Analysis of High-dimensional and Left-censored Data with Applications in Lipidomics and Genomics
Pesonen, Maiju (2016-11-24)
Analysis of High-dimensional and Left-censored Data with Applications in Lipidomics and Genomics
Pesonen, Maiju
(24.11.2016)
Turun yliopisto Annales Universitatis Turkuensis A I 548
Julkaisun pysyvä osoite on:
https://urn.fi/URN:ISBN:978-951-29-6643-1
https://urn.fi/URN:ISBN:978-951-29-6643-1
Kuvaus
Siirretty Doriasta
Tiivistelmä
Uudet mittausteknologiat ovat mahdollistaneet kokonaisvaltaisen ymmärryksen lisäämisen elollisten organismien molekyylitason prosesseista. Niin kutsutut omiikka-teknologiat, kuten genomiikka, proteomiikka ja lipidomiikka, kykenevät tuottamaan valtavia määriä mittausdataa yksittäisten geenien, proteiinien ja lipidien ekspressio- tai konsentraatiotasoista ennennäkemättömällä tarkkuudella. Samanaikaisesti tarve uusien analyysimenetelmien kehittämiselle on kasvanut. Kiinnostuksen kohteena ovat olleet erityisesti tiettyjen sairauksien riskiä tai prognoosia ennustavien merkkiaineiden tunnistaminen sekä biologisten verkkojen rekonstruointi.
Omiikka-aineistoilla on useita erityisominaisuuksia, jotka rajoittavat tavanomaisten menetelmien suoraa ja tehokasta soveltamista. Näistä tärkeimpiä ovat vasemmalta sensuroidut ja puuttuvat havainnot, sekä havaittujen muuttujien suuri lukumäärä. Tämän väitöskirjan ensimmäisenä tavoitteena on tarjota räätälöityjä analyysimenetelmiä epätäydellisten omiikka-aineistojen visualisointiin ja mallin valintaan käyttäen esimerkiksi regularisoituja regressiomalleja. Kuvailemme myös sensuroidulle aineistolle sopivan suurimman uskottavuuden estimaattorin kovarianssimatriisille. Toisena tavoitteena on kehittää uusia menetelmiä omiikka-aineistojen assosiaatiorakenteiden tarkasteluun. Monimutkaisempien rakenteiden tarkasteluun, visualisoimiseen ja vertailuun esitetään erilaisia variaatioita osittaisen pienimmän neliösumman menetelmään pohjautuvasta algoritmista, jonka avulla voidaan rekonstruoida assosiaatioverkkoja sekä multi-imputoidulle sensuroidulle että lukumääräaineistoille.
Omiikka-aineistoilla on useita erityisominaisuuksia, jotka rajoittavat tavanomaisten menetelmien suoraa ja tehokasta soveltamista. Näistä tärkeimpiä ovat vasemmalta sensuroidut ja puuttuvat havainnot, sekä havaittujen muuttujien suuri lukumäärä. Tämän väitöskirjan ensimmäisenä tavoitteena on tarjota räätälöityjä analyysimenetelmiä epätäydellisten omiikka-aineistojen visualisointiin ja mallin valintaan käyttäen esimerkiksi regularisoituja regressiomalleja. Kuvailemme myös sensuroidulle aineistolle sopivan suurimman uskottavuuden estimaattorin kovarianssimatriisille. Toisena tavoitteena on kehittää uusia menetelmiä omiikka-aineistojen assosiaatiorakenteiden tarkasteluun. Monimutkaisempien rakenteiden tarkasteluun, visualisoimiseen ja vertailuun esitetään erilaisia variaatioita osittaisen pienimmän neliösumman menetelmään pohjautuvasta algoritmista, jonka avulla voidaan rekonstruoida assosiaatioverkkoja sekä multi-imputoidulle sensuroidulle että lukumääräaineistoille.
Kokoelmat
- Väitöskirjat [2812]