in the GmGSTU4-4-GSH complex. The -Glu moiety of GSH forms hydrogen bonds 
with Glu66 and Ser67 and makes weak contacts with Pro55 and Phe15. The amino 
nitrogen of the cycteinyl moiety forms a hydrogen bond with the peptide bond of Ile54 
(2.77 Å). The –sulphur atom of the cysteinyl moiety makes a hydrogen bond with the 
hydroxyl group of Ser13 (3.24 Å) that facilitates the formation of the thiolate anion. 
The glycyl moiety of the substrate participates in hydrogen bonds with the side-chain 
Lys40 and two water-mediated hydrogen bonds with Lys215. The glycyl N and 
carboxylate are also within hydrogen bonding distances with Wat370 that is further 
stabilized by Lys53. Asp103 forms a water-mediated hydrogen bond with the Lys104 
side-chain from the adjacent subunit contributing to the subunit interface and spatial 
organization of the dimer. 

Although the overall structure of the N-terminal domain is mostly similar (RMSD 
of 0.18 Å) in the GSH and Nb-GSH complexes, two striking differences have been 
observed at the C-terminal domain (RMSD of 1.45 Å). These differences are located at 
the upper part of -helix 4 (Trp114-Glu120) and the C-terminal domain (Lys214-
Glu219) (Fig.14). These differences cannot be attributed to crystal lattice contacts 
because they are not involved in any interactions with symmetry-related molecules. 

Furthermore, structural comparison between the GSH and Nb-GSH complexes via 
superposition revealed significant differences in the G-site. These differences affect the 
hydrogen-bonding and electrostatic interaction pattern of GSH with the enzyme. More 
specifically: 

 The glycyl-carboxylate of the Nb-GSH complex is located in a polar 
environment and is therefore able to form ionic and hydrogen bonds with the -
amino group side-chain of Lys40 and two water-mediated hydrogen bonds with 
the side chain of Lys215. The latter interaction is absent in the GSH complex as 
the -helix 7 hosting Lys215 exists in a different conformation and is 
separated by a distance of (~ 15 Å). 

 The hydroxyl group of Tyr107 points towards the benzyl ring of the bound 
substrate. Consequently, an on-face hydrogen bond is formed between the side-
chain hydoxyl of Tyr107 and the -electron cloud of the benzyl group of Nb-
GSH. This interaction helps in stabilizing the substrate in its productive 
orientation. In the GSH-bound structure, the interactions are different in both 
subunits. In the A subunit, the hydroxyl group of Tyr107 makes a hydrogen 
bond (2.8 Å) with the glycyl moiety of the bound GSH, pointing towards 
possible protonation of the hydroxyl group. The absence of a positively charged 
group further supports the above. In the B-subunit, a similar interaction is absent 
because the glycyl moiety adopts a different conformation turning away from 
Tyr107. 
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Figure 14. Superposition of GmGSTU4-4-Nb-GSH structure (light orange) onto GmGSTU4-4-
GSH (light blue). Ligands (Nb-GSH pale green and GSH salmon) and selected active site 
residues are represented as sticks. -Helices H4 and H9 are labelled. This figure was originally 
published in Biochemical Journal [145]. 

4.1.2 Hydrophobic substrate-binding site (H-site) 

The H-site of GmGSTU4-4 is located next to the G-site and is formed by residues from 
the C-terminus. The C-terminal domain of the GSTs is found to exhibit a low degree of 
sequence identity leading to a higher degree of structural plasticity. The H-site is 
hydrophobic and determines the substrate specificity for hydrophobic substrates. The 
hydrophobic residues contributing to the H-site of GmGSTU4-4-Nb-GSH are: -
helices H4a (Tyr107, Arg111), H6 (Trp163), H9 (Phe208, Leu212, Lys215 and 
Leu216), and Phe10, and Leu37 from the N-terminal domain. All the residues are 
oriented towards the centre of the active site and they are not conserved among other 
classes. This suggests that the size, shape, and binding characteristics of the H-site 
modulate substrate recognition. The presence of the 4-nitrobenzyl moiety of the bound 
substrate is directionally towards the bulk solvent. It is bound in a hydrophobic cleft 
lined by Tyr107 and Trp163 on one side and Phe10, Phe208 and Leu212 on the other 
(Fig. 14). This could be the reason for the high activity of the enzyme towards 
hydrophobic substrates (Fig. 2). The nitro-group of the ligand is at a distance of ~ 4 Å 
from the side-chain of Lys215 and Leu212. Lys215 is not conserved among the Tau 
class of GSTs and is located in the solvent exposed end of the cleft with its side-chain 
acting as a lid over the entrance of the active site. 
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4.1.2.1 Comparison of the H-site between the two complexes 

The comparison of the GmGSTU4-4-GSH and Nb-GSH complexes revealed a 
significant difference in the H-site with respect to the positioning of Arg111 and 
Tyr107. The guanidine group of Arg111 in the GSH complex has moved 2.3 Å away 
from the hydroxyl group of Tyr107 resulting in a separation of ~ 5 Å between the two 
residues. In contrast, in the Nb-GSH complex the interacting group of Arg111 has 
moved inwards and at a hydrogen bonding distance (2.7 Å) from Tyr107 (Fig. 15). 

 
Figure 15. Superposition of GmGSTU4-4-GSH (pale yellow) and GmGSTU4-4-Nb-GSH (light 
blue) monomer complexes. H-site residues, GSH and Nb-GSH are labelled. 

4.1.3 The mechanism of GSH binding 

Taking into account the similar binding pattern of the -Glu moiety of GSH in both 
complexes, a mechanism of GSH binding can be described as follows: 

 Initially GSH -Glu binds followed by the filling of the H-site by the xenobiotic 
substrate.  

 A hydrogen bond is formed between Arg111 and Tyr107. 
 Arg111 moves to a new position and the loss of hydrogen bond between Tyr107 

and the glycyl oxygen of GSH relocates GSH to an appropriate position for 
catalysis. 

 The xenobiotic ligand is stabilized in the H-site as a result of the Tyr107-Arg111 
interactions combined with large conformational changes in the upper part of -
helix H4 (W114TSKGEE120) and the C-terminal residues (K214KLGIE219). 
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 In the GmGSTU4-4-Nb-GSH complex, the active site is partially blocked by the 
positioning of the C-terminus as a lid over the top of the N-terminal domain. In 
contrast, the C-terminus adopts a different conformation and folds away from 
the entrance of the active site in GmGSTU4-4-GSH complex. 

4.1.4 Ligand-binding site (L-site) 

One molecule of (4-nitrophenyl) methanethiol was identified in each subunit. The 
source of the compound could be either some degradation of Nb-GSH, or a by-product 
during chemical synthesis of Nb-GSH. This compound was found bound in a 
hydrophobic pocket formed by Trp11, Arg20, Tyr30, Tyr32, Leu199 and Pro200 on 
the surface of the protein (Fig. 16). The conserved nature of the main binding residues 
(Trp11, Arg20, Tyr30 and Tyr32) among Tau GST members suggests that this newly 
identified binding site may be of biological significance and involved in the transfer 
and delivery of bound ligands to specific protein receptors. 

 
Figure 16. L-site details of the GmGSTU4-4-Nb-GSH complex. (4-nitrophenyl) methanethiol 
(NpM) and the residues involved in interactions are labelled. 

4.2 Structural studies of H. pylori L-asparginase (Paper I and IV) 

4.2.1 Quality of the HpA structure  

HpA structure was refined with anisotropic B-factors to an Rcryst of 12.6% for all the 
58995 reflections and an Rfree of 16.9% for 2939 reflections (5% of the total 
reflections). The final model displays good overall stereochemistry although the first 
four residues at the N-terminus, residues 22 and 23 could not be modelled due to lack 
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of sufficient electron density. Residues 21, 24-45 (flexible loop), and 211-216 were 
refined with 0.65 occupancy owing to their poor density. 99.7% of the non-Gly and 
non-Pro residues were in the most favoured regions of the Ramachandran plot. Thr204 
was identified in the disallowed region that may be due to its strained conformation in 
spite of the good electron density. Sixteen residues were modelled in alternative 
conformations. 

4.2.2 Description of the structure 

The crystals belong to the I222 space group. The Matthews coefficient, VM, [146, 147] 
of 2.27 Å3 Da -1 corresponds to a solvent content of ~ 47% and the presence of one 
molecule in the asymmetric unit. This is contrary to the presence of non-
crystallographic homotetramers in other type-II bacterial L-asparaginases. Another 
bacterial L-asparaginase that crystallizes as a monomer in the asymmetric unit is that 
from Acinetobacter glutaminasificans, where the active tetramer is generated by crystal 
symmetry operations [148]. 

The structure of HpA is characterized by an / fold. The monomer consists of 327 
amino acids that form 9 -helices, 14 -strands and 6 310 helices. The monomer is 
divided into a large N-terminal domain and a small C-terminal domain connected by a 
linker of ~ 26 residues. A left-handed crossover between the 4 and 5 strands 
(residues 119-153) is observed in HpA as in all other L-asparaginases. 

4.2.3 Insights into the L-Asp binding site  

A strong electron density corresponding to L-Asp was observed at the active site 
between the N- and C-terminal domains of symmetry-related subunits. Since L-Asp 
was not added during crystallization, its presence can be explained as an impurity 
during purification process. Apart from HpA, the structures of L-asparaginases with 
bound L-Asp are those from E. coli [116] and Erwinia carotovora [149]. The active 
site is formed by a flexible part and a rigid part. The flexible part of the active site (19-
46) is responsible for controlling the access to the binding site and hosts the 
catalytically important Thr16, Ser31 and Tyr29. The rigid part is formed by residues 
between the first and the third parallel -strands of the N-terminal domain (Ser62, 
Gln63, Thr95 and Asp96) and by the residues from the loop of the C-terminal domain 
of the adjacent monomer [101] (Asn255, Glu289). The residues from the rigid part are 
responsible for the substrate binding (active site residues; Fig 4 Paper IV). The 
interaction of Ser31 with L-Asp in HpA is noteworthy, as the corresponding residues in 
EcAII (Val) and in WsA, EwA and ErA (Ala) rule out the possibility of a hydrogen 
bond formation due to the absence of a suitable side-chain. HpA Gln63 is conserved in 
WsA, and EcAII whilst is replaced by Gln in EwA, ErA and PgA. Tyr29, another 
important residue of the active site flexible loop, is characterized by good electron 
density, suggesting some stabilization upon substrate binding. Tyr29 is also essential 
for the loop closure and catalysis in EcAII (Fig. 17) [124, 125]. The rigid part of the 
active site hosts three residues: Asn255, Glu289 and Gln63. Asn255 is conserved in 
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EcAII and WsA, but is replaced by Ser in EwA, ErA and PgA. HpA Glu289 
corresponds to Glu in EcAII whereas Asp replaces it in ErA and EwA (Multiple 
sequence alignment; Fig. 2 Paper IV). 

 
Figure 17. Close-up view of the active site flexible loops. HpA (PDB id: 2wlt [150]), EwA 
(PDB id: 2gvn [149]) and EcAII (PDB id: 3eca [116]) are coloured in blue, green and magenta, 
respectively. L-Asp is labelled. Reproduced with permission of the International Union of 
Crystallography (http://journals.iucr.org/). 

4.2.4 Room temperature HpA structure 

Although cryogenic techniques reduce radiation damage, they might also introduce 
structural artefacts directly as a result of temperature effects (e.g. decrease in unit-cell 
volume, changes in molecular packing and perturbation of local structure) or indirectly 
from addition of cryoprotectants and temperature-induced pH changes. Thus, high-
resolution cryogenic structures may exhibit structural deviations from the room 
temperature structures. These differences are more extensive on the surface compared 
to the core of protein [151]. 

A room temperature structure to 1.8 Å was, therefore, solved for HpA to acquire 
information about possible temperature-induced changes, especially the position of 
the flexible loop. Inspection of the electron density maps showed that the position of 
the loop in both structures is the same. A larger part of the flexible loop (22-35) 
could not be modelled in the room temperature structure due to lack of electron 
density (Fig. 18). 
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Figure 18. (a) Superposition of the cryogenic (PDB id: 2wlt; cyan) and room temperature (PDB 
id: 2wt4; yellow) structures with the active site flexible loop marked in a circle. L-Asp in both 
the structures is shown in stick representation and coloured according to atom type. (b) The 
active site flexible loops of the two superposed structures in cartoon and surface 
representations. 

An interesting observation was made for Met197 whose sulphur atom alone is seen 
in two conformations with lack of electron density for the methyl group. These changes 
are probably induced by radiation damage.  

 
Figure 19. 2Fo-Fc electron density contoured to 1 for Met197 in the (a) cryogenic structure 
(PDB id: 2wlt); and (b) room temperature structure (PDB id: 2wt4). Met197 is coloured 
according to atom type and the distances between the sulphur atoms are measured and shown as 
dashed lines. 
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Met197 is at a cell symmetry axis and the sulphur atom from the alternative 
conformation is located at 2.75 Å distance from its symmetry-related counterpart. This 
feature is absent in the cryogenic structure (Fig. 19). 

4.2.5 Implications for CCUG-17874 L-asparaginase 

A pair-wise sequence alignment between the two sequences (HpA and CCUG-17874 
L-asparaginases) showed differences with respect to four residues from the flexible 
loop (Val22Ala, Asp23Ser, Leu26Ser and Gly27Asp) and three residues at the 
interface (Gly229Ser, Gly284Glu and Val285Ile) (Fig. 20). However, the residues 
involved in the interactions with L-Asp are conserved suggesting an agreement 
between their kinetic and structural properties. 

 
Figure 20. Sequence alignment between the Helicobacter pylori J99 (PDB id: 2wlt) and CCUG 
17874 strain (UniProt Sequence ID: B6ZCD8). The variable residues from the flexible loop and 
the interface are marked. 
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5 CONCLUSIONS AND FUTURE PERSPECTIVES 

The presented work has led to the following conclusions: 
1. GmGSTU4-4-GSH complex: 

 The conformation of GSH when it binds to a Tau class GST was resolved. 
 GSH binds in two different ionized states: ionized and non-ionized. 
 Tyr107 plays a key role in catalysis. 
 A partially disabled active site may operate in plant GST enzymes. 

2. GmGSTU4-4-Nb-GSH complex: 
 Ser13 at the active site stabilizes the thiolate anion of GSH and is also 

responsible for enhancing its nucleophilicity. 
 Tyr107 and Arg111 together contribute significantly to catalysis. 
 A novel hydrophobic binding site (L-site) formed by conserved residues was 

identified on the surface of the protein. This site may have a role in the delivery 
of bound ligands. 

 Structural comparison with the GmGSTU4-4-GSH complex has revealed 
significant differences in the hydrogen bonding and the electrostatic interaction 
pattern in the G-site.  

3. HpA: 
 The crystal structure of HpA was solved at 1.4-Å resolution, one of the highest 

among the available L-asparaginase crystal structures. 
 The well-defined position of Ty29 suggests initial stages of flexible loop 

stabilization. 
 The presence of Ser31 from the flexible loop is unique to HpA L-asparaginase 

and presents a good target for mutagenesis studies. 
 The active site in HpA and EcAII is more restricted compared to that of ErA. 

The position of HpA Glu289 suggests similar active site architecture with EcAII. 
The close proximity of HpA Glu289-Asn255-Gln63 may contribute to higher 
specificity by excluding large amino acids like glutamine from entering the 
binding site. 

The presented results on the GmGSTU4-4 will help in a rational design of more 
efficient GSTs that could confer better tolerance to a larger spectrum of xenobiotic 
compounds as well as the development of new and safer herbicides. Work on HpA 
could form the basis for the design of chimeric enzymes with desirable features for 
therapeutic purposes. 
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