Näytä suppeat kuvailutiedot

Classification of sEMG Signals for Muscle Fatigue Detection Using Support Vector Machines

Reza Boostani; Fariba Biyouki; Saeed Rahati; Katri Laimi; Afsane Zadnia

dc.contributor.authorReza Boostani
dc.contributor.authorFariba Biyouki
dc.contributor.authorSaeed Rahati
dc.contributor.authorKatri Laimi
dc.contributor.authorAfsane Zadnia
dc.date.accessioned2022-10-28T12:42:07Z
dc.date.available2022-10-28T12:42:07Z
dc.identifier.isbn978-1-4673-1149-6
dc.identifier.urihttps://www.utupub.fi/handle/10024/161434
dc.description.abstract<span style="font-family: Times-Italic; font-size: xx-small;"><span style="font-family: Times-Italic; font-size: xx-small;"><span style="font-family: Times-Italic; font-size: xx-small;"><span style="font-family: Times-Italic; font-size: xx-small;"> <p align="left">Fatigue is a multidimensional and subjective concept and is a complex phenomenon including various causes, mechanisms and forms of manifestation. Thus, it is crucial to delineate the different levels and to quantify self- perceived fatigue. The aim of this study was to discriminate between fatigue and nonfatigue stages using support vector machine (SVM) approach. Thus, electromyographic (EMG) signals collected in the department of biomedical engineering of Islamic Azad university of Mashhad, were used. 10 features in time, frequency and time- scale domains were extracted from sEMG signals and the effect of different objective functions for dimensionality reduction and different SVM were evaluated for fatigue detection. The best accuracy (89.45%) was achieved through RBF kernel with ROC criterion while the best accuracy through linear SVM was 54.42%. These results suggest that the selected features contained some information that could be used by the nonlinear SVM with RBF kernel to best discriminate between fatigue and nonfatigue stages.</p> </span></span></span><span style="font-family: Times-Italic; font-size: xx-small;"> <p align="left">&nbsp;</p> </span></span> <p align="left">&nbsp;</p>
dc.language.isoen
dc.titleClassification of sEMG Signals for Muscle Fatigue Detection Using Support Vector Machines
dc.identifier.urnURN:NBN:fi-fe2021042714980
dc.contributor.organizationfi=PÄÄT LLK Kliininen laitos|en=PÄÄT LLK Kliininen laitos|
dc.contributor.organization-code2601219
dc.converis.publication-id3027250
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/3027250
dc.okm.affiliatedauthorLaimi, Katri
dc.okm.discipline114 Physical sciencesen_GB
dc.okm.discipline112 Statistics and probabilityen_GB
dc.okm.discipline3112 Neurosciencesen_GB
dc.okm.discipline217 Medical engineeringen_GB
dc.okm.discipline3111 Biolääketieteetfi_FI
dc.okm.discipline3111 Biomedicineen_GB
dc.okm.discipline3112 Neurotieteetfi_FI
dc.okm.discipline114 Fysiikkafi_FI
dc.okm.discipline217 Lääketieteen tekniikkafi_FI
dc.okm.discipline112 Tilastotiedefi_FI
dc.okm.internationalcopublicationinternational co-publication
dc.okm.internationalityInternational publication
dc.okm.typeB3 Non-refereed conference proceedings
dc.publisher.countryIran, Islamic Republic ofen_GB
dc.publisher.countryIranfi_FI
dc.publisher.country-codeIR
dc.year.issued2012


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot