Näytä suppeat kuvailutiedot

A comparative study of pairwise learning methods based on Kernel ridge regression

Antti Airola; Willem Waegeman; Bernard De Baets; Tapio Pahikkala; Michiel Stock

dc.contributor.authorAntti Airola
dc.contributor.authorWillem Waegeman
dc.contributor.authorBernard De Baets
dc.contributor.authorTapio Pahikkala
dc.contributor.authorMichiel Stock
dc.date.accessioned2022-10-28T12:47:30Z
dc.date.available2022-10-28T12:47:30Z
dc.identifier.urihttps://www.utupub.fi/handle/10024/162092
dc.description.abstract<p>Many machine learning problems can be formulated as predicting labels for a pair of objects. Problems of that kind are often referred to as pairwise learning, dyadic prediction, or network inference problems. During the past decade, kernel methods have played a dominant role in pairwise learning. They still obtain a state-of-the-art predictive performance, but a theoretical analysis of their behavior has been underexplored in the machine learning literature. In this work we review and unify kernel-based algorithms that are commonly used in different pairwise learning settings, ranging from matrix filtering to zero-shot learning. To this end, we focus on closed-form efficient instantiations of Kronecker kernel ridge regression. We show that independent task kernel ridge regression, two-step kernel ridge regression, and a linear matrix filter arise naturally as a special case of Kronecker kernel ridge regression, implying that all these methods implicitly minimize a squared loss. In addition, we analyze universality, consistency, and spectral filtering properties. Our theoretical results provide valuable insights into assessing the advantages and limitations of existing pairwise learning methods.<br /></p>
dc.language.isoen
dc.publisherMIT Press Journals
dc.titleA comparative study of pairwise learning methods based on Kernel ridge regression
dc.identifier.urnURN:NBN:fi-fe2021042719666
dc.relation.volume30
dc.contributor.organizationfi=PÄÄT Tietojenkäsittelytiede|en=PÄÄT Computer Science|
dc.contributor.organization-code2606803
dc.converis.publication-id35696344
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/35696344
dc.format.pagerange2283
dc.format.pagerange2245
dc.identifier.eissn1530-888X
dc.identifier.jour-issn0899-7667
dc.okm.affiliatedauthorPahikkala, Tapio
dc.okm.affiliatedauthorAirola, Antti
dc.okm.discipline113 Computer and information sciencesen_GB
dc.okm.discipline113 Tietojenkäsittely ja informaatiotieteetfi_FI
dc.okm.internationalcopublicationinternational co-publication
dc.okm.internationalityInternational publication
dc.okm.typeJournal article
dc.publisher.countryYhdysvallat (USA)fi_FI
dc.publisher.countryUnited Statesen_GB
dc.publisher.country-codeUS
dc.relation.doi10.1162/neco_a_01096
dc.relation.ispartofjournalNeural Computation
dc.relation.issue8
dc.year.issued2018


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot