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Neural mechanisms underlying conscious and unconscious vision 

Evidence from event-related potentials and transcranial magnetic stimulation 

Henry Railo 
Department of Psychology 

University of Turku 
 Finland  
 

 

ABSTRACT 

Vision affords us with the ability to consciously see, and use this information in our 
behavior. While research has produced a detailed account of the function of the visual 
system, the neural processes that underlie conscious vision are still debated. One of the 
aims of the present thesis was to examine the time-course of the neuroelectrical 
processes that correlate with conscious vision. The second aim was to study the neural 
basis of unconscious vision, that is, situations where a stimulus that is not consciously 
perceived nevertheless influences behavior. 

According to current prevalent models of conscious vision, the activation of visual 
cortical areas is not, as such, sufficient for consciousness to emerge, although it might be 
sufficient for unconscious vision. Conscious vision is assumed to require reciprocal 
communication between cortical areas, but views differ substantially on the extent of 
this recurrent communication. Visual consciousness has been proposed to emerge from 
recurrent neural interactions within the visual system, while other models claim that 
more widespread cortical activation is needed for consciousness.  

Studies I-III compared models of conscious vision by studying event-related potentials 
(ERP). ERPs represent the brain’s average electrical response to stimulation. The results 
support the model that associates conscious vision with activity localized in the ventral 
visual cortex. The timing of this activity corresponds to an intermediate stage in visual 
processing. Earlier stages of visual processing may influence what becomes conscious, 
although these processes do not directly enable visual consciousness. Late processing 
stages, when more widespread cortical areas are activated, reflect the access to and 
manipulation of contents of consciousness. 

Studies IV and V concentrated on unconscious vision. By using transcranial magnetic 
stimulation (TMS) we show that when early visual cortical processing is disturbed so 
that subjects fail to consciously perceive visual stimuli, they may nevertheless guess 
(above chance-level) the location where the visual stimuli were presented. However, 
the results also suggest that in a similar situation, early visual cortex is necessary for 
both conscious and unconscious perception of chromatic information (i.e. color). 
Chromatic information that remains unconscious may influence behavioral responses 
when activity in visual cortex is not disturbed by TMS. Our results support the view that 
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early stimulus-driven (feedforward) activation may be sufficient for unconscious 
processing. 

In conclusion, the results of this thesis support the view that conscious vision is enabled 
by a series of processing stages. The processes that most closely correlate with 
conscious vision take place in the ventral visual cortex ~200 ms after stimulus 
presentation, although preceding time-periods and contributions from other cortical 
areas such as the parietal cortex are also indispensable. Unconscious vision relies on 
intact early visual activation, although the location of visual stimulus may be 
unconsciously resolved even when activity in the early visual cortex is interfered with.  
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1. Introduction 

One of the most remarkable facts about brain is that it provides us with the ability to 

consciously perceive the environment. Conscious perception is intimately linked with 

our ability to function in the world, but also unconscious processing of visual 

information can guide behavior (Milner & Goodale, 2006). As an example, take the well-

known phenomenon called blindsight: despite being blind in parts of the visual system 

due to damaged primary visual cortex, these patients can make accurate judgments 

about the visual stimuli they claim they cannot (consciously) see. The cortical damage 

interferes with the patient’s ability to consciously see, but nevertheless the brain has 

somehow gained knowledge of these stimuli, and can use it to influence behavior. What 

are the neural processes that correlate with, and perhaps enable, conscious visual 

perception? How can visual information that is not consciously experienced 

nevertheless influence behavior?  

The studies of this thesis examined the timing of the processes that underlie vision. First, 

using event-related potentials (ERP) we examined the timing and rough localization of 

the neuroelectrical processes that correlate with conscious visual perception (Studies I–

III). Second, using transcranial magnetic stimulation (TMS), we studied which neural 

mechanisms are necessary for conscious and unconscious vision, concentrating on early 

levels of cortical processing (Studies IV–V). Each empirical study of the thesis employed 

metacontrast masking to manipulate visual consciousness.  
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1.1. Consciousness research 

1.1.1. Psychological and philosophical basis 

As you read these words, your eyes convey visual information to your brain, whose 

neural networks then extract the words and their meaning. But how can this 

information processed in neural networks be available to consciousness? This question 

has its roots in the classical philosophical mind–body problem, according to which 

subjective mental contents seem to be fundamentally different from the material world.  

The central defining feature of consciousness (or awareness, which I will use as a 

synonym of consciousness) is the presence of subjective experiences (Nagel, 1974). 

Philosophers use the term qualia to refer to the qualitative features of conscious 

experience. For example, the subjective phenomenal feel of red color — how it appears 

to you — is a quale. Quantitative descriptions, no matter how detailed, can never fully 

capture, for instance, why light whose wavelength is ~700 nm, causes experiential 

contents with the qualia of redness. Why should any physical process give rise to any 

experience? This is what Chalmers (1996) has called the hard problem of consciousness 

research.  

Conscious experience was considered a central theme in the early days of psychological 

science (James, 1892/2001; Titchener, 1928), but then deemed to be beyond the reach 

of science by the school of behaviorism (Watson, 1913). Cognitive science rekindled the 

interest in studying the mind, but the investigations went on largely without making 

references to consciousness, until the issue surfaced in the late 1980’s in cognitive 

psychology (Baars, 1988) and neuroscience (Logothetis & Schall, 1989). 
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Although the hard problem of consciousness at present seems to be beyond the grasp of 

science, empirical facts nevertheless demonstrate that the brain is crucial for 

consciousness. Damage the brain and you are also likely to damage the mind, and 

consciousness. What neural mechanisms, then, are crucial for consciousness? Why do 

blindsight patients lose conscious vision but retain the ability to use the visual 

information from the blind part of their visual field in their behavior? What is the 

difference between conscious and unconscious vision in terms of neural processes 

involved?  

The current aim of the neuroscientific study of consciousness is to find the neural 

correlates of consciousness (NCC) (Crick & Koch, 1990). Is the activity of specific kinds 

of neurons sufficient for visual experience? Is some specific interaction between 

neurons required to form conscious vision? Do unconscious and conscious modes of 

processing depend on different neural pathways? The objective is to find out the 

“minimal neuronal mechanisms jointly sufficient for any one specific conscious percept” 

(Crick & Koch, 2003, p. 119). Although finding the NCC will not solve the hard problem, 

together with theories of neural mechanisms of consciousness, it will increase our 

knowledge about what kind of neural processes are associated with, and perhaps enable 

consciousness.  
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1.1.2. Defining consciousness 

The concept “consciousness” is typically assumed to refer to several distinct, but closely 

related phenomena (Block, 1995; Chalmers, 2000). One basic division is between state 

of consciousness and contents of consciousness. A subject is in a conscious state when 

she has any subjective experiences, but subjects who are in a conscious state can vary in 

the level of arousal or wakefulness (Laureys, 2005). Metaphorically, a conscious state 

can be viewed as a medium which can hold a range of different contents of 

consciousness (e.g. conscious visual experiences).  

The present thesis is about conscious and unconscious visual processing. I will use 

“visual consciousness” to refer to visual contents of consciousness. Arguably, the most 

basic form of visual consciousness consists of visual qualia; fleeting, subjective visual 

experiences. This type of consciousness has been termed phenomenal consciousness 

(Block, 1995). When the contents of phenomenal consciousness are accessed, selected 

as contents of working memory so that they can be manipulated and reflected upon, 

reflective consciousness emerges (Revonsuo, 2006; this has also been termed “access” 

consciousness; Block, 1995; Lamme, 2003). Naming and reporting the contents of 

phenomenal consciousness is the function of reflective consciousness, whereas 

phenomenal consciousness refers to experience per se. Other researchers have denied 

the possibility of pure phenomenal consciousness, and argue that all consciousness is 

necessarily reflective: Sensory representations cannot enter consciousness unless they 

are selected into working memory by attention (Dehaene, et al., 2006), or unless they 

are selected by higher-order representations (Lau & Rosenthal, 2011). These diverging 
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views of what consciousness consists of are also reflected in the theories about the 

neural basis of conscious perception, as the phenomenal-reflective distinction implies 

that they also have different neural correlates.  

 

1.1.3. Measuring consciousness  

Consciousness is notoriously hard to measure due to its private character. One solution 

is to examine participants’ “objective” performance; for example, accuracy in 

recognizing a visual stimulus (e.g. van Aalderen-Smeets, et al., 2006). The problem of 

this objective approach is that it does not directly assess consciousness. A stimulus 

might, for example, be consciously perceived, but distorted, and hence hard to identify.  

Similarly, even stimuli that remain unconscious may guide a participant’s behavior, 

enabling them to perform above chance-level (Cowey, 2010). This is why “forced-choice” 

response paradigms, where the participants are required to make a choice between 

different response alternatives (even when they did not consciously see the target), are 

often employed to study unconscious perception. 

Arguably, when the aim is to study whether or not a participant saw a stimulus, the 

most direct way is to ask the participant to report her subjective percepts. The report 

could be a dichotomous “Yes, I did see”/“No, I did not see” button press decision (e.g. 

Boyer, et al., 2005), but this type of categorization is insensitive to small but possibly 

significant differences in conscious perception. Hence, the use of continuous (Sergent & 

Dehaene, 2004) or ordinal (Likert-type) rating scales is often advisable (Ramsøy & 
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Overgaard, 2004). The advantage of using an ordinal scale with few alternatives is that 

it is intuitive and each alternative can be precisely described and characterized 

(Ramsøy & Overgaard, 2004; Overgaard, et al., 2006). Other methods to measure 

consciousness include asking participants to rate their confidence concerning a decision, 

or ask them to wager after they have made a task-related decision (Dienes & Seth, 2010). 

Trying to demonstrate that a stimulus remained unconscious is similarly challenging. 

How to know that a participant did not see a stimulus at all, not even for a very brief 

glimpse? For the reasons cited above, a Likert-scale with a few alternatives is often the 

most useful (Ramsøy & Overgaard, 2004; Overgaard, 2011). It should be noted, however, 

that subjective ratings always require the participants to employ some decision 

criterion. For example, in order to judge whether a stimulus was “not seen at all”, or 

“barely seen”, the participants use some criterion to determine which alternative to 

select.  Therefore participants who employ a loose criterion might falsely report “not 

seeing a stimulus at all” when in fact they might have had some conscious percept of the 

stimuli. To some extent, this problem can be handled by giving the participants 

sufficiently many alternatives (i.e. to use a high-resolution scale).  

 

1.1.4. Manipulating consciousness and studying its neural correlates 

In order to study consciousness experimentally, it must somehow be manipulated. 

There are multiple different methods for manipulating visual consciousness (Kim & 

Blacke, 2005), but the present thesis focuses on two methods: metacontrast masking 
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and TMS. As discussed later in detail, in metacontrast masking a visual “mask stimulus” 

prevents the conscious perception of another, preceding visual stimulus. In TMS the 

same is accomplished by directly interfering with neural activity in cortex by electric-

fields induced by magnetic pulses. One crucial question is what causes the suppression 

of conscious visual perception as this tells us what processes are necessary for 

conscious perception. A further question is does the suppression of conscious vision 

also suppresses unconscious perception? This kind of analysis might shed light on what 

neural mechanisms underlie unconscious perception, and what are the crucial 

differences between unconscious and conscious processes.  

Comparison of brain activity of situations that differ with respect to contents of 

consciousness, but are almost or completely identical with respect to physical 

stimulation, allow the investigation of the NCC. That is, if in one situation a visual 

stimulus is consciously seen, but in another condition the same stimulus remains 

outside consciousness (although the same stimulus is presented), then the neural 

processes that are associated with conscious perception should only be present in the 

former condition. Comparison of brain activity in the two conditions should thus reveal 

the NCC of that type of visual experience. Nevertheless, all processes that correlate with 

conscious perception might not be those that directly enable visual experience. For 

example, selective attention might influence what sensory representations become 

conscious (Lamme, 2004), and cognitive manipulation of the contents of consciousness 

(i.e. reflective consciousness; Block, 1995) might show up as a NCC, but these processes 

might not be sufficient for conscious experience to emerge. In summary, the comparison 

of neural processing during conditions where a stimulus is or is not consciously 
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perceived will reveal a causal chain of processes of which only a subset might directly 

correspond to the neural events that enable visual experience (Aru et al., 2012).  

 

1.2. Theories and findings about the neural correlates of consciousness 

1.2.1. Cortical areas involved in conscious vision 

Conscious vision is largely dependent on the cortical areas that analyze visual 

information. Damage to V1 produces blindness in the visual field locations that 

correspond to the damaged neural tissue (e.g. damage to left V1 leads to blindness in 

the right visual field; Holmes, 1918). Lesions to specific higher-order visual areas 

produce more limited deficits in visual perception. Damage to ventral cortical area 

labeled V4, for instance, results in an inability to consciously see colors (achromatopsia) 

(Heywood & Cowey, 1999).  

Lesions outside classical sensory visual areas may also produce deficits in conscious 

vision. Hemispatial neglect syndrome, which often results from damage to right inferior 

parietal cortex, produces an inability to consciously perceive contralesional sensory 

stimuli (Mesulam, 1999). Because hemispatial neglect cannot be explained by assuming 

damaged low-level sensory processors, it is often described as an “attentional” deficit 

(Mesulam, 1999). This shows that cortical areas that do not directly and solely analyze 

visual information may nevertheless be crucial for conscious vision.  
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When cortical activity elicited by consciously seen versus unseen is compared, 

increased activation is typically observed in visual cortical areas, especially in the 

ventral visual cortex (Logothetis, 1998; Tong, et al., 1998). Many studies have also 

reported increased activity in parietal and frontal cortices (Beck, et al., 2001; Kouider, et 

al., 2007; Panagiotaropoulos et al., 2012). Although this is in concert with the fact that 

lesions to extrasensory areas may produce deficits in conscious perception (e.g. 

Mesulam, 1999), the exact role of these areas is not understood. These areas might 

directly contribute to conscious perception, but they might also reflect factors such as 

attention, or decision making, that is, reflective consciousness. This question is 

significant because some theories assume that frontoparietal activity is necessary for 

conscious perception (Dehaene, et al., 2006) whereas others do not (Lamme, 2010).  

 

1.2.2. Theories about neural mechanisms of visual consciousness 

Neural processing of stimulus information can be categorized as feedforward or 

feedback, depending on whether it consists of bottom-up flow of sensory information, 

or whether it reflects modulation from other, higher cortical areas (in the processing 

hierarchy), respectively (Bullier, 2001; Rockland, 2003). Feedback connections are 

sometimes divided to “local” and “global” (e.g. Lamme, 2004). Although this distinction 

is somewhat vague and descriptive, in the present thesis, “local feedback” activation 

means feedback signals from higher visual cortical areas to lower visual cortical areas 

(e.g. from V4 to V1). “Global feedback” refers to modulatory activity between different 

cortical lobes (e.g. form frontal lobe to occipital lobe). In addition to feeding back 
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sensory signals, feedback connections can also convey top-down “attentional” 

modulation to lower cortical areas (Klimesch, 2011). 

The response of a single neuron can also be classified as feedforward or feedback. The 

feedforward response of a neuron can further be subdivided into specific components. 

For example, the first feedforward response of a neuron is typically a transient burst of 

action potentials, which is followed by a phase of more sustained firing (Macknik & 

Martinez-Conde, 1998).  

Perhaps the simplest hypothesis is that a sufficiently strong feedforward activation of 

certain visual areas is sufficient for conscious perception (Zeki & Bartels, 1999; Macknik 

& Martinez-Conde, 1998). A somewhat modified view assumes that feedforward 

activation that reaches the highest visual cortical areas also enables rough conscious 

vision (Hochstein & Ahissar, 2002). Some researchers have pinpointed the specific parts 

of a neural feedforward response that correlates with conscious visual perception 

(Macknik & Martinez-Conde, 1998; Breitmeyer & Ögmen, 2006).  

In contrast to the feedforward accounts, other models propose that interaction between 

cortical areas via feedback connections is a crucial component of conscious vision 

(Pollen, 1999; Dehaene, et al., 2006; Lamme, 2010). Lamme and colleagues have 

proposed that feedforward activation remains outside consciousness, although it might 

be sufficient for unconscious vision (Lamme, 2010). According to the theory, visual 

phenomenal consciousness is enabled by local recurrent activity within the ventral visual 

areas. Reflective consciousness emerges as the recurrent activations connect frontal and 

parietal areas with sensory cortices (Lamme, 2010).  
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Some researchers maintain that consciousness requires the recruitment and 

communication of cortical areas outside sensory areas (Dehaene, et al., 2006; Baars, 

2002; Lau & Rosenthal, 2011). The global workspace theory denies the existence of pure 

phenomenal consciousness, and presupposes that conscious perception is always 

coupled with cognitive access of the contents of visual perception (Dehaene, et al., 2006; 

Baars, 2002). The argument for this view is that consciousness serves an important 

function: it enables flexible voluntary behavior (in contrast to the rigid and automatic 

unconscious perception). The global workspace theory thus assumes that recurrent 

activation within the visual system remains outside of consciousness (“preconscious”, to 

use their term). In order to become conscious, the preconscious visual information must 

be selected into the global cortical activity network, consisting of frontal and parietal 

cortices (the “global workspace”), by selective attention.  

Other theories have proposed that attention and consciousness are more independent, 

although intertwined. Hochstein and Ahissar (2002) proposed that conscious 

perception of the gist of a scene can be accomplished by the feedforward activation of 

the highest levels of the hierarchical visual areas, that is, without focused attention. 

However, conscious perception of details requires feedback activation of the early 

visual areas (this corresponds to focused attention) which have the smallest receptive 

fields, and are thus capable of processing small details. 

In general, different forms of attention are often assumed to rely on modulatory, 

feedback activity from certain brain areas to other areas (e.g. Olson, et al., 2001). 

Lamme (2003) argues that although feedback connections are involved in both 
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attention and conscious vision, the nature of these interactions is inherently different. 

According to Lamme (2003), attention can be described as the modulatory state that 

influences conscious processing. Attention may pre-activate neural networks or bias 

neural activation, thereby influencing what contents enter consciousness, but local 

recurrent activation in the ventral visual stream underlies phenomenal conscious 

perception. 

 

1.3. Methods for suppressing visual consciousness 

1.3.1. Metacontrast masking  

Metacontrast masking is a form of backward masking where a spatially adjacent non-

overlapping mask stimulus may reduce the visibility of a preceding stimulus. A similar 

version of masking where the mask precedes the target stimulus is called paracontrast. 

Metacontrast masking has been extensively studied in vision science in healthy and 

selected subject populations, and it is a commonly used method to manipulate visual 

consciousness (Breitmeyer & Ögmen, 2006). When target and mask stimuli have equal 

energies (duration, size and contrast), metacontrast typically leads to a characteristic u-

shaped masking function (also called type B masking functions), shown in Figure 1A: 

the mask maximally suppresses the visibility of the target stimulus when the mask is 

presented a few tens of milliseconds after the onset of the target stimulus. The masking 

function of paracontrast is also often u-shaped, although paracontrast typically induces 

weaker visual suppression(see Fig. 1A) (Breitmeyer & Ögmen, 2006).  
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While a number of theories have been proposed to explain the metacontrast effect, 

recent explanations can be roughly divided into two categories, depending on whether 

metacontrast is assumed to inhibit feedforward (Macknik & Martinez-Conde, 1998) or 

feedback processes (Breitmeyer & Ögmen, 2006).  

 

 

Figure 1. A) Typical para- and metacontrast masking functions. When SOA is 0 ms 
(dashed line), the target and mask stimuli are presented simultaneously. Positive SOAs 
correspond to metacontrast masking, i.e., the mask is presented after the target. B) A 
“classical” suppressive effect of TMS to occipital pole is observed when pulses are 
applied ~100 ms after the visual stimulus onset. 

 
 

1.3.2. Transcranial magnetic stimulation (TMS) 

The weakness of classical brain imaging methods is that they can only reveal what 

neural processes correlate with a given cognitive process, but they do not allow 

researchers to make conclusive causal inferences. For example, the study of NCC cannot 

be assumed to reveal only those neural processes that directly underlie, or “cause” 

consciousness. However, the main advantage of transcranial magnetic stimulation (TMS) 
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is that it allows researchers to probe the causal relevance of specific cortical areas to 

given cognitive tasks.  

In TMS, magnetic pulses are used to induce an electric (E) field in cortical tissue (Walsh 

& Pascual-Leone, 2003). Using a focal coil the maximal magnetic field can be focused 

with high spatial precision. This means that in optimal circumstances, TMS pulses may 

be used to target single visual areas (Salminen-Vaparanta, et al., 2012). In practice, 

however, the induced electric field cannot be limited to any specific areas, but it decays 

gradually with distance from the center of stimulation (Walsh & Pascual-Leone, 2003).  

TMS can be assumed to typically affect different types of neurons (e.g. excitatory and 

inhibitory) within a stimulated area (Walsh & Pascual-Leone, 2003). Behaviorally, TMS 

may have inhibitory or facilitatory effects. In the present studies, we were especially 

interested in how TMS can be used to interfere with visual perception (see Fig. 1B). We 

used a single-pulse TMS approach where single TMS pulses are applied to a selected 

cortical area while a participant is performing a perceptual task. The causal 

contribution of a specific cortical area at specific time-points can be studied by varying 

the timing when a TMS pulse is applied relative to the task a participant is performing.  

 

1.3.3. Event-related potentials (ERPs) 

ERP is a method of averaging sequences of electroencephalogram (EEG; measurement 

of the brain’s electrical activity) that are time-locked to some event, usually the 

presentation of a stimulus. The ERP thus represents the brain’s average response to 

some event. Random “neural noise” is assumed to be eliminated after the averaging, 
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leaving only the neural signal that is time-locked to the specific event (Luck, 2005). 

However, phase-locked neural oscillations may also contribute to the ERPs (Makeig, et 

al., 2002).  

Although ERP’s have a relatively low spatial resolution (e.g. compared to TMS or fMRI), 

they have very high temporal resolution. Hence, by comparing ERPs produced by 

stimuli that are consciously perceived with those that are not, one can estimate when, 

and roughly in which parts of the brain, the processes that correlate with visual 

awareness take place.  

 

 

Figure 2. A typical visual ERP waveform. Notice that negativity is plotted upwards, and that 
positive or negative ERP peaks are labeled according their order. The figure also depicts the 
three proposed correlates of consciousness: an enhanced P1 wave, VAN (negative difference 
between amplitudes), and the LP (positive difference). Dashed line represents stimuli that were 
consciously perceived, while the solid line those stimuli the participants did not consciously see. 
(from Study III) 

 

An ERP waveform consists of a sequence of positive and negative voltage deflections 

(see Fig 2).  The deflections are labeled with respect to their polarity and order (P1, N1, 

P2 etc.). Importantly, the deflections of an ERP waveform are the sum of many “latent 

components” (Luck, 2005). Thus, different latent components, each reflecting a specific 
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neural generator, contribute to the shape and timing of visible ERP waves, meaning that 

single deflections typically cannot be associated with any sole neural or cognitive 

process. Nevertheless, the early parts of a visual ERP (e.g. P1) reflect more low-level 

visual processes, whereas later components (e.g. P3) are more related to higher 

cognitive processes. 

 

2. Aims of the studies 

The general aim of the present thesis was twofold. First, to investigate the ERP 

correlates of conscious vision. How is visual consciousness reflected in ERPs during 

metacontrast masking? More generally, what is the empirical support for different 

proposed ERP correlates of visual consciousness? The second aim was to study 

suppression of visual consciousness by TMS and metacontrast masking. Does TMS or 

metacontrast  suppression result from inhibition of feedforward (Thielscher, et al., 2010; 

Sack, et al., 2009), or feedback (Beckers & Zeki, 1995; Corthout, et al., 1999) activity, or 

a combination of these (Koivisto, et al., 2011)? Do these methods disturb only conscious, 

or also unconscious perception?  

Below I will discuss the specific aims of each study in more detail.  

 

2.1. Studies I-III: ERP correlates of visual consciousness 

In Study I we examined the ERP correlates of metacontrast masking. Classical ERP 

studies of metacontrast masking, which showed that metacontrast influences 
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“intermediate” ERP components (roughly 200 ms after target onset), were completed 

over twenty years ago (e.g. Andreassi, et al., 1976; Bridgeman, 1988). The conclusions of 

these studies have been challenged by van Aalderen-Smeets et al. (2006) who argued 

that metacontrast modulates, not intermediate, but later, “post-perceptual” processes 

(specifically, the P3 component). In their MEG study, Van Aalderen-Smeets et al. (2006) 

compared metacontrast masking to a similar “pseudomaking” condition, that didn’t 

induce masking. This allowed the examination of the metacontrast effect while 

minimizing confounds that are due to summation of the ERPs produced by the target 

and mask stimuli. Although this is an important methodological improvement compared 

to prior metacontrast ERP studies, the study by van Aalderen-Smeets et al. (2006) 

lacked empirical and statistical examination of the control (pseudomask) condition. We 

used a similar pseudomasking condition as van Aalderen-Smeets et al. (2006), but also 

statistically examined the pseudomask condition.  

Study II is a reply to a commentary by Bachmann (2009)  on the above presented Study 

I.  

Study III is a review of ERP studies of visual consciousness. Different ERP deflections 

have been suggested as the correlates of consciousness. Major differences in the timing 

and scalp topography of these components reflect major differences in the models of 

consciousness they support. Our aim in reviewing the evidence for the proposed 

correlates was to examine which of the proposed correlates gains strongest empirical 

support for reflecting neural activity underlying visual consciousness.  
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2.2. Study IV: Mechanisms of visual suppression in TMS and 

metacontrast masking  

Metacontrast masking is assumed to leave the earliest feedforward signals intact, 

although views differ as to exactly what later visual processes metacontrast masking is 

assumed to suppress (later feedforward signals, Macknik & Martinez-Conde, 1998; or 

feedback signals, Breitmeyer & Ögmen, 2006). The sparing of the earliest feedforward 

signals could explain the availability of unconscious visual information despite 

metacontrast masking (Vorberg, et al., 2003; Breitmeyer & Ögmen, 2006).  

Unlike metacontrast, paracontrast masking, which is the forward masking version of 

metacontrast, has been suggested to inhibit the target-related feedforward neural 

response (Breitmeyer & Ögmen, 2006; Ögmen, et al., 2003). Hence, it should suppress 

not only conscious visual perception but also unconscious processing (Breitmeyer & 

Ögmen, 2006). Nevertheless, paracontrast masking is relatively little studied, compared 

to metacontrast masking. 

Adjusting the delay at which occipital TMS is delivered after visual stimulation 

influences which part of the visual-response the TMS pulses affect. The typical finding 

after occipital stimulation is the classical suppressive effect (the “dip”) centered around 

100 ms (Fig. 1B). The dip begins after 60 ms (Amassian, et al., 1989; Beckers & Zeki, 

1995), and depending on the study, has been observed to continue up to 200 ms after 

visual stimulus onset (Corthout, et al., 1999). Some studies have also reported 

additional time-periods, before and after the classical dip, where occipital TMS can 

disturb visual perception (Corthout, et al., 1999; Camprodon, et al., 2010). 
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In study IV we directly compared visual suppression by metacontrast, paracontrast and 

TMS. The aims were to examine, first, if the suppressive time windows observed in TMS 

studies are comparable to those observed in paracontrast and metacontrast, as 

suggested by Breitmeyer, Ro and Öğmen (2004). Second, our study included a forced-

choice location detection task, in addition to reports about the conscious visibility of a 

stimulus. This allowed us to examine whether the participants could guess the location 

of a stimulus rendered invisible by TMS, metacontrast or paracontrast, and thus directly 

test the predictions of different models of visual suppression and unconscious visual 

processing. 

2.3. Study V: Unconscious and conscious processing of chromatic 

information in the early visual cortex 

Unconscious information can be studied by using subliminal priming, where stimuli that 

remain unconscious (i.e. subliminal) influence responses to subsequent target stimuli 

(Jacobs & Sack, 2012; Vorberg, et al., 2003). Metacontrast masked stimuli can produce 

unconscious priming when participants respond to the color of the mask (Schmidt, 

2000), and psychophysical evidence suggests that V1 is crucial for this unconscious 

priming by color (Breitmeyer, Ro, & Singhal, 2004). However, in concert with studies on 

blindsight patients (Stoerig & Cowey, 1992), a TMS study by Boyer et al. (2005) showed 

that the early visual cortex might not be essential for unconscious processing of color. 

The authors suggested that geniculate projections that bypass V1 can mediate 

unconscious processing of chromatic information. 
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In study V we examined if the early visual cortex contributes to unconscious processing 

of chromatic information by measuring unconscious forced-choice color recognition 

and unconscious, metacontrast masked priming by color. We also studied how occipital 

TMS affects conscious color recognition. If the processing of chromatic information 

relies on the geniculostriate projection, both conscious and unconscious perception of 

color should be disturbed (assuming the TMS pulses suppress feedforward visual 

activation of early visual cortex). 

 

3. Methods and results 

3.1. Study I: An ERP-study of metacontrast masking 

ERP’s elicited by metacontrast masked targets were compared to pseudomasked at 

three different SOAs (0, 50, and 130 ms) (Fig. 3A). The participants’ (N = 14) task was to 

recognize the shape of the target and rate how visible the target was.  

As expected from previous studies (van Aalderen-Smeets, et al., 2006), only 

metacontrast masking (and not pseudomasking) produced a significant reduction in 

target visibility (and recognition performance) during the middle SOA (50 ms) (Fig. 3B).  

Metacontrast masking (when compared to pseudomasking) was reflected in ERPs at 

two time-windows (Fig. 3C). First, consciously perceived, pseudomasked, stimuli 

produced more negative amplitudes 300 ms after stimulus onset in occipito-temporal 

sites than metacontrast masked stimuli. A similar negative amplitude difference 

revealed by the comparison of ERPs to consciously perceived and unperceived stimuli 
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in several previous studies, has been called visual awareness negativity (VAN) (Ojanen, 

et al., 2003; Wilenius-Emet, et al., 2004; Koivisto & Revonsuo, 2010). Second, like many 

previous ERP studies of visual consciousness (Sergent, et al., 2004; Koivisto & Revonsuo, 

2010), VAN was followed by a more centrally localized positive difference in the ERPs, 

beginning around 450 ms (late positivity, LP): consciously perceived stimuli produced 

more positive amplitudes than stimuli that were not consciously perceived. The timing 

and scalp topography of LP corresponds to the P3 wave (Del Cul, et al., 2007). Our 

results show that although metacontrast masking is reflected in the late positive ERP 

component as van Aalderen-Smeets et al. (2006) suggested, an earlier correlate is VAN. 

Another important issue is that by examining the ERPs of trials where only the masks 

were presented, we were able to show the differences between metacontrast masking 

and pseudomasking were probably not due to different ERP responses to the masks per 

se (i.e. to physically different stimuli). 

Our results are in good agreement with the “classical” ERP studies of metacontrast (e.g. 

Andreassi, et al., 1976; Bridgeman, 1988). These classical studies compared masking 

conditions that differed with respect to stimulus presentation timing (thus confounding 

visibility with SOA), but we compared target-mask sequences that had identical timing.  
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Figure 3. A) A schematic presentation of the visual sequence presented on each trial. 
The mask on left is the metacontrast mask while the mask on right is the less effective 
“pseudomask”. B) Behavioral results show that metacontrast masking (solid line) 
reduces target visibility more than the pseudomask during the 50 ms SOA. At the two 
other SOAs the two mask types have similar masking strengths. Error bars represent 
the standard error of mean. C) ERPs from the temporal electrodes show VAN and LP 
(dashed line = pseudomask; solid line = metacontrast masking) (From Study I).  
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3.2. Study II: Response to Bachmann’s (2009) comments on Study I 

Study II is a reply to Bachmann’s (2009) commentary on our metacontrast ERP study. 

Bachmann’s main concern is that our ERP result might have been, not due to differences 

in the subjective perception of the target stimulus, but due to small differences in 

physical stimulation between the conditions. Respectively, Bachmann further argues 

that studies of the NCC should always compare two physically identical conditions. 

While the issues Bachmann raises are important, a number of issues speak against his 

interpretations. First, although the metacontrast and pseudomask conditions did differ 

physically in our study, we also included a control condition (masks presented alone, 

without the target stimuli) to statistically examine this confound. Second, our approach 

was clearly hypothesis-driven: based on extensive research (Koivisto & Revonsuo, 

2010), we were expecting the VAN–late positivity combination. Third, the biggest 

difference caused by the physical difference between the metacontrast and the 

pseudomask is arguably their different masking strengths, which was the object of our 

study, and verified by behavioral results. The differences between the mask types may 

also have other, smaller effects on the ERPs, but these differences can be assumed to be 

minor compared to the differences in masking strength. Fourth, we do not completely 

agree with Bachmann in that invariant experimental conditions are always superior 

when studying the NCC, as invariant conditions are also subject to confounds (e.g. 

differences in attention levels may explain differences in conscious perception). 
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3.3. Study III: Review of ERP correlates of consciousness 

VAN and the late positive deflection (LP) are the two ERP correlates of consciousness 

that have been most frequently observed in studies. In addition, some studies have 

reported an earlier correlate of consciousness, an enhanced P1 component (see Fig. 1) 

(Pins & ffytche, 2003). We reviewed the literature supporting these three proposed 

correlates of consciousness, each of which offers a quite different view to the 

mechanisms behind conscious vision. A central theme in our review was the interaction 

between attention and the processes that underlie consciousness. 

Although numerous studies have reported that the P1 correlates with consciousness, 

the studies fail to provide convincing evidence that P1 is a genuine correlate of 

consciousness. The problem, which is typically acknowledged in the studies, is that the 

proposed P1 correlate of consciousness could instead be a correlate of attention.  That is, 

the P1, which is known to be influenced by different types of attention mechanisms 

(Hillyard & Anllo-Vento, 1998; Zhang & Luck, 2009), could be generated by early neural 

processes that co-vary with visual consciousness, but do not necessarily themselves 

directly “produce” visual consciousness. 

VAN, the second earliest proposed ERP correlate of consciousness, observed using a 

wide range of techniques (Koivisto & Revonsuo, 2010), also occurs in a time-window 

that is known to be modulated by attention. However, research has shown that VAN is 

at least partially independent of attention, and might thus reveal a direct correlate of 

conscious processing. The early part of VAN seems to emerge independently of top-

down feature-based attention (Koivisto, et al., 2006). The fact that top-down attention 
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seems to interact with conscious perception and VAN only at later stages suggests that 

VAN reflects a set of different neural and cognitive processes that underlie the 

emergence of conscious vision. We also suggested that differences in the processing 

demands of visual stimuli might explain why the timing of VAN varies across studies. 

Strong stimuli that are easily resolved might reach consciousness faster than 

perceptually demanding stimuli that require extensive attentional processing. 

According to another interpretation, LP is the direct correlate of conscious processing 

(Sergent, et al., 2004; Del Cul, et al., 2007). The proponents of the LP thus claim that the 

processing reflected in VAN serves to make visual representations preconscious, that is, 

make them potential future contents of consciousness (Dehaene, et al., 2006). The 

motivation behind this argument comes (at least partly) from the theoretical view that 

conscious processing is associated with widespread distribution of information in the 

brain which enables conscious access of those contents. An alternative interpretation of 

the LP is that it is a marker of reflective consciousness, leaving VAN as the correlate of 

phenomenal visual consciousness (Koivisto & Revonsuo, 2010). 

In our review, we conclude that the interpretation of LP as a correlate of any type of 

consciousness may be false. Most problematic for the view that LP marks conscious 

processing are reports that have dissociated LP from consciousness: studies where LP is 

not observed in comparisons of unconscious and conscious conditions (although earlier 

correlates are observed; Koivisto, et al., 2006), or where similar late positive deflection 

(P3) is observed, even in the absence of conscious perception (Cavianto, et al., 2012).  
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3.4. Study IV: Comparison of metacontrast masking and TMS 

Eleven participants took part in Study IV. The experimental procedure is depicted in 

Figure 4A. The participants were presented with small (.2°) target stimuli (a grey dot) 

for one screen refresh (at 60 Hz, i.e. ~17 ms). The target was presented either in left or 

right visual field, and the participant’s fist task (forced-choice) was to report on which 

side the target was presented. Secondly, the participant was asked to rate the visibility 

of the stimulus. On some experimental blocks the visibility of the target was 

manipulated by paracontrast or metacontrast masks, presented on both visual field 

locations (SOAs: -117–217 ms). In another experimental condition the visibility of the 

target was manipulated by occipital single-pulse TMS (no masks were presented). The 

TMS SOAs corresponded to the visual masking SOAs, assuming a 60 ms retinocortical 

transmission time (TMS SOAs: -42–275 ms).  TMS was applied to the early visual cortex 

in left or right hemisphere. 

Occipital TMS led to the expected results: Visibility of the target stimulus was 

suppressed in particular during SOAs near 100 ms (i.e. the “classical dip”). Also the 

analysis of metacontrast masking returned expected results: target visibility was 

reduced at intermediate SOAs, leading to the characteristic u-shaped masking profile. 

Comparison of the SOAs at which TMS and metacontrast masking maximally suppressed 

target visibility (by taking account 60 ms of retinocortical transmission time) revealed 

that maximal metacontrast masking occurred after maximal TMS suppression (Fig. 4B). 

This suggests, in concert with previous studies (Breitmeyer & Ögmen, 2006; Macknik & 

Martinez-Conde, 1998), that metacontrast more strongly inhibited later target-related 
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neural responses. Our conclusion rests on the assumed 60 ms retinocortical 

transmission time. This estimate of retinocortical transmission latency is based on 

intracranial recordings in humans (e.g. Wilson et al., 1983). Given that our targets were 

small, low-contrast dots, the 60 ms estimate of retinocortical transmission time is 

conservative: decreases in stimulus intensity are known to greatly increase the 

feedforward response latencies of neurons (Gawne et al., 1996). Assuming a longer 

retinocortical delay, in concert with the low-intensity of the stimuli, would yield 

stronger support for the view that metacontrast suppresses feedback activity.  

Although TMS clearly suppressed conscious visibility of the targets, target detection 

rates did not reveal a strong suppression. Analysis of the trials where subjects reported 

“not seeing the target at all”, showed that the detection of target location was 

nevertheless above 70% correct (Fig. 4C), which is statistically significantly above 

chance (i.e. 50%). The above chance unconscious performance could be explained by 

projection trough the lateral geniculate nucleus (LGN) or through superior colliculus 

that bypass V1. 

Similarly, if metacontrast masking leaves the initial feedforward responses uninhibited, 

it should also enable unconscious location detection (similar to TMS results). 

Conversely, does paracontrast masking, which has been suggested to inhibit the target’s 

transient onset-response, also block unconscious location detection? Our results on the 

trials where subjects reported “not seeing the target at all” confirmed this prediction: 

Statistically significant (above chance) unconscious location detection was possible 

during efficient metacontrast but not during paracontrast masking (Fig. 4C).  
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Figure 4. A) The experimental procedure. B) Comparison of TMS and visual masking. 
Grey line represents para- and metacontrast. Black line shows TMS results (stimulated 
hemifield), when the retinocortical delay is taken into account (see Study IV for details). 
Note that maximal visual masking takes place after maximal TMS masking. C) Forced-
choice location detection accuracy in different experimental conditions during those 
trials where the participant reported not seeing the stimulus at all. Error bars represent 
the standard error of mean. (Study IV) 
 

3.5. Study V: Unconscious processing of chromatic information 

To investigate conscious and unconscious processing of chromatic information, we 

employed early visual cortex stimulation at three TMS SOAs (40, 70, and 100 ms after 
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stimulus onset), in three different experimental conditions: 1) Conscious recognition of 

color, 2) unconscious, metacontrast masked color priming, and 3) forced-choice 

recognition of consciously invisible color (see Fig. 4 for details of the experimental 

procedure). Thirteen participants were tested.  

Figure 4. In the metacontrast masked priming the participants were asked to report the 
color of the mask annulus (red or blue). They were not informed that a heavily masked 
prime stimulus was presented before the mask (red or blue). A control condition 
verified that the participants were indeed unconscious of the prime. The experiment 
also included a conscious color recognition condition where the participants were asked 
to recognize the color of the prime disk without the mask. Stimulus durations and TMS 
SOAs are presented on the horizontal bar. TMS was applied to right early visual cortex, 
so the processing of primes/targets presented in the lower left visual field (i.e. right 
hemisphere) were directly interfered with TMS (ipsilateral targets are a control 
condition)(Study V) 
 

The results of the conscious color recognition condition revealed that early visual cortex 

stimulation 70 or 100 ms after stimulus onset interfered with conscious color visibility 

and color recognition performance. Also unconscious metacontrast masked chromatic 

priming was interfered at a similar SOA (relative to prime), suggesting that early visual 

cortex activation 70–100 ms after stimulus onset underlies both conscious and 

unconscious processing of chromatic information (Fig. 5). Moreover, the forced-choice 
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color recognition performance was also dependent on early visual cortex stimulation 

(all SOAs pooled together to maximize the number of trials). When the participants 

reported perceiving the stimulus faintly, without consciously seeing the color, color 

recognition performance was above chance-level. However, when only those trials were 

included in which the subjects reported being completely unconscious of the stimulus, 

recognition of color was at chance-level. This suggests that early visual cortex activation 

underlies not only conscious color recognition, but also unconscious color recognition 

in healthy participants. 

 

 

Figure 5. Line graph (right vertical 
axis) shows the TMS results of the 
conscious color recognition condition 
(left hemifield targets). Bars represent 
the magnitude of priming in the 
unconscious masked priming 
condition during different TMS SOAs. 
Note that TMS pulses decrease 
unconscious priming during the same 
time-windows as they suppress 
conscious vision. Error bars represent 
the standard error of mean. (Study V)

 

4. Discussion 

The main findings of the present thesis are the following: 

1) Although visual consciousness is reflected in the ERPs as early as ~100 ms after 

stimulus onset, later (~200 ms; VAN) differences in the occipito-temporal visual 

cortex most closely correlate with conscious visual perception. We suggest that 
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any ERP correlates of visual consciousness that emerge after VAN, such as LP, are 

signs of post-perceptual cognitive processing. 

2) The classical suppressive time-window (~100 ms after stimulus onset) of early 

visual cortex TMS reflects inhibition of preconscious processing. The early parts 

of this suppressive time-window (~60 ms) may correspond to feedforward 

activity, but later periods (i.e. ~100 ms) probably already include local feedback 

communication in the visual cortex.  

3) Unconscious detection of target location is possible when stimulus visibility is 

completely suppressed by TMS of early visual cortex. However, in a similar 

situation, TMS suppression of conscious vision also disturbs unconscious 

perception of chromatic information. 

4) Evidence from ERPs (Study I) and comparison of metacontrast masking to TMS-

induced suppression (Study IV) suggest that metacontrast masking suppresses 

the conscious visibility of a target by inhibiting target-related feedback activity.  

5) Stimuli that are unconscious due to metacontrast masking may influence 

behavior. The results of Study V support the view that unconscious processing of 

chromatic information in metacontrast masking relies on early visual cortex 

(arguably feedforward activation). 
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4.1. Tracking the time-course of conscious perception 

ERP investigations of the temporal evolution of conscious perception suggest that 

conscious vision is enabled following number of different cognitive and neural 

processing stages. Based on ERP evidence (Foxe, et al., 2008), and intracranial 

recordings (Wilson, et al., 1983), the initial activation of V1 after thalamic inputs takes 

place about 60 ms after stimulus onset, which coincides with the beginning of the 

“classical” dip in TMS studies. Hence, TMS pulses around this time-window can be 

assumed to co-occur with the initial feedforward activation of early visual cortex.  

Although TMS can suppress consciousness at this time-window, it cannot be said that 

TMS inhibited the NCC in particular, assuming that feedforward activation is insufficient 

for conscious perception. None of the ERP studies of visual consciousness have 

suggested that feedforward activation (reflected in the visual C1 component; Foxe, et al., 

2008) would be the NCC. Early visual cortex TMS can have a smaller disturbing effect on 

visual perception also during considerably later time-windows (~200 ms; Corthout, et 

al., 1999; Camprodon, et al., 2010).  

The second earliest visual ERP deflection is the P1, which has been suggested to be 

generated in extrastriate cortical areas (Di Russo, et al., 2003). If local cortical feedback 

connections activate rapidly (Hupe, et al., 2001), the P1 might already include sensory 

feedback signals from extrastriate areas to V1. For example, the TMS results of Pascual-

Leone and Walsh (2001) suggest that the (feedback) projections from the cortical 

“motion area” V5 to early visual cortex operate in approximately 20 ms, and that these 

projections are necessary for conscious perception of motion.  
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Although the P1 has been proposed to be the ERP correlate of consciousness, our review 

suggests that P1 modulation in these studies is better explained by differences in 

attentional processing between the consciously perceived and unperceived conditions. 

The attentional mechanisms that take place in the P1 time-window may influence what 

information reaches consciousness, but the P1 cannot be assigned the label NCC. 

According to a theory proposed by Klimesch (2011), the P1 is generated by alpha 

oscillations that reflect top-down attentional inhibition from parietal areas. This way 

alpha oscillation could influence what stimuli enter consciousness, without being the 

direct correlate of conscious perception. On the other hand, other evidence suggests 

that the attentional modulation in the P1 time-window does not influence what 

becomes conscious (Wyart, et al., 2012). Both lines of evidence, however, agree that the 

attentional influences during P1 do not constitute a true NCC. 

We have argued that strongest evidence for the ERP correlate of phenomenal visual 

consciousness is for VAN, a negative amplitude difference typically onsetting before 200 

ms after stimulus onset and lasting up to 400 ms. The VAN localizes predominantly to 

the occipito-temporal cortex, which is in concert with other studies indicating 

involvement of the ventral visual stream in conscious perception (Milner & Goodale, 

2006; Logothetis, 1998; Tong, et al., 1998). VAN has also been demonstrated using MEG 

Liu et al., 2012), and intracranial recordings (Fisch, et al., 2009; Gaillard, et al., 2009).  

VAN seems to emerge independently of top-down feature-based attention, but attention 

later interacts with VAN, so that attended stimuli produce stronger VAN, compared to 

unattended stimuli (e.g. Koivisto, et al., 2006). Hence, if VAN is taken as the correlate of 
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consciousness, it consists of different phases, the early part of it being independent, and 

later phase dependent of top-down attention. Evidence concerning spatial attention, 

however, suggests that under situations where subjects are attending solely to one 

location while completely ignoring the other location (where distracter stimuli are 

nevertheless presented), VAN is only observed in the attended locations (Koivisto, et al., 

2009).  

However, VAN has also been argued to be an ERP correlate of preconscious processes 

that bring perceptual contents to the verge of consciousness (Sergent, et al., 2004; Salti, 

et al., in press). According to this interpretation the LP is the ERP correlate of 

consciousness. However, this view does not explain why the early part of VAN has been 

shown to be independent of attention. That is, if VAN cannot be explained as an 

attention-related effect, what preconscious processes does VAN reflect? Furthermore, 

there is evidence that LP can be dissociated from consciousness (Koivisto, et al., 2006; 

Koivisto & Revonsuo, 2008). Nevertheless, the question whether LP reflects 

consciousness or related cognitive processing, remains a central issue for future 

research. Furthermore, although VAN localizes to the ventral cortical areas, top-down 

modulation other cortical areas such as the parietal cortex, may be indispensable for 

consciousness (Mesulam, 1999). 

 

4.2. Unconscious and conscious perception 

Our results from metacontrast masking support the view that feedforward signals can 

trigger unconscious perception (e.g. Lamme, 2010). Study IV suggests that metacontrast, 
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unlike paracontrast, does not eliminate unconscious detection of stimulus location. 

However, Study V provided direct evidence that the early, possibly feedforward, activity 

of early visual cortex is important for metacontrast masked color priming. Importantly, 

similar color priming can be reduced by paracontrast masking (Breitmeyer, Öğmen, & 

Chen, 2004), again supporting the view that paracontrast suppresses feedforward 

activity that is crucial for unconscious and conscious perception. However, it should be 

noted that paracontrast is still a relatively little studied form of masking. This, and the 

fact that paracontrast masking can affect visibility during a wide-range of SOAs 

(suggesting of different suppression mechanisms), means that the conclusions about 

paracontrast should be taken cautiously. A potential confounding factor for interpreting 

visual masking results is also that the location of a target, for instance, might be inferred 

from the appearance of the mask (e.g. in our Study IV). That is, although the target 

remains invisible, it might influence the appearance of the mask (e.g. making the centre 

of the mask “blink”). 

Occipital TMS studies have demonstrated that visual stimuli that are not consciously 

perceived can nevertheless guide hand movements (Christiansen, et al., 2008; Ro, 2008). 

As only stimulus location needed to be processed in these studies to accomplish 

corrective movements, the results are similar to our reports of unconscious processing 

of target location (Study IV; see also Koivisto, et al., 2011). The ability to unconsciously 

resolve stimulus locations could be mediated by a visual pathway that bypasses the LGN 

(Christiansen, et al., 2008; Ro, 2008). An alternative possibility is the pathway through 

LGN to early visual cortex, as the TMS studies may have not been able to completely 

suppress the feedforward signals in early visual cortex (see Study V). In neurological 
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patients, however, evidence supports the conclusion that pathway bypassing the LGN 

mediate at least some blindsight abilities (Leh, et al., 2006; Tamietto, et al., 2008). 

Unconscious processes other than the processing stimulus location might rely on the 

early visual cortex. Study V suggests that unconscious processing of chromatic 

information relies on the early visual cortex in healthy participants. Early visual cortex 

may also be necessary for the processing of detailed spatial information. Koivisto et al. 

(2012) showed that unconscious, metacontrast masked symbolic priming depended on 

early visual cortex, suggesting that early visual cortex is necessary for unconscious 

processing of shape (see also, Koivisto, et al., 2011).  

Koivisto, Mäntylä and Silvanto (2010) have provided evidence that feedback is involved 

also in unconscious processing. The authors used motion stimuli and observed two 

time-periods during which TMS suppressed the conscious perception of motion. 

Following earlier studies (Silvanto, et al., 2005), these two periods were interpreted as 

markers of feedforward and feedback signals, because V5 stimulation suppressed 

conscious perception of motion at an intermediate SOA (with respect to early visual 

cortex stimulation). Next, Koivisto et al. (2010) examined forced-choice motion 

direction judgments during the trials when the participants reported not perceiving 

motion. Critically, accuracy was above chance-level when no TMS was applied, and 

during the early TMS time-window, but not during the second TMS time-window, which 

was assumed to correspond to the feedback activity. Hence, the results suggest that 

feedback activity (to V1) contributes not only to conscious, but also to unconscious 

perception (Koivisto, et al., 2010). Consistent with this, unconscious modulation of ERPs 
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is observed at intermediate (Pitts, et al., 2011), and late (Gaillard, et al., 2009) latencies, 

demonstrating that more than just feedforward activation is involved in unconscious 

processing.  

The argument that feedforward activation of visual areas is sufficient for unconscious 

perception is based on the premise that neurons’ receptive field properties and 

response selection can be engaged by simple activation of cortical areas. Although 

salient visual features (such as location) can be assumed to require mere feedforward 

activation, resolving more perceptually demanding stimuli might require feedback 

processing (e.g. Pitts et al., 2011). We have also suggested that this (unconscious) 

disambiguation and amplification of visual representations might explain why the 

emergence of NCC is sometimes delayed (Studies I and III).  

  

4.3. Conclusions and future directions  

During the last few years, the discussion concerning the NCC has concentrated on 

feedback activity, and there is strong evidence that feedback connections are involved 

in visual consciousness (Pascual-Leone & Walsh, 2001). Since feedback connections are 

a ubiquitous feature of the brain (Pollen, 1999; Gilbert & Sigman, 2007), a critical 

question is what separates consciousness-related feedback activity from unconscious 

feedback activity. According to Lamme’s theory, the crucial element of conscious 

processing is not mere feedback, but recurrent processing. This can be interpreted as 

coherent and sustained reciprocal communication between different cortical areas 
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(Lamme, 2010). However, a similar mechanism has been proposed to underlie neuronal 

communication in general (Fries, 2005), underlining the need for a more 

comprehensive view of the neural mechanisms underlying consciousness. A potential 

answer could be, for instance, the information integration theory of consciousness, 

which proposes an explanation why the information processed in certain recurrently 

communicating neural ensembles enters consciousness while others do not (Tononi, 

2004). Tononi (2004) proposes that a systems capacity to integrate information 

determines the system’s level of consciousness, whereas the contents of consciousness 

are provided by the specific relationships between the elements of the system.  

 A crucial next step in the study of ERP correlates of consciousness is to link the ERP 

correlates to their neural mechanisms. What exactly happens in visual cortex 

electrophysiology during VAN? How is VAN related to other features of neural 

activation (e.g. oscillations)? Although VAN localizes to the ventral visual sites, how do 

parietal or frontal cortices influence VAN and other electrophysiological correlates of 

visual consciousness? Finally, as discussed in Study III, it is critical that the relationship 

of the NCC and cognitive functions such as types of attention and decision making are 

further studied.  

TMS offers an excellent opportunity to investigate the contributions of not only lower 

but also higher levels of cortical areas to unconscious perception. A shortcoming for 

most TMS-induced blindsight studies (e.g. Studies IV and V) is that they concentrate 

merely on single TMS SOAs or pool a number of SOAs together (for practical reasons 

and to maximize statistical power). Hence, on the whole the studies have not been able 
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to directly test the hypothesis that feedback stages of visual processing are crucial for 

unconscious vision (but see, Koivisto, et al., 2010). Another problem for TMS studies is 

that due to small sample sizes they might lack statistical power to observe the small 

effect-sizes associated with unconscious processing (e.g. Study V). 

In conclusion, the results of this thesis support the view that conscious vision is enabled 

by a series of processing stages. The processes that most closely correlate with 

conscious vision take place in the ventral visual cortex (~200 ms after stimulus 

presentation, VAN), although preceding time-periods and contributions from other 

cortical areas such as the parietal cortex are also indispensable. Unconscious vision 

relies on intact early visual activation, although the location of visual stimulus may be 

unconsciously resolved even when activity in the early visual cortex is interfered with. 
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