Detecting and Analyzing Text Reuse with BLAST
Vesanto, Aleksi (2019-01-15)
Detecting and Analyzing Text Reuse with BLAST
Vesanto, Aleksi
(15.01.2019)
Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.
avoin
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe201901313724
https://urn.fi/URN:NBN:fi-fe201901313724
Tiivistelmä
In this thesis I expand upon my previous work on text reuse detection. I propose a novel method of detecting text reuse by leveraging BLAST (Basic Local Alignment Search Tool), an algorithm originally designed for aligning and comparing biomedical sequences, such as DNA and protein sequences.
I explain the original BLAST algorithm in depth by going through it step-by-step. I also describe two other popular sequence alignment methods. I demonstrate the effectiveness of the BLAST text reuse detection method by comparing it against the previous state-of-the-art and show that the proposed method beats it by a large margin.
I apply the method to a dataset of 3 million documents of scanned Finnish newspapers and journals, which have been turned into text using OCR (Optical Character Recognition) software. I categorize the results from the method into three categories: every day text reuse, long term reuse and viral news. I describe them and provide examples of them as well as propose a new, novel method of calculating a virality score for the clusters.
I explain the original BLAST algorithm in depth by going through it step-by-step. I also describe two other popular sequence alignment methods. I demonstrate the effectiveness of the BLAST text reuse detection method by comparing it against the previous state-of-the-art and show that the proposed method beats it by a large margin.
I apply the method to a dataset of 3 million documents of scanned Finnish newspapers and journals, which have been turned into text using OCR (Optical Character Recognition) software. I categorize the results from the method into three categories: every day text reuse, long term reuse and viral news. I describe them and provide examples of them as well as propose a new, novel method of calculating a virality score for the clusters.