SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf
Mark E. Huber; Andreas Flörs; Avishay Gal-Yam; Ken W. Smith; Ting-Wan Chen; Ósmar Rodríguez; Stefano Valenti; James H. Gillanders; Shrinivas R. Kulkarni; Matt Nicholl; Armin Rest; Jonathan Pineda Garcia; Stuart A. Sim; Kishalay De; Rupak Roy; Mariusz Gromadzki; and Arne Rau; Simon Prentice; Cosimo Inserra; Erkki Kankare; Ken C. Chambers; Stephen J. Smartt; David R. Young; Lluís Galbany; Anders Jerkstrand; Ilya Mandel; Peter S. J. Clark; Cristina Barbarino; David A. H. Buckley; Claudia P. Gutiérrez; Kate Maguire; Owen R. McBrien; Jesper Sollerman; Stefan Taubenberger
SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf
Mark E. Huber
Andreas Flörs
Avishay Gal-Yam
Ken W. Smith
Ting-Wan Chen
Ósmar Rodríguez
Stefano Valenti
James H. Gillanders
Shrinivas R. Kulkarni
Matt Nicholl
Armin Rest
Jonathan Pineda Garcia
Stuart A. Sim
Kishalay De
Rupak Roy
Mariusz Gromadzki
and Arne Rau
Simon Prentice
Cosimo Inserra
Erkki Kankare
Ken C. Chambers
Stephen J. Smartt
David R. Young
Lluís Galbany
Anders Jerkstrand
Ilya Mandel
Peter S. J. Clark
Cristina Barbarino
David A. H. Buckley
Claudia P. Gutiérrez
Kate Maguire
Owen R. McBrien
Jesper Sollerman
Stefan Taubenberger
IOP PUBLISHING LTD
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042821556
https://urn.fi/URN:NBN:fi-fe2021042821556
Tiivistelmä
We present SN2018kzr, the fastest declining supernova-like transient, second only to the kilonova, AT2017gfo. SN2018kzr is characterized by a peak magnitude of Mr = -17.98, a peak bolometric luminosity of ?1.4 & xfffd;& x5e0;10(43) erg s(?1), and a rapid decline rate of 0.48 & xfffd;& xfffd;0.03 mag day(?1) in the r band. The bolometric luminosity evolves too quickly to be explained by pure Ni-56 heating, necessitating the inclusion of an alternative powering source. Incorporating the spin-down of a magnetized neutron star adequately describes the lightcurve and we estimate a small ejecta mass of M-ej & xfffd;=& xfffd;0.10 & xfffd;& xfffd;0.05 M. Our spectral modeling suggests the ejecta is composed of intermediate mass elements including O, Si, and Mg and trace amounts of Fe-peak elements, which disfavors a binary neutron star merger. We discuss three explosion scenarios for SN2018kzr, given the low ejecta mass, intermediate mass element composition, and high likelihood of additional powering?the core collapse of an ultra-stripped progenitor, the accretion induced collapse (AIC) of a white dwarf, and the merger of a white dwarf and neutron star. The requirement for an alternative input energy source favors either the AIC with magnetar powering or a white dwarf?neutron star merger with energy from disk wind shocks.
Kokoelmat
- Rinnakkaistallenteet [19207]