Näytä suppeat kuvailutiedot

Simulation of atherosclerotic plaque growth using computational biomechanics and patient-specific data

Vassiliki Kigka; Gualtiero Pelosi; Silvia Rocchiccioli; Danilo Neglia; Antonis I. Sakellarios; Lampros K. Michalis; Juhani Knuuti; Dimitrios S. Pleouras; Dimitrios I. Fotiadis; Savvas Kyriakidis; Panagiota Tsompou

dc.contributor.authorVassiliki Kigka
dc.contributor.authorGualtiero Pelosi
dc.contributor.authorSilvia Rocchiccioli
dc.contributor.authorDanilo Neglia
dc.contributor.authorAntonis I. Sakellarios
dc.contributor.authorLampros K. Michalis
dc.contributor.authorJuhani Knuuti
dc.contributor.authorDimitrios S. Pleouras
dc.contributor.authorDimitrios I. Fotiadis
dc.contributor.authorSavvas Kyriakidis
dc.contributor.authorPanagiota Tsompou
dc.date.accessioned2022-10-28T13:02:59Z
dc.date.available2022-10-28T13:02:59Z
dc.identifier.urihttps://www.utupub.fi/handle/10024/162435
dc.description.abstractAtherosclerosis is the one of the major causes of mortality worldwide, urging the need for prevention strategies. In this work, a novel computational model is developed, which is used for simulation of plaque growth to 94 realistic 3D reconstructed coronary arteries. This model considers several factors of the atherosclerotic process even mechanical factors such as the effect of endothelial shear stress, responsible for the initiation of atherosclerosis, and biological factors such as the accumulation of low and high density lipoproteins (LDL and HDL), monocytes, macrophages, cytokines, nitric oxide and formation of foams cells or proliferation of contractile and synthetic smooth muscle cells (SMCs). The model is validated using the serial imaging of CTCA comparing the simulated geometries with the real follow-up arteries. Additionally, we examine the predictive capability of the model to identify regions prone of disease progression. The results presented good correlation between the simulated lumen area (P<0.0001), plaque area (P<0.0001) and plaque burden (P<0.0001) with the realistic ones. Finally, disease progression is achieved with 80% accuracy with many of the computational results being independent predictors.
dc.language.isoen
dc.publisherNATURE RESEARCH
dc.titleSimulation of atherosclerotic plaque growth using computational biomechanics and patient-specific data
dc.identifier.urnURN:NBN:fi-fe2021042820916
dc.relation.volume10
dc.contributor.organizationfi=tyks, vsshp|en=tyks, vsshp|
dc.contributor.organizationfi=PET perustoiminta|en=PET Basic Operations|
dc.contributor.organization-code2609810
dc.converis.publication-id50479471
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/50479471
dc.identifier.jour-issn2045-2322
dc.okm.affiliatedauthorKnuuti, Juhani
dc.okm.affiliatedauthorDataimport, tyks, vsshp
dc.okm.discipline3121 Sisätauditfi_FI
dc.okm.discipline3121 Internal medicineen_GB
dc.okm.internationalcopublicationinternational co-publication
dc.okm.internationalityInternational publication
dc.okm.typeJournal article
dc.publisher.countryUnited Kingdomen_GB
dc.publisher.countryBritanniafi_FI
dc.publisher.country-codeGB
dc.relation.articlenumberARTN 17409
dc.relation.doi10.1038/s41598-020-74583-y
dc.relation.ispartofjournalScientific Reports
dc.relation.issue1
dc.year.issued2020


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot