Näytä suppeat kuvailutiedot

Identification of metastatic primary cutaneous squamous cell carcinoma utilizing artificial intelligence analysis of whole slide images

Karlsson Antti; Riihilä Pilvi; Talve Lauri; Kähäri Veli-Matti; Knuutila Jaakko S; Nissinen Liisa; Tukiainen Mikko

dc.contributor.authorKarlsson Antti
dc.contributor.authorRiihilä Pilvi
dc.contributor.authorTalve Lauri
dc.contributor.authorKähäri Veli-Matti
dc.contributor.authorKnuutila Jaakko S
dc.contributor.authorNissinen Liisa
dc.contributor.authorTukiainen Mikko
dc.date.accessioned2022-10-28T13:30:32Z
dc.date.available2022-10-28T13:30:32Z
dc.identifier.urihttps://www.utupub.fi/handle/10024/165668
dc.description.abstract<p>Cutaneous squamous cell carcinoma (cSCC) harbors metastatic potential and causes mortality. However, clinical assessment of metastasis risk is challenging. We approached this challenge by harnessing artificial intelligence (AI) algorithm to identify metastatic primary cSCCs. Residual neural network-architectures were trained with cross-validation to identify metastatic tumors on clinician annotated, hematoxylin and eosin-stained whole slide images representing primary non-metastatic and metastatic cSCCs (n = 104). Metastatic primary tumors were divided into two subgroups, which metastasize rapidly (≤ 180 days) (n = 22) or slowly (> 180 days) (n = 23) after primary tumor detection. Final model was able to predict whether primary tumor was non-metastatic or rapidly metastatic with slide-level area under the receiver operating characteristic curve (AUROC) of 0.747. Furthermore, risk factor (RF) model including prediction by AI, Clark's level and tumor diameter provided higher AUROC (0.917) than other RF models and predicted high 5-year disease specific survival (DSS) for patients with cSCC with 0 or 1 RFs (100% and 95.7%) and poor DSS for patients with cSCCs with 2 or 3 RFs (41.7% and 40.0%). These results indicate, that AI recognizes unknown morphological features associated with metastasis and may provide added value to clinical assessment of metastasis risk and prognosis of primary cSCC.<br></p>
dc.language.isoen
dc.publisherNature
dc.titleIdentification of metastatic primary cutaneous squamous cell carcinoma utilizing artificial intelligence analysis of whole slide images
dc.identifier.urlhttps://doi.org/10.1038/s41598-022-13696-y
dc.identifier.urnURN:NBN:fi-fe2022091258632
dc.relation.volume12
dc.contributor.organizationfi=iho- ja sukupuolitautioppi|en=Dermatology and Venereology|
dc.contributor.organizationfi=tyks, vsshp|en=tyks, vsshp|
dc.contributor.organizationfi=Auria Biopankki|en=Auria Biobank|
dc.contributor.organization-code2607305
dc.contributor.organization-code2607005
dc.converis.publication-id175979815
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/175979815
dc.identifier.eissn2045-2322
dc.identifier.jour-issn2045-2322
dc.okm.affiliatedauthorKarlsson, Antti
dc.okm.affiliatedauthorKnuutila, Jaakko
dc.okm.affiliatedauthorNissinen, Liisa
dc.okm.affiliatedauthorDataimport, tyks, vsshp
dc.okm.affiliatedauthorRiihilä, Pilvi
dc.okm.affiliatedauthorKähäri, Veli-Matti
dc.okm.discipline3111 Biolääketieteetfi_FI
dc.okm.discipline3111 Biomedicineen_GB
dc.okm.internationalcopublicationnot an international co-publication
dc.okm.internationalityInternational publication
dc.okm.typeJournal article
dc.publisher.countryYhdysvallat (USA)fi_FI
dc.publisher.countryUnited Statesen_GB
dc.publisher.country-codeUS
dc.relation.articlenumber9876
dc.relation.doi10.1038/s41598-022-13696-y
dc.relation.ispartofjournalScientific Reports
dc.year.issued2022


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot