Rich Words and Balanced Words
Vesti, Jetro (2016-09-23)
Rich Words and Balanced Words
Vesti, Jetro
(23.09.2016)
Turku Centre for Computer Science
Julkaisun pysyvä osoite on:
https://urn.fi/URN:ISBN:978-952-12-3404-0
https://urn.fi/URN:ISBN:978-952-12-3404-0
Kuvaus
Siirretty Doriasta
Tiivistelmä
Tässä väitöskirjassa käsitellään pääasiassa palindromeja. Palindromeja on tutkittu viime vuosina runsaasti sanojen kombinatoriikassa.Suurin kiinnostuksen kohde tässä tutkielmassa on rikkaissa sanoissa. Nämä ovat sanoja
joissa on maksimaalinen määrä erilaisia palindromeja tekijöinä.Näitä sanoja tutkitaan monesta eri näkökulmasta.
Äärellisiä rikkaita sanoja voidaan tunnetusti jatkaa äärettömiksi rikkaiksi sanoiksi.Työssä tutkitaan tarkemmin sitä, miten monella tavalla ja missä eri tilanteissa rikkaita sanoja voidaan jatkaa siten, että ne pysyvät rikkaina.Sanan vajauksella tarkoitetaan puuttuvien palindromien lukumäärää.Vajauksen käsite yleistetään tapaukseen, jossa sanaa on jatkettava äärettömäksi sanaksi.Rikkaiden sanojen lukumäärälle annetaan myös ylä- ja alaraja.
Hof, Knill ja Simon esittivät kysymyksen (Commun. Math. Phys. 174, 1995), saadaanko kaikki äärettömät sanat joissa on ääretön määrä palindromeja tekijöinä ja jotka ovat primitiivisen morfismin generoimia, morfismeista jotka kuuluvat luokkaan P. Nykyään tätä ongelmaa kutsutaan luokan P konjektuuriksi ja sen tarkoitus on saada selitys sille,millä tavalla äärettömässä sanassa voi olla tekijöinä äärettömän monta palindromia. Osittainen tulos tästä konjektuurista todistetaan.
Rikkaiden neliövapaiden sanojen tiedetään olevan äärellisiä (Pelantov\'a ja Starosta, Discrete Math. 313, 2013).
Tälle tulokselle annetaan uudenlainen todistus.Koska kyseiset sanat ovat äärellisiä, voidaan selvittää mikä niistä on pisin.Ylä- ja alaraja annetaan tällaisen pisimmän sanan pituudelle.
Työssä tutkitaan myös tasapainotettuja sanoja.Tasapainotetut sanat antavat pienimmän osittaissumman binäärisille sanoille (Jenkinson, Discrete Math., Alg. and Appl. 1(4), 2009).Lisäksi ne antavat suurimman tulon.Muotoa $0^{q-p}1^p$ ($p$ ja $q$ ovat kokonaislukuja joille $1\leq p
joissa on maksimaalinen määrä erilaisia palindromeja tekijöinä.Näitä sanoja tutkitaan monesta eri näkökulmasta.
Äärellisiä rikkaita sanoja voidaan tunnetusti jatkaa äärettömiksi rikkaiksi sanoiksi.Työssä tutkitaan tarkemmin sitä, miten monella tavalla ja missä eri tilanteissa rikkaita sanoja voidaan jatkaa siten, että ne pysyvät rikkaina.Sanan vajauksella tarkoitetaan puuttuvien palindromien lukumäärää.Vajauksen käsite yleistetään tapaukseen, jossa sanaa on jatkettava äärettömäksi sanaksi.Rikkaiden sanojen lukumäärälle annetaan myös ylä- ja alaraja.
Hof, Knill ja Simon esittivät kysymyksen (Commun. Math. Phys. 174, 1995), saadaanko kaikki äärettömät sanat joissa on ääretön määrä palindromeja tekijöinä ja jotka ovat primitiivisen morfismin generoimia, morfismeista jotka kuuluvat luokkaan P. Nykyään tätä ongelmaa kutsutaan luokan P konjektuuriksi ja sen tarkoitus on saada selitys sille,millä tavalla äärettömässä sanassa voi olla tekijöinä äärettömän monta palindromia. Osittainen tulos tästä konjektuurista todistetaan.
Rikkaiden neliövapaiden sanojen tiedetään olevan äärellisiä (Pelantov\'a ja Starosta, Discrete Math. 313, 2013).
Tälle tulokselle annetaan uudenlainen todistus.Koska kyseiset sanat ovat äärellisiä, voidaan selvittää mikä niistä on pisin.Ylä- ja alaraja annetaan tällaisen pisimmän sanan pituudelle.
Työssä tutkitaan myös tasapainotettuja sanoja.Tasapainotetut sanat antavat pienimmän osittaissumman binäärisille sanoille (Jenkinson, Discrete Math., Alg. and Appl. 1(4), 2009).Lisäksi ne antavat suurimman tulon.Muotoa $0^{q-p}1^p$ ($p$ ja $q$ ovat kokonaislukuja joille $1\leq p
Kokoelmat
- Väitöskirjat [2889]