Näytä suppeat kuvailutiedot

Deep Learning Based Multi-Modal Fusion Architectures for Maritime Vessel Detection

Jukka Heikkonen; Fahimeh Farahnakian

dc.contributor.authorJukka Heikkonen
dc.contributor.authorFahimeh Farahnakian
dc.date.accessioned2022-10-28T12:26:42Z
dc.date.available2022-10-28T12:26:42Z
dc.identifier.urihttps://www.utupub.fi/handle/10024/159532
dc.description.abstractObject detection is a fundamental computer vision task for many real-world applications. In the maritime environment, this task is challenging due to varying light, view distances, weather conditions, and sea waves. In addition, light reflection, camera motion and illumination changes may cause to false detections. To address this challenge, we present three fusion architectures to fuse two imaging modalities: visible and infrared. These architectures can provide complementary information from two modalities in different levels: pixel-level, feature-level, and decision-level. They employed deep learning for performing fusion and detection. We investigate the performance of the proposed architectures conducting a real marine image dataset, which is captured by color and infrared cameras on-board a vessel in the Finnish archipelago. The cameras are employed for developing autonomous ships, and collect data in a range of operation and climatic conditions. Experiments show that feature-level fusion architecture outperforms the state-of-the-art other fusion level architectures.
dc.language.isoen
dc.publisherMDPI
dc.titleDeep Learning Based Multi-Modal Fusion Architectures for Maritime Vessel Detection
dc.identifier.urnURN:NBN:fi-fe2021042824576
dc.relation.volume12
dc.contributor.organizationfi=PÄÄT Tietojenkäsittelytiede|en=PÄÄT Computer Science|
dc.contributor.organizationfi=matematiikan ja tilastotieteen laitos, yhteiset|en=Department of Mathematics and Statistics|
dc.contributor.organization-code2606803
dc.contributor.organization-code2606100
dc.converis.publication-id50340179
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/50340179
dc.identifier.eissn2072-4292
dc.identifier.jour-issn2072-4292
dc.okm.affiliatedauthorHeikkonen, Jukka
dc.okm.affiliatedauthorFarahnakian, Fahimeh
dc.okm.discipline113 Computer and information sciencesen_GB
dc.okm.discipline113 Tietojenkäsittely ja informaatiotieteetfi_FI
dc.okm.internationalcopublicationnot an international co-publication
dc.okm.internationalityInternational publication
dc.okm.typeJournal article
dc.publisher.countrySveitsifi_FI
dc.publisher.countrySwitzerlanden_GB
dc.publisher.country-codeCH
dc.relation.articlenumberARTN 2509
dc.relation.doi10.3390/rs12162509
dc.relation.ispartofjournalRemote Sensing
dc.relation.issue6
dc.year.issued2020


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot