Näytä suppeat kuvailutiedot

Predicting Molecular Phenotypes from Histopathology Images: A Transcriptome-Wide Expression-Morphology Analysis in Breast Cancer

Hartman Johan; Wang Yinxi; Larsson Christer; Valkonen Masi; Rantalainen Mattias; Kartasalo Kimmo; Ruusuvuori Pekka; Acs Balazs; Weitz Philippe

dc.contributor.authorHartman Johan
dc.contributor.authorWang Yinxi
dc.contributor.authorLarsson Christer
dc.contributor.authorValkonen Masi
dc.contributor.authorRantalainen Mattias
dc.contributor.authorKartasalo Kimmo
dc.contributor.authorRuusuvuori Pekka
dc.contributor.authorAcs Balazs
dc.contributor.authorWeitz Philippe
dc.date.accessioned2022-10-28T13:24:06Z
dc.date.available2022-10-28T13:24:06Z
dc.identifier.urihttps://www.utupub.fi/handle/10024/164918
dc.description.abstractMolecular profiling is central in cancer precision medicine but remains costly and is based on tumor average profiles. Morphologic patterns observable in histopathology sections from tumors are determined by the underlying molecular phenotype and therefore have the potential to be exploited for prediction of molecular phenotypes. We report here the first transcriptome-wide expression-morphology (EMO) analysis in breast cancer, where individual deep convolutional neural networks were optimized and validated for prediction of mRNA expression in 17,695 genes from hematoxylin and eosin-stained whole slide images. Predicted expressions in 9,334 (52.75%) genes were significantly associated with RNA sequencing estimates. We also demonstrated successful prediction of an mRNA-based proliferation score with established clinical value. The results were validated in independent internal and external test datasets. Predicted spatial intratumor variabilities in expression were validated through spatial transcriptomics profiling. These results suggest that EMO provides a cost-efficient and scalable approach to predict both tumor average and intratumor spatial expression from histopathology images.Significance: Transcriptome-wide expression morphology deep learning analysis enables prediction of mRNA expression and proliferation markers from routine histopathology whole slide images in breast cancer.
dc.language.isoen
dc.publisherAMER ASSOC CANCER RESEARCH
dc.titlePredicting Molecular Phenotypes from Histopathology Images: A Transcriptome-Wide Expression-Morphology Analysis in Breast Cancer
dc.identifier.urlhttps://cancerres.aacrjournals.org/content/81/19/5115
dc.identifier.urnURN:NBN:fi-fe2021120158437
dc.relation.volume81
dc.contributor.organizationfi=biolääketieteen laitos, yhteiset|en=Institute of Biomedicine|
dc.contributor.organizationfi=tyks, vsshp|en=tyks, vsshp|
dc.contributor.organization-code2607100
dc.converis.publication-id67745769
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/67745769
dc.format.pagerange5115
dc.format.pagerange5126
dc.identifier.eissn1538-7445
dc.identifier.jour-issn0008-5472
dc.okm.affiliatedauthorRuusuvuori, Pekka
dc.okm.affiliatedauthorDataimport, tyks, vsshp
dc.okm.affiliatedauthorValkonen, Masi
dc.okm.discipline3122 Cancersen_GB
dc.okm.discipline3122 Syöpätauditfi_FI
dc.okm.internationalcopublicationinternational co-publication
dc.okm.internationalityInternational publication
dc.okm.typeJournal article
dc.publisher.countryUnited Statesen_GB
dc.publisher.countryYhdysvallat (USA)fi_FI
dc.publisher.country-codeUS
dc.relation.doi10.1158/0008-5472.CAN-21-0482
dc.relation.ispartofjournalCancer Research
dc.relation.issue19
dc.year.issued2021


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot