Cavity-based negative images in molecular docking
Kurkinen, Sami (2021-10-01)
Cavity-based negative images in molecular docking
Kurkinen, Sami
(01.10.2021)
Turun yliopisto
Julkaisun pysyvä osoite on:
https://urn.fi/URN:ISBN:978-951-29-8581-4
https://urn.fi/URN:ISBN:978-951-29-8581-4
Tiivistelmä
In drug development, computer-based methods are constantly evolving as a result of increasing computing power and cumulative costs of generating new pharmaceuticals. With virtual screening (VS), it is possible to screen even hundreds of millions of compounds and select the best molecule candidates for in vitro testing instead of investing time and resources in analysing all molecules systematically in laboratories. However, there is a constant need to generate more reliable and effective software for VS. For example, molecular docking, one of the most central methods in structure-based VS, can be a very successful approach for certain targets while failing completely with others. However, it is not necessarily the docking sampling but the scoring of the docking poses that is the bottleneck. In this thesis, a novel rescoring method, negative image-based rescoring (R-NiB), is introduced, which generates a negative image of the ligand binding cavity and compares the shape and electrostatic similarity between the generated model and the docked molecule pose. The performance of the method is tested comprehensively using several different protein targets, benchmarking sets and docking software. Additionally, it is compared to other rescoring methods. R-NiB is shown to be a fast and effective method to rescore the docking poses producing notable improvement in active molecule recognition. Furthermore, the NIB model optimization method based on a greedy algorithm is introduced that uses a set of known active and inactive molecules as a training set. This approach, brute force negative image-based optimization (BR-NiB), is shown to work remarkably well producing impressive in silico results even with very limited active molecule training sets. Importantly, the results suggest that the in silico hit rates of the optimized models in docking rescoring are on a level needed in real-world VS and drug discovery projects. Tietokoneiden laskentatehojen ja lääketutkimuksen tuotekehityskulujen kasvaessa tietokonepohjaiset menetelmät kehittyvät jatkuvasti lääkekehityksessä. Virtuaaliseulonnalla voidaan seuloa jopa satoja miljoonia molekyylejä ja valita vain parhaat molekyyliehdokkaat laboratoriotestaukseen sen sijaan, että tuhlattaisiin aikaa ja resursseja analysoimalla järjestelmällisesti kaikki molekyylit laboratoriossa. Tästä huolimatta on koko ajan jatkuva tarve kehittää luotettavampia ja tehokkaampia menetelmiä virtuaaliseulontaan. Esimerkiksi telakointi, yksi keskeisimmistä työkaluista rakennepohjaisessa lääkeainekehityksessä, saattaa toimia erinomaisesti yhdellä kohteella ja epäonnistua täysin toisella. Ongelma ei välttämättä ole telakoitujen molekyylien luonnissa vaan niiden pisteytyksessä. Tässä väitöskirjassa tähän ongelmaan esitellään ratkaisuksi uudenlainen pisteytysmenetelmä R-NiB, jossa verrataan ligandinsitomisalueen negatiivikuvan muodon ja sähköstaattisen potentiaalin samankaltaisuutta telakoituihin molekyyleihin. Menetelmän suorituskykyä testataan usealla eri molekyylisarjalla, lääkeainekohteella, telakointiohjelmalla ja vertaamalla tuloksia muihin pisteytysmenetelmiin. R-NiB:n näytetään olevan nopea ja tehokas menetelmä telakointiasentojen pisteytykseen tuottaen huomattavan parannuksen aktiivisten molekyylien tunnistukseen. Tämän lisäksi esitellään ns. ahneeseen algoritmiin perustuva negatiivikuvan optimointimenetelmä, joka käyttää sarjaa tunnettuja aktiivisia ja inaktiivisia molekyylejä harjoitusjoukkona. Tämän BR-NiB-menetelmän näytetään toimivan ainakin tietokonemallinnuksessa todella hyvin tuottaen vaikuttavia tuloksia jopa silloin, kun harjoitusjoukko koostuu vain muutamista aktiivisista molekyyleistä. Mikä tärkeintä, in silico -tulokset viittaavat optimointimenetelmän osumaprosentin telakoinnin uudelleenpisteytyksessä olevan riittävän korkea myös oikeisiin virtuaaliseulontaprojekteihin.
Kokoelmat
- Väitöskirjat [2889]