Carmichael numbers in arithmetic progressions
Matomaki K
Carmichael numbers in arithmetic progressions
Matomaki K
CAMBRIDGE UNIV PRESS
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042714077
https://urn.fi/URN:NBN:fi-fe2021042714077
Tiivistelmä
We prove that when (a, m) = 1 and a is a quadratic residue mod m, there are infinitely many Carmichael numbers in the arithmetic progression a mod m. Indeed the number of them up to x is at least x^(1/5) when x is large enough (depending on m).
Kokoelmat
- Rinnakkaistallenteet [19207]