Näytä suppeat kuvailutiedot

Probabilistic early warning signals

Laitinen Ville; Lahti Leo; Dakos Vasilis

dc.contributor.authorLaitinen Ville
dc.contributor.authorLahti Leo
dc.contributor.authorDakos Vasilis
dc.date.accessioned2022-10-27T12:24:35Z
dc.date.available2022-10-27T12:24:35Z
dc.identifier.urihttps://www.utupub.fi/handle/10024/158406
dc.description.abstract<p><br></p><p>Ecological communities and other complex systems can undergo abrupt and long-lasting reorganization, a regime shift, when deterministic or stochastic factors bring them to the vicinity of a tipping point between alternative states. Such changes can be large and often arise unexpectedly. However, theoretical and experimental analyses have shown that changes in correlation structure, variance, and other standard indicators of biomass, abundance, or other descriptive variables are often observed prior to a state shift, providing early warnings of an anticipated transition. Natural systems manifest unknown mixtures of ecological and environmental processes, hampered by noise and limited observations. As data quality often cannot be improved, it is important to choose the best modeling tools available for the analysis. <br></p><p>We investigate three autoregressive models and analyze their theoretical differences and practical performance. We formulate a novel probabilistic method for early warning signal detection and demonstrate performance improvements compared to nonprobabilistic alternatives based on simulation and publicly available experimental time series. <br></p><p>The probabilistic formulation provides a novel approach to early warning signal detection and analysis, with enhanced robustness and treatment of uncertainties. In real experimental time series, the new probabilistic method produces results that are consistent with previously reported findings. <br></p><p>Robustness to uncertainties is instrumental in the common scenario where mechanistic understanding of the complex system dynamics is not available. The probabilistic approach provides a new family of robust methods for early warning signal detection that can be naturally extended to incorporate variable modeling assumptions and prior knowledge.</p>
dc.language.isoen
dc.publisherWILEY
dc.titleProbabilistic early warning signals
dc.identifier.urnURN:NBN:fi-fe2021110253331
dc.relation.volume11
dc.contributor.organizationfi=tietotekniikan laitoksen yhteiset|en=Tietotekniikan laitoksen yhteiset|
dc.contributor.organizationfi=data-analytiikka|en=Data-analytiikka|
dc.contributor.organizationfi=väestötutkimuskeskus|en=Centre for Population Health Research (POP Centre)|
dc.contributor.organization-code2607008
dc.contributor.organization-code2610300
dc.contributor.organization-code2610301
dc.converis.publication-id67541310
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/67541310
dc.format.pagerange14114
dc.format.pagerange14101
dc.identifier.jour-issn2045-7758
dc.okm.affiliatedauthorLahti, Leo
dc.okm.affiliatedauthorLaitinen, Ville
dc.okm.discipline1172 Environmental sciencesen_GB
dc.okm.discipline113 Computer and information sciencesen_GB
dc.okm.discipline1181 Ecology, evolutionary biologyen_GB
dc.okm.discipline111 Matematiikkafi_FI
dc.okm.discipline1172 Ympäristötiedefi_FI
dc.okm.discipline113 Tietojenkäsittely ja informaatiotieteetfi_FI
dc.okm.discipline111 Mathematicsen_GB
dc.okm.discipline1181 Ekologia, evoluutiobiologiafi_FI
dc.okm.internationalcopublicationinternational co-publication
dc.okm.internationalityInternational publication
dc.okm.typeJournal article
dc.publisher.countryUnited Statesen_GB
dc.publisher.countryYhdysvallat (USA)fi_FI
dc.publisher.country-codeUS
dc.relation.doi10.1002/ece3.8123
dc.relation.ispartofjournalEcology and Evolution
dc.relation.issue20
dc.year.issued2021


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot