Näytä suppeat kuvailutiedot

Dynamic prediction of mortality after traumatic brain injury using a machine learning algorithm

Luostarinen Teemu; Korja Miikka; Nelson David W; Luoto Teemu M; Bendel Stepani; Thelin Eric P; Takala Riikka; Posti Jussi P; Tjerkaski Jonathan; Raj Rahul; Wennervirta Jenni M

dc.contributor.authorLuostarinen Teemu
dc.contributor.authorKorja Miikka
dc.contributor.authorNelson David W
dc.contributor.authorLuoto Teemu M
dc.contributor.authorBendel Stepani
dc.contributor.authorThelin Eric P
dc.contributor.authorTakala Riikka
dc.contributor.authorPosti Jussi P
dc.contributor.authorTjerkaski Jonathan
dc.contributor.authorRaj Rahul
dc.contributor.authorWennervirta Jenni M
dc.date.accessioned2022-10-27T11:55:47Z
dc.date.available2022-10-27T11:55:47Z
dc.identifier.urihttps://www.utupub.fi/handle/10024/155969
dc.description.abstractIntensive care for patients with traumatic brain injury (TBI) aims to optimize intracranial pressure (ICP) and cerebral perfusion pressure (CPP). The transformation of ICP and CPP time-series data into a dynamic prediction model could aid clinicians to make more data-driven treatment decisions. We retrained and externally validated a machine learning model to dynamically predict the risk of mortality in patients with TBI. Retraining was done in 686 patients with 62,000 h of data and validation was done in two international cohorts including 638 patients with 60,000 h of data. The area under the receiver operating characteristic curve increased with time to 0.79 and 0.73 and the precision recall curve increased with time to 0.57 and 0.64 in the Swedish and American validation cohorts, respectively. The rate of false positives decreased to <= 2.5%. The algorithm provides dynamic mortality predictions during intensive care that improved with increasing data and may have a role as a clinical decision support tool.
dc.language.isoen
dc.publisherNATURE PORTFOLIO
dc.titleDynamic prediction of mortality after traumatic brain injury using a machine learning algorithm
dc.identifier.urlhttps://www.nature.com/articles/s41746-022-00652-3
dc.identifier.urnURN:NBN:fi-fe2022091258442
dc.relation.volume5
dc.contributor.organizationfi=kliiniset neurotieteet|en=Clinical Neurosciences|
dc.contributor.organizationfi=tyks, vsshp|en=tyks, vsshp|
dc.contributor.organizationfi=anestesiologia ja tehohoito|en=Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine|
dc.contributor.organization-code2607301
dc.contributor.organization-code2607314
dc.converis.publication-id175999655
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/175999655
dc.identifier.jour-issn2398-6352
dc.okm.affiliatedauthorPosti, Jussi
dc.okm.affiliatedauthorTakala, Riikka
dc.okm.affiliatedauthorDataimport, tyks, vsshp
dc.okm.discipline3141 Terveystiedefi_FI
dc.okm.discipline3141 Health care scienceen_GB
dc.okm.discipline3124 Neurology and psychiatryen_GB
dc.okm.discipline3126 Surgery, anesthesiology, intensive care, radiologyen_GB
dc.okm.discipline3126 Kirurgia, anestesiologia, tehohoito, radiologiafi_FI
dc.okm.discipline3124 Neurologia ja psykiatriafi_FI
dc.okm.internationalcopublicationinternational co-publication
dc.okm.internationalityInternational publication
dc.okm.typeJournal article
dc.publisher.countryBritanniafi_FI
dc.publisher.countryUnited Kingdomen_GB
dc.publisher.country-codeGB
dc.relation.articlenumber96
dc.relation.doi10.1038/s41746-022-00652-3
dc.relation.ispartofjournalnpj Digital Medicine
dc.relation.issue1
dc.year.issued2022


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot